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Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracel-
lular signaling molecule cAMP. The effects of cAMP are principally relayed by activating 
protein kinase A (PKA) and the more recently discovered exchange proteins directly 
activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have 
been extensively studied in steroidogenic tissues, those of EPACs are only emerging. 
EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. 
Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, 
and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives 
rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, 
and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the 
brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and 
EPAC2C has until now only been found in the liver. In this review, we discuss current 
knowledge on EPAC expression and function with focus on the known roles of EPAC in 
adrenal gland physiology.
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inTRODUCTiOn

In response to stress, the hypothalamic–pituitary–adrenal (HPA) axis is activated. Parvocellular 
neurons, located in the paraventricular nucleus of the hypothalamus release corticotrophin-releasing 
factor (CRF), which is transported to the anterior pituitary where it stimulates the corticotropes 
by binding to type I CRF receptors (1). In response to CRF, these cells release the prohormone 
pro-opiomelanocortin (POMC) (2). Through posttranscriptional modifications, the inert POMC 
is converted to biologically active peptides, including adrenocorticotropic hormone (ACTH) 
(3). ACTH enters the systemic circulation, binds to specific receptors located on the surface of 
adrenocortical cells, and stimulates the production of adrenocorticosteroid hormones, including 
cortisol, aldosterone, and adrenal androgens (4). Steroid hormones are produced from the same 
precursor, cholesterol, by a set of cytochrome P450 steroid hydroxylases (CYP11A1, CYP11B1 
and CYP11B2, CYP17 and CYP21) and the steroid dehydrogenase 3βHSD (5). The enzymes are 
differentially expressed in the three zones of the adrenal cortex (zona glomerulosa, zona fasciculata, 
and zona reticularis) giving rise to zone-specific hormone production. In humans, the primary 
source of cholesterol for steroid hormone production is low density lipoprotein (LDL), which is 
imported via the LDL receptor (LDLR) from the blood stream. Once cholesterol enters the cell, 
hormone-sensitive lipase (HSL) converts it to free cholesterol substrate (6). Free cholesterol is then 
delivered to the inner mitochondrial membrane by the actions of steroidogenic acute regulatory 
protein (StAR) and cholesterol-binding proteins. CYP11A1 (or P450 cholesterol side chain cleavage) 
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FiGURe 1 | cAMP-mediated signaling and ePAC1 and 2 isoforms. (A) 
cAMP signaling: following ligand binding of G-protein-coupled receptor, the 
membrane bound adenylate cyclase (AC) is activated, and generate cAMP 
from ATP. cAMP subsequently activates PKA and/or EPAC1/2. Binding of 
cAMP to PKA causes the release of the catalytic subunits, which 
phosphorylate a variety of targets. Binding of cAMP to EPAC leads to 
guanosine diphosphate (GDP) to guanine triphosphate (GTP) exchange on 
Rap1 or Rap2. (B) Domain structure illustration of EPAC1 and EPAC2 
isoforms consisting of: cAMP-binding domains A and B, disheveled, Egl-10, 
pleckstrin (DEP) domain, Ras-exchange motif (REM), Ras association (RA) 
domain, and CDC25-homology domain (HD). The protein structure of 
EPAC2A2 is shown in accordance to EPAC2A1. Functional roles of each 
domain are also indicated. PM, plasma membrane; GEF, guanine nucleotide 
exchange factor activity.
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catalyses the first and rate-limiting enzymatic step in the biosyn-
thesis of all steroid hormones, the conversion of cholesterol to 
pregnenolone (7, 8). Pregnenolone can be further converted into 
different hormone intermediates in the endoplasmic reticulum 
and the final production of cortisol and aldosterone occurs in 
mitochondria within the zona fasciculata and zona glomerulosa, 
respectively (5).

