Nonlinear feedback shift
registers and generating of
binary de Bruijn sequences

Christian Ebne Vivelid

November 21, 2016

Master’s thesis

Department of Informatics

University of Bergen

Introduction

Cryptology is the science of hiding the meaning of a message by concealing it, so
that it is hard to find the meaning for others than the intended receiver. There
are mainly two ways of doing this, one is to use different words in the message
instead of the real one. This is called using code words. The other method
is called using cipher and is performed by changing the individual characters
of the message in an orderly way. This process is called encryption, and the
process of retrieving the original message is called decryption.

The original message is called the plaintext and the encrypted plaintext is
called ciphertext. Ciphers can be further divided into two types of ciphers,
stream ciphers and block ciphers. Block ciphers takes a number of plain text
characters and a key to produce the cipher text. While stream ciphers a uses
a key and some kind of generator to produce a pseudo random sequence of
character that is uses with the plaintext, to produce the ciphertezt.

Stream ciphers

A sequences is a number of consecutive characters. E.g. a number 1563 is a
sequences of the characters 1,5,6,3. And the word cipher is a sequence of the
characters c,i,p,h,e, r. The simplest sequences are those that only contains only
two different characters, we call such a sequence binary. The notation a “bit” is
used to refer to either a 0 or a 1, and all binary sequences can be expressed by
bits by swapping the two original characters for 1 and 0. It is a well known fact
that every sequence can be represented by a sequence of bits, by having a number
of subsequent bit represent one of the characters of the original sequence.

The binary sequence generated by a generator and a key is called a key
stream, and is a pseudo binary random sequence. Then a plaintext can be
encrypted be performed an operation called ezclusive or between the plaintext
and the key stream. This operation is that bit number i of the ciphertext is 1,
if bit number i of the plaintezt and the key stream are different bit (e.g. 0 and
1). If they are the same (e.g. 0 and 0) then it is 0. The ciphertezt can then be
sent through an insecure channel, and the receiver can decrypt the ciphertext
by generating the same key stream and use the exclusive or operation between
them to produce the plaintext. This process is illustrated in figure 1 below.

Any cipher must have a good security, and while it is generally hard to clearly
specify the criteria for this. There are some known ways to attack stream ciphers
based on some properties. So if the cipher does not have these properties, it
should be relatively secure. One of these properties is randomness distribution.
If there is a clear and simple pattern to the sequence, it is quite easy to break
it. Or if the sequence can be found by simply guessing or using a small part of
the sequence to find the rest.

Key Key

Pseudo random Pseudo random
generator generator
Keystream Keystream
Plaintext N Ciphertext N Plaintext
U A

Figure 1: Stream cipher model

In this thesis we will look at a way to construct a generator that produce a key
stream with a high period and complexity. But first we will have to look at a
type of generators that is commonly used in stream ciphers, it is a device called
a feedback shift register (FSR).

There is two types of these, Linear feedback shift register (LFSR) is one
of them. The theory of LFSR is largely complete and it is easy to generate
long sequences with many good properties from LFSRs. But they are easily
recognized, so they have a relatively low security. The other type is Nonlinear
feedback shift register (NLFSR) that can be very hard to recognize, but theory
of NLFSR is largely incomplete. The problem of generating a special type of
sequences from NLFSR called de Bruijn sequences be the main focus of these
thesis.

First the two things that determine the generated sequence of a FSR is the
feedback function and the initial state. The feedback function is a Boolean
function that determine the next bit of the sequence based on some of the
previous bits of the sequence. The initial state is the first n bits of the sequence,
that is set at the start.

Sequence have 3 important properties, which is period, complexity and dis-
tribution. Period is the number of bits of the sequence before it starts to repeat
itself. Complexity is a measurement on how many bit is needed to find the
sequences from a part of the sequence and some other information. Distribu-
tion is the difference of the number of 1’s and 0’s in the sequence. Ideally the
distribution should be zero and the complexity the whole of the sequence.

Overview for this thesis

The main purposes of this thesis is to give a light run through of generally FSR,
and a thorough look at NLFSR and de Bruijn sequences. There properties and
ways to generating them. Finally we will present a method to construct de
Bruijn sequences and a hardware implementation of this method. That uses
O(log3n) operations and a total of O(n -logan) components to generate a bit of
a de Bruijn sequence of order n from another one of order m.

This method generates 2"~ ™ uniquely different de Bruijn sequences, de-
pending on a chosen binary sequence of length (n — m), where every different
sequence correspond to a unique de Bruijn sequence of order n. For every de
Bruijn sequence of order m the set of 2"~ unique de Bruijn sequences of order
n, have no common elements with any other of the sets. The number of de
Bruijn sequences of order m is 22m*1_m, and the total number of de Bruijn
sequences of order n that can be generated by this method from all de Bruijn
sequences of order m is 2n—m . 22" '—m — 92" ' 4n—2m

In part 1 we will look at the general properties of FSRs and LFSR. Part
2 continues by looking at the basic properties of NLFSR and part 3 contains
more advanced topics about NLFSR. Part 4 details the known algorithms to
find de Bruijn sequences and finally part 5 present a method to construct de
Bruijn by using the inverse D-homomorphism and a hardware implementation
of this method is presented.

1 FSR

The theory of LFSR is largely complete, and it is possible to deduce the com-
position and properties of any LFSR [20], [24] and [11]. They also share some
of the same properties with NLFSRs and since LFSRs can be used to create
NLFSR with specific properties, a short overview about them will be given in
this section.

There are two types of FSR, Galois and Fibonacci. We will mainly be looking
at Fibonacci F'SR through most of this thesis and only briefly touch upon Galois
FSR in the latter half. A feedback shift register (FSR) consist of a number of
memory cell, that each contain a binary bit (either 1 or 0).

The cells are numbered from 0 until (n — 1), and FSRs are usually divided
into different sub sets depending on the number of memory cells. Which can be
referred to as number or length/size, but in this thesis the term order will be
used to refer to the number of memory cells of a FSR.

We will use the notation (xg,x1,x2,...,T,—1) to refer to the binary values
of these cells and call this the state of the FSR. x; refers to the value binary
value of memory cell ¢ and call z; one of the state variable of the FSR. The
state variables of a FSR is referred to as the state of the FSR. The values of the
memory cells changes every time a signal called the clock signal is sent to FSR.
We call this processes to “clock” the FSR. For the n — 1 first cells, the cell value
for cell ¢ changes to that of cell 7 + 1:

Ti=Tiy1 :0<i<n—-2

For cell number n — 1, its new value is determine by a Boolean function f that
depend on the current state of the FSR:

Tpn—1 = f(m()vxla ~'~axn71)

The output sequence from an FSR can be any one of the memory cells, one can
take one bit (e.g. xo) for every clock of the FSR and then this is the sequence of
the output bits of the FSR. This sequence is determent by the Boolean function
and the initial state of the FSR. The initial state of a FISR is the value of memory
cells at the start.

1.1 LFSR and Sequences
Cycles and period

A cyclic shift of a sequence is the original sequence where all the entries of the
sequence have been moved to the entry on the left from the original position.
Except for the first entry, that is instead moved to the last entry.

Definition 1. Given a sequence S = (sg,S1,...,Sn—1), & single cyclic shift
of this sequences is E(S) = (s1,82,...,8n-1,50)- A ith cyclic shift E(S) =
(3i75i+17~-~75i—275i—1)-

The period p of a sequences S is the smallest positive integer, such that:

EP(S) = (Spy Sp+1,--s Sp—2,Sp—1) = S

A sequence S can be shorten if p < n, to a cycle C = (so,s1,...,5p—1). The
original sequence S can be reconstructed from C by treatingC n times. Use the
term “cycles/sequences generated by a FSR” to refer to the set of all the possible
cycle/sequences generate by a FSR. All cyclic shift of a sequence /cycle will not
be treated as different sequences/cycles as the structure is identical, and it is
simple to derive all cyclic shift of a sequence/cycle of a sequence/cycle.

ANF and recursive Boolean function

The algebraic normal form (ANF) of a Boolean function f: {0,1}"™ — {0,1} is
an n-variable polynomial in GF(2) on the form:

_ 2" —1 10 11 tn—1
flxo, oy Tno1) =25 i xgd -l o,

¢; € {0,1} and (ig?;...in—1) is the binary expression of ¢ with iy being the most
significant bit and 4,_; being the least significant. This form is used for this
thesis and it may be presume that any function is on ANF form if nothing else
is stated.

The total number of all possible Boolean functions is 22", of these only 2" are
LFSR. A Boolean function can be simplified by introducing sub functions, that
is a function f(xg,x1,...) may be expressed as f = h(xg,z1,...) + g(zo, z1, ...).
Here f is expressed by the two sub functions h and g. Define term as any sub
function that does not contain any addition modulo 2. E.g. given a Boolean
function f(zg,x1,22) = 2122 o ® 1, then x1, 1 and z; - 22 are all the terms
of f. Note that a term is a sub function, but not all sub functions are terms.

Characteristic polynomial of a LFSR

All LFSRs have a linear feedback function, meaning that all parts of the function
can only depend on up to one of the n state variables. So a LF'SR can have any
of the variables xy until x,,_; as a term of its feedback. But it cannot contains
any term on the form x;-...-z;, 0 < i,5 < n—1. So there is n+1 possible terms,
that can be a part of the feedback function. Then all possible combinations sum
up to:

Z (T =

A characteristic polynomial is an other way to represent a LFSR and it is in a
one-to-one and onto relation to linear feedback functions. Meaning that every
linear feedback function have a unique characteristic polynomial and vice versa.
Below in figure 2 is a LFSR with the feedback function f(zg,x1,...,2n-1) =
LoD Tp—_2®xn,—1 and this corresponds to a the characteristic polynomial f(z) =
[N L

A
N2

output
- - " —
X M X H X . X

Figure 2: A LFSR

The relation between a characteristic polynomial and the corresponding linear
feedback function is as follows:

fl@)=cr-a"+ca- 2" .+t =

C c Cn—1
f(xo, 21,y Tpe1) =2 D2 @ ... D2, | Dy

Good graph

The Good graph (also called de Bruijn graph) is a graph over 2" vertexes, where
each vertex represent one of the possible states of a FSR with order of n. All
the vertexes have two outbound edges and two inbound edges. The outbound
edges represent the register changing its state to one of the two possible next
state, and the inbound edges represent the two possible previous state.

So any sub graph of this that satisfy the condition that all vertexes have
only one outbound edge, correspond to a FSR. The notation B, is used to refer
to the Good graph over 2" vertexes or for FSRs of order n. A FSR of order n
is said to be in B,,. Below in figure 3 is the Good graph for order 3, Bs.

/ooo\
001 100

010
T 1

101

011 110

\\\“ﬂ 111-#’//]

O

Figure 3: Good graph for Bj

Singular and non-singular

A FSR with a feedback function f is called singular if there is at least one pair
of conjugate states S = (so, 81, ..., Sn—1) and Con(S) = (5o, $1,--., Sn—1) such
that f(S)) = f(Con(S)). So there will be at least one state (s1,..., Sp—1, f(S5))
that has two predecessors.

This is illustrated under in the graph on the right, where the state (1,0, 1)
have two predecessors (0,1,0) and (1,1,0). If there is no such pair, then the
FSR is called non-singular. All states will then only have one unique predecessor
and successor. So if the function is non-singular, then all initial states of the
FSR will generate a cycle.

An illustration of this is shown in the graph below on the left. That is the de
Good graph for f(xg,z1,22) = 29D x1 D122, that generates the cycles (0,0, 0)
, (0,1,0,1,1,0) and (1,1,1). Any sub graph of the Good graph that satisfy
the condition that all vertexes have only one outbound edge and inbound edge,
correspond to a non-singular FSR.

Q) Q

000 000 H\\\\

001 100 001 100
010 010
1 I
101 101

011 110 011 110
111 111

O @)

Figure 4: Singular and non-singular sub graphs of Bj

Theorem 1. A FSR is non-singular if and only if its recursive feedback function
f is on the form f(xo,21,...,2n—1) = o D g(T1, ..., Tp—1)-

For a FSR to be non-singular any to conjugate must have unique successors, but
the only difference is the first state variable zy. So the feedback function must
depend on xq for it to be non-singular. All the conjugate states successors have
to be unique, so the term xy have to be independent of the rest of the terms.
As this will make it impossible for f(S) = f(Comp(S)) because the difference
in the first bit will complement the result of the recursive function.

1.2 Maximum-length LFSR and M-sequences

LFSRs can be divided into two specific set, the set of all LF'SR that can generate
a maximum-length sequence of 2" — 1 and the set of the rest of LFSRs. @
LFSRs of order n can generate a maximum-length of 2" — 1(¢ is Eulers totient
function).

Finding a LFSR that generate a maximum sequence is relatively simple,
because a maximum-length LFSR will have a characteristic polynomial that is
primitive. And a primitive polynomial have to be irreducible. A polynomial
p(z) is irreducible if and only if:

p(x) = f(x) - g(x), g(x) # f(x) and 1 < degree(g(x)), degree(f(z)) (2)

An irreducible polynomial p(z) is primitive if:

(" =1/ £ 1mod(p(z)), for all prime factors g; of 2" — 1 (3)

So it is relatively easy to check if a polynomial is primitive, and the probability

n

of randomly selecting a primitive polynomial by chance is ¢(22"—1> R % if no

additional analyze is performed. So as long as n is not to big,nthe process to
find a LFSR that can generate a maximum-length sequence is relatively easy.

The sequence generated by such a mazimum-length LFSR is called an M-
sequence. They have some useful and presumed unique properties, that give
the M-sequence good pseudo randomness. We will examine some of these in the
next sub sections.

Golombs randomness postulate

All sequences generated by any FSR is predetermined, but this can make them
predictable. We need way to determine if a generated sequence will look ran-
dom, that there is no clear overall pattern to the sequence generated. The
Golumbs randomness postulates are 3 rules that ensure that any sequence that
follows them have a good pseudo randomness. That they will look and have
relatively the same properties as a truly random sequence of bits, while still
being predetermined.

Definition 2. A Run is a number of consecutive 0’s or 1’s. A Block is a Run
of 1’s. A Gap is a Run of 0’s.

Postulate 1. The number of zeros and number of ones differ by at most one
during a period of the sequence.

Postulate 2. Half of the Runs in a full cycle have length 1, one 1 of all Runs
have length 2, % have length 3 etc, as long as the number of Runs exceed one.
Moreover, for each of these length there are equally many Gaps and Blocks.
Postulate 3. The out of phase auto-correlation of the sequence always has the
same value.

All M-sequences obey and are the model for these postulates.

This 3 conditions provides that pseudo randomness is guarantied and therefore
is usable for simulating true randomness. In the next section we will look at the
property correlation and a special case of correlation named auto-correlation.

10

Correlation

Correlation is a measurement of the similarity of two phenomena. In this thesis
correlation is used on binary sequences, but it can also be used to measure all
kinds of quantifiable phenomena. Given two sequences S; and Sy of length [,
the correlation between them is an integer on the interval —! to . Where a
correlation of [means that the sequences are identical and —I that they are
each others complement. If it is 0, then there is no bias.

The correlation between two sequence C(S1,S2) =1 — 2- D(S,52), where
D(S1,52) is the number of sequence bit of S; and Sy that are different. E.g.
the two sequences S; = (1,0,0,1,1) and Sy = (0,0, 1,1,0) have a correlation
C(851,5)=5—-2-D(5,5)=5—-2-3=-1.

Auto-correlation of a sequence S is the correlation between the sequence
and a cyclic shift of itself. Denote this by Cs(i) = C(S, E‘(S)), and there
is [possible auto-correlation values for the [unique shift. One of the most
interesting property of a sequence is the maximum auto-correlation of a sequence
except for C, (0)

The auto correlation of an M-sequence m of order n is:

C(0) =27 — 1

Con(t) = —1, if t # 0mod(2" — 1)

So M-sequences satisfies the 3rd of Golumbs randomness postulate.

Linear complexity

Definition 3. The linear complexity of a binary sequence is the minimal pos-
sible order for a LFSR that can generate it. Denoted L(S) for the linear com-
plexity of the sequence S.

For any sequence S generated by a LFSR, at most 2 - L(S) bits of the
sequence is needed to find a LFSR that can generate the whole sequence by
using the Berlekamp-Massey algorithm [17]. That gives a minimal LFSR that
will generate the entire sequence. This means that the security of a depend on
the linear complexity of the key stream. In addition to other properties of the
key stream, that also have to be sufficient enough to provide the desired level
of security.

11

Berlekamp-Massey algorithm

Given a binary sequence S = (sg, S1, ..., Sn—1), and the nth discrepancy d,is:

dp =8, DC1Sn—1D ... DCLSn—_1,

The following algorithm produces a characteristic polynomial fg that generates
the sequence S.

1. If S =(0,0,...,0), then L(S) =0 and fs = 1. If S = (0,0,...,0,1), then
L(S)=n+1 and fs can be any LFSR of length n.

2. Else, if d, =0, then L,, = L, _1and f, = fr_1.
3. If d,, =1, then:

L1 Lp_1, Ln > N/2
" n7LTL—17LTLSN/2

Let m be the largest integer such that L,, < L,_;.

G AT o if Ly > N2
n xn—Q*Lnfl + fm7 Zf Lp—1 < N/2

it is also possible to solve the problem of finding the generating polynomial P(x)
for a sequence of linear complexity L by solving a system of linear equation.
With a time complexity of O(n?), that can be further optimized to O(n -logan).
This is shown in matrix form below in figure 5.

Figure 5: Matrix for finding the generating polynomial for a sequence

S0 S1 Sn—1 &) Sn
51 52 Sn C1 Sn+1
Sp—1 Sn Son—2 Cn—1 Son—1

Cycle structure

Any non-singular Boolean function f will generate a number of cycle, that may
be of different length.

Definition 4. Two Boolean function f; and fo of the same order have the same
cycle structure if and only if they have the same number of cycles of length 4,
for all .

An example of cycle structure is de Bruijn sequences. It is also possible to
define more specific structure, that have more requirements in addition to cyclic
structure. E.g. maximum-length LFSR all have the same cycle structure and
have the cycle of all zeroes.

The are methods to determine the cyclic structure of LFSRs, based on the
properties of its characteristic polynomial. As this polynomial can be polyno-
mial reduced to its irreducible polynomial factors and based on this properties
can be deduced. E.g. if the set of irreducible polynomial factors contains some
multiple factors f(z), it is possible to find the cycles generated by f(x)* from
looking at the cycles of f(z). For any two polynomial f(z),h(x) it is possible
to find the cycles generated by f(z) - h(z) from looking at the cycles generated
by f(z) and h(z). So it is possible to find the cycles for any LFSR form its
polynomial irreducible factors.

2 Basic properties of NLFSRs

A nonlinear feedback shift register is a F'SR which feedback function contains
at least one term that is a factor of multiple state variables (e.g. z1 - z2).
This increases the total number of possible feedback function when compered
to LFSR, and it is also makes it possible to have linear complexity higher than
n. Which is the upper limit for the linear complexity of a sequence generated
by a LFSR of order n, while sequences generated by a NLFSR of order n have
an upper bound of 2" — 1. In the figure below is a NLFSR with the recursive
function x,,_1 = T, D x,_1BxTy_2T,_3, that can also be expressed by a feedback
function f(xo,Z1, ..., Tn-1) = To D Tp—1 B Tp—2 @ Tp_3

A
N2

Output

X X | X2 X,

Figure 6: A NLFSR

13

2.1 Cyecle joining and splitting
Pure cycling register

The pure cyclic register (PCR) is the non-singular function f(zg,...,z,—1) =
xo ® g(x1,...,2n—1) of any order n and g(z1,...,2,—1) = 0. Then the weight
of ¢g’s truth table is 0, as all the 2™ entries of the truth table are 0. Then the
number of cycles of f is equal to

Z(n) = 1. y,6(d) - 277

and the total number of cycles for a function of order n can not be greater than
Z(n). This was conjectured by Golomb [11] and proven by Mykkeltveit [19].
Based on this and the fact that changing one of the entries in the truth table
of g for any non-singular F'SR f, leads to an increase or decrease of one in the
number cycles generated by f.

Since the weight of ¢’s truth table for PCR is 0, and the number of cycles
of PCR is an even number as Z(n) is even for all n. All the other non-singular
functions can be created by incrementally changing the entries of g. So for any
non-singular function f, the parity of the weight of ¢g’s truth table is equal to
the parity of the number of cycles generated by f.

For the function f(xg,...,Tn-1) = o ® g(x1,...,xn_1) of any order n and
g(x1,...,2n—1) = 1. Then the weight of f is 2™ as all the 2" entries of the truth
table are 1. Then the number of cycles of f is equal to

Zm) =gk X old)-2
d|n
d: odd

This is proven in [9].

14

Cycle joining and splitting

Given a non-singular feedback function f(zg,21,..,Zn—1) = o ® g(x1, .., Tp_1)-
By changing one of the entries in the truth table of g, the successor of two states
is swapped. For a state a; = (1, A) and its successor ag = (A, ¢).by = (0, \) and
its successor by = (A,€), A is some entry in the truth table of g (e.g. the all
zero state (0,0,0,...,0)) and ¢ € {1,0}. Then by complementing the A entry of
g, the successor of a; changes to b and the successor of b; changes to as. This
can be used to join two cycles, if the two states a; and b; are on different cycles.
If they are on the same cycle, the cycle will split in two cycles.

Below in figure 7 this is illustrated by going from the left figure to the right,
which shows two cycles being joined into one. And from the right figure to the
left one, shown a cycle being split into two.

a b,

Figure 7: Cycle joining and splitting

2.2 Cross-join pairs

Definition 5. Cross-join pairs are sets of two pairs of conjugate state {a, aA}and
{b,b} on a cycle C. Such that interchanging the successors of {a, a}or {b, b} splits
C into two cycles C; and Cy. Where {b,b} or {a, c{} are on different cycles, and
interchanging the successor of the pair that was not used to split C' will join Cy
and C5 into a new cycle D.

The order of interchanging the conjugate pair does not matter, as interchang-
ing the successor of a conjugate pair correspond to changing one of the entries in
¢'s truth table. Where the feedback function generating C'is f(zo, ..., Tn_1) =
2o @ g(x1,...,Tn—1), and the order of changing two entries in ¢’s truth table is
commutative as long as C is a binary cycle.

The number of cross-join pairs for an M-sequence was proven to W
in [12].

15

2.3 De Bruijn sequences

A de Bruijn sequence is a sequence over an alphabet of k-symbol with a period
of k™ where all possible n-tuples appears. It was rediscovered by de Bruijn [2]
and generalized for larger alphabet, the binary de Bruijn sequences was original
discovered by Flye Sainte-Marie [8].

In Cryptology most work with de Bruijn sequences are over a binary alpha-
bet, as this correspond to binary computers. Biology and other fields of science
can use larger alphabet. The main focus will be on binary de Bruijn of length
2", will use the formulation “de Bruijn sequences of order n” to refer to a de
Bruijn sequence of period 2™.There is a total of 22" =1 different de Bruijn
sequences of order n.

Properties

Chan, Games and Key [3] proved that the linear complexity of de Bruijn se-
quences S of order n is bound by 27! +n 4+ 1 < L(S) < 2" — 2. Also it is
impossible for a de Bruijn to have a linear complexity of 2°~! +n + 1. The
complement of a de Bruijn sequence S will have the same complexity as S [3].

Requirements

It is possible to deduce some simple requirement for an ANF feedback function
of order n that generates a de Bruijn sequence of length 2". The function will
have to be non-singular as there cannot be any multiple predecessors for any
state. Because this makes it impossible for the generated sequence to be of
maximum-length. Since the feedback function only have one cycle, the all zero
state (0,0,0,...,0) of the FSR must not give a 0. This means that it have to be
1. Else the all zero state would be a part of a cycle with a length of one, since it
would be its own predecessor and successor. This is contradiction, as the total
number of cycles have to be one.

Next the parity of the sub function g is equivalent to the parity of the cycles
generated by a non-singular FSR. This means that the parity g will have be
odd, for any feedback function f that generates a de Bruijn sequence.

16

Lemma 1. The only term that changes the parity of the truth table for the sub
function g for any non-singular function f for order n, is the term x1xo...xp_1.

Proof. Denote the original feedback sub function as g. The constant term 1
complement all 2”~! entries in truth table of g, so the new weight of ¢ =
2n=1 —weight(g). So if the parity of g is even it is even for ¢’, and if the parity
g is odd it is odd for ¢’. So the parity is the same as the original one.

Next by adding a term of j state variables changes 2”1~/ entries of the
truth table of g, n — 1 > j. If the number of changes in the truth table from
1 — 0,0 — 1 is even, then the parity is same as the g. If the number of changes
are odd, then changesl — 0 changes the parity of the truth table, and the
changes 0 — 1 also changes the parity of the truth table. So the result of this
is that the parity overall is unchanged. If n — 1 = j then the term of j state
variables change only one entry. So this changes the parity of the truth table.

So any function that generates a de Bruijn sequence must have this term. [

Another property is that the weight of the truth table have to be in the interval:

Z(n) —1<W(f) <2 — Z*(n) + 1

As it has been shown that the feedback function with the weight of ¢ is 0 has
Z(n) cycles and any change of the parity of the truth table of g will change the
parity of the of the number of cycles [11],[19]. So if the weight of g is incremented
the number of cycles changes by one. The minimum weight of g of a de Bruijn
function have to be at least Z(n) — 1.

Another restriction can be found from looking at the non-singular Boolean
function f with the weight of g equal to 2", as this function generates Z * (n)
cycles and an decrementation of the weight of g will change the number of cycles
by one. The weight of any de Bruijn function has to be at most 2" — Z*(n) + 1.

Finally since a function of order n that generates a de Bruijn sequence of
order n, only have one cycle. The all one state (1,1,1,...,1) of the F'SR must
have the state (1,1, ...,1,0) as its successor, so f(1,1,1,...,1) = 0. As all nonzero
terms will give a 1 for the state (1,1,1,...,1), the total number of terms most be
even for this to happen.

These facts sum up to a general form that all ANF feedback function that
generates a de Bruijn sequence of the same order will have to be on:

f(xo, 21,y Tno1) = o B g(X1, eovy Tp1)
g(Il, ...7l‘n,1) =1 D x129...05,—1 D
Weight(terms(g(x1,...,xn—1))) = 0mod(2)

The number of non-singular FSR is 22%1, and half of these functions have the
constant term 1. Since this is a requirement for a de Bruijn function, the number
of candidates for FSRs that can generate de Bruijn of order n is 22" 7' =1, Half
of these will have the term zzs...z,,_1, that is also a requirement to a de Bruijn
function.

This limits the number of candidates to 22" —2. Since half of these again
will have an even weight of gs truth table, the final numbers of candidates is
22"7'=3, Which makes it possible to find all the de Bruijn functions for order
3, without doing any testing.

17

Maximum-length LFSR vs maximum-length NLFSR

The main differences between maximum-length LFSR and maximum-length
NLFSR is illustrated below in table 1, that shows the most important differences
between them. When n > 3, they have the following properties.

y | LFSR | NLFSR |

Number of functions w 22" -
Length 2n —1 2"
Maximum linear complexity n 2" —1
minimum linear complexity n 2n=l 4 n
Maximum number of terms n—+1 2m

Table 1: The differences between maximum LFSR and NLFSR

2.4 Representation

Any FSR of order n can be represented by a Boolean feedback function of the n
state variables. From the n state variables it is possible to construct 2™ logically
different ANF terms. Where (n + 1) are the linear terms that consist of one of
the n state variable and the constant 1, that can be used to construct LFSRs.
Any implementation of a NLFSR will have to do some operations before the
next bit from the feedback function can be calculated.

First all the different terms have to be checked if they are true or not. Then
it will have to check if the number of true terms is even or odd. The complexity
of finding the truth values of the different terms, depend on the number of state
variables for each term. This can be performed by looking up all the state
variables that the term depends on.

Now let T denote the number of terms of the feedback function f. To find if
the output of f is true or false for any state, it depends on if the number of true
terms is even or odd. So all t € T will have to be checked to find the truth value
of the function. This may be relative slow, if the number of terms is relatively
large.

In part 5, a hardware implementation is shown that can generate a bit of
a de Bruijn sequence of order n in O(log3n) basic operations. With a memory
and component complexity of O(n - logan). In part 2 we saw that a LFSR
can be represented by a characteristic polynomial and that the property of
this polynomial allowed us to deduce information about the period and cycle
structure of the LFSR.

For any implementation there is a number of factors that can reduces the
efficiency of generating bits. In software this is measured in time and memory
and in hardware it is time and memory/components. For a NLFSR this can be
further specify into 3 values that measure the efficiency of the implementation.

18

The time to clock a bit

One of the most important property of any representation for a FSR, as this
can directly limit the usability. If it cannot produce the required amount of bits
per time unit, it is not usable.

The time to switch one state to another

This time depend on the size of a state in the implementation, and how the
process of changing from a state is implemented.

The size of a state

The size of all the information store in a single state of the FSR is usually equal
to the number of memory cells. Of course there may be a difference between
the order of the F'SR and the linear complexity of the sequence generated by
the FSR.

In the next section we will look at some advanced NLFSR sub classes and
ways NLFSR can be used as building blocks to generate complex sequences.

3 Advanced properties of NLFSRs

3.1 Symmetric feedback function and Kjeldsen mapping

The symmetric shift registers has been studied by Kjeldsen [13] and Sgreng
[21],[22]. They have a minimal period dividing n - (n + 1).

3.2 General algorithm

An algorithm is a clearly defined step-by-step list of operations that have to be
performed to solve a task. The two main resources for an algorithm is time and
memory. Time refers here to the amount of time or bound of time needed to run
the algorithm. Memory is the maximum amount of required memory needed to
run the algorithm.

Algorithm to find the feedback function from a truth table

The task of find the feedback function from a truth table, can be performed
by the following algorithm. For a truth table for a FSR of order n, where the
binary sequence (tg,t1,t3...,tan_1) represents the entries in the truth table. A
state of the FSR is on the form (sg, s, S2,...,82n_1). to is the truth value for
the state (0,0,0,...,0), ¢; is the truth value for the state (0,0,0,...,1) and so
on. Denote fiemp as the temporarily Boolean function. While Bin(S) as the
decimal value of the state S, where the leftmost bit is the most significant one
and the rightmost is the least significant bit.

1. Start with ¢ = (0,0,0,...,1). If ¢ = 1, then fiemp = 1. Else fiemp = 0.

2. If tpiney # fremp(i), then fiemp = fremp + Hsizl ;. Increment ¢ and
repeat step 2 until ¢ = 2.

This produces the feedback function on algebraic normal form (ANF).

19

3.3 Modified de Bruijn sequences

By removing the all zero state or the all one state from a de Bruijn sequence, a
new type of sequence is created. Denote the first as a type 0 modified de Bruijn
and the latter as a type 1. Given a de Bruijn sequence S, let myS denote the
type 0 modified de Bruijn sequence created from S and m;is the type 1. Let
DS(n) denote the set of all de Bruijn sequences of order n. DSp(n) denote the
set of all type 0 modified de Bruijn sequences and DS (s) the set of all type 1,
both created from the elements of DS(n). Note that the set of all M-sequences
of order n, is a subset of DSy(n). Mayhew and Golomb [18] proved that for
n > 4, the linear complexity of a type 0 sequence S is bounded by:

n<L(S) <2 —2

An overview of the complexity distribution for orders 4,5 and 6 is also given.
Zheng, Cao, Zhou and Xu [23] proves the following theorem:

Theorem 2. If s € DSy(n), mos € DSy(n) and mys € DS, (s), then
L(myes) = LC(mgs) + 1, L(mges) = L(mys) — 1.

Which gives a complexity comparison between s, mgs and mys for order
4 and 5. In [21] Mayhew gives a run through the auto-correlation of type 0
modified de Bruijn sequences, for orders 4, 5 and 6.

3.4 Galois FSR

A Galois FSR differs from a Fibonacci FSR by that all the memory cells of
the FSR may have a feedback function. While the Fibonacci F'SR only have a
feedback function for the last cell. Because of this, the Galois FSR are more
complex to analyze and the period of state of the register may be greater than
the period of some of the memory cells. So the output sequence will depend on
which of the memory cells is the output. As the output stream usually is one of
memory cells. But as the state of the memory cells determines the next state,
the period of the register cannot be greater than 2". Below in figure 8 is a Galois
FSR with the feedback function f,,_1 = 2, ®Tpn_1 P Tn_2, fn2 = Tn_1 D Tpn_o
and f; =z;41 : 0<i<n-3.

A
N2

Output

n-2 n-3 0

\

X HE

n-1

Figure 8: A Galois FSR

In the next part we will look at a transformation from a Fibonacci NLFSR to
an equivalent Galois NLFSR.

20

3.5 Transformation from a Fibonacci to an equal Galois
NLFSR

Dubrova [5] present a transformation from a Fibonacci NLFSR to an equiva-
lent Galois NLFSR. This transformation is based on shifting the terms of the
feedback functions.

Definition 6. Let f, and f;, be feedback functions of the bits a and b of a

NLFSR of order n. The operation shifting, denoted by f, S f», moves a set of
product-terms P C term(f,) from the ANF of f, to the ANF of f,. The index
of each variable x; of each product-term in P changed to x(;_q4s)mod(n).

To make sure that this operation gives an equivalent NLFSR, some condi-
tions have to be satisfied.

Definition 7. The terminal bit 7 of a NLFSR of order n is the bit with the
maximal index which satisfies the following condition:
For all bits ¢ such that ¢ < 7, the feedback function f; is of type f; = x;y1.

Define min_index(f) and max_index(f) as the smallest and largest index
variable that the function f depends on. E.g. for f = x3®xax1 min_index(f) =
1 and max_index(f) = 3.

Definition 8. An NLFSR of order n is uniform if:

a) All its feedback functions are singular functions of type (1).

b) For all its bits ¢ > 7 , the following condition holds:

max_index(g;)< 7, where 7 is the terminal bit of the NLFSR.

Theorem 3. Given a uniform NLFSR with the terminal bit a, a shifting f, EiS
fo, P C term(fa), b < a. Results in an equivalent NLFSR if the transformed
NLFSR is uniform as well.

Algorithm to find a fully shifted Galois NLFSR from a Fibonacci
NLFSR

Dubrova [5] also gives an algorithm to find the fully shifted Galois NLFSR. Given
a uniform Fibonacci NLFSR N of order n, the fully shifted Galois NLFSR N
which is equivalent to N is obtained as follows:

First, the terminal bit 7 of N is computed as:

7= maz (max_index(p) — max_index(p))

VpEAg, _,

Then, each product product-term p € A, |, with min_index(p) < (n—1) — 7
is shifted to In—1—min—index(p)*

{r}
In—1 — 9n—1—min—index(p)
and each product product-term p € A, |, with min_index(p) > (n —1) — 7 is
shifted to g,:

{r}
In—1 L> gr

This provide a way to transform a Fibonacci NLFSR to an equivalent Galois
NLFSR, and Dubrova [6] gives a survey of the improvement to efficiency this
gives to NLFSR by using this transformation.

21

3.6 Combinators

By combing multiple systems like LFSR and NLFSR, it is possible to create new
key stream generators. it is also possible to combine them with logic blocks to
further create complex systems. We will give a brief overview of some different
techniques to create Combinators.

Multiplication of sequences

The bitwise multiplication of sequences is an easy way to generate sequences
with higher period and linear complexity. Given two repeating binary sequences
S and T with per(S), per(T) > 0. If gcd(per(S), per(T)) = 1 then the bitwise
multiplication of S and T will produce a new sequence S ® T with period
p(S®T) = per(S) - per(T) and the linear complexity L(S ® T) = L(S) - L(T).

Note that the distribution is generally bad, as the sequence will contains
3 times more zeroes than ones. So the possibility that a random bit of the
sequence is 1 is 25 % and the possibility that a random bit of the sequence is
zero is 75 %.Which makes it easy to use a correlation attack on the key stream,
to find S and T.

3.7 Basic ways to create de Bruijn sequences from others
of the same order

A few basic ways to find de Bruijn sequence from another one of the same order.

By reversing a de Bruijn sequence

Theorem 4. The reverse of a de Bruijn sequence is also a de Bruijn sequence
for any k-alphabet.

Proof. A de Bruijn sequence of order n contains all possible state of length n.
For any state S = (so, 51, ..., Sp—1) of any de Bruijn sequence B, the reverse
state R(S) = (Sn—1,8n—2,...,80) is also a state of B as its a length is n. The
reversing of a state is a one-to-one and onto homomorphism. So all k™ the states
of the reversed sequence will be unique states, which is the definition of a de
Bruijn sequence. O

For any non-singular feedback function f(x,,x1,x2, ..., Zn—2, T,—1) there ex-
ist a transformation to a Boolean function f/ such that f/generates all the
reversed cycles of f. Given by f/ = f(Xo,Tp—1,Tn—2,...,T2,21), S0 by simply
swapping the index of state variables from 1 until » — 1 to produces a function
that generate the reverse cycles of the original function. So this will generate
the reverse de Bruijn sequence for any de Bruijn sequence.

22

By complementing a de Bruijn sequence

Theorem 5. The complement of a de Bruijn sequence is also a de Bruijn
sequence.

Proof. A de Bruijn sequence of order n contains all the possible state of length
n. For any state S = (sg, 81, ..., Sp—1) of any de Bruijn sequence B, the inverse
state S = (30,31, ...,5n_1) = C(S) is also a state of B as its length is n. And
the complement of a state is a one-to-one and onto homomorphism. So all k"
states of the inverse sequence will be unique states, which is the definition of a
de Bruijn sequence. O

For any non-singular feedback function f(x,,x1,x2, ..., Zn_2, T,_1) there ex-
ist a transformation to a Boolean function f, such that f,generates all the
complement cycles of f. Given by f = fle@lz1®l,22P1, ..., 1D1) D1,
so by simply complementing all the variables and the function itself produces a
function that generate the complement cycles of the original function. So this
will generate the complement de Bruijn sequence for any de Bruijn sequence.

By complementing the reverse of a de Bruijn sequence

Theorem 6. The reverse complement of a de Bruijn sequence is equal to the
complement reversed of de Bruijn sequence, and also a de Bruijn sequence.

Proof. By the theorem 12 and 13, it is clear that both are de Bruijn sequences.
The complement of any binary sequence is simply switching the symbols, so the
structure of the sequence is identical. So the reversed complement is structurally
equal to the reversed also a de Bruijn sequence and the reverse sequences of a de
Bruijn. The reversed complement of a de Bruijn sequence S is also a de Bruijn
sequence and identical to the complement reversed de Bruijn sequence of S. O

23

The set of connected de Bruijn sequence

Define the set of connected de Bruijn sequence as the set containing a de Bruijn
sequence, the reverse sequence, the complemented sequence and the reverse
complement of it. So any de Bruijn sequence is a part of such a set, that can
contain up to four unique de Bruijn sequences. The possible number of unique
sequences in such a set is 1,2 and 4.

Lemma 2. It is impossible for a set of connected de Bruijn sequence to contain
exactly 3 unique de Bruijn sequences.

Proof. Prove this by showing that it is impossible to construct a set of exactly
3 unique de Bruijn sequences. For each part S is refer to a reference de Bruijn
sequences, R(S) is the reverse sequence of S, C(S) is the compliment sequence
and RC(S) = CR(S) is the reverse complement(or complemented reverse) of
the sequence.

Assume that S, R(S) and C(S) are all unique, and RC(S) = CR(S) is equal
to S,R(S) or C(S). If C(S) = CR(S) then, C(S) = C(CR(S) = R(S) which
is a contradiction. If S = RC(S) then, R(S) = R(RC(S) = C(S) which is
a contradiction. If R(S) = RC(S) then, R(R(S)) = S = C(S) which is a
contradiction. So S,R(S) and C(S)can not be unique while RC(S) is not.

Assume that S, R(S) and RC(S) are all unique, and C(S) is equal to S,R(S)
or RC(S). It C(S) = CR(S) then, C(S) = C(CR(S) = R(S) which is a contra-
diction. If C(S) = S then, RC(S) = CR(S) = R(S) which is a contradiction.
If C(S) = CR(S) then, S = R(S) which is a contradiction. So S,R(S) and
RC(S)can not be unique while RC(S) is not.

Assume that S, RC(S) and C(S) are all unique, and R(S) is equal to S,RC(S)
or C(S). If R(S) = CR(S) then, S = C(S) which is a contradiction. If
R(S) = S then, CR(S) = C(S) which is a contradiction. If R(S) = C(S) then,
CR(S) = S which is a contradiction. So S,R(S) and C(S)can not be unique
while RC(S) is not.

So all possible the combination of only 3 unique set of de Bruijn sequences all
leads to contradictions, so it is impossible to have any set of exactly 3 unique
de Bruijn sequences. O

A de Bruijn sequences in a set of connected de Bruijn sequences will have the
same relative security as the other sequence in the set, as it is easy to find any
of them from any of the other sequences.

24

3.8 Problems

The field of NLFSR have relatively many unsolved problem, little is known
about any possible alternative representation of NLFSR. Below is a list of the
most essential problems that have yet to be solved.

Finding the period of any NLFSR

One of the main problem of this particular field of research, and one of the
hardest. Given a general method for this would vastly improve the possibility
of the field.

Determine if a NLFSR generates a de Bruijn sequence

These is a sub problem of the first problem and the most important usability of
these problem.

Bound on NLFSR and classes of NLFSR

Finding bounds on complexity or period for NLFSR classes. That gives se-
quences with a lower bound on the period and linear complexity. Symmetric
shift register and de Bruijn is examples of classes where this is found.

Find a ways to efficiently generate de Bruijn sequences

A relatively hard problem, there exist algorithm to find this from de Bruijn
sequences of lower orders. But the efficiency scales quite badly for large orders,
either in time or memory requirement. Some algorithm to find special de Bruijn
sequences for all order higher than 2, as the “Prefer” one and “Prefer same” one.
But these sequences have low security as they are easy to find.

There is also algorithm for recursively find new de Bruijn sequence from
others of lower orders. Lempels inverse D-homomorphism can be applied to a
de Bruijn sequence in B,, to produce two cycles Dy and D5 of length 2™ in B, 1.
Any changing of successors of conjugate pair that are on different cycles (D1
and Dy) produces a cycle of length 2" in B, 1, which is a de Bruijn sequence
of order n + 1.

In the next section we will give a list of algorithms and methods to generate
de Bruijn sequences.

25

4 Algorithms and methods to find de Bruijn se-
quence

Most of these algorithms are explored more fully in a survey by Fredricksen [9].

4.1 Make de Bruijn sequences form LFSRs
From an M-sequence

Let f(xo,z1, ... Tpn-1) = xo ® g(x1,..,Tn—1) generate an M-sequence of order n,
then a de Bruijn sequence can be created by joining the two cycles generated by
f- As changing one of the values of the truth table of g will change the successor
of two states are swapped, this can be used to join to cycles. If the two states
are on different cycles, the cycles will be joined. But if they are on the same
cycle, the cycle will be split into two.

A maximum-length LFSR have two cycles the all zero cycle of period one
and the main cycle with all the other states, that has a period of 2" — 1.
Then by simply changing the first entry in the truth table (0,0,0,...,0) = 0
to (0,0,0,...,0) = 1, the two cycles are joined into a single cycle of length 2.
This is a de Bruijn sequence that can have maximum linear complexity of 2™ — 2.
But it has a relatively low security, as it is easy to find the original M-sequence
by simply using the Berlekamp-Massey algorithm.

From a FSR by using cycle joining

Given a non-singular FSR with ¢ cycles, it is possible to make a de Bruijn
sequence by iteratively join one and one cycle. So after (¢ — 1) such operations
the result is a de Bruijn sequence. E.g. start with the PCR which has Z(n)
cycles, can be joined into a de Bruijn sequence in Z(n) — 1 operations. This
gives a truth table of weight Z(n) — 1, so the truth table can be presented by
Z(n) —1 integers in the range form 0 until 2. Then n-(Z(n)—1) =n-Z(n)—n
bits are needed to represent the integers, this can be further optimized as there
are some values that have to be 1. E.g. there is only one way to join some
cycles, as the all zero cycle.

4.2 From some LFSRs with reducible characteristic poly-
nomials

C. Li, X. Zeng, C. Li, T. Helleseth and M. Li [16] gives a method to find a class
of de Bruijn sequences from a reducible polynomial

q(xz) = po(x) - p1(z) - p2() - ... - pr(),

pi(z), 0 <14 < k are all primitive polynomials. The degree of p;(z) > p;_1(z),
1 <j<kandpy=(1+z). nis the degree of ¢q(z) and dj, is the degree of
pi- This process have time complexity O(2"~% -k -n) and memory complexity
O(2¥ -k -n). If n > 8 it is possible to have time complexity of O(nloggn).

This is done determining the cycle structure and adjacency graph.

26

A class of de Bruijn sequences

C. Li, X. Zeng, C. Li, T. Helleseth [15] gives a method to find a class of de
Bruijn sequences from the polynomial ¢(z) = (1 + 23) - p(z), p(x) is a primitive
polynomial of degree n > 2. Which is done by determining the cycle structure
and adjacency graph of ¢(z).

4.3 Iterative construction of the “Prefer one” de Bruijn
sequence

The “Prefer one” de Bruijn sequence is the sequence constructed by starting with
the all zero state, and for each current state S; = (s;, Sit1, ..., Sitn—1) check if
the state S1 = (Si41, Si+2, -, Si+n—1, 1) have already occurred in the sequence.
If it have not, then the next state is S;. And if it have, the next state is then
(5i+175i+27~--75i+n—170) .

Simple algorithm
1. Start with the all zero state (0,0,0, ...,0).

2. The current state is S; = (84, Si41,..-, Sitn), then if the state S;y; =
(Six1, -, Sitn, 1) has not previously appeared in the sequence then the
Si+1 is the next state and repeat part 2. Otherwise go to part 3.

3. The current state is S; = (S, Si+1,--- Sien), then if the state S;11 =
(Sit+1, -, Si+n,0) has not previously appeared in the sequence then the
Si+1 is the next state and go to part 2. Otherwise the algorithm is finish.

This algorithm generate a de Bruijn sequence in O(2") operations, but require
O(2™) memory, so it is not usable for generating sequences of orders that requires
more that the available memory.

Advanced algorithm

This is an advanced algorithm for finding the “Prefer one” sequence.

1. From f; = (b1, ba, ..., b,) produces Bir1 = (b2, ..., bugr). If (b1, b2,...,b,) =
(b1,1,1,...,1), the next n-tuple is (1,1 — ..., 1,b1). Otherwise go to step 2.

2. B = (b2, ..., bp, 1). Go to step 3

3. Find the largest state m; = (bs, ..., b, 1, b2, ..., bs_1) of all the cyclic shifts
of Bf. Go to step 4.

4. If bg = bg = .. = bs—l = 0, then 61‘4_1 = (bg,...,bn,gl). Otherwise
Bit1 = (ba,...,b,,b1). Go to step 1.

This algorithm only requires (3*n) bits to store the current value for 5}, 8; and
the current larges value of cyclic shift of 5. The time complexity to generate
a bit is O(n), as the operation to find m; can take n operations. Then the
complexity to generate a whole de Bruijn of order n is O(n - 2™). Also the
simple algorithm have to start at the all zero state, but this can start at any
state.

27

Finding new sequences form the “Prefer one” by using cross-join pair

Because the structure of the “Prefer one” sequences is known, it is possible to
construct 227 de Bruijn sequences by finding different cross-join pair. The 3
following method finds independent sets of cross-join pairs.

1: The number a;,b; = 2%, 2" 27% determines nonintersecting cross-join
pairs for 0 < i < [n — %}

2: The numbers a;,b; = 2"~1 —1 —2¢ 2"~1 — 1 — 27~27% determines non-
intersecting cross-join pair for 0 <14 < [n — %]

3: The numbers a;,b; = 2" — 1, Yig2n—1- determine nonintersecting
cross-join pair for 1 <i<n — 2.
These pairs can then be used to generate a de Bruijn sequence that differ form
the “Prefer one’s truth table, by two times the number of cross-join pairs

4.4 Iterative construction of the “Prefer same” de Bruijn
sequence

The “prefer same” is a de Bruijn sequence constructed in much the same way as
the “Prefer one”; but instead of preferring that the next bit of the sequences is
a 1, the preferred next bit is the same as the current last bit.

1. Start with n ones followed by n zeroes, on the form:
T1X2...Tn41Tn42---L2n = 11...00...0.

2. Next bit of the sequences x,k > (2-n) is equal to the previous bit xp_; =1
if the two following conditions are fulfilled. If they are, then repeat step
2. Otherwise go to step 3.

e The n-tuple x_p42...(xx = i)(xgy1 =) has not previously appeared
in the sequence.

o If placing xy1 = ¢ makes a string of i’s of length ¢, then we have not
already written 2727 strings of i’s of length ¢ in the sequence.

3. Set w141 = 4 if this does not violate the two conditions of step 2, and
got to step 2. If not, then the sequence is complete and the algorithm
terminate.

As the simple algorithm for finding the “Prefer one” de Bruijn sequence, this
algorithm uses O(2™) bit of memory. There is no known advanced algorithms
that lowers the requires amount, of memory needed to generate this sequence.

28

4.5 Generating de Bruijn sequences by recursively using
the inverse D-homomorphism

Lempels D-homomorphism [2] is a transformation from any cycle B of length
m in B, 41 to two cycles C' and its complement C, both of length m in B,,. If
C = (co,c1,C2, vy ¢m—1) then the D-homomorphism:

D(C) = (Co D ci,c10 Do, 00D cC3, e ,Cm—1®co) =B

D(C) = (¢o ®¢1,¢1 ®C2,Co BC3,yeres Cr1 &) = B

Its inverse is more interesting, as it makes it possible to find de Bruijn sequences
of higher orders recursively.

Lempels inverse D-homomorphism is a transformation from a cycle C' of length
m in B, to two cycles Dy '(C) and D;*(C) of length m in B,.;. Such that
Dy '(C) and D;'(C) does not share any states in B,1, since they do not
share any states in B, y; they can be generated by a feedback function f. If
C = (co,c1,C2y vy Cm—1) then:

Do_l(C) == (0760761@00,02@(61 @Co), ,Cm_g@(cm_3@))

Dl_l(C) = (1,00@1,81@(60@1)702@(61@(60@1)), ,Cm_g@(cm_z;@))

Then by swap of any pair of complement state, such that one is in Dy '(C) and
another in D;*(C). Produces a cycle of length 2+m in B, y1. As the sequences
Dy '(C) and D;*(C) are obviously each others complement complement, if a
state s € D] 1(C), then 5 € Dy '(C) and vice versa

s€ DH0O) < s¢ D' (C)

The two alternating states (0,1,0,1,0,1,....) and (1,0,1,0, 1,0,) both of length
n + 1 have the unique properties that they are both each others complement,
predecessor and successor in B,. lLe. changing the successors of the states
(2,1,0,1,0,1,....) or (2,0,1,0,1,0,....) will create a de Bruijn sequence in B, 11,
if the original sequence C is a de Bruijn sequence in B,,.

E.g. given a de Bruijn sequence S = (0,0,1,1) of order 2. Then Do_l(S) =
(0,0,0,1) and D; 1(C) = (1,1, 1,0), both cycles of length 4 and order 3. Then by
changing the truth table for the entry (z, 1, 0) gives the sequence (0,0,0,1,0,1,1,1).

29

The D-homomorphism on the Boolean function

Lempel [2] also introduces an operation to apply the D-homomorphism directly
on the recursive feedback function. For the original function ¢(zg, 21, ..., Tn_1)
and let the inverse D-homomorphism be f(zg, 21, ..., 2,). The relation between
them is as follows:

f(xo, 21, ..., xn) = Tp @ O((x0 ® 1), (€1 D T2), ..., (T2 D Tp—1))

This makes it possible to find the inverse D-homomorphism of a function
directly, and the complexity of this operation depends on the number of terms of
the original function ¢, and the number of variables for each term. The resulting
function f will have Yv; terms, where v; is the number of variables a term of ¢.
So before any shortening of f, the number of terms is term(f) > 2 - term(¢).
The number of terms after a shortening is bounded by 2™ > term(f) > 0.

If ¢ is a de Bruijn sequence, the two cycles generated by f can then be
joined by adding the term T1257%3, ... or 1Tax3,.... that corresponds to one of
the two alternating states to f. The problem of finding a feedback function for
this on ANF form is generally hard. But since this function transformation can
be applied to function that is not on ANF form, so this is not really a problem.
But it does increase the number of possible unique terms from 2" to 227,

So an algorithm for finding a function that generates a de Bruijn sequence
of order n from a function that generates a de Bruijn sequence of order m by
the inverse D-homomorphism. The time and memory needed to do this, will
depend on the number of terms for each recursive step from an order k to order
k+ 1. As there exist at the time no way to accurately calculate this, this mean
the cost in time and memory is unpredictable and the function may then not
terminate in a reliable time interval.

4.6 Games generalization of the D-homomorphism

Games [10] gives a method to construct a de Bruijn sequence S of order n + 1,
from two de Bruijn sequences S; and Sy of order n. That relates the linear
complexity of S; and Ssto the linear complexity of S. If both S; and S, have
a linear complexity of 2" — 1, then S also have a linear complexity of 27+! — 1.

Definition 9. The image of a sequence S = (sg,$1,...,5n—1) of order n is
denoted Im(S). That is the set of states of length n that occur in S. The shift
operation is:

E'(S) = (8i,8i11, - 8i—2,5i-1)
The Method is generalized here as a theorem:

Theorem 7. Ifr, s are two de Bruijn sequences of order n, such that Im(Dy ' (r)) =
Im(Dy*(s)) and hence Im(Dy*(r)) = Im(Dy ().

For any i,j such that:

Ei(Dgl(r)) = (UQy ULy ery Un —y—2, A0, A1y vy Ay) AT

E](Dfl(T)) = (1)07 U1y eeny 'U2"7n727507 ALy eeny an)

Then E'(Dy ' (r))|| B/ (Dy ' (1)) =

(U0, ULy ey Ugn —p—2, A0, A1y oey Ay VO, V1 woey V202, T, A1 vy)
is a de Bruijn sequence of order n+1.

30

This holds for any conjugate states (ag, a1, ...,a,) and (agp, a1, ..., a,) that
are on different image sets. And if r = s this is just Lempels inverse D-
homomorphism, and a joining of the cycles by interchanging the successor of
conjugate states on Dy *(C) and D;'(C). So this method can be seen as a
generalization of this.

Games [10] also looks at reverse de Bruijn that have the same type-0 im-
ages, that is Im(Dy'(S)) = Im(Dy *(R(S))). These de Bruijn sequences are
called self Dalimage reversing sequences, it is shown that the order of the
these have to be even. For any self Do_limage reversing sequences T of order n,
s = D(Dy*(r))]a,b; c,d] and [a,b; c,d] is a cross-join pair of Dy *(r). Then s
is also a self Do_limage reversing sequences of order n, that is not equal to r.

4.7 Annexsteins algorithm

Annexsteins [1] gives an efficient implementation on recursively generating de
Bruijn sequences of order n from any de Bruijn sequence of order n > m > 2 by
using the inverse of Lempels D-homomorphism. This work directly on the de
Bruijn sequence and sub parts of it, taking sub sequences, complementing some
and concatenate the results recursively for each order.

This requires O(2") operations to generate a de Bruijn sequence of length
2", but it is bound by a memory constrain as sub sequences of the de Bruijn
sequence for an order will have to be stored in the memory. So the memory
complexity is O(2"), and therefore is not applicable to generating de Bruijn
sequences of high orders.

For each recursive step a binary decision is made between using one of the two
alternating sequence of length (k—1), for a total number of 2"~™ combinations.
Which correspond to the 27~ unique de Bruijn of order that can be generated
this way from a starting de Bruijn sequence. Each unique sequence can be
identified by a (n —m) bit string that determine the decision for each recursive
step. E.g. the second bit indicate that the alternating sequence used at the
recursive step number 2 is 0101... if it is 0 or 1010... if it is 1.

31

4.8 Generating de Bruijn sequences by non-recursively us-
ing the inverse D-homomorphism

Chang, Park, Kim and Song [4] present an algorithm to generate de Bruijn
sequence of order n from a de Bruijn feedback function of order k. The number of
exclusive or operation needed to generate one bit is approximately k(2" (—F) —
1), and W (r) is the weight of the binary representation of r. Soif W(n—k) = 1,
the efficiency depends only on k.

Lemma 3. If m is a nonnegative power of 2:
D™(20,%1, ..oy Tm) = To D Ty

This gives an expression of non-recursively using the D-homomorphism, if
the number of state variables is one more than the number of time the D-
homomorphism transformation used.

Lemma 4. If m is a nonnegative power of 2 and n > m:
Dm(anxla -~-7xn—1) = (IO D Tm, 1 D Timt1, ey Tn—m D xn)

The following algorithm finds A?(x) , which is used in the theorem 9:

Algorithm to find A (z)

Define ¢ = (0,0,0,...), 6 = (1,0,1,0,...),« = (0,1,0,1,..)and 7 = (1,1, 1,1, ...).
Let ¢n, 0y, an, T, be the sequence consisting of the first n bits of ¢, 6, a, 7.
Given inputs n,i and x:

1. If © = §,, then A?(z) := 1 and terminate. If x = «a,, or © = 7,, or
T = ¢n, then A?(z) := 0 and terminate. Else move to step 2.

2. d;=n—1+1 go to step 3.

3. if D4(x) # ¢y,_a, then A%(x) := 0 and terminate. Else go to step 4.
4. k:=1m =d-1
5. while K <m do
6. i |52
7. if D'(x) = 6,4, then A”(z) := 1 and terminate.
8. if D'(z) = ayp—y, then A?(x) := 1 and terminate.
9. if D¥(x) = 7,4, then t :=t — 1 go to step 7.
10. if D¥(z) = ¢4, then m :=t — 1 else k;=t¢.

11. Terminate.

This algorithm may terminate after just a few step and [4] show that it is
probable that it will not run longer than step 3.

32

Definition 10. Let R: B" — B" 'be a projection function:
R((m07x17 -"7:'[;7’171)) = (xOJ Ty, -~-7xn72)
Let S: B™ — B" be the shift left function
S((l‘o,xl, ...,xn_1)) = (1‘1, o, ...,J?n_l,())
Let P, : B®™ — B be the bit selection function
H((x(hlé, "',mnfl) = Zj, 0 < 1 <n-— 1

Theorem 8. For an integer i € {1,2,...,n},we have
Py Di-Se™) =2l 02" Ve . @al Y

This theorem is used in the next theorem.

Theorem 9. Let hy, be a k-DBF. Then for (") ¢ B"
ho(2) = P - D% . S(2(™) @ hy (D" F(2M)) @ ATZ1(R - S(2(™))
1s an n-DBF.

Using this, it is possible to generate an n order de Bruijn sequence from an
k-DBF. Without needing to find the Boolean function. The only downsize that
this k-DBS is equal to the one that is the product of using the recursive reverse
D-homomorphism and using the same alternating state for all the recursive
steps. Meaning that given the original n-DBF' there is is only two possible
k-DBS that can be generated by this method alone. Making this operation
highly predictable and the final de Bruijn sequence being unsecure.

In the next section a method to use the inverse D-homomorphism to generate
a de Bruijn sequence of order (n + 1) from a de Bruijn sequence of n with only
needing O(logan) memory and O(log3n) operations. Also is a hardware imple-
mentation to recursively use this to produces 2"~ unique de Bruijn sequences
of order n for any input de Bruijn sequence of order m.

33

5 Hardware implementation to generate de Bruijn
recursively

This section present a method to use the inverse D-homomorphism on a de
Bruijn sequence of order n, to generate a de Bruijn sequence of order (n +
1) without storing the state. While only using O(logan) bits of memory and
O(log3n) logic operations. Later in the section a hardware implementation of
this is shown, that can be connected in series to a generating de Bruijn sequences
of order n from a de Bruijn sequence of order m.

The main focus here is on simply generating de Bruijn sequence of relatively
high orders. To clarify this order 150 and 300 are here low orders, and order
higher than 10000 are high. Many of the known algorithms and methods to
generate de Bruijn sequences have relatively bad scaling in either the time or
memory requirement to generate the sequences.

5.1 Method to implement the inverse D-homomorphism
without storing the state

The reverse D-homomorphism of a de Bruijn sequence S = (sg, $1, .., San_1) of
order n produces two new primitive cycles Dy '(S) and Dy '(S), both of length
2m:

Dal(S) = (O,SQ ®0,s1 P (SO D O), vy Son_1 D ()) = (ao,al, ...,G/Qn,l)

Dl_l(S) = (1, So D 1, S1 D (80 D 1), ceey S2m D ()) = (bo, bl; ceey b2"—1)

Where aj, = by, 0 < k < 2" — 1 and it is possible to change from ith entry of
Dy *(S) to the ith entry of Dy '(S) by complementing the ith bit of the sequence.
Notice that the input to Dy *(S) and D;*(S) for bit a;y1/b;y1 is the bit s; and
a;/b;. The states 101... and 010... are the alternating states of length (n 4 1)
of Dy*(S) and D;'(S), and they have the property that they are not only
the complement of each others, but also each others possible predecessor and
successor state. Since every state has two possible predecessor and successor and
101... and 010... are on different cycles, it is possible to deduce there predecessor
and successor. Below the deduced sub sequence for odd and even order is shown.

— 110%x — 101x - 0% 11 —

— 001% — 010%* — 1 %00 —

— 1101% — 1010%* — 01 * 00 —
— 0010% — 0101% — 10 %11 —

* can be any of the two alternating sequences 01... and 10... of even length, that
satisfied the condition that the bit before the sequence is different from the first
bit of the sequence. And the last bit of the sequence is different from the first
bit after the sequence, if there is any. Let x denote either 1 or 0.

34

The cycles Dy '(S) and D;*(S) can be joined by change the successor of the
two states on the form 201 or 210x for even length (n + 1). Or the two states
on the form x010% or £101% for odd length (n + 1). But this also changes the
phase of the output sequence in comparison to the input sequence S. E.g. if
the successor of the states on the form z01x is changed, starting in the cycle
containing the sub sequence — 110% — 101% — 0% 11 — gives the following two
parts of the joined cycle.

— 110% — 101%x — 010%x — 1 % 00 —
—001x - 011 —

So instead of going to the state 0 x 11, it goes to 010x. If look at the deduced
sub sequences of Dy '(S) and Dy '(S), 010 is one state earlier than 0% 11. So
the input S have to be shifted minus one entries, i.e. to find the next bits of
the joined sequence, s;11 will have to be used instead of s;.

This continues until the state 001x is reached, its new successor is 0 * 11,
instead of 010%. Here 0 % 11 is one state later than 010%. So the input S have
to be shifted plus one entries, back to the original. I.e. to find the next bits of
the joined sequence, s; will have to be used instead of s;1.

Let denote this shift as “phase” of the input.

Definition 11. Phase is a variable for the input to the function denoted p, and
the input to the function is bit s,y moq(2n—1) of S at time (i + 1).

35

Theorem 10. The phase shift is determined by the two first bit of the selected
alternating state on the form x01x or x10x. If they are the same the phase have
to be shifted by +1 and if they are different it will have to be changed —1. Phase
can only take on the values 0,—1,+1.

Proof. Prove this by showing that for n even or odd, the alternating states both
follows this rule.

n even:
x01x*: this gives the following parts of the DBS.

— 110x — 101 — 010x — 1« 00 —

— 001% — 011 —

101 new successor 010 is one state earlier than its original successor state
0% 11. So the phase is —1, which is in accordance with the stated hypothesis.

001* new successor 0 * 11 is one state later than its original successor state
010*. So the phase is +1, which is in accordance with the stated hypothesis.

x10x: this gives the two following sub parts of the DBS.

— 110% — 1% 00 —

— 001 — 010% — 101x — 0% 11 —

010* new successor 101« is one state earlier than its original successor state
1% 00. So the phase is —1, which is in accordance with the stated hypothesis.

110% new successor 1 00 is one state later than its original successor state
101*. So the phase is +1, which is in accordance with the stated hypothesis.

n odd:
x010x*: this gives the following parts of the DBS.

— 1101% — 1010% — 0101% — 10 % 11 —

— 0010% — 01 % 00 —

0010+ new successor 01 * 00 is one state earlier than its original successor
010 % 1. So the phase is +1, which is in accordance with the stated hypothesis.

1010* new successor 0101 is one state later than its original successor 0100
. So the phase is —1, which is in accordance with the stated hypothesis.

x101x: this gives the following parts of the DBS.

— 1101x — 10 % 11 —

— 0010+ — 0101% — 1010* — 01 » 00 —

0101% new successor 1010x* is one state earlier than its original successor
10 % 11. So the phase is —1, which is in accordance with the stated hypothesis.

1101* new successor 10x11 is one state later than its original successor 1010x.
So the phase is +1, which is in accordance with the stated hypothesis. O

36

So it is possible to determine the phase after any alternating sequence on
the form 201 or 210 and this makes it possible to join the cycle Dy '(S) and
D7Y(S) into two unique de Bruijn sequences of order (n + 1).

Theorem 11. This method can be used to generate 2"~™ wunique de Bruijn
sequences of order n for all de Bruijn sequences of order m.

Proof. [2] proves that the D-homomorphism has a one-to-one correspondence
between S and the pair Dy *(S), D;'(S) if S has an even weight. De Bruijn
sequence have even weight, so Dy *(S), Dy '(S) is unique for every de Bruijn
sequence S. Let Sy be the resulting de Bruijn sequence from joining Dal(S),
Dy 1(S) for some de Bruijn sequence of order n S, by changing the successors
of the state z01x or x10x.

Assume that S ,is created by joining Dy*(S), Dy '(S) by changing the
successor of 01k, and the feedback function for Sy; is f(zo,21,...,Zn-1) =
2o ® g(x1,..,2n—1). Then the only difference between the feedback function
that generates Dy '(S), D;*(S) and the one generating Syi, is the entry of
g(0,...,1). Then is there then any S’ # S such that joining Dy *(S’), Dy *(S")
by changing the successor of the state z01x or x10%, equals S;1.

The changing the successor of x01x of Sy gives Dy '(S), Dy *(S), and since
there is a one-to-one correspondence between S and the pair Dy *(S), Dy ().
S, 1 cannot be constructed from S’ by joining Dy *(S"), Dy *(S’) changing the
successor of z0...1.

The changing the successor of 210« of S gives 2 cycles, one of length 2" —2
and 2. As Sy, was constructed by changing the successor of z0x* 1, which result
in that the successor to the state 101% is 010*. And the changing of the successor
of 01%0 = 010% to 101x* creates the cycle of length 2. Which means that it is not
possible to construct S.; from a S’ # S by changing the successors of the state
201% or 210% to join Dy '(S"), Dy *(S). So every possible de Bruijn sequence of
order n can be used to create two unique de Bruijn sequence of order n+1. [

By only looking at the two first bit of the selected form and count the
number of alternating output bits up to (n — 1). In the following sections a
hardware implementation of this is shown, that have a component complexity
of O(n -logan) and a time complexity to produce a bit of O(logan).

37

5.2 Introduction to the hardware implementation

When any computational task is to be performed, there is generally two ways
to do this. The first way is to solve it by writing a software program and run
this program on a computer to get the result. The other way to is to create
a special piece of hardware that will solve the problem. The software way is
general solution as there will be no additional cost in physical resources and it
can be performed on any computer.

The hardware way makes it possible to divide tasks into multiple separately
independent operations. Which can then be run in parallel to solve the problem
faster. Will in this part look at a hardware implantation to generate long
de Bruijn sequences from a shorter de Bruijn sequence using Lempels inverse
D-homomorphism.

All modern digital electronics is primarily created by using logic gates. A
logic gate take a number of binary input and gives binary output in accordance
with the truth table of the gate. The most simple are AND, NOT, OR and
XOR logic gates. In addition there is the complement of OR, NOR. By using
these as building blocks, its possible to construct complex logical systems. To
measure the efficiency of system, one have to look at the cost in resources to
build the system and the cost to operate it.

When any hardware generator is implemented, the two main resources are
time and component. The most important cost in time, is the time to solve a
task and to implement it into a system that generate the sequence. The time
needed to generate one sub part of the main task.

For components, the number of transistor is a good measurement of effi-
ciency, another one is the number of logic gates and memory cells. Here the
sum number of logic gates and memory is used to indicate the complexity of the
system. As logic gates and memory can be constructed from primarily transis-
tor and memory cells, this is a relatively good measurement of the complexity
of the system.

Use the notation (n—m)-incrementer to prefer to the hardware system. The
task of this system is to take an input stream, that is a de Bruijn sequence of
order m. And output a de Bruijn of order n, without there being any delay in
the difference between the two. L.e. every time single bit of the input stream is
sent to the system, a single bit of output is delivered from the system. Below
in figure 9 is basic overview of the (n — m)-incrementer.

m-DBS n-DBS
— (n-m)-Incrementer ———

Figure 9: An overview of the (n — m)-incrementer

38

The (n — m)-incrementer consist of (n — m) independent sub system called
incrementers. These are independent, as they can operate at the same time
without any of the incrementers having to wait for an input from another for
every clock cycle. The clock frequency is limited by the slowest incrementer, as
all the incrementers have to complete there task before the system can clock.
Also incrementers can use a shared memory cells, as long as only one incrementer
sets the value of the cell.

An incrementer takes as an input a de Bruijn sequence of order k£ and out-
put a de Bruijn sequence of order (k + 1). In figure 10 below, it is shown an
illustration of how the incrementers are used as building blocks of the (n —
m)-incrementer.

Incrementer m Incrementer m+1 Incrementer n-1
m-DBS (m+1)-DBS (m+2)-DBS (n-1)-DBS n-DBS

Figure 10: An overview of the (n — m)-incrementer

5.3 Components

This hardware implementation uses AND, XOR, NOT gates and D flip-flops.
It can be further optimized by using some of the complement gates, but for
simplicity only the simple implementation is used. All of these component can
be made from transistors in several different ways, that gives different properties
in terms of the number of transistors used and propagation delay. The most
important properties of the logic gates in an overhead view is:

Definition 12. Propagation delay is the maximum time it takes for the output
of a logic gate to change, when there is a change in the input to the logic gate.
This limits the speed of which the logic block can operate without there being
a logical error.

Fan-out is the maximum number of parallel logic gate that the output of a logic
gate can give a signal to, without there being a logical error.

The Propagation delay of a logic block is the longest time for the blocks output
to change into its final state, when any input to the block changes. This depend
on the “longest path” of the block, which is the longest path of components
an input signal has to travel to an output. So the total propagation delay is
the sum of the propagation delay of the components on the “longest path”. Of
course this is only applicable to a logic block that stabilizes for all inputs. Le.
that all output will eventually reach a constant truth value, for all input.

While there may be a more efficient ways to construct the logic blocks, by
using these few components the design does not get to complex to understand.
No electrical analysis on the power levels, noise cancellation, boosting of signal
and other details is performed. As this is only meant as a basic look at how gen-
erally efficient this method of generating de Bruijn sequence can be implemented
in hardware circuit.

39

AND gate

An AND gate takes two binary input and gives a 1 if both inputs are 1, and 0
otherwise. This is illustrated in the truth table below to the right, on the left is
the symbol used in block schematic to indicate an AND gate. But in all figures
in this thesis use the symbol ®.

' X | Y | Output |

Qutput 0 0 0

e i E=]

1 0
0 0
1 1

Figure 11: Symbol and truth table for an AND gate

This logic gate can be used to check if two Boolean values are both 1.

OR gate

An OR gate takes two binary input and gives a 1 if any of the inputs are 1, and
0 otherwise. This is illustrated in the truth table below to the right, on the left
is the symbol used in schematic to indicate an OR gate. But in all figures in
this thesis use the symbol O.

|X.|Y|Output‘
00 0

Output

== o

1 1
0 1
1 1

Figure 13: Symbol and truth table for an OR gate

This logic gate can be used to check if one or both Boolean values are 1.

NOR gate

A NOR gate takes two binary input and gives a 1 if none of the inputs are 1,
and 0 otherwise. This is illustrated in the truth table below to the right, on the
left is the symbol used in schematic to indicate a NOR gate. But in all figures
in this thesis use the symbol .

|X|Y|Output‘
Output 0 0 1

>

<

== o

1 0
0 0
1 0

Figure 14: Symbol and truth table for a NOR gate

This logic gate can be used to check if both Boolean values are 0.

40

XOR gate

A XOR gate takes two binary input and gives a 1 if they are different, and 0
otherwise. This is illustrated in the truth table below to the right, on the left is
the symbol used in schematic to indicate a XOR gate. But in all figures in this
thesis use the symbol ®.

|X|Y’Output‘

Qutput 0 o o

0|1 1

u 10 1
1 1 0

Figure 15: The symbol and truth table for a XOR gate

This logic gate can be used to check if two Boolean values are different.

NOT gate

The NOT gate takes a binary input an output the complement. This is illus-
trated in the truth table below to the right, on the left is the symbol used in
schematic to indicate a NOT gate.

X Output OUtPUt
0 1
1 0

Figure 16: The symbol and truth table for a NOT gate

This logic gate can be used to compliment a signal.

41

D flip-flop

A D flip-flop is a component that holds a single binary value @, that also is its
output. For any new clock cycle the value of @ is updated to that of the input
D. There are also two other input to the flip-flop S and R, that both are set to
0 for normal use. Below in figure 17, the truth table for a D flip-flop in normal
use (S = R =0) is shown on the right. On the left is the symbol used in block
schematics. But in so figure in this thesis also uses a simple square to represent
a stored it, with inbound arrow for the D signal and an outbound arrow for the
Q signal.

'S

\ Clock | D \ Q |
D Q Rising 010
_> Rising 1 1
Not rising | x | Q

R

Figure 17: Truth table for a D flip-flop in normal use (S = R = 0)

By changing the values of S and R it is possible to set the value of @ to 1 or 0,
without need to wait for a new clock cycle. In table 2 below is the truth table
for the D flip-flop when it is being set to a specific value.

’S\R\D\Clock\Q‘
01 X X 0
1|0 X X 1
1|1 X X 1

Table 2: Truth table for setting and resetting the output of a D flip-flop

Propagation delay of components

While all of these components can have different propagation delay ranging from
350 ps (picosecond) to 600 ns (nanosecond). This analysis we will use a 5 ns
propagation delay for the components AND, OR, NOR, XOR and D flip-flop.

42

5.4 (General concept of the hardware implementation

The main concept is to separate the process of generating a de Bruijn sequence
of order n from a de Bruiju sequence of order m into (n — m) independent
sub processes called incrementers. Such that each takes a de Bruijn sequence
bit stream of order k£ and calculate the next bit of the k& 4+ 1 order de Bruijn
sequence bit stream, and store it and send the previously stored bit to the next
incrementer.

Each of the incrementers uses the inverse of the D-homomorphism to find the
next bit of the bit stream and complement it if the last (k— 1) bit correspond to
the selected alternation sequence for the sub process, and shift the input stream
according to theorem 10.

Storing one bit and thereby adding a one bit delay for each incrementer,
makes it possible to have all the incrementer be independent of each other. So
the (n—m) incrementers can be run in parallel, and this allows for a much higher
clock frequency than if they where to be computed in a series. Which allow it
to produce a higher output of bits per second. This can be further optimize, by
minimize the time it take to complete the slowest of the incrementers.

To detect that the last (k— 1) output bits from a incrementer correspond to
the selected alternating state, the naive approach would be to save the (k — 1)
last bit and check if they correspond to the selected state. But this take up
(k — 1) bit of memory, and this will take approximately %
for a (n — 2)-incrementer.

A more memory efficient way would be to count the number of alternating
bit of the bit stream that corresponding to the selected alternating state. This
uses [log, k — 1] bit, and will sum up to approximately n - [log, n — 1] bit of
memory for a (n—2)-incrementer. This can also be implemented by any counter
module, in this implementation a basic counter is implemented by a primitive
LFSR. But a counter implemented by a LFSR while must have a period greater
than (k — 1), as the starting state must be different from the state after (k — 1)
clock of the LFSR.

bit of memory

43

5.5
List
[]

List

The hardware implementation
of signals in an incrementer
Reset 1: Set k-2 until 0 memory cells of the LFSR counter.
Reset 2: Set the memory cell (k — 1) of the LFSR counter.

Shift: Indicate that the counter have reached (k — 1), and that the input
should be shifted.

Xj: The input stream to the incrementer that is a k-order de Bruijn
sequence.

Y;: The output signal from the incrementer that is a S(k + 1)-order de
Bruijn sequence.

Mode: A binary value that determines the selected alternating
sequence. If it is 0 it is z01.., and if it is 1 it is x10....

First state bit: The first bit of the current possible alternating state.
P: If 1, indicates that the current phase is 0.
P_: If 1, indicate that the current phase is +1.

P : If 1, indicate that the current phase is —1.

of signals that are common for all incrementers

Set state: If 1, then the system will output its current state and set the
state of the system to be the input. If 0, then it will have no effect on the
system.

44

The Main module

The binary inverse of the D-homomorphism is:

DNC) = (kyco @ k,c1 @ (co D k), oy cam_1 @ (.22), k € {0,1}

As can seen by this, the sequence generated by the D-homomorphism starts with
either a zero or a one. The next bit is the first bit of the input stream ezclusive
or with the previous output bit, and so on. So it is obvious that the previous
output bit have to be stored for every module. To implement the joining of the
two cycles generated, one of the two alternating sequences have to be chosen.
As this is a binary decision, it needs only one bit to be represent in an encoding.
The problem is then to detect that the last (n — 1) bits of the output stream
correspond to the chosen alternating sequences. This can be implemented by a
counter that count up to (n— 1) if the sequences matches, and reset the counter
if it does not.

For the following input bits have to be shifted, and this can be implemented
by storing two previous input bit. Details of the module that handle phase
shown in the next sub section. The counter and the control module that run the
circuit and manages the setting of the register, is presented in the sub sections
after that. Below is a block schematic of the main module that performs the
D-homomorphism implementation on the input stream X;,; and the shifted
input bits X;, X; 0.

Mode
I
Counter

Shift

YM 3

Figure 18: The block schematic of the Main module

45

The cost of implementing this logic block is:

Number of OR: 2

Number of XOR: 2

Number of AND: 3

Number of Memory cells: 4

Longest path: 2 OR, 1 AND, 2 XOR, 1 D flip-flop. Total of 6 components.
So the total cost of this is 11 components for each incrementer, for a total of
11 - (n — m) components for a (n — m)-incrementer and component complexity

is O(n).

The Phase module

P, P_ and P are the current values of memory cells, and P{,P’ and P are the
next value of the memory cells. In the truth table below it is shown how phase
is changes depending on Shift, Mode, First state bit and the current value of
the memory cells. Below that in figure 19 is the block schematic of the phase
module.

| Shift | Mode®Firststatebit [P, [P [P_ [P/ [P [P/ |
0 X x |x| x |Py | P |P_
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0

Table 3: Truth table for the phase module

Shift p

P Q

D

Mode

First state bit

Figure 19: The block schematic of the Phase module

46

The cost of implementing this logic block is:

Number of NOT: 1

Number of OR: 2

Number of XOR: 2

Number of AND: 5

Memory cells: 3

Longest path: 1 NOT, 1 AND, 1 XOR, 1 D flip-flop. Total of 5 compo-
nents.
So the total cost of this is 13 components for each incrementer, for a total of
13 - (n —m) components for a (n — m)-incrementer and component complexity
is O(n).

The Set First State bit module

This module is used to store the first bit of any possible alternating state 201...
or x10.. depending on which is selected. Below in the truth table it is shown
how the value of the memory cell changes depending on the values of Reset 1
and Reset 2. Under that in figure 20 is the block schematic for the module.

Reset 1 | Reset 2 | First state bit ‘

0 X First state bit
1 0 Yi—1
1 1 Yi

Table 4: Truth table for the Set First State bit module

Reset 1 First state bit

D Q

Yi+:l

Reset 1

Figure 20: The block schematic of the Set First State bit module

The cost of implementing this logic block is:

Number of OR: 1

Number of AND: 2

Number of Memory cells: 1

Longest path: 1 AND, 1 OR, 1 D flip-flop. Total of 3 components.
So the total cost of this is 4 components for each incrementer, for a total of
4 - (n—m) components for a (n —m)-incrementer and component complexity is

O(n).

47

The State counter module implemented by a LFSR

If the previous output bit and the current output bit are different the counter
will increment itself, as this correspond to a part of an alternating sequence.
The counter itself will need to count up to (k — 1) for an k-incrementer, so the
LFSR must have to have a period of at least k. Which means that the order of
the LFSR have to be at least [log, k], and use [log, k] bits of memory.

Next the feedback function should have be as simple as possible, preferably
only depend on two state variables (which is minimum for a maximum-length
LFSR). To detect that the counter has reach (k—1) it will have to look at some
of the state variables, and the number of these should be as low as possible.

E.g. for (k—1) = 5, the order of the LFSR have to be at least 3. The feedback
function f(xg,x1,22) = 22 ® 21 and the initial state (0,0,1) will generate the
cycle (0,0,1,1,1,0,1) and the state after five clock is (0,1,0). To detect this
the detecting function D(xg,x1,22) = Tp ® Tz, which is be true for only this
state. As the all zero state does not occur in sequence of length greater than 1,
if it is generated by a LFSR.

M Ty
NN

n-1 n-2 n-3

Output
Logic block that check if the counter have reached k-1 —

Figure 21: The block schematic of the LFSR counter module

To calculate the cost of such a LFSR counter, assume that the feedback function
depend on two state variables. Then this can be implemented by a single XOR
gate. Assume that [log, k] state variables have to be check to detect at the
LFSR a have reached the (k—1) state. This can be implemented by [log, k] —1
AND gates, and the register will need [logak] memory cells.

The cost of implementing this logic block is:

Number of XOR: 1

Number of AND: [logok] — 1

Number of Memory cells: [logak]

Longest path: logs([log2k])—1 AND, 1 D flip-flop or 1 XOR, 1 D flip-flop.
Total of loga([logz2k]) — 1 or 2 components.
This gives a component complexity of O(logak) = O(log3k) and the propagation
delay is loga([logak]) AND or 2 components as this is the longest part any signal
has to travel for every clock. So the time complexity is O(logak) = O(log3k).

48

The module to reset the LFSR counter

When the two consecutive output bits of the main module are identical (either
00 or 11) the counter will have to be reset. If the two bit are the same as the
first bit of the chosen alternating sequence, the counter will have to be reset
to 1 as the last bit can then be the first bit of a sequence that is equal to the
chosen alternating sequence. But if it is not, then the counter will have to be
reset to zero. So the difference between those two type of rest are only the value
of memory cell (n — 1). This implement by the two reset signals Reset 1, and
Reset 2.

When the logic block that check if the counter has reached step (kK — 1), the
cells (n — 2) until 0 is set to 1. Cell (n — 1) is set to 1 if the current bit can be
the first bit of the selected alternating sequence, and set to 0 otherwise. This
can be implemented by a small logic block that checks if the two subsequent
bits are the same, and if they are it checks if the last bit can be the first bit of
the selected alternating sequence. Below the logic block for this is shown.

Note that the signal Reset 1 is stored in a memory cell and is used to reset
the memory cells of the counter in the same clock cycle that it is stored. If the
Reset 1 memory cell that stores Reset 1 dontt have a strictly faster propagation
delay than the memory cells of the counter, it can also reset the counter at the
start of the following clock cycle. This problem may also be fixed by changing
the implementation, either by using other types of components or redesigning
the way the resetting of the counter works.

Counter n2|..| 0

Shift sT R ‘l‘ 5 R’[
Reset

C DRESE;Z i
n-1
D

LD Q
T

Mode

Figure 22: The block schematic for the module to reset the counter

49

The cost of implementing this logic block is:

Number of OR: 1

Number of XOR: 2

Number of AND: 1

Memory cells: 1

Longest path: 1 XOR, 1 OR, 1 D flip-flop or 1 XOR, 1 AND, 1 D flip-flop.
Total of 3 components.
So the total cost of this is 5 components for each incrementer, for a total of
5-(n—m) components for a (n —m)-incrementer and component complexity is

O(n).

The module for setting and retrieving the state of the (n—m)-incrementer

The problem of retrieving the information stored in all the D flip-flop can be
solved by having them be connected by an AND gate, that has as input the
previous memory cell and a control signal Set state. So if Set state = 1 the
bits are then shifted out one at a time, and a new state can be simultaneously
shifted in. To make sure that the values of the memory cells are only shifted
and not changes, the normal processes of the FSR have to be stopped. So the
normal processes must have the requirement that Set state = 0, use Set state
to refer to the complement of Set state.

The bits Y;,Y;02and X, o are already shifted. The same with the memory
cells of the LFSR register.This process can be implemented by using 2 AND
and 1 Xor gate before any memory cells which input is not simply a shift from
another memory cell. The original input goes through an AND gate that is
open if Set state = 1, and the input from the shift goes through an AND gate
that is open if Set state = 0. Both signals are then sent to a XOR gate, and the
output of this is then sent to the memory cell. The schematic of this is shown
on the next page, the signal “Run input” is the original input signal.

The cost of implementing this logic block is:

Number of XOR: 8

Number of AND: 16
So the total cost of this is 24 components for each incrementer, for a total of
24 - (n —m) components for a (n — m)-incrementer and component complexity

is O(n).

50

¢ A

T+ 18uswsiou|

¢ led

L

josay

BEEES

ndur uny ndur uny ndur uny wndur uny ndur uny

+ Hq
N_ d d v olels

%’ L L/ e AN r

alElS 195
\\n_-/\ - 7+l L+l
o [— .—” v_ SPON X A -3 Jepuswaiou|

Ja3si8al Ys4

3]El15 185

ndur uny

—%

ndur uny

2JE]S 185

—X—D

ndur uny

51

Staring the (n — m)-incrementer for an initial state

Since every incrementer need two bit of the input stream to be able to start run-
ning (X;_; and X;), the clock signal to the different incrementers memory have
to be delayed by 2 clock cycle for every incrementers. So an (n—m)-incrementers
need to clock 2 (n —m) times before it can being to output the final de Bruijn
sequence of order n.

This operation can be performed by a software program, to reduce the num-
ber of required components, a hardware solution is not implemented in this
thesis. As this is only a one time operation, that can be relatively efficiently
implemented by a software application.

5.6 Correctness

To prove the correctness of this implementation, that it do produce a unique de
Bruijn sequence for all valid configuration of the device. Start by looking at the
most simple iteration.

Given an m order de Bruijn sequences incrementer, and let the output be
of order (m + 1). By selecting one of the two alternating sequences, one of two
possible de Bruijn are produces. Then as long as the incrementer can detect
the selected alternating state and complement the next output bit. The output
sequence will be a de bruijn sequence of order (m + 1).

By adding another incrementer that takes this (m + 1) order de Bruijn
sequence as an input, and output a (m + 2) order de Bruijn sequence. So if
the implementation works for a simple incrementor, it can work for an (n —
m)-incrementor. As it is only serie of simple incrementers. This produces a
de Bruijn for any of order, given enough incrementors. This given that all the
modules are correctly implemented.

52

Number of elements

The main modules:
Number of OR: 2

Number of XOR: 2
Number of AND gates: 3
Number of Memory cells: 4

The LFSR counters:
Number of XOR: 1
Number of AND gates: [log2k] — 1
Number of Memory cells: [logak]

The Resetting of the LFSR modules:
Number of OR: 1
Number of XOR: 2
Number of AND gates: 1
Number of Memory cells: 1

The Phase modules:
Number of OR: 2
Number of XOR: 2
Number of AND gates: 5
Number of NOT: 1
Number of Memory cells: 3

The Set first sate bit module:
Number of OR: 1
Number of AND gates: 2
Number of Memory cells: 1

The setting and retrieving of all the values of the memory cells:
Number of XOR: 8
Number of AND gates: 16

An incrementer:
Total number of OR: 6
Total number of XOR gates: 15
Total number of AND gates: [log:k] + 26
Total number of NOT gates: 1
Total number of memory cells: [logzk] + 9
Total number of components: 2 - [log, k| + 57

Let Comprota be the number of components for an (n — m)-incrementer, then:

Comprotar = 3 i, (2 - [logy(i)] +57) =57+ (n—m) +2- 3L [log,(i)]

It is easy to see that:

Y iz (logs (i) < 300, Noga ()] < 307, (logs (i) +1) (1)

53

Since:
Z?:m(logQ(i)) =mn-loga(n) —m-loga(m) —n+m (2)

> imm(1085(i) + 1) = n - loga(n) — m - loga(m) (3)

Substituting (2) and (3) into (1) gives:

n - loga(n) —m-loga(m) + 55 - (n —m) < Comprotar <
n-loga(n) — m-loga(m) + 57 - (n —m)

Based on this the component complexity of a (n—m)-incrementer is O(n-logan)
if m is a constant.

Propagation delay

We add the delay for the D-flip flops at the end. In a circuit, the clock frequency
is limited by the longest path any signal have to travel for each clock cycle. For
the counter LFSR this is time for the feedback function components to stabilize
on the next bot of the register. [logs [logan]] AND are needed to check if the
new state of the counter LFSR have reached the (n — 1) state.

The signal for this (Shift) is used by the main module, the phase module and
the module to reset the counter, so all these modules have to wait [logs [logan]]
AND before it can start to calculate its output values.

The main module have a constant delay of 2 OR, 1 AND then this signal
is XORed with Shift and another signal. For the phase module the maximum
propagation delay is the maximum is Shift, 2 AND, 1 OR. For the resetting
module the maximum propagation delay is the maximum is Shift, 1 OR, so it
is strictly lower than the phase module and can therefore be ignored.

The set first sate bit module only have a constant delay that is lower than the
constant delay in the main module, so it can also be ignored. So the maximum
propagation delay is the maximum of 2 OR, 1 AND, 2 XOR or [logs [logan]]
AND, 1 XOR or [logs [logan]] +2 AND, 1 OR.

For n < 5 the total propagation delay is:

2 OR, 1 AND, 2 XOR, 1 D flip-flop.
Which is a total of 6 components.

For n > 5 the total propagation delay is:

[loga [logan]] +2 AND, 1 OR, 1 D flip-flop.
Which is a total of [logs [logan]] 4+ 4 components.

So the time complexity to generate a bit is O(logan), and if we assume a prop-
agation delay of 5 ns for each components. The total propagation delay is
5 ([loga [logan]] + 4) us for n > 5.

54

Table for cost and efficiency

Below is a table that illustrate how the cost of component and memory grows
depending on the order of the de Bruijn sequences generated and the number
of mega Byte per second (MB/s) generated. These numbers are for an (n —
2)-incrementer, with 5 ns propagation delay for each components.

’ Order ‘ Comp. ‘ Comp./Ord. ‘ Mem. ‘ MB/s ‘

75 4989 66.5 1059 3.41
150 10395 69.3 2282 3.41
300 21507 71.7 4877 2.98
600 44332 73.9 10366 2.98
1200 91183 76.0 21934 2.98
2400 187286 78.0 46296 2.98
4800 384293 80.1 97401 2.98
9600 787908 82.1 204410 2.98
100000 | 8883441 88.8 2468925 2.65

Table 5: Table that illustrate the cost and efficiency to generate de Bruijn
sequences

As can be seen form the table, the efficiency of the implementation is decreasing,
as the cost of memory cells/components increases by more that double when
the order doubles.

5.7 Analyze of the final product
Pros

Predictable number of components, and throughput of bits per second. The
time complexity of generating a bit is O(log3n). So there is measurable and pre-
dictable performance level that can be used to generate 2"~ unique de Bruijn
sequences for every de Bruijn sequence of order m. A reduction in propagation
delay of the AND, XOR or D flip-flop leads to an increase in bit throughput.
Can be used in addition to other methods, as the principle allows the generation
to be used from any order of de Bruijn sequences. This makes it possible to
extend de Bruijn sequences of any order.

Cons

Need to have a hardware implementation to be efficient at all. The numbers
of memory cells and components grows O(n - logy n). The initial state have a
complexity of O(n-log, n) bits. To get current state of the (n —m)-incrementer,
O(n - logy n) clock cycle are needed to retrieve it. 2 - n clock cycles have to be
used to initialize a starting configuration. This can be done on different device
beforehand, or in a software application. The module to reset the counter can
be improved.

55

Hardware vs software

The difference in time and space/component complexity for the hardware and
software is shown below in table 6.

’ ‘ Software ‘ Hardware ‘

Time complexity to generate a bit O(n) O(log3n)
Space/component complexity O(n -logan) | O(n -logan)

Table 6: Table show the difference between this hardware implementation and
a general software implementation

Testing

For every start configuration at least k-n should be generated, for some constant
k. The resulting output sequence should be tested try to find the from this sub
sequence. The worst case is that the sequence generated is de Bruijn sequence
that can be found by joining the two cycles of a LFSR with a maximum period.
Which can be found by using the Berlekamp-Massey algorithm on at most (2-n)
bits. Of course this may fail if the 0 bit from the all zero cycle of the LFSR, is
a part of the (2 - n) bit the algorithm is run on. So this should be taken into
consideration when testing the sequence.

The same is true if the de Bruijn sequence is complemented sequence of
a de Bruijn sequence that can be found by joining the two cycles of a LFSR
with maximum period. Which can be found the same way by running the
complemented bit. The reversed complement is also easy to find, so it should
be checked to make sure that the sequence at least cannot be found by simply
using the Berlekamp-Massey algorithm.

Usability

As the devices simply takes a de Bruijn sequence stream as an input, it can be
combined with different technique that are able to efficient generate de Bruijn
sequences as long as there is enough memory, e.g. Annexstein [1]. This sequence
can then the input, this reduces the total number of components. The device
can also be more generalized, by making it possible to have multiple input and
output points. So that the order on the input sequence and output sequence
can be changed. Also possible to add complementing of any of the orders.

56

Conclusion

The main thing I have been working on

I have created a method to apply Lempels inverse D-homomorphism on a bit
stream, without having to store the current state. That takes any de Bruijn
sequence S of order m and binary sequence s of length (n —m) and generates
unique a de Bruijn order n for each unique pair of S and s. For a total of
92" 4n—2:m unique sequences.

This was implemented in a simple hardware circuit, that has a time com-
plexity to generate a bit of O(logan) a component complexity of O(n - logan).
This is relatively good scales time and space/component complexity, and the
cost in time and components are predictable.

Other things I have been looking at
Method to find de Bruijn by looking for cross-join pairs

Thought of a method to find new de Bruijn functions of order n from a de
Bruijn functions of order n. The first step is to search for ¢ subsequent bits that
differ by only one bit ¢ from a possible cycle in B,,. So if the entry in g that
determines this bit ¢ is swapped, and this does not change any of the other bit.
Then de Bruijn cycle is split into two cycles of length 2 — ¢ and 4. Since we
now all the states of the cycle with i bits, it is easy to find out if one or more of
these states s have a possible successor in the cycle of length 2™ — 1.

If there is such a state, then by changing the value of truth table for g for
the entry that changes the successor of s. This will join the two cycles in a new
de Bruijn sequence, if ¢ # s.

Note that in a cycle each state have only one successor and one predecessor,
so for a cycle of length i. Start with a state s, if both possible successor are
in the cycle, then the number of possible successors are ¢ — 2. Then take the
next state that has not have its possible successor looked at and continue. Since
the number of possible successor is lowered by 2 for each check that does not
find a join-state is not found. If ¢ is an odd number, the cycle is guarantied
to contain at least one state that can be used to join the two cycles into a de
Bruijn sequence, such that t # s.

Did not find a way to construct a reliable algorithm, such that this efficiently
implemented.

de Bruijn sequences over non-binary alphabets

Did some basic works on de Bruijn sequences over alphabet larger than 2 and
the relation between them and binary ones. No real progress was made.

New methods to generate new de Bruijn sequences

Did work on a new method to find de Bruijn sequences from de Bruijn of lower
orders. But did not find a new method.

57

New methods to generate new de Bruijn sequences from others of the
same order

Did work on a new method to find de Bruijn sequences from de Bruijn of the
same orders. Did find some basic results, but nothing new.

Thing I would have like to do if I had more time

e Would like to improve or redesign parts of the hardware implementa-
tion that I was not satisfied with. The way the counter module is be-
ing rest, or the module to change or retrieve the current state of the
(m — n)-incrementer could have been improved.

e Physically make a prototype of a (n — m)-incrementer, for a relatively
small n to get more practical data on how to optimize the process.

e Try to find ways to merge multiple subsequent incrementers to make it
possible to optimize the implementation.

e Try to deduce bounds on linear complexity, distribution and correlation
of the sequences that can be generated by (n — m)-incrementer.

Subjects that I would like to look into

e The properties of modified de Bruijn sequences especially type 1. And
ways to use this with (n — m)-incrementers.

e Looking for more and efficient ways to generate binary de Bruijn sequences
that scales well for very large orders.

e Try to find ways to efficiently generate de Bruijn sequences of high orders
over non-binary alphabets.

58

References

[1]

2]

[3]

[4]

[5]

[6]
7]
18]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F. S. Annexstein, “Generating de Bruijn sequences: AN efficient implemen-
tation,” IEEE Trans. Comput., vol 46, no. 2, pp. 198-200, Feb. 1997.

N. G. de Bruijn, “A combinatorial problem”, Koninklijke Nederlandse
Akademie van Wetenschappen, vol 49, no. 1, pp. 758-764, 1946.

A. H. Chan, R. A. Games, E. L. Key, “On the complexities of de Bruijn
sequences,” J. Combin. Theory, Ser A, vol. 33, pp. 233-246, Nov. 1982.

T. Chang, B. Park, Y.H. Kim, I. Song, “An efficient implementation of the
D-homomorphism for generation of de Bruijn sequences,” IEEE Transac-
tions on Information Theory 45, pp. 1280-1283, May 1999.

E. Dubrova, “A Transformation From the Fibonacci to the Galois NLFSRs”.
IEEE Transactions on Information Theory, vol. 55, no. 11, Nov. 2009.

E. Dubrova, Sequences and Their Applications — SETA 2010.
E. Dubrova, Des. Codes Cryptogr. 2014.

C. Flye Sainte-Marie, “Solution to question nr. 48, I’lntermediuire des
iathematiciens, pp. 107-110, 1894.

H. Fredricksen, “A Survey of Full Length Nonlinear Shift Register Cycle
Algorithms,” SIAM Review 24, no. 2 , pp. 195-221, Apr. 1982.

R. Games, “A generalized recursive construction for de Bruijn sequences,”
IEEE Transactions on Information Theory, vol. 29, no. 6, pp. 843-850,
Nov. 1983.

S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, CA,
1967.

T. Helleseth, T. Klove, “The number of cross-join pairs in maximum length
linear sequences,” IEEE Transactions on Information Theory, vol. 37, no.
6, pp. 1731-1733, Nov. 1991.

K. Kjeldsen, “On the cycle structure of a set of nonlinear shift registers
with symmetric feedback functions,” J. Combinatorial Theory, Ser. A., 20
, pp- 154-169, Mar. 1976.

A. Lempel, “On a homomorphism of the de Bruijn graph and its applica-
tions to the design of feedback shift registers”, IEEE Trans. Comput., vol
19, no. 12, pp. 1204-1209, Dec. 1970.

C. Li, X. Zeng, C. Li, T. Helleseth, “A Class of de Bruijn Sequences,” IEEE
Transactions on Information Theory, vol. 60, no. 12, pp. 7955-7969, Dec.
2014.

C. Li, X. Zeng, C. Li, T. Helleseth and M. Li, “Construction of de Bruijn
Sequences From LFSRs With Reducible Characteristic Polynomials,” IEEFE
Transactions on Information Theory, vol. 62, no. 1, pp. 610-624, Jan. 2016.

59

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Transactions
on Information Theory, vol. 15, no. 1, pp. 122-127, Jan. 1969.

G. L. Mayhew, S. W. Golomb, “Linear spans of modified de Bruijn se-
quences,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp.-
1166-1167, Sep. 1990.

J. Mykkeltveit, “A proof of Golomb’s conjecture for the de Bruijn graph,”
J. Comb. Theory, Ser. A, 13, pp. 40-45, Aug 1972.

E. Selmer, Linear Recurrence Relations over Finite Fields, Dept. of Math.,
University of Bergen, 1966.

J. Sgreng, “Symmetric shift registers,” Pacific J. Math., 85 , pp. 201-229,
Nov. 1979.

J. Sereng, “Symmetric shift registers. II,” Pacific J. Math., 98, pp. 203234,
Jan. 1982.

W. Zheng, Y. L. Cao, Y. C. Zhou and T. Y. Xu, “A generalization of modi-
fied de Bruijn sequences,” The 2nd International Conference on Information
Science and Engineering, Hangzhou, China, pp. 1705-1708, 2010.

N. Zierler, “Linear recurring sequences,” J. Soc. Indust. Appl. Math. 7, pp.
31-48, 1959.

60

