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Abstract

In the NP-complete problem Vertex Cover, one is given a graph G and an integer k and

are asked whether there exists a vertex set S ⊆ V (G) with size at most k such that every

edge of the graph is incident to a vertex in S. In this thesis we explore techniques to solve

Vertex Cover using parameterized algorithms, with a particular focus on kernelization

by structural parameters. We present two new polynomial kernels for Vertex Cover,

one parameterized by the size of a minimum degree-2 modulator, and one parameterized

by the size of a minimum pseudoforest modulator. A degree-2 modulator is a vertex set

X ⊆ V (G) such that G −X has maximum degree two, and a pseudoforest modulator

is a vertex set X ⊆ V (G) such that every connected component of G−X has at most

one cycle. Specifically, we provide polynomial time algorithms that for an input graph G

and an integer k, outputs a graph G′ and an integer k′ such that G has a vertex cover of

size k if and only if G′ has a vertex cover of size k′. Moreover, the number of vertices of

G′ is bounded by O(|X|7) where |X| is the size of a minimum degree-2 modulator for G,

or bounded by O(|X|12) where |X| is the size a minimum pseudoforest modulator for G.

Our result extends known results on structural kernelization for Vertex Cover.
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Chapter 1

Introduction

Imagine you are a lead engineer in charge of a large renovation project, where you administer many

small jobs that needs to be performed. You have specified the jobs in such a clever way that each

job takes exactly one week to finish, so that every week you can put a nice check-mark in your

spreadsheet for the jobs that were done that week.

Unfortunately, you cannot schedule every job at the same time since each job has some space,

manpower and equipment requirements – if two jobs both require the wheelbarrow, then you can

only schedule one of them any given week, or if two jobs require access to the same room or use the

same sub-contractor, then you cannot schedule both of them at the same time. Admittedly you are a

bit behind schedule, but your boss prefers watching ponies and rainbows on YouTube rather than

checking in on your progress, so you are not especially worried.

Then one morning of particular misfortune, the company director told your boss to check in on

your progress. Your boss observes the non-abundance of check-marks in your spreadsheet, and is

abruptly outraged. He storms into your office and demands in flaming terms that at least 100 more

jobs must be finished by next week, or else you will be fired. Is there any way you can save your job?

In order to answer this question, one could solve the Independent Set problem in the graph

where each unfinished job is represented by a vertex, and where there is an edge between two vertices

if their corresponding jobs have conflicting requirements; see Figure 1.1. In the this problem, one

⇐⇒
Paint

Dirt Rock

Electricity

Plumbing

TableCSS

Kitchen

Dirt

Plumbing

Table

Figure 1.1: Each unfinished job is represented as a vertex in the graph, and a conflict preventing two
jobs to be executed at the same time is represented by an edge. The highlighted vertices shows an
independent set, i. e. a set of vertices where there is no edge between any of them; the corresponding
jobs may thus be done the same week.

1



wants to find the largest subset of vertices in a graph such that there is no edge between any of the

chosen vertices. If your boss had rather required that there should be at most 60 jobs left by next

week, then one could instead solve the Vertex Cover problem in the same graph. This is just a

toy example, but there are plenty of real-world applications of these problems within areas such as

scheduling, pattern recognition, molecular biology, and more.

Notice that if the total number of unfinished jobs is 160, then the two questions your boss could

have asked above are equivalent; this hints to the close relationship between Independent Set and

Vertex Cover. In Figure 1.1, the highlighted vertices form an independent set, whereas the gray

vertices form a vertex cover. In this thesis we will state our results in terms of Vertex Cover, but

more often than not we will work with Independent Set in obtaining our results.

The Vertex Cover problem is one of the first problems to be proved NP-complete [23], and it

is one of the problems in Garey and Johnson’s list of “core” NP-complete problems [15, Section 3.1].

This implies that we do not know of any efficient algorithm to solve general instances of the problem,

and in practice we can only solve sufficiently small instances on modern computers. However, large

instances still exists, and the algorithm designer must thus cope with the hardness in one way or

another. The way of coping with NP-hardness employed in this thesis is the one of parameterized

algorithms, and in particular the technique of kernelization by structural parameters.

In this field, Vertex Cover is one of the most well-studied problems, and it is often used as a

testbed for developing and demonstrating new algorithmic ideas in the area. Various kernelization

techniques, like reductions [1, 2], crown rule [5], and linear programming based kernelization [3] were

initially developed for Vertex Cover.

Traditionally, kernelization is done with the parameter being the size of the solution, sometimes

referred to as the natural parameter. The best kernel for Vertex Cover using the solution size as

a parameter has 2k vertices, and there is complexity-theoretic evidence that this is optimal [16]. One

might at first be tempted think that this is the the best one can do. However, in 2011 Jansen and

Bodlaender [20] showed that Vertex Cover admits a kernel on O(|X|3) vertices when parameterized

by the size of a feedback vertex set X rather than the natural parameter. Since every vertex cover

is also a feedback vertex set, the size of a minimum feedback vertex set is a structurally smaller

parameter than the size of a minimum vertex cover, and the difference can be arbitrarily large. It

may therefore make sense to kernelize using the smaller parameter, even when the degree of the

polynomial is higher for kernels of this type.

This thesis introduces new reductions which in conjunction with those of Jansen and Bodlaender

[20] show that Vertex Cover admits a kernel on O(|X|7) vertices parameterized by the size of a

degree-2 modulator, and a kernel on O(|X|12) vertices parameterized by the size of a pseudoforest

modulator. A degree-2 modulator is structurally smaller than a vertex cover, but it is not structurally

related to a feedback vertex set. A pseudoforest modulator, however, is structurally smaller than
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both a degree-2 modulator and a feedback vertex set. Thus, the results of this thesis extend graph

classes where Vertex Cover can be considered tractable.

For the practitioner, these kernels provide means with which to solve a particular instance of

Vertex Cover, since he may first approximate all the relevant structural parameters and then

choose which kernelization(s) to perform. For this purpose we will provide a (d+ 2)-approximation to

Degree-d modulator, which is a generalized version of the well-known 2-approximation to Vertex

Cover by Gavril [15, page 134]. Even though it is not covered here, a pseudoforest modulator

may also be approximated in polynomial time, seeing that this is a special case of the F -Deletion

problem [14].

1.1 Overview of the Thesis

In the remainder of this chapter, terminology and necessary definitions are introduced. In Chapter 2,

we will give an introduction to the field of parameterized algorithms, introduce the concept of

kernelization, and give examples of how Vertex Cover has been solved previously in this framework.

We will also present a cubic kernel for Vertex Cover parameterized by a degree-1 modulator,

which is a simplified version of the kernel parameterized by a feedback vertex set by Jansen and

Bodlaender [20], and which serves as a gentle introduction to the techniques employed in our main

results.

Starting in Chapter 3, we present the results of this thesis. First we show that Vertex Cover

admits a kernel on O(|X|7) vertices parameterized by the size of a degree-2 modulator X. Then, in

Chapter 4, we show that Vertex Cover admits a kernel on O(|X|12) vertices parameterized by the

size of a pseudoforest modulator X.

Finally, we give a summary, present some comments to our work, and suggest a few open problems

for further research in Chapter 5.