In the adrenal cortex, ACTH coordinates the biosynthesis of 
steroid hormones via the second messenger cAMP. In response to 
ACTH binding to its receptor, conformational changes induce the 
release of G-proteins, which then activate membrane bound ade-
nylyl cyclases (ACs). Upon activation, ACs generates cAMP from 
ATP (Figure  1A). cAMP relays ACTH-mediated functions via 

the activation of the serine–threonine kinase cAMP-dependent 
protein kinase A (PKA) or the exchange proteins directly activated 
by cAMP (EPAC1 and 2 also named cAMP-regulated guanine 
nucleotide exchange factors (cAMP-GEFs) I and II). Following 
cAMP activation, PKA and EPAC transmit signals differently. 
PKA phosphorylates numerous substrates, while EPACs act as 
guanine exchange factors (GEFs) catalyzing the conversion of the 
small GTPases Rap1 and Rap2 from an inactive (GDP-bound) to 
active form [guanine triphosphate (GTP)-bound] (9, 10). While 
cAMP signaling by PKA in steroidogenic cells has been intensely 
investigated, the roles of EPAC are only beginning to emerge. This 
review summarizes our current knowledge of EPAC2 in tissues of 
the hypothalamus–pituitary–adrenal axis.

STRUCTURe AnD FUnCTiOn OF ePAC 
iSOFORMS

The identification of EPACs was reported in 1998 by two separate 
groups using different approaches. EPAC1 was discovered by de 
Rooij and colleagues in a database search for proteins containing 
cAMP-binding domains with the ultimate goal to explain the 
PKA-independent cAMP-induced activation of Rap1 (9). The 
same year, Kawasaki et al. identified both EPAC1 and EPAC2 in a 
screen for brain-specific genes with cAMP-binding motifs (11). 
In recent years, it has become evident that the EPAC proteins 
play essential roles in many biological processes, in some where 
EPAC and PKA collaborate to achieve a common biological 
response and in some where the two cAMP effectors have sepa-
rate functions [reviewed in Ref. (12–14)].

expression of ePAC isoforms
The EPAC proteins are encoded by two different genes: RAPGEF3 
(EPAC1) and RAPGEF4 (EPAC2), which both give rise to multiple 
transcripts. Three transcripts are produced from RAPGEF3, but 
only variant 1, encoding EPAC1, has been studied (13). EPAC1 
is relatively ubiquitously expressed (9, 11). Specific parts of the 
brain, thyroid gland, proximal tubules of the kidney, ovary, and 
skeletal muscle express the highest levels of EPAC1, but lower 
levels of EPAC1 have been found in virtually all tissues examined, 
as well as in hematopoietic cells (15). Studies on murine tissues 
suggest that EPAC1, as well as EPAC2, mRNA expression is also 
regulated at different stages of development in embryos and after 
birth (16).

At the transcript level, four different isoforms arise from 
RAPGEF4, termed EPAC2A1, EPAC2A2, EPAC2B, and EPAC2C 
(Figure 1B) (17–20). The EPAC2A2 transcript might be specifi-
cally expressed in the brain (20), but the existence of a correspond-
ing protein is yet to be demonstrated. Thus, potential biological 
roles for this isoform remain unknown. By contrast, the three 
other mRNAs are known to give rise to the proteins EPAC2A, 
EPAC2B, and EPAC2C. EPAC2A was the initial EPAC2 isoform 
identified (11), and is expressed predominantly in brain (with 
high levels in the cerebral cortex, hippocampus, habenula, cer-
ebellum, and hypothalamus), pituitary, and endocrine pancreas 
(11, 17, 20). The EPAC2B isoform was identified by the group of 
Dr. Seino during their efforts in developing an EPAC2 knockout 
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model (19). While confirming deletion of EPAC2A, they discov-
ered the presence of a shorter transcript in the adrenal gland that 
lacked the N-terminal cAMP-binding domain [(19); Figure 1B]. 
Until now, EPAC2B expression has only been demonstrated in the 
adrenal gland (19–21), in the Leydig cell-derived cell line MA10 
(21) and in endocrine pancreas (20). The physiological roles of 
EPAC2B appear to diverge from those of EPAC2A since EPAC2B 
is not able to substitute for EPAC2A in cellular assays monitoring 
insulin secretion (19). The shortest EPAC2 isoform, EPAC2C, was 
also identified by the group of Dr. Seino (17, 18) and has so far 
only been found in the liver, presumably solely in hepatocytes (18, 
20). The strict tissue-specific expression of the different EPAC2 
isoforms is controlled, at least in part, by DNA methylation. 
Detailed analyses of the EPAC2 gene have led to the identification 
of alternative promoters for the different isoforms (18, 20) and 
bisulfite sequencing demonstrated that the methylation status of 
the different promoters nearly perfectly mimics their activity and 
the expression pattern of the corresponding isoform (20).

