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STABLE CELL-CENTERED FINITE VOLUME DISCRETIZATION
FOR BIOT EQUATIONS∗

JAN MARTIN NORDBOTTEN†

Abstract. In this paper we discuss a new discretization for the Biot equations. The dis-
cretization treats the coupled system of deformation and flow directly, as opposed to combining
discretizations for the two separate subproblems. The coupled discretization has the following key
properties, the combination of which is novel: (1) The variables for the pressure and displacement
are co-located and are as sparse as possible (e.g., one displacement vector and one scalar pressure
per cell center). (2) With locally computable restrictions on grid types, the discretization is stable
with respect to the limits of incompressible fluid and small time-steps. (3) No artificial stabiliza-
tion term has been introduced. Furthermore, due to the finite volume structure embedded in the
discretization, explicit local expressions for both momentum-balancing forces and mass-conservative
fluid fluxes are available. We prove stability of the proposed method with respect to all relevant
limits. Together with consistency, this proves convergence of the method. Finally, we give numerical
examples verifying both the analysis and the convergence of the method.
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1. Introduction. Deformable porous media are becoming increasingly impor-
tant in applications. In particular, the emergence of strongly engineered geological
systems such as CO2 storage [31, 33], geothermal energy [35], and shale-gas extraction
all require analysis of the coupling of fluid flow and deformation. Beyond the subsur-
face, physiological processes are increasingly simulated, exploiting the Biot models [8].

With this motivation, we consider the following model problem poroelastic me-
dia [9]:

∇ · π = fu in Ω,(1a)

π = C : ∇u− αpI in Ω,(1b)

α∇ · u+ ρp+ τ∇ · q = fp in Ω,(1c)

q = −k∇p in Ω,(1d)

u = gu,D on Γu,D,(1e)

π · n = gu,N on Γu,N ,(1f)

p = gp,D on Γp,D,(1g)

q · n = gp,N on Γp,N .(1h)

Equations (1) arise from an implicit (backward Euler) time discretization of the
linear Biot equations, and in this context τ represents the time-step. The domain
Ω is a bounded connected polygonal subset of Rd, with boundary ∂Ω = ΓD ∪ ΓN .
The notation adopted in equations (1) utilizes the variables vector displacement (u),
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 943

scalar pressure (p), tensor Biot stress (π), and vector Darcy flux (q). The spatially
dependent material stiffness tensor is denoted by C, the Biot coupling coefficient (α),
the fluid compressibility (ρ), and the permeability (k). We denote source-terms by f
and boundary conditions as g.

All parameters are in general positive (definite) functions of space, and the dis-
cretization formulated herein considers arbitrary spatial variability of the parameter
functions. Nevertheless, we will for the sake of simplicity and conciseness of presen-
tation suppress this spatial dependence in the current section and in the convergence
analysis given in section 5. Thus when parameters are treated as constants, it should
be understood in the sense of, e.g., ρ = infx∈Ω ρ(x). For boundary conditions, we
assume that both Γu,D and Γu,D have positive measure: The case of Γu,N = ∂Ω or
Γp,N = ∂Ω can be accommodated, but the additional complications will not be of
sufficient interest to merit the additional notation and loss of clarity in the presenta-
tion. Without loss of generality, we will by subtracting any smooth function satisfying
the boundary conditions and correspondingly modifying the right-hand side assign all
boundary conditions as homogeneous.

Under the stated conditions on parameters and boundary conditions, for reason-
able forcing functions, equations (1) have a unique weak solution (u, p) ∈ (H1(Ω))d×
H1(Ω) (throughout the paper, we will implicitly consider the restriction of the func-
tion spaces such that the Dirichlet boundary conditions are satisfied). Furthermore,
in the case where τ = 0, or, equivalently, if the medium is impermeable (k = 0), the
compressible Stokes equations are recovered. This implies that the regularity of the
pressure is reduced, and we have a unique weak solution (u, p) ∈ (H1(Ω))d × L2(Ω).
Finally, if the incompressible case is considered, ρ = 0, the pressure in the Stokes
equations is only defined up to a constant. This motivates the following definition.

Definition 1. We denote a discretization of equations (1) as robust if there
exists an estimate of the form

‖u‖1 + τ‖p‖1 + ρ‖p‖0 + |p|0 ≤ C(‖fu‖+ ‖fg‖),

where the constant C is bounded independent of the small parameters ρ and τ , and
we denote |p|0 = infp0‖p− p0‖0.

Our interest will be in obtaining a simple discretization which is robust, which
retains an explicit conservation principle for both momentum balance (1a) and mass
balance (1c) and which has a co-located cell-centered data structure for both pressure
and deformation. As our primary interest lies in geological porous media, we will
furthermore make no assumption on the smoothness of the data beyond bounded
measure.

The main difficulty associated with obtaining a robust discretization of equations
(1) arises from the three saddle-point systems embodied in the formulation. In the
absence of fluid pressure, (1a) and (1b) represent a saddle-point system for the solid
subproblem, and, similarly, in the absence of solid deformation, (1c) and (1d) represent
a saddle-point system for the fluid subproblem. Finally, if mechanical stress and fluid
fluxes are eliminated, the displacement-pressure system itself is a saddle-point system.

Disregarding conservation properties, low-order standard finite elements are nev-
ertheless not stable for the limit of incompressible solids [25, 11]. Due to the saddle-
point nature of the displacement-pressure system, the displacement and pressure
spaces must furthermore be chosen as a Stokes-stable pair in order to satisfy a
Ladyzhenskaya–Babuska–Brezzi (LBB, or inf-sup) condition as ρ, τ → 0 [11]. For
these reasons, stabilized formulations have been considered to allow for arbitrary
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944 JAN MARTIN NORDBOTTEN

choices of finite element spaces [8]. While their stabilization can be motivated through
various formalisms, consistency is often lost. Similar problems appear for co-located
finite difference discretizations. While less literature is available, a Brezzi–Pitkaranta-
type [12] stabilization term has also been analyzed in the context of finite difference
methods for the Biot equations [16].

A natural option in order to obtain stable discretizations while retaining the ex-
plicit conservation structure is to construct a multifield set of inf-sup stable mixed
finite element spaces. The fluid subproblem can be successfully discretized by mixed
finite elements [11], and much supporting literature exists for this problem. In con-
trast, the solid subproblem does not lend itself trivially to mixed finite elements, and
although much recent literature relates to this problem, simple low-order element
combinations appear to be impossible to devise [6]. A thorough numerical investiga-
tion of various combinations of mixed methods for the full Biot equations has been
reported [18]. An alternative to mixed finite elements (but similar in spirit) is to use
staggered grids for the mechanics and flow equations [37, 17]. The use of staggered
grids resolves stability issues, but it leads to more restrictions on admissible grids and
increases the technical difficulties associated with constructing efficient solvers.

A novel cell-centered finite volume (FV) method for solid displacement has re-
cently been introduced as the multipoint stress approximation (MPSA) method by
the author, for the purpose of consistent treatment of the fluid and displacement
equations [27]. This class of FV methods, along with its counterpart for fluid flow,
the multipoint flux approximation (MPFA) method [1], is applicable to a wide range
of grids of relevance to industrial applications. In contrast to control-volume finite
element methods [20], these methods are furthermore particularly well suited for prob-
lems with large material contrasts [13], as are frequently seen in subsurface flows. The
MPSA and MPFA methods have recently been combined to solve the Biot equations
[28]. While that paper shows applications including fractured media with complex
geometries, the resulting discretization is not robust in the limit of small time-steps
τ , and no theoretical analysis is provided for the coupled scheme.

Theoretical properties for MPFA methods have long been established by exploit-
ing links to mixed finite element methods [21, 36]. However, due to the lack of simple
finite element methods for elasticity and the Biot equations, of relevance for the cur-
rent work is the analysis within the hybrid FV framework [14] and the recent analysis
of the MPFA [3] and MPSA methods [29].

Herein, we will expand on the FV framework as developed in [29] to establish a
coupled discretization for the Biot equations directly. This approach leads us to a new
discretization, which we refer to as MPFA/MPSA-FV. The discretization has the fol-
lowing properties: (i) The discretizations of the fluid and mechanical subproblems are
identical to the decoupled FV discretizations. (ii) When local variables are eliminated
by static condensation (as is typical for FV methods), the resulting system of equa-
tions is in terms of cell-centered displacement and pressure only. (iii) We show that
the co-located discretization is naturally stable in the sense of Definition 1 without
the addition of any artificial stabilization term or stabilization parameter. (iv) The
discretization is consistent with the variational FV formulation of the Biot system.

We note at this moment that Definition 1 is not sufficient to study the property
of numerical locking for a nearly incompressible mechanical subproblem. In order
to analyze locking, a term needs to be introduced accounting for the divergence of
displacement, ‖∇·u‖0. We choose not to include this in our analysis for four reasons:
(a) Fully incompressible materials are of little interest in the setting of the Biot
equations, since the coupling term is exactly the compression. (b) The mechanical
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 945

discretization obtained herein is in itself locking-free on most grids [29]. (c) For the
Biot equations, locking-free schemes can be achieved at no additional complexity
by introducing a solid pressure in the formulation [24]. (d) The analysis becomes
much more complex, both in practical terms and in the sense of notation. Indeed, to
illustrate points (a) and (d) we note that for incompressible materials, the left-hand
side of (1c) is zero in the limit of (ρ, τ) → 0 such that no regularity of pressure is
expected in this limit. This issue can be resolved by observing that within the context
of a time discretization, fb = O(max(ρ, τ,∇ · u)); however, this indicates some of the
technical issues arising in the analysis.