1.2 Terminology

We will for the most part use standard mathematical terminology found in any modern textbook on

the appropriate subject [27]. While the reader is expected to be familiar with these terms, a short

recap of the concepts we will encounter is provided to avoid ambiguity.

1.2.1 Set Theory

A set is a collection of objects which makes a unit. The objects in a set S are also referred to as

members of S. An object can be a anything, e. g. a number, a letter, and in the context of graphs, a

vertex or an edge. An object can also be another set. The number of members in a set S, called the
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cardinality of S, is denoted by |S|. The set with zero members is called the empty set and is written

∅. Given two sets A and B, we use the following operations:

Subset A ⊆ B if for all members x ∈ A, we have x ∈ B.

Equality A = B if both A ⊆ B and B ⊆ A.

Strict subset A ⊂ B if both A ⊆ B and A 6= B.

Union A ∪B = {x | x ∈ A ∨ x ∈ B}

Intersection A ∩B = {x | x ∈ A ∧ x ∈ B}

Difference A \B = {x | x ∈ A ∧ x /∈ B}

Power set 2A = {A′ | A′ ⊆ A}

Size k subsets

(
A

k

)
= {A′ | A′ ∈ 2A ∧ |A′| = k} where k is a non-negative integer.

A set family, also called collection, is a set containing other sets as its objects. Objects which are not

sets are called elements. We attempt to use the convention where calligraphic upper-case letters are

used for set families, upper case letters are used for sets, and lower case letters are used for elements.

Some operations are applicable for collections. Let X = {X1, X2, . . . , Xk} be a collection. Then:

Union
⋃
X∈X

X = X1 ∪X2 ∪ · · · ∪Xk

Intersection
⋂
X∈X

X = X1 ∩X2 ∩ · · · ∩Xk

The operations presented here is only a tiny subset of what can be done within the framework of set

theory. For an extensive overview, we refer to a textbook on the subject [30].

1.2.2 Graph Theory

In this thesis we will consider only finite, simple, loopless, undirected and unweighted graphs. The

theory of graphs is wide and extensive, and the reader should consult a textbook on the subject for a

complete overview [11].

Graph A graph G is a pair (V (G), E(G)) where V (G) is a set of vertices, and E(G) ⊆
(
V (G)

2

)
is a

set of edges. Each edge has two distinct vertices associated with it, called its endpoints. The

two endpoints of an edge are said to be adjacent in G. We say that an edge is incident to its

endpoints.

Neighborhood For a graph G and a vertex v ∈ V (G), the neighborhood of v, denoted NG(v),

is the set of all vertices adjacent to v in G. The closed neighborhood of v is denoted by

NG[v] = NG(v) ∪ {v}. Similarly, for a set S ⊆ V (G) we denote its neighborhood NG(S) =

(
⋃
v∈S NG(v)) \ S, and its closed neighborhood NG[S] = NG(S) ∪ S. In cases where it is clear

which graph is being referred to, the subscript (G) may be omitted.
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Degree For a graph G and a vertex v ∈ V (G), the degree of v is the number of vertices adjacent to

v in the graph, degG(v) = |NG(v)|. In cases where it is clear which graph is being referred to,

the subscript (G) may be omitted. A vertex of degree 1 is called a leaf. For a graph G, the

maximum degree of any vertex in G is denoted by 4(G).

Subgraph For two graphs G and G′, G′ is a subgraph of G, denoted by G′ ⊆ G, if both V (G′) ⊆ V (G)

and E(G′) ⊆ E(G). For a set S ⊆ V (G), the maximal subgraph G′ ⊆ G such that V (G′) = S

is called the subgraph induced by S, and is denoted G[S]. The graph where S and its incident

edges are removed, is denoted as G − S = G[V (G) \ S]. Similarly, the graph G[V (G) \ {v}]

obtained by removing a single vertex v ∈ V (G) and its incident edges is denoted by G − v,

and the graph obtained by removing a subgraph G′ ⊆ G and its incident edges is denoted

G−G′ = G[V (G) \ V (G′)].

Path A path in a graph is a sequence of vertices connected by edges. In this thesis we will only

consider simple paths, i. e. paths that doesn’t contain any vertex more than once.

Cycle A cycle is a path where there is an edge between the first and the last vertex. In this thesis

we will only consider simple cycles, i. e. cycles which contain at least three vertices and no

vertex is contained more than once. Two cycles are considered non-distinct if they contain

the same vertices in the same or opposite order, even if the starting and ending vertices are

different.

Connected graph A graph G is said to be connected if there exists a path between all pairs of

vertices in the graph. A connected component of a graph G is a subgraph G′ ⊆ G such that

G′ is connected. When referring to the connected components of a graph G, we refer to the

maximal connected components of G, i. e. the vertex disjoint connected subgraphs of G such

that their union equals G.

Tree A connected graph T is a tree if it contains no cycles. A tree is rooted if one vertex r ∈ V (T )

has been designated as the root. In rooted trees, all vertices have a natural orientation with

respect to the root. For a non-leaf vertex a ∈ V (T ) we denote the set of its children by CT (a).

The subscript (T ) may be omitted if it is clear from the context which tree is being referred to.

For two vertices a, b ∈ V (T ), we say that a is an ancestor of b if a is on the path from r to b

(by this definition, a vertex is always an ancestor of itself).

Subtree For a rooted tree T and a vertex a ∈ V (T ), we let the subtree rooted at a be denoted by

Ta = T [{b | a is an ancestor of b}]. A subtree Ta is a strict subtree if T 6= Ta, i. e. if a is not

the root.

Forest A graph F is a forest if every connected component of F is a tree.
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Pseudotree A graph P is a pseudotree if P is connected and contains at most one distinct cycle.

Pseudoforest A graph F is a pseudoforest if every connected component of F is a pseudotree.

Triangle A graph C is a triangle if it contains exactly three vertices which are all adjacent.

Graph class A graph class is a (possibly infinite) collection of graphs which share a common

property or structure.

1.2.3 Graph Properties and Graph Problems

We will here give some properties vertex sets and edge sets of a graph G can have. For each listed

vertex/edge set property, there is a corresponding graph property denoting the maximum or minimum

size such a set can take in G.

Vertex cover A vertex cover (VC) is a vertex set S ⊆ V (G) such that every edge of G is incident

to at least one vertex in S. The size of a minimum vertex cover of G is denoted vc(G).

Independent set An independent set (IS) is a vertex set I ⊆ V (G) such that no edge of G has both

its endpoints in I. The independence number α(G) is the largest number of distinct vertices

which can constitute an independent set of G. An independent set I of G with cardinality

|I| = α(G) is called a maximum independent set, abbreviated MIS.

Feedback vertex set A feedback vertex set (FVS) is a vertex set X ⊆ V (G) such that every cycle

of G has at least one vertex in X. We also say that a feedback vertex set is a forest modulator,

since G−X is a forest. The size of a minimum feedback vertex set of G is denoted fvs(G).

Degree-d modulator A degree-d modulator (DdM) is a vertex set X ⊆ V (G) such that the

maximum degree in the graph where X is removed from G is at most d, i. e. 4(G−X) ≤ d.

Note that vertex cover is exactly the case when d = 0; every degree-0 modulator is a vertex

cover, and every vertex cover is a degree-0 modulator. We abbreviate a degree-1 modulator as

D1M, and a degree-2 modulator as D2M. The size of a minimum degree-d modulator for G is

denoted ddm(G).