Structure and Activation of ePAC Proteins
EPACs are multidomain proteins consisting of two main parts, 
i.e., an N-terminal regulatory region and a C-terminal catalytic 
region (Figure 1B). The regulatory region is built up by a cAMP-
binding domain and a disheveled, Egl-10, pleckstrin (DEP) 
domain. EPAC2A contains two cAMP-binding domains, cAMP-
A and cAMP-B, while EPAC1 has only one such domain. The 
domain structure of EPAC2B is similar to EPAC1 and lacks the first 
cAMP-A binding domain, while EPAC2C lacks both the cAMP-A 
and DEP domains (18, 19). The N-terminal cAMP-A domain in 
EPAC2A binds cAMP with low affinity and is not believed to 
be important for cAMP-induced activation (10). Instead, this 
domain appears to be important for the localization of EPAC2A 
near the plasma membrane (19). The DEP domain, by its ability 
to interact with phosphatidic acid, is also important in target-
ing EPAC to the plasma membrane upon activation by cAMP 
(22). The catalytic region consists of a CDC25 homology domain 
(CDC25HD) that catalyzes Rap1 activation, a Ras-exchange motif 
(REM) domain, and a Ras association (RA) domain (23). The 
regulatory regions of EPAC1 and EPAC2 function as inhibitors of 
the C-terminal GEF domain in the absence of cAMP. Binding of 
cAMP induces a conformational change that opens the catalytic 
CDC25HD domain from auto-inhibitory restraints and thereby 
permits GTP loading of Rap (10, 24–26). Both EPAC1 and EPAC2 
contain potential RA domains, but only EPAC2 has been shown 
to interact with Ras-GTP, which contributes in recruiting EPAC2 
to the plasma membrane. The enrichment of EPAC2 on the 
membrane through Ras binding is crucial for EPAC2-mediated 
Rap1 activation (27, 28). In addition to the plasma membrane, 
other subcellular localizations have been observed, such as the 
perinuclear region, nuclear membranes, and mitochondria for 
EPAC1 [reviewed in Ref. (29)] and the Golgi apparatus and the 
nucleus for EPAC2B (21).

Physiological Roles of ePAC
EPACs regulate a multitude of cAMP-mediated cellular processes 
in many different tissues [extensively reviewed in Ref. (23)], 
including the formation of cell–cell adhesion (24, 30–33), cell 

