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 41 
ABSTRACT 42 
 43 
Previous works suggest decadal predictions of Sahel rainfall could be skillful. However, the sources 44 
of such skill are still under debate. In addition, previous results are based on short validation periods 45 
(i.e. less than 50 years). In this work we propose a framework based on multi-linear regression 46 
analysis to study the potential sources of skill for predicting Sahel trends several years ahead. We 47 
apply it to an extended decadal hindcast performed with the MPI-ESM-LR model that span from 1901 48 
to 2010 with one year sampling interval. Our results show that the skill mainly depends on how well 49 
we can predict the timing of the global warming (GW), the Atlantic multidecadal variability (AMV) 50 
and, to a lesser extent, the inter-decadal Pacific oscillation (IPO) signals, and on how well the system 51 
simulates the associated SST and West African rainfall response patterns. In the case of the MPI-52 
ESM-LR decadal extended hindcast, the observed timing is well reproduced only for the GW and 53 
AMV signals. However, only the West African rainfall response to the AMV is correctly reproduced. 54 
Thus, for most of the lead times the main source of skill in the decadal hindcast of West African 55 
rainfall is from the AMV. The GW signal degrades skill because the response of West African rainfall 56 
to GW is incorrectly captured. Our results also suggest that initialized decadal predictions of West 57 
African rainfall can be further improved by better simulating the response of global SST to GW and 58 
AMV. Furthermore, our approach may be applied to understand and attribute prediction skill for other 59 
variables and regions. 60 
 61 