Pseudoforest modulator A pseudoforest modulator (PFM) is a vertex set X ⊆ V (G) such that

G − X is a pseudoforest. The size of a minimum pseudoforest modulator for G is denoted

pfm(G).

Matching A matching is an edge set M ⊆ E(G) such that no two edges in M share an endpoint. If

every vertex of a graph G is in a matching M in G, then M is a perfect matching in G. We let

V (M) denote the vertices of a matching M . The largest number of distinct edges which can

constitute a matching of G is called the maximum matching number, and is denoted mm(G).
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For each vertex/edge set property above, there is a corresponding optimization problem finding a

maximum or minimum set having the property in question. For instance, the Minimum Vertex

Cover problem asks us to find a minimum vertex set S ⊆ V (G) such that S is a vertex cover. We

will attempt to use the convention where we refer to graph problems in capital letters, and sets

with the given properties in regular case. It is also possible to define weighted and counting versions

of these problems, but we will not encounter any of those in this thesis.

The problems corresponding to the set properties described here can be understood either as

optimization problems, where the aim is to find a minimum or maximum sized set which satisfy the

property, or as a decision problems, which asks whether there exists a set of a size k satisfying the

property, where k is a non-negative integer provided along with the input. Optimization problems are

prefixed by the words “maximum” or “minimum,” e. g. the Maximum Independent Set problem,

whereas the decision versions have no such prefix, e. g. the Independent Set problem.

Given a graph decision problem Q and an instance (G, k), we say that (G, k) is a yes-instance of

Q if there exists a set of size k in G which satisfy the property required by Q, and a no-instance

otherwise.

7
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Chapter 2

Parameterized Algorithms and
Kernelization

In this chapter we will introduce the field of parameterized complexity, with a particular focus on

kernelization and how Vertex Cover has been solved in this framework previously. Before we do,

we will draw some attention to the broader picture, where we briefly discuss complexity theory and

different approaches for coping with NP-hardness.

2.1 Coping with NP-hardness

In the field of computational complexity theory, one classifies problems according to their difficulty,

namely how much time and/or space is required to solve the problem with a computer. The most

famous open question in this area, and possibly within all of computer science, is whether P is equal

to NP or not. Informally we say that a problem Q is in the class P if there exists a deterministic

algorithm which solves all instances of Q optimally in polynomial time, i. e. time bounded by a

polynomial function of the size of the input description. Assuming that P 6= NP, then there is no

such algorithm for problems which are NP-hard. There are written hundredfold books and papers on

the subject that can be consulted for a deeper introduction [29].

As decades has passed without anyone proving P = NP, alternative techniques to solve NP-hard

problems have emerged [18]. Here are some of them.

Randomized algorithms This approach is relaxing the requirement that the algorithm is deter-

ministic, and can thus have either a randomized running time, or produce the correct answer

only with some probability strictly less than 1.

Restricted input algorithms This approach is relaxing the requirement that the algorithm solves

all instances of the problem, but is only concerned with solving problem instances with a

certain structure. For instance, an algorithm which solves Vertex Cover only on trees.
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Approximation algorithms This approach to NP-hard optimization problems is relaxing the

requirement that the algorithm solves the problem optimally. Instead, some guarantee is given

that the found solution is not too far from the optimum (as opposed to heuristics, which gives

no such guarantee).

Fast exponential time algorithms This approach is relaxing the requirement that the problem

is solved in polynomial time, and is rather concerned with making smart choices which bring

down the important constants of the running time, such as the base of the exponential.

Parameterized algorithms This approach is relaxing the requirement that the algorithm solves

all instances in polynomial time. Rather, for some property of the problem quantifiable by a

parameter k, the algorithm will have a running time which is polynomial as a function of the

input description size n, but is allowed to be super-polynomial as a function of the parameter

k. For a class of parameterized problems where the parameter k is bounded by some constant,

the algorithm will thus run in polynomial time. Pseudo-polynomial algorithms, such as the

O(nW )-algorithm for the Knapsack problem, are special cases of parameterized algorithms.

The topic for this thesis is within parameterized algorithms, which we will introduce more thoroughly

in the next section. The approaches above may also be combined in various ways, and in our results

we rely on restricted input algorithms for solving Independent Set on certain graph classes, such

as trees, cycles and pseudoforests.

2.2 Definitions in Parameterized Complexity

Parameterized complexity is a branch of complexity theory where one attempts to classify para-

meterized problems according to their difficulty under the assumption that P 6= NP. Some NP-hard

problems can be solved in time which is polynomial in the size of the input, but require exponential

time or worse in terms of some parameter k which describe a quantifiable property of the problem.

Thus if k is small, or at most some fixed constant, then the problem can still be considered tractable

even though NP-hard problems in general are intractable. This is what the concept of fixed-parameter

tractability (fpt) captures; however, before we formally define it, we need to know formally what a

parameterized problem is.

Definition 2.1 (Parameterized problem [7, Definition 1.1]). A parameterized problem Q is a

language Q ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet.

This means that every valid instance of a parameterized problem Q is on the form (I, k), where I

describes the input and the parameter k is a natural number. For example, an instance of Vertex

Cover parameterized by the solution size is a pair (G, k), where G is a graph encoded as a string
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over Σ, and k is the solution size. We say that (G, k) is in Vertex Cover if and only if G correctly

encodes a graph, and there is a vertex cover of size k in the graph encoded by G.

Definition 2.2 (Fixed-parameter tractable [7, Definition 1.2]). A parameterized problem Q ⊆ Σ∗×N

is called fixed-parameter tractable (fpt) if there exists an algorithm A, a computable function

f : N → N, and a constant c such that, given (I, k) ∈ Σ∗ × N, the algorithm A correctly decides

whether (I, k) ∈ Q in time bounded by f(k) · |(I, k)|c. The complexity class containing all fixed-

parameter tractable problems is called FPT.

So far we have discovered what an fpt-algorithm is, but we have said nothing about kernelization,

which is the topic of this thesis. Intuitively, a kernelization algorithm can be viewed as a preprocessing

algorithm which throws away parts of the problem which are easy to solve. It then leaves behind only

the “hard” part of the problem in the output instance, but includes a guarantee that the size of the

output is bounded by a function of the parameter k. More formally, we use the following definition.

Definition 2.3 (Kernel [7, Definition 2.1]). A kernelization algorithm, for a parameterized problem

Q is an algorithm A that, given an input instance (I, k), works in polynomial time and returns a

kernel, i. e. an output instance (I ′, k′) such that (I, k) ∈ Q if and only if (I ′, k′) ∈ Q. Moreover, we

require that |I ′|+ k′ ≤ g(k) for some computable function g : N→ N.

If the upper bound g(·) is a polynomial function of the parameter, then we say that Q admits a

polynomial kernel.

In this thesis we obtain a kernel by making use of reduction rules. A reduction can be viewed as

a miniature version of a kernel, but without any guarantee on the output size. A reduction for

a problem Q receives as input an instance (I, k), and outputs an equivalent instance of the same

problem (I ′, k′). A reduction is safe if (I, k) ∈ Q ⇐⇒ (I ′, k′) ∈ Q. Typically, a collection of

reduction rules applied in some defined order together constitute a kernel. When no reduction rules

can be applied to an instance, we call the instance reduced.