proliferation (34, 35), differentiation (36, 37), cell survival (38), 
ion channels regulation (39–41), and Ca2+-mediated signaling (23, 
42, 43). The development of EPAC knockout mice models has led 
to a better insight into the biological functions of these proteins. 
In spite of the involvement of EPAC in multiple cellular pathways, 
mice lacking EPAC1, EPAC2, or both EPAC1 and EPAC2 do 
not show gross developmental or reproductive abnormalities. 
However recent studies have revealed that EPAC1−/− and 
EPAC2−/− mice display various phenotypes in response to stress 
or other challenges. For example, mice lacking EPAC1 or EPAC2 
exhibit impaired glucose tolerance and dysfunctional insulin 
secretion after glucose challenge when compared with their wild-
type littermates (44–46). Double knockout mice of both EPACs 
in the forebrain showed defects in long-term potentiation, spatial 
learning, and social interactions (47), whereas knocking out only 
EPAC2 is sufficient to induce social interactions impairment (48). 
Loss of EPAC2 also causes defects in memory retrieval in a fear 
condition paradigm (49). Interestingly, single nucleotide poly-
morphisms within the gene encoding EPAC2 have been linked to 
autism. Screening of 48 autistic individuals for mutations in the 
RAPGEF4 gene showed that four rare missense mutations may 
be a cause of autism (50). In spine synapses, these mutations alter 
the protein function of EPAC2 by affecting its Rap-GEF activity, 
the synaptic protein distribution and spine morphology (51). 
Activation of EPAC2 results in shrinkage of dendritic spine size 
as well as increased motility and turnover of the spines, thereby 
contributing to the plasticity of brain circuits (51, 52). Mice 
lacking EPAC1 or EPAC2 also present with phenotypes in the 
heart. Deletion of EPAC1 causes a mild decrease in basal cardiac 
functions, but more interestingly protects mice hearts from 
various stressors, such as arrhythmogenic stress (53). However, 
partly in contrast to this study, deletion of EPAC1 was reported 
to have no effect in cardiac function (54). Instead, loss of EPAC2 
was shown to protect against β-adrenergic receptor-dependent 
arrhythmia (54). Most of the biological functions aforementioned 
have been attributed retrospectively to EPAC1 and EPAC2A due 
to their expression pattern. The roles of EPAC2B and EPAC2C, 
which were discovered later, are overall less studied. The potential 
roles of EPAC2B are discussed in chapter 2. In the liver, EPAC2C 
has been shown to suppress apoptosis and iNOS expression 
and activity in hepatocytes (55). EPAC2C may also control bile 
 acid-stimulated canalicular formation in the liver (56).

ePAC in THe HPA AXiS

EPAC2A is expressed in the hypothalamus and pituitary gland 
and EPAC2B in the adrenal gland. cAMP is known to be an 
essential regulator at all levels in the HPA axis (57) and, here, we 
review how EPAC2 is emerging to contribute to cAMP-mediated 
actions.

ePAC in the Hypothalamus and the 
Pituitary
In response to various stress factors, the expression of CRF is 
stimulated in the PVN of the hypothalamus. CRF synthesis is 
dependent in part upon the neuropeptide pituitary adenylate 
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cyclase-activating polypeptide (PACAP) and a subsequent eleva-
tion of cAMP (57, 58). So far, only PKA-dependent signaling has 
been reported to relay the stimulatory effect of cAMP on CRF 
expression. PKA inhibition was indeed shown to prevent binding 
of cAMP response element (CRE)-binding protein (CREB) on 
the CRF gene promoter and to inhibit transcriptional activation 
(59). EPAC has not been studied in PACAP-mediated actions 
in the PVN. However, EPAC was shown to mediate the effects 
of PACAP on long-term depression of synaptic transmission in 
the hippocampus through Rap in murine hippocampal slices 
(60), and in mice deleted for both Epac1 and Epac2 (47). These 
studies may, therefore, suggest a potential contribution of EPAC 
in PACAP-responsive PVN. In the suprachiasmatic nuclei of the 
hypothalamus, EPAC has been associated with leptin signaling 
(61) and the regulation of factors involved in setting circadian 
rhythms in Ref. (62). In noradrenergic neurons isolated from 
locus coeruleus (LC) in culture, EPAC, but not PKA, was shown 
to be involved in mediating the actions of cAMP (63). Thus, upon 
CRF binding to type-1 CRF receptor, LC neurons differentiate 
into norepinephrine-producing neurons via the activation of 
cAMP–EPAC–ERK/MAPK pathway, by potentiating brain-
derived neurotrophic factor-stimulated synaptic plasticity via 
tyrosine kinase B signaling (63). Since LC neurons innervate 
PVN neurons, EPAC may, hence, indirectly stimulate the secre-
tion of CRF from the hypothalamus [reviewed in Ref. (64)].

EPAC2A is also the dominant isoform expressed in the 
pituitary (19), but we still have very limited information about 
the potential roles of EPAC2 in this gland. Experiments in AtT20 
pituitary cells demonstrated that EPAC, presumably EPAC2A, 
acts as a mediator of CRF1-induced signaling in corticotropes 
(65) and in HEK-293 overexpressing CRH-R2β cells (66). Upon 
activation of the CRH receptor, EPAC2A is involved in cAMP-
mediated induction of ERK signaling (65), a pathway previously 
reported to induce POMC transcription in a PKA-independent 
manner (67). In addition, CRF receptor activation via Gq is 
known to signal to phospholipase Cɛ (PLCɛ) and, hence, inositol 
(1,4,5) triphosphate (IP3) to induce calcium stores mobilization 
that contributes to ACTH secretion (1, 2, 68). Considering that 
the activation of PLCɛ by EPAC–Rap2 has been reported to 
activate Ca2+ release and the secretion of hormones in different 
tissues (23), EPAC may also contribute to the secretion of ACTH 
in corticotropes.

ePAC in Adrenal Physiology
Role of EPAC versus PKA in Steroidogenesis
In the adrenal cortex, PKA is undoubtedly the major mediator 
by which cAMP regulates steroidogenesis (69–71). Once PKA 
is activated, both an acute and a chronic response occur, which 
contribute to increased steroid hormone synthesis. During 
the acute response, PKA phosphorylates HSL, which converts 
cholesterol esters to free cholesterol. This rapid response also 
involves an increase in StAR, which facilitates the movement of 
cholesterol to the inner mitochondrial membrane where the rate-
limiting enzyme CYP11A1 resides (72). The chronic response 
corresponds to the transcriptional activation of all the other 
steroidogenic enzymes (73, 74). In a study by Schimmer et al., 

using microarray technology to investigate the effects of ACTH 
in mouse adrenal Y1 cells, the involvement of PKA was shown to 
account for up to 60% of the effects of ACTH on transcription, 
while only 6% could be assigned to PKC (70). This study clearly 
validated the dominant role of PKA in steroidogenesis, but left 
about 34% of the ACTH effects to be independent of PKA and 
PKC. In addition, another study had pointed to the importance of 
cAMP signaling, mediated independently of PKA, for aldosterone 
production in the adrenal zona glomerulosa (75). These findings 
suggest a role for EPAC in the regulation of adrenal function. The 
specific expression of the EPAC2B isoform in steroidogenic cells 
(19, 21) also points to roles for EPAC-dependent signaling in these 
cells. We, therefore, systematically assessed the involvement of 
PKA versus EPAC in steroidogenesis using cell permeable cAMP 
analogs specific for PKA and EPAC1/2 (N6-benzoyl-cAMP and 
8-p-chlorophenylthio-2-O-methyl-cAMP) in adrenocortical cell 
lines (21). Our study demonstrated that PKA, and not EPAC2B, 
is the essential cAMP-induced regulator of factors involved 
in steroid hormone production (such as StAR, CYP11A1, and 
CYP17) as well as for the biosynthesis of cortisol and aldosterone. 
The role of EPAC2 was also studied in bovine zona fasciculata, 
expressing high levels of EPAC2 mRNA (76), using the same 
EPAC-specific cAMP analog (77). Although this analog induced 
cortisol biosynthesis, a non-hydrolyzable EPAC activator had no 
effect. The study concluded that metabolites of the hydrolyzable 
EPAC-specific analog induced the increase in cortisol observed 
in a cAMP-independent manner. Although seemingly opposite 
results were obtained with the same EPAC activating compound, 
these two studies indicate that EPAC is not important for cortisol 
production. cAMP rapidly induces the transcription factor nerve 
growth factor-induced clone B (NGFI-B), a regulator of several 
steroid hydroxylase genes (78–80). In adrenocortical cells in cul-
ture, we also found that NGFI-B-induction by cAMP is mediated 
by PKA and not by EPAC (21). Current investigations on HPA axis 
regulation in mouse knockout models will provide insights into 
the potential roles for EPAC1/2 in this neuroendocrine system.

EPAC2B Contributes to Cytoskeletal  
Remodeling in the Adrenal Cortex
In adrenocortical cells in culture, cAMP characteristically induces 
changes in cell shape and a concomitant reorganization of F-actin 
microfilaments [reviewed in Ref. (81)]. Furthermore, cytoskeletal 
reorganization has been shown to contribute to steroidogenic 
hormone production by allowing the correct positioning of 
lipid droplets, the ER and mitochondria where cholesterol and 
its metabolites are transported and metabolized (82–84). While 
using PKA- and EPAC-specific agonists to study their effect on 
steroidogenesis in adrenocortical cell lines, we observed that the 
activation of both cAMP effectors contributed to cell rounding 
and the reorganization of F-actin fibers (21). Considering that 
PKA activation contributes to the regulation and expression of 
many enzymes necessary for steroidogenesis, the additional effect 
mediated by PKA on F-actin remodeling would, hence, correlate 
well with enzymatic outputs. By contrast, the effects of EPAC on 
F-actin remodeling are not correlated to steroidogenesis and may, 
therefore, contribute to other aspects of adrenal physiology. In 
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line with this, we also found that activation of EPAC2B induced 
a marked decrease in migration (21). This finding implies that 
EPAC2B plays a role in cell motility and this suggests wider impli-
cations, such as adrenal cancer cell invasion. Although EPAC2 
has so far not been implicated in cancer development, several 
studies have demonstrated roles, albeit contradictory, for EPAC1 
in cell migration and metastasis (85). The molecular mechanisms 
implicated include, at least, an increase of Ca2+ release mediated 
by PLC-IP3 promoting actin remodelling and cell migration 
of melanoma cells (86) as well as integrin activation important 
for cell migration and metastasis of pancreatic cancer cells (87). 
EPAC2B may, hence, act in the same way as EPAC1 in the adrenal 
gland.

COnCLUSiOn

Since the discovery of EPACs in 1998, our understanding of 
cAMP-induced signaling and its roles in physiological processes 
has changed dramatically. Important initial in  vitro studies on 
EPAC paved the way for current phenotypic analyses of genetic 
mouse models lacking EPAC in single or double knockouts. 
Based on these gene knockout models an important picture has 
emerged, namely that although deletion of EPAC does not cause 
gross defects in mice kept at standard protected conditions in the 

animal facility, exposure to stressful situations provoke signifi-
cant phenotypes. EPAC2 is expressed along the HPA axis, and it 
is interesting to note that whereas the hypothalamus and pituitary 
specifically express EPAC2A, the adrenal cortex expresses solely 
the EPAC2B isoform. While EPAC has been shown to mediate 
potential roles in the hypothalamus, putative functions in the 
PVN are yet to be determined. At the hypophyseal level, EPAC2A 
has been implicated in the regulation of POMC expression, and 
in the adrenal cortex, EPAC2B affects the migration of adreno-
cortical cells in culture. The generation of spatial and temporal 
conditional gene knockout models is now required to pinpoint 
the specific roles of the different EPAC isoforms during develop-
ment and adult life. Moreover, the ongoing efforts to develop 
isoform-specific agonists and antagonists hold great promise for 
insights into isoform-specific functions. Such compounds will 
also be important potential new drugs to treat diseases in which 
EPAC plays a role. Several studies do indeed suggest that EPACs 
are promising drug targets (88), giving hope that small molecules 
targeting EPACs will serve as useful treatments in the future.
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