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Abstract 
In weather forecasting, automation and computing are the driving forces of innovation. More 
computing power and better techniques allow for faster and more accurate weather data 
systems. The task of detecting fronts (interfaces between different air masses) in weather 
systems has yet to be solved computationally with such accuracy. In computer science and 
information science research, the techniques in artificial intelligence used for pattern 
recognition are constantly evolving and solving new problems, both in the weather domain 
and elsewhere. I therefore explore whether artificial intelligence can be used to help detecting 
fronts in weather systems, as well as what weather features are useful to study in this 
endeavor. 

In my Master’s project I have developed an automatic front detection system in cooperation 
with weather service provider StormGeo, under the Design Science Research paradigm. The 
study aims to further our understanding of AI techniques and their use in weather analysis, 
through the design, development and use of an information system. The research follows in 
the footsteps of recent developments in several research fields, both within meteorology, 
weather prediction, data modelling, computer vision and machine learning. The system 
development was based on core principles of agile and lean software development 
methodologies, and used commonly available tools and techniques. 

The resulting system identifies fronts using computer vision techniques, and classifies them 
using machine learning techniques and expert knowledge in meteorology. The system is fairly 
accurate in finding the major front lines in a weather system, and is even able to find some 
fronts that meteorologists have missed, but it fails to pick up many subtle details that expert 
use in front detection. The system excels at classifying some types of fronts, but performs 
poorly on others. Geopotential height, air temperature, specific humidity and relative vorticity 
are the weather features used by the system, that most accurately predicts the location of 
fronts, although other features could be used successfully as well. 

This project could outline a new, computer driven way of discovering fronts in weather data, 
based on known concepts from computer vision. However, the techniques are in need of more 
development and refinement to be able to compete with expert human analysis, and to be 
employed in full scale by the industry. These developments and refinements should, however, 
be achievable with today’s technology, given adequate time and resources. Finally, the project 
raises the discussion of the need of an objective, absolute definition of fronts, based on 
common front indicators, to objectively and quantitatively evaluate and further improve front 
detection systems of all types. 
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1 Introduction 
Numerical weather prediction is the computing of gridded data of weather parameters and 

how these parameters change over time. These gridded data are the basis for all weather 

information services found in different weather websites and applications. Weather data are 

usually presented as weather forecasts for specific locations or smaller areas, often as 

numerical weather data in graphs or tables, or converted to automated texts. Computing, and 

automated procedures in general, are doing the brunt of the work in all kinds of weather 

forecasting, and to an ever increasing extent as well (Pagano et al. 2016, Karstens et al. 2014, 

Lazos, Sproul and Kay 2015, Fan, Bell and Infield 2016). 

In most aspects of weather forecasting, information systems can outperform the human 

meteorologists. Having computers taking over increasingly complex tasks is a continuous and 

unavoidable trend (Elkins 2015). Machine automation is saving businesses like StormGeo 

valuable work hours and large sums of money every year, but there are a few tasks where the 

computers are still matched by experts in meteorology. One of these tasks is front detection, 

i.e. the location and classification of the interaction zones between different air masses in a 

weather system. I want to show that this task can be, at least partially, automated by 

information systems. This will be done in order to save precious time and money for 

businesses concerned with weather and meteorology, to improve the quality of weather 

prediction, and to increase our knowledge about fronts, frontal behaviour and how we can use 

advanced information technology to detect and classify them. 

In this thesis, I will give an overview of the fields of automatic weather prediction and 

artificial intelligence, and show how they overlap and contribute to this project. I will present 

the overall goals of the the project and discuss important relevant literature in the fields of 

weather data analysis, machine learning and computer vision. I will describe the 

methodological framework for the project from a technical, academic and business point of 

view. I will detail and explain my technical solution and, finally, I will present the results and 

findings of the project and discuss their implications and possible future work. 
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1.1 Fronts 

Fronts are meteorological phenomena where two distinctly different air masses meet and 

interact, i.e. “the transition zone between two air masses of different densities” (Ahrens 1994, 

p. 322). In weather maps (figure 1), fronts are usually indicated by red or blue dotted lines. 

Fronts are considered vital to study in weather forecasting, as their attributes, velocity and 

direction greatly influence the weather on both a local and regional scale (Ahrens 1994, p. 

322). 

 
Figure 1: Weather map of Europe with fronts. StormGeo 

There are four major types of fronts: Stationary, cold, warm and occluded fronts. The 

differences between these types rely largely on which air masses are moving. A cold air mass 

pushing warmer air up and away forms a cold front, while a warmer air mass overtaking a 

colder one forms a warm front. If there is little to no movement, we have a stationary front, 

and if one front catches up to another we get an occluded front or an occlusion (Ahrens 1994, 

p. 323). The different types of fronts have different manifestations and influence the weather 

in different ways, but they share the common definition cited above, and they can largely be 

identified in the same ways. 
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1.2 Front detection 

For the most part, locating, identifying and classifying fronts is a task that is performed 

manually by meteorologists all over the world. At weather service provider StormGeo, new 

weather maps with fronts are drawn every 12 hours, and it is a complex and tedious task. In a 

time where data analysis is almost left entirely up to information systems, it seems strange 

that such a data driven task has not yet been, at least partially, automated. 

One of the reasons front detection is still done manually is that it has proven difficult to 

formalize the task into definitive rules. Front detection is often context sensitive, and relies on 

the intuition of skilled meteorologists along with general heuristics. In general, a front will be 

found where there is a great change in air temperature, pressure and/or humidity over a short 

distance/time. The problem is, however, interpreting the minute details in a weather system. 

How great and how sudden must the change in weather state be to classify it as a front? Are 

two adjacent fronts separate entities, or are they part of one continuous front? Questions like 

these make it difficult, if not impossible, to design a set of definitive, exhaustive rules that 

will locate and classify fronts with satisfying accuracy. This task therefore, like many other 

entity or feature recognition tasks, requires more fine-grained and sophisticated techniques to 

yield satisfying results. 

Another problem in this domain, that must be handled in some way by a front detection 

system, concerns input data. Which, and how many, weather variables meteorologists use 

when identifying fronts vary greatly, leading to further ambiguity regarding the nature of 

fronts and how to detect them. To investigate and develop front detection techniques further, 

it may be necessary to develop some theory on what weather features are essential for front 

detection, and which are not, based on current and potential future front detection strategies.  

Further, there is a deeper, more fundamental problem about the task that makes it difficult to 

fully automate: A front is not a concrete, physical entity existing in the world. Rather, it is an 

abstraction and a simplification of a weather situation, which is used as a tool for visualizing 

and understanding the major patterns of air movement. A human meteorologist is aware of 

this context of front detection, and can make judgements about which abstractions are useful 

to make, and which are not, often regardless of the actual weather data present. This 

perspective is inherently difficult to “teach” a computer. 
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In the 21st century, attempts at formalizing and automating front detection tasks have started to 

gain some traction. Better tools and more computing power allow us to solve increasingly 

complex problems in reasonable time. Most of the work in the literature on this problem has 

been conducted using variations of edge detection techniques to detect fronts and frontal 

weather (Ullman and Cornillon 2000, Shaw and Vennel 2000, Hopkins et al. 2010). This 

direction has shown promise, and it is one that I will pursue as well. 

1.3 Front detection as a computer vision problem 

Computer vision is a field of artificial intelligence concerned with perception in computer 

systems. “Perception provides agents with information about the world they inhabit by 

interpreting the response of sensors” (Russel and Norvig 2014, p. 945). For a computer, 

“sensory input” is typically an image or video file, but it can, in principle, be any data 

representation of the world. A key problem in computer vision is edge detection. “The goal of 

edge detection is to abstract away from the messy, multi-megabyte image and towards a more 

compact, abstract representation” (Russel and Norvig 2014, p. 953). What this boils down to 

is detecting sharp and drastic changes in the visual data, either in terms of light, color or 

pattern. Edge detection is one of the oldest techniques in computer vision, but it is still vital 

for object and feature recognition in images and video. 

The detection of fronts in weather systems is not immediately reducible to a traditional, 

image-based edge detection problem, for a number of reasons. Firstly, fronts are not concrete 

phenomena. They are an imposed abstraction on the natural world. Secondly, fronts are not 

visible per se. Where edge detection is about the visible differences in an environment, front 

detection must rely on hidden, less immediate data. Thirdly, fronts are detected through a 

number of different variables: Air temperature, pressure, wind speed, wind direction, 

precipitation, vorticity, geopotential height and others (Ahrens, 1994). Feeding a raw image of 

a weather map to a regular edge detection algorithm would therefore not do much good. 

However, on a more fundamental level, detecting fronts is the same problem as detecting 

edges in an image. In both scenarios we rely on finding large and sudden changes in the 

properties of the world to find boundaries between distinct entities, either in an image or in a 

weather system. In an image, these changes are in the properties of the pixels, and the entities 

are the visual representations of actual objects. In front detection, the properties are the 
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weather features in different locations, and the entities are distinctly different air masses. 

Given the right variables to work with, a form of edge detection algorithm should therefore be 

able to at least detect and locate the most dominant fronts in a system. 

If this claim turns out to hold true, it is important for a number of reasons: It allows us to 

work with weather analysis in a more universal, accessible manner, and it shows that 

computer vision techniques can be useful for more tasks involving spatial phenomena than 

just pure image analysis. Most importantly, it provides us with a way of finding patterns in 

weather data that is not reliant on previous observations. Where a conventional classifier in 

artificial intelligence needs examples to work on, edge detection only relies on the raw data, 

finding patterns as they unfold. 

1.4 State of the art 

Weather forecasting has been an important practical application for the use of artificial 

intelligence and automated data processing for decades (Bratko 1993, Lee and Liu 2004, 

Ghosh et al. 2011), but in some some subfields of AI, like feature extraction and entity 

recognition, it is rather underrepresented in the literature. These subfields could prove very 

useful for the important task of front detection, which is today performed largely manually. 

This lack of research is a shortcoming of the current state of the art, and one that should be 

amended to improve the quality and efficiency of automated weather forecasts, both from a 

technical and a human viewpoint. 
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2 Research Questions 
Given the current state of the art of weather data analysis, machine learning and computer 

vision, I have tried to answer the following research questions: 

1. Is it possible to automatically locate and classify the fronts in a weather system? 

2. What features of a weather system are critical in locating and classifying fronts? 

These two research questions, presented in order of importance, have some diverging foci. 

Question 1 is technically and practically oriented. By answering this, I attempt to improve the 

current state of the art and create tools that make weather forecasting easier and more 

accurate. Question 2 has a more theoretical, academic focus. In finding the most important 

weather features for front detection, I hope to improve and strengthen the knowledge in this 

field, and add to the groundwork for further study of the relationship between feature 

detection and weather data. 
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3 Project Description 
This Master’s thesis details an exploratory study in the fields of automated weather analysis 

and artificial intelligence. The goal is to show how weather forecasting can become more 

efficient and more accurate through the use of a new information system. This system 

employs advanced techniques in artificial intelligence and computer vision, as well as expert 

knowledge in meteorology, to automate and improve the crucial task of front detection. In this 

project, I have been more concerned with showcasing what is possible with our current 

knowledge and technology, rather than explaining what has been done before and what is 

currently being done. 

Through the development of such an information system, I explore whether or not front 

detection can be done with more sophistication than simple rule based data analysis. Is it 

possible to view front detection as an entity recognition problem, or an edge detection 

problem, as these are defined in the field of computer vision? Is it possible for a computer 

system to detect fronts in the same way humans do: By looking at a spatial representation of 

the weather data, and identifying the important entities in the weather system and how they 

interact with each other? 

To answer the research questions of this thesis, I have therefore developed such a weather 

analysis system, in cooperation with weather service provider StormGeo. This system uses 

detailed weather maps and historic data about front detection to identify and classify the 

fronts in a weather map. In brief, the target of the project is to be able to describe “Where are 

the fronts in this weather map and what types of fronts are they? What features in the weather 

data were crucial to identifying and classifying these fronts?“ To accomplish the former, I 

have utilized computer vision techniques to visually distinguish front-like features, and 

machine learning techniques to learn the characteristics of different front types. To 

accomplish the latter, I have analyzed different weather variables and how these influence the 

front detection process. This analysis has yielded a set of variables that the system uses for 

front detection. The finished system has been tested against the analyses of professional 

meteorologists, and the results of this development and testing could hopefully inform and 

guide a future improvement of automated weather forecast systems.  
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4 Literature Review 
Here I will investigate the current state of the art in more detail. I will analyze both classic and 

recent scientific publications involving all four main aspects of my research domain: Fronts 

and frontal weather, gathering and analysis of weather data, machine learning techniques, and 

edge detection in spatial domains. I will present the findings of the most relevant publications, 

discuss their merits and shortcomings, and explain where my research project fits into the 

current state of the art. 

4.1 Weather data analysis 

The history of weather data analysis outdates modern computing. Bjerknes (1904) is often 

credited with starting the modern school of meteorology, also known as the Bergen school, 

where numerical data analysis plays a large role. Today, computer systems underlies almost 

all weather prediction, and research in the field usually involves data analysis and computing. 

Because of this, developments in weather technology is tightly linked with research in 

information science and computer science. 

Consequently, extensive research has been conducted in the computer and information 

sciences about analysis and application of weather data. Most of the work has been done in 

the cross-sections of information/computer science and other fields, especially geosciences, 

industrial processing and agriculture, and a large portion of the research has been dedicated to 

weather forecasting. This is natural, as forecasting is perhaps the key challenge in 

meteorology. 

A typical example of this is Ghosh et al. (2011), who present a back-propagation neural 

network for weather prediction. They find that a “Back Propagation Network and Hopfield 

Network based approach for weather forecasting is capable of yielding good results and can 

be considered as an alternative to traditional meteorological approaches.” The research is 

based on classical weather prediction techniques, that are mostly concerned with the temporal 

dimension of weather data, whereas my thesis is mostly concerned with the spatial nature of 

weather systems, in a single point in time. However, one of the issues the article handles is the 

extraction of useful or interesting information from vast amounts of data, a technique known 
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as data mining. This aspect is highly relevant to my project, and provides important 

background knowledge for performing data mining on weather data. 

Another example is Váscák et al (2015), who discuss a local weather prediction system for an 

industrial heating plant. This study is of particular interest as the researchers have developed a 

complex neural network that takes weather data input from many different sources, and it also 

employs several AI techniques. The study finds that neural networks can be useful in 

classifying and predicting weather, and most interestingly that multiple spatially-separated 

data gathering points can be helpful in weather prediction. The results, however, are quite 

industry specific and not particularly generalizable. The study is for instance not concerned 

with the representation of weather systems, but merely an input/output description of weather. 

Lee et al. (2015) explores weather data in a different domain, and have developed a system to 

predict crop yields based on soil and weather data. Their system shows that systematic 

analysis of weather data can be useful for making predictions at geographically large scales. 

This is interesting, as it explores weather systems in a spatial domain, in addition to the 

temporal domain. However, the study is most relevant for its agricultural implications and not 

the gathering and analysis of weather data. Where its methodology is highly relevant, its 

application area is at best tangent to the one I am investigating. 

The research of de Lima and Stephany (2013) is perhaps the most relevant to my project in 

the recently published literature. They propose a new approach for early detection of storm 

centers and extreme weather, using data spanning both the spatial and temporal dimensions. 

Their novel clustering algorithm has been successful in detecting emerging storm centers in 

Brazil. This study shows that artificial intelligence can be successfully employed to detect and 

classify entities in a weather system. This is good news for my project, as it shows that others 

have been successful in analysing spatial weather data, and using the acquired information for 

a practical, predictive purpose. Since this is, to a large extent, the same task that I am trying to 

perform, it is a sign that my research is in a promising direction; In a field that is currently 

being explored, and with techniques that are proving relevant and useful. 

The work of Hoskins and Hodges (2002) is another highly relevant study in weather analysis, 

albeit a bit older. Kevin Hodges is a leading figure within feature detection in meteorology, 

and this study uses novel techniques to identify storm centres in the northern hemisphere. 
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Like front detection, this a typical feature detection task, and many of the perspectives 

presented in this paper are relevant for all kinds of feature detection, including front detection. 

4.2 Fronts and frontal weather 

Fronts and their effects on the weather have been thoroughly studied since the beginning of 

modern meteorology in the early 20th century. Bjerknes and Solberg (1922) first describe 

what has later been dubbed the “Norwegian cyclone model”, which outlines the major 

movements of large air masses and how these movements manifest as fronts and frontal 

weather. Most of the general principles of the formation and evolution of weather systems 

presented in this paper are still accepted and used today. The fronts described by Bjerknes and 

Solberg are, principally, the same as the fronts I am working with in this project. 