(I, k)

(I ′, k′)

n

g(k)

O(nc)

Figure 2.1: Kernelization: A polynomial-time algorithm which transforms an input instance (I, k) of
a problem to an equivalent output instance (I ′, k′) with a guarantee g(k) on the size of the output.
O(nc) represents the runtime of the kernelization algorithm, where c is a constant.
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Note that solving a parameterized problem Q by first finding the kernel for Q and then solving

the kernel by use of brute force yields a running time of |(I, k)|c+f(k), where c is a constant, |(I, k)|c

represents the time spent by the kernelization algorithm, and f can be any function representing the

time spent by the brute force algorithm working on the kernel. It is then clear that any parameterized

problem which admits a kernel is FPT. More surprisingly, the other direction is also true, as witnessed

by this proposition [7, Lemma 2.2]:

Proposition 2.4. If a parameterized problem Q is FPT, then it admits a kernelization algorithm.

This implies that a problem admits a kernel if and only if it is FPT. We can therefore view kernelization

as an alternative definition of fixed-parameter tractability. However, it turns out (under common

complexity-theoretic assumptions) that not every problem in FPT admits a polynomial kernel. We

can think of parameterized problems which admit polynomial kernels as “easier” than those who do

not, and this distinction gives rise to a finer hardness classification within FPT.

We will in the next section give some simple examples of parameterized algorithms and polynomial

kernels for Vertex Cover.

2.3 Parameterized Algorithms for Vertex Cover

What does a parameterized algorithm look like in practice? In this section we will show some

examples of different parameterized algorithms for our problem of choice, Vertex Cover. In this

problem, we are given a graph G and a non-negative integer k and are asked if there exists a set S of

at most k vertices in G such that every edge in G is adjacent to at least one vertex in S. We will

for this section use the size of the solution k as the parameter. All the results of this section are

previous work, and can be found in an appropriate textbook on the subject [7].

2.3.1 Edge Branching

In this recursive algorithm we branch on which endpoint of a given edge covers the edge, and

obtain a running time of 2k · nO(1). Observe that this running time shows that Vertex Cover is

fixed-parameter tractable.

The key observation of Algorithm 2.1 is that every edge needs to be covered, and for each edge

uv, there are two possibilities: it is covered either by u or by v. After an arbitrary edge has been

chosen, the algorithm recurse on the two choices of how to cover it. Since k is reduced by one in

each call, the depth of the recursion is at most k, and seeing that there are at most two branches in

each call, VCEB is called O(2k) times. The other work done in each call is to make two copies of G,

which takes polynomial time.
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Algorithm 2.1 Vertex Cover by Edge Branching, VCEB(G, k)

Input: Graph G, non-negative integer k.
Output: True if G contains a vertex cover of size k, False otherwise.

1: if k = 0 and |E(G)| > 0 then
2: return False
3: else if |E(G)| = 0 then
4: return True
5: else
6: Pick uv ∈ E(G) arbitrarily
7: return VCEB(G− u, k − 1) or VCEB(G− v, k − 1)
8: end if

2.3.2 Vertex Branching

This is an improved version of the edge branching algorithm, which obtain an improved running

time of 3 · 1.466k · nO(1). This algorithm is combining the approaches of parameterized algorithms,

restricted input algorithms, and fast exponential time algorithms.

The first important observation we need to make, is that Vertex Cover is polynomial time

solvable on graphs of maximum degree two, i. e. graphs where every connected component is either a

path or a cycle. We can therefore assume that we have an algorithm VC42 which solves Vertex

Cover on such graphs in polynomial time. The second key observation, is that for some vertex

v ∈ V (G) with N(v) 6= ∅, either v is in the optimal vertex cover S, or all of N(v) must be.

Algorithm 2.2 Vertex Cover by Vertex Branching, VCVB(G, k)

Input: Graph G, integer k.
Output: True if G contains a vertex cover of size k, False otherwise.

1: if k ≥ 0 and |E(G)| = 0 then
2: return True
3: else if k ≤ 0 then
4: return False
5: else if 4(G) ≤ 2 then
6: return VC42(G, k)
7: else
8: Pick v ∈ V (G) such that deg(v) ≥ 3
9: return VCVB(G− v, k − 1) or VCVB(G−N [v], k − deg(v))

10: end if

The number of leaves in the recursion tree of Algorithm 2.2 will be at most 3 · 1.466k. To see this,

we provide the following lemma.

Lemma 2.5 ([7, Theorem 3.2]). Let T (k) be the maximum number of leaves in the recursion tree of

Algorithm 2.2, where k is the parameter. Then T (k) ≤ 3 · 1.466k for every k ≥ 0.
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Proof. We will do a proof by strong induction on k. See that the base case holds for k ∈ {0, 1, 2}

(they all have at most 3 leaves). For the inductive case k ≥ 3, observe that

T (k) = T (k − 1) + T (k − deg(v))

v is here the vertex chosen on line 8 of Algorithm 2.2. Observe that in cases where k − deg(v) < 0,

then T (k − deg(v)) = 1 by inspection of the algorithm. Since k ≥ 3, we see that 3 · 1.466k−3 ≥ 1.

Further, because deg(v) ≥ 3 and 3 · 1.466k−3 ≥ 3 · 1.466k−c for every c ≥ 3, we have by the induction

hypothesis that

T (k) ≤ 3 · 1.466k−1 + 3 · 1.466k−3

≤ 3 · 1.466k(1.466−1 + 1.466−3)

Seeing that 1.466−1 + 1.466−3 ≤ 1, we have now proven the lemma.

Since the work done in each call of VCVB is polynomial, this implies that the running time of the

algorithm is 3 · 1.446k · nO(1) as stated.

2.3.3 Quadratic Kernel

So far, we have seen examples of parameterized algorithms which solve Vertex Cover, but we

have not yet seen examples of kernels. In this and the next sections we will give such examples. We

will begin by giving a kernel for Vertex Cover on at most 2k2 vertices. In this classic example by

Buss [2], we will make use of three reduction rules which will be applied exhaustively, and when none

of them are applicable, we will argue that the number of vertices in the reduced instance is at most

2k2.

Each reduction rule is given an input instance (G, k), and will return an equivalent output instance

(G′, k′). The reduction rules are as follows:

1. If there is a vertex v ∈ G such that deg(v) = 0, then remove v from G. We let G′ := G− v,

and k′ := k.

2. If there is a vertex v ∈ G such that deg(v) > k, then remove v and its incident edges from G

and reduce k by one. We let G′ := G− v, and k′ := k − 1.

3. If there are strictly more than k2 edges in G, let (G′, k′) be a trivial no-instance: Let G′ be

two vertices connected by an edge, and let k := 0.

The first reduction is safe, since isolated vertices are never necessary in a vertex cover. The second

reduction is safe, because if v is not in the vertex cover, then all of its neighbors must be; however,

there are too many of them. The third reduction is safe, because each vertex can cover at most k
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vertices seeing that the second reduction was not applicable. If there are more than k2 edges, then

there are too many to be covered, and it is a no-instance.

For the bound on the size of a reduced instance, observe that every vertex has at least one edge

incident to it, or else the first reduction would be applicable. Since each edge is incident to at most

two vertices, and there are at most k2 edges, then it must be the case that there are at most 2k2

vertices.