 62 
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1. INTRODUCTION 65 
 66 
The Sahel is an African semiarid region located between the Sahara desert to the north and the 67 
Savanna to the south. The economy of the region is mostly based on rain-fed agriculture and pastures 68 
for livestock, which makes the Sahel highly vulnerable to rainfall variability (Kandji et al. 2006; 69 
Ickowicz et al. 2012). Rainfall over the Sahel is strongly tied to the West African Monsoon and shows 70 
variability at many different time scales (Rodríguez-Fonseca et al. 2015). However, its signal at 71 
decadal timescales is outstanding (Dai et al. 2004): it showed a wet period in the 1950s-1960s 72 
followed by a devastating drought in the 1970s and 1980s and a recent recovery since the 1990s. 73 
Predicting the trends in Sahel rainfall several years ahead would be highly beneficial for decision 74 
making and planning in the region. 75 
 76 
The decadal fluctuations in Sahel rainfall have been associated with worldwide changes in the sea 77 
surface temperatures (SST) in different ocean basins (Rodriguez-Fonseca et al. 2015, and references 78 
therein). The warming of the Indian (e.g. Giannini et al. 2003; Bader and Latif 2003), the tropical 79 
Pacific (e.g. Lu and Delworth 2005; Caminade and Terray 2010) and the tropical Atlantic south of 80 
10ºN (Hagos and Cook 2008) all lead to drought conditions over the Sahel. On the other hand, the 81 
warming of the Mediterranean Sea (Park et al. 2016) or the differential warming of the northern and 82 
southern hemispheres, particularly over the Atlantic basin (e.g. Hoerling et al. 2006; Ting et al. 2009), 83 
has also been suggested as a driver of Sahel rainfall variability. In turn, Mohino et al. (2011) 84 
suggested that the evolution of Sahel rainfall at decadal timescales could be explained by the 85 
competing effects of the Atlantic Multidecadal Variability (AMV), the Interdecadal Pacific 86 
Oscillation (IPO) and the global warming trend (GW), especially in the tropics. Decadal prediction of 87 
Sahel rainfall could be possible if these factors could be predicted. 88 
 89 
There have been several attempts to dynamically predict climate changes at decadal time scales 90 
(Smith et al. 2007; Pohlmann et al. 2009; Keenlyside et al. 2008; Mochizuki et al. 2010; Taylor et al. 91 
2012). These predictions lie between an initial value problem and a forced boundary condition 92 
problem (Meehl et al. 2009a; Keenlyside and Ba 2010): On the one hand, at these time scales the 93 
changes in the external forcing (CO2 or aerosols, for instance) can affect the evolution of climate 94 
variables and, on the other, the effect of internal variability can be of comparable magnitude (Meehl et 95 
al. 2009a). The decadal climate predictions are based on coupled atmosphere-ocean models run for 10 96 
years forced by the observed and projected changes in the external forcing and initialized from an 97 
observed state at the beginning of the simulation (Taylor et al. 2012). These have shown skill on 98 
decadal timescales in predicting SST in the extra-tropical North Atlantic and the Indian Ocean and 99 
Western Pacific, but very little skill in other regions (Doblas-Reyes et al. 2013). 100 
 101 
Several works have analysed the prediction skill of Sahelian rainfall using decadal hindcasts. The 102 
work by van Oldenborgh et al. (2012) suggested no significant skill in the ENSEMBLES multi-model 103 
system, and little or no impact of the initialization. However, García-Serrano et al. (2013) suggested 104 
that, though not skillful, there was an encouraging tendency to produce positive correlation scores 105 
between the observed and modelled Sahelian mode of variability in the multi-model. Bellucci et al. 106 
(2015) reported statistically significant skill for the multi-model mean hindcasts run in the framework 107 
of EU COMBINE project, though a large spread for individual models. In addition, the decadal 108 
climate hindcasts performed by some models in the framework of the Coupled Model 109 
Intercomparison Project – Phase 5 (CMIP5) show skill in reproducing the decadal variations of the 110 
Sahelian rainfall index (Gaetani and Mohino 2013; Martin and Thorncroft 2014; Otero et al. 2015). 111 
The sources for such skill are under debate. Martin and Thorncroft (2014) suggest that the skill comes 112 
from the correct reproduction of the link between Sahel rainfall and the relative SST index (RSI), 113 
defined in Giannini et al. (2013) as the difference of SSTs in the subtropical North Atlantic minus the 114 
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mean in the Tropics. In turn, Gaetani and Mohino (2013) suggest that skillful predictions are provided 115 
by models that properly reproduce the observed SST-precipitation relationship at multi-decadal time 116 
scales, which they relate to the AMV and IPO modes. This is in agreement with García-Serrano et al. 117 
(2015), who suggested that skillful predictions of Sahel rainfall could be obtained with the 118 
initialization of AMV and a proper representation of the Sahel-AMV teleconnection in the models. 119 
 120 
However, all the previous studies are based on a validation period typically spanning from 1960 to 121 
2010, which is too short when taking into account that the Sahel rainfall is related to the AMV, a 122 
phenomenon with a timescale of 60-80 years (Kerr 2000). In particular, Müller et al. (2014) showed 123 
that the variability in the North Atlantic is dominated by the trend from the 1960s, while the 124 
oscillating components become more important for longer periods. In this work we aim to investigate 125 
the sources of skill (or lack thereof) for the decadal prediction of Sahel rainfall using the decadal 126 
climate predictions performed with the MPI-ESM-LR model for the period 1901-2010 (Müller et al. 127 
2014). In section 2 we describe the experiments and methods used and in section 3.1 we show the 128 
skill of the model in predicting Sahel rainfall. To better understand the sources of skill and errors in 129 
the prediction of Sahel rainfall we propose a new methodology based on the analysis of the fidelity of 130 
the simulations in reproducing the observed decadal modes of SST variability (namely the GW, AMV 131 
and IPO) and their impact on West African rainfall (section 3.2). In section 3.3 we subsequently use 132 
multi-linear regression analysis to partition the variance of the Sahel rainfall indices into different 133 
terms related to the GW, AMV and IPO signals. The same analysis is used to decompose the 134 
correlation of the simulated indices with respect to the observed ones in terms of the same SST signals. 135 
In section 4 we discuss our results and in section 5 we draw the main conclusions from our research. 136 
This research will shed light into the feasibility of decadal predictions in an area highly vulnerable to 137 
climate variability and change. 138 
 139 
2. DATA AND METHODS 140 
 141 
2.1 Observed data: 142 
 143 
We use CRUTS3.1 (Harris et al. 2014) for rainfall estimates. It is a global gridded dataset based on 144 
observed precipitation amounts with data only over land regions. It spans the period 1901 to 2009 145 
with a horizontal resolution of 0.5º.  146 
 147 
To account for the uncertainty in sea surface temperature, especially in the trends (Vecchi et al. 2008; 148 
Falvey and Garreaud 2009), two different datasets are used: HadISST1 (Rayner et al. 2003) and 149 
ERSSTv3b (Smith et al. 2008). Both are reconstructed datasets based on ship measurements. 150 
HadISST1 also uses satellite estimates from the mid 1980s onwards. The datasets also differ on the 151 
sources of ship data (ICOADS for ERSSTv3b, and Met Office Marine Data Bank for HadISST1) and 152 
on the reconstruction methodology. They are both gridded data sets with a horizontal resolution of 1° 153 
x 1° and 2° x 2° for the HadISST1 and the ERSSTv3b, respectively, and global coverage. They span 154 
the period from 1870 to present for HadISST1 and from 1854 onwards for the ERSSTv3b data set. 155 
 156 
Observed rainfall and SST data are re-gridded to the coarser resolution mesh of the model 157 
(approximately 1.9º in longitude and latitude). 158 
 159 
 160 
2.2 Simulations: 161 
 162 
Two different types of simulations from the low resolution version of the Max Plank Institute climate 163 