Figure 2: Short term precipitation prediction for Scandinavia and the North Sea (http://www.storm.no/) 

Most of the research into fronts have been concerned with the consequences of fronts, rather 

than the fronts themselves. Browning et al. (1982) use distributed weather radar 

measurements to make quantitative short term predictions of frontal rain for small 

geographical areas. They find at the time that the predictions based on radar measurements 

were inaccurate and unsatisfactory, largely due to the technical limitations of the 

measurements. The study also emphasizes the importance of context-sensitive systems in 

weather prediction, as naïve judgements were accountable for about one quarter of the false 
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predictions from the system. Today, these “precipitation radars” are both more accurate and 

more detailed, and they are common tools for both weather prediction and presentation (figure 

2). 

Wilby (1995) finds that analysing the frontal situation and the likely “next weather type” 

using Lamb Weather Types (Lamb 1972), improved the accuracy of precipitation forecasts 

noticeably. This shows that reliable front detection, combined with knowledge of the 

movement and evolution of fronts and air masses, both in general and for local areas, can be 

highly advantageous to achieve higher accuracy weather forecasting. 

Ullman and Cornillon (2000) present a study which bears a lot of similarities with mine. They 

use edge detection techniques to locate fronts using sea surface temperature readings from 

Advanced Very High Resolution Radiometer (AVHRR), and compare the results to human 

classification based on on-site measurements. They find that although the combination of 

remote observation and automatic classification have a slight negative impact on the accuracy 

of the classification, “frontal climatologies developed from the application of automated 

edge-detection methods to long time series of AVHRR images provide acceptably accurate 

statistics on front occurrence.” This is promising for my thesis, as I hope to show that 

previous human observations can not only be used as a yardstick to assess the quality of the 

automatic system, but also as a means to improve its performance. 

Shaw and Vennel (2000) present an algorithm for detecting and “following” fronts over time, 

albeit fronts of a different nature than my study. Their algorithm detects oceanic fronts, i.e. 

sharp and sudden changes in the characteristics of seawater (in terms of temperature, salinity 

and other variables), and is showing remarkably strong results. Although designed for a 

different medium, the algorithm presented here, and further improved by Hopkins et al. 

(2010), shares striking similarities with the solution implemented in my project, most 

importantly being based largely on edge detection techniques. 

4.3 Machine learning 

“An agent is learning if it improves its performance on future tasks after making observations 

about the world” (Russel and Norvig 2014, p. 704). The field of machine learning is 

concerned with building systems that improve their own performance by analyzing their 

inputs and outputs. Machine learning is a general term that can be applied to many different 
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domains and techniques, including decision trees, linear classifiers, artificial neural networks 

and support vector machines. Machine learning is a cornerstone of both my research and my 

artefact, since “making observations about the world” and continually “improving its 

performance” are key elements in my implementation of a front detection system. 

Bratko (1993) explores the usage of machine learning in artificial intelligence. Here, machine 

learning is classified into two distinct modes: Learning by being told and learning by 

discovery. This is commonly defined as supervised and unsupervised learning. In the field of 

artificial intelligence, supervised learning is the most explored, and it is also the most widely 

applied technique, used commonly in for instance medical diagnostics and, coincidentally, 

weather prediction. Supervised learning is also the most relevant for my research, as, 

realistically, some innate knowledge about weather is necessary to start drawing conclusions 

from weather data. Knowledge about the relationships between weather types, topography 

and geography would be extremely difficult to obtain in unsupervised learning. 

In his classic paper, Bratko also accounts some of the problems with learning from examples 

(supervised learning), such as the impossibility of complete knowledge. This is still an 

important challenge today, and also a problem my system needs to handle. This is why I have 

developed a system where the front identification is performed without explicit learning, 

while front classification uses supervised learning based on expert judgement. 

Lee and Liu (2004) introduce iJADE, an intelligent multi-agent platform, useful for all kinds 

of classification and decision making problems. They also display its usefulness with iJADE 

WeatherMAN, a weather forecasting system based on a multi-agent neural network. They 

also show that WeatherMAN is better at weather prediction than forecasts based on single 

station observations. These results are interesting, since they show machine learning 

techniques successfully applied to a meteorological problem. Further, they point to the 

usefulness of analyzing weather data from a larger geographical domain. It is interesting to 

note that the case for spatially distributed data gathering in weather prediction has been 

relevant in AI for a long time already. However, given the rapid rate of innovation in 

computer science, the techniques used in this study 12 years ago are to a large extent 

considered inadequate by today’s standards. This study is therefore useful for obtaining an 

overview of the field, but its technical implementation is not likely to be helpful over a decade 

after its publication. 
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Xu et al. (2016) have conducted an interesting study in the field of medical informatics. They 

explore the usage of convolutional neural networks in diagnosing cancer patients based on 

histological images. Their study finds that these types of neural networks are very useful for 

feature recognition and feature extraction from images. This is interesting, as a large part of 

my research project revolves around this type of task. Of course, the paper is written in a 

completely different application of information science, but its technical relevance should be 

considered high. If convolutional neural networks can detect well defined patterns in the 

body’s cellular structure using images, there is reason to believe the same task could be 

performed on structural weather data. 

An important part of any classification algorithm in machine learning is outlier detection. 

Outliers are data points that vary drastically from the mean, and in small sample sizes they 

could distort the results dramatically if they are not detected and handled. Rahmani et al 

(2014) present some interesting ideas on this topic. They show how outlier detection can be 

improved using a graph-based, “sliding window” approach, similar to how convolutional 

neural networks work. The paper also emphasises the importance of good outlier detection in, 

among other fields, weather data analysis. These findings are interesting, since they give good 

insight to an important and common source of error in weather analysis, and also provide a 

means of minimizing that source of error. Outlier detection is an important factor in the 

success of my system, and this study is helpful for understanding and handling the issue. 

4.4 Edge detection in spatial data 

Davis (1975) provides a good theoretical background for the problem of edge detection, and 

its different classifications and techniques. “In a grey-level picture containing homogeneous 

(i.e., untextured) objects, an edge is the boundary between two regions of different constant 

grey level.” The concept of edge detection as distinguishing the boundaries between two 

different regions is the definition that will be used throughout this thesis. An example of edge 

detection can be seen in figure 3 below. 
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Figure 3: Canny edge detection applied to a photograph (MacLoone 2010). 

Davis describes three main types of edges. These are steps, roofs and spikes, referring to the 

general shape of the gradients around the edge. The front detection problem should be 

considered a form of step detection. A step is a single, sudden change between two regions, 

usually with a beginning and an end. Depending on your resolution, a front can be considered 

have only one edge in total, or one in either end of the region of change. In this project, I am 

working at such large scales that considering fronts 

as a single edge should prove sufficiently accurate. 

Further, Davis also outlines the main challenges in 

real-world edge detection. Some of these are image 

specific, like blurring and de-focus, while others are 

more general, like image resolution and quality, as 

well as irregularity and heterogeneity of the objects 

represented in the image. Both of these general 

problems are important for front detection as well. 

Firstly, weather systems are highly erratic and rarely 

follow completely predictable patterns, and 

secondly, the resolution at which we analyze them 

can be very influential on how well the edge 

detection will work. Too small resolution will make 

it difficult to find complete, smooth edges, while too 

large resolution could make it difficult to distinguish 

the fronts from the noise in the data.  

An important step in edge detection is smoothing 

(figure 4). This is a process in which the data is 

blurred to remove insignificant noise. This is 

Figure 4: Example of gaussian blur applied to an 
image with different kernel sizes (IkamusumeFan 
2015). 
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traditionally done with a Gaussian blur, but Perona and Malik (1990) present a more 

sophisticated method, called anisotropic diffusion, that does not smooth uniformly, but rather 

“encourage(s) intraregion smoothing rather than interregion smoothing”, by adapting the 

kernel size based on the image context. This can be especially useful when the edges in a 

domain are diffuse and difficult to detect, as they can be in the front detection scenario. Catté 

et al. (1992) expand and improve this method by introducing nonlinear diffusion, which 

avoids many of the problems with noise in the original publication. 

4.5 Conclusions 

In the field of weather data analysis, a lot of work has been done in recent years, but the vast 

majority of this is dedicated to weather prediction, i.e. weather analysis in the temporal 

dimension. Only a few publications touch on the most important aspect of my research, 

namely analysis in the spatial dimensions. However, those that do explore weather analysis in 

the spatial domain are highly relevant for my project, and there are other studies in the 

literature that provide useful background knowledge as well. Overall, the concept of spatial 

weather prediction is somewhat explored, but rarely in the manner and the scale at which I 

will be working. 

Fronts and frontal weather have been an important part of weather prediction and forecasting 

for almost a century. Most of the research in this domain has been either conceptual; trying to 

accurately model and understand fronts and frontal models, or predictive; trying to use frontal 

information to predict weather, particularly in terms of precipitation. The exceptions are a few 

fairly recent studies, which, like this one, are concerned with front detection and 

classification, using modern AI techniques. 

In the field of machine learning, the concepts of feature extraction, supervised learning, 

classification and outlier detection are well documented and well known. Neural networks, 

and especially convolutional neural networks, are interesting techniques, as they has proved 

useful in feature extraction from images. I have through this review discovered the most 

important techniques that I have used in my research, and further established the link between 

machine learning and weather prediction systems. 

In edge detection the important factors, techniques and challenges are well defined in the 

literature. Technical improvements in smoothing, along with generally improved computing 
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power have made edge detection algorithms increasingly more powerful. We have also seen 

how edge detection algorithms were able to successfully detect warm and cold fronts based on 

satellite images, as early as 15 years ago (Ullmann and Cornillon, 2000). This is encouraging 

news, since it means I am working with well known, well documented techniques that have 

already been proven to excel in the project domain. 

This literature review has established that all of the techniques I use in my project are well 

known and well documented, but the application domain is to some extent unexplored. The 

most important factor for this project is therefore how these AI techniques can be used to 

solve a novel problem, rather than the usage of the techniques themselves. Further, the review 

has shown how my study fits into the greater ecology of research in the cross-section of 

automatic data analysis and weather prediction. It shows that although my study is novel and 

explores some under-researched topics, it should still have a natural place in the current state 

of the art. 
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5 Methods 
This section will outline the methodological foundation of the project, from both a scientific 

and a practical, applied viewpoint. I will discuss the merits of system design as a research 

discipline, I will describe the software development methods used in the project, and I will 

define the test and evaluation criteria for the finished artefact. 

5.1 Design Science as a research method 

Hevner and Chatterjee (2010) provide a good overview of the status of Design Science 

Research (DSR) in the field of Information Systems (IS). It is described as follows: “It seeks 

to create innovations that define the ideas, practices, technical capabilities, and products 

through which the analysis, design, implementation, and use of information systems can be 

effectively and efficiently accomplished.” This project follows the DSR paradigm, in that the 

main goal of the project is to extend the knowledge of what is possible to do with weather 

data, by designing and creating an artefact that showcases these possibilities. 

 

Figure 5: Representation of relationship between BSR and DSR (Hevner and Chatterjee 2010). 

DSR is typically described in contrast to Behavioral Science Research (BSR) (figure 5 

above), where DSR provides new insights and tests new concepts, and BSR serves to ground 
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new findings rigorously in the existing knowledge base. DSR can therefore be seen as the 

exploratory side of IS research, and BSR as the confirming. Hevner and Chatterjee argues that 

“...the practical relevance of the research result should be valued equally with the rigor of the 

research performed to achieve the result.” As stated in the introduction, my study aims to 

extend the understanding of what is possible to achieve in automatic front detection, and as 

such, it fits nicely in the definition for DSR provided by Hevner and Chatterjee. 

The book by Hevner and Chatterjee draws heavily on Hevner et al. (2004), who aim to 

“provide an understanding of how to conduct, evaluate, and present design science research”. 

Their often cited paper presents seven concrete guidelines on how to perform DSR. Following 

these helps to ground the research project in a widely accepted scientific framework. 

Throughout this project I have therefore aimed to work within these guidelines as follows: 

 Design as an Artifact: The research project should produce a working information 

system that detects fronts in weather systems. This system should be runnable and 

usable, and function as a showcase for the developed technology. 

 Problem relevance: The project should handle the problem of identifying and 

classifying fronts in weather data; previously largely unexplored territory. It should 

explore a frontier of automatic weather analysis, where human meteorologists still 

outperform computers. 

 Design evaluation: The quality of the system will be measured by the quality of its 

output data, which will be tested against the judgements of expert meteorologists. The 

most important feature of the system will be its core functionality and output, and it is 

the quality of this functionality and output that will be at the core of the evaluation as 

well. 

 Research contributions: The project will contribute with knowledge about the 

research domain; classification of weather data. It will hopefully provide new insights 

into the relationship between computer vision and weather analysis, as well as 

showcase new and unexplored possibilities for automatic weather analysis. 

 Research rigor: The artefact will not be reliant on user interaction, and the output 

data is the most important result of the project. The quality of the results can therefore 
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be tested with well documented mathematical and statistical methods, as well as by 

experts in the field of meteorology. 

 Design as a search process: The means of designing a good system will mostly arrive 

from AI techniques and data management, as well as expert input. The laws of the 

domain are exclusively defined by the nature of weather data and the limits of modern 

computing. The outer bounds of the research area should therefore be considered well-

defined, and the design process will take place within these boundaries. 

 Communication of research: The end product will be presented effectively to both 

the research community and the field of meteorology as a Master’s thesis and 

subsequent thesis presentation. 

5.2 System development methodology 

5.2.1 Theoretical framework 

In order to produce a well-functioning artefact, the project has been guided by software 

development methods commonly employed in the fields of IS research and development. My 

motivation for using the particular set of methods to be described, was the desire for a 

lightweight methodological framework that would not create unnecessary complications or 

bureaucracy in the development process. At the same time, the methodology needed to 

provide at least a bare minimum of control of workflow and collaboration between 

stakeholders. 

With these requirements in mind, I decided on a development methodology in the family of 

Agile methodologies. Agile (Beck et al. 2001) methodologies emphasize the importance of 

customer collaboration and adaptability to rapidly changing requirements. Both of these 

factors were considered important to this project. Firstly, I have been working closely with the 

meteorological company StormGeo, on-site at their headquarters in Bergen. I was dependent 

on StormGeo for both acquisition of data and evaluation of the artefact. Maintaining frequent 

and productive contact was therefore considered important. Secondly, since the application 

domain is largely unexplored, the likelihood of significant changes in the requirements and 

specifications of the product along the way, was considered quite high at the onset. It was 
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therefore important to use a methodology that facilitates easy management of such rapid 

changes. 

In addition to the focus on agile development, I also employed concepts from lean software 

development. Lean methodologies focus on low-waste, highly efficient and effective 

processes that utilizes the available resources in the best way possible. Waste is, in this 

setting, any activity that does not contribute to the production of good software. Another 

important construct in lean is the idea of a Minimum Viable Product (Samarchyan 2014), i.e. 

the simplest possible solution to a problem. This is of course linked to reducing waste, only 

developing what is necessary at each step of the way. I believed developing in a lean 

framework to be helpful in this project for several reasons. Firstly, because the timeframe was 

fairly limited, it was important to be able to implement the functionality fast. Secondly, since 

the application domain and the potential problems were to some extent unknown, the ability 

to stay on track and develop only the most essential functionality was also considered 

important. 

Working with agile and lean is of course not the only possible solution for a project like this, 

and I could have utilized both more and less controlling methodologies with success. 

However, the combination of the lightness of lean principles and the active stakeholder 

engagement of agile seemed to match the predefined requirements rather well. Hoping to get 

the most out of this combination of lean and agile, I decided to use concepts from two 

different development methodologies: The agile methodology Scrum (Schwaber and 

Sutherland 2013) and the lean methodology Kanban (Peterson 2015). 

From Scrum I used the concept of sprints: Short timeboxed events in which a predefined 

amount of system requirements are implemented. I worked with development in two-week 

iterations, using reviews and retrospectives with collaborators to continually optimize the 

development throughout the project. Further, I represented system requirements as user 

stories (Cohn 2004), as this is a well-tested, industry standard method for defining 

requirements for an information system. User stories define functionality in terms of what the 

users or owner of the system want to achieve with the system. “As a user I want to see a list of 

the most important features in the weather map, so that I can get a better sense of what’s 

going on” is an example of a typical user story I could have used to keep track of progress. 

Having user stories were intended to divide the scope of the project into manageable pieces. 
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From Kanban I employed the concept of visualizing workflow, by having a visual 

representation of the project status available at all times (figure 6), and updating this 

continuously. I also focused on the idea of minimizing waste, i.e. removing or limiting all 

processes that were ineffective and slowing progress, among other things through the use of 

sprint retrospectives from Scrum. 

 
Figure 6: Visualization in Trello (2016) of the development methodology implemented. 

All of these methodological concepts were chosen to optimize workflow and ensure a finished 

product that was within both the scope and the timeframe that was initially defined. The 

complete set of practices used can be compared to a form of ScrumBan (Nikitina, Kajko-

Mattsson and Stråle 2012) that aims to utilize the best practices from both a lean and an agile 

development perspective. Figure 6 shows a snapshot of the visualization of the workflow 

from the fifth sprint (October 17th 2016), with user stories and connected tasks in different 

stages of development. 

5.2.2 Practical application 

The first development period was defined from August 15th to November 20th, and divided 

into seven sprints. During this development time, the following user stories were 

implemented: 

 As a user I want the system to retrieve all necessary data automatically, based on an 

input date, so that I can focus on my job. 
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 As the project leader, I want the system to create a list of candidate fronts based on 

edge detection, so that front identification is completely automatic. 

 As a developer, I want the system to output image files of key steps of the detection 

process, to more easily identify problems. 

 As a developer, I want the system to improve the list of candidate fronts using 

smoothing and joining ends, to improve the quality of the output. 

 As a user, I want the system to classify fronts as either warm fronts, cold fronts or 

occlusions. 

 As a user I want the system to output the final list of suggested fronts as a text file. 

For each sprint, one or more user stories were taken into the Sprint Backlog and divided into 

meaningful engineering tasks. The tasks were moved into the “done” column as they were 

being completed, while the user stories remained in the backlog until all their development 

tasks were finished. When all user stories were moved into “done”, the first development 

period was considered completed. 

The second development period was defined from December 5th to February 3rd. During this 

period, no new functionality was implemented. The focus of this period was on improving the 

performance of the existing system. Because of this, no new user stories were defined, and the 

period was not divided into sprints. Instead, the backlog was populated directly with 

development tasks, which were implemented or discarded sequentially. This can be 

considered a more pure form of Kanban, with no iterative separation of work. I used a 

maximum workload of one task in development, meaning that a task had to be completed or 

discarded before a new one could be started. When all development tasks in the backlog were 

completed or discarded, the second development period was considered completed. 

5.3 Data acquisition and evaluation 

As previously noted, the data required for the project was provided by expert meteorologists 

and data scientists at StormGeo. This data and expert knowledge was also used for the 

evaluation of the finished artefact. 
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5.3.1 Data acquisition 

The system uses several different types of data. Firstly, it uses large scale weather data files 

for the Northern Atlantic Ocean and Europe. These files contain information about air 

pressure, humidity, wind speeds and direction, as well as temperature. This serves as the basis 

on which the system detects and classifies fronts. Furthermore, the system uses a data set of 

manually drawn fronts from StormGeo’s archives. This serves as the training set for the 

system, allowing it to build a knowledge base of important contextual cues on which to 

improve its front classification. Both of these sets of weather data files were provided directly 

by StormGeo, from their archives. 

5.3.2 Evaluation 

The primary evaluation process was purely based on the output of the system. The system 

detects fronts for a time and a place where meteorologists at StormGeo have previously 

manually drawn front lines. This yields data that is qualitatively comparable, with the help of 

experts in the field. Using statistical methods to meaningfully quantify the differences 

between manually and automatically drawn fronts could have been useful, but this has not 

been done. Quantitatively analyzing fronts is inherently hard to do because of the fuzzy and 

somewhat undefined nature of the domain. This problem is discussed further under 8.3. 

The evaluation of the output data has therefore exclusively been performed by four 

meteorologists at StormGeo, both individually and in group conversations. The evaluation is 

based on the output files of the system in the time period from September 5th 2016 to January 

12th 2017. The meteorologists have, both in their own time and in semi-structured interviews, 

compared the output of the system with the manually drawn fronts for the same time. From 

from January 9th to March 3rd 2017, 56 observations were gathered in a result bank that 

forms the foundation for answering the first research question. Some examples of 

observations (in Norwegian) can be seen in table 1, while the full result set can be found in 

Appendix A. The results of the evaluation are presented and discussed in 7.1 and 8.1.1. 
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Dato/tid Tema Kommentar 

6/9-2016 00:00 Identifisering 

Systemet finner en front nord-sør i midten av bildet. 

Ikke tegnet opp av meteorolog. 

7/9-2016 12:00 Identifisering 

Okklusjon i nord, ikke mulig å se i datasett. Veldig 

like temperaturer. Nedbør nyttig for å finne denne.  

6/10-2016 12:00 Identifisering Små forskjeller, veldig få fronter tegnet. 

24/10-2016 00:00 Identifisering "Hull" i okklusjon. 

24/10-2016 12:00 Identifisering Nesten funnet et perfekt klassisk system i vest. 

7/9-2016 00:00 Identifisering 

Flere parallelle fronter. Kun en tegnet opp av 

meteorolog. 

10/1-2017 12:00 Identifisering 

Okkludert front over Østlandet omtrent samme 

plassering av meteorolog og automatisk analyse. 

10/1-2017 00:00 Klassifisering Varmfront mangler generelt. 

30/11-2016 12:00 Klassifisering Kaldfronter blir klassifisert riktig. Ellers mye rart. 

Table 1: Example of records from the result bank. 

Another important evaluation criteria was the overall functionality of the finished system. The 

primary goal of the project was to develop an artefact that classifies fronts consistently, and 

its relative success is determined by the fulfillment of the requirements for the system. These 

requirements were represented as a backlog of user stories (Cohn 2014, Schwaber and 

Sutherland 2013), previously detailed under 5.2. The evaluation of the system in terms of the 

fulfillment of user stories is presented in 7.3. 

5.4 Tools and techniques 

I have used several different tools during this project, for both technical and organizational 

purposes. These will now be listed and discussed. I will briefly describe why I have chosen 

these particular tools and techniques and, where applicable, discuss advantages and tradeoffs 

compared to alternative available solutions. 
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5.4.1 Canny edge detector 

Canny (1986) introduced what is today one of the most widely used techniques for linear edge 

detection, Canny edge detection. This is a multi-stage algorithm that detects edges or 

boundaries in an image, and returns a simplified, binarized image where only the edges are 

marked. The algorithm can be summarized as follows: 

1. Blurring/smoothing: Apply a Gaussian filter to the image in order to reduce noise. 

The Gaussian filter will blur all data points with its closest points, and results in a 

more homogenous image. 

2. Find the gradients and their direction: These are the values that will determine if 

the algorithm will find an edge at a given point. The gradient describes how quickly 

the pixel values in the image changes, and in which direction, for any given point. 

3. Non-maximum suppression: This step serves to “thin” the edges, and keep only the 

strongest gradient for any given point on an edge. This insures that all discovered 

edges will have a thickness of one pixel. 

4. Double thresholding: All discovered edge points are now compared with two 

thresholds, a high and a low threshold. These threshold values determine how many 

potential edge points will be included in the final edges. Pixels with a gradient above 

the high threshold are considered strong edge points, while pixels with a gradient 

between the two thresholds are considered weak edge points. All other edge points are 

now discarded. 

5. Edge tracking by hysteresis: Here all strong edge points, as well as weak edge points 

directly connected to at least one strong edge point, are collected for the final selection 

of edge points. These are finally imposed on the original image. 

In this project, I have used a Java implementation of a Canny edge detector, made by Tom 

Gibara (2011). I have modified it to work on raw tables of integers rather than image 

representations. This edge detector allows the system to discover large and sudden changes in 

the values of different atmospheric variables, typically discovering the location of a front. The 

source code for this edge detector is found in Appendix B. 
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Although the Canny edge detector is a commonly employed edge detection technique, it is not 

without fault. Ding and Goshtasby (2001) highlights perhaps its biggest problem: The 

inability to consistently detect edges at cross-sections between more than two regions. Canny 

edge detection does not handle branching edges all too well. This is mostly due to its 

relatively basic calculation of gradients.  

Ding and Goshtasby present a more sophisticated gradient detection which is better at finding 

branching edges and leaves fewer erroneous gaps in the output. There are also other, even 

more sophisticated methods of discovering edge points. A Laplacian edge detector (Davies 

2005, p. 149) uses the second derivative of the gradient (rather than the first derivative) to 

find the sharpest and most distinct rates of change in the image. 

Given the scope of this project, however, a more sophisticated gradient analysis was deemed 

an unnecessary complication, given the focus on creating a minimum viable product, and the 

Canny edge detector proved to be sufficiently precise to meet the goals of the project. The 

problems with gaps and branching edges was mediated by other means, such as joining line 

ends that are close together and removing parallel lines. More on this can be found under 6.4. 

5.4.2 Neural network 

Neural networks in artificial intelligence are designed to learn causal relationships in a 

system, in a manner similar to how neurological pathways in the human brain work (Russel 

and Norvig 2014, p. 739). A network always consists of a set of input nodes and a set of 

output nodes, as well as any number of hidden, intermediate nodes in between. The nodes are 

connected through weighted links, and these links “learn” the relationship between different 

inputs and outputs. 

I have used a neural network to classify candidate front into different front types. This 

classification could be done with a multitude of different AI techniques, as it is a classic 

function learning problem, where the task is to learn the correct output (a front type) based on 

an input (the weather situation in a point). A neural network was chosen, as it is a well-

known, well-tested technique that could succeed in delivering a sufficiently accurate 

classification. 
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There are three different freely available neural network implementations for Java. These are 

Encog (Heaton 2016), Java Object Oriented Neural Engine (Marrone 2004) and Neuroph 

(Sevarac 2016). CodeProject user taheretaheri (2010) has made a very thorough and well 

documented comparison of the three tools, and concludes that:  

“the clear winner is Encog. It provides a clean and easy to use API and stunning 

performance. The performance of Encog currently cannot be matched.” 

After making an implementation of both Encog and Neuroph, I also found Encog both faster 

and easier to use and modify. Consequently, I have used an Encog neural network to classify 

fronts into different types, based on a training set of manually drawn fronts by meteorologists. 

The source code for the neural network implementation can be found in Appendix C. 

5.4.3 Software development tools 

The Eclipse Foundation has one of the most widely used development environments for Java, 

the Eclipse Java IDE (The Eclipse Foundation 2016). I used the Eclipse IDE to develop the 

front detection system. Eclipse was chosen because of its general utility, available support and 

previous experience with the tool. 

Trello (2016) is a free project organization tool. I used Trello in my development process to 

visualize workflow and organize the scrum sprints in a simple and accessible manner. 

5.4.4 Auxiliary tools 

In addition to the machine learning and computer vision techniques, I have used a few 

external libraries for handling and retrieving files. The weather data files provided by 

StormGeo is on the NetCDF format, a format commonly “used in atmospheric research, GIS, 

and related fields.” (Wolfram 2008). I have used the Java library NetCDF Java by Unidata 

(2016) to interpret the contents of these files. 

Further, I have used Apache commons-net 3.5 (Apache 2016) to retrieve both weather data 

files and the training set of drawn fronts from StormGeo’s local databases into the system. 
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6 The System 
The front detection system is a standalone Java application that handles weather data for the 

North Atlantic for a given date and time, and provides a suggested set of fronts for that 

particular point in time. Theoretically, we can consider the system a function F, that takes an 

input of a particular point in time, and outputs a text file of a list of fronts for the North 

Atlantic at this time step. Throughout this section, I will refer to this entire transformation 

process as F. 

F can be divided into six meaningful sub functions: G, H, I, J, K and L that can be described 

as follows: 

 G: Data retrieval. 

 H: Data normalization and transformation. 

 I: Edge detection. 

 J: Line identification. 

 K: Front classification. 

 L: Data generation. 

 
Figure 7: Visualization of the program flow, from input file to output file. 

I will now describe each of these sub functions in detail. I will explain the algorithms 

employed and the motivation for their use. Where applicable, I will discuss alternative 

solutions and their merits and shortcomings. This section will in total be a complete 
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description of what the system does, from data input to data output. Figure 7 gives a graphical 

overview of the different sub functions G → L. 

The input data for the system comes from a weather model. This model uses the weather 

situation for a point in time to generate predictions for the future weather states. The weather 

model is run every 12 hours, and generate predictions with 12 hour increments. F has been 

designed and tested for time increments between 12 and 120 hours. This is because these are 

the same time steps that the meteorologists currently draw fronts for. 

The first step of the data retrieval is technically not part of the process F. This is to determine 

what data to retrieve. For any given date, there are two sets of files: The model data generated 

at 00:00, and the data generated at 12:00. Each of these sets of files contain a separate file for 

each time increment, from 12 hour prediction to 120 hour prediction. Given a user input date, 

the system loads the corresponding files from the StormGeo central repository. Each of these 

files is a “Weather data file” in figure 7 above. 

From this point, and throughout section 6, I will only consider the process for one single time 

step, i.e. one file, but the entire process F is of course repeated for all files in the acquired data 

set. 

6.1 Data retrieval 

The second step is to read and interpret the file as a three-dimensional array. The data files are 

NetCDF files that contain multiple weather variables and their values for a given set of 

longitudes and latitudes. The latitudes for the files in this project vary between 73N and 25N, 

while the longitudes vary between 66W and 55E. The variables in each file are: 

 The u component of wind1. 

 The v component of wind. 

 The geopotential height at 500 hPa2. 

                                                
1 Wind speed and wind direction are denoted as two vectors, one in the east/west direction (knows as 
the u component or the zonal velocity), and one in the north/south direction (known as the v 
component or the meridional velocity). The sum of these two vectors define the wind direction and 
speed for a given point (Hooper 2002). 
2 Geopotential height is a way to measure the thickness of the atmosphere. “Geopotential height 
approximates the actual height of a pressure surface above mean sea-level. Therefore, a geopotential 
height observation represents the height of the pressure surface on which the observation was 
taken… heights are lower in cold air masses, and higher in warm air masses” (SCOoNC 2010). 
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 The specific humidity3. 

 The temperature at 500 hPa. 

 The temperature at 700 hPa. 

 The temperature at 850 hPa. 

 The relative vorticity4. 

All of these variables are saved as two-dimensional arrays, together forming a three-

dimensional array. 

6.2 Data normalization and transformation 

In order to perform edge detection on the data set, it needs to be represented as a single 2D-

array. This means that the third dimension of the data set must be collapsed in some way. In 

H, this is solved with a simple, linear function; A weighted average. This linear function is of 

course a substantial abstraction from what is most likely a non-linear relationship between 

weather variables and fronts, but it yields sufficiently accurate results. 

Firstly, the data in each array is normalized to values between 0 and 200, based on the lowest 

and highest values in the array. This is to make sure that the data variance is comparable 

across variables. The vorticity variable, which varies inversely to the rest, is also inverted 

during normalization. Secondly, a weighting of all the variables is created, based on their 

contribution to front detection. The motivation for this selection and weighting can be found 

under 7.2. The weighting is as follows: 

U component of wind 0 Temperature at 500 hPa 10 

V component of wind 0 Temperature at 700 hPa 5 

Geopotential height 20 Temperature at 850 hPa 0 

Specific humidity 5 Relative vorticity 1 

Table 2: The weighting of atmospheric variables. 

                                                
3 Specific humidity, as opposed to absolute humidity, is a measure of relative water mass in a given air 
mass. Given that no moisture is removed or added, the specific humidity of a system will not be 
altered by changes in pressure or temperature (Britannica 1998). 
4 Vorticity is the rotation of a system relative to its context. Relative vorticity is the tendency of a 
system to rotate relative to the Earth (Ahrens p. 351). 
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Finally, a new 2D array is created, and populated with the weighted average of all the 

variables. This means that for any point (x,y), the value will be: 

GeoH x, y ∗  20 +  SpeH x, y ∗  5 +  Temp500 x, y ∗  10 +  Temp700 x, y ∗  5 +  RelV x, y

20 + 5 + 10 + 5 + 1
 

After H, we are left with a 2D-representation of our weather state, which is used to detect 

fronts. An image rendering of this 2D-representation can be seen below. Each pixel in the 

image represents a geographical point in the North-Eastern Atlantic Ocean. A lighter area 

indicates lower temperature, geopotential height and humidity, and a higher vorticity. A 

darker area indicates the opposite. 

 
Figure 8: Visualization of the combined, normalized data set for September 13th 2016, 12:00PM, 12 hour prediction. 

6.3 Edge detection 

The algorithm used for edge detection is described in detail under 5.4.1. This process takes 

the normalized 2D array, and returns a binarized 2D array where only the discovered edges 

keep their values, while all other points are set to 0. An image rendering of the binarized 2D 

array from edge detection can be seen below. A black pixel represents an edge point 

discovered by the algorithm. 
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Figure 9: Visualization of the edge detected data set for September 13th 2016, 12:00PM, 12 hour prediction. 