2.3.4 Crown Reduction

In this section we will introduce an additional reduction rule which can be combined with those

of the previous section as a fourth reduction. We then obtain a kernel for Vertex Cover on at

most 3k vertices in this reduction by Chor, Fellows and Juedes [5]. This reduction rule makes use of

what is called a crown decomposition of a graph G, which is a partition of the vertices V (G) into

three sets C,H,R (crown, head, and rest) such that C is a non-empty independent set, there are no

edges between C and R, and there exists a matching in the bipartite graph between H and C which

saturates H. Such a decomposition is very useful in the pursuit of a minimum vertex cover due to

the following lemma.

C

H

R

Figure 2.2: A crown decomposition: C is a non-empty independent set, there are no edges between
C and R, and there exists a matching in the bipartite graph between H and C which saturates H
(e. g. highlighted edges).

Lemma 2.6 ([5, Lemma 9]). Let G be a graph without isolated vertices, and let (C,H,R) be a crown

decomposition of G. Then there is a minimum vertex cover of G which contains all of H and none

of C.

Proof. Because there are no isolated vertices, every vertex in C must be incident to at least one

vertex in H, so H is not empty. Since there is a matching in the bipartite graph between vertices of

C and H which saturate H, then in order to cover the edges of that matching, at least |H| vertices

are required. These edges must necessarily be covered by vertices in C or H, but since there are

no edges between C and R, the choice of all vertices in H is always at least as good as any choice

involving vertices from C.
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If we obtain a crown decomposition of a graph without isolated vertices, then by Lemma 2.6 we

can safely select H to be in the vertex cover. Removing H and its incident edges from G will yield

all vertices of C isolated in the resulting graph, so C may safely be removed as well. The next

proposition gives us an algorithm which either finds a crown decomposition, or a witness that a

vertex cover of size k is impossible.

Proposition 2.7 (Crown Lemma [7, Lemma 2.14]). Let G be a graph without isolated vertices and

with at least 3k + 1 vertices. Then there is a polynomial time algorithm that either (a) finds a

matching of size k + 1 in G; or (b) finds a crown decomposition (C,H,R) of G.

This gives rise to the following reduction.

4. If |V (G)| ≥ 3k + 1, then apply the algorithm of Proposition 2.7 to G. If case (a) applies, then

let (G′, k) be a trivial no-instance; let G′ be two vertices connected by an edge, and let k = 0.

If case (b) applies, then “chop off the head”: Remove C and H from G, and reduce k by |H|.

Let G′ := G− (C ∪H), and k′ := k − |H|.

In case (a), then the reduction is safe because at least k + 1 vertices are required to cover the found

matching, which is too much. In case (b), safeness of the reduction follows by Lemma 2.6. Finally,

observe that a reduced kernel has at most 3k vertices, since the crown reduction is not applicable.

2.3.5 Integer Linear Programming

In this section, we introduce another way of finding a crown decomposition which will enables us

to give a kernel for Vertex Cover on at most 2k vertices. Rather than using the algorithm of

Proposition 2.7 as in the previous section, we utilize the technique of linear programming (LP), as

originally shown by Chen, Kanj and Jia [3] using the Nemhauser-Trotter theorem [26].

In linear programming, one specifies a number of linear inequality constraints over some variables,

and an objective function to be minimized or maximized. Solving a linear program optimally is

polynomial time solvable, for instance by the simplex method [9]. For a deeper introduction to linear

programming, a textbook in algorithms should be consulted [6, 10].

While the Vertex Cover can not be formulated as a linear program, it can be formulated as an

integer linear program (ILP), where there is an additional requirement that the variable assignments

are integers. Let there be one variable xi for each vertex vi of a graph G. We formulate the following

ILP for vertex cover:

Objective function: Minimize

n∑
i=1

xi

Constraints: xi ∈ Z for every 1 ≤ i ≤ n

0 ≤ xi ≤ 1 for every 1 ≤ i ≤ n

xi + xj ≥ 1 if vivj ∈ E(G)
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We begin by observing that any assignment for the variables x1, x2, . . . xn which satisfy the constraints

will yield a corresponding vertex cover in the graph G; we let the vertices corresponding to variables

set to 1 be included in the vertex cover. Observe that a variable assignment which minimize the

objective function subject to these constraints will correspond to a minimum vertex cover; thus we

conclude that solving ILP’s is NP-hard.

However, by relaxing the requirement that the variables are integers, we are able to solve the

resulting LP optimally in polynomial time. In any optimal solution to the LP, each variable gets

assigned a real value between 0 and 1. We can then partition the vertices of the graph according to

the value assigned to their respective variable:

C = {vi | xi <
1

2
} H = {vi | xi >

1

2
} R = {vi | xi =

1

2
}

We will now argue that (C,H,R) is in fact a crown decomposition. First, observe that there can

be no edge between two vertices vi, vj ∈ C, since then there would be an unsatisfied constraint

xi + xj ≥ 1. By the same argument, there can be no edge between a vertex of C and a vertex of R.

It remains to show that there is a matching in the bipartite graph between C and H which saturates

H. In order to do so, we will rely on Hall’s marriage theorem.

Proposition 2.8 (Hall’s marriage theorem [17]). Let B be an undirected bipartite graph with

bipartition (C,H). The graph B has a matching saturating H if and only if for all H ′ ⊆ H, we have

|NB(H ′)| ≥ |H ′|.

Assume for the sake of contradiction that there is not a matching in the bipartite graph (C,H) which

saturates H. Then by Proposition 2.8, there exists some set H ′ ⊆ H such that |NG(H ′) ∩ C| < |H ′|.

Let ε be some strictly positive real value such that for every vertex vi ∈ H ′, it holds that xi − ε ≥ 1
2 .

Now observe that subtracting ε from every variable corresponding to a vertex in H ′ and adding ε

to every variable corresponding to a vertex in NG(H ′) ∩ C will yield a feasible solution to the LP.

Moreover, the value of the objective function is strictly smaller than before, since |NG(H ′)∩C| < |H ′|.

But the LP was already solved optimally, and we have hence reached a contradiction. We thus

conclude that there is a matching between C and H which saturates H, and that (C,H,R) is indeed

a crown decomposition.

Whenever solving the LP yields non-empty C and H, we can then safely include H in the vertex

cover and remove C by Lemma 2.6, and repeat. When at some point the LP yields C = ∅ and H = ∅,

then observe that every variable has value 1
2 . Because the objective function of the linear program

val(LP) is always smaller than or equal to the value of the integer version val(ILP) due to there

being less constraints, we get that V (G)
2 = val(LP) ≤ val(ILP) = vc(G). Here, vc(G) is the size of a

minimum vertex cover, and we then conclude that if there are strictly more than 2k vertices in G,

then it is not possible to find a vertex cover of size k.
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There are plenty more fpt algorithms solving the Vertex Cover problem, and the currently

fastest algorithm by Chen et al. [4] runs in time O(1.2738k + kn) and makes use of a combination of

different techniques, including several reductions. In this section we saw a kernel for Vertex Cover

on 2k vertices, and it is believed that this is optimal [3].

However, all the examples we have seen in this section has used the size of the solution k as the

parameter; the runtime of the algorithms are given as a function of k, and the bound on the kernel

size has been given in terms of the solution size k. But a vertex cover can be very large, so even

though linear kernels are great, it may be helpful to consider parameters that are structurally smaller.

