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The Xenacoelomorpha, with its phylogenetic position as sister

group of the Nephrozoa (Protostomia + Deuterostomia), plays

a key-role in understanding the evolution of bilaterian cell types

and organ systems. Current studies of the morphological and

developmental diversity of this group allow us to trace the

evolution of different organ systems within the group and to

reconstruct characters of the most recent common ancestor of

Xenacoelomorpha. The disparity of the clade shows that there

cannot be a single xenacoelomorph ‘model’ species and

strategic sampling is essential for understanding the evolution

of major traits. With this strategy, fundamental insights into the

evolution of molecular mechanisms and their role in shaping

animal organ systems can be expected in the near future.
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Introduction: model systems and evolutionary
biology
When writing about evolutionary biology and model

systems, a contradiction becomes evident. Evolutionary

research is a comparative science and has its foundation in

examining the diversity of organisms that all carry infor-

mation about their evolutionary past. In evolutionary

biology, insights and understanding are gained by com-

parisons of as many species as possible. Contrary to this,

model systems are chosen as exemplars that are ideal for

investigations of a particular process and are thus easy to

handle and accessible to a broad range of methods. Model

systems are under detailed observation and in the spot-

light of major efforts to find principles that possibly

can lead to the formulation of general mechanisms.

Well-known examples for animal developmental and cell
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biology models are the fruitfly Drosophila melanogaster and

the nematode Caenorhabditis elegans, in which basic prin-

ciples of developmental processes have been studied in

great detail. It might be because the field of evolutionary

developmental biology — EvoDevo — has its origin in

developmental biology and not evolutionary biology that

species under investigation are often called ‘model spe-

cies’. Criteria for selected representative species are

primarily the ease of access to collected material and

their ability to be cultivated in the lab [1]. In some cases,

a supposedly larger number of ancestral characters or a

dominant role in ecosystems have played an additional

role in selecting model species. These arguments were

used to attract sufficient funding for genome sequencing

and developmental studies that are cost-intensive inves-

tigations. Several years ago, the focus on one species for

each larger animal clade was reasonable, given the large

effort necessary for collecting sufficient resources (e.g.

genomic information) for developmental studies. Ge-

nome sequencing and the establishment of cDNA librar-

ies were only affordable in collaborative efforts, and large

amounts of embryonic material were needed to conduct

molecular work. The evolutionary insights gained by

studying only these model species are limited since

morphological and developmental variation inside the

groups is not considered. The recent inclusion of addi-

tional, even closely related, species into comparisons

indicated in most cases that the developmental pathways

are flexible and that findings in one species cannot be

necessarily generalized for a clade over long evolutionary

distances. The good news is that we can now go beyond

the ‘model system’-era of EvoDevo: Advances in se-

quencing technology and genome editing allow the im-

plementation of advanced technology into new species

much quicker and also much cheaper. The reconstruction

of the animal phylogeny progresses in large steps and this

allows a wiser choice of species to answer explicit ques-

tions about organ system and cell type evolution [2�].
Hypotheses based on only a handful of model systems can

now be tested by the inclusion of more species, and this is

finally strengthening the ‘Evo’ component of the field of

‘EvoDevo’.

The Xenacoelomorpha (Figure 1) provides a case that

illustrates well that the old approach of choosing a single

‘model system’ for gaining evolutionary insights will

likely fail. In this review we outline the characteristics

of the group and its importance for understanding animal

evolution. We furthermore show that the diversity of the

group reveals the independent evolution of characters
www.sciencedirect.com
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Disparity of Xenacoelomorpha. (a) Xenoturbella profunda, (b) Xenoturbella bocki, (c) Hofstenia miamia (Acoela), (d) Symsagittifera roscoffensis

(Acoela), (e) Isodiametra pulchra (Acoela), (f) Diopisthoporus psammophilus (Acoela), (g) Convolutriloba longifissura (Acoela), (h) Nemertinoides

elongatus (Nemertodermatida), (i) Meara stichopi (Nemertodermatida).

Source: Photos courtesy of Greg Rouse (xenoturbellas), Arthur Haug (S. roscoffensis), Erik Röttinger (C. longifissura), Ulf Jondelius

(D. psammophilus, H. miamia, N. elongatus).
that have been seen as ‘complex’ when viewed from an

anthropocentric or ‘nephrozoan’ perspective [3].

Xenacoelomorpha’s significance
Their phylogenetic position and body composition makes

the Xenacoelomorpha a key group to study when aiming

to understand bilaterian evolution [4��]. The monophyly

of the Xenacoelomorpha, comprised by Xenoturbella,

Acoela, and Nemertodermatida, has been first supported

by molecular evidence in 2009 [5]. One phylogenomic

study suggested an affiliation of the Xenacoelomorpha

with deuterostomes, albeit with only weak support [6].

The placement of Xenacoelomorpha as sister group to the

Nephrozoa — Protostomia + Deuterostomia — has re-

ceived solid support in recent molecular analyses

[4��,5]. The morphology of the group is in line with this

placement since they share some plesiomorphic charac-

ters with cnidarians (such as e.g. the single opening to the

digestive tract [7]) but also possess characters that are

seen as apomorphies of the Bilateria (e.g. bilateral sym-

metry, mesoderm, longitudinal and ring musculature)
www.sciencedirect.com 
[8��,9]. This composition of the xenacoelomorph body

plan allows the determination of the sequence of evolu-

tion of bilaterian traits (Figure 2). However it becomes

clear that only a detailed knowledge of the morphology

and development of a large number of species from this

taxon allows the discrimination between ancestral and

derived characters and the reconstruction of the ground

pattern. Recent progress has been made investigating a

number of xenacoelomorph species regarding different

aspects of their morphology and development, leading to

a deeper understanding of this group and illustrating that

it is unreasonable to focus on just one model species

[10,11�,12–15,16�,17��,18�].

Significant characters xenacoelomorphs
share with Cnidaria
The epidermis of xenacoelomorphs is completely ciliat-

ed, and they use these cilia to glide or swim, similar to the

planula stage of Cnidaria. As in medusozoan cnidarians,

the hatchlings of Xenoturbella and nemertodermatids do

not possess a functional mouth opening and only later
Current Opinion in Genetics & Development 2016, 39:48–54
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Figure 2
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Phylogenetic relationships and the sequence of the evolution of bilaterian characters. Significant organ systems and their major transitions (red

arrows) and novelties (red) mapped on the phylogeny.
develop the mouth to begin feeding [11�,14,15]. Mature

xenacoelomorphs have the mouth as the single opening

[19] to a blind gut that is epithelial in Xenoturbella [20�]
and Nemertodermatida, but has been modified as syncy-

tial tissue in the Acoela [21]. This blind gut lacks gastric

subdivisions (although the nemertodermatid Meara sti-
chopi has branching gut tissue [11�]) and occupies large

parts of the body. The digestive system is lined by non-

epithelial gonads, and the oocytes are released either

through the mouth opening or by body rupture [8��].
Some acoel groups of the Bursaria have evolved a new

opening for the extrusion of fertilized oocytes and can

possess specialized copulatory organs [22]. A basiepider-

mal nerve net can be reconstructed for the ground pattern

of the Xenacoelomorpha since xenoturbellids lack any

nervous system internalizations, as do most nemertoder-

matids [13,16�], but all xenacoelomorphs investigated so

far possess a basiepidermal nerve net. Explicit excretory

organs that conduct ultrafiltration are absent in cnidarians

as well as in xenacoelomorphs, which renders nephrid-

ia — protonephridia and metanephridia — a novelty for

the Nephrozoa. Recent comparative studies of the early

development of nemertodermatids suggest that the duet-

cleavage pattern, as it has been described for all acoel

species so far, is a derived character and that likely a less

stereotypic, regulative cleavage pattern similar to that of
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Cnidaria is ancestral for the Xenacoelomorpha [11�,23].

The shared characters of xenacoelomorphs and Cnidaria

are the reason why this group has been described as

’simple’ and similar to the early bilaterian stem species

[8��,24].

Significant characters xenacoelomorphs
share with Nephrozoa
The characters that xenacoelomorphs share with proto-

stomes and deuterostomes led to their designation as an

‘intermediate’ taxon, allowing the reconstruction of the

sequence of the evolution of bilaterian traits [9]. The

most evident similarity of the Xenacoelomorpha with the

Nephrozoa is the bilateral symmetry, in which a clear left

and right body side can be identified and in which the

direction of movement is to the anterior [24]. Although

anthozoan cnidarians are also bilaterally symmetric, here

the identification of a left and right body is impossible and

recent molecular studies could not determine a bona fide

mechanism that could support the homology between any

of the anthozoan and bilaterian body axes [25,26]. Here,

investigations in xenacoelomorphs could provide deeper

insights. A major innovation of the Bilateria was the

mesodermal germ layer that likely evolved from the

endoderm [27]. In acoelomorphs, the mesoderm seems

to form the longitudinal and ring musculature of the body
www.sciencedirect.com
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and possibly the germ line and stem cell system [12,21].

The stem cell system of acoels is responsible for the

growth and maintenance of the body [12,18�,28]. More

detailed descriptions of acoel regeneration and the stem

cell system can be found in a future edition of this journal

(see Srivastava in Volume 40).

As in the remaining Bilateria, the acoelomorph mesoderm

separates from the endomesoderm after gastrulation [23].

Furthermore, in both Xenaceolomorpha and Nephrozoa

the endomesoderm gastrulates at the vegetal pole, which

is the opposite side from that of a cnidarian embryo,

which gastrulates at the animal pole [29]. The mechanism

of this A-V inversion of the site of gastrulation in the

lineage to the Bilateria remains unclear.

The sequence of the evolution of bilaterian
characters
The chimeric nature of the Xenacoelomorpha in sharing

important characters with cnidarians and nephrozoans has

a tremendous impact on the understanding of the evo-

lution of bilaterian characters on the morphological and

molecular level. The phylogenetic position and the char-

acter distribution within the Xenacoelomorpha indicate

that bilateral symmetry evolved before the evolution of

the through gut [19,30] and that the first mesodermal

derivative was musculature and not coeloms [12]. Fur-

thermore, the bilaterian mouth that was likely not sur-

rounded by an oral nerve ring, did not develop from the

blastopore, and evolved before the anus [19]. The se-

quence of the evolution of these characters stand against

recent narratives about the evolution of the Bilateria that

are based on the enterocoely scenario of bilaterian evo-

lution [31,32]. The sequence of the evolution of bilaterian

characters will allow us to dissect the molecular mecha-

nisms that triggered their evolution using explicit inves-

tigations of xenacoelomorph development. For example,

the presence of only a nerve net in xenacoelomorphs will

allow us to determine the ancient role of important

nervous system patterning mechanisms that have been

the subject of intense debates [33,34]. Because recent

studies of xenacoelomorphs suggest that the first meso-

derm was solely musculature, the question arises how

new mesodermal cell types of the Bilateria evolved from a

basic molecular developmental mechanism that originally

triggered only muscle. Our understanding of the ancestral

bilaterian body appearance is also affected: the xenacoe-

lomorphs suggest it to be a rather small, benthic — maybe

even interstitial — direct developing animal. Recent

progress in resolving animal phylogenies support this

view by rendering a small — possibly meiofaunal — spe-

cies as most recent common ancestor for the large proto-

stome clades Ecdysozoa and Spiralia [35–38]. This is of

paleontological significance because small and soft-bod-

ied species are not easily fossilized, which might have

diminished the early bilaterian evolution from the pale-

ontological tableau.
www.sciencedirect.com 
Evolution and variation within
Xenacoelomorpha
Since all recent animal species diverged from their last

common ancestor for the same time, it is not surprising to

find many novelties and evolutionary modifications of

major organ systems inside the xenacoelomorphs. The

recent description of new Xenoturbella species that can be

larger than 20 cm (Figure 1a) is broadening the biodiver-

sity of the clade and extends their biogeographical distri-

bution [17��]. The discovery also shows that Xenoturbella
is cosmopolitan rather than a unique outlier found in

Scandinavian fjords. There are interesting novelties and

‘major’ changes in the body plan that occurred within the

Xenacoelomorpha (Figure 3), especially the Acoela show-

ing a number of modifications of the ancestral state

(Figure 3). Some acoels have gained an additional body

opening — the female gonopore — to facilitate the re-

lease of gametes [22]. The digestive tract in Xenacoelo-

morphs has changed from an epithelial gut to a syncytial

digestive system in the acoels, where the position of the

mouth can vary from anterior (e.g. Hofstenia) to the far

posterior (Diopisthoporidae), with most species having it

positioned in the approximate middle of the body. The

parenchymatic ‘mesenchyme’ seems to be a novel meso-

dermal tissue gained in the acoel lineage, which illustrates

an interesting case of cell type evolution [12,21]. The

nervous system in the Xenacoelomorpha underwent dra-

matic modifications that mirror the evolution of the

nephrozoan nervous system: from an ancient nerve net

at the base of the Xenacoelomorpha, several dorsal and

ventral longitudinal basiepidermal condensations have

been formed multiple times independently

[10,11�,13,16�,39�,40,41]. In some lineages anterior con-

densations have been internalized to form a brain, and

bundles of longitudinal nerves have been multiplied and

internalized to form nerve cords [13,39�]. These modifi-

cations correlate with an elaboration of the behavioral

complexity in the Acoela, such as swimming in three-

dimensional interstitial environment, circadian rhythms,

active predation, and swarm behavior [42,43].

Is a large step in nephrozoan evolution — the evolution of

nerve cords and brains — only a small step for xenacoe-

lomorphs? It seems that it is more the ‘chordate’-view on

evolution that makes the nerve cord and brain evolution

in the Nephrozoa seemingly a big deal. Neglecting the

modifications in different clades limits the perception of

the evolution of animal body plans and makes small steps

seem to be fundamental from the human perspective [3].

Initial genomic insights into the gene complement of

Xenoturbella bocki (Figure 1b) and the acoel Symsagittifera
roscoffensis (Figure 1d) show that Xenoturbella possesses a

much larger gene complement of the Hox, Wnt, bHLH

and GPCR families than the acoel species [39�,41]. In

acoels, there is also a higher sequence divergence that

correlates with the longer branches in phylogenetic anal-

yses that are caused by faster evolutionary rates. In this
Current Opinion in Genetics & Development 2016, 39:48–54
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Table 1

Advanced techniques and resources.

Xenoturbella Illumina transcriptomes (Cannon et al., 2016 [4��]; Rouse et al., 2016 [17��])

Nemertodermatida Illumina transcriptomes (Cannon et al., 2016 [4��])

Meara stichopi Embryonic material (Børve and Hejnol, 2014 [11�])

Nemertoderma westbladi Embryonic material (47)

Acoela Illumina transcriptomes (Srivastava et al., 2014 [18�]; Cannon et al., 2016 [4��])

Isodiametra pulchra (breeding, Rieger et al., 1988)

Convolutriloba

(breeding, Shannon and Achatz, 2007)

Hofstenia miamia

(breeding, Srivastava et al., 2014 [18�])

Symsagittifera roscoffensis

Whole mount in situ hybridization (Hejnol and Martindale, 2008 [9])

Functional interference (RNAi) (48)

Microinjection (49)

Husbandry/breeding (50,51)

Figure 3
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Character evolution within Xenacoelomorpha. Phylogenetic relationships based on recent molecular phylogenetic studies [4,17��,22,46]. Examples

of character evolution inside the clade Xenacoelomorpha (outgroups not labeled).
context it is interesting that — contrary to what has been

found for parasitic bilaterians — the accelerated molecu-

lar evolution in the acoel lineage correlates with the gain

of morphological specializations and not so much with

their loss [4��,5,39�,41].

Future prospects in technique and resource

development

The prospects for technique and resource development

for xenacoelomorphs will not differ from most other

animal species and is strongly correlated with the imple-

mentation of newest technologies (Table 1). The most
Current Opinion in Genetics & Development 2016, 39:48–54 
limiting aspect is the access to embryonic material of

different species. Although several acoel species can be

cultured easily in the laboratory over generations, no

Xenoturbella or nemertodermatid species has been cul-

tured in the lab in a closed cycle.

Conclusions
Xenacoelomorphs provide an essential taxon for under-

standing bilaterian evolution, but their diversity makes it

difficult to choose a single species as a ‘model’. Previous

xenacoelomorph species that have been declared as ‘mod-

els’, such as Symsagittifera roscoffensis [44] and Isodiametra
www.sciencedirect.com



Xenacoelomorpha Hejnol and Pang 53
pulchra [10], show a very high number of derived char-

acters. They are useful for studies of the internal evolution

but an extrapolation to the whole group can lead to wrong

conclusions about the homology of organ systems (i.e.

conclusions of the brain homology between acoels and

bilaterians [45]). Studies of the development and molecu-

lar architecture of organ systems need to consider the

whole group to allow conclusions about evolution. Con-

sidering this, the selection of which exact species to

investigate should be guided by the specific question.
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