We structure the rest of this paper as follows: In the next section we will recall
a suitable discrete functional framework. In section 3, we will define our method
within the framework of variational FV methods. In section 4, we identify the cell-
centered discretizations through local static condensation. The main result is stated
in section 5, where we show stability and convergence of the coupled discretization.
In section 6, we provide numerical results which underscore the robustness claims in
all relevant parameter regimes and provides numerical convergence rates for smooth
problems. Finally, section 7 concludes the paper.

2. Discrete functional framework. In this section we give the definition of our
FV mesh and discrete variables. The setting will be identical to the discrete framework
used for pure elasticity in [29]. Our mesh description and discrete framework expand
on those of [3], which again generalizes [14]. As this section contains no novel material,
the presentation will be as brief as possible, and the reader is referred to the references
for further details.

2.1. FV mesh. We denote an FV mesh by the triplet D = (T ,F ,V), represent-
ing the mesh tessellation, faces, and vertexes, such that the following hold:

• T is a nonoverlapping partition of the domain Ω. Furthermore, letmK denote
the d-dimensional measure of K ∈ T .

• F is a set of faces of the partitioning T . We consider only cases where
elements σ ∈ F are subsets of (d − 1)-dimensional hyperplanes of Rd, and
with all elements σ ∈ F we associate the (d − 1)-dimensional measure mσ.
Naturally, the faces must be compatible with the mesh such that for allK ∈ T
there exists a subset FK ⊂ F such that ∂K =

⋃
σ∈FK

σ.
• V is a set of vertexes of the partitioning T . Thus for any d faces σi ∈ F ,
either their intersection is empty or

⋂
i σi = s ∈ V .

Note that in the above (and throughout this paper), we abuse notation by referring
to the object and the index by the same notation. For example, we will by K ∈ T
allow K to denote the index, as in FK , but also the actual subdomain of Ω, such that
the expressions ∂K and mK =

∫
K dx are meaningful.

Additionally, we state the following useful subsets of the mesh triplet, which
allows us to efficiently sum over neighboring cells, faces, or vertices:

• For each cell K ∈ T , in addition to the faces FK , we denote the vertexes of K
by VK . We will associate with each vertex s ∈ VK a subcell of K, identified
by (K, s), with a volume ms

K such that
∑

s∈VK
ms

K = mK .
• For each face σ ∈ F , we denote the neighboring cells Tσ and its vertex for
Vσ. Note that for all internal faces Tσ will contain exactly two elements,
while it contains a single element when σ ⊂ ∂Ω. We will associate with each
corner s ∈ Vσ a subface of σ, identified by (s, σ), with an area ms

σ such that∑
s∈Vσ

ms
σ = mσ.

• For each vertex s ∈ V , we denote the adjacent cells by Ts and the adjacent
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946 JAN MARTIN NORDBOTTEN

faces by Fs.
We associate with each element K ∈ T a unique point (cell center) xK ∈ K

such that K is star-shaped with respect to xK , and we denote the diameter of K
by dK . Furthermore, we denote the distance between cell centers xK and xL as
dK,L = |xK − xL|. The grid diameter is denoted by h = maxK∈T dK .

We associate with each face σ its outward normal vector with respect to the cell
K ∈ Tσ as nK,σ and the Euclidean distance to the cell center as dσK . For each subface
(s, σ), we denote the subface center as xs

σ and a set of quadrature points on (s, σ)
as Gs

σ. With each quadrature point β ∈ Gs
σ we associate the position xβ and weight

ωβ. In general, we will choose sufficient quadrature points for exact integration of
second-order polynomials; however, for simplex grids, it is advantageous to choose
only a single quadrature point.

The above definition covers all two-dimensional grids of interest and quite general
three-dimensional grids. However, the definition disallows three-dimensional grids
with curved surfaces (e.g., distorted cubes). A more general formulation appears to
be practicable [3] but would come at the expense of additional notation and analysis.

Regularity assumptions on the discretization D are detailed elsewhere (see, e.g.,
[14]); we will in the interest of simplicity of exposition henceforth assume that the clas-
sical grid regularity parameters (grid skewness, internal cell angles, and coordination
number of vertexes) do not deteriorate.

2.2. Discrete variables and norms. We detail the three discrete spaces used
in our analysis below. They represent, respectively, the space of cell variables HT ,
cell and discontinuous face variables HD, and cell and continuous face variables HC .

The following discrete space is classical [14] and is the space where the final cell-
centered discretization will take its values.

Definition 2. For the mesh T , let HT (Ω) ⊂ L2(Ω) be the set of piecewise con-
stant functions on the cells of the mesh T .

As with the dual interpretation of the elements K ∈ T , the space HT (Ω) is
isomorphic to the space of discrete variables associated with the cell-centered points
xK . There should also be no cause for confusion in the following when we also work
with the vector-valued spaces, then denoted by bold HT .

For the space HT we introduce the inner product

[u, v]T =
∑
K∈T

∑
σ∈FK

mσ

dK,σ
(γσu− uK)(γσv − vK)

and its induced norm
‖u‖T = ([u, u]T )

1/2.

Here the operator γσu interpolates the piecewise constant values of HT onto the faces
of the mesh, weighted by the distances dK,σ:

γσu =

( ∑
K∈Tσ

uK

dK,σ

)/( ∑
K∈Tσ

d−1
K,σ

)
for all σ ∈ F ; σ /∈ ΓD.

For Dirichlet boundary edges, σ ∈ ΓD, we take γσu = 0. Equivalently, the operator
γσu can be defined as the value which minimizes the definition of the norm ‖u‖T .
The norm defined above is naturally identified as an H1-type norm for the space. We
will furthermore need the discrete L2 inner product for HT

[u, v]T ,0 =
∑
K∈T

mKuKvK
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 947

and its induced norm

‖u‖T ,0 = ([u, u]T ,0)
1/2.

Definition 3. For the mesh triplet D, let HD be the set of real scalars (uK , uσ,β
K,s)

for all K ∈ T , for all (s, σ) ∈ VK ×FK , and for all β ∈ Gs
σ.

The space HD thus contains one unknown per cell, in addition to multiple un-
knowns on each interior subface. This space was introduced in order to control the
space of rigid body motions when discretizing the mechanical subproblem [27]. As

above, we will immediately take uσ,β
K,s = 0 for all σ ∈ ΓD.

We denote for all internal subfaces [[u]]σ,βs = uσ,β
R,s − uσ,β

L,s for u ∈ HD and Tσ =
{R,L} as the jump in the discrete function u across that edge. We will also need
a notion of an average face value, and we denote similarly for all internal subfaces

〈u〉σs =
∑

β∈Gσ
s
ωβ

uσ,β
R,s+uσ,β

L,s

2 . For boundary edges σ ∈ ∂Ω, only one function value is

available, and we define [[u]]σ,βs = 0 and 〈u〉σs = 1
mσ

s

∑
β∈Gσ

s
ωβu

σ,β
R,s. We now associate

with the space HD the inner product

[u, v]D =
∑
K∈T

∑
s∈VK

∑
σ∈Fs∩FK

ms
K

d2K,σ

(uK − 〈u〉σs )(vK − 〈v〉σs )

+
ms

K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ[[u]]
σ,β
s [[v]]σ,βs

and the induced norm

‖u‖D = [u, u]
1/2
D .

Definition 4. For the mesh triplet D, let HC be the set of real scalars (uK , uσ
s )

for all K ∈ T and for all (s, σ) ∈ VK ×FK.

This last space is essential for obtaining the FV structure of the scheme [3].
By introducing the natural interpolation operator ΠD : HC → HD as (ΠDu)K =

uK and (ΠDu)
σ,β
K,s = uσ

s for allK ∈ T and for all (s, σ) ∈ VK×FK , we can immediately
define the inner product

[u, v]C = [ΠDu,ΠDv]D

and the induced norm

‖u‖C = [u, u]
1/2
C .

In addition to the interpolation operator defined above, we shall need a few more
operators to move between function spaces:

• Let the operator ΠT : HD → HT be defined as (ΠT u)(x) = uK for all x ∈ K
and K ∈ T . Furthermore, as there should be no reason for confusion, we also
define ΠT : HC → HT as (ΠT u)(x) = (ΠT ΠDu)(x) = uK for all x ∈ K and
K ∈ T . Finally, we also write ΠT : C(Ω) → HT as (ΠT u)(x) = u(xK) for all
x ∈ K and K ∈ T .

• Let the operator ΠC : HD → HC be defined as (ΠCu)K = uK and (ΠCu)
σ
s =

〈u〉σs for all K ∈ T and for all (s, σ) ∈ VK ×FK .
The spaces defined above satisfy the following inequalities:
• Discrete Poincaré inequality [14]: For all u ∈ HT ,

‖u‖T ,0 ≤ CP ‖u‖T .
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948 JAN MARTIN NORDBOTTEN

• Inverse inequality [14]: For all u ∈ HT ,

‖u‖T ,0 ≥
√
dh‖u‖T .

• Relationship between HT and HC [3]: For all u ∈ HC ,

‖ΠT u‖T ≤
√
d‖u‖C.

• Relationship between HC and HD (trivial from definitions): For all u ∈ HD,

‖ΠCu‖C ≤ ‖u‖D.

Finally, we introduce local spaces HD,s ⊂ HD for each s ∈ V defined such that

u ∈ HD,s if uσ,β
K,t = 0 for all t ∈ V with t = s and uK = 0 if s /∈ VK . Similarly, HT ,s

and HC,s are defined through the operators defined above. The local spaces have the
natural (semi-)norms, which to be precise are given for all u ∈ HD as

‖u‖2D,s =
∑
K∈Ts

∑
σ∈Fs∩FK

ms
K

d2K,σ

(uK − 〈u〉σs )2 +
ms

K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

and for all u ∈ HT as

‖u‖2T ,s =
∑
K∈Ts

∑
σ∈Fs∩FK

ms
σ

dK,σ
(γσu− uK)2

such that both

‖u‖2D =
∑
s∈V

‖u‖2D,s and ‖u‖2T =
∑
s∈V

‖u‖2T ,s.

3. Discrete mixed variational FV discretizations for Biot. In this section,
we will utilize the spaces defined in section 2 to establish a cell-centered FV method for
the Biot equations. The approach builds on the discrete mixed variational formulation
of existing methods for the pressure (cf. [3, 29]) and displacement equations [29]. The
key novel aspects arise due to the coupling terms arising in equations (1). The careful
treatment of these terms will lead to a naturally stable discretization, which improves
on the method presented in [28]. These issues will be crucial in the analysis and
further highlighted in the numerical examples.

Our approach will exploit a discrete variational formalism for the Biot problem;
thus we introduce the variational form of equations (1): Find (u, p) ∈ H1 ×H1 such
that

(C : ∇u,∇v)− (αp,∇ · v) = −(fu,v) for all v ∈ H1,(2a)

−(∇ · u, αr) − (ρp, r)− τ(k∇p,∇r) = −(fp, r) for all r ∈ H1.(2b)

While this form of the equation hides the stress and flux expressions, it will be implied
throughout (and made explicit in section 3.2) that the methods considered herein allow
for explicit and local extraction of mass conservative fluid fluxes, as well as momentum
conserving surface tractions. It is also important to note that integration by parts is
essential for the coupling term in (2a), in order for the system to still be well defined
in the limit τ → 0, when regularity of p is reduced.
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 949

3.1. Method formulation. Will formulate our discretizations on a discrete
variational form, based on equations (1). To obtain both an FV structure and a
consistent method, we follow previous work [4, 27, 3] and introduce two notions of a
discrete gradient. First, we note that the discrete divergence provides by duality a
definition of a gradient, which thus exactly preserves the FV structure of the governing
equations for each cell K ∈ T .

Definition 5. For each K ∈ T and each s ∈ VK , we define the FV gradient for
all u ∈ HC:

(3) (∇̃u)sK =
1

ms
K

∑
σ∈FK∩Fs

ms
σ(〈u〉σK,s − uK)⊗ nK,σ.

For the definition to make sense, we need to specify the averaging notation in
the natural way, that is, 〈u〉σK,s = 1

mσ
s

∑
β∈Gσ

s
ωβu

σ,β
K,s. We comment that in previous

work the FV gradient has been referred to as the “convergent gradient” [3]. The FV
gradient does not enjoy strong convergence properties, and thus a notion of a gradient
which is exact for locally multilinear discrete functions is needed.

Definition 6. For each K ∈ T and each s ∈ VK , we define the consistent
gradient for all u ∈ HD:

(4) (∇u)sK =
∑

σ∈FK∩Fs

(〈u〉σK,s − uK)⊗ gs
K,σ.

In order to satisfy the desired consistency property that (∇u)sK is exact for linear
displacements, the vectors gs

K,σ must satisfy the system of equations

(5) I2 = (∇x)sK =
∑

σ∈FK∩Fs

(〈x〉σK,s − xK)⊗ gs
K,σ.

Here I2 is the d-dimensional second-order identity tensor. The vectors gs
K,σ are

unique for the grids considered herein but may be nonunique for more general three-
dimensional grids [3].

For both discrete gradients, the corresponding divergence is obtained either by
taking the trace of the gradient or, equivalently, by replacing the outer product by
a dot product. Note that the consistent and FV gradients are defined on the two
distinct discrete spaces HD and HC , respectively.

A consistent FV formulation is now obtained by using the FV gradient for the
test functions and the consistent gradient otherwise. With this in mind, we introduce
the following bilinear forms. For all (u,v) ∈ HD ×HC and (p, r) ∈ HD ×HC ,

aD(u,v) =
∑
K∈T

∑
s∈VK

ms
K

(
CK : (∇u)sK : (∇̃v)sK

)
,(6)

cD(p, r) =
∑
K∈T

∑
s∈VK

ms
K

(
kK(∇p)sK · (∇̃r)sK

)
(7)

with the coupling terms defined for all

bD,1(u, r) = −
∑
K∈T

αK(ΠT r)K
∑
s∈VK

ms
K(∇ · u)sK ,(8)

bTD,2(p,v) = −
∑
K∈T

αK(ΠT p)K
∑
s∈VK

ms
K(∇̃ · v)sK .(9)
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950 JAN MARTIN NORDBOTTEN

Note that the coupling terms are not in general transposes, due to the different
discrete differential operators. Thus the transpose notation is used to indicate that
the terms have a familiar structure.

To close the system, we need to associate the degrees of freedom in HD with an
appropriate polynomial order and ensure a suitable degree of continuity [29]. Fol-
lowing the general paradigm for MPFA and MPSA methods [1, 27], we require the
solution to be locally linear on each subcell associated with (K, s) ∈ T × VK and
consistent with the gradient ∇. This is expressed through a bilinear form defined for
all ((u, p),w) ∈ (HD ×HD)× (HD ×HD) such that

(10)

dD((u, p),w) =
∑
K∈T

∑
s∈VK

∑
σ∈Fs

∑
β∈Gs

σ

(
(u, p)σ,βK,s − (u, p)K − (∇(u, p))sK · (xβ − xK)

)
·
(
wσ,β

K,s −wK − (∇w)sK · (xβ − xK)
)
.

Finally, weak continuity is enforced by minimizing jumps at quadrature points
for both the pressure and the displacement, yielding the symmetric bilinear form

(11) eD
(
(u, p),w

)
=
∑
s∈V

∑
σ∈Fs

νσs
mσ

s

∑
β∈Gs

σ

ωβ[[(u, p)]]
σ,β
s · [[w]]σ,βs .

The positive weights νσs can in principle be chosen arbitrarily; however, a
weighted harmonic mean of the constitutive functions of the nearby cells Tσ seems
beneficial in practice [27]. The full discrete problem is a constrained minimiza-
tion problem, whose solution satisfies the following mixed variational system: Find
((uD, pD), (yC , yC),yD) ∈ (HD × HD) × (HC × HC) × (HD × HD) such that the
physical constraints

aD(uD,v) + bTD,2(pD,v) = −
∫
Ω

fu · ΠT v dx for all v ∈ HC ,(12)

bD,1(uD, r)− [ρT ΠT pD,ΠT r]T ,0(13)

− τcD(pD, r) = −
∫
Ω

fp ·ΠT r dx for all r ∈ HC

and the piecewise linear approximation

(14) dD
(
(uD, pD),w

)
= 0 for all w ∈ (HD ×HD)

hold subject to the solution constrained minimization

(15)

eD
(
(uD, pD), (w, w)

)
+ aD(w,yC) + bD,1(w, yC) + bTD,2(w,yC)

− [ρT ΠT wD,ΠT yC ]T ,0 − τc(w, yC) + dD
(
(w, w),yD

)
= 0

for all (w, w) ∈ (HD ×HD).

In (13) and (15), we have introduced the shorthand ρT = ΠT ρ. The components
yC and yD are simply Lagrange multipliers for the constrained minimization problem
and will not be of further interest. After local static condensation (as made explicit
below), they will not appear in the final cell-centered method.

Equations (12)–(15) allow us to define the discrete mixed variational formulation
considered herein.

c© 2016 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/3

1/
17

 to
 1

29
.1

77
.1

69
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 951

Definition 7. We refer to (12)–(15) as the discrete mixed variational FV for-
mulation for the Biot equations.

Comment 8. Throughout this paper we will discuss the general setting where ∇ =
∇̃. However, it is well known that in the special case of simplex grids a symmetric
method can be obtained by using a single quadrature point (see, e.g., [13, 3, 27]). All
the results for the general setting applies to this case, with some simplifications which
will be noted when relevant.

3.2. FV structure. In the absence of the coupling terms (e.g., with α = 0 in
the bilinear form bD), the discrete mixed variational FV formulation as given in (12)–
(15) is identical to the discretizations for elasticity and flow analyzed previously [29].
Furthermore, if the set of Gauss quadrature points Gσ

s is reduced to a single point per
subinterface (s, σ), the discretization for the flow problem reduces to the well-known
MPFA-FV scheme [3, 1].

The FV structure arises due to the definition of the FV gradients ∇̃. Indeed, we
see that (with reference to a canonical basis for HC) the degrees of freedom associated
with cell centers imply that, e.g., (13) can be equivalently rewritten as

(16) τ
∑

σ∈FK

mσq
σ
K(pD) =

∫
K

fp dx−
∑
s∈VK

[ms
KαK(∇ · u)sK − ρKmKpK ]

for all K ∈ T ,

where the normal fluxes qσK are defined as

(17) qσK(pD) = −
[

1

mσ

∑
s∈VK

ms
σkK(∇p)sK

]
· nK,σ.

Furthermore, the degrees of freedom associated with subface variables in HC imply
that, for all internal faces σ, equation (13) reduces to (for {K,L} = Tσ)

(18) qσK(pD) = −qσL(pD).

Equations (16) and (18) represent the conservation structure of the scheme, while (17)
provides an explicit local expression for the fluid normal flux. Together these features
identify the scheme as an FV method.

The FV structure arises in the same sense for the mechanical subproblem. First,
we introduce the notion of traction T (n), which is the force on an internal surface
with normal vector n and is related to the stress as T (n) = π · n. In the continuous
setting, it is the balance of tractions which leads to equations (1) [34]. Now we note
that (12) can be rewritten (with v ∈ HT ) as

(19)
∑

σ∈FK

mσT
σ
K(uD, pD;nK,σ) =

∫
K

fu dx for all K ∈ T .

Here again we note the explicit definition of the traction T σ
K as

(20) T σ
K(uD, pD;nK,σ) =

[
1

mσ

∑
s∈VK

ms
σ

(
CK : (∇u)sK − αKpKI2

)]
· nK,σ.

And finally, also the continuity of tractions reduces to (again for {K,L} = Tσ)

(21) T σ
K(uD, pD;nK,σ) = −T σ

L(uD, pD;nL,σ).

c© 2016 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/3

1/
17

 to
 1

29
.1

77
.1

69
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



952 JAN MARTIN NORDBOTTEN

It is important to note that both the momentum balance (see (19)) and the continuity
(see (21)) are written directly in terms of tractions derived from the Biot stress. This
guarantees the correct notion of force balance in the method, and it will be reflected
in the structure of the methods, as seen in the subsequent sections. Furthermore, the
fact that the normal flux depends only on pressure in (17), while the tractions depend
on both displacement and pressure in (20), is consistent with the governing physics
of equations (1), and it presages the discrete structure which is revealed in (28).

The FV structure revealed by (16)–(21) motivates the nomenclature of Defini-
tion 7.

4. Local problems and cell-centered discretization. To obtain a method
of practical applicability, and in particular a cell-centered scheme, it is necessary to
be able to perform a local static condensation within the framework of (12)–(15). For
mixed finite element formulations, this is frequently achieved by numerical quadrature
(see, e.g., [32, 38, 21]); however, in our setting no further approximations are required.
Indeed, we will see that (12)–(15) by construction allow for local static condensation
to be performed. Such constructions are classical for FV methods for elliptic problems
(see, e.g., [14, 2]).

As noted, the discrete mixed variational problem (12)–(15) is a direct general-
ization of the discretizations for elasticity and fluid pressure analyzed in [29]. Im-
portantly, this implies that the local problems, and hence many components of the
coupled discretization, are identical to their decoupled counterparts. This will greatly
simplify the subsequent analysis.

The structure of this section is as follows. We will first clearly identify the local
problems and show that the static condensation required to reach a cell-centered
formulation is well-posed. This also induces an interpolation from the space HT ×HT
into HD ×HD. This interpolation forms the key to analyzing the method and allows
us to express the cell-centered discretization.

4.1. Local problems. The variational multiscale (VMS) methods [19] as ap-
plied to mixed problems [5, 26] provides a suitable framework for formalizing the local-
ization and static condensation of the system problem (12)–(15). We note that this use
of the VMS framework is different from the approach taken when deriving additional
stabilization terms [8]. By identifying the cell-centered values (HT ×HT ) as the space
of coarse variables, and taking face values, denoted by (HF ×HF ) = (HD ×HD) \
(HT ×HT ), as the space of fine variables, we thus consider the following problem: Find
((uT , pT ), (uF , pF), (yC , yC),yD) ∈ (HT ×HT )×(HF×HF )×(HC×HC)×(HD×HD)
such that we have the following problems.

Coarse problem.

aD({uT ,uF},v) = −
∫
Ω

fu · v dx for all v ∈ HT ,(22)

bD,1({uT ,uF}, r)− [ρT pT , r]T ,0(23)

− τcD({pT , pF}, r) = −
∫
Ω

fp · r dx for all r ∈ HT .

Fine problems.

aD({0,uF},v)(24)

= −aD({uT ,0},v)− bTD,2({pT , 0},v) for all v ∈ HF ∩HC ,
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 953

cD({0, pF}, r) = −cD({pT , 0}, r) for all r ∈ HF ∩HC ,(25)

dD
(
({0,uF}, {0, pF}),w

)
(26)

= −dD
(
({uT ,0}, {pT , 0}),w

)
for all w ∈ (HD ×HD),

eD
(
({0,uF}, {0, pF}), (w, w)

)
+ âD(w,yC)(27)

+ bD(w, yC) + bTD(w,yC)

− c(w, yC) + dD
(
(w, w),yD

)
= −eD

(
({uT ,0}, {pT , 0}), (w, w)

)
for all (w, w) ∈ (HD ×HD).

In the above equations, we have abused notation slightly be letting “0” represent
elements in either spaces HT or HF ; however, the meaning should be clear from
the context. Furthermore, we note the following important details which arise as
a consequence of the previous definitions: There is no coupling term in the coarse
equation (22) since by Gauss’s theorem, bTD,2(pD,v) = 0 for all v ∈ HT . Similarly, by
the definition in (16), there are no coupling terms bD,1 in (25), and only the coarse
component appears in (24). Finally, there is no source term on the right-hand side of
(24) and (25) since ΠT (HF ∩HC) = 0.

The discrete VMS formulation given above allows us to define a fine-scale inter-
polation operator for the FV method: ΠFV : HT ×HT → HD × HD. Furthermore,
due to the lack of coupling terms in (25) and the linearity of the system, we note that
this interpolation operator can be decomposed as

(28) ΠFV {uT , pT } = {Πu,u
FV uT +Πu,p

FV pT ,Π
p
FV pT }.

Here the fluid interpolation operator Πp
FV is (due to the lack of coupling in (25))

identical to the standard operator for the uncoupled system. In MPFA terminology
this is the solution operator for the interaction region problem [1]. Similarly, and
again due to linearity, it is easily verified that the solid operator Πu,u

FV is also identical
to the FV interpolation operator for the uncoupled problem [29]. The critical novel
component is the influence of the cell-centered pressures on the subscale structure of
the displacement, given by Πu,p

FV . We will find below that this operator is essential
for the consistency and stability of the method and would be neglected if simply
introducing the Biot coupling at the coarse scale [28].

The following lemma establishes the computational applicability of the method.

Lemma 9. The FV interpolation ΠFV is local, in the sense that it can be decom-
posed as

(29) ΠFV =
∑
s∈V

ΠFV ,s,

where, furthermore, for each s ∈ V, the operator ΠFV ,s depends only on elements in
HTs ×HTs .

Proof. Let χD be any of the bilinear forms defined in (13)–(18). We note that in
all definitions the sums can be rearranged such that

(30) χD =
∑
s∈V

χD,s.

By inspection, we see that all bilinear forms χD,s have local support, involving

only elements in HTs ×HTs and variables (u, p)σ,βK,s′ ∈ HF ×HF with s′ = s. Hence,
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954 JAN MARTIN NORDBOTTEN

the local systems (24)–(27) form a block-diagonal system with respect to HF ×HF
and can be solved locally for each vertex.

Lemma 10. The local systems given by (24)–(27) have a unique solution (uF , pF) ∈
(HF ×HF ) for each (uT , pT ) ∈ HT ×HT .

Proof. The unique solvability for both the fluid and the solid problems follows
from coercivity arguments as given in [29].

The existence and uniqueness of the solution define the locally computable FV
interpolations ΠFV , and thus we define the following.

Definition 11. For every s ∈ V, the local mixed problem (24)–(27) has a unique
solution by Lemma 10, and we define the norm of the of the solution operator ΠFV ,s

as θ1,s such that for all (u, p) ∈ (HT ×HT ),

(31) ‖Πu,u
FV ,su‖D,s + h−1‖Πu,p

FV ,sp‖D,s + ‖Πp
FV ,sp‖D,s ≤ θ1,s(‖u‖T ,s + ‖p‖T ,s).

It follows from the definition of norms and the scaling invariance of (24)–(27) that
the constants θ may depend on heterogeneity and grid geometry but not on domain
size or mesh size. In particular, the appearance of h−1 is due to the lack of a derivative
on pD in the bilinear form bTD,2 in (24).

4.2. Cell-centered discretization for Biot’s equations. We are now pre-
pared to state the cell-centered discretization of Biot’s equations. Indeed, by replac-
ing the fine-scale terms in (22)–(23) by the FV interpolation ΠFV , we obtain a finite
cell-centered FV discretization. From section 4.1 we thus obtain the following coarse
problem: Find (uT , pT ) ∈ HT ×HT such that

aD(Π
u,u
FV uT ,v) + aD(Π

u,p
FV pT ,v) = −

∫
Ω

fu · v dx for all v ∈ HT ,(32)

bD,1(Π
u,u
FV uT , r) − [ρT pT , r]T ,0(33)

− τcD(Π
p
FV pT , r) + bD,1(Π

u,p
FV pT , r) = −

∫
Ω

fp · r dx for all r ∈ HT .

Importantly, in (32)–(33), two nonstandard terms have appeared due to the coupling
between fluid pressure and deformation captured by Πu,p

FV . The term aD(Π
u,p
FV pT ,v)

in (32) will be seen as an approximation of the continuous operator (p,∇·v) and thus
provides the correct impact of pressure in the mechanical equation. In contrast, the
term bD,1(Π

u,p
FV pT , r) in (33) is a local consistency operator which approximates the

subscale impact of pressure gradients on local volume changes.
For convenience of notation, we will define by capital letters the bilinear forms

with the FV interpolations suppressed, such that, e.g., AD(uT ,v) = aD(Π
u,u
FV uT ,v).

The exceptions to this rule are the coupling term, which for notational consistency
is denoted by BT

D,2 = aD(Π
u,p
FV pT ,v), and the local consistency operator, which is

denoted by ΔD(pT , r) = bD(Π
u,p
FV pT , r). This allows us to define our cell-centered

discretizations compactly.

Definition 12. We then refer to the following system as the MPSA/MPFA-FV
discretization for Biot’s equations: Find (uT , pT ) ∈ HT ×HT such that

AD(uT ,v) +BT
D,2(pT ,v) = −

∫
Ω

fu · v dx for all v ∈ HT ,(34)

BD,1(uT , r)− [ρT pT , r]T ,0(35)
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 955

− τCD(pT , r) + ΔD(pT , r) = −
∫
Ω

fp · r dx for all r ∈ HT .

We will refer to this system in shorthand as

(36) AD(uT , pT ,v, r) = B(v, r) for all (v, r) ∈ HT ×HT ,

where to be precise, we may sometimes explicitly include the parameter dependencies
in the bilinear form, AD = AD(uT , pT ,v, r; ρ, τ).

Remark 13. Because of the static condensation, the local consistency operator
ΔD(pT , r) has appeared in the fluid pressure system. Since Πu,p

FV pT expresses a dis-
placement response to pressure and bD,2 evaluates the discrete divergence, and by
scaling arguments, we qualitatively identify the new term as proportional to a weak
discretization of h2 ∂

∂t∇ · (ακ−1∇(αp)), where κ is the bulk modulus of the material.
Terms with similar scaling have previously been introduced artificially in order to
obtain a stable discretization of equations (1) (see, e.g., [11, 16]). We note that this
term is essential for the stability method of the current scheme, although numerical
experiments indicate that it is not sufficient to guarantee monotonicity of the resulting
pressure solution.

Remark 14. For analysis, it will be desirable to control the asymmetry of the
coupling terms. However, we note that this is not possible on the current form since
BD,1(uT , r) ∼ ‖uT ‖T ‖r‖T ,0 while BT

D,2(pT ,v) ∼ ‖pT ‖T ‖v‖T ,0. However, we exploit
(24) to obtain the relationship that for all (v, pT ) ∈ HT ×HT ,

aD(Π
u,p
FV pT ,v) = aD(Π

u,p
FV pT ,ΠT Π

u,u
FV v)(37)

= aD(Π
u,p
FV pT ,ΠCΠ

u,u
FV v) + bTD,2(pT ,ΠCΠ

u,u
FV v).

Then, by the definition of the bilinear forms, we have that

BT
D,2(pT ,v) = BT

D,1(pT ,v) + aD(Π
u,p
FV pT ,ΠCΠ

u,u
FV v)(38)

+ [bTD,2(pT ,ΠCΠ
u,u
FV v)− bD,1(Π

u,u
FV v, pT )].

In what follows, we will denote the asymmetric terms as

(39) ΛD(pT ,v) = aD(Π
u,p
FV pT ,ΠCΠ

u,u
FV v) + [bTD,2(pT ,ΠCΠ

u,u
FV v)− bD,1(Π

u,u
FV v, pT )]

such that (34) can be equivalently written as

(40) AD(uT ,v) +BT
D,1(pT ,v) + ΛD(pT ,v) = −

∫
Ω

fu · v dx for all v ∈ HT .

While (34) and (40) are formally identical, we note that due to the conservation
structure, (34)–(35) are natural from the perspective of method formulation and im-
plementation. Conversely, as ΛD(pT ,v) can be bounded by scaling arguments as seen
below, (35) and (40) are more convenient for analysis.

5. Convergence. In the introduction, we noted that the two main concerns for
discretizing the Biot equations are stability with respect to incompressible materials,
as well as small time-steps, which is represented Definition 1. In this section, we will
show stability and convergence of the discretization, independent of small parameters,
dependent only on locally computable conditions on the grid.
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956 JAN MARTIN NORDBOTTEN

5.1. Stability of uncoupled problems. It is well known that FV methods
of the type considered herein are stable and convergent for a wide range of grids
[21, 3, 13]. In particular, we will make use of the following mild local condition on
the mesh and parameters.

Condition A. For every vertex s ∈ V , there exists a constant θcs ≥ θc > 0
such that the bilinear form cD,s and the interpolation Πp

FV ,s satisfy that for all

p ∈ Πp
FV ,sHT ,

(41) cD,s(p,ΠCp) ≥ θcs

(
|p|2cD,s

+
∑
K∈Ts

∑
σ∈Fs∩FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ

(
[[p]]σ,βs

)2)
,

where the local energy seminorm is associated with the symmetrized bilinear form

|p|2cD,s
=
∑
K∈Ts

ms
KkK((∇p)sK)2.

For the solid deformation problem, a similar local coercivity condition is needed.

Condition B. For every vertex s ∈ V , there exists a constant θas ≥ θa > 0
such that the bilinear form aD,s and the interpolation Πu,u

FV ,s satisfy that for all

u ∈ Πu,u
FV ,sHT ,

(42) aD,s(u,ΠCu) ≥ θas

(
|u|2aD,s

+
∑
K∈Ts

∑
σ∈Fs∩FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ

(
[[u]]σ,βs

)2)
,

where the local energy seminorm is associated with the symmetrized bilinear form

|u|2aD,s
=
∑
K∈Ts

ms
K(∇u)sK : C : (∇u)sK .

Conditions A and B are in practice a condition on the grid regularity and the
structure (but not magnitude) of the material properties. These conditions can be
verified locally while assembling the discretization, and moreover they can be verified
a priori for certain classes of meshes [29].

The known stability results are recalled in the following lemma (see [3, 29]).

Lemma 15. For given parameter fields C and mesh D, let Conditions A and B
hold. Then the bilinear forms AD and CD are coercive and for all u ∈ HT and
p ∈ HT there exist positive constants ΘA and ΘC such that

(43) AD(u,u) ≥ ΘA‖u‖2T and (ρT p, p) + τCD(p, p) ≥ ρ‖p‖2T ,0 + τΘC‖p‖2T .

The constants ΘA and ΘC are dependent on the parameters of the problem and
the mesh triplet D through the constants θa and θc, but they do not scale with h.
Here, and in what follows, we will use the convention on material parameters from
section 1 such that ρ = supK∈T ρK .

5.2. Properties of the nonstandard terms. To proceed, we will need to
verify that the local consistency operator ΔD is stable and identify a bound on the
properties of ΛD. We first identify a local coercivity condition on the mesh similar to
those stated above.
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 957

Condition C. For every internal vertex s ∈ V with an associated local mesh di-
ameter hs = maxK∈Ts dK , there exists a constant θΔs ≥ θΔ > 0 such that the bilinear
form bD,s and the interpolation Πu,p

FV ,s satisfy that for all p ∈ HT ,

(44) bD,s(Π
u,p
FV ,sp, p) ≥ h2

sθ
Δ
s

(
|p|2ΔD,s

+
∑
K∈Ts

∑
σ∈Fs∩FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ

(
[[p]]σ,βs

)2)
,

where the local energy seminorm is associated with the symmetrized bilinear form

|p|2ΔD,s
=
∑
K∈Ts

ms
K((∇p)sK)2.

As with Conditions A and B, the local structure of Condition C allows it to be
easily verified a priori for grids with local symmetry using arguments similar to those
found in [29], and it can be verified numerically at the discretization stage for arbitrary
grids. The structure of this condition, and in particular the scaling h2

s, follows from
(31) and the relationship between the norms.

Lemma 16. For given parameter fields C and mesh D, let Condition C hold; then
the bilinear form ΔD is coercive and for all p ∈ HT there exists a positive constant
ΘΔ such that

(45) ΔD(p, p) ≤ −h2ΘΔ|p|2T .

The constant ΘΔ is dependent on the mesh triplet D through the constant θΔ, but it
does not scale with h.

Proof. The lemma follows by summation of (44), the well-posedness of the local
problems, and scaling arguments. Note that we do not get a full norm since Πu,p

FV pT
does not depend on the Dirichlet boundary data on Γp,D.

Finally, we bound the nonsymmetric part of the coupling.

Definition 17. For every vertex s ∈ V with an associated local mesh diameter
hs = maxK∈Ts dK , there exist two constants θΛ1 ≥ θΛ1,s > 0 and θΛ2 ≥ θΛ2,s > 0 such
that the bilinear form bD,s and the interpolation Πu,p

FV ,s satisfy that for all p ∈ HT ,

(46) aD,s(Π
u,p
FV pT ,ΠCΠ

u,u
FV v) ≥ −hsθ

Λ
1,s|p|T ,s‖v‖T ,s

and

(47)
[
bTD,2,s(pT ,ΠCΠ

u,u
FV v)− bD,1,s(Π

u,u
FV v, pT )

]
≥ −θΛ2,s‖p‖T ,0,s‖v‖T ,s.

We note that the existence of these constants follows from scaling arguments and
the linearity of the introduced operators.

Lemma 18. There exists a lower bound on the bilinear forms ΛD denoted by ΘΛ

such that the following inequality holds:

(48) ΛD(v, p) ≥ −ΘΛ‖p‖T ,0‖v‖T for all p ∈ HT and v ∈ HT .

Furthermore, the constant ΘΛ ≤ max(d−1/2θΛ1 , θ
Λ
2 ).

Proof. To show (48), we start from the definition of the bilinear form, and by the
triangle inequality we have that

ΛD(v, p) =
∑
s∈V

aD,s(Π
u,p
FV pT ,ΠCΠ

u,u
FV v) +

[
bTD,2,s(pT ,ΠCΠ

u,u
FV v)− bD,1,s(Π

u,u
FV v, pT )

]
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958 JAN MARTIN NORDBOTTEN

≥ −
∑
s∈V

[
hsθ

Λ
1,s|p|T ,s‖v‖T ,s + θΛ2,s‖p‖T ,s,0‖v‖T ,s

]
≥ −ΘΛ‖p‖T ,0‖v‖T .

Here the last inequality uses the inverse inequality stated in section 2.

5.3. Stability of coupled system. Let us first note that the simplest ap-
proaches to showing the stability of the coupled system are not adequate. Indeed,
from (35) and (40), we immediately obtain a stability estimate for the coupled prob-
lem based on Lemmas 15, 16, and 18, e.g.,

AD(u, p,u,−p) ≥ ΘA‖u‖2T + τΘC‖p‖2T(49)

+ h2ΘΔ|p|2T + ρ‖p‖2T ,0 −ΘΛ‖p‖T ,0‖u‖T ,0.

This estimate is unsatisfactory, as it contains a negative term, and furthermore there
is no bound on pressure as ρ, τ, h → 0. To remedy this situation, we must explicitly
utilize the properties of the coupling term BD,1, which is usually achieved through
showing that an inf-sup condition holds [11]. In our case, however, this is not possible;
the kernel of BD,1 admits nontrivial oscillatory solutions. The most notable example
arises on square grids, where if the pressure p is a so-called checker-board pattern,
then BD,1(p,v) = 0 for all v ∈ HD. This is a fundamental consequence of Galilean
invariance of the discretization and is common for all low-order discretizations with
co-located variables [11, 24].

To prove stability of the system, we must therefore exploit the structure of the
full coupled system. Intuitively, the observation that nonoscillatory solutions are well
captured by BD,1(p,v), while oscillatory solutions have a more favorable bound than
that given in Lemma 15, allows us to expect that the presence of the local consistency
operator, which we have qualitatively identified as a Laplacian-like term, proportional
to h2, may be sufficient to stabilize the system. Indeed, this is the idea behind several
stabilization techniques, and as applied to finite element discretizations for Stokes [12]
as well as finite element [8] and finite difference [17] discretizations of Biot’s equation.
The main difference between the cited works and the present is that in previous work
a stabilization was introduced explicitly or through augmented formulations; herein
the term arises as a natural part of the discretization.

To prove that the system AD is indeed stable, our analysis will follow a path
similar to that of Franca and Stenberg, who analyzed finite element discretizations of
augmented formulations for mixed forms of the elasticity equations [15]. The main
idea is to use the properties of BD,1 to trade the |p|2T term in (49) for a deficiency in
the inf-sup condition. Thus we do not have an inf-sup condition in the sense of Brezzi
[10] but rather derive inf-sup for the global system in the sense of Babuska [7]. We
will need some technical results. In the following, C and c represent generic positive
constants, independent of h.

Let us first introduce an interpolation operator from the discrete to continuous
setting, in the spirit of a discontinuous Galerkin interpretation.

Definition 19. Let the interpolation operator ΠL2 : HD → (L2(Ω))d be defined
such that for all (K, s) ∈ T ×V and x ∈ K, we have ΠL2u(x) = uK+(∇u)sK ·(x−xK).

Lemma 20. For all p ∈ HT , it holds that

sup
w∈H1

(p,∇ ·w)

‖w‖1
≥ cLBB‖p‖T ,0.
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 959

Proof. Since HT ∈ L2, the result follows from the well-posedness of the contin-
uous problem, and the constant cLBB is no worse than the inf-sup constant for the
continuous problem.

Lemma 21. For all w ∈ H1, there exists w̃ ∈ HT such that

‖w̃‖T ≤ ‖w‖1

and
‖ΠDw −Πu,u

FV w̃‖D,0 ≤ ch‖w‖1.
Proof. The result follows from the stability of the local calculations (Lemma 10

and Definition 11) and scaling arguments [21, 14].

We now consider the following weakened LBB-type condition, the proof of which
closely follows the approach used in [15] but is adapted to the discrete norms used
herein and the finite spaces ΠL2Πu,u

FV HT .

Lemma 22. For sufficiently fine grids, the bilinear form BD,1 satisfies

(50) sup
v∈HT
‖v‖T =1

BD,1(v, p) ≥ ΘB|p|T ,0 − θBh|p|T for all p ∈ HT .

Proof. Now for any p ∈ HT , consider the splitting such that p = p̄ + p̃, where
p̄ = |Ω|−1

∑
K∈T mKpK . Then by Lemma 20 there exists w ∈ H1

0 such that

(51) (∇ ·w, p̃) ≥ cLBB‖p̃‖T ,0‖w‖1 = cLBB |p|T ,0‖w‖1 ≥ cLBB |p|T ,0‖w̃‖T ,

where the function w̃ ∈ HT is as defined in Lemma 21. Then we calculate

BD,1(−w̃, p̃) =
∑
K∈T

p̃K
∑
s∈VK

ms
K(∇̃ · Πu,u

FV w̃)sK(52)

=
∑
K∈T

∑
s∈VK

∑
σ∈FK∩Fs

p̃K〈Πu,u
FV w̃ −ΠDw〉σK,s · gs

K,σ

+
∑
K∈T

(
∇ · (ΠL2ΠDw −w), p

)
K
+ (∇ ·w, p̃)

≥
∑
K∈T

∑
s∈VK

∑
σ∈FK∩Fs

p̃K〈Πu,u
FV w̃ −ΠDw〉σK,s · gs

K,σ

− ch|p|T ,0‖w‖1 + cLBB |p|T ,0‖w‖1.

To estimate the remaining summation, we consider jumps across internal edges, ex-
ploiting that gs

K,σ = −gs
L,σ for {K,L} = Tσ. For simplicity, we introduce ξσK,s =

〈Πu,u
FV w̃ −ΠFw〉σK,s, after which

(53)
∑
s∈V

∑
σ∈Fs

∑
K∈Tσ

p̃K〈Πu,u
FV w̃ −ΠFw〉σK,s · gs

K,σ

=
∑
s∈V

∑
σ∈Fs

(
〈ξ〉σs +

[[ξ]]σs
2

)(
〈p̃gs

K,σ〉σs +
[[p̃gs

K,σ]]
σ
s

2

)
≥ −ch‖w‖1|p|T .

Combining (52)–(53) provides

(54)
BD,1(−w̃, p̃)

‖w̃‖T
≥ (cLBB − ch)|p|T ,0 − ch|p|T .
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960 JAN MARTIN NORDBOTTEN

Finally, to treat the constant p̄ it is sufficient that there exists a function z ∈ HT
such that

(55) BD,1(z, 1) ≥ c‖w̃‖T .

A function such as this exists; thus combining (54) and (55) proves the lemma.

Using Lemma 22, we can now show the stability of the MPSA/MPFA-FV dis-
cretization for Biot’s equations.

Lemma 23. Let Conditions A, B, and C hold, and let the grid be sufficiently
fine such that Lemma 22 applies. Furthermore, let the asymmetry of the method be
moderate in the sense that 8ΘΛ < ΘB. Then the discrete system AD satisfies the
following stability estimate such that for all (u, p) ∈ HT ×HT ,

(56) sup
(v,r)∈HT ×HT

AD(u, p,v, r;λ, ρ, τ)(
‖v‖2T + τ‖r‖2T + ρ‖r‖2T ,0 + |r|2T ,0

)1/2
≥ ΘA

(
‖u‖2T + τ‖p‖2T + ρ‖p‖2T ,0 + |p|2T ,0

)1/2
.

The constant ΘA depends on the regularity of the grid and the material parameters
but is bounded independent of (ρ, τ, h) → 0.

Proof. Recall the nonoptimal stability estimate (49). Furthermore, now let w ∈
HD be the function for which the supremum is achieved in Lemma 22, scaled such
that ‖w‖T = |p|T ,0. Then, for (v, r) = (u− δw,−p),

AD(u, p,v, r) = AD(u, p,u,−p) + δAD(−w, 0,u, p)(57)

≥ ΘA‖u‖2T + τΘC‖p‖2T + h2ΘΔ|p|2T + ρ‖p‖2T ,0 + δΘB|p|2T ,0

− (ΘΛ + δΘA)‖u‖T |p|T ,0 − δhθB|p|T ,0|p|T .

This inequality holds subject to the negative terms being controlled by the positive
terms, which implies the following conditions:

(58) 4(ΘΛ + δΘA)2 ≤ γ1Θ
AδΘB and 4(δhθB)2 ≤ γ2h

2ΘΔδΘB.

For the two conditions, we find that by differentiating the left-hand inequality of (58)
to obtain the optimal δ and determining γ2 from the right-hand inequality of (58)
implies the two equalities

(59) δ =
γ1Θ

B − 8ΘΛ

8ΘA
and γ2 =

4δ(θB)2

ΘΔΘB
.

Recall that γ2 = 1− γ1 such that we can simplify equations (59) to obtain

(60) γ1 =
2ΘAΘΔΘB(θB)−2 + 8ΘΛ

2ΘAΘΔΘB(θB)−2 +ΘB
.

We see that (60) implies that γ1 > 0, while for γ1 < 1 it must also hold that

(61) 8ΘΛ < ΘB,

while also by substituting (60) into either of equations (59) and the left-hand inequal-
ity of (58) we obtain

(62) 8ΘΛ ≤ γ1Θ
B.
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 961

However, substituting (60) into (58), we note that (62) always holds whenever (61)
holds, which thus remains the sole condition in the proof. Subject to this condition
we then have the inequality

AD(u, p,v, r) ≥ C1

(
‖u‖2T + τ‖p‖2T + ρ‖p‖2T ,0 + |p|2T ,0

)
.

Since we have explicitly retained all dependencies, it is clear that the stability constant
C1 depends on all constants Θ in (57), but is independent of ρ, τ , and h, as asserted.
Finally, the lemma follows since

(63) ‖u− δw‖2T + τ‖p‖2T + ρ‖p‖2T ,0 + |p|2T ,0

≤ ‖u‖2T + τ‖p‖2T + ρ‖p‖2T ,0 + [1 + δ2]|p|2T ,0

≤ C2(‖u‖2T + τ‖p‖2T + ρ‖p‖2T ,0 + |p|2T ,0).

Equation (59) shows that δ is bounded from above independently of ρ, τ , and h; thus
the constant C2 is also bounded independent of all coefficients stated in the lemma,
and finally we obtain the lemma with the constant defined as ΘA = C1/

√
C2.

Corollary 24. The MPFA/MPSA-FV discretization is robust in the sense of
Definition 1, and all eigenvalues of the system AD(u, p,v, r; ρ, τ) are bounded away
from zero.

Remark 25. Lemma 23 has a requirement on the grid, which states that the
asymmetry of the coupling terms induced by ΛD must be sufficiently small, relative
to (essentially) the inf-sup constant. Since ΘΛ can be locally calculated based on the
constants in Definition 17, this condition is locally estimated at the time of discretiza-
tion assembly for general grids and can be verified a priori for regular grids. We will
return to this condition in section 6.3. Furthermore, following Comment 8, we note
that for the symmetric discretization on simplex grids, local conditions (Conditions A
and B) are automatically satisfied, and ΘΛ = 0.

5.4. Compactness results. The stability established in Lemma 23 will suf-
fice to show convergence after generalizing a few standard results for the uncoupled
discretizations.

Definition 26. We consider the following continuous extensions of the cell-
average FV gradients for discrete functions u ∈ HD (and equivalently for scalar
functions p ∈ HD):

(64) ∇Du(x) = (∇̃u)K for K ∈ T , where x ∈ K.

Furthermore, we consider the continuous extension of the consistent gradient

(65) ∇Du(x) = (∇u)sK for K ∈ T , s ∈ T , where x ∈ Ks.

Lemma 27. Fix τ > 0, and let Dn be a family of regular discretization triplets
(in the sense that mesh parameters remain bounded) such that hn → 0 as n → ∞.
Furthermore, let the conditions of Lemma 23 hold. Then, for all n, the solutions
(un, pn) of (37)–(38) exist and are unique, there exists (ũ, p̃) ∈ (H1(Ω))d ×H1(Ω),
and up to a subsequence (still denoted by n) ΠT un → ũ and ΠT pn → p̃ converge in
(Lq(Ω))d × Lq(Ω) for q ∈ [1, 2d/(d− 2 + ε)) as hn → 0. Finally, the cell-average FV

gradients ∇Dun and ∇Dpn converge weakly to ∇ũ in (L2(Ω))d
2

and ∇p̃ in (L2(Ω))d,
respectively.
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962 JAN MARTIN NORDBOTTEN

Proof. The proof follows from the stability of the scheme, Lemma 23, and the
compactness arguments detailed in [16, 6].

Lemma 28. Consider the same case as in Lemma 27. Then the consistent gra-
dients ∇Dun and ∇Dpn converge strongly to ∇ũ in (L2(Ω))d

2

and ∇p̃ in (L2(Ω))d,
respectively.

Proof. The proof is stated in [3] (scalar case) and [29] (vector case).

Remark 29. In the limiting case τ = 0, the regularity of pressure is reduced such
that p̃ ∈ L2(Ω). Consequently, we do not discuss convergence of ∇Dpn and ∇Dpn in
this case.

5.5. Convergence. We summarize the results of this section in the main con-
vergence result for the method.

Theorem 30. Let Dn be a family of regular discretization triplets (in the sense
that mesh parameters remain bounded) such that hn → 0 as n → ∞, let Conditions
A, B, and C hold with constants independent of n, and let 8ΘΛ < ΘB. Then for
τ > 0 the limit (ũ, p̃) ∈ (H1(Ω))d ×H1(Ω) of the discrete mixed variational problem
(37)–(38), and consequently the MPSA/MPFA discretizations for the Biot equations,
is the unique weak solution of the Biot problem (1).

Proof. Lemmas 27 and 28 establish that the limit (ũ, p̃) ∈ (H1(Ω))d × H1(Ω)
exists and establish the appropriate notion of convergence of the discrete gradients.
It remains to show that the solution pair (ũ, p̃) is consistent with the weak form of
problem (1). Uniqueness then follows from the uniqueness of weak solutions to (1).
We show consistency by projecting continuous functions into the discrete spaces and
note that we suppress the dependence of ΠT and ΠFV on n.

For all u,v ∈ (C∞(Ω))d,

(66) lim
n→∞

aDn(Π
u,u
FV ΠT u,v) =

∫
Ω

(C : ∇u) : ∇v dx.

For all u ∈ (C∞(Ω))d and r ∈ C∞(Ω).

(67) lim
n→∞

bDn,1(Π
u,u
FV ΠT u, r) = −

∫
Ω

r∇ · u dx.

For all v ∈ (C∞(Ω))d and p ∈ C∞(Ω),

(68) lim
n→∞

aDn(Π
u,p
FVΠT p,v) = −

∫
Ω

p∇ · v dx.

For all p, r ∈ C∞(Ω),

(69) lim
n→∞

cDn(Π
p
FVΠT p, r) = −

∫
Ω

(k∇p) · ∇r dx.

For all p, r ∈ C∞(Ω),

(70) lim
n→∞

bDn,1(Π
u,p
FVΠT p, r) = 0.

For all v ∈ (C∞(Ω))d,

(71) lim
n→∞

∫
Ω

fu · ΠT v dx =

∫
Ω

fu · v dx.

c© 2016 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

03
/3

1/
17

 to
 1

29
.1

77
.1

69
.1

95
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 963

For all r ∈ (C∞(Ω))d,

(72) lim
n→∞

∫
Ω

fp · ΠT r dx =

∫
Ω

fp · r dx.

Since the right-hand sides of (65)–(72) form the weak form of equations (1), and
since C∞ is dense in H1, it follows that the limit (ũ, p̃) is a weak solution to (1).

5.6. Fully time-discrete scheme. From (1) and (36), we note that the time-
iterative scheme for the solution (uj

T , p
j
T ) at time-step j, written in terms of the

solution at time-step j − 1, is

(73) AD(u
j
T , p

j
T ,v, r; ρ, τ) = AD(u

j−1
T , pj−1

T ,v, r; ρ, 0) +B(0, r)

for all (v, r) ∈ HT ×HT .

In terms of linear systems, this is equivalent to the matrix system

aD(ρ, τ) ·
(
uj
T

pjT

)
= aD(ρ, 0) ·

(
uj−1
T

pj−1
T

)
+ b ·

(
0

r

)
,

where the matrix aD(ρ, τ) corresponds to the values of AD(u, p,v, r; ρ, τ) with
(u, p,v, r) chosen as the canonical basis. Define the error as

ejT =

(
uj
T − uj

pjT − pj

)
.

Then, from Lemma 23 and the Poincaré inequality, it follows that for τ > 0 we obtain
a stable time-discretization since

sup
ej−1
T

‖ejT ‖0
‖ej−1

T ‖0
= sup

ej−1
T

‖a−1
D (ρ, τ) · aD(ρ, 0) · ej−1

T ‖0
‖ej−1

T ‖0
= ‖a−1

D (ρ, τ) · aD(ρ, 0)‖ < 1.

Thus, the time-discrete problem is also stable, independent of time-step, and con-
vergent due to the consistency of the first-order truncation error in backward Euler
(implicit) discretization (see, e.g., [23]).

6. Numerical validation. Herein, we restrict our attention towards verifying
the claims that the method is (a) robust according to Definition 1, (b) stable as stated
in Lemma 23, and (c) convergent as stated in Theorem 30. We refer the reader to
the works on related methods to give a general impression of this class of methods
for complex grids [27, 22] and solutions with low regularity [13]. Together, the above
references give numerical evidence of the suitability of the individual discretizations
AD and CD.

6.1. Problem formulation. As a test problem, we consider the unit square in
two spatial dimensions. We choose as an analytical solution the function

(74) u(x1, x2) =

(
x1(1 − x1) sin(2πx2)
sin(2πx1) sin(2πx2)

)
and p = u · e1. These functions satisfy zero Dirichlet boundary conditions, and the
problem is thus driven by internal source-sink terms (for the flow equation) and body-
forces (for the momentum equation). We calculate these right-hand-side functions
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964 JAN MARTIN NORDBOTTEN

analytically according to equations (1), using unit permeability and Lamé parameters,
in the sense that we consider an isotropic material with the properties

C : ∇u = ∇u +∇uT + (∇ · u)I.

This implies a Poisson ratio of 0.25, which is within the typical range of natural
materials.

We consider three types of grids. Type A is a standard Cartesian grid, type B is
a simplex grid obtained by bisecting the Cartesian grid, and type C is a dual-simplex
grid obtained by taking the dual grid to the corresponding type B grid. Type C grids
are related to PEBI grids and are representative of unstructured grids. For grid types
A and C we use the general method with second-order quadrature for evaluating the
jump terms, while for grid type B we use the simplified symmetric discretization as
discussed in Comment 8.

For the grid refinement, we consider seven refinement levels, where the grid ver-
texes at each refinement level are perturbed randomly by a factor between ±h/2.
Thus we consider so-called rough grids [21], without the milder assumption that the
grid asymptotically is only h2 perturbed, the latter of which is typical for methods
derived from mixed finite elements using numerical quadrature (see, e.g., [38]). These
rough grids are representative of grid regularity as experienced in geological subsurface
applications.

The grids are illustrated in Figure 1, together with the structure of the analytical
solution (74). For all figures, the third refinement level is shown.

Fig. 1. From left to right the figures illustrate grid types A (quadrilaterals), B (triangles), and C
(unstructured grids). Furthermore, in greyscale, the figures indicate the structure of the analytical
solution from (74): the first component of the displacement vector (which is equal to pressure),
the first component of the pressure gradient, and the second component of the displacement vector,
respectively.

6.2. Convergence results. In the reported results, we consider errors using
the following L2-type metrics:

εu =
‖uT −ΠT u‖T ,0

‖ΠT u‖T ,0
,(75)

εp =
‖pT −ΠT p‖T ,0

‖ΠT p‖T ,0
,(76)

εp,| =
|pT −ΠT p|T ,0

‖ΠT p‖T ,0
,(77)

επ =

∑
σ∈F m2

σ[T
σ
K − π(xσ) · nK,σ]

2∑
σ∈F m2

σ[π(xσ) · nK,σ]2
,(78)
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 965

εq =

∑
σ∈F m2

σ[q
σ
K − q(xσ) · nK,σ]

2∑
σ∈F m2

σ[q(xσ) · nK,σ]2
.(79)

Here the discrete flux and traction are defined in (17) and (20), utilizing that due to
(18) and (21) we can (up to the sign) evaluate the expression for either K ∈ Tσ. In
order to show stability according to Definition 1 and verify Lemma 23, we combine
the above errors to the stable error

(80) εΣ = εu + επ + (τ + ρ)εp + τεq + εp,|.

In order to illustrate the numerical convergence rate of the primary variables, we give
the primary error associated with the primary variables displacement and pressure
as

(81) εu,p = εu + τεp.

Note that the primary error does not provide control on pressure or flux in the limit
of τ → 0; we include it in order to highlight better spatial convergence rates.

For the convergence study, we consider all combinations of (ρ, τ) ∈ [1, 10−2, 10−4,
10−6]2. All computations are performed using MATLAB on a standard laptop. The
full study contains 3 × 7 × 5 × 5 = 525 computations, the results of which are sum-
marized in the tables below.

In Tables 1 and 2 we give the results for the stable error εΣ on rough grids. As
expected, the discretization is robust, and we obtain (better than) first-order conver-
gence independent of small parameters. Moreover, the error constant is bounded as
expected from Lemma 23.

In Tables 3 and 4 we give the results for the primary error εu,p on rough grids. For
these results we observe second-order convergence, again with constants independent
of the small parameters.

We summarize the results of Tables 1 through 4 heuristically as follows.

Statement 31. For h-perturbed grids the MPFA/MPSA-FV method displays a
numerical convergence following

(82) h−1εΣ + h−2εu,p < C,

where the constant C does not depend on τ or ρ.

6.3. Local conditions. For all grids in the test suite, we considered the local
conditions (Conditions A, B, and C), as well as the asymmetry condition 8ΘΛ < ΘB

arising in Lemma 23. As noted in Remark 25, all but Condition C are immediate
on simplex grids. Furthermore, for all grids of types A and C, the local conditions
were satisfied, testifying to the statement that these conditions are not restrictive
in practice. We emphasize the fact that the local conditions are independent of the
parameters ρ and τ .

However, this is not to imply that there do not exist grids where the local con-
ditions are not satisfied. Indeed, expressions similar to Condition B, which pertains
to the local coercivity of the discretization of the flow equations, can be violated on
severely skewed parallelograms, as discussed previously [21], which can be linked to a
loss of monotonicity of the scheme [30].

7. Conclusion. We provide a new FV method for the Biot equations. The
method is distinguished by the following properties:

c© 2016 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0 license
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966 JAN MARTIN NORDBOTTEN

Table 1

Asymptotic convergence rate of stable error εΣ for grids of types A, B, and C.

εΣ τ = 1 τ = 10−1 τ = 10−2 τ = 10−4 τ = 10−6

Grid A B C A B C A B C A B C A B C

ρ = 1 1.36 1.36 1.27 1.45 1.51 1.48 1.63 1.68 1.75 2.01 1.90 1.97 1.09 1.14 1.16
ρ = 10−1 1.33 1.32 1.23 1.40 1.46 1.41 1.64 1.66 1.73 2.16 1.89 2.02 1.17 1.25 1.25
ρ = 10−2 1.32 1.32 1.23 1.40 1.45 1.40 1.64 1.66 1.73 2.16 1.88 2.00 1.20 1.29 1.28
ρ = 10−4 1.32 1.32 1.23 1.40 1.45 1.40 1.64 1.66 1.73 2.16 1.88 2.00 1.20 1.29 1.29
ρ = 10−6 1.32 1.32 1.23 1.40 1.45 1.40 1.64 1.66 1.73 2.16 1.88 2.00 1.20 1.29 1.29

Table 2

Asymptotic stable error εΣ for grids of types A, B, and C.

εΣ τ = 1 τ = 10−1 τ = 10−2 τ = 10−4 τ = 10−6

Grid A B C A B C A B C A B C A B C

ρ = 1 .006 .005 .006 .006 .006 .005 .009 .012 .010 .029 .034 .022 .092 .121 .062
ρ = 10−1 .006 .005 .006 .005 .005 .005 .009 .012 .010 .026 .040 .026 .133 .171 .088
ρ = 10−2 .006 .005 .006 .005 .005 .004 .009 .012 .010 .026 .043 .029 .146 .187 .096
ρ = 10−4 .006 .005 .006 .005 .005 .004 .009 .012 .010 .027 .044 .029 .148 .189 .098
ρ = 10−6 .006 .005 .006 .005 .005 .004 .009 .012 .010 .027 .044 .029 .148 .189 .098

Table 3

Asymptotic convergence rate of primary error εu,p for grids of types A, B, and C.

εu,p τ = 1 τ = 10−1 τ = 10−2 τ = 10−4 τ = 10−6

Grid A B C A B C A B C A B C A B C

ρ = 1 2.00 1.97 1.99 1.98 1.93 1.98 1.99 1.94 1.98 1.99 1.95 1.99 1.99 1.95 1.98
ρ = 10−1 2.00 1.97 1.99 1.98 1.92 1.98 1.99 1.93 1.97 1.99 1.94 1.98 1.98 1.94 1.98
ρ = 10−2 2.00 1.97 1.99 1.98 1.92 1.98 1.99 1.93 1.97 1.98 1.93 1.97 1.98 1.94 1.98
ρ = 10−4 2.00 1.97 1.99 1.98 1.92 1.98 1.99 1.93 1.97 1.98 1.93 1.97 1.98 1.94 1.98
ρ = 10−6 2.00 1.97 1.99 1.98 1.92 1.98 1.99 1.93 1.97 1.98 1.93 1.97 1.98 1.94 1.98

Table 4

Asymptotic primary error εu,p for grids of types A, B, and C. All numbers are scaled by 10−3.

εu,p τ = 1 τ = 10−1 τ = 10−2 τ = 10−4 τ = 10−6

Grid A B C A B C A B C A B C A B C

ρ = 1 1.14 0.84 0.69 0.91 0.72 0.51 0.87 0.67 0.48 0.85 0.64 0.47 0.85 0.64 0.47
ρ = 10−1 1.14 0.84 0.69 0.92 0.74 0.52 0.89 0.71 0.52 0.88 0.71 0.58 0.88 0.71 0.58
ρ = 10−2 1.14 0.84 0.69 0.92 0.74 0.52 0.89 0.72 0.53 0.90 0.75 0.63 0.90 0.74 0.63
ρ = 10−4 1.14 0.84 0.69 0.92 0.74 0.52 0.89 0.72 0.53 0.90 0.75 0.64 0.90 0.75 0.64
ρ = 10−6 1.14 0.84 0.69 0.92 0.74 0.52 0.89 0.72 0.53 0.90 0.75 0.64 0.90 0.75 0.64

• The variables are cell-centered for both displacement and pressure, allowing
for sparse linear systems and efficient data structure. This is in contrast to
the industry-standard discretizations using staggered grids.

• The discretization is valid for general grids in two and three dimensions, with
only local constraints on grid and parameters. Numerical examples indicate
that these constraints are mild.

• The discretization is naturally stable in the sense of Definition 1.
For the proposed discretization, we provide stability analysis and convergence

c© 2016 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0 license
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FINITE VOLUME DISCRETIZATION FOR BIOT EQUATIONS 967

proof utilizing the framework of hybrid FV methods. The analysis exploits techniques
from VMS methods and stabilized mixed finite element methods and does not rely on
assumptions of asymptotic grid regularity.

Finally, we provide numerical evidence justifying the stability analysis. The
numerical examples indicate that for rough grids (h-perturbed) we have a general
second-order convergence of the scheme in terms of primary variables (displacement
and pressure). The convergence of secondary variables (traction and normal fluxes)
is in general first order. In the limit where τ → 0, the convergence rate of pressure is
reduced to first order, while the convergence of fluxes is lost. This is consistent with
the expected regularity of the solution.
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