This is the topic for the next section.

2.4 Ecology of Parameters

So far we have seen parameterized algorithms for Vertex Cover which use the size of the solution

as a parameter. However, the definition of parameterized problems and fpt-algorithms are not limited

to this; anything quantifiable can be a parameter. While not every quantifiable parameter is helpful

in the sense that they yield fpt-algorithms, some are. For the same problem, different parameters

can take different numeric values, and everything else being equal, it would be preferable to solve the

problem with a running time depending on the smallest parameters available.

For instance, consider the two graph parameters vc, the size of a minimum vertex cover, and

d1m, the size of a minimum degree-1 modulator. For a graph G, observe that every vertex cover

S ⊆ V (G) is also a degree-1 modulator, since the maximum degree of G− S is 0, which is indeed less

than or equal to 1. Thus we know that vc(G) ≥ d1m(G). The difference can also be arbitrarily large;

the graph which consists of n disjoint paths each on two vertices have a minimum vertex cover of size

n, but a minimum degree-1 modulator of size 0. We say that a degree-1 modulator is structurally

smaller than a vertex cover, and is thus a stronger parameter.

Making similar observations for various graph parameters, we find that there exists a partial

ordering on the set of all possible graph parameters. For the parameters we consider in this thesis,

we get the partial order shown in Figure 2.3. We observe that, as we expect, a degree-2 modulator

(D2M) is structurally smaller than a degree-1 modulator, and hence also a vertex cover. The size of a

minimum feedback vertex set (FVS) is not comparable to the size of a minimum degree-2 modulator,

but both are at least as large as a minimum pseudoforest modulator (PFM).

VC D1M

D2M

FVS

PFM

Figure 2.3: The partial order (≥) on the graph parameters considered in this thesis.
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VC
D1M

D2M
FVS

PFM
All graphs

Figure 2.4: A Venn diagram showing where graph classes with bounded parameters may reside.

For a given graph G, it may therefore be beneficial to use an algorithm whose runtime is measured

in the strongest parameter available. However, the advantage of selecting a stronger parameter can

also be seen in a slightly different light, by considering which graph classes become tractable with the

parameter. In Figure 2.4 we see that every graph class which have bounded size on their minimum

vertex cover also has a bounded size of their minimum degree-1 modulator. All the parameters are

similarly related as before, the only difference being that we now are talking about graph classes

rather than a single graph. By selecting a stronger parameter which has an fpt-algorithm/kernel,

more classes of graphs become tractable.

However, choosing a stronger parameter may also come with a drawback, if the algorithms at

hand have a worse dependency on the stronger parameter than on the weaker one. For instance, we

saw that Vertex Cover has a linear kernel parameterized by the size of the minimum vertex cover,

but the best known kernel parameterized by the size of a minimum feedback vertex cover is on a

cubic number of vertices [20]. Thus, for the kernel to be as small as possible, the practitioner would

need to compare exactly how much smaller the parameter is for the problem (or class of problems)

in question before blindly deciding to use the stronger parameter. One can also combine different

kernelization algorithms in series or in parallel to get the best of all worlds.

It is then useful to have multiple parameters to choose from when deciding how to best approach

a problem. How various parameters influence the complexity of different problems is called the

ecology of parameters [12]. As a part of the parameter ecology program [13, 24], Jansen et al. [22]

classify the kernelization complexity of Feedback Vertex Set for a wide range of parameters.

In particular, they show that Feedback Vertex Set admits a kernel on O(|X|10) vertices where

the parameter |X| is the size of a minimum pseudoforest modulator. In this thesis we do a similar

exploration for Vertex Cover by demonstrating a polynomial kernel when parameterized by the

size of a minimum degree-2 modulator or by the size of a minimum pseudoforest modulator. As a

gentle introduction to the techniques in play, we will first show a cubic kernel for Vertex Cover

parameterized by the size of a minimum degree-1 modulator.
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2.5 Kernel Parameterized by Degree-1 Modulator

In this section, we will give a cubic kernel for Vertex Cover parameterized by the size of a minimum

degree-1 modulator, which is a simplified version of the kernel parameterized by a feedback vertex

set by Jansen and Bodlaender [20]. This section contains no new results, but serves as a gentle

introduction to the framework we will use in the next chapters. Another polynomial kernel for this

problem on O(|X|2) vertices was also shown by Majumdar et al. [25]. We define the problem as

follows:

Vertex Cover/Degree-1 Modulator (VC/D1M)
Input: A graph G, a degree-1 modulator vertex set X ⊆ V (G) such that 4(G−X) ≤ 1, and
an integer k.
Parameter: Size of the degree-1 modulator |X|.
Question: Does G contain a vertex cover of size at most k?

Note that we here state the problem with a degree-1 modulator given as part of the input, but this

condition can be omitted, seeing that a degree-1 modulator can be constant-factor approximated

(see for instance Appendix A).

For ease of presentation, we will first develop a kernel for Independent Set parameterized by

the size of a minimum degree-1 modulator, and then by the immediate correspondence between the

Vertex Cover and Independent Set problems the kernel for VC/D1M will follow. For the

remainder of this section, we will thus focus on the following problem:

Independent Set/Degree-1 Modulator (IS/D1M)
Input: A graph G, a degree-1 modulator vertex set X ⊆ V (G) such that 4(G−X) ≤ 1, and
an integer k.
Parameter: Size of the degree-1 modulator |X|.
Question: Does G contain an independent set of size at least k?

Throughout the chapter, let F := G−X be the induced subgraph remaining after the modulator X

has been removed from G. Note that F has maximum degree 1, and is as such a forest containing

only isolated vertices and paths on two vertices.

Definition 2.9 (Conflicts [20, Definition 3]). Let (G,X, k) be an instance of IS/D1M where F ′ ⊆ F

is a subgraph of the forest F and X ′ ⊆ X is a subset of the modulator X. Then the number of

conflicts induced by X ′ on F ′ is defined as ConfF ′(X ′) := α(F ′)− α(F ′ −NG(X ′)).

F
X

F ′

X ′

Figure 2.5: Conflicts: In the figure, we observe that α(F ′) = 3, and α(F ′ −NG(X ′)) = 2. Hence, we
get that ConfF ′(X ′) = 1. In other words, the number of conflicts induced by X ′ on F ′ is 1.
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Choosing X ′ to be in an independent set I of G may prevent some vertices in F ′ from being

included in same set I. In particular, no vertex v ∈ V (F ′) ∩NG(X ′) can be chosen to be in I. In

light of this, the term ConfF ′(X ′) can be understood as the price one has to pay in F ′ by choosing

to include X ′ in an independent set. See Figure 2.5.

2.5.1 Reduction Rules

We introduce here the reduction rules. Each reduction receives as input an instance (G,X, k)

of Independent Set/Degree-1 Modulator, and outputs an equivalent instance (G′, X ′, k′).

Reduction rules will be applied exhaustively starting with lower number rules.

Reduction 2.1 ([20, Reduction 1]). If there is a vertex v ∈ X such that ConfF ({v}) ≥ |X|, then

delete v from the graph G and from the set X. We let G′ := G− v, X ′ := X − v and k′ := k.