This results in a rough sketch of the major contours in the weather system. These detected 

edges are an abstraction from the full data set, and takes us a step closer to a representation of 

fronts. However, this representation remains too noisy to accurately represent the major front 

lines in a system. The lines are too scattered, there are too many parallel lines and too many 

tiny, irrelevant lines for this result alone to inform a detection of fronts. Some further 

processing is therefore required. 

The edge detector uses a high threshold of 3, a low threshold of 2, where 2 and 3 are the 

gradient values around edge points, and a kernel size of 10 for gaussian blurring. The 

motivation for this particular threshold and kernel size assignment can be seen in figures 10-

14 below. Having higher thresholds makes the algorithm too insensitive, and it picks up only 

the absolute clearest lines available. This gives too little input to create candidate fronts from, 

and in some weather situations no lines are discovered at all. Lowering the thresholds has the 

opposite unwanted effect, where far too many subtle value changes are picked up by the 

algorithm, and it becomes extremely difficult to extract the critical features of the system. 

Lowering the kernel size has a similar effect, where the noise becomes overpowering, and the 

system struggles to distinguish between major lines and small discrepancies. 
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Figure 10: Original data table for showcasing effects of different edge detection thresholds and kernel sizes. 

 
Figure 11: Result of edge detection with “correct” values. HT 3, LT 2, KS 10. 

 
Figure 12: Result of edge detection with higher threshold. HT 5, other values equal. 
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Figure 13: Result of edge detection with lower thresholds. HT 2, LT 1, kernel size equal. 

 
Figure 14: Result of edge detection with lower kernel size for blurring. HT 3, LT 2, KS 5. 

6.4 Line identification 

The next step of the process is the part of the algorithm that is the most novel, and the least 

grounded in existing theoretical frameworks. This is the part where the result of the edge 

detection process must be transformed into a set of identified candidate fronts. In this 

undertaking, I have used some innate knowledge about the structure and qualities of fronts, 

but mostly I have tried to make a system that identifies the major line structures in the data 

without considering heuristical approaches to front detection. This is of course motivated by 

my desire to find a computational, data driven approach to front detection, that is not biased 

or predisposed in the same way that human judgement is biased, unless it is strictly necessary 

for the system to have functional value. 

The line identification can be divided into four sequential tasks: 
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 A: Find all the line segments in the edge detected data. 

 B: Filter these line segments into meaningful lines 

 C: Find the key points of each line. 

 D: Smooth and filter the lines based on the key points and the curvature of the lines. 

To easily understand the purpose of task A, it is helpful to consider the data structure of the 

final input and output of F. At some point in F, the gridded meteorological data table must be 

transformed into a list of lines, and the coordinates of the points of these lines. This is what 

happens in A. 

The algorithm goes through the data table from top to bottom. Whenever an edge point is 

discovered, a recursive algorithm is employed to find the end of the line on which the 

discovered edge point is sitting.Then the same algorithm runs from the end of the line, this 

time storing all the points it passes from one end of the line to the other. When the other end 

of the line is discovered, the line is stored, and all its points are marked as discovered, making 

sure that the same line segment cannot be added more than once. 

The recursive “Find Line From Point” - function works by searching for edge points in a 9x9 

grid around the current point, starting closest to the point and working outward. When we do 

not find any new edge points in this grid, we have reached the end of the line. When a new 

edge point is discovered, we have found the next point to search from. If the next point is not 

the immediate neighbour of our current point, a straight line is also added between this point 

and the starting point, forming a complete, uninterrupted line segment. If the next point is the 

immediate neighbour, any other directly neighbouring edge points (that have not already been 

added to the line) are discarded. This final case often occurs in perfect diagonals, when the 

line forms a “stair” shape in the data points. If the additional neighbours are not excluded, 

these will often be rediscovered when we reach the end of the line, and the final line will run 

back on itself. This is of course unwanted behaviour. 

At the end of task A, we are left with an abstract representation of all of the lines in our edge 

detected array. 

In task B, we want to abstract away the smaller, insignificant and irrelevant line segments, as 

well as to join any line segments that belong to the same line, but are for whatever reason 

separated. This is where we alleviate some of the shortcomings of the Canny edge detection 
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algorithm. Since the edge detector has trouble finding branching edges, a lot of the major line 

structures will have larger gaps that should be bridged. 

Firstly, all lines with less than 30 line points are discarded. This is done in order to remove 

unnecessary noise before the filtering stage.  

Secondly, a function is run to remove parallel lines that are close together. This is because 

two lines with the same gradient in the same area are most likely denoting the same general 

structure. Whenever both ends of one line are in close proximity to some other line (within 15 

data points), this line is removed. This strategy also ensures that the shortest parallel line 

segment is removed, keeping as much data as possible. 

Thirdly, another function joins the ends of lines that are close together. This is run after the 

removal of parallels to insure that two parallel lines that point to the same structure are not 

joined to form a circle. In this step, if the ends of two lines are within 30 data points of each 

other, they are joined, forming one consecutive line. This approach is very simple, and leaves 

some lines joined at strange and unnatural angles, but this problem is partly mitigated in parts 

C and D. 

After joining ends, the parallel removal is run again, to make sure that any potential newly 

joined lines will not form parallel structures with existing lines. Finally, all lines with less 

than 80 line points are now removed. Lines that are shorter than this are not considered part of 

the main line structures in the data, and these will thus only clutter the final result. 

Part C is a very simple algorithm that defines the key points of the line. This step moves 

from a general line representation, where all the points of the line are recorded, into a 

representation where only a selected number of points are stored. These key points then 

define only the main shape of the line, in the same way that front lines are typically 

represented by a set of key points (see figure 1 for an example). 

To begin with, the endpoints of the line, as well as every 30th point, are defined as key points. 

This set is then pruned based on the curvature of the line. In each key point (excluding the 

ends), the line has a particular angle coming into the point, and a particular angle going out of 

it, relative to the plane the points are sitting on. Whenever the difference in angle in and out of 

a point is less than 10 degrees, this key point is removed, as it does not aid in defining the 

shape of the line in any meaningful way. After this pruning, any lines that have less than three 
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key points are removed. This is done in order to, once again, remove insignificant lines that 

do not represent a major line structure in the data. 

At this point, we have a relatively sound representation of our edge detected lines, but this 

representation has some important discrepancies from typical front structures. In task D we 

take the final step from a line representation into a front-like representation. This is therefore 

the only part of the function J where some assumptions about the meteorological structure of 

fronts has to be taken into consideration. 

The most important assumption being made has to do with the curvature of fronts. Since 

weather fronts are directional, i.e. they are moving in a given direction, they tend to curve in 

this direction. This has the added consequence, as I have learned through discussion with 

StormGeo’s meteorologists, that one individual front will almost never change its curvature 

along its length, without also changing front type. This again means that our candidate fronts 

should all have a uniform curvature, and that lines with changing curvature should either be 

split or cropped to conform to this requirement. 

Although making assumptions about the internal structure of our candidate fronts could be 

considered problematic, given my goal of making a data driven approach to front detection, I 

believe this particular assumption is necessary to make, and that its implications for the final 

results should not be considered detrimental. Most importantly, the assumption about 

curvature has no implication for the identification of fronts. All key points remain in the same 

positions after the smoothing, and the general shapes of the candidate fronts are still based 

solely on the edge detection results. 

Firstly in task D, the curvature at each point (i.e. the difference in angle going in and out of 

the point) is calculated for all lines. Then some basic smoothing is applied. All outlier points 

that have different curvature to both their neighbours are removed, as well as ends that cause 

the final points of the lines to have different curvature from the rest. After each deletion, the 

curvature of the line is re-evaluated, as it will have changed around the deleted point. When 

no more points can be deleted, we are left with lines that have either one homogenous 

curvature, or a few, large sections with the same curvature. 

Secondly, all lines are split into candidate fronts based on their new curvature. Whenever the 

curvature of a line changes, this is considered the beginning of a new front, and it is split into 
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two. The splitting is performed such that one point remains common for both fronts. The new 

fronts therefore still form one continuous line, but they are considered separate entities that 

can, among other things, be classified into different front types in classification. An important 

factor to consider is that there are always two possible points at which splitting is possible to 

maintain correct curvature: Closer to the first front, or closer to the second front. The position 

to split the candidate fronts at is always 

chosen such that the shortest front remains 

as long as possible. This is to avoid 

classifying structures that are extremely tiny 

and unlikely to point to a significant frontal 

feature. An example of this candidate front 

splitting can be seen in figure 15. In A we 

see the curvature of the line, which changes 

between points 3 and 4. This means that the 

line can be split at either of these points, 

still ensuring homogeneous curvature for 

both candidate fronts. These alternative 

splits are highlighted in B and C. The 

algorithm chooses to split at point 3, as 

shown in C, to insure that both candidate 

fronts are of significant length. 

Figure 15: Example of candidate splitting. 

At the end of J, we are finished with front identification, with the result being a set of lines 

with key points; The candidate fronts. What is left at this stage is the classification of these 

candidates into actual fronts. An image rendering of the candidate fronts superposed on top 

the original data table from 7.2, can be seen below. Each black square represents a key point 

in a candidate front. It is worth noting that the illustration does not highlight where the 

candidate fronts have been split, and only displays them as complete lines, even where 

splitting actually has occurred. 
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Figure 16: Visualization of the candidate fronts for September 13th 2016, 12:00PM, 12 hour prediction, discovered by edge 
detection, on top of the original data table. 

6.5 Front classification 

The front classification essentially takes our data model back into the weather domain, from 

lines with points, to fronts with positions. This is being done with the help of a classifier. The 

translation is a twofold process: First classifying the single points of the candidate fronts into 

front positions with front types and directions, and afterward using this classification to 

decide the types and directions of the whole fronts. This means that every key point on a line 

is classified as a position in a front, before the front is created, based on the result of this 

classification. Figure 17 contains an illustration of the relationship between the two concepts. 

 
Figure 17: The relationship between lines and fronts in the system. 

The end goal of front classification is to have transformed all of the identified lines (candidate 

fronts), into actual fronts, with a front type, a direction, and a list of coordinates that make up 
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its positions. Front type can have one of three values: Cold front, warm front or occlusion, 

while direction can be either left or right. Left and right in this case refers to the direction the 

front is moving, relative to the direction it is being drawn. A front that has its positions 

defined from west to east, and a right direction for instance, is moving southward. 

The classifier is an artificial neural network, designed to classify single points, giving them a 

direction and a front type based on the values around the point. For every point (x,y), there are 

five inputs: 

 The absolute value of the point. 

 The change in value (x - 10, y) → (x + 10, y), i.e. north → south. 

 The change in value (x, y - 10) → (x, y + 10), i.e. west → east. 

 The change in value (x - 7, y - 7) → (x + 7, y + 7) i.e north/west → south/east. 

 The change in value (x + 7, y - 7) → (x - 7, y + 7) i.e. south/west → north/east. 

These are being classified into four outputs with decimal values between 0 and 1: 

 The direction of the front in the point (<0.5 = left, >0.5 = right). 

 The likelihood of the point belonging to a warm front. 

 The likelihood of the point belonging to a cold front. 

 The likelihood of the point belonging to an occluded front. 

The network is trained on the positions of fronts drawn by meteorologists at StormGeo 

between September 5th and November 27th 2016, as well as the direction and type belonging 

to these fronts. 

The input variables for the network are neither arbitrary nor definitive, but have been chosen 

through a trial and error testing. The assumption used is that the relevant input for 

classification consists of the weather state on the frontal surface (i.e. on the point), as well as 

the change in weather state around the frontal surface, since these are the features 

meteorologists study when deciding the type of a front. For the inputs representing the change 

in weather state, I have tried three different strategies: 

1. Grid approach: Computing a grid around the front point of varying sizes and using the 

average difference in value from the front point to the grids as the input values. 

2. Gradient approach: Computing the changes in four cardinal directions through the 

point. As shown earlier, this is the strategy currently being used. 

3. A combination of 1 and 2. 
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A visualization of the two strategies can be seen in figure 18 below. Left: The grid approach 

with corresponding input values. Right: The gradient approach with corresponding input 

values. 

 
Figure 18: Comparison of the two strategies for calculating inputs to the neural network (not to scale). 

With strategy 2, I have tested several different radius sizes for the gradient calculation, 

settling on 10 data points (= 2,5 degrees lat/lon). The ideal radius size will vary with different 

resolutions and different latitudes. This combination of strategy and radius size yields the 

lowest error rate (~18% erroneous classifications) with the current training set. 

When all the front positions have been classified, they are rejoined to form fronts, based on 

their typing. This starting point of classified positions, assumes that a position belongs to a 

front of the type and direction that is most strongly classified for that position. For instance, a 

position with a cold front score of 0.35, a warm front score of 0.71 and an occlusion score of 

0.24 (referring to output variables 2-4 above), will be classified as a warm front position. 
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Figure 19: Example of a front classification. 

Given the classification of its positions, a front may remain whole, or split into different 

fronts of different types. This splitting task is performed similarly to how the candidate fronts 

are spit in 6.4. Here, the splitting was based on the curvature of the lines, while in 

classification, the splitting is based on the classified types of each of the positions. As with the 

line splitting, single anomalies within or at the end of fronts are overridden, while changes in 

front type that lasts for two positions or more are counted as a new front. This insures that 

only definitive changes in front type are considered by the system. An example of how this 

splitting works can be seen in figure 19 above. Top: The classification scores for each 

position. Blue = cold front, red = warm front, purple = occlusion. Middle: The immediate 

classification of the positions based on scores. Bottom. The final classified fronts, split into 

one cold front and one warm front. The first and sixth positions have had their classification 

overridden due to the context of surrounding positions. 

Finally, each of these new fronts are given their direction based on the direction of the 

majority of their positions. A front with two left positions and six right positions will be 

classified as a right moving front. After classification, we are left with our final set of 
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identified and classified fronts. A visualization of these fronts can be seen in figure 20 below. 

Red lines are warm fronts, blue lines are cold fronts, and purple lines are occlusions. Notice 

how all the front positions mirror a key point in figure 16. 

 
Figure 20: Visualization of the final front classification for September 13th 2016, 12:00PM, 12 hour prediction, superposed 
onto the data set it was discovered from. 

6.6 Data generation 

This is the final step of the process, and it does not contain any technically or academically 

noteworthy elements. The derived list of fronts is translated into a plain text file with info 

about front type, direction and coordinates of all the positions of the front. This is the data 

type used by the meteorologists at StormGeo to visualize the detected fronts. This data file is 

the sole output of the system, and it represents the main result of the project: A set of 

automatically detected fronts, based on a specific time slice of weather data. This result will 

be further discussed below. 
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7 Results 
In this section I will present the results of the project, both technically, academically, and 

organizationally. This includes all results related to my two research questions, as well as the 

concrete use of the software currently by StormGeo. 

7.1 Overall system success 

The results presented in the following serve as the basis for answering the first research 

question: Is it possible to automatically locate and classify the fronts in a weather system? 

They are the outcomes of analyses of the observations made by meteorologists at StormGeo, 

gathered throughout January and February 2017, described in 5.3.2. In the evaluation they 

have compared the output of the system with manually drawn fronts for the same time period, 

comparing the relative strengths and weaknesses of both approaches. This relates most 

importantly to the identification of fronts, but some attention has also been given to the 

classification of front types. Throughout this subsection, results will be illustrated by figures 

like 21, below, showing the difference between the manual and automatic front detection 

procedures. 

When discussing results related to front identification, we consider the relative placement of 

front positions by the system (the location of the coloured squares in the figure), while front 

classification refers to the typing of the front positions (the colouring of the squares in the 

figure). 
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Figure 21: Comparison between automatic (top) and manual (bottom) front detection results for October 25th 2016. 

7.1.1 Front identification 

In general, we find that the front detection system excels at finding the approximate positions 

of the major front systems, but it is lacking when it comes to detailed placement, as well as 

some specific quirks. Figure 22 is a good example of this. 

This figure serves as an example to display many of the major findings from the evaluation, 

related to identification: 

The system shows good results in detecting where the major frontal systems are. We have a 

long, north/south oriented front on the west side, sweeping eastward, we have a swirling 

occlusion (purple coloured) in the south, and we have a small front in the south-east, that the 

system picks up rather well. 
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Figure 22: Comparison between automatic and manual front detection results for November 30th 2016. 

The system easily finds large, long and well-defined fronts. Once again the system to the west 

is a good example. We can see just from the gradient in the background image that this front 

is clearly identifiable in the data, and the system has no problems finding its general location. 

The system sometimes finds fronts that are not drawn by the meteorologist, but can still be 

considered correctly identified. The cold (blue) front in the center/east portion of the image, 

has some typical cold front characteristics (temperatures and pressure rising quickly around 

the front line), and should most likely be part of the frontal analysis, but it is missing from the 

manually drawn figure. This is just one example of how comparing directly with manually 

drawn fronts will not always provide a good basis to evaluate the system, since the manually 

drawn fronts are never 100% correct. 

The system has substantial problems with forking fronts. Once again looking at the system in 

the west, the meteorologists have drawn two classic cyclone structures, with a cold front 

forking into an occlusion and a warm front. Looking at the points where the manually drawn 
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fronts fork in different directions, the algorithm is usually unable to determine which lines 

should be connected, and at what angles fronts should intersect. Often we see that the fronts 

are not intersected at all, and that they form structures that are very unlikely to occur in 

nature. 

The system is often unable to draw a front on the “correct” side of an air mass. On the cold 

(white) air mass to the south, the system has drawn a swirling occlusion, even swirling in the 

correct, anti-clockwise direction, but it starts on the wrong side of the air mass. This gives a 

completely wrong image of how the occlusion is actually moving. 

 

 
Figure 23: Comparison between automatic and manual front detection results for September 7th 2016 (12PM). 

Figure 23 above highlights a different problem. While we also recognize that many of the 

previous observations also hold true here, there is another problem to consider. In the north-

western corner the meteorologist has drawn an occlusion as part of a classic, forking system. 

This front is not even hinted at, let alone fully dawn by the system. Looking at the 

background data it is easy to see why. The data set is almost completely uniform in this area. 
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If the edge detection algorithm were tuned to find a line here, it would also find hundreds of 

erroneous fronts in other locations in the same time slice. This is a case where the system 

struggles where the meteorologist has no problems finding a front. Such examples are 

common with the current version of the system, particularly with occlusions in colder regions, 

such as in this example. 

 

 
Figure 24: Comparison between automatic and manual front detection results for September 7th 2016 (12AM). 

On the other hand, we have some opposite types of problems, where the system finds fronts 

where it perhaps should not. In figure 24 above, the system finds four parallel fronts in the 

centre of the image. Only one of these are drawn by the meteorologist. This discrepancy 

appears several times in the test data set, but determining the correctness or incorrectness of 

the system in this case is far from a straightforward matter (see 8.1.2 for more). 

In figure 25 below, however, this judgement of correctness is much easier to make. Here we 

see that the system has discovered a vast amount of fronts compared to the meteorologist. 

Looking at the weather data behind this reveals the reason: Because the algorithm normalizes 
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the data before edge detection, to the same value intervals (0-200, see 6.2 for explanation), 

whenever there are no large gradients in the data, the smaller gradients will be artificially 

inflated to conform to the normalization process. This means that to the system, there are 

sharper lines in the representation than in the actual corresponding weather data, leading to a 

front identification that is too “eager”, that finds too many fronts. 

 

 
Figure 25: Comparison between automatic and manual front detection results for October 6th 2016. 

Although the results point to many flaws in the front identification, it is important to note that 

on a more general level, the algorithm performs rather well. When we consider finding the 

major front lines in a system, figures 21-25 all show that the system can perform this task 

quite comfortably in most cases. Although the majority of the presentation and discussion of 

the results are devoted to the details and discrepancies, one should not lose track of that 

higher-level success. Given that the details can be solved better, the basic structure of the 

algorithm already solves the general problem of front detection remarkably well. 
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7.1.2 Front classification 

When it comes to classification, the system does well on a few things, but still leaves much to 

be desired. The most glaring shortcoming is the sheer lack of warm fronts in the data. Figure 

26 is a very typical example of a classification. We see too many occlusions, and very few 

warm fronts, often none at all. Cold fronts are the only types that at this point I would 

consider sufficiently well classified. 

 

 
Figure 26: Comparison between automatic and manual front detection results for November 30th 2016. 

A second problem with classification is the uniformity of the classification. When an area has 

mostly occlusions, it tends to have only occlusions, and when an area has mostly cold fronts, 

it has almost always only cold fronts. The cases where the front type changes along the same 

front line are extremely rare in the automated results, while with the meteorologists, this 

occurs frequently. 
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7.2 Variable selection and weighting 

This section serves to provide data for answering the second research question: What features 

of a weather system are critical in locating and classifying fronts? In order to answer this 

question, we must look at how different weather variables influence the front detection 

process. A theoretical, perfect variable will have distinct and sudden changes in value if and 

only if there is a front at that location. In reality, no such variable exists. What we want to do 

then, is to find a combination of variables that together limits erroneous front identification. 

In this endeavour, I have considered 17 different weather variables, 7 at sea/surface level and 

10 higher up in the atmosphere. These are: 

 Geopotential height 

 Humidity at two levels (surface and atmosphere). 

 Precipitation. 

 Relative vorticity. 

 Temperature at four levels (surface and three different heights in the atmosphere). 

 Zonal wind velocity and meridional wind velocity at three levels (surface and two 

different heights in the atmosphere). 

 Air pressure adjusted to sea level. 

 Dew point temperature adjusted to sea level. 

These 17 variables form a fairly comprehensive set of weather features that could be used to 

identify fronts and changing air masses. Figures 27-39 display the value distributions for most 

of these variables for a given time, with the manually drawn fronts from the same time step 

superposed on top. I will explain why every variable is considered critical or not for front 

detection, and what weighting it has in the normalization process. It is important to note that a 

variable that I do not consider critical can still be useful in front detection, just not for the 

particular system I have developed. 
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Figure 27: Geopotential height compared with manually drawn fronts. 

Through conversations with meteorologists at StormGeo I learned that geopotential height is 

one of the variables commonly used by meteorologists to detect fronts, so it is no surprise that 

this variable correlates well with manually drawn fronts. An important feature of geopotential 

height is the relative lack of noise. As figure 27 shows, the value distribution is uniform and 

smooth, making it ideal for discovering major front lines. This is why geopotential height is 

considered a critical feature, and is in the variable set used by the system, with a high 

weighting as well. The only major fault with this variable is its inability to predict the location 

of occluded fronts (purple in the figure), which we can see occur in areas with fairly uniform 

geopotential height. This problem we saw highlighted in 7.1.1. 

 
Figure 28: Absolute humidity compared with manually drawn fronts. 
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Figure 29: Relative humidity compared with manually drawn fronts. 

 
Figure 30: Precipitation compared with manually drawn fronts. 

The humidity and precipitation variables should in principle be good indicators of frontal 

activity, as fronts tend to push moist air up in front of them, raising humidity and causing 

frontal precipitation (Ahrens 1994, p. 324). We see this pattern clearly in figures 28 and 30. 

Fronts tend to follow areas of higher humidity and precipitation. When it comes to relative 

humidity (figure 29), however, we see some of the same patterns as absolute humidity, but 

this effect is overshadowed by a problem shared by almost all surface level measurement: 

Noise. The major changes in relative humidity we can visually identify as being caused by 

geographical features, particularly the Sahara desert, and the Arabian and Iberian peninsulas. 

These features overpower any effect of the frontal situation. For this reason, absolute 

humidity is considered a critical identification factor, and it is in the variable set with a 

medium weighting, while relative humidity is not used at all. 

In the case of precipitation, there is undoubtedly a correlation between this variable and the 

location of fronts, and it should be considered a critical feature for identifying fronts. 
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However, the current front detection system has some limitations that leads to precipitation 

currently being excluded from the variable set: 

Firstly, precipitation values varies differently from the other variables. Where geopotential 

height for instance forms a step edge (Davis 1975) around a front, precipitation forms a roof 

edge, having gradients on either side of the front, rather than directly on it. This makes it 

counterproductive to add precipitation to the variable set, since it is uniform where the other 

variables vary, and vice versa. This means that precipitation would only serve to blur out the 

edges in the weighted average. 

Secondly, the location of a front relative to the precipitation field is dependent on the front 

type (Ahrens 1994, p.323). A warm front will typically only have precipitation in front of it, 

while a cold front will be in the middle of a precipitation belt. Since the system performs front 

identification before classification, adding precipitation to the variable set could lead to less 

accurate front identification. Therefore, precipitation is the only surface measured variable 

that should be considered a critical identification feature, but it is excluded from the variable 

set used by the system due to technical limitations. 

 
Figure 31: Vorticity compared with manually drawn fronts. 

Upon immediate inspection of figure 31, vorticity seems to yield a very noisy, chaotic data 

set. However, we see that wherever there is a front, there are distinct value changes. Where 

the rest of the data set has relatively little variance, around the fronts we find both the highest 

and the lowest vorticity values. This makes it possible both for the human eye and for edge 

detection to discover the major front lines. Because of this, vorticity is a critical identification 

factor, and it is in the variable set, albeit with a low weighting. 
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Figure 32: Temperature at 850hPa compared with manually drawn fronts. 

 
Figure 33: Temperature at 700hPa compared with manually drawn fronts. 

 
Figure 34: Temperature at 500hPa compared with manually drawn fronts. 
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Figure 35: Sea level temperature compared with manually drawn fronts. 

Temperature change is another telltale sign of a passing front. Since a front is the interface 

between two different air masses, and different air masses typically have different 

temperatures, a sudden change will often mean that a front can be found. In figures 33 and 34, 

we see that in the lower atmospheric levels, we can find the fronts using temperatures quite 

easily. We see a large, cold (white) air mass moving towards the south-east, forming a cold 

front, several thousand kilometers long. In the higher atmosphere (figure 32) and at the 

surface (figure 35) we can also recognize this cold front. Looking at the surface temperature, 

we see that this is probably a variable the meteorologist has used to draw this front, seeing 

how it follows the temperature gradient almost perfectly. 

However, in the cases of figure 32 and 35, the data is a lot more noisy, and likely more 

difficult for an automatic edge detector to use for finding the correct features. On the surface, 

once again, geographical features become overpowering, meaning that an edge detector will 

work well at sea, but poorly over land. Higher up in the atmosphere, other factors that do not 

directly influence the frontal situation, add unnecessary noise to the data. For this reason, 

temperatures at 500 and 700hPa are considered critical features for front identification, and 

both are used in the variable set with a medium weight. The measurement at 700hPa is given 

a slightly higher weight than 500hPa, as it generally shows sharper changes along the front 

lines. This is also apparent in the figures above. 
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Figure 36: Sea level meridional wind velocity compared with manually drawn fronts. 

 
Figure 37: Zonal wind velocity at 700hPa compared with manually drawn fronts. 

Wind speed and wind direction are also variables that change noticeably over a front line 

(Ahrens 1994, p.324), and it can theoretically be used to identify a front. However, as we can 

see from the examples of figures 36 and 37, wind is rarely uniform over large areas, and a lot 

of interregional noise can be seen. This is especially apparent at surface level, where 

geography plays an important role in shaping wind systems, but also in the lower atmosphere. 

This noisiness in wind data would only serve to blur out any noticeable front lines in the data 

set, and for this reason no wind variables are considered critical for front detection, and they 

are excluded from the variable set. 
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Figure 38: Sea level pressure compared with manually drawn fronts. 

Air pressure is another common variable used in front detection, but it is more commonly 

used in the form of geopotential height, which is already in the variable set. The problem with 

sea level pressure is the same as with other surface level measurements; The noise from 

coastlines are significant and disruptive. Ignoring this noise, the pressure variable highlights 

the major front lines decently, but because of this shortcoming it is not considered a critical 

variable, and is not included in the variable set. 

 
Figure 39: Sea level dew point compared with manually drawn fronts. 

Dew point is the final variable that was considered. Ahrens (1994) mentions dew point as a 

typical indicator of fronts, and comparing figures 35 and 39, we see that it also correlates 

greatly with temperature measurements. For this reason, it has the same problems as the other 

surface level variables, and it is not considered critical for the system or included in the 

variable set. 
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7.3 The system in use 

At the time of writing, StormGeo has not employed a version of the front detection system in 

active use. The system currently has the right input and output formats, and serves as an 

implementation of all the user stories defined in 5.2, but is not currently employed in a 

production environment. The two main reasons for this are: 

1. The system is not yet sophisticated enough to give consistently good results. 

2. Putting a new system into use requires time and effort, and this time and effort does 

not yet make sense in a simple cost-benefit analysis. 

Any concrete adoption of the system is therefore outside the time frame of this Master’s 

project.  

However, there is reason to believe that some further improvements to the system (see 8.3) 

would be sufficient for StormGeo to justify incorporating the system into the front detection 

process, firstly as a decision support tool for the meteorologists, later hopefully as a full 

automation of the front detection procedure. Further, some of the meteorologists have 

commented that the current output of the system could be of some help in the front detection 

process already at this stage, without major improvements to the algorithm. This is promising, 

as it shows the value of the type of the system I have developed, even with incomplete 

technical implementations. 

The user stories defined as the requirements for the system, were not sufficient to ensure a 

deployable, fully functioning product at the end of the development period. This is due to the 

relatively low sophistication and accuracy in implementation of some of the user stories, 

rather than their total omission. All six of the predefined user stories have been implemented 

and accepted. For this reason, the user stories still function as a basis for evaluating the 

system, and the development should be considered a success. The final result is a prototype 

that showcases the possibilities of the technologies used, but remains too unstable for full-

scale, real world use. The predefined functional requirements have been met, but further 

development is needed to reach the accuracy required for a system in full production.  
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8 Discussion 
In this section I will discuss the findings in the project, provide an answer for my research 

questions, and reflect on the utility and effectiveness of the methodological framework 

employed in the project. I will try to explain and/or hypothesise why the system performs as it 

does, and in what areas improvements would be most effective, concerning both the front 

detection system specifically and research into front detection in general. 

8.1 Research questions 

This subsection will explore and discuss the results of the project, in light of the defined 

research questions. This can be seen as a direct continuation of section 7. 

8.1.1 Front detection success 

The answer to the primary research question I believe to be fairly straightforward: Yes, it is 

definitely possible to automatically detect and classify fronts in a weather system. I do not, 

however, claim that the system developed in this project is a complete proof of this. I have 

previously outlined the main results of the algorithm, and they show that although the general 

front detection is quite strong, much is left to be desired of the accuracy and reliability of the 

detailed analysis. However, I will now argue that the problems with the current system are 

either obviously solvable, or an inherent problem for any front detection procedure, automatic 

or otherwise.  

The three important problems of forking fronts, drawing fronts on the wrong side of the air 

mass, and missing fronts (such as the “invisible” occlusion in the example earlier), is likely 

attributed to the choice of variables used by the system. In many cases, precipitation is a very 

important factor in finding the right front in these tricky scenarios, and the system does not 

currently use precipitation data (see 7.2 and 8.1.2). Further, a more sophisticated and context-

aware implementation of the front identification procedure in general would alleviate the 

majority of all these three problems. 

The issue of too “eager” identification is directly due to a weakness in the current 

normalization process, and would be solved with a more robust implementation, with a 

dynamically calculated normalization range. 
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In the case of parallel fronts, it is very difficult to separate correct and incorrect front 

identification. Often times, several parallel fronts actually exists. In some meteorological 

schools it is also customary to draw them all, while others consider this parallel drawing 

pointless, as it gives very little additional information about the weather system, only 

cluttering the visual representation. Whether or not to draw many parallel fronts close 

together depends therefore on who you ask, rather than the quality of the front detection 

procedure. 

The most important classification errors can be attributed to the current training set for the 

neural network that performs classification. This training set is rather small (around 5000 

entities) and uniform. It consists of all the manually drawn front points from September 5th to 

December 4th 2016. 5000 entities may seem like a large amount of training data, but given 

how noisy the domain is, it proves insufficient. Having 10 times the amount of training data, 

from a data set that is more spread out in time would almost certainly increase the accuracy. 

The majority of classification problems I believe we can trace back to two other factors: 

Firstly, the interpretation of the classified data is somewhat crude. This has the effect that 

single front lines are rarely split into different types even when they should have been 

(although this is also a result of an erroneously low classification rate for warm fronts). 

Secondly, since the front identification is not perfect, the training set for classification is 

based on points that are in slightly different locations than the ones the system finds. The 

training set consists of manually drawn fronts, which are being drawn slightly differently 

from the automatic ones, as we have just seen. Using a training set of one type to train on a set 

of a different type is not without problems. I believe, however, that with improved 

identification and a larger training set, the effects of this will be negligible. 

The combination of these potential improvements to the current system (which are detailed 

further under 8.3), I believe would produce a system that consistently detects front at the same 

level as a human meteorologist, and thereby likely verifies my research question. Further, we 

have also seen that the current prototype already is able to detect fronts that the 

meteorologists have missed, showing that not only should it be possible to make such an 

automatic front detection system, but also that this system could well perform better than 

expert meteorologists in both time and accuracy. 



62 
 

8.1.2 Critical detection factors 

The answer to the second research question, however, is not as clear cut as one could hope. 

The system I have made uses geopotential height, temperature, humidity and vorticity, while I 

have rejected many other variables for various reasons. My list of variables can by no means 

be considered an absolute definition of the critical factors for discovering a front. We know 

for instance that precipitation is a very good indicator of fronts, but it was not used in this 

project due to technical limitations of the edge detection technique. Many variables, if 

normalized for land/sea differences, would undoubtedly be useful as well. Most, if not all 

primary attributes of the atmosphere changes over a front, so almost any atmospheric 

measurement could be used to some extent to detect fronts. 

What features are critical can therefore vary greatly. Defining a set of variables that fully and 

solely can be used to detect fronts anywhere in the world at any resolution, does not seem to 

be possible. Some features work better in colder areas than in warmer areas, some work better 

in the opposite. Some work better on small scale, high resolution data, while other are better 

at detecting major front lines. What we can say for certain is that the density (pressure), 

energy (temperature) and water content (humidity, precipitation) in air masses are very good 

indicators of fronts, and that these variables combined can be used in a concrete front 

detection implementation for Europe and the Northern Atlantic Ocean. 

8.2 Methods 

Here I will highlight some issues and noteworthy points concerning the methodological 

frameworks I have employed in this project, both in the research and development domain. I 

will discuss what features were successfully employed and which should have been changed, 

employed differently or not employed at all. 

8.2.1 Design Science Research 

Following the DSR paradigm in this project has generally been useful. Answering my 

research questions through concrete design and development has made it possible to detect 

and understand concrete challenges related to front detection, while at the same time showing 

how familiar techniques and technologies can be sufficient to solve the task. Since this project 

originates in a need directly identified by the industry, employing a research strategy that 
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values the practical relevance of results highly has also been favorable. In 5.1 I discussed how 

the project would fit into the seven guidelines for DSR defined by Hevner et al. (2004). This 

can now be summed up as follows: 

1. Design as an Artifact: This guideline should be considered adhered to, trivially. The 

front detection system is a working, runnable computer program that produces testable 

result data. Although the system is not currently in active use, the end result of the 

project is an artefact. 

2. Problem relevance: This is explored in 5.1. The problem is a legitimate business 

problem in the industry, and a satisfactory solution would be of great interest from 

both an academic and business perspective. 

3. Design evaluation: The evaluation of the design is twofold. The evaluation of the 

output data and its quality is explored in 7.1 and 8.1.1, while the evaluation of the 

technical solution and implementation can be found under 8.3 and 8.4 below. 

4. Research contributions: The main research contribution provided by the project is 

the link between computer vision techniques and weather data processing. Concretely, 

the findings discussed in 8.1, grounded in the predefined research questions, should be 

considered the primary contributions of this project. 

5. Research rigor: This point is somewhat troublesome for the project. Due to the 

subjective nature and broad definition of fronts, comparing the results of manual and 

automatic front detection methods will always be subjective in nature. There is no 

definitive answer to the problem of front detection, and therefore, no fully quantifiable 

evaluation of front detection systems is possible. Expert evaluation, as I have used, 

should therefore be considered the most accurate form of evaluation. However, the 

evaluation should probably be based on the judgements of many meteorologists with 

different backgrounds, rather than just four from StormGeo. This would most likely 

yield more findings, as well as help to understand what views on fronts are shared 

among most meteorologists, and what views are entirely personal or culturally 

dependent. 

6. Design as a search process: In this respect, the project has not been a textbook 

example of DSR. Ideally, the project should have started with a less strict problem 
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definition, and allow for more time and space to explore the domain. As the project 

unfolded, the only “search processes” were related to the types of technologies used to 

solve the defined problem, rather than to the solutions themselves. For the most part, I 

have simply employed the most straightforward and most basic solutions whenever 

possible, in order to create a working artefact within the scope of a Master’s thesis. 

Given a bigger project and more resources, this search process of design could be 

emphasized much more. This is further discussed under 8.4. 

7. Communication of research: Given the requirements surrounding a Master’s degree, 

this communication is in total handled by the Master’s thesis and subsequent 

presentation. The project would also lend itself well to a shorter, more focused article, 

to reach a broader audience of researchers and practitioners. This has not been 

undertaken at the time of writing. 

Concerning the relationship between DSR and BSR, there does not seem to be any 

immediately obvious, testable hypotheses raised by this project that could easily be tested by 

a BSR project. The research domain is in my opinion too new and vague, and the technical 

implementation(s) are insufficiently sophisticated for this to be fruitful yet. More exploratory 

research is probably needed to better understand both the meteorological and technical 

domains before any useful theories can be derived. More on this in 8.4. 

8.2.2 System development methodology 

The motivations for my choices of system development methods are discussed under 5.2. 

Here I will go through the merits and shortcomings of the different techniques and methods I 

have used throughout development. 

Of the Scrum-like elements of my methodology, some have been more successful than others. 

The segmentation into two week sprints was useful to remain productive throughout the 

development period, as continuous short-term goals pushed me to keep producing 

functionality at a high pace. The day-to-day planning also worked really well, seeing as the 

development team consisted only of myself, and no issues with coordination could occur. 

Finally, the retrospective meetings at the end of sprints worked well. I was able to stay 

disciplined and perform retrospections after each sprint, even though I was alone in this most 

of the time. It helped me identify sources of waste and remove these continuously. 
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However, the meeting activities involving other stakeholders proved difficult to maintain. 

This was mostly due to the amount of stakeholders and their geographical distribution. One 

sprint review and subsequent planning was performed with the entire group of stakeholders, 

but most of the time they were held with only myself, or with either a representative from 

StormGeo or my supervisor at the university. This was problematic at times, but for the most 

part the problem was well defined, and the larger review and planning meetings set the 

agenda for longer periods of time. For this reason, all sprints were well planned and 

distributed, and the workload remained consistently high throughout the development period. 

The two general agile principles I focused most on maintaining was customer collaboration 

and responding to change. The first principle was difficult to maintain at times, since my 

contact points at StormGeo were, naturally, occupied with many tasks and projects, and did 

not always have much time to respond during the development periods. However, StormGeo 

are overall pleased with the results of the project, and the informal, day-to-day 

communication worked well. The second principle was for the most part irrelevant. The 

requirements for the front detection system underwent very little change between the final 

pre-project planning meeting and the end of the final sprint. Most of the organizational tasks 

involved implementing the already defined requirements, rather than making room for new 

ones. What did change underway was the choice of evaluation method, and this change was 

handled well by all parties. 

The lean elements of the methodology worked extremely well, almost without fault. The 

waste reduction process, through sprint retrospectives, continually improved efficiency and 

effectiveness of the development process. The visualized workflow in Trello and single 

Work-in-Progress item kept the work focused and under control. New functionality was 

completed and tested sequentially, rather than developed all together at the same time. This 

was especially important during the second development cycle, when there were no sprints to 

control the pace. 
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8.3 Problems and challenges 

There are a number of problems with the front detection algorithm at its current stage. This 

should be evident from the number of discrepancies discussed in the results (7.1). I will now 

present these problems and their potential solutions, in the order they present themselves in 

the algorithm. 

8.3.1 Data resolution and variance 

The current data resolution is one data point per 0.25 degrees, latitude and longitude. At 60 

degrees north, this equates to about 28 km per data point north/south and about 14 km per 

data point east/west. It is not currently known whether this resolution is ideal for discovering 

front lines. Furthermore, the system has only been used on weather data from the same 

geographical area over a relatively short time period (May to December 2016) so some 

experimentation with different resolutions, locations and time frames could produce 

significantly different results. 

8.3.2 Edge detection 

Concerning the edge detection, several problems are apparent: The algorithm is static, and 

often fails in extending and joining the correct edges. The problem with finding edges on “the 

wrong side” of air masses can also be attributed largely to the edge detection process. Several 

improvements could be made to remedy these problems: 

 Different types of edge detection, such as Laplacian or second derivative methods. 

 Dynamic thresholding, ensuring better results in more heterogenous data. 

 Smarter smoothing, helping the edge detection by maintaining stronger edges through 

smoothing. 

The choice of edge detection method is discussed in 5.4.1, and the work of Perona and Malik 

(previously discussed in 4.4) gives good ideas on how to improve the current algorithm. 

Further, the edge detection process has a more fundamental problem, namely that it is 

performed on an excessive abstraction of the raw data. For the sake of simplicity, the system 

first averages and normalizes the different variables into a single table, that is then subjected 

to edge detection. This is of course a significant source of error, and much detail is certainly 

lost during normalization. The selection of variables is treated as a linearly solvable problem, 
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although it most likely is not. Furthermore, the problem of absolute vs relative difference, 

where the gradients in the data no longer matches those of the original data files, stems from 

the normalization process and its lack of context awareness. There are several ways this could 

be improved, either by changing the order of operations in the algorithm, or by removing the 

normalization process altogether. 

The first option would still employ edge detection as the main technique for front 

identification, but performed before normalization. This would involve finding the edges 

present in each variable first, and then normalizing the discovered edges across the different 

variables (finding common edges), rather than the other way around (making a common data 

set). With this solution, the individual contributions of each variable would be easier to 

differentiate and consider. 

The second option also holds a lot of promise. The system could use a Convolutional Neural 

Network (CNN), in a manner similar to Xu et al. (explored in 4.3), rather than a purely linear 

normalization + edge detection algorithm. This could improve front identification greatly, by 

considering all possible contributing variables (rather than a defined subset) and employing a 

more generalized, context-sensitive algorithm. A CNN could also help detect several other 

features of weather systems, such as the air masses themselves, as well as the fronts between 

them. Such an improvement, however, would require a scope and time frame beyond that of a 

Master’s project. 

8.3.3 Line identification 

The line identification process is, as explained previously, not that well grounded in known 

techniques and accepted theories. Therefore it has its fair share of problems. Because of my 

decision to make the implementation as simple and straight-forward as possible, a decision 

rooted in the idea of a Minimum Viable Product from lean software development, many of the 

concrete solutions in the line identification process are largely ad hoc. This is to say that many 

have been chosen purely based on intuition, and that we only know that they seem to work 

well for their task. This is a good way to work when the goal is to get functioning software 

out quickly, but it is not the best way of creating the most accurate solution, and certainly not 

the most generalizable. 
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The primary step of identification, finding the exact edges drawn by the edge detection, is not 

so problematic, but all of the other steps, including removing parallels, removing insignificant 

lines, joining edges, defining key points and final smoothing, all have room for improvement, 

in that they should be more general, better defined and more clearly motivated. Since this step 

of the algorithm is where some knowledge of meteorology is being employed as well, the role 

of this expert knowledge could be better defined and perhaps expanded on. 

8.3.4 Classification 

The general structure of the classification process is well functioning. Classifying each key 

point based on its surroundings and using this classification to label each front makes sense. 

However, both of the steps involved in this process are in need of refinement. 

The classification of points using an artificial neural network is currently the source of most 

of the classification errors. Since its training set is fairly small and mostly contains data from 

a small time frame, the error rate in classification is unnecessarily high, especially in the case 

of warm fronts, which are almost never classified. The natural solution to this problem is a 

bigger and more heterogenous data set. Another problem is that since the system and the 

meteorologists find fronts at slightly different locations, using one to classify the other will in 

itself be a source of error, since the surroundings will differ for the two. This problem does 

not have an immediately available solution, but the source of the problem will be reduced 

with better handling of the previous stages in the algorithm. Finally, the choice of input 

variables for the classification is not fully explored. The current set of inputs gives a relatively 

low error rate compared to other, previously used sets, but there could quite possibly be other, 

more effective input set that are yet to be tested. 

The interpretation of the classification also has room for many improvements. Like with line 

identification, the implementation is in many parts ad hoc, and often too naïve to handle all 

cases. There are two major problems: The relative high weighting of the classification of the 

first point on a front (since all points are compared with its predecessors), and the failure to 

compensate for the strength of the classification score. When five points in a line have a very 

strong classification, while the other two have a relatively weak classification, the five should 

have a stronger influence on the final classification of the front. See figure 40 for an example. 

Top: Classification scores for a front with seven positions. Blue score is cold front, red score 

is warm front, purple score is occlusion. Middle: Current classification of the same front. 
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Notice how the score for warm front stays fairly consistent, and usually lower than the score 

for cold front, but it still influences the “weak” classification of the middle two positions. 

Bottom: “Ideal” classification of the same front. 

 
Figure 40: Example of classification. 

8.3.5 Additional data sources 

Currently, the system utilizes a rather small input data set to detect fronts. It uses five 

different weather variables from a single point in time, and no surrounding context. 

Considering that human meteorologists employ context extensively when drawing fronts, this 

is a significant source of error, and one that can be amended with improvements to the 

algorithm. In addition to performing edge detection “in a vacuum”, the system could use more 

data inputs to guide the front detection process, with the help of surrounding context. 

In particular, there are two types of context that are very important in front detection: 

1. Temporal context: Where fronts have been drawn in previous time steps are usually 

solid indicators of where to find fronts in the current time step. 
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2. Meteorological context: Knowledge of the nature of fronts and how they form and 

evolve are often useful in the front detection process. 

If the system could use more cues from these context domains effectively, it could serve to 

reduce inaccurate and erroneous detection significantly. 

The temporal aspect is undoubtedly very important. Although the primary concern of this 

project has been to discover patterns in spatially distributed data, the influence of the 

temporal in weather analysis should not be underestimated. When the meteorologists at 

StormGeo draw fronts, they do so on the basis of where the fronts were drawn in the previous 

time step. Fronts as entities form and evolve over time, so following their patterns from time 

step to time step could be helpful in predicting their locations in future time steps, both faster 

and more precisely. At the same time, one should be careful not to be carried away in this 

direction since, in theory, a front should be detectable solely on the basis of the weather as it 

is. Too much focus on previous time steps could to lead to new and different erroneous 

classifications. 

While the time aspect would be useful to improve speed and precision, using meteorological 

knowledge could help reducing the likelihood of incorrect detection. As we have seen in 7.1, 

the system often finds fronts that could not possibly exist in the real world. During line 

identification, we have used some knowledge about fronts, to make sure that no candidate 

fronts have heterogenous curvature, since this almost never occurs in a natural weather 

system. Other such general heuristics could help the system choose the the “correct” 

candidate fronts, and remove many of the erroneous ones. Naturally, the more heuristical 

knowledge the system incorporates, the less general it becomes, but as a tool to improve 

system performance, employing more rule-based selection when finding candidate fronts 

could be very useful. 

8.4 Future work 

There are a number of things related to my project that requires further study. Since the 

project is an exploratory study in a domain that is largely unexplored, there are both 

exploratory and behavioural (or theory-building) studies that could be performed as a 

continuation of, or tangential to, this project. 
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On the exploratory side, a natural progression would be to implement the improvements 

suggested in 8.3, and see how this affects the overall results. Further, making the algorithm 

more general, and testing it on different locations, different resolutions and more and different 

weather variables could be interesting. Such improvements could hopefully also help to 

cement my conclusions about the feasibility and merits of automatic front detection, by 

actually displaying its full potential. 

Another interesting direction would be to explore other novel uses of edge detection and other 

computer vision techniques, on non-images. In my project, I have shown that edge detection 

can be used successfully on a purely numerical representation of weather data, rather than an 

image representation. In some entity/feature recognition tasks, working with images can be an 

unnecessary complication. A good example of this is the earlier attempt at automated front 

detection (Ullman and Cornillon, 2000). Opening up computer vision to more diverse spatial 

problems could help in discovering better solutions to existing challenges, with tools that are 

already well-known and available. 

On the behavioural side, it could be useful to study a real world, full-scale implementation of 

an automated front detection system. This could reveal what the most useful features of such a 

system are, and help us learn more about how automation changes business processes, both 

generally and in weather analysis especially. Such a study is for course reliant on a better, 

more refined algorithm for front detection than the one described in this thesis. 

Finally, this project highlights a general problem with front detection, namely how difficult it 

is to evaluate. Even though fronts have a clear definition (the interface between different air 

masses), this is not enough to systematically evaluate front detection. All meteorologists will 

draw fronts slightly differently. This is because of two important problems: 

1. We do not have perfectly accurate data to pinpoint the precise location of fronts. 

2. What constitutes two different air masses, as well as the interface between them, is not 

always universally agreed upon. 

Because of this, front detection is never completely verifiable, since we cannot determine 

definitively whether or not there was a front at the point in time and space that we predicted. 

As apparent from the presentation of the results of my system, it is still possible to make 

judgements about what is good and bad front detection, but this will always require expert 

knowledge and human judgement. 
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A research project that tries to pin down an objective, general and data driven definition of 

different types of fronts could therefore be extremely interesting and useful. Given that the 

field could agree on such absolute definitions, automated detection systems would be much 

easier to design, and much easier to trust. Of course, such a definition may not be possible to 

make, but the possibility should certainly be explored. 
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9 Conclusions 
For my Master’s project, in the cross-section of weather data analysis, computer vision, 

system development and Design Science Research, I have developed a system for automatic 

front detection, in collaboration with weather service provider StormGeo. Throughout this 

thesis, I have presented and described this research project. I have given an overview of the 

problem domain and the research questions to be explored. I have detailed important findings 

in the literature, related to the project. I have explained and motivated the methodological 

framework of the project, from both a research and software development perspective. I have 

described in detail the front detection system and the algorithms it employs, and I have 

presented all results of the project and discussed these. 

In the end, I am left with an information system that shows that automated front detection is, 

most likely, possible. This system is not yet sophisticated enough to outperform human 

meteorologists, but I have found that with targeted improvements, this level of sophistication 

is likely achievable. I have also found that a large number of weather variables can be 

successfully used in front detection, but that no definitive set of variables can be defined at 

this point. 

This project has shown that already familiar techniques in computer vision and machine 

learning can be used successfully in weather data analysis to improve and extend the state of 

the art. At the same time, it has shown that the fuzzy nature of weather phenomena, like 

fronts, make the domain difficult to automate and evaluate. Further, we see that much work 

remains, both in terms of technical development and academic endeavor. 

Finally, I am pleased with the overall results of this Master’s project and thesis, and I hope to 

see this research area further explored in the coming years. I hope to have helped shed some 

light on the current state of automation in weather analysis in general, and front detection 

especially. I hope that new insights into technical implementation and domain-specific 

problems and challenges, highlighted in this thesis, will help pave the way for even better 

automated systems in the coming years. And lastly, I hope that researchers and practitioners 

continue to improve the technical and business processes involved in weather analysis, with 

the help of expert knowledge in both meteorology and artificial intelligence, as I hope to have 

done in the preceding. 
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Appendix A: Full Result Set 
 

Kildefil Person Tema Kommentar 

2017-01-10-1200 Beathe Front ikke tegnet 
Varmfront i Atlanteren i forbindelse med nytt lavtrykk 
ikke analysert i den automatiske deteksjonen. 

2017-01-09-0000 Beathe 
Front tegnet på 
feil sted 

Den automatiske analysen har kaldfront heile veien, 
og fronten ligger lenger vest. 

2017-01-11-0000 Beathe 
Front tegnet på 
feil sted 

Gammel okkludert front over Finnmark og Troms 
analysert delvis likt av meteorolog og automatisk. 
Den automatiske analysen mangler varmfront, og har 
derimot kaldfront over Nordsjøen øst for 
meteorologens varmfront. En annen kaldfront ligger 
vest for meteorologens kaldfront over Irland. De 
automatiske frontene ser altså ut til å ligge forskyvet 
østover, og er delvis av feil karakter. 

2017-01-08-1200 Beathe Front tegnet riktig 

Meteorologens analyse ser litt rar ut med kaldfront 
sørover til Vestlandet, og den automatiske er her 
kanskje hakket bedre med kaldfront fra Island mot 
Nordland. 

2017-01-10-0000 Beathe Front tegnet riktig 

Mye bra med frontsystem som strekker seg rundt et 
lavtrykk i Norskehavet og sørvestover over 
Vestlandet mot NV-Frankrike. 

2017-01-10-1200 Beathe Front tegnet riktig 
Okkludert front over Østlandet omtrent samme 
plassering av meteorolog og automatisk analyse. 

2017-01-10-1200 Beathe Front tegnet riktig Okkludert front over Skotland/England omtrent lik. 

2017-01-08-1200 Beathe Klassifisering Varmfront mangler generelt. 

2017-01-09-0000 Beathe Klassifisering Varmfront mangler generelt. 

2017-01-09-1200 Beathe Klassifisering 

Den automatiske analysen har kaldfront heile veien, 
og fronten ligger lenger nord over N-England og 
Irland. 

2017-01-09-1200 Beathe Klassifisering Varmfront mangler generelt. 

2017-01-10-0000 Beathe Klassifisering 

I den automatiske analysen er fronten derimot 
okkludert hele veien, mens meteorologen har 
kaldfront over Vestlandet mot kontinentet. 

2017-01-10-0000 Beathe Klassifisering Varmfront mangler generelt. 

2016-09-12-1200 Cecilie 
Ekstra front fra 
system Ekstrafront over UK. 
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2016-09-12-1200 Cecilie 
Ekstra front fra 
system 

System over Russland funnet, men front dratt lenger 
nord enn meteorologens forslag. 

2016-09-12-1200 Cecilie 
Ekstra front fra 
system 

Ellers litt "ekstrafronter" her og der hvor det egentlig 
ikke skjer noe. 

2016-09-12-1200 Cecilie 
Front tegnet på 
feil sted Halen på fronten ligger for langt vest. 

2016-09-12-1200 Cecilie 
Front tegnet på 
feil sted 

System ved Grønland funnet, halen på fronten dratt 
for langt vest. 

2016-10-12-0000 Cecilie 
Front tegnet på 
feil sted 

Lavtrykk ved Portugal og SV for Island. Front tegnet 
fra det ene lavtrykket til det andre rundt høytrykket 
som ligger mellom. De to lavtrykkene er ikke 
identifisert hver for seg som meteorologen har 
tegnet. 

2016-10-12-0000 Cecilie 
Front tegnet på 
feil sted 

Kaldfront funnet på Balkan, men dratt helt vest til 
Frankrike. 

2016-09-12-1200 Cecilie Front tegnet riktig System ved Island funnet 

2016-09-12-1200 Cecilie Klassifisering 

Meteorolog har markert tråg i Atlanteren, systemet 
har markert dette med en okkludert. Den viser tegn 
på at "det er noe der". 

2016-10-12-0000 Cecilie Klassifisering 
Tråg i Barentshavet nær Kola, markert som 
okkludert. 

2016-10-12-0000 Cecilie Klassifisering Ingen varmfront eller okklusjon funnet. 

??? Frode 
Ekstra front fra 
system Lang buet front tegnet for langt rundt 

2016-09-06 0000 Frode 
Ekstra front fra 
system 

Systemet finner en front nord-sør i midten av bildet. 
Ikke tegnet opp av meteorolog. 

2016-09-07 0000 Frode 
Ekstra front fra 
system 

Flere paralelle fronter. Kun én tegnet opp av 
meteorolog. 

2016-10-06 1200 Frode 
Ekstra front fra 
system Små forskjeller, veldig få fronter tegnet. 

2016-09-07 1200 Frode Front ikke tegnet 
Okklusjon i nord, ikke mulig å se i datasett. Veldig 
like temperaturer. Nedbør nyttig. 

2016-10-24 0000 Frode Front ikke tegnet Hull i okklusjon. 

??? Frode 
Front tegnet på 
feil sted 

Systemet finner okklusjon på "feil side", skal være på 
utsiden 
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2016-09-06 1200 Frode 
Front tegnet på 
feil sted 

Systemet bommer på en okklusjon, tegner videre ut i 
intet. 

2016-10-24 1200 Frode Front tegnet riktig Nesten funnet et perfekt klassisk system i vest. 

2016-11-30 0000 Frode Front tegnet riktig Lange, store fronter fungerer bra 

??? Frode Klassifisering 
Varmfronter blir klassifisert som fortsettelse av 
kaldfront 

2016-11-30 1200 Frode Klassifisering Kaldfronter blir klassifisert riktig. Ellers mye rart 

2016-12-03-1200 Ina 
Ekstra front fra 
system 

Front over Nord-Afrika via Spania og til området vest 
av Irland er feil, den finnes ikke. 

2016-12-04-1200 Ina 
Ekstra front fra 
system 

Frontsystem tegnet like ved Irland, det finnes ikke 
hos met. 

2016-12-31-1200 Ina 
Ekstra front fra 
system 

EN del okkluderte fronter over/ved Grønland, dette er 
inni ett høytrykk og feil. 

2016-12-31-1200 Ina 
Ekstra front fra 
system 

Frontsystem øst i Middelhavet, dedektert med altfor 
mange fronter. 

2016-12-02-1200 Ina Front ikke tegnet 
Gamle fronter/okkluderte fronter mangler over 
øst/nord Skandianvia 

2016-12-04-1200 Ina Front ikke tegnet Varmfront mangler over Sverige 

2016-12-27-1200 Ina Front ikke tegnet 
Lavtrykk med fronter over Baltikum, fronter ikke 
oppdaget av auto. 

2016-12-02-1200 Ina 
Front tegnet på 
feil sted 

En kald front over Spania/Portugal er tegnet uten at 
det skal være noe der. Det er ett frontsystem lengre 
vest. 

2016-12-03-1200 Ina 
Front tegnet på 
feil sted 

Auto har tegnet en lang kald front fra Svartehavet til 
Sverige. EN kald front skal det være over 
Svartehavet, litt lengre nord, men den skal ikke 
strekke seg til Sverige. 

2016-12-04-1200 Ina 
Front tegnet på 
feil sted 

Kaldfront over Svartehavet er for lang igjen, 
plassering over SVartehavet ganske riktig, tror 
meteorologen har tegnet den litt for langt nord 

2016-12-04-1200 Ina 
Front tegnet på 
feil sted 

Met oppdaget system vest-sørvest for Portugal. Auto 
har markert noen fronter, men feil plassering og 
klassifisering 

2016-12-27-1200 Ina Front tegnet riktig 
Kaldfront funnet like nord for Svartehavet, men igjen 
tegnet for lang. 
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2016-12-31-1200 Ina Front tegnet riktig 

Kaldfront strekker seg fra nordvest Russland via 
Skandinavia mot SKottland. Riktig klassifisering, men 
feil vei. Litt for langt nord. 

2016-12-02-1200 Ina Klassifisering 

Lang okkludertfront. Fronten er stort sett på rett sted, 
men feil klassifisering. Litt feil plassering over Norge, 
her deles fronten i to system, noe autofronten ikke 
har gjort. 

2016-12-03-1200 Ina Klassifisering Varmfront mangler generelt. 

2016-12-03-1200 Ina Klassifisering 

I velorganiserte lavtrykk der fronter skifter fra kaldt, til 
varmt til kaldt osv, tegner auto ofte en lang okkludert 
eller flere mindre oklkuderte. Det er blitt gjort med 
front som streekker seg fra Norge til Island og så 
sørvest i Nord-Atlanteren. 

2016-12-03-1200 Ina Klassifisering 
System vest-sørvest for Portugal er dedektert, men 
feil klassifisering. 

2016-12-04-1200 Ina Klassifisering 
Front som strekker seg fra Nord-Nordland mot 
Island, feil klasssifisering og litt for langt nord. 

2016-12-27-1200 Ina Klassifisering 

Klassisk frontsystem ved Island, dårlig fanget av 
auto. Varmfront mangler, delvis merket av en 
okkludert, men feil plassert. Kaldfronten er funnet, 
men feil vei og litt for langt vest. 

2016-12-31-1200 Ina Klassifisering 

Ubestemmelig frontsystem vest av Portugal. 
vanskelig å klassifisere, auto har market systemet 
emd en okkludert 
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Appendix B: Modified Canny Edge 
Detector 
/** 
* <p><em>This software has been released into the public domain. 
* <strong>Please read the notes in this source file for additional information. 
* </strong></em></p> 
* 
* <p>This class provides a configurable implementation of the Canny edge 
* detection algorithm. This classic algorithm has a number of shortcomings, 
* but remains an effective tool in many scenarios. <em>This class is designed 
* for single threaded use only.</em></p> 
* 
* Modified by Simen S. Karlsen to work on short[][] 
* 
* @author Tom Gibara 
* 
*/ 
 
public class CannyEdgeDetector { 
 
   //Statics 
   private final static float GAUSSIAN_CUT_OFF = 0.005f; 
   private final static float MAGNITUDE_SCALE = 100F; 
   private final static float MAGNITUDE_LIMIT = 1000F; 
   private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * 
MAGNITUDE_LIMIT); 
 
   //Fields 
   private int height; 
   private int width; 
   private int picsize; 
   private short[] data; 
   private int[] magnitude; 
   private short[][] sourceTable; 
   private short[][] edgesTable; 
    
   private float gaussianKernelRadius; 
   private float lowThreshold; 
   private float highThreshold; 
   private int gaussianKernelWidth; 
 
   private float[] xConv; 
   private float[] yConv; 
   private float[] xGradient; 
   private float[] yGradient; 
    
   /** 
    * Constructs a new detector with default parameters. 
    */ 
   public CannyEdgeDetector() { 
      lowThreshold = 2.5f; 
      highThreshold = 7.5f; 
      gaussianKernelRadius = 2f; 
      gaussianKernelWidth = 16; 
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   } 
 
   /** 
    * The data table used by this detector to 
    * generate edges. 
    * 
    * @return the source table, or null 
    */ 
   public short[][] getSourceTable() { 
      return sourceTable; 
   } 
    
   /** 
    * Specifies the data table in which edges 
    * will be detected. A source table must be set before the process method 
    * is called. 
    *   
    * @param a data table 
    */ 
   public void setSourceTable(short[][] table) { 
      sourceTable = table; 
   } 
 
   /** 
    * Obtains a data table containing the edges detected during the last call to 
    * the process method. 
    * 
    * @return a data table containing the detected edges, or null if the process 
    * method has not yet been called. 
    */ 
   public short[][] getEdgesTable() { 
      return edgesTable; 
   } 
 
   /** 
    * Sets the edges table. Calling this method will not change the operation 
    * of the edge detector in any way. It is intended to provide a means by 
    * which the memory referenced by the detector object may be reduced. 
    * 
    * @param edgesTable expected (though not required) to be null 
    */ 
   public void setEdgesTable(short[][] edgesTable) { 
      this.edgesTable = edgesTable; 
   } 
 
   /** 
    * The low threshold for hysteresis. The default value is 2.5. 
    * 
    * @return the low hysteresis threshold 
    */ 
   public float getLowThreshold() { 
      return lowThreshold; 
   } 
    
   /** 
    * Sets the low threshold for hysteresis. Suitable values for this parameter 
    * must be determined experimentally for each application. It is nonsensical 
    * (though not prohibited) for this value to exceed the high threshold value. 
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    * 
    * @param threshold a low hysteresis threshold 
    */ 
   public void setLowThreshold(float threshold) { 
      if (threshold < 0) throw new IllegalArgumentException(); 
      lowThreshold = threshold; 
   } 
 
   /** 
    * The high threshold for hysteresis. The default value is 7.5. 
    * 
    * @return the high hysteresis threshold 
    */ 
   public float getHighThreshold() { 
      return highThreshold; 
   } 
    
   /** 
    * Sets the high threshold for hysteresis. Suitable values for this 
    * parameter must be determined experimentally for each application. It is 
    * nonsensical (though not prohibited) for this value to be less than the 
    * low threshold value. 
    * 
    * @param threshold a high hysteresis threshold 
    */ 
   public void setHighThreshold(float threshold) { 
      if (threshold < 0) throw new IllegalArgumentException(); 
      highThreshold = threshold; 
   } 
 
   /** 
    * The number of pixels across which the Gaussian kernel is applied. 
    * The default value is 16. 
    * 
    * @return the radius of the convolution operation in pixels 
    */ 
   public int getGaussianKernelWidth() { 
      return gaussianKernelWidth; 
   } 
    
   /** 
    * The number of pixels across which the Gaussian kernel is applied. 
    * This implementation will reduce the radius if the contribution of pixel 
    * values is deemed negligable, so this is actually a maximum radius. 
    * 
    * @param gaussianKernelWidth a radius for the convolution operation in 
    * pixels, at least 2. 
    */ 
   public void setGaussianKernelWidth(int gaussianKernelWidth) { 
      if (gaussianKernelWidth < 2) throw new IllegalArgumentException(); 
      this.gaussianKernelWidth = gaussianKernelWidth; 
   } 
 
   /** 
    * The radius of the Gaussian convolution kernel used to smooth the source 
    * image prior to gradient calculation. The default value is 16. 
    * 
    * @return the Gaussian kernel radius in pixels 
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    */ 
   public float getGaussianKernelRadius() { 
      return gaussianKernelRadius; 
   } 
    
   /** 
    * Sets the radius of the Gaussian convolution kernel used to smooth the 
    * source image prior to gradient calculation. 
    * 
    * @return a Gaussian kernel radius in pixels, must exceed 0.1f. 
    */ 
   public void setGaussianKernelRadius(float gaussianKernelRadius) { 
      if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException(); 
      this.gaussianKernelRadius = gaussianKernelRadius; 
   } 
    
   //Runs edge detection 
   public void process() { 
      //Find size 
      width = sourceTable[0].length; 
      height = sourceTable.length; 
      picsize = width * height; 
      //Get data 
      initArrays(); 
      readData(); 
      //Perform smoothing 
      computeGradients(gaussianKernelRadius, gaussianKernelWidth); 
      int low = Math.round(lowThreshold * MAGNITUDE_SCALE); 
      int high = Math.round( highThreshold * MAGNITUDE_SCALE); 
      //Edge detection 
      performHysteresis(low, high); 
      thresholdEdges(); 
      //Write to new data table 
      writeEdges(data); 
   } 
 
   //Private utility methods 
   private void initArrays() { 
      if (data == null || picsize != data.length) { 
          data = new short[picsize]; 
          magnitude = new int[picsize]; 
 
          xConv = new float[picsize]; 
          yConv = new float[picsize]; 
          xGradient = new float[picsize]; 
          yGradient = new float[picsize]; 
      } 
   } 
    
   private void computeGradients(float kernelRadius, int kernelWidth) { 
      //Generate the gaussian convolution masks 
      float kernel[] = new float[kernelWidth]; 
      float diffKernel[] = new float[kernelWidth]; 
      int kwidth; 
      for (kwidth = 0; kwidth < kernelWidth; kwidth++) { 
          float g1 = gaussian(kwidth, kernelRadius); 
          if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break; 
          float g2 = gaussian(kwidth - 0.5f, kernelRadius); 
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          float g3 = gaussian(kwidth + 0.5f, kernelRadius); 
          kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * 
kernelRadius * kernelRadius); 
          diffKernel[kwidth] = g3 - g2; 
      } 
 
      int initX = kwidth - 1; 
      int maxX = width - (kwidth - 1); 
      int initY = width * (kwidth - 1); 
      int maxY = width * (height - (kwidth - 1)); 
       
      //Perform convolution in x and y directions 
      for (int x = initX; x < maxX; x++) { 
          for (int y = initY; y < maxY; y += width) { 
              int index = x + y; 
              float sumX = data[index] * kernel[0]; 
              float sumY = sumX; 
              int xOffset = 1; 
              int yOffset = width; 
              for(; xOffset < kwidth ;) { 
                  sumY += kernel[xOffset] * (data[index - yOffset] + data[index + 
yOffset]); 
                  sumX += kernel[xOffset] * (data[index - xOffset] + data[index + 
xOffset]); 
                  yOffset += width; 
                  xOffset++; 
              } 
               
              yConv[index] = sumY; 
              xConv[index] = sumX; 
          } 
      } 
      for (int x = initX; x < maxX; x++) { 
          for (int y = initY; y < maxY; y += width) { 
              float sum = 0f; 
              int index = x + y; 
              for (int i = 1; i < kwidth; i++) 
                  sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]); 
              xGradient[index] = sum; 
          } 
      } 
 
      for (int x = kwidth; x < width - kwidth; x++) { 
          for (int y = initY; y < maxY; y += width) { 
              float sum = 0.0f; 
              int index = x + y; 
              int yOffset = width; 
              for (int i = 1; i < kwidth; i++) { 
                  sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + 
yOffset]); 
                  yOffset += width; 
              } 
 
              yGradient[index] = sum; 
          } 
      } 
      initX = kwidth; 
      maxX = width - kwidth; 
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      initY = width * kwidth; 
      maxY = width * (height - kwidth); 
      for (int x = initX; x < maxX; x++) { 
          for (int y = initY; y < maxY; y += width) { 
              int index = x + y; 
              int indexN = index - width; 
              int indexS = index + width; 
              int indexW = index - 1; 
              int indexE = index + 1; 
              int indexNW = indexN - 1; 
              int indexNE = indexN + 1; 
              int indexSW = indexS - 1; 
              int indexSE = indexS + 1; 
               
              float xGrad = xGradient[index]; 
              float yGrad = yGradient[index]; 
              float gradMag = hypot(xGrad, yGrad); 
 
              //Perform non-maximal supression 
              float nMag = hypot(xGradient[indexN], yGradient[indexN]); 
              float sMag = hypot(xGradient[indexS], yGradient[indexS]); 
              float wMag = hypot(xGradient[indexW], yGradient[indexW]); 
              float eMag = hypot(xGradient[indexE], yGradient[indexE]); 
              float neMag = hypot(xGradient[indexNE], yGradient[indexNE]); 
              float seMag = hypot(xGradient[indexSE], yGradient[indexSE]); 
              float swMag = hypot(xGradient[indexSW], yGradient[indexSW]); 
              float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]); 
              float tmp; 
 
              if (xGrad * yGrad <= (float) 0 /*(1)*/ 
                  ? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/ 
                      ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * 
neMag - (xGrad + yGrad) * eMag) /*(3)*/ 
                          && tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * 
wMag) /*(4)*/ 
                      : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * 
neMag - (yGrad + xGrad) * nMag) /*(3)*/ 
                          && tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * 
sMag) /*(4)*/ 
                  : Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/ 
                      ? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * 
seMag + (xGrad - yGrad) * eMag) /*(3)*/ 
                          && tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * 
wMag) /*(4)*/ 
                      : (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * 
seMag + (yGrad - xGrad) * sMag) /*(3)*/ 
                          && tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * 
nMag) /*(4)*/ 
                  ) { 
                  magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : 
(short) (MAGNITUDE_SCALE * gradMag); 
                  //NOTE: The orientation of the edge is not employed by this 
                  //implementation. It is a simple matter to compute it at 
                  //this point as: Math.atan2(yGrad, xGrad); 
              } else { 
                  magnitude[index] = 0; 
              } 
          } 
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      } 
   } 
   private float hypot(float x, float y) { 
      return (float) Math.hypot(x, y); 
   } 
   private float gaussian(float x, float sigma) { 
      return (float) Math.exp(-(x * x) / (2f * sigma * sigma)); 
   } 
   private void performHysteresis(int low, int high) { 
      Arrays.fill(data, (short) 0); 
      int offset = 0; 
      for (int y = 0; y < height; y++) { 
          for (int x = 0; x < width; x++) { 
              if (data[offset] == 0 && magnitude[offset] >= high) { 
                  follow(x, y, offset, low); 
              } 
              offset++; 
          } 
      } 
    } 
 
   private void follow(int x1, int y1, int i1, int threshold) { 
      int x0 = x1 == 0 ? x1 : x1 - 1; 
      int x2 = x1 == width - 1 ? x1 : x1 + 1; 
      int y0 = y1 == 0 ? y1 : y1 - 1; 
      int y2 = y1 == height -1 ? y1 : y1 + 1; 
       
      data[i1] = (short) magnitude[i1]; 
      for (int x = x0; x <= x2; x++) { 
          for (int y = y0; y <= y2; y++) { 
              int i2 = x + y * width; 
              if ((y != y1 || x != x1) 
                  && data[i2] == 0 
                  && magnitude[i2] >= threshold) { 
                  follow(x, y, i2, threshold); 
                  return; 
              } 
          } 
      } 
   } 
 
   private void thresholdEdges() { 
      for (int i = 0; i < picsize; i++) { 
          data[i] = (short) (data[i] > 0 ? 0 : 1); 
      } 
   } 
    
   private void readData() { 
      for (int i = 0; i < sourceTable.length; i++) { 
          for (int j = 0; j < sourceTable[i].length; j++) { 
              data[(i * sourceTable[i].length) + j] = sourceTable[i][j]; 
          } 
      } 
   } 
    
   private void writeEdges(short values[]) { 
      if (edgesTable == null) { 
          edgesTable = new short[height][width]; 
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          for (int i = 0; i < edgesTable.length; i++) { 
              for (int j = 0; j < edgesTable[i].length; j++) { 
                  edgesTable[i][j] = values[(i * edgesTable[i].length) + j]; 
              } 
          } 
      } 
   } 
} 
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Appendix C: Artificial Neural Network 
/** 
* Contains a neural network that classifies points in a frontal weather system 
* Calculate(Point point) is called to run classification 
* 
* @author simen 
*/ 
public class EncogClassifier { 
   //Filenames for the network 
   public static final String filename = "network/testNetwork"; 
   public static final String trainingSetName = "network/trainingSet"; 
   //Network variables 
   BasicNetwork network; 
   MLDataSet trainingSet; 
    //Working data sets 
   public List<int[]> inputs = new ArrayList<int[]>(); 
   public List<int[]> outputs = new ArrayList<int[]>(); 
   //Input data 
   short[][] data; 
   int inputSize = 5; 
   int outputSize = 4; 
   //The instance 
   static EncogClassifier instance; 
    
   /** 
    * Constructs a classifier 
    * @param data the input data for the instance, may be null 
    */ 
   private EncogClassifier(short[][] data) { 
      this.data = data; 
       
      network = new BasicNetwork(); 
      network.addLayer(new BasicLayer(null,true,inputSize)); 
      //network.addLayer(new BasicLayer(new ActivationSigmoid(),true,5)); 
      network.addLayer(new BasicLayer(new ActivationSigmoid(),false,outputSize)); 
      network.getStructure().finalizeStructure(); 
      network.reset(); 
   } 
    
   /** 
    * Gets a classifier, new if none exists 
    * @param data the data for the network, may be null 
    * @param fromFile whether to load network from file or create new 
    * @return the Classifier 
    */ 
   public static EncogClassifier getInstance(short[][] data, boolean fromFile) { 
      if (instance == null) { 
          instance = new EncogClassifier(data); 
          if (fromFile) { 
              try { 
                  instance.network = (BasicNetwork) SerializeObject.load(new 
File(filename)); 
              } catch (ClassNotFoundException | IOException e) { 
                  System.out.println("No saved network found, creating new"); 
              } 
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          } 
      } else { 
          instance.data = data; 
      } 
       
      return instance; 
   } 
    
   /** 
    * Trains the network on a set of fronts 
    * @param record the fronts 
    * @param inputDirectly whether or not to add the points to the existing 
training set 
    * @param numberOfInvalidFronts how many non-fronts to be added to the set 
    */ 
   public void addToTrainingSet(FrontRecord record, boolean inputDirectly, int 
numberOfInvalidFronts) { 
       
      if (inputDirectly) { 
          loadTrainingSet(); 
      } 
       
      //For all fronts 
      for (int i = 0; i < record.getFronts().size(); i++) { 
          Front front = record.getFronts().get(i); 
          //If it is of relevant type 
          if (front.getType() != Front.SQUALL_LINE && front.getType() != 
Front.TROUGH ) { 
           
          //Set output values 
          int[] output = new int[outputSize]; 
          output[0] = front.getDirection(); 
          for (int j = 1; j < outputSize; j++) { 
              output[j] = 0; 
          } 
          switch (front.getType()) { 
          case Front.WARM_FRONT: 
              output[1] = 1; 
              break; 
          case Front.COLD_FRONT: 
              output[2] = 1; 
              break; 
          case Front.OCCLUSION: 
              output[3] = 1; 
              break; 
          default: 
              break; 
          } 
          //For each position 
          for (int j = 0; j < front.getPositions().size(); j++) { 
              //Generate input values and add to training set 
              Point point = front.getPositions().get(j).getPoint(); 
              if (Util.validPosition(data, point.getX(), point.getY(), 13)) { 
                  int[] input = inputFromData(point); 
                  if (inputDirectly) { 
                      MLDataPair pair = new BasicMLDataPair(new 
BasicMLData(copyFromIntArray(input)), 
                              new BasicMLData(copyFromIntArray(output))); 
                      trainingSet.add(pair); 
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                  } else { 
                      inputs.add(input); 
                      outputs.add(output); 
                  } 
              } 
               
          } 
          } 
           
      } 
       
      if (!inputDirectly) { 
           createTrainingSet(); 
      } else { 
          saveTrainingSet(); 
      } 
       
   } 
    
   /** 
    * Creates a new training set from the working data set 
    */ 
   public void createTrainingSet() { 
      int[][] ins = (int[][]) inputs.toArray(new int[inputs.size()][inputSize]); 
      int[][] outs = (int[][]) outputs.toArray(new 
int[outputs.size()][outputSize]); 
       
      // create training data 
      trainingSet = new BasicMLDataSet(copyFromIntArray(ins), 
copyFromIntArray(outs)); 
   } 
    
   /** 
    * Copys a data set of ints to a data set of doubles 
    * @param source the source table 
    * @return the double table 
    */ 
   private double[][] copyFromIntArray(int[][] source) { 
       double[][] dest = new double[source.length][source[0].length]; 
       for(int i=0; i<source.length; i++) { 
          for (int j = 0; j < source[i].length; j++) { 
              dest[i][j] = source[i][j]; 
          } 
       } 
       return dest; 
   } 
   private double[] copyFromIntArray(int[] source) { 
       double[] dest = new double[source.length]; 
       for(int i=0; i<source.length; i++) { 
              dest[i] = source[i]; 
       } 
       return dest; 
   } 
    
   /** 
    * Saves a training set to File 
    */ 
   public void saveTrainingSet() { 
      EncogUtility.saveEGB(new File(trainingSetName), trainingSet); 
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   } 
    
   /** 
    * Gets a training set from file 
    */ 
   public void loadTrainingSet() { 
      trainingSet = EncogUtility.loadEGB2Memory(new File(trainingSetName)); 
   } 
    
   /** 
    * Trains the network down to a given error threshold 
    * @param threshold 
    */ 
   public void doTraining(double threshold) { 
      //Save the current training set 
      saveTrainingSet(); 
      //Train the neural network 
      final ResilientPropagation train = new ResilientPropagation(network, 
trainingSet); 
      int epoch = 1; 
      do { 
          train.iteration(); 
          System.out.println("Epoch #" + epoch + " Error:" + train.getError()); 
          epoch++; 
          } while(train.getError() > threshold); 
      train.finishTraining(); 
      //Save the network 
      try { 
          SerializeObject.save(new File(filename), network); 
      } catch (IOException e) { 
          e.printStackTrace(); 
      } 
      saveTrainingSet(); 
   } 
    
   /** 
    * Classifies a single point 
    * @param point the point to classify 
    * @return the classification 
    */ 
   public double[] calculate(Point point) { 
      //Format input 
      int[] input = inputFromData(point); 
      MLData in = new BasicMLData(copyFromIntArray(new int[][] {input})[0]); 
      //Get output 
      final MLData output = network.compute(in); 
      double[] out = new double[outputSize]; 
      for (int i = 0; i < out.length; i++) { 
          out[i] = output.getData(i); 
      } 
       
      return out; 
   } 
    
   /** 
    * Tests the performance of the network on a sample of the test data 
    */ 
   public void test() { 
      //Test the neural network 
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      System.out.println("Neural Network Results:"); 
      int count = 0; 
      for(MLDataPair pair: trainingSet ) { 
          if (count % 10 ==0) { 
              final MLData output = network.compute(pair.getInput()); 
              DecimalFormat outputFormat = new DecimalFormat("0.0000"); 
              //Print results 
              System.out.println(pair.getInput().getData(0));     
              for (int i = 1; i < 5; i++) { 
                  System.out.print(pair.getInput().getData(i) + ", ");     
              } 
              System.out.println(); 
                   
              for (int i = 0; i < outputSize; i++) { 
                  System.out.print("actual=" + 
outputFormat.format(output.getData(i)) + 
                        ",ideal=" + pair.getIdeal().getData(i) + ", "); 
              } 
              System.out.println("");     
          } 
          count++; 
      } 
      Encog.getInstance().shutdown(); 
   } 
    
   /** 
    * Transforms a given point to a set of input variables for classification 
    * @param point the point to classify 
    * @return the input data for the network 
    */ 
   int[] inputFromData(Point point) { 
      //Coordinates 
      int x = point.getX(); 
      int y = point.getY(); 
      //Date set to fill 
      int[] result = new int[inputSize]; 
      short base = (short) (data[x][y]); 
      //First value is the value of the point 
      result[0] = base; 
      //Values 2-5 are the rates of change horizontally, vertically and in both 
diagonals through the point 
      result[1] = (int) (data[x][y + 10] - data[x][y - 10]); 
      result[2] = (int) (data[x + 10][y] - data[x - 10][y]); 
      result[3] = (int) (data[x + 7][y + 7] - data[x - 7][y - 7]); 
      result[4] = (int) (data[x - 7][y + 7] - data[x + 7][y - 7]); 
       
      return result; 
   } 
} 
 