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model (MPI-ESM-LR, Müller et al. 2014) are used, namely the historical simulation and the decadal 164 
hindcasts. The former is a long forced run performed in the framework of the Coupled Model 165 
Intercomparison Project Phase 5 (CMIP5, Taylor et al. 2012) that spans from 1850 to 2005 and is 166 
initialized from a preindustrial control run. It takes into account the observed changes in 167 
anthropogenic (greenhouse-gas composition and aerosols) and natural (solar and volcanic) forcing. 168 
The decadal hindcasts consist in a set of 10-year long runs that use the same forcing as the historical 169 
run, but are anomaly initialized every year from 1901 to 2010 (Müller et al. 2014). The initial 170 
conditions are taken from an assimilation experiment in which the model is nudged towards the ocean 171 
salinity and temperature anomalies added to the model's climatology. These anomalies are obtained 172 
from runs of the ocean component of the model forced with individual members of the 20CR (Compo 173 
et al., 2011) reanalysis (Müller et al. 2015). The results shown in this work are based on averaging the 174 
three ensemble members available for each experiment. By such averaging, we attempt to remove 175 
climate variability in the model not coming from the external forcing nor from the initialization.  176 
 177 
2.3 Methods: 178 
 179 
To characterize the temporal evolution of Sahel rainfall, we define the Sahel rainfall index (SRI) as 180 
the average of rainfall in the region 18ºW-10ºE, 10ºN-20ºN during the summer months (July to 181 
September).  182 
 183 
In this work we define the prediction skill as a measurement of the skill one can expect when trying to 184 
predict some quantity, like the Sahel rainfall, using only information available before the actual 185 
prediction issue date: If one wants to predict an index in year X with a lead time of Y, we can only use 186 
simulations initialized previous to year X-Y. Two measures of the prediction skill are used: Anomaly 187 
correlation coefficients (ACC) and root mean square error (RMSE). To avoid noise from interannual 188 
phenomena, these scores are applied to averages of 4 years  (similar results are obtained when using 5 189 
years, not shown). For the observations and the historical simulations, such averaging is equivalent to 190 
applying a 4-year running mean. For the decadal hindcasts the averages are applied separately in each 191 
10-yr long simulation, with the first possible forecast verification being the average of 1 to 4 year lead 192 
time. Following the World Climate Research Programme recommendations, anomalies in the decadal 193 
hindcasts are defined with respect to the lead time (ICPO 2011). In this way, the climatology to 194 
subtract at each lead time W is calculated using only the year W of all the decadal hindcast runs. This 195 
procedure removes the mean forecast drift. For direct comparison, the historical simulation is treated 196 
in the same way. The period to evaluate the skill scores is between 1914 and 2004 for all simulations 197 
and lead times.  198 
 199 
It is important to attribute the skill to physical mechanisms. These are assessed by estimating the 200 
ability of the model to simulate the observed variations and this is analysed in a different framework 201 
than the prediction one: We are no longer constrained by the issue date of the predictions and we can 202 
also use information that would be available later than the date we are analysing. This allows the use 203 
of low-pass filters with sharper response functions at the cut-off frequency than the running mean. 204 
This is a standard approach for analysing historical simulations. Here we extended it to the decadal 205 
hindcasts by repeating the analysis on the separate time series constructed by concatenating the 206 
hindcast data for each lead time (i.e., constructing a hindcast series for each lead time). For the sake of 207 
brevity, in the following we will refer to the degree of reproduction of an observed phenomenon as 208 
the simulation fidelity. Thus we will assess how the simulation fidelity varies with hindcast lead time. 209 
 210 
Mohino et al. (2011) found that most of the decadal and multi-decadal evolution of Sahel rainfall 211 
could be explained by the combined influence of three modes of variability of SSTs at these time 212 
scales: the GW, AMV and IPO. In this work we follow the same methodology to analyse the fidelity 213 
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in simulating the SRI and its sources. The GW signal index is defined as the SST averaged between 214 
45ºS and 60ºN and low-pass filtered with a cut-off period of 40 years (using a 4th order Butterworth 215 
filter). The other two signals, AMV and IPO, are estimated as the principal component associated 216 
with the first empirical orthogonal function (EOF) over the Atlantic and the Indo-Pacific basins, 217 
respectively. Prior to the EOF calculation, the GW signal is removed at each grid point by means of a 218 
linear regression and the field is low-pass filtered with a cut-off period of 13 years (using a 4th order 219 
Butterworth filter).  220 
 221 
To estimate the rainfall and SST patterns related with each component, the raw rainfall data are 222 
regressed onto the appropriate standardized index. The statistical significance of correlations for 223 
filtered time series is estimated with the following Monte Carlo approach, also used in Mohino et al. 224 
(2011): 1,000 pairs of synthetic time series of the same length as the original ones are produced using 225 
a Gaussian distribution and low-pass filtered using the same filter. The correlation between each pair 226 
is calculated to build a probability density distribution of correlations against which the original 227 
correlation is compared. The use of an AR-1 process to generate the synthetic time series does not 228 
alter the conclusions (not shown). To evaluate the fidelity in simulating Sahel rainfall decadal 229 
variability we have low-pass filtered the SRI with a cut-off period of 13 years (again with a 4th order 230 
Butterworth filter), which we name hereafter as decadal-SRI. Unlike the observations and the 231 
historical simulations, in which there is only one temporal coordinate, in the decadal predictions the 232 
analysis of the relation of the indices (GW, AMV, IPO) with rainfall has been applied for each lead 233 
time separately. In this way we can analyse the ability of the model to simulate the SST modes and 234 
associated indices as a function of the lead time. We can see whether the fidelity in simulating the 235 
temporal and spatial characteristics of a particular signal changes as the model evolves from the 236 
initialised  state close to the observed. 237 
 238 
We use multilinear regression analysis to evaluate the contribution of each signal to the decadal 239 
variability of the SRI: 240 
 241 
𝑆𝑅𝐼௧,௞ = 𝛼௞𝐺𝑊௧,௞ + 𝛽௞𝐴𝑀𝑉௧,௞ + 𝛾௞𝐼𝑃𝑂௧,௞ + 𝜖௧,௞   (1) 242 
 243 
where 𝑆𝑅𝐼௧,௞ denotes the decadal low pass filtered SRI; 𝐺𝑊௧,௞, 𝐴𝑀𝑉௧,௞ and 𝐼𝑃𝑂௧,௞ the GW, AMV and 244 
IPO indices, respectively; 𝛼௞, 𝛽௞ and 𝛾௞ are the coefficients of the multilinear regression with GW, 245 
AMV and IPO indices, respectively; 𝜖௧,௞  is the residual of the fitting; the subscripts t and k refer 246 
respectively to the time and the data subset (observations, historical run, and the decadal hindcasts for 247 
each lead time). 248 
 249 
The variance of the SRI (𝑉𝑎𝑟[𝑆𝑅𝐼௞]) can then be partitioned into the following components: 250 
 251 
𝑉𝑎𝑟[𝑆𝑅𝐼௞] = 𝛼௞ଶ + 𝛽௞

ଶ + 𝛾௞ଶ + 2𝛽௞𝛾௞𝐶𝑜𝑣[𝐴𝑀𝑉௞, 𝐼𝑃𝑂௞] +  𝑉𝑎𝑟[𝜖௞]   (2) 252 
 253 
where we have taken into account that the GW, AMV and IPO indices are standardized (to have unit 254 
variance) and that the GW component is orthogonal (by construction) to the other two SST indices. 255 
The term 𝐶𝑜𝑣[𝐴𝑀𝑉௞, 𝐼𝑃𝑂௞] stands for the covariance between the AMV and the IPO indices. 256 
 257 
In addition, the correlations of any simulated SRI index (𝑆𝑅𝐼௞ ) with the observed one can be 258 
explained in terms of the multilinear regression coefficients and the correlations between the observed 259 
SRI index (𝑆𝑅𝐼௢) and the simulated SST indices 𝐺𝑊௞, 𝐴𝑀𝑉௞ and 𝐼𝑃𝑂௞: 260 
 261 
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𝜌(𝑆𝑅𝐼௢, 𝑆𝑅𝐼௞) = 𝛼௞
ඥ𝑉𝑎𝑟[𝑆𝑅𝐼௞]

𝜌(𝑆𝑅𝐼௢, 𝐺𝑊௞) + 𝛽௞
ඥ𝑉𝑎𝑟[𝑆𝑅𝐼௞]

𝜌(𝑆𝑅𝐼௢, 𝐴𝑀𝑉௞)  262 

 + ఊೖ
ඥ௏௔௥[ௌோூೖ] 𝜌(𝑆𝑅𝐼௢, 𝐼𝑃𝑂௞) + ඥ௏௔௥[ఢೖ]

ඥ௏௔௥[ௌோூೖ] 𝜌(𝑆𝑅𝐼௢, 𝜖௞)           (3) 263 

 264 
where, 𝜌(𝑋, 𝑌) is the correlation between time series X and Y and 𝑉𝑎𝑟(𝑋) the variance of time series 265 
X. 266 
 267 
The simulation fidelity is analysed for the 1910-2005 period when there is data for the historical 268 
simulation and for all lead times of the decadal hindcasts. 269 
 270 
3. RESULTS 271 
 272 
3.1 SRI Prediction Skill 273 
 274 
The decadal hindcasts of Sahel rainfall show statistically significant ACC for all lead times, although 275 
less skilful than persistence; the ACC skill of historical runs is not significant (Fig. 1). In accordance 276 
with previous works (Gaetani and Mohino 2013; Bellucci et al. 2015; Martin and Thorncroft 2014; 277 
García-Serrano et al. 2013; Otero et al. 2015) the skill in predicting Sahel rainfall changes with lead 278 
time: the biggest ACC scores are obtained at lead times 2-5 and 3-4 years. ACC scores are 279 
subsequently reduced until lead time 7-10 years, when they increase. Roughly the opposite can be 280 
observed for RMSE scores. There are several possible reasons for such changes in skill:  initial shock 281 
and non-linear drifts could be responsible for lower skill values at short lead times, while long-term 282 
trends could enhance skill at long lead times, as Bellucci et al. (2015) found. However, when the ACC 283 
scores are recomputed using the same time series with the trend previously removed (labeled as 284 
“detrended” in Fig. 1),  they are not reduced at middle lead times and are even enhanced at long leads 285 
(7-9 years), which suggests that the skill at these time scales is not coming from the long-term trend.  286 
 287 
3.2 Simulation fidelity 288 
 289 
To understand the reasons for the prediction skill scores obtained in Fig. 1, in this section we examine 290 
the model fidelity in reproducing the characteristics of the GW, AMV and IPO decadal modes of SST 291 
variability: their phase and their associated SST and West African rainfall patterns. We show that the 292 
timing is only well captured by the decadal hindcasts for the first two. We also show that the SST and 293 
rainfall patterns are adequately reproduced only for the AMV case, though the magnitude of rainfall 294 
anomalies over West Africa is too weak. 295 
 296 
Indices 297 
 298 
 We begin by considering the ability of the historical simulation and the decadal hindcasts in 299 
capturing the phase of the three SST signals (GW, AMV and IPO) and of the SRI (Fig. 2). It is worth 300 
noting that for the decadal hindcasts the indices presented in Fig. 2 have been obtained independently 301 
for each lead time W by concatenating in time the simulated outputs (i.e., we create a hindcast-series 302 
for each lead time). The Sahel rainfall index presented in Fig. 2d is the low-pass filtered SRI time 303 
series, using a cut-off frequency of 13 years, which we name decadal-SRI. 304 
 305 
The observed GW index shows a warming trend modulated by multidecadal variability, with two  306 
strong warming periods (1920-1940 and 1970-2000), a hiatus  from the 1950s to 1960s, and a 307 
suggestion of a hiatus at the end of the record (Fig. 2a). There is still a debate on the causes for such 308 
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periods of acceleration and deceleration in the warming trend (Keenlyside and Ba 2010; Booth et al. 309 
2012; Tung and Zhou 2013; Kosaka and Xie 2013; Chen and Tung 2014; Mann et al. 2014; England 310 
et al. 2015). The historical simulation slightly overestimates the total amplitude of the warming and 311 
the 1970-2000 trend and underestimates the 1920-1940 trend and the mid-20th Century warming 312 
slowdown. The decadal hindcasts overestimate the amplitude of the 20th Century warming at all lead 313 
times, especially at the short ones (maximum overestimation is 50% of the observed amplitude at lead 314 
time 3 years). In addition, the mid-20th Century slowdown is only shown for long lead times. The 315 
correlations between the GW indices in observations and in the decadal hindcasts at all lead times are 316 
positive and statistically significant (Fig. 3a). This is also the case for the historical simulation, 317 
suggesting that this component is strongly related to the external forcing.  318 
 319 
The observed AMV time series are consistent between both data sets and with previous works (Fig. 2; 320 
e. g. Cai and Whetton 2001; Baines and Folland 2007; Ting et al. 2009; Trenberth and Shea 2006; 321 
Zhang and Delworth 2006; Tung and Zhou 2013; Svendsen et al. 2014). The historical simulation 322 
ensemble is not able to capture the time series of the observed AMV signal (Fig. 2b), showing 323 
negative correlations (Fig. 3b). Conversely, the decadal hindcasts capture the phasing of the observed 324 
signal (Fig. 2b), showing positive correlations for all lead times (Fig. 3b). Such results are in 325 
agreement with previous studies that show prediction skill for the AMV component for a range of 326 
lead times (García-Serrano et al. 2015). However, the decadal hindcasts fail to capture the observed 327 
second maxima in the 1950s and tend to delay the AMV changes of phase in the mid-1960s and late 328 
1990s at long lead times. The decadal hindcasts also show an unrealistic cold period in the 1910s, 329 
which is related to too cold anomalies over the central and western North Atlantic in the initial 330 
conditions provided (not shown). 331 
 332 
The observed IPO index shows regime shifts from a positive phase to a negative one in the mid 1940s 333 
and late 1990s and a change from a negative phase to a positive one in the mid-1970s (Fig. 2c), 334 
coherent with previous works (Power et al. 1999; Mantua and Hare 2002; Meehl et al. 2009b; Mohino 335 
et al. 2011; Villamayor and Mohino 2015). However, neither the historical simulation nor the decadal 336 
hindcasts capture such shifts, showing statistically non-significant or even negative correlations (Fig. 337 
3c). Though disappointing, such results are consistent with the lack of skill for decadal prediction of 338 
SSTs that models tend to show in the Pacific basin (Kim et al. 2012; Doblas-Reyes et al. 2013; 339 
Bellucci et al. 2015). Despite this lack of ability to capture the observed IPO, there is a certain 340 
memory in the IPO index from the decadal hindcasts: except for the longest one (10 years), the 341 
different lead times show some consistency among themselves (Fig. 2d), with always positive 342 
correlations and mostly statistically significant (at the 5% level), especially at lead time 6 years (table 343 
1).  344 
 345 
Regarding the decadal-SRI, the observation shows two main regimes, a wet one up to 1970, with 346 
maximum rainfall anomalies occurring in the 1950s, and a dry one since 1970, peaking in the 1980s 347 
(Fig. 2d). The change from the 1950s to the 1980s represents nearly a 30% of the total mean average 348 
rainfall of the region. The variance of the decadal-SRI represents just over 50% of the total variability 349 
of the unfiltered SRI time series. There is also a suggestion of a recent recovery in the 1990s, though 350 
it does not reach the levels previous to 1970. The weak recovery shown in our analysis is probably 351 
due to the area chosen to define the SRI, which covers the western Sahel (18ºW-10ºW), where rainfall 352 
did not recover, and its central part (10ºW-10ºE), where the recovery was clear (Lebel and Ali 2009).  353 
 354 
All the simulated and predicted decadal-SRI show smaller amplitude than the observed one (Fig. 2d). 355 
The decadal-SRI from the historical simulation does neither capture the strong positive rainfall regime 356 
in the 1950s nor the strong negative one in the 1980s. Compared to GW and AMV indices, the SRI 357 
indices in the decadal hindcasts are less coherent with observations or among different lead times (Fig. 358 
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2). Nevertheless, most lead times show positive trends between 1910-1940, and between 1970-2000, 359 
consistent with observations and previous analysis (Müller et al. 2014). There is also a negative trend 360 
in the 1970s that is delayed for longer lead times, consistently with the behaviour in the hindcast 361 
AMV indices. The 1950s observed rainfall maximum is not well simulated for most lead times, while 362 
they tend to capture the 1930s one, which is again coherent with the simulation of the AMV signal.  363 
 364 
The decadal-SRI index from the hindcasts show correlations above 0.4 for most lead times (Fig. 3d). 365 
Note these correlations are evaluated by comparing observed and hindcast decadal-SRI indices (Fig. 366 
2d) and are different from the ACC scores presented in Fig. 1 (see methods for details on the 367 
calculation of the ACC scores to evaluate prediction skill). The correlations show the biggest values at 368 
lead time of 3 and 8 years, while the lowest are for lead times of 7 and 9 years. This is roughly 369 
consistent with the prediction ACC skill scores (Fig. 1, undetrended): ACC prediction scores are 370 
biggest at short lead times (2 to 5 and 3 to 6 years), which take into account the simulation of year 3. 371 
Consistently with the prediction skill (Fig. 1), the historical experiment shows negative correlations 372 
for the simulation of the decadal-SRI.  373 
 374 
 375 
Regression patterns 376 
To further understand the skill in simulating the decadal-SRI we show the SST and rainfall patterns 377 
associated with the three SST indices. The regression of the observed SST onto the GW index show 378 
remarkable differences between both observational data sets, especially over the Pacific Ocean (Fig. 4, 379 
Vecchi et al. 2008; Falvey and Garreaud 2009; Mohino et al. 2011). Thus, despite the strong 380 
consistency in the time evolution of the GW signal, there is high uncertainty in the spatial pattern 381 
associated with it. However, both datasets tend to show higher loads over the tropical and southern 382 
Atlantic and Indian basins and reduced loads over the north Atlantic and north-west Pacific ocean. 383 
Such an SST pattern is related to a reduction of rainfall over the Sahel, especially in the western part 384 
(Fig. 4a,b). Unlike the observations, the historical simulation shows a SST pattern with higher loads in 385 
the Northern Hemisphere than in the tropics, especially over the Pacific basin (Fig. 4m). The GW 386 
signal is associated with increased rainfall over the entire West Africa, except at the westernmost side 387 
of the Sahel. This agrees with Park et al. (2015), who show that models with a northward global SST 388 
inter-hemispheric gradient tend to show increased rainfall over the Sahel. Rainfall increases are not 389 
restricted to the Sahel, but they are also shown in other regions north of the equator, like the Asian 390 
monsoon or north-west South America, while there are rainfall deficits south of the equator (Fig. 4m).   391 
This suggest a northward shift of the intertropical convergence zone, which could be related to the 392 
global northward SST inter-hemispheric gradient (Hwang and Frierson 2013). 393 
 394 
Regarding the decadal hindcasts, the SST patterns associated with the GW signal show changes with 395 
lead time (Fig. 4): at short lead times, there are strong loads in the tropics, which peak in year 3, 396 
coinciding with the strongest amplitude of the GW time series (Fig. 2a). Such strong tropical SST 397 
gradients are neither consistent with the observations nor with the historical simulation. As the 398 
decadal hindcast evolves in lead time, the trends in the tropics are gradually reduced, while those in 399 
the north Pacific get stronger and resemble more the GW SST pattern in the historical simulation (Fig. 400 
4m). This suggests that the strong tropical trends shown by the decadal hindcasts in the first four years 401 
of the simulation are related to the initialization and could be connected to the 20CR (Compo et al. 402 
2011) reanalysis used to force the ocean component of the model (Müller et al. 2014), though further 403 
research is needed to clarify this point. The regression of the GW index on rainfall also changes with 404 
hindcast lead time: there are mainly negative loads over the Sahel at short lead times, especially at 405 
lead time 3 years, while positive loads dominate for long lead times. This is consistent with the 406 
evolution of the GW SST pattern: the warm tropical SSTs have been related to a decrease of rainfall 407 
over the Sahel (e.g. Giannini et al. 2003, 2013; Bader and Latif 2003; Lu and Delworth 2005; 408 
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Caminade and Terray 2010; Mohino et al. 2011), while the northward SST gradient shown at long 409 
lead times leads to increased Sahel rainfall, as discussed before.  410 
 411 
The observed AMV SST pattern shows positive anomalies over the whole of the North Atlantic, with 412 
strongest loads over the Atlantic subpolar gyre region (Fig. 5). Positive loads are also shown over the 413 
North Pacific, while negative anomalies are present in the Indian and the South Atlantic oceans. The 414 
observed AMV signal is strongly related to positive anomalies of Sahel rainfall (Fig. 5). The  415 
historical simulation exhibits an AMV SST pattern with positive anomalies over the north Atlantic, 416 
especially over its eastern border, and is associated with positive Sahel rainfall anomalies, though 417 
very weak. The AMV is not significantly related to SST anomalies outside the Atlantic in the 418 
historical simulations. Conversely, the AMV SST patterns in the decadal hindcasts show much higher 419 
consistency with observations: positive anomalies over the north Atlantic, mainly over the subpolar 420 
and midlatitude regions, and the north Pacific. It should be also noted that there is a great persistence 421 
in the AMV SST regression patterns with lead time, higher than for the GW component (Fig. 4). In 422 
particular, the positive anomalies in the northern extratropics are present throughout the 10 years of 423 
the simulations. In addition, the AMV related rainfall anomalies, though weaker than the observed, 424 
are positive over the Sahel for all lead times. Their amplitude varies with lead time, being maximum 425 
for lead time 3 years (approximately 60 % of the observed anomaly) and minimum for 1 and 2 year 426 
lead times (approximately 15 and 20 % of the observed anomaly, respectively). There are, however, 427 
some mismatches between the simulated and observed patterns, the most striking is the eastward shift 428 
of the strong positive SST anomalies in the north Atlantic in the simulation. In addition, the SST 429 
anomalies over the tropical north Atlantic are weaker than observed. This could be related to a 430 
reduced atmospheric feedback mechanism (Zhang 2007), since the rainfall anomalies are weaker (Fig. 431 
5), or to an under-representation of the external forcing fingerprint on AMV, as has been found to be 432 
more important in the tropics than in the extratropics (Terray 2012). 433 
 434 
Regarding the SST patterns associated with the IPO index, the observations show positive SST 435 
anomalies over the eastern tropical Pacific, while in the subtropics there are negative SST anomalies, 436 
which are more intense in the Northern Hemisphere (Fig. 6; e.g., Meehl et al. 2009b). The observed 437 
IPO is linked to reduced Sahel rainfall (Mohino et al. 2011; Villamayor and Mohino 2015). Despite 438 
the model's inability to capture the timing of the IPO signal, its SST pattern is well simulated in the 439 
historical run. The anomalies of Sahel rainfall, though they agree in sign with the observed ones, are 440 
weak and non-significant. In the decadal hindcasts, the IPO pattern shows less consistency with 441 
observations, and also varies greatly  with lead time: there are unrealistically high positive loads in the 442 
tropical Pacific at short lead times that weaken at long lead times (except for lead time 10 years). 443 
Sahel rainfall anomalies related to the IPO in the decadal hindcasts are negative for all lead times, but 444 
are only statistically significant for some of them. 445 
 446 
 447 
 448 
3.3. Multi-linear regression analysis  449 
 450 
In this section we apply multi-linear regression analysis between the decadal-SRI and the time series 451 
of GW, AMV and IPO. Using this fit, we decompose the variance of the decadal-SRI and the 452 
correlations shown in Fig. 3d into terms related to the three SST signals (see section 2.3 for details in 453 
the calculations). This decomposition allows the quantification of the effect of each SST signal on the 454 
reproduction of the observed decadal-SRI. We show that the coefficients of the multi-linear regression 455 
analysis are highly related to the regression patterns shown in the previous section, and we assess 456 
causes for their discrepancies to observations. With them, we further understand the large RMSE 457 
errors in Fig.1 as due to the weak response of rainfall to the SST patterns and we show that the main 458 
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positive contributor to the correlations is the AMV component. 459 
 460 
Relationship between the multi-linear regression coefficients and the regression patterns 461 
We begin by evaluating the relationship between the coefficients of the multi-linear regression 462 
analysis (𝛼௞, 𝛽௞, 𝛾௞) with the SST and rainfall regression patterns shown in the previous section (Fig. 463 
4-6). Note that, unlike for simple linear regression analysis, the multi-linear regression coefficients 464 
can differ from the average rainfall regression over the Sahel. In Fig. 7a we show that for the GW case, 465 
the 𝛼௞ coefficient is approximately equal to the regression of the GW index over Sahel region. These 466 
coefficients are always negative, as in the observations, except for the historical experiment and for 467 
the decadal hindcasts at lead times 7 and 9. In addition, we find that 𝛼௞ is related to the averaged 468 
tropical SSTs patterns of the GW signal (between 15ºS and 15ºN, Fig. 7d). This is consistent with the 469 
AGCM experiments in Mohino et al. (2011) that showed most of the rainfall response to the GW SST 470 
pattern over West Africa could be simulated using only the tropical part of the pattern. The overall 471 
warming in the tropical basins leads to drought over the Sahel: the Indo-Pacific warming leads to 472 
subsidence over West Africa and the warming in the Atlantic leads to a southward shift of the West 473 
African monsoon (Mohino et al. 2011). However, as discussed before, such positive tropical warming, 474 
especially over the Tropical Pacific, is not consistent with observations (Fig. 4 and 7d) and seems to 475 
be related to an artifact of the initialization (not shown). 476 
 477 
For the AMV case, there is a strong and linear relationship between 𝛽௞ and the corresponding average 478 
regression of rainfall over the Sahel in Fig. 5 (Fig. 7b). These values are always positive. In addition, 479 
𝛽௞ shows sensitivity to the meridional SST gradient near the west coast of the Sahel (Fig. 7d).  The 480 
link between  𝛽௞  and SST pattern is less clear than for the 𝛼௞ term (Fig. 7d,e). A weaker link is 481 
expected  as the GW SST regression patterns show much greater diversity than the AMV ones, which 482 
are much more consistent among themselves (Fig. 4, 5). The strength of the precipitation response is 483 
nonetheless found to be sensitive to the coastal gradient of SSTs in the eastern tropical North Atlantic.  484 
 485 
For the IPO case, the magnitudes of the 𝛾௞  coefficients are smaller than those obtained from 486 
averaging rainfall regression values over the Sahel in Fig. 6 (Fig. 7c). A linear relationship between 487 
both is still present, though weaker than for the other two SST components. Conversely, the 𝛾௞  488 
coefficients do not show a clear relationship with the SST regression patterns shown in Fig. 6: unlike 489 
what would be expected from previous works (Villamayor and Mohino, 2015), the 𝛾௞ coefficient is 490 
not negatively related to the magnitude of SST anomalies over the tropical Pacific (Fig. 7f). 491 
 492 
Variance of the decadal-SRI 493 
We now partition the total variance of the decadal-SRI into components related to GW, AMV, IPO, 494 
an AMV-IPO interaction term, and an unexplained residual (equation 2, Fig 8a). The observational 495 
decadal-SRI is mostly explained by the AMV and GW components (between 43 % and 57 % for the 496 
former and nearly 20 % for the latter, amounting to between 63 % and 75 % of the total variance 497 
when using ERSSTv3b and HadISST1 datasets, respectively), with a smaller contribution of the IPO 498 
and the AMV-IPO covariance terms. The total variance accounted for in the observations is 86 % 499 
(80 %) when using HadISST1 (ERSSTv3b) data set. In the decadal hindcasts the AMV is the main 500 
signal contributing to the total variance, while the residual dominates in the historical simulation (Fig. 501 
8a).   502 
 503 
The simulated decadal-SRI variance is roughly 10% of the observed (between 3% and 27%, 504 
depending on the lead time). A fraction of this underestimation is due to the averaging over the 3 505 
ensemble members. However, accounting for this by instead averaging the variance of the individual 506 
ensemble members only increases variance of the simulated decadal-SRI to 20% of the observed. The 507 
underestimation of the decadal variability of Sahel rainfall is consistent with the results from most 508 
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coupled models (Villamayor and Mohino 2015), and could be related to the inability of the 509 
atmospheric component to simulate such decadal variability (Rodriguez-Fonseca et al. 2015). Poor 510 
representation of land surface-atmosphere interactions, including vegetation, is the possible cause for 511 
the underestimation (Giannini et al. 2003; Wang et al. 2004). However, recently Vellinga et al. (2016) 512 
suggested that the main problem is coarse model resolution that hinders the simulation of strong 513 
rainfall events, which conveys the decadal signal. Further evidence to support the hypothesis of the 514 
underestimation being primary related to the atmospheric component of the model comes from the 515 
regression patterns in Figs. 4-6: for all three signals, the strength of the SST anomalies simulated in 516 
both experiments is similar to the observed one, while over West Africa, the model underestimates the 517 
observed rainfall anomalies.  518 
 519 
From this analysis we can conclude that the low total variance of the SRI in the simulations is mainly 520 
due to a weak response of Sahel rainfall to the simulated SST signals, especially the AMV. The 521 
underestimation of variance contributes to the large RMSE of the historical simulations and decadal 522 
hindcasts of SRI (Fig 1). 523 
 524 
Correlations of simulated and observed decadal-SRI 525 
We further investigate the correlations of the decadal-SRI from the historical simulation and the 526 
decadal hindcasts with the observations (Fig. 3d), partitioning them into four terms related to the GW, 527 
AMV, IPO and the residual in the multi-linear regression analysis (equation 3, fig 8b). The total 528 
correlation is given by the blue dashed line (corresponding to Fig 3d). The contribution from the 529 
AMV term is the largest one (except in the historical simulation, Fig. 8b). This term contributes 530 
positively to the correlations in the decadal hindcasts and negatively in the historical simulation. The 531 
magnitude of the contribution is relatively stable. The minimum values are found for the historical 532 
experiment and for lead times 1 and 2 years in the decadal hindcasts. To further explain these 533 

contributions we turn to the  ఉೖ
ඥ௏௔௥[ௌோூೖ] 𝜌(𝑆𝑅𝐼௢, 𝐴𝑀𝑉௞) term in equation (3), which accounts for the 534 

AMV contribution to the correlations. The 𝛽௞ coefficients are smallest for the historical simulation 535 
and the first two lead times (Fig. 7b), which explains the lower magnitude of their contributions at 536 
those lead times and experiment. In addition, the correlations between the observed decadal-SRI and 537 
the hindcast AMV indices (𝜌(𝑆𝑅𝐼௢, 𝐴𝑀𝑉௞)) are strong and positive for all lead times (table 2). This 538 
together with the positive 𝛽௞ coefficients explains the systematic positive contribution of AMV to the 539 
correlation between observed and hindcast decadal-SRI. Conversely, as the 𝜌(𝑆𝑅𝐼௢, 𝐴𝑀𝑉௞) is 540 
negative for the historical simulation (table 2), the AMV contributes negatively to the correlation 541 
between observed and simulated decadal-SRI. Therefore, the positive AMV contribution to the 542 
fidelity of the hindcast decadal-SRI results from skill in both capturing the AMV timing and 543 
reproducing the associated SST and precipitation patterns, while for the historical simulation the 544 
incorrect timing of the AMV causes its reduced decadal-SRI fidelity. 545 
 546 
On average the GW signal is the second largest contributor to the correlations between simulated and 547 
observed decadal-SRI. Interestingly, the GW signal clearly enhances the decadal hindcasts 548 
correlations only at short lead times (1 to 4 years), while its contribution is weak at long ones. The 549 
contribution is even negative for lead times 7 and 9 years in the decadal hindcasts and for the 550 
historical simulation. To further  explain these contributions we  turn to the ఈೖ

ඥ௏௔௥[ௌோூೖ] 𝜌(𝑆𝑅𝐼௢, 𝐺𝑊௞) 551 

term in equation (3), which accounts for the GW contribution to the correlations between simulated 552 
and observed decadal-SRI. The correlations between the observed decadal-SRI and the modelled GW 553 
indices (𝜌(𝑆𝑅𝐼௢, 𝐺𝑊௞)) are strong and negative for the decadal hindcasts for all lead times and the 554 
historical simulation (Table 2). Therefore, the different contribution of GW to the decadal-SRI 555 
correlation is explained by the ఈೖ

ඥ௏௔௥[ௌோூೖ]  term, which is only strong and negative (as in the 556 
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observations) for lead times 1 to 4 years. Therefore, the main problems with the GW contribution are 557 
not due to the phasing of the index, which is well captured, but with the simulated SST and rainfall 558 
patterns: the response of Sahel rainfall is consistent with the observed one only in the decadal 559 
hindcasts and mainly at short lead times. This explains why detrending the SRI time series enhances 560 
the prediction skill at long lead times (Fig 1). Note, however, that the consistent Sahel response at 561 
short lead times is due to an unrealistic SST pattern, as commented in the previous section. 562 
 563 
The IPO contribution to the simulation skill of the decadal-SRI is typically smaller than for the GW 564 
and AMV signals (Fig. 8b). In the historical experiment and for most lead times in the decadal 565 
hindcasts its contribution is positive. The exceptions can be understood analysing the 566 

ఊೖ
ඥ௏௔௥[ௌோூೖ] 𝜌(𝑆𝑅𝐼௢, 𝐼𝑃𝑂௞)  term: the negative contribution at lead time 1 year is due to the temporal 567 

correlations between the hindcasts IPO index and the observed decadal-SRI (𝜌(𝑆𝑅𝐼௢, 𝐼𝑃𝑂௞)), which is 568 
positive (table 2) while the regression coefficient 𝛾௞ is negative (as observed);  and at lead time year 5 569 
the 𝛾௞ regression coefficient is positive (opposite to observed, Fig. 7c) while the temporal correlation 570 
between the hindcast IPO index and the observed decadal-SRI is negative (table 2). For the historical 571 
experiment and the decadal hindcasts at other lead times the temporal correlation between the 572 
simulated IPO index and the observed decadal-SRI is negative and 𝛾௞ is negative (as observed). The 573 
maximum contribution to the decadal-SRI fidelity is at lead time 9 years. The very weak contribution 574 
of IPO signal to the skill for the historical simulations and for the lead time 10 years of the decadal 575 
hindcasts is due to the temporal correlation between such indices and the observed decadal-SRI (table 576 
2). The large variations in the IPO contribution among lead times suggest the contribution of the IPO 577 
to fidelity results from chance, rather than any underlying mechanism. 578 
 579 
4. DISCUSSION 580 
 581 
We have used multiple linear regression to decompose the decadal-SRI into GW, AMV, and IPO 582 
components.  The regression coefficients associated with GW (𝛼௞) and AMV (𝛽௞), explain most of 583 
the variance of the decadal-SRI in both the observations and model. However, the model 584 
underestimates strongly the variance associated with these components contributing to the large 585 
RMSE of the hindcast and historical experiments. Furthermore, these two regression coefficients, 586 
rather than the phase of the GW and AMV indices, explain most of the correlations between hindcast 587 
and observed decadal-SRI (Fig. 8b). These coefficients are related to the rainfall response to the GW 588 
and AMV SST patterns (Fig. 4 to 5), which show a mismatch between model and observations: For 589 
both, 𝛼௞ and 𝛽௞, the model coefficients are much weaker than the observed ones for similar levels of 590 
SST averages (Fig. 7). This is consistent with other studies, discussed above, that show models 591 
(probably their atmospheric component) tend to underestimate the response of Sahel rainfall to 592 
decadal SST signals. However, this alone would not explain the incorrect positive 𝛼௞ values found in 593 
some simulations, which are associated with a stronger warming of the tropics than the observed. 594 
Instead the warmer conditions in the northern hemisphere (between 15ºN and 60ºS) shown in the 595 
historical-simulation GW patterns (0.27 ºC mean anomaly) with respect to the observed patterns (0.14 596 
ºC mean anomaly) would help increase rainfall over the Sahel, despite the warm tropical anomalies 597 
(Park et al. 2015). In addition, the MPI-ESM-LR atmospheric component is also very sensitive to the 598 
direct Greenhouse Gas effect (Janicot et al. 2015), which has been shown to increase Sahel rainfall 599 
(Haarsma et al. 2005; Held et al. 2005; Hoerling et al. 2006; Giannini 2010; Dong and Sutton 2015). 600 
As the model only simulates the direct aerosol effect, it may also underestimate the tropospheric 601 
cooling effect of anthropogenic aerosols, leading to an overestimation of Sahel rainfall long-term 602 
trends (Kawase et al. 2010). 603 
 604 
There is currently a debate on the origin of the AMV component, some works point at atmospheric 605 



 

14 

aerosols accounting for much of the 20th Century AMV evolution (Rotstayn and Lohmann 2001; 606 
Ottera et al. 2010; Booth et al. 2012), while other works suggest an internal origin related to the 607 
strength of the Atlantic Meridional Overturning Circulation (AMOC; Zhang 2007; Knight et al. 2005; 608 
Knight 2009; Ting et al. 2009, 2011; Knudsen et al. 2011; Zhang et al. 2013; Hodson et al. 2014, 609 
Keenlyside et al. 2015). Recent works also suggest that the indirect anthropogenic aerosol influence in 610 
the last part of the 20th Century might be irrelevant due to a saturation effect of cloud albedo 611 
sensitivity to aerosol emission (Carslaw et al. 2013; Stevens 2013). The historical simulation captures 612 
both the tropical part of the SST pattern related to the AMV as well as the rainfall response over the 613 
Sahel. However, the AMV index shows statistically significant negative correlation with the observed 614 
one. Thus while in this model the external forcing projects onto a tropical AMV pattern, it induces a 615 
signal with incorrect timing, decreasing the fidelity in simulating the decadal-SRI (Fig. 8). The 616 
weaker response of Sahel rainfall to this component in the historical simulation (Fig. 4) also reduces 617 
the relative contribution to the total variance of the decadal-SRI (Fig. 8a). In contrast, in the decadal 618 
hindcasts the AMV signal is captured skilfully (Fig. 3b), and it contributes to the greater total decadal-619 
SRI variance, except for lead time 1 year, and to the positive correlation with the observed decadal-620 
SRI (Fig. 8). Thus, in our experiments external forcing does not seem to account for the hindcast 621 
fidelity in reproducing the AMV signal. It should be noted, however, that the model is not simulating 622 
aerosol indirect effects, which are found by Booth et al. (2012) to explain most of the aerosol impact 623 
on North Atlantic SSTs. Nevertheless, the decadal hindcasts show a negative impact of the simulated 624 
AMV signal on subsurface temperatures in the Tropical Atlantic south of 20ºN-25ºN (not shown), 625 
consistent with AMOC changes (Zhang 2007; Zhang et al. 2013), whereas the historical simulation 626 
shows no such change (not shown). This is in agreement with other studies which show an important 627 
role for ocean dynamics in climate prediction of the North Atlantic region (Yeager et al. 2012). 628 
 629 
The lack of skill in hindcasting the IPO may be due to inherent less predictability (Latif et al. 2006), 630 
which could in part arise from the multiple factors composing its north Pacific component (Schneider 631 
et al. 2002), or because of model and initialization errors. Such lack of skill negatively affects our 632 
expectations for predicting Sahel rainfall at decadal time scales. However, as the observed variance of 633 
Sahel rainfall at these time scales is mainly related to the AMV and GW components (Fig. 8a), 634 
decadal predictions systems could still attain better skill over the Sahel by focusing on these two 635 
components rather than the IPO. 636 
 637 
 638 
5. CONCLUSIONS 639 
 640 
Unlike previous works that evaluate the skill of decadal predictions of rainfall over West Africa, in 641 
this study we have focused on analysing the potential sources for such skill. For this aim, we proposed 642 
a new framework based on the multi-linear regression analysis of the decadal Sahel rainfall index 643 
(SRI), decomposing it into the contributions of GW, AMV and IPO (Mohino et al. 2011). We have 644 
tested such approach using the decadal hindcasts performed by Müller et al. (2014), which provide 645 
10-year long predictions issued every year from 1901 to 2010, and by comparing with the historical 646 
simulation with the same version of the MPI-ESM-LR model.  647 
 648 
The overall skill in predicting the decadal-SRI can be understood as a combination of how well we 649 
can predict the timing of the three different SST signals (GW, AMV and IPO) and how well we can 650 
simulate the SST and West African rainfall patterns in response to such signals.  651 
 652 
In the case of the GW signal, both experiments show high skill in capturing the timing of the signal, 653 
as it is mostly related with the 20th Century trend. However, the decadal hindcasts tend to 654 
overestimate the observed amplitude of the signal, especially at lead times 2 to 4 years over the 655 
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tropical Pacific. Despite a reasonable timing, the SST and rainfall response patterns are not as well 656 
captured. The average rainfall response to the GW over the Sahel is weak in the simulations and even 657 
positive in some cases (contrary to observations). Such positive rainfall loads lead to a negative 658 
contribution of the GW signal to the skill in simulating the decadal-SRI. The most extreme case is the 659 
historical simulation in which the timing is the best captured (Fig. 3a) and the averaged northward 660 
SST gradient is maximum (Fig. 4m), leading to the most negative contribution to the skill. 661 
Interestingly, the biggest positive contribution of the GW to reproducing the decadal-SRI is  in the 662 
decadal hindcasts at lead times 1 to 4 years. However in this case we have a good response for the 663 
wrong reasons: the too strong spurious tropical warming trends correct other model deficiencies in 664 
simulating the GW impact on Sahel rainfall and lead to an average negative Sahel rainfall response.  665 
 666 
For the AMV signal, the timing and the SST and rainfall response patterns are adequately reproduced 667 
in the decadal hindcasts. Such reproduction leads to a consistent positive contribution of this 668 
component to the skill in reproducing the decadal-SRI. The main differences among the different lead 669 
times are related to the strength of the rainfall response rather than the rainfall pattern. In turn, such 670 
strength seems to be related to the local gradients of SST in the east tropical North Atlantic, off the 671 
coast of West Africa. Conversely, for the historical simulations, the timing is wrongly reproduced, 672 
which leads to a negative contribution to the skill in simulating the decadal-SRI. 673 
 674 
For the IPO signal, the observed timing is not captured by any of the simulations. The observed global 675 
SST patterns are better captured in terms of spatial correlation and root mean square error (not shown), 676 
but not properly translated to the precipitation patterns over West Africa. This component shows, 677 
however, marginal contributions to enhance the skill in simulating the decadal-SRI at some lead times, 678 
though part of such enhancement could be related to a contamination by the AMV signal. 679 
 680 
The analysis of the different contributions to the correlation between observed and simulated 681 
(hindcast and historical) decadal-SRI (i.e., low-pass filtered time series that incorporate future 682 
information into the forecast) indices explain some of the characteristics of the actual prediction skill  683 
(Fig. 1): at long lead times the skill obtained for the total predicted SRI is similar or even smaller than 684 
the one obtained after detrending the data because the impact of the GW signal on rainfall is wrongly 685 
simulated. Moreover, the biggest ACC skill scores for the total predicted SRI is obtained for lead 686 
times 2-5 and 3-6 for the wrong reasons: the initialization introduces a spurious trend, mainly in the 687 
tropical Pacific, which overcomes the tendency of the model to enhance Sahel rainfall with the GW 688 
(contrary to the observed behaviour). Most of the skill in the predicted SRI comes from the AMV 689 
signal, because the initialization  adequately captures the timing of the signal as well as a reasonablly 690 
realistic SST pattern and  associated rainfall response over the Sahel. Thus, conversely to the 691 
suggestions from other works (Bellucci et al. 2015), the skill at long lead times does not stem only 692 
from the external forcing: the AMV obtained through the initialization was the only source of skill for 693 
Sahel rainfall in our decadal hindcasts at long lead times.  694 
 695 
Our multi-linear regression analysis framework can also explain the total variance obtained in the 696 
decadal-SRI. The main contribution in both observations and simulations comes from the AMV 697 
component. Those simulations for which the AMV signal is weakly translated to the Sahel rainfall, 698 
the total variance is very low.  699 
 700 
It should be noted that our results are based on only one model and, as shown by previous work, the 701 
predictive skill of Sahel rainfall is model dependent (Gaetani and Mohino 2013; García-Serrano et al. 702 
2013; Martin and Thorncroft 2014; Bellucci et al. 2015). In the framework of CMIP5, not many 703 
models show skill. When analysing rainfall outputs, approximately  30% (4 out of the 14 analysed) of  704 
models show significant skill and the MPI-ESM-LR is one of them (Otero et al. 2015). Gaetani and 705 
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Mohino (2013) showed that for this particular model, the initialization was playing the key role by 706 
incorporating a multi-decadal SST-precipitation relationship similar to the observed one and that this 707 
was the case only in 37% of the models analysed. 708 
 709 
The analysis presented in this work was possible due to the long length of the validation period (the 710 
whole 20th Century), for which a separation of the GW, AMV and IPO components following our 711 
methodology was possible. Though issuing predictions for such a long period presents big challenges 712 
and some problems may arise (like the too cold AMV signal in the 1910s or the too strong SST trends 713 
at short lead times in the GW component), it offers a unique opportunity to evaluate the skill of 714 
predicting phenomena with very long periods like the AMV (period of 65 years) for which the 715 
standard CMIP5 approach of simulating from 1960 to 2010 does not even cover 1 cycle of the 716 
phenomenon. 717 
 718 
Finally, leaving aside the IPO influence, we have shown that part of the reduced skill shown by the 719 
simulated decadal-SRI index is due to failures in the model to represent properly some characteristics 720 
of the SST patterns and, especially, translate the GW and AMV signals correctly to the precipitation 721 
anomalies. If atmospheric response to these two signals was correctly simulated then skill could be 722 
greatly increased. To quantify this we construct a new multiple regression model using the GW and 723 
AMV model indices but replacing the corresponding regression coefficients from the model with the 724 
observed ones; we neglect the IPO and residual contributions. This significantly enhances the 725 
correlations obtained (Fig 9). By improving the rainfall response to the two SST components, the 726 
attainable fidelity in simulating the decadal-SRI skill is much higher in the initialized simulations than 727 
in the historical one. These results suggest that there is still room for skill improvement. In particular, 728 
for the MPI-ESM-LR model, there are two key factors to address: On the one hand, the SST pattern 729 
associated with the GW component should be improved to resemble better the observations (i.e. show 730 
less warming in the Northern Hemisphere extratropics and more in the Southern Ocean in response to 731 
the slowly varying external forcing). This would likely lead to a negative response of the simulated 732 
Sahel rainfall (as observed) and enhance the ACC scores in the decadal hindcasts. On the other hand, 733 
the magnitude of the response of the simulated Sahel rainfall to decadal SST modes should be 734 
increased to match the observed one. This would likely reduce the RMSE of the hindcast SRI. 735 
 736 
 737 
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 937 
TABLES 938 

 939 

Table 1: Anomaly correlation coefficient among the different simulated IPO indices. Statistically 940 
significant correlations (at the 5% level) are shown in bold. 941 

 LT1 LT2 LT3 LT4 LT5 LT6 LT7 LT8 LT9 LT10 

LT2   0.84          

LT3   0.56 0.84         

LT4   0.28 0.61 0.88        

LT5   0.45 0.66 0.75 0.83       

LT6   0.57 0.73 0.77 0.75 0.95      

LT7   0.43 0.59 0.65 0.60 0.78 0.79     

LT8   0.28 0.39 0.48 0.43 0.68 0.67 0.81    

LT9   0.12 0.35 0.51 0.45 0.63 0.65 0.61 0.83   

LT10  0.08 0.19 0.40 0.28 0.13 0.29 0.21 0.01 0.23  

HIST  0.01 0.18 0.18 0.25 0.29 0.24 -0.03 -0.17 0.13 0.02 

 942 

 943 
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Table 2: Correlation between the observed decadal-SRI and the simulated GW, AMV and IPO time 944 
series. The time series were not detrended before the correlation calculation. 945 
 946 

 

SRIo-
GWs 

SRIo-
AMVs 

SRIo-
IPOs 

IPOs-
AMVs 

LT1   -0.51 0.47 0.25 -0.08 

LT2   -0.55 0.48 -0.03 -0.22 

LT3   -0.58 0.53 -0.23 -0.46 

LT4   -0.60 0.54 -0.37 -0.44 

LT5   -0.61 0.52 -0.33 -0.29 

LT6   -0.60 0.52 -0.26 -0.27 

LT7   -0.60 0.52 -0.31 -0.07 

LT8   -0.60 0.53 -0.35 -0.36 

LT9   -0.59 0.52 -0.44 -0.67 

LT10  -0.56 0.50 -0.03 -0.01 

HIST  -0.61 -0.32 -0.01 -0.31 

 947 
 948 
 949 

 950 
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FIGURE CAPTIONS: 951 

Figure 1 Prediction skill: Anomaly correlation coefficients (ACC, adimensional, bars) and root mean 952 
square errors (RMSE in mm/day, stems) scores for Sahel rainfall at different lead times (1 to 4, 2 to 5, 953 
3 to 6, 4 to 7, 5 to 9, 6 to 9 and 7 to 10: seven first columns, respectively) in the decadal hindcast and 954 
in the historical uninitialized simulation (last column) for raw (dark blue) and de-trended data (light 955 
blue) in the 1914-2004 period. The detrended scores are calculated over the same time series as the 956 
raw ones except that the linear trends are previously removed. Note that the detrended time series 957 
cannot be calculated in real-time prediction. Solid lines indicate the ACC skill of persistence for raw 958 
(dark blue) and detrended data (light blue). Persistence is calculated as the average over the 4 years 959 
preceding the model initialization. The dot-dashed line show the threshold to reject the null hypothesis 960 
that the correlations come from chance (at the 5% level)  for 4-year running mean filtered data. 961 
Reference data for both metrics is CRUTS3.1 rainfall estimates. 962 
 963 
Figure 2 Time series of the anomalous indices with respect to the 1910-2005 period calculated for the 964 
observations (HadISST1 and ERSST3vb are used for SST-based indices, labeled HAD and ERS 965 
respectively and CRUTS3.1 for the rainfall index in black), historical simulation (dashed blue) and 966 
separately for each 10 lead times of the decadal hindcast of: (a) GW (in K); (b) AMV (standardized); 967 
(c) PDO (standardized); (d) decadal-SRI (in mm/day). For the definition of each index see details in 968 
the text. 969 
 970 
Figure 3 Simulation skill: Anomaly correlation coefficients calculated between the observed 971 
(HadISST1 dataset is used for reference) and the simulated indices of : (a) GW; (b) AMV; (c) PDO; 972 
(d) decadal-SRI (in mm/day) shown in Fig. 2. Blue (red) bars mark positive (negative) correlations. 973 
The black horizontal line shows the threshold above which the null hypothesis that the correlations 974 
come from chance (at the 5% level)  for the same type of filtered data should be rejected. 975 
 976 
Figure 4 GW regression patterns: Regression of the SST (K per standard deviation of the GW index, 977 
shown over ocean areas) and precipitation (mm/day per standard deviation of the GW index, shown 978 
only over land areas) fields onto the GW indices shown in Fig. 2 for: a) and b) the observations 979 
(HadISST1 and ERSST3vb datasets are used for SSTs, labeled HAD and ERS respectively, and 980 
CRUTS3.1 is used for rainfall in both plots); c) to l) the 10 lead times of the decadal hincast; and (m) 981 
the historical experiment. Areas statistically non-significant are marked with dots (at the 5% level). 982 
  983 
Figure 5 AMV regression patterns: same as fig. 4 but using the AMV indices. 984 
 985 
Figure 6 IPO regression patterns: same as fig. 4 but using the IPO indices. 986 
 987 
 988 
Figure 7 Relation between the multi-linear regression coefficients and the rainfall and SST patterns: 989 
Scatter plot between (a) D coefficient and the average rainfall regression of the GW pattern over the 990 
Sahel in Fig. 4; (b) E coefficient and the average rainfall regression of the AMV pattern over the Sahel 991 
in Fig. 5; (c) J coefficient and the average rainfall regression of the IPO pattern over the Sahel in Fig. 992 
6; (d)  D coefficient and the tropical average SSTs (between 15ºS and 15ºN) in the GW patterns in Fig. 993 
4; (e)  E coefficient and the tropical North Atlantic SST gradient in the eastern part of the basin 994 
(calculated as the difference between the SST average in the region 30ºW-18ºW, 16ºN-30ºN and in 995 
the region 30ºW-18ºW, Eq-14ºN) in the AMV patterns in Fig. 5 ; (f) J coefficient and the tropical 996 
Pacific average SSTs (in the region 180ºW-95ºW 15ºS-15ºN) in the GW patterns in Fig. 6. In blue we 997 
show the regression line and correlation coefficient using the 10 lead times of the decadal hindcast 998 
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and the historical experiments. In gray we show the regression line and correlation coefficient 999 
obtained without taking into account the historical simulation. Units for rainfall regression averages 1000 
and multi-linear coefficients (SST regression averages) are mm/day (K) per standard deviation of the 1001 
corresponding index  1002 
 1003 
Figure 8 Explained Variance AND SRI ACC scores: (a) Variance of the decadal-SRI (in mm2day-2) 1004 
and its partition into five components following the multi-linear regression analysis, which correspond 1005 
to: GW, AMV, IPO, AMV-IPO covariance and residual of the fit (labeled as EPS). (b) Anomaly 1006 
correlation coefficient (ACC) of the simulated decadal-SRI for each of the 10 lead times in the 1007 
decadal hindcast and the historical experiment (blue dashed bars) and its decomposition into four 1008 
terms following the multi-linear regression analysis, which are due to: GW, AMV, IPO and the 1009 
residual of the fit (labeled as EPS). Positive and negative contributions are shown separately as 1010 
stacked bars. The subtraction of the total stack positive bar minus the stack negative bar provides the 1011 
ACC scores.  1012 
 1013 
 1014 
 1015 
Figure 9 Potential simulation skill: Anomaly correlation coefficient (ACC) between the decadal-SRI 1016 
from observations and a synthetic one obtained using the GW and AMV from simulations and the 𝛼௞ 1017 
and 𝛽௞  coefficients from the multi-linear regression analysis applied to observations (blue dashed 1018 
bars). Decomposition of such ACC into the two terms (GW and AMV). Positive and negative 1019 
contributions are shown separately as stacked bars. The subtraction of the total stack positive bar 1020 
minus the stack negative bar provides the ACC scores.  1021 
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Fig. 1: Prediction skill: Anomaly correlation coe�cients (ACC, adimensional, bars) and root
mean square errors (RMSE in mm/day, stems) scores for Sahel rainfall at di↵erent lead times
(1 to 4, 2 to 5, 3 to 6, 4 to 7, 5 to 9, 6 to 9 and 7 to 10: seven first columns, respectively) in the
decadal hindcast and in the historical uninitialized simulation (last column) for raw (dark blue)
and de-trended data (light blue) in the 1914-2004 period. The detrended scores are calculated
over the same time series as the raw ones except that the linear trends are previously removed.
Note that the detrended time series cannot be calculated in real-time prediction. Solid lines
indicate the ACC skill of persistence for raw (dark blue) and detrended data (light blue).
Persistence is calculated as the average over the 4 years preceding the model initialization.
The dot-dashed line show the threshold to reject the null hypothesis that the correlations
come from chance (at the 5% level) for 4-year running mean filtered data. Reference data for
both metrics is CRUTS3.1 rainfall estimates.
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Fig. 2: Time series of the anomalous indices with respect to the 1910-2005 period calculated
for the observations (HadISST1 and ERSST3vb are used for SST-based indices, labeled HAD
and ERS respectively and CRUTS3.1 for the rainfall index in black), historical simulation
(dashed blue) and separately for each 10 lead times of the decadal hindcast of: (a) GW (in
K); (b) AMV (standardized); (c) PDO (standardized); (d) decadal-SRI (in mm/day). For the
definition of each index see details in the text.
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Fig. 3: Simulation skill: Anomaly correlation coe�cients calculated between the observed
(HadISST1 dataset is used for reference) and the simulated indices of : (a) GW; (b) AMV; (c)
PDO; (d) decadal-SRI (in mm/day) shown in Fig. 2. Blue (red) bars mark positive (negative)
correlations. The black horizontal line shows the threshold above which the null hypothesis
that the correlations come from chance (at the 5% level) for the same type of filtered data
should be rejected.
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Fig. 4: GW regression patterns: Regression of the SST (K per standard deviation of the GW
index, shown over ocean areas) and precipitation (mm/day per standard deviation of the GW
index, shown only over land areas) fields onto the GW indices shown in Fig. 2 for: a) and
b) the observations (HadISST1 and ERSST3vb datasets are used for SSTs, labeled HAD and
ERS respectively, and CRUTS3.1 is used for rainfall in both plots); c) to l) the 10 lead times
of the decadal hincasts; and (m) the historical experiment. Areas statistically non-significant
are marked with dots (at the 5% level).
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Fig. 5: AMV regression patterns: same as fig. 4 but using the AMV indices
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Fig. 6: IPO regression patterns: same as fig. 4 but using the IPO indices
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Fig. 7: Relation between the multi-linear regression coe�cients and the rainfall and SST
patterns: Scatter plot between (a) ↵ coe�cient and the average rainfall regression of the GW
pattern over the Sahel in Fig. 4; (b) � coe�cient and the average rainfall regression of the
AMV pattern over the Sahel in Fig. 5; (c) � coe�cient and the average rainfall regression of the
IPO pattern over the Sahel in Fig. 6; (d) ↵ coe�cient and the tropical average SSTs (between
15�S and 15�N) in the GW patterns in Fig. 4; (e) � coe�cient and the tropical North Atlantic
SST gradient in the eastern part of the basin (calculated as the di↵erence between the SST
average in the region 30�W-18�W, 16�N-30�N and in the region 30�W-18�W, Eq-14�N) in the
AMV patterns in Fig. 5; (f) � coe�cient and the tropical Pacific average SSTs (in the region
180�W-95�W 15�S-15�N) in the GW patterns in Fig. 6. In blue we show the regression line
and correlation coe�cient using the 10 lead times of the decadal hindcast and the historical
experiments. In gray we show the regression line and correlation coe�cient obtained without
taking into account the historical simulation. Units for rainfall regression averages and multi-
linear coe�cients (SST regression averages) are mm/day (K) per standard deviation of the
corresponding index
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Fig. 8: Explained Variance AND SRI ACC scores (a) Variance of the decadal-SRI (in
mm2day�2) and its partition into five components following the multi-linear regression analysis,
which correspond to: GW, AMV, IPO, AMV-IPO covariance and residual of the fit (labeled
as EPS). (b) Anomaly correlation coe�cient (ACC) of the simulated decadal-SRI for each of
the 10 lead times in the decadal hindcast and the historical experiment (blue dashed bars)
and its decomposition into four terms following the multi-linear regression analysis, which are
due to: GW, AMV, IPO and the residual of the fit (labeled as EPS). Positive and negative
contributions are shown separately as stacked bars. The subtraction of the total stack positive
bar minus the stack negative bar provides the ACC scores.
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Fig. 9: Potential simulation skill: Anomaly correlation coe�cient (ACC) between the decadal-
SRI from observations and a synthetic one obtained using the GW and AMV from simulations
and the ↵ and � coe�cients from the multi-linear regression analysis applied to observations
(blue dashed bars). Decomposition of such ACC into the two terms (GW and AMV). Positive
and negative contributions are shown separately as stacked bars. The subtraction of the total
stack positive bar minus the stack negative bar provides the ACC scores.
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