Reduction 2.2 ([20, Reduction 2]). If there are distinct vertices u, v ∈ X with uv /∈ E(G) for which

ConfF ({u, v}) ≥ |X|, then add the edge uv to G. We let G′ := (V (G), E(G) ∪ {uv}), X ′ := X and

k′ := k.

The correctness of the two above rules can be established by the following lemma.

Lemma 2.10 ([20, Lemma 2]). Let (G,X, k) be an instance of IS/D1M. If XI ⊆ X is a subset of

the degree-1 modulator such that ConfF (XI) ≥ |X|, then there is a MIS for G that does not contain

all the vertices of XI .

Proof. Assume that I ′ ⊆ V (G) is a maximum independent set which contains XI . We will show that

then there is also another independent set I such that |I| ≥ |I ′| and which satisfies XI * I.

Because ConfF (XI) ≥ |X|, we have that α(F ) ≥ |X| + α(F − NG(XI)). Now consider the

independent set I ′. Some of its vertices are in X, however no more than |X|. The remainder of

vertices of I ′ are in V (F ), however no more than α(F −NG(XI)). Thus |X|+α(F −NG(XI)) ≥ |I ′|.

But then α(F ) ≥ |I ′|, and we see that a MIS of the pseudoforest F satisfies the requirements of the

lemma.

Reduction 2.3 ([20, Reduction 3]). If there exists a connected component T in F such that

for all independent subsets XI ⊆ X with |XI | ≤ 2 there is no conflict induced by XI on T , i. e.

ConfT (XI) = 0, then remove T from G and reduce k by 1. We let G′ := G − T , X ′ := X and

k′ := k − 1.

In order to prove safeness of the above reduction, we will here provide an auxiliary lemma. The

statement of the lemma originates in the paper by Jansen and Bodlaender [20, Lemma 3], however

the proof is much simpler in our case. The same goes for the safeness proof itself, which follows

afterwards.
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Lemma 2.11. Let (G,X, k) be an instance of IS/D1M, where T ⊆ F is a connected component of

the forest F . If there is some independent set XI ⊆ X such that ConfT (XI) > 0, then there is also

an independent set X ′I ⊆ XI with |X ′I | ≤ 2 such that ConfT (X ′I) > 0.

Proof. Assume that there exists some independent set XI ⊆ X such that ConfT (XI) > 0. There

are two cases. In the first case, T is a single vertex. Then ConfT (XI) > 0 implies that the vertex

in T has at least one neighbor in XI . Pick an arbitrary vertex x ∈ XI ∩NG(T ), and observe that

ConfT ({x}) > 0. In the second case, T is a path on two vertices. Then ConfT (XI) > 0 implies

that both vertices of T has a neighbor in XI . We pick two arbitrary (possibly non-distinct) vertices

x1, x2 ∈ XI such that x1 is neighbor to one of the vertices of T and x2 is neighbor to the other one.

Observe that ConfT ({x1, x2}) > 0. This concludes the proof.

Lemma 2.12 ([20, Lemma 4]). Reduction 2.3 is safe. Let (G,X, k) be an instance of IS/D1M

to which Reduction 2.3 is applicable, and let (G′, X ′, k′) be the output instance resulting from the

reduction. Then (G,X, k) is a yes-instance if and only if (G′, X ′, k′) is a yes-instance.

Proof. Since X is a degree-1 modulator, T must be either a single vertex or a path on two vertices.

If T is a single vertex, then this implies that there is no edge between X and T , since all singleton

subsets of X are independent. Thus the vertex of T is isolated in the graph G. It can then be safely

included in the independent set and be forgotten.

If T is a path on two vertices, then the forward direction is trivial, since there is an edge between

the elements of T . For the backward direction, let I ′ be an independent set of G′ with |I ′| ≥ k′. Note

that I ′ is also independent in G. By the contrapositive of Lemma 2.11, we have that every independent

set XI ⊆ X yields ConfT (XI) = 0. In particular, it must be the case that ConfT (I ′ ∩ X) = 0.

Observe that there is then a vertex of T which has no edge to the elements of I ′, and thus adding

this vertex to I ′ to obtain I will yield a sufficiently big independent set of G.

2.5.2 Bound on Size of Reduced Instances

In this section we will prove that the number of vertices in a reduced instance (G,X, k) is at most

O(|X0|3) where |X0| is the size of the modulator in the original problem (G0, X0, k0). Note that

none of the reduction rules increase |X0|, so any bound in terms of |X| is a better or equally good

bound as a similar bound in |X0|. For our purposes, a much simpler proof than what was done by

Jansen and Bodlaender [20] is sufficient. This is due to the small size of every connected component

in F when X is a degree-1 modulator.

Lemma 2.13. Let (G,X, k) be a reduced instance of IS/D1M. Let CF denote the collection of all

connected components T ⊆ F . Then |CF | ≤ |X|3 + |X|2, i. e. the number of connected components in

F is at most |X|3 + |X|2.
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CFX

· · · · · ·
< |X| ≥ 1

Figure 2.6: The bipartite graph B: There is an edge between X ′ ∈ X and T ∈ CF if and only if X ′

induce a conflict in T .

Proof. Let X be the collection of all subsets X ′ ⊆ X where X ′ is independent and has |X ′| ≤ 2.

Now consider the bipartite graph B between X and the connected components CF where there is

an edge between X ′ ∈ X and T ∈ CF if and only if ConfT (X ′) > 0. Because Reduction 2.3 is not

applicable, every connected component T ∈ CF will have at least one edge incident to it in B. Thus

any bound on the number of edges in B will also be a bound for |CF |.

Since every X ′ ∈ X is independent and has size at most two, we know that ConfF (X ′) < |X|, or

else one of Reductions 2.1 or 2.2 would be applicable to X ′, contradicting that the instance is reduced.

Since conflicts induced by X ′ on F in different connected components of F are distinct, each X ′ ∈ X

is incident to less than |X| connected components in B. See Figure 2.6. Since |X | ≤ |X|2 + |X|, we

get that |CF | ≤ (|X|2 + |X|) · |X|. This concludes the proof.

We are now ready to prove the main theorem of this section. This is a simplified version of the

kernelization result by Jansen and Bodlaender for the Independent Set/Feedback Vertex Set

problem [20, Theorem 2].

Theorem 2.14. Independent Set/Degree-1 Modulator admits a kernel on O(|X|3) vertices:

There is a polynomial time algorithm that transforms an instance (G,X, k) to an equivalent instance

(G′, X ′, k′) such that

• k′ ≤ k

• |X ′| ≤ |X|

• |V (G′)| ≤ 2|X|3 + 2|X|2 + |X|

Proof. Let (G′, X ′, k′) be a reduced instance after applying the reductions of this section to the

original instance (G,X, k). First observe that there are no reductions which increase k or |X|. It

remains to show the bound for |V (G)|. By Lemma 2.13, there are at most |X|3 + |X|2 connected

components of F . Since each component has at most two vertices, |V (F )| ≤ 2|X|3 + 2|X|2. Seeing

that |V (G)| = |X|+ |V (F )|, we obtain that |V (G)| ≤ 2|X|3 + 2|X|2 + |X|.
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Corollary 2.15. Vertex Cover/Degree-1 Modulator has kernel on O(|X|3) vertices: There is

a polynomial time algorithm that transforms an instance (G,X, k) to an equivalent instance (G′, X ′, k′)

such that |V (G′)| ≤ 2|X|3 + 2|X|2 + |X|.

Proof. First, we transform the instance (G,X, k) of VC/D1M to an instance (G,X, |V (G)| − k) of

IS/D1M. Then we apply Theorem 2.14 to obtain (G′, X ′, |V (G′)|−k′), which we can transform back

to an instance of VC/D1M (G′, X ′, k′). Since the transformations between VC/D1M and IS/D1M

preserve both the graph and the modulator, the bounds on the number of vertices in Theorem 2.14

also holds for VC/D1M.
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Chapter 3

Kernel for Vertex Cover
Parameterized by
Degree-2 Modulator

This chapter gives a kernel for Vertex Cover parameterized by the size of a minimum degree-2

modulator X on O(|X|7) vertices. Another polynomial kernel for this problem on O(|X|5) vertices

was independently shown by Majumdar et al. [25]. We define the problem as follows:

Vertex Cover/Degree-2 Modulator (VC/D2M)
Input: A graph G, a degree-2 modulator vertex set X ⊆ V (G) such that 4(G−X) ≤ 2, and
an integer k.
Parameter: Size of the degree-2 modulator |X|.
Question: Does G contain a vertex cover of size at most k?

Note that we here state the problem with a degree-2 modulator given as part of the input, but this

condition can be omitted, seeing that a degree-2 modulator can be constant-factor approximated

(see for instance Appendix A).

For ease of presentation, we will first develop a kernel for Independent Set parameterized by

the size of a minimum degree-2 modulator, and then by the immediate correspondence between the

Vertex Cover and Independent Set problems the kernel for VC/D2M will follow. For the

remainder of this section, we will thus focus on the following problem:

Independent Set/Degree-2 Modulator (IS/D2M)
Input: A graph G, a degree-2 modulator vertex set X ⊆ V (G) such that 4(G−X) ≤ 2, and
an integer k.
Parameter: Size of the degree-2 modulator |X|.
Question: Does G contain an independent set of size at least k?

3.1 Tools

Throughout the chapter, let F := G−X be the induced subgraph remaining after the modulator

X has been removed from G. Note that F has maximum degree two, and is as such a collection of

paths and cycles. We will for completeness restate unconventional definitions here.
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Definition 3.1 (Conflicts [20, Definition 3]). (Conflicts) Let (G,X, k) be an instance of IS/D2M

where F ′ ⊆ F is a subgraph of F and X ′ ⊆ X is a subset of the modulator X. Then the number of

conflicts induced by X ′ on F ′ is defined as ConfF ′(X ′) := α(F ′)− α(F ′ −NG(X ′)).

F
X

F ′

X ′

Figure 3.1: Conflicts: In the figure, we observe that α(F ′) = 3, and α(F ′ −NG(X ′)) = 1. Hence, we
get that ConfF ′(X ′) = 2. In other words, the number of conflicts induced by X ′ on F ′ is 2.

Choosing X ′ to be in an independent set I of G may prevent some vertices in F ′ from being included

in same set I. In particular, no vertex v ∈ V (F ′) ∩NG(X ′) can be chosen to be in I. In light of

this, the term ConfF ′(X ′) can be understood as the price one has to pay in F ′ by choosing to

include X ′ in an independent set. Observe that ConfF ′(X ′) is polynomial time computable when

the independence number is.

Next, we will introduce chunks. This concept originates in the paper by Jansen and Bodlaender [20,

Definition 2], but a is altered for our purposes in two ways: The size of the chunks are here of size at

most three (as opposed to two), and we have additionally introduced the requirement that a chunk

cannot induce a conflict on F which is of size |X| or larger.

Definition 3.2 (Chunks). Let (G,X, k) be an instance of IS/D2M. A set X ′ ⊆ X is a chunk if the

following hold:

• X ′ is independent in G,

• the size of X is between 1 and 3, i. e. 1 ≤ |X| ≤ 3, and

• the number of conflicts in F induced by X ′ is less than |X|, i. e. ConfF (X ′) < |X|.

We let X be the collection of all chunks in X.

The collection of chunks X can be seen as all suitable candidate subsets of size at most three from

X to be included in a maximum independent set I of G. The idea is that I may contain a chunk

as a subset, but it is never necessary to include a subset X ′ ⊆ X of size at most three which is not

a chunk. This will allow us to discard potential solutions containing non-chunk subsets of X with

size at most three. In order for this intuition to hold, we provide the following lemma, originally by

Jansen and Bodlaender though slightly altered to fit our purposes. For completeness, we also provide

a proof.

Lemma 3.3 ([20, Lemma 2]). Let (G,X, k) be an instance of IS/D2M where α(G) ≥ k. Then

there exists an independent set I of G such that |I| ≥ k and for all subsets X ′ ⊆ X ∩ I it holds that

ConfF (X ′) < |X|.
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Proof. Assume that I ′ ⊆ V (G) is an independent set for which there exists some X ′ ⊆ I ′ ∩X such

that ConfF (X ′) ≥ |X|. We will show that then there exists another independent set I such that

|I| ≥ |I ′| and for all subsets X ′′ ⊆ X with ConfF (X ′′) ≥ |X|, it holds that X ′′ is not a subset of I.

Because ConfF (X ′) ≥ |X|, we have that α(F ) ≥ |X| + α(F − NG(X ′)). Now consider the

independent set I ′. Some of its vertices are in X, however no more than |X|. The remainder of

vertices of I ′ are in V (F ), however no more than α(F −NG(X ′)). Thus |X|+α(F −NG(X ′)) ≥ |I ′|.

But then α(F ) ≥ |I ′|, and we see that a maximum independent set of the pseudoforest F satisfies

the requirements of the lemma.

Definition 3.4. (Anchor triangle) Let (G,X, k) be an instance of IS/D2M. Let P be a triangle

in F with V (P ) = {p1, p2, p3}. Then P is an anchor triangle if there exists three distinct vertices

x1, x2, x3 ∈ X such that:

• NG(p1) = {p2, p3, x1}

• NG(p2) = {p1, p3, x2}

• NG(p3) = {p1, p2, x3}

An anchor triangle is redundant if there is also another anchor triangle with the same open neighbor-

hood in G, and it is non-redundant if there is not.

p1

p2

p3

x1

x2

x3

F
X

Figure 3.2: The connected component P ⊆ F with vertices V (P ) = {p1, p2, p3} is an anchor triangle
for the triple {x1, x2, x3} ⊆ X.

Definition 3.5. (Unnecessary triple) Let (G,X, k) be an instance of IS/D2M, and let X3 ⊆ X be

a triple, i. e. a set containing three distinct vertices. Then X3 is an unnecessary triple if there exists

an anchor triangle P in F such that NG(P ) = X3.

The fact that a triple X3 ⊆ X is unnecessary as defined above should intuitively be understood

with respect to constructing an independent set. If a triple X3 is unnecessary then there exists a

maximum independent set for G which does not contain all of X3. This intuition is supported by the

next lemma.

Lemma 3.6. Let (G,X, k) be an instance of IS/D2M. If there exists an independent set of size

at least k in G, then there exists an independent set I of G with |I| ≥ k containing no unnecessary

triple X3 ⊆ X.
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Proof. We will prove the lemma by constructing the required independent set I satisