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Abstract— Objective: Medical image registration can be formu-
lated as a tissue deformation problem, where parameter estimation
methods are used to obtain the inverse deformation. However, there
is limited knowledge about the ability to recover an unknown defor-
mation. The main objective of this study is to estimate the quality
of a restored deformation field obtained from image registration of
dynamic MR sequences. Methods: We investigate the behavior of
forward deformation models of various complexities. Further, we
study the accuracy of restored inverse deformations generated by
image registration. Results: We found that the choice of 1) hetero-
geneous tissue parameters and 2) a poroelastic (instead of elastic)
model had significant impact on the forward deformation. In the
image registration problem, both 1) and 2) were found not to be
significant. Here, the presence of image features were dominating
the performance. We also found that existing algorithms will align
images with high precision while at the same time obtain a de-
formation field with a relative error of 40%. Conclusion: Image
registration can only moderately well restore the true deformation
field. Still, estimation of volume changes instead of deformation
fields can be fairly accurate and may represent a proxy for varia-
tions in tissue characteristics. Volume changes remain essentially
unchanged under choice of discretization and the prevalence of
pronounced image features. Significance: We suggest that image
registration of high-contrast MR images has potential to be used
as a tool to produce imaging biomarkers sensitive to pathology
affecting tissue stiffness.

Index Terms—Biot equations, dynamic imaging, elasticity, het-
erogeneity, image registration.

I. INTRODUCTION

M EDICAL image registration is the task of aligning im-
ages, either within a time series or between multimodal

image acquisitions [1]. In this study, we focus on the align-
ment of time series through estimation of tissue or organ de-
formation fields. For such problems, the objects of interest are
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captured within a sequence of images over time, where each
frame needs to be aligned with a common reference (target)
image for further analysis. After application of the obtained de-
formation field, the corresponding objects in all input images
should be spatially aligned with the corresponding objects in
the reference image. After this alignment, a successful image
registration enables a thorough voxel-by-voxel comparison of
object properties throughout the time series [2].

The image registration problem is by nature an ill-posed
inverse problem. In general, there is no unique deformation
field representing the correct alignment of images. Therefore,
a method for image registration has normally two components,
a data term and a regularization term. The data term measures
similarity between the input and the target image, and the regu-
larization term reduces the ill-posedness of the inverse problem
[3]. The regularization can also be thought of as the deforma-
tion model as it represents a set of rules or constraints for the
deformation. In this study, we extend the concept of image reg-
istration to not only be a method for image alignment, but also to
become the task of model-based estimation of a physical defor-
mation that has occurred during the observation period (image
time series). Human organs and tissue obey the laws of physics
in their process of their deformation. As a consequence, it is
natural to use image registration regularizers originating from
physical deformation models. As a direct consequence of this,
we explore linear elasticity known from continuum mechan-
ics as a model for deformation of elastic objects. Every living
body part or organ can be assigned a set of tissue parameters
reflecting its elastic properties. The Lamé parameters and the
porosity are examples of such parameters. The Lamé parameters
are essential components of linear elasticity, and are in many
image registration contexts referred to as “regularization param-
eters” rather than “tissue parameters.” The term “regularization
parameters” is clearly more appropriate in combination with
nonphysical deformation models. However, within our context
of establishing a highly physical image registration model, we
consider the term “tissue parameters” to be more descriptive.

A wide range of mechanical models have been investi-
gated for human tissue, including nonlinear and viscoelas-
tic models [4], [5]. Mechanical complexity for human carti-
lage was demonstrated in [6], showing anisotropy, inhomo-
geneity, and tension-compression nonlinearities. Linear elas-
ticity was recognized as a reasonable approximation to soft
tissue deformation in [7], and further extended to nonlinear
viscoelasticity in [8]. These references highlight the complex
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challenges encountered in mechanical modeling of the highly
heterogeneous human abdomen. Without access to accurate seg-
mentations, a locally optimal deformation model is ambitious to
implement for all tissue simultaneously. Additionally, there are
numerical challenges related to stability and convergence when
combining models across tissue. Thus, as a first step deforma-
tion model for the human abdomen, we apply linear (poro-)
elasticity to the entire domain, which is considered a reason-
able approximation to a wide range of deformation events [9],
including small deformations in human soft tissue [8].

In order to be able to use image registration as a biomarker
for altered tissue stiffness, a reconstructed deformation field of
high quality is probably crucial. Estimating the reconstruction
error is, therefore, a major issue and a motivation for this study.
Our aim is to identify factors that are important for reconstruct-
ing an authentic or plausible deformation field. In this process,
we have considered on a set of factors related to heterogene-
ity in the tissue stiffness and in fluid permeability parameters,
various physically deformation models, effects from undersam-
pling in k-space, as well as a gridding pattern of the image. In
the following, we describe these factors in more detail.

The human abdominal region, ranging from soft tissue
(viscera) to bone (columna), is highly varying in terms of
stiffness. Thus, it is reasonable to use heterogeneous tissue
parameters in an image registration method. Such methods
typically employ the same parameters for the whole image [10]
and heterogeneity versus homogeneity in the image registration
has not been thoroughly investigated. Related to heterogeneous
tissue parameters is the usage of locally adaptive regularization
parameters [11], [12]. Also anisotropic models have been pro-
posed [11], [13]. However, these approaches are either coupled
to image intensities and are therefore not directly reflecting stiff-
ness of the underlying tissue, or they are aiming at preserving
prescribed properties of the deformation field, like anisotropy.

As a further extension to tissue heterogeneity in the model,
one can consider parameters varying also locally within the same
tissue, as a result of the complex biomechanical architecture of
organs. We refer to this situation as “irregularities” within the
tissue parameters.

Human tissue is simultaneously deformable and highly
porous. The porous properties are due to the fluid-filled net-
work of capillaries and lumina. From a physical perspective,
these properties advocate a deformation model accounting for
the interaction between mechanical forces and fluid flow. Such
a model, known as poroelasticity or the Biot equations [14], is
our default deformation model in this study, where the use of
poroelasticity as a deformation model for image registration is
a novel contribution. On the other hand, outside the image pro-
cessing applications, poroelasticity is an increasingly popular
deformation model of human tissue. A spatiotemporal, poroe-
lastic, hemodynamic model was used to create a theoretical
foundation for understanding the hemodynamic responses [15].
A model for poroelasticity was also proposed for simulations
on how changes in fluid reabsorption can be responsible for
enlargement of the ventricles in hydrocephalic brain dynam-
ics, both in human [16] and in cat [17]. In [18], poroelasticity
was applied to model the ischemia-reperfusion injury by tissue
swelling and a secondary vessel collapse. Significant changes

of strain in the human brain upon forced expiration were shown
in [19], and the authors concluded that the relatively frequent
findings of volumetric strain are due to the poroelastic nature
of the human brain. As a model for soft arteries, Simon et al.
[20] considered a soft hydrated tissue material composed of an
incompressible porous solid (fibrous matrix) saturated by an in-
compressible fluid (water). In [21], the porous spinal cord was
modeled as a poroelastic medium. Also in geomechanics, many
poroelastic models have been described [22], [23].

Volume changes are expected to vary significantly between
linear elasticity and poroelasticity. Volume changes in a perfused
object either occur from compression/decompression, and/or by
inflow or outflow of fluid or gas from a cavity, or physiologi-
cally controlled volume. Assuming no pockets of gas, thereby
excluding the lungs from our model, the compression of fluid or
solid is almost negligible in human tissue due to incompressibil-
ity of water. Thereby, volume changes associated with inflow
or outflow of fluid from a control volume can possibly occur
in highly perfused human tissue by two means, as described in
Fig. 1. First, an external pressure arising from breathing, stri-
ate muscle contractions, movement in the gravitational field,
the cardiac cycle, or intestinal peristalsis, can locally change
the rate of blood flow within the capillary bed in an organ. A
secondary effect of this motion is local volume changes arising
from redistribution of fluid within the organ. Second, there is a
possibility of a global volume change of the organ, arising from
an external pressure gradient leading to a change in the steady-
state inflow and outflow of blood and other fluid components.
The viscous fluid will in this sense act as a damping force on
the deforming object. Owing to the ability of poroelasticity to
accurately model the capacity of human tissue to undergo such
volume changes, we suggest to use this as a metric to identify
pathological variations of viscous effects.

The prescribed factors of heterogeneous tissue parameters and
the use of poroelasticity as a deformation model are directly cou-
pled to the discretization and numerics, and will, therefore, affect
both a forward simulation as well as a reconstruction by image
registration. The next two factors we describe are not related to
physical assumptions about the tissue, but rather reflected in the
registration force for reconstruction. Undersampling in k-space1

is one such factor, widely used in fast dynamic MR sequences
for perfusion measurements. The amount of undersampling in
k-space is a matter of time efficiency and robustness toward mo-
tion artifacts. It is not known to what extent this type of artifacts
will influence the registration performance, and in this study,
we investigate the effect of such undersampling.

Another option to possibly improve the registration quality is
to use MR sequences maximizing the image contrast, leading
to a stronger registration force as the data term is depending
on contrast and image features. Artificially imposing contrast is
thus possible via an MR sequence allowing for magnetic tag-
ging [24]–[26]. In this technique, magnetic tags are imposed
within the tissue from locally induced perturbations of the mag-
netization. These locations of altered magnetization are visible
in the MR image for a limited amount of time, and are there-
fore, useful to determine the deformation. In order to mimic

1That is, undersampling the Fourier expansion coefficients of the signal
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Fig. 1. Displacement modes of a poroelastic organ exposed to external, uniaxial pressure. The deformable organ displacement can be split into two components:
isovolumetric deformation with internal fluid displacement (A) and isomorphic compression with volume changes (B). Both displacement modes include a net
fluid transport, either dislocation of fluid within the organ (deformations) or a net in/out flux of fluid from the organ. Applied to the kidneys and other parenchymal
organs like the liver, the spleen, the gastrointestinal tract, the pancreas, and the heart, contraction and compression of perfused and deformable tissue can be
modeled by poroelasticity.

a situation of maximal image contrast, and thus, ascertain the
potential benefit of this approach, we imposed a regular grid
of low intensities, and investigated whether such gridding has a
potential to improve the recovered deformation field.

The main contribution of this study is to evaluate the accu-
racy of the restored deformation field from registration. By the
combination of all investigated factors, as well as chosen val-
ues of temporal and spatial resolution, we have created a digital
phantom meant to cover the characteristics encountered in a typ-
ical, dynamic MR scan, and thereby, generate results that can be
transferrable to real MR scans of patients. From an automatic
or manual organ segmentation and the estimated deformation
field by registration, it is thereby possible to extract organ char-
acteristics with the aim of identifying pathological tissue like
fibrosis, where changes in tissue stiffness occur. By these means,
standard T1-weighted, dynamic MRI protocols for in vivo mea-
surements of tissue stiffness, without injecting a contrast agent
as in DCE- or DSC-MRI, could have the potential to become a
complementary tool to MR elastography (MRE) as a biomarker
for characterization of pathological tissue [27].

The rest of this paper is organized as follows. In Section II-A,
we describe the poroelastic model in terms of the momentum
equations, Darcy’s law, and the continuity equation. A digital
phantom is introduced in Section III, and a forward simula-
tion is performed in Section III-B based on this phantom. image
registration is conducted in order to restore the inverse deforma-
tion field. A comparison of the deformation fields upon various
model conditions and configurations is reported in Section IV,
and finally, conclusions are given in Sections V–VI.

II. MATHEMATICAL APPROACH

A. Poroelastic Model for Deformations

To improve and extend linear elasticity into a physically even
more plausible model for deformation of human tissue, we take

jointly into account elastic and porous properties of the tissue.
The poroelastic model is derived using three well-known phys-
ical principles, conservation of momentum, mass balance, and
Darcy’s law. We define the porosity

φ =
Vf

V
(1)

as a measure of relative fluid volume Vf inside a control volume
V . The fluid volume Vf here denotes the fluid fraction that is
permitted to move, in particular, the vascular fluid being trans-
ported in the porous capillary system. Thus, fluid with highly
restricted motion, i.e., residing inside cells, is not accounted for
in the porosity. We assume full saturation of the pore space,
implying no vacuum or air pockets.

We let �u : Ω × T → R3 denote a deformation vector field,
being a function of a spatial domain Ω ⊂ R3 with boundary Γ
and a time span T ⊆ R+ . In linear elasticity, the Lagrangian
strain tensor is approximated by the linearized strain tensor

ε =
1
2

(
∇�u + (∇�u)T

)
(2)

valid for small deformation gradients [9]. The stress tensor σ =
C : ε is a generalization of Hooks law for the material stiffness
tensor C. Thus, σ = 2με + λ(trε)I [9], where λ : Ω → R is
the first Lamé constant, μ : Ω → R is the second Lamé constant
or shear modulus. In the poroelastic description, one allows for
an extra diagonal term, coming from the hydrostatic pressure
p : Ω × T → R of fluid in the pores [23]. This results in the
poroelastic constitutive equations

σ = 2με + λ(tr ε) I − αpI (3)

for the identity I . Given an external force field�b(�x, �u) represent-
ing volume forces with a global scaling factor γ, the conserva-
tion of momentum states that for an object with zero acceleration
the sum of forces per unit volume is equal to zero [9], thus

∇ · σ + γ�b(�x, �u) = 0. (4)
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Mass balance of the fluid flow is ensured by the continuity
equation, expressed in global form as

d

dt

∫

Ω i

φρd�x +
∫

Γ i

ρ�q · �endS = 0 (5)

for a geometric control volume Ωi with boundaries Γi . Here, �en

is the outer unit normal vector of Γi , �q : Ω × T → R3 is the flux
per unit area [m3/s/m2 ], and ρ : Ω × T → R is the fluid density
[kg/m3 ]. Equation (5) must be valid for every geometric control
volume Ωi , hence, by the divergence theorem, one obtains the
local form

∂

∂t
(φρ) + ∇ · (ρ�q) = 0. (6)

Assuming a weakly linear and isothermal relationship between
the density ρ and pressure p, we can phrase density as a function
of pressure as ρ(�x, t) = βp(�x, t) + c1 for a small constant β
and a constant c1 . Furthermore, one can assume that porosity of
the tissue is essentially a linear function of the volume change
∇ · �u, which is the process leading to local inflow or outflow of
fluid. Thus, one can expect a relationship φ = α∇ · �u + c2 for a
scaling factor α and a constant c2 . The constant α is the fraction
of volume change that leads to change in porosity, and can
be set to α ≈ 1 for human parenchymal tissue where basically
the complete volume change will lead to a corresponding change
in porosity and inflow of fluid. An exception to this assumption
occurs in the lungs where the volume change leads to inflow
of compressible fluid (air). Embedding these assumptions and
using the chain rule to the first term in (6) we obtain

∂

∂t
(φρ) = φβ

∂p

∂t
+ ρα

∂

∂t
(∇ · �u). (7)

Using a Boussinesq approximation, we will assume that the spa-
tial variation of the density ρ is sufficiently small to be neglected
∇ρ = 0, thus the continuity equation (6) can be expressed as

χ
∂p

∂t
+ ρα

∂

∂t
(∇ · �u) + ρ∇ · �q = 0 (8)

for a small and arbitrary χ ≡ φβ, where β is a small, unknown
constant.

Further, porous media fluid flow is macroscopically described
by Darcy’s law. Assuming laminar flow, the flux �q is propor-
tional to the pressure gradient, the gravitational field, the per-
meability k [m2 ], and inverse proportional to the fluid viscosity
μb [Pa · s]

�q = − k

μb
(∇p − ρg�ez ) (9)

where g is the gravitational acceleration along the unit vector
�ez . The gravitational term will be neglected under the assump-
tion that the gravitational acceleration is approximately constant
across the characteristic length scale of the organ of interest, Pro-
vided a nonzero density ρ and combining Darcy’s law (9) with
the continuity equation (8) we obtain the flow equation

−∇ ·
(

k

μb
∇p

)
+

χ

ρ

∂p

∂t
+ α

∂

∂t
(∇ · �u) = 0. (10)

Note that in (10), the pressure can only be estimated up to a
constant p0 , and any solution can be replaced by p → p + p0 ,

TABLE I
TISSUE PARAMETERS USED FOR GENERATING THE DIGITAL PHANTOM

Parameter Unit Kidney “Generic Organ” Spine

λ kPa 0.01 0.01 5.55 × 104 [34]
μ kPa 1.67 [27] 0.41 [35] 8.33 × 104 [34]
k m 2 0.26 × 10−1 2 0.13 × 10−1 2 0.26 × 10−1 5

The “generic organ” is a combination of soft tissue like liver and the spleen, typically
less perfused than the kidneys. For the homogeneous model, the Lamé constants
of the kidneys were used everywhere, while for the heterogeneous model, local
parameters were assigned according to the segmentation mask. λ = First Lamé
parameter, μ = shear modulus, k = permeability.

depending on the Dirichlet boundary conditions. However, the
Dirichlet boundary conditions are essentially unknown and we
can, therefore, only estimate a bias pressure field deviating
from the steady-state pressure. Combining (10) with the three
equations for conservation of momentum (4), we now have a
complete set of four equations for the unknowns �u and p of
the poroelastic model. Settings α = 0 and discarding the flow
equation (10) leads to the equations of linear elasticity.

III. DIGITAL PHANTOM AND NUMERICAL IMPLEMENTATION

An in silico kidney phantom in 2-D was created using several
different modeling and imaging assumptions. The dynamics
of the phantom was generated by a dynamic force resulting
in time-dependent deformation fields and a deforming image
time series. The deformed time series was used as input for
the reconstruction of the (inverse) deformation field by image
registration. The relative error of the reconstruction is reported
and was used to classify various experimental setups within
image registration models in terms of their impact on registration
accuracy.

A. Digital Phantom

The noise-free digital phantom consists of a synthetic MR
image f(�x, t) (2-D + time) containing realistic MR signal inten-
sities, as well as 2-D tissue parameter maps of μ(�x), λ(�x) and
k(�x). The phantom was constructed in the following way. An
existing 3-D+time DCE-MRI dataset of a healthy volunteer was
manually segmented into four regions: spine, whole kidney, kid-
ney cortex, and “generic organ.” The segmentation was used to
create a time series of spatially realistic MR intensities f(�x, t).
To construct f(�x, t), we selected a frame in the original DCE-
MRI time series and computed the average intensity within each
region of the segmentation. This regional intensity value was
assigned to f(�x, T0) and duplicated along the time axis with
a temporal resolution of Δt = 0.25 s to create a “monomodal”
time series suitable for registration with a sum-of-squared dif-
ferences (SSD) cost function. The time series f(�x, t) was used
as input to the forward deformation and subsequent reconstruc-
tion by registration. The segmentation was also used to spatially
assign space-dependent Lamé constants within the parameter
maps of μ(�x), λ(�x), and k(�x) (cfr., Table I). The liver was used
as a model organ to assign Lamé constants and permeability
k within the “generic organ” class. The time series f(�x, t), and



2204 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 63, NO. 10, OCTOBER 2016

Fig. 2. Left: DCE-MRI image used for creating the geometry of the digi-
tal phantom. Right: Segmentation of the MR image. Tissue specific regional
intensities and Lamé parameters were assigned according to the segmentation.

Fig. 3. Images used for forward deformation. Left to right: Image f (�x, T0 )
without (left) and with (right) gridding pattern. Top to bottom: Fully sampled
and undersampled k-space. For the lower right image, the gridding pattern was
imposed after undersampling, hence, the grid lines themselves are free of noise.

the parameter maps μ(�x), λ(�x), and k(�x) were convolved with
a Gaussian kernel of diameter 11mm and standard deviation of
8mm in order to simulate partial volume effects. Further, all im-
ages were cropped to a field of view (FOV) consistent with the
domain Ω = {x1 , x2 : 0 ≤ x1 ≤ 0.27 m, 0 ≤ x2 ≤ 0.27 m},
and resampled to a 2-D grid with resolution N = (64, 64) of
equally shaped, rectangular pixels. The real MR image as well
as the segmentation, used to create the digital phantom, are
shown in Fig. 2. The obtained noise free synthetic MR image
of intensities is shown in the upper left panel of Fig. 3, showing
the two kidneys and the spine.

1) Toggling Features of the Digital Phantom: A set of image
features, controlled by a ON/OFF switch, was added to the
phantom to simulate undersampling in k-space and a situation
of maximal contrast features.

Fig. 4. Deforming the digital MR image used for evaluation of image registra-
tion. Left: Average image intensities within a segmentation map were computed
from a selected time point in a real DCE-MRI time series, and the average
intensity values within each segmented region were assigned to their respective
regions. The image was duplicated along the time axis to create a time series
for registration, which was exposed to a time varying force simulating periodic
forces arising due to breathing. The spatial distribution of the force is plotted
with various colors, corresponding to different time points. Right: The periodic
body force as a function of time for the selected pixel in the phantom highlighted
with white (left panel). Circle markers indicate discrete time points used in the
simulations (Δt = 0.25 s).

1) Undersampling in k-space: We constructed one phan-
tom without undersampling in k-space (“Undersampling
OFF”), resulting in signal-to-noise ratio SNR → Inf ,
and one phantom with undersampling (“Undersampling
ON”), with a SNR = 32. Signal to noise ratio was com-
puted as SNR = μ̃/σ for the average image value μ̃ and
standard deviation σ of the noise. For “Undersampling
ON,” the Fourier transform of f(�x, t) was computed and
30% of the pixels in Fourier space (or k-space) were re-
placed by zeros. The image was then reconstructed by
the inverse Fourier transform. Every time point in the
time series had a different noise pattern since different
frequencies were replaced by zero.

2) Gridding Pattern: We constructed a phantom without
(“Grid OFF”) and with a gridding pattern (“Grid ON”).
The gridding pattern was created in order to simulate op-
timal registration performance with maximally structural
information present. Additionally, the gridding pattern has
a visual similarity to patterns created by real MR tagging
sequences [24]–[26]. To create the gridding pattern, a rect-
angular square pattern with a spacing of 0.05 m and in-
tensity value 0.95min�x f(�x, T0) was imposed on f(�x, t).

Toggling ON and OFF the undersampling and tagging fea-
tures resulted in four different image types, as shown in Fig. 3.
We defined “Undersampling ON” and “Gridding OFF” to be the
default configuration for a standard dynamic MR acquisition.

B. Deformation of the MR Phantom

A deformed phantom f(�x + �u(�x, t), t) was generated us-
ing a body force �F (�x, t) = (F1(�x, t), F2(�x, t))T mimicking
breathing. In a Cartesian coordinate system (see Fig. 4, left
panel), �F (�x, t) was defined to be zero in the horizontal compo-
nent (F1(�x, t) = 0), and to be a fourth-order polynomial in the
x1-variable in the vertical component F2(�x, t). A further sine
modulation was added to simulate the periodicity of respiration.



HODNELAND et al.: PHYSICAL MODELS FOR SIMULATION AND RECONSTRUCTION OF HUMAN TISSUE DEFORMATION FIELDS 2205

Explicitly

F2(�x, t)= − 4M

(D/2)4 sin(wt)
(
x2

1− (D/2)2) x2
1 , �x ∈ [0,D]2

(11)
with M = 40 kN/m3 , frequency w = π/2 Hz, and D = 0.27 m
denoting the physical width of the domain. Note that this
choice gives F2(�x, t) = 0 for �x = (0, x2) (left boundary), �x =
(D/2, x2) (spine vertical axis), and �x = (D,x2) (right bound-
ary). The maxima are located between the spine vertical axis and
left and right boundary, respectively, and satisfy the condition
maxx1 F2(�x, t) = M sin(wt).

C. Numerical Modeling

The poroelastic equations were numerically solved using mul-
tipoint stress approximation (MPSA) [28], [29]. MPSA is an
extension of multipoint flux approximation (MPFA) scheme de-
veloped for flow simulations in porous media [30]. It allows for
tensor-valued strain ε instead of vector-valued flux. The stability
and accuracy of MPSA was previously shown for elasticity [28]
as well as for combined poroelastic (hydromechanical) simula-
tions [29]. Particularly favorable about the MPSA framework is
its ability to handle challenging numerical conditions following
strong discontinuities in the Lamé constants and permeability,
without entering numerical instability. This property is essen-
tial in our numerical simulations where we assign realistic and
therefore strongly varying tissue parameters to solid bone com-
pared to soft tissue. The MPSA framework was applied in the
forward simulations, as well as for registration, referred to as
“Biot registration.”

Denote by �Un and �Pn the concatenation of the deformation
field �u and pressure p at iteration n into a long vector, respec-
tively. Similarly, let �F be a concatenation of the body force field
across the entire image domain. Discretization of the poroelas-
tic equations (3), (4), and (10) using MPSA resulted in a linear
system

(
E −αD

−αDT K

)(
�U (n)

�P (n)

)

=

⎛
⎝

0 0

−αDT χ

ρ
I

⎞
⎠

(
�U (n−1)

�P (n−1)

)
−

(
�F (n−1)

0

)
(12)

which was solved for each time point, and where K =
kΔt
μb

DT D + χ
ρ I for the gradient operator D. Renaming the

left-hand side and right-hand side matrices as A1 ,A2 , the linear
system can be written more compactly as

A1

(
�U (n)

�P (n)

)
= A2

(
�U (n−1)

�P (n−1)

)
−

(
�F (n−1)

0

)
. (13)

1) Tissue Parameters: We applied a simplified model to
estimate the permeability of porous parenchymal organs due
to lack of reasonable literature values. For this estimation, we
used Darcy’s law in a scalar setting, stating that total flow Q
[m3/s] divided by the area A is related to blood viscosity μ,

permeability k, pressure drop Δp, and length ΔL by the relation

Q

A
= −k

μ

Δp

ΔL
. (14)

Using the kidney as a model system, the flux is approximately
0.625 L/min for a kidney with a cross-sectional area similar to
an ellipsoid with half axes 5.5 and 3 cm [31]. The estimated
value for blood viscosity is given in Table I, which is taken
as a dynamic viscosity changing with shear rate since blood
is a non-Newtonian fluid. The largest pressure drop in the
kidney of Δp = 6.66 kPa [32] takes place along the afferent
arterioles with length of approximately 0.17mm [33]. Ap-
plying (14), we obtain an estimate for the permeability of
kkidney = 0.26 × 10−12 m2 . For the spine we used a value of
order kkidney × 10−3 , and “generic organ” was assigned a
permeability of kkidney/2 due to the lower perfusion of sur-
rounding tissue in comparison to the kidneys. Values of λ and
μ reported in [34] were for cortical bone, and our parameters
for the spine were, therefore, rescaled with a factor 10−2 to
account for the softer matrix properties of intervertebral disks
than bone only. We used low values of λkidney due to the porous
properties of the kidneys, only weakly resisting a compression
if the fluid is removed. The values of the shear modulus were
unchanged compared to literature reference values.

2) Boundary Conditions: Dirichlet boundary conditions
�u = 0 of the forward simulation as well as the backward recon-
struction were used for the domain {�x : x2 = 0}. Elsewhere,
Neumann boundary conditions ∇�u · �n = 0 where imposed.
Here, �n is the outward normal vector of Ω. For the pressure
p, Neumann boundary conditions ∇p · �n = 0 were imposed
everywhere. These boundary conditions are simulating a freely
moving surface everywhere except within the immobilized
matrix associated with the lower abdomen.

3) Varying the Model Complexity: We explored the effect of
a set of parameter choices on both the forward simulation and
backward reconstruction.

1) Spatial heteregeneous Lamé constants and permeability
k: We explored the deformation models (2)–(4) and (10)
for regional valued μ = μ(�x), λ = λ(�x), k = k(�x) (“Het-
erogeneous ON”), or spatially constant tissue parameters
(“Heterogeneous OFF”).

2) Poroelasticity: We investigated various deformation mod-
els according to poroelasticity (“Poroelasticity ON,” α =
1), or linear elasticity (“Poroelasticity OFF,” α = 0).

3) Irregularities in the tissue parameters: Irregular (“Irreg
= ON”) and regular (“Irreg OFF”) Lamé parameters and
permeability k within each tissue type. To create irregular
parameter maps, each of the maps μ(�x), λ(�x), and k(�x)
were multiplied by a standard uniform distribution of av-
erage 1 on the interval [0.5, 1.5], followed by a Gaussian
filter with radius 12mm and standard deviation 4mm.

Thus, a total of eight combinations of the three binary condi-
tions (“heterogeneity,” “poroelasticity,” and “irregularity”) re-
sulted in eight distinct discretization matrices, and thereby,
eight distinct forward transformations. We defined a default
discretization to be the physically most realistic configuration:
“Heterogeneous ON,” “Poroelasticity ON” and “Irreg ON.”
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Variations on these switches were compared to the default con-
figuration.

D. Reconstruction by Image Registration

From each of the eight combinations above and the four time
series with and without noise and gridding, we generated a
total of 32 different cases for reconstruction. The reconstruction
by image registration was performed on the forward simulated
image created with the default discretization, and the body force
for reconstruction was the functional derivative of the SSD cost
function (15),

FSSD(�u) =
1
2

∫

Ω
(f(�x + �u, t) − fr (�x))2d�x (15)

becoming �F (n−1) in (13). We used a scaling factor for SSD
of γ = 5 × 103 . The resulting nonlinear system of equations
was solved by fixed point iterations An additional Tikhonov
regularization for numerical stabilization was also applied, such
that Ai ← Ai − βI for a suitable β ∈ R+ .

E. Metrics for Evaluation Comparison of Deformation Fields

Unlike classical evaluation of image registration, where only
the final alignment of images is measured, we will now require
evaluation tools suitable for comparing deformation fields. The
tools will be used both to compare forward deformation models
and the different image registration methods.

1) Comparing the Forward Deformation Fields to the Defor-
mation Field of the Default Configuration: Denote by �ud the
deformation field of the default configuration. We measure the
absolute, relative differences in the deformation fields within
different discretization scenarios as

Eforw (�u, �ud) =

√√√√
∑

�Xi ∈Ω |�u( �Xi) − �ud( �Xi)|2∑
�Xi ∈Ω |�ud( �Xi)|2

(16)

where �X is the reference Lagrangian coordinate system, related
to Eulerian coordinates through the relation �x = �X + �u( �X),
and �u is produced by any of the eight cases described in Section
III-C3. A value of Eforw → 0 reflects a high similarity, while
high values reflect differences in the two deformation fields.

2) Evaluation of the Deformation Fields From Reconstruc-
tion: Evaluation of the reconstruction models was conducted in
terms of the composite deformation field of the forward model
and the reconstruction. Denote the reconstruction deformation
field by �ur . A composition of �ud and �ur yields the composite
field �uc as

�uc = �ud + �ur ( �X + �ud). (17)

A value of |�uc | → 0 indicates a pointwise good reconstruction.
The reconstructed deformation field was also investigated in
terms of infinitesimal volume changes, or rather as area changes
for our 2-D digital phantom where motion in the third direc-
tion was not measured. As a measure of the error contained
within the restored image, within the deformation field |�uc |, and
within the estimated volume changes, we computed the relative

TABLE II
SUMMARY OF THE MODEL AND IMAGE FEATURES WITH A DESCRIPTION OF

THEIR EFFECTS OF THE VARIOUS PARAMETERS

Model Features Image Features

Heterogeneous Undersampling
Assigns regional parameter values Controls image noise (SNR)
to segmented regions
Poroelasticity Gridding
Controls use of poroelasticity or elasticity Imposes a grid simulating maximal
in the deformation model image contrast and image features
Irregularity
Adds local variations
to the regional parameter maps

root-mean-square values

Ef (f, �uc) =

√√√√√
∑

�Xi ∈Ω

(
f( �Xi + �uc( �Xi)) − f( �Xi)

)2

∑
�Xi ∈Ω f( �Xi)2

Erel(�uc, �ud) =

√√√√
∑

�Xi ∈Ω |�uc( �Xi)|2∑
�Xi ∈Ω |�ud( �Xi)|2

Evol(�uc) =
√ ∑

�Xi ∈Ω

(∇ · �uc( �Xi))2 . (18)

A successful reconstruction will lead to {Ef ,Erel, Evol} → 0.
All code was implemented in MATLAB, and classification trees
were generated by CLASSREGTREE.

IV. EXPERIMENTAL RESULTS

We performed two different types of numerical experiments
with several different parameter settings. First, we compared
the deformations from models of different level of complex-
ity (forward problem). Second, we evaluated different image
registration approaches to reconstruct the inverse deformations
produced by the forward model (inverse problem).

A. Comparing Forward Deformation Fields

We compared the eight deformation fields described in Sec-
tion III-C3 to �ud , the deformation field of the default model.
Model and image features are shown in Table II, and results
are summarized in Table III. The results show that irregulari-
ties in the Lamé parameters and permeability have little impact
on the forward deformation field, whereas heterogeneous tissue
parameters and as well as poroelasticity have a major impact on
the deformation field. Additionally, poroelasticity has a damp-
ing effect on the deformation (see column relative to |�u|). The
average values of the deformation fields produced with “Poroe-
lasticity ON” and “Poroelasticity OFF” were 1.37 and 2.26mm,
respectively, corresponding to a 39.3% reduction in deformation
for the poroelasticity model compared to linear elasticity.

We conducted a k-means classification of relative differences
Eforw (�u, �ud) into three classes, “Low,” “Medium,” and “High.”
Fig. 5 shows the classification tree of this categorization
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TABLE III
RELATIVE DIFFERENCE Eforw (�u, �ud ) BETWEEN FORWARD EXPLORED

CONFIGURATIONS AND THE DEFAULT FORWARD CONFIGURATION

(“HETEROGENEOUS ON,” “POROELASTICITY ON,” AND “IRREG ON”)

Heterogeneous Poroelasticity Irreg E f o rw (�u, �ud ) |�u |(mm )

(default) ON ON ON 0.000 1.680
ON ON OFF 0.019 1.657
ON OFF ON 0.542 2.172
ON OFF OFF 0.526 2.136
OFF ON ON 0.640 1.073
OFF ON OFF 0.645 1.063
OFF OFF ON 0.706 2.366
OFF OFF OFF 0.705 2.343

Irregular Lamé parameters and permeability have the lowest impact on the
deformation field. On the other hand, imposing heterogeneous parameters and
poroelasticity have a major impact on the deformation field. The last column
shows the average absolute deformation field in millimeter. The first row has
a relative difference of zero because these settings correspond to the default
configuration, and the deformation field was therefore compared to itself.

Fig. 5. Classification tree for forward deformations and classes of low,
medium, and high relative error.

for various settings of the forward simulations. Heteroge-
neous/homogeneous tissue parameters is the single most
differentiating factor, while linear elasticity/poroelasticity is the
second most important factor. Irregular tissue parameters were
not significant compared to the other factors and irregularity is,
therefore, not included in the classification tree.

B. Comparing FAIR With Biot Registration

To ensure that the performance of the Biot registration was
within expected accuracy, we compared its registration with the
one produced by the state-of-the-art software FAIR [10]. FAIR
has no built-in option for poroelasticity, but it has an option for
linear elasticity. Instead of poroelasticity, we, therefore, used
linear elasticity for both FAIR and Biot registration. Also, FAIR
does not enable heterogeneous tissue parameters. Thus, the tis-
sue parameters in Biot registration were set to “Heterogeneous
OFF,” with values as in Table I. For the same reason, the con-
figuration with irregular Lamé parameters was not possible to
study, and was consequently set to “Irreg OFF.”

Valid for both FAIR and Biot registration, the options “Un-
dersampling” and “Gridding” led to the four tests reported in
Table IV. The performance of each of the configurations was
tested against the default forward deformation field �ud using

the evaluation metric in (18). The results show that the Biot
registration has the smallest error for these evaluation metrics.

C. Evaluating the Quality of the Restored Deformation Field
for Various Parameter Configurations

We computed the average reconstruction error for each choice
of model (“Heterogeneous,” “Poroelasticity,” and “Irreg”) and
image features (“Undersampling” and “Gridding”) and switch
(“ON” and “OFF”) for the Biot registration. The results, mea-
sured using (18), are reported in Table V. The overall best per-
formance for the entire image was obtained for “Gridding ON.”
The application of poroelasticity (option “Poroelasticity”) and
irregular Lamé parameters/permeability (option “Irreg”) have
minor impact on the reconstruction performance by image reg-
istration.

In order to relate the configuration and performance, a linear
regression of the predictors (switches) and the response variable
(Erel) was computed and is reported in Table VI. The coding of
categorical variables in the regression is “OFF = 0” and “ON =
1.” The linear regression indicates that the error tends to increase
for images with noise (corresponding to ‘Undersampling’) as
the computed coefficient b4 is positive, while the b5 coefficient
(corresponding to “Gridding”) is the negative coefficient with
largest absolute value, meaning that tagging has the strongest
positive effect insofar the reduction of the error is concerned.

A classification tree with important factors for a restored
deformation field with errors “Low,” “Medium,” or “High” is
reported in Fig. 6. Apparently, imposing a gridding pattern on
the image has the largest positive impact on registration accuracy
as the errors are the lowest for “Gridding ON.” The second most
discriminating factor is noise/undersampling, leading to lower
accuracy for added noise.

V. DISCUSSION

The study is motivated by the demand for improved methods
for medical image registration. In particular, we focus on image
registration of dynamic time series within the abdomen. Motion
corrected time series can advance the field of pharmacokinetic
modeling in terms of accuracy and clinical relevance. More-
over, we want to broaden the concept of image registration as a
method not only counteracting undesired motion artifacts, but as
an investigative tool that can reflect underlying tissue stiffness.
In this sense, attributes of the deformation field could serve as
biomarkers for pathology. To create a ground-truth deforma-
tion, a novel contribution of this study is the implementation of
forward simulation of a highly realistic organ system, includ-
ing heterogeneous and irregular tissue parameters, as well as a
poroelastic deformation model. The deformed image from the
physically most realistic forward simulation was later used to
restore the inverse deformation field. An evaluation of the reg-
istration was conducted on the composite deformation field of
the forward and restoring deformation fields.

The results obtained by comparing the default forward sim-
ulation with the different parameter settings (cfr., Table III and
Fig. 5) show that the relative error is dominated by the choice
of heterogeneous versus homogeneous tissue parameters. This
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TABLE IV
RELATIVE REGISTRATION ERRORS ACCORDING TO (18) FOR COMPARABLE SETTINGS OF FAIR AND BIOT REGISTRATION

Implementation Undersampling Gridding E im a g e (f , �uc ) E r e l (�uc , �ud ) Evo l (�uc )

FAIR OFF OFF 0.001 0.915 0.071
ON OFF 0.003 0.926 0.071
OFF ON 0.044 0.858 0.068
ON ON 0.044 0.861 0.068

Mean 0.023 0.890 0.070
Biot registration OFF OFF 0.001 0.872 0.069

ON OFF 0.005 0.997 0.074
OFF ON 0.020 0.320 0.048
ON ON 0.021 0.341 0.051

Mean 0.012 0.633 0.061

The Biot registration has a lower average error for all three tested metrics used for evaluation. In particular,
there was a larger difference for the “gridding” option.

TABLE V
AVERAGE ERROR PER CONFIGURATION SWITCH USING THE BIOT

REGISTRATION FOR DISCRETIZATION

Variable State E im a g e (f , �uc ) E r e l (�uc , �ud ) Evo l (�uc )

Heterogeneous OFF 0.0140 0.6844 0.0625
ON 0.0130 0.6721 0.0787

Poroelasticity OFF 0.0146 0.7001 0.0697
ON 0.0124 0.6525 0.0697

Irreg OFF 0.0145 0.6997 0.0696
ON 0.0124 0.6530 0.0698

Undersampling OFF 0.0119 0.6347 0.0655
ON 0.0153 0.7232 0.0739

Gridding OFF 0.0029 0.9562 0.0757
ON 0.0243 0.4017 0.0637

The largest improvement in E r e l occurs for “gridding ON,” while the errors in
volume estimations Evo l are largely independent of the configuration. Generally,
the restored deformation field has an relative error E r e l in the range of 40–96% .
The restored image, as measured by the error E im a g e (f , �uc ), is of good quality
for all configurations.

is probably expected as there are highly varying tissue parame-
ters associated with bone compared to soft tissue. Surprisingly,
this type of heterogeneities have not been investigated properly
within the field of image registration. Moreover, we found a
clear difference in forward simulations created with and without
poroelasticity, poroelasticity accounting for a 39.3% reduction
in the deformation field magnitude, compared with linear elas-
ticity. These results indicate that the poroelastic damping effect
from fluid being dislocated within the void space of the tissue
affects the resulting motion significantly. Thus, an important
outcome of these simulations is that poroelastic effects as well
as heterogeneous tissue parameters are significant factors for
this type of deformations and should be applied in simulations
of human abdomen.

Biot registration for computing the inverse deformation field
was checked for accuracy against the state-of-the-art software
for registration FAIR [10] on a reduced set of configurations
for compatibility with FAIR. The average restored deformation
fields using Biot registration had a lower average error than FAIR
(cfr., Table IV). The reasons for this discrepancy is unclear, but it
can originate from different interpretations of the scaling force
factor γ. However, the incentive of our comparison was not
a comprehensive intersoftware comparison of performance, but

TABLE VI
LINEAR REGRESSION APPLIED TO THE MODEL

Erel = b0 + b1 ∗ Heterogeneous + b2 ∗ Poroelasticity + b3 ∗ Irreg +
b4 ∗ Undersampling + b5 ∗ Gridding , WITH THE VARIOUS PREDICTORS

CATEGORIZED AS “OFF= 0” OR “ON = 1”

Predictor Est. bi SE tStat pValue

Heterogeneous −0.0038 0.0434 −0.0870 0.9312
Poroelasticity −0.0430 0.0434 −0.9904 0.3299
Irreg −0.0421 0.0434 −0.9705 0.3396
Undersampling 0.0885 0.0427 2.0727 0.0469
Gridding −0.5545 0.0427 −12.9841 < 10−4

Fig. 6. Classification tree for restoring the deformation field. Adding a tag-
ging to the image has the largest positive impact on the error since a “Low”
outcome is obtained with “Gridding ON,” The second most important factor
is noise/undersampling, where the error becomes “High” with “Undersampling
ON.”

rather to confirm that our method had a comparable performance
to existing methods for registration.

The overall results from restoring the inverse deformation
field show that configurations related to image features are dom-
inating the performance. As reported in Fig. 6 and Table VI,
adding an artificial gridding as well as noise-free conditions
improved the registration performance the most, and heteroge-
neous parameters, poroelasticity, and irregularities in the tissue
parameters were insignificant factors. This result represents a
major contribution to the field of image registration, and the re-
sult is surprising compared with the forward simulations where
heterogeneous parameters as well as poroelasticity had great
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impact on the deformation field. The reasons for this discrep-
ancy are unclear, but can probably relate to the type of force
being applied. The forward simulation has implemented a vol-
ume force decoupled from image features, and the backward
simulation of image registration has a force (SSD), which is
entirely depending on image features, and is thereby, differ-
ently distributed. Most force fields used in image registration
are nonzero at locations with a measured discrepancy between
the input and target image. Apart from these locations, the force
will be small. This property leads to heavily distributed forces
along edges. However, in real-world situations, the force is not
necessarily devoted to visible edges but rather associated with
muscle activity. One possible way to approach this problem
could, therefore, be to distribute the registration force according
to predefined probabilities of existing muscle activity. However,
this would evidently lead to a more complex reconstruction
model.

It is surprising that the overall best registration performance in
our simulations had a relative error in the absolute deformation
field in the range of no better than 40%. In light of these results,
one can hardly state that image registration is able to restore the
inverse deformation field, but only claim that the relative error
in image similarity values is low (0.29–2.4%), in agreement
with traditional image registration assumptions. With existing
methods, in particular existing force fields, one cannot expect to
restore a physically correct deformation field. On the other hand,
the restored deformation field can still provide clinically valid
information on tissue properties, e.g., by comparing left/right
kidneys and in between subjects.

Estimation of tissue stiffness parameters (e.g., μ and λ) as
performed in MRE would be a useful task also within the pro-
posed method. However, adding further unknowns to the equa-
tions would lead to an underdetermined system, and therefore,
require further assumptions for solvability. Future work should
investigate whether it would be possible to jointly estimate both
the deformation field and tissue stiffness parameters using image
registration.

Another interesting observation potentially important for
clinical decision making, is that errors related to volume
changes (the first tensor invariant, tr(ε)) were much smaller
(6.25% − 7.87%) than those seen for the absolute deforma-
tion (40% − 95%). Moreover, the error was essentially inde-
pendent of discretization and image features. Using the volume
changes instead of the absolute deformation as an image derived
biomarker is, therefore, highly promising and should be further
investigated. Of special relevance is noninvasive assessment of
pathological changes in elastic properties of tissue, like in fibro-
sis and sclerosis, and volume changes can potentially reflect de-
grees of vascularization and compressibility. The two remaining
tensor invariants (I2 = (1/2)((tr(ε))2 − tr(ε2)), I3 = det(ε))
are also interesting in the context of image biomarkers as they
are sensitive toward shape change, in particular applied to the
deviatoric strain tensor where volumetric changes have been
neutralized.

The methodology of linear (poro-) elasticity imposes no lim-
itations on the number of spatial dimensions, nor does the nu-
merical implementation of the MPSA method. However, our

digital phantom was restricted to 2-D in order to create a more
transparent benchmarking test case. This might be a limitation
and future work should include 3-D simulations.

The choice of linear elasticity for our simulations can also be
discussed in the context of limitations. Approximations within
linear elasticity can be split into geometrical and physical lin-
earities [4]. Geometrical linearity expressed as |∇u| << 1 and
the equality assumption of Eulerian and Lagrangian coordinates
lead to the approximation E ≈ e ≈ ε for the Green strain tensor
E, Eulerian strain tensor e, and the infinitesimal strain tensor
ε. Physical linearity is assumed by developing the strain invari-
ants only up to first order. This leads to the linear stress–strain
relation, σ = σ(ε), known as Hook’s law. Within the elastic
range of Hook’s law, misbehavior of linear elasticity is predom-
inantly associated with large deformations when the Eulerian
coordinates no longer are close to the Lagrangian coordinates,
or for large rotations [9]. The motion pattern we are investigat-
ing occurs from abdominal breathing. This type of motion has
negligible rotational components, but may still exhibit medium
large deformations in the order of millimeters. However, re-
lated to the object investigated, the relative elongation is small
in our data, measured to at most < 3% for the kidney, which is
within linear stress–strain range for various soft tissue [36], [37].
Piecewise, linear elastic behavior is typically expected for small
and medium large strains [38]. The strain value where an abrupt
change in linear modulus takes place varies between tissue
types, but it typically occurs at a stress value of several order
magnitude higher than the maximum stress in our simulations
(σmax = 0.07 kPa). Based on these arguments we hypothesize
that breathing induced abdominal motion predominantly ex-
hibits a linear stress–strain relationship.

However, it is important to keep in mind that human ab-
domen has a highly complex architecture and consists of a large
number of inhomogeneous tissue, exhibiting varying properties
with respect to inhomogeneities, anisotropy, as well as creep
and stress relaxation. Thus, we consider linear elasticity to be a
first approximation to abdominal motion simulations, and future
research should explore the impact of more advanced nonlin-
ear, viscoelastic, and hyperelastic deformation models [4]. A
potential clinical validity of the proposed methods will have
to be confirmed in future studies correlating deformation field
attributes to clinical biomarkers from biopsy samples.

VI. CONCLUSION

Our results show a discrepancy between factors important
in the forward simulation and the backward registration. We
believe that this discrepancy is due to the different nature of
the force applied in the forward and backward scenarios. The
registration force is essentially unphysical as it is decoupled
from muscle activity, and further efforts should, therefore, be
taken to uncover physically more realistic force fields useful
for registration. This could potentially also lead to a better
registration performance as measured by the absolute deforma-
tion field. On the other hand, we found that volume changes
are robust, as well as relatively accurate and independent
from discretization and image features. Thus, volume changes
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could be used for registration generated biomarkers extracted
from the deformation field. Such information could generate
clinically relevant tissue information reflecting pathology
changing elastic properties of tissue, like fibrosis and sclerosis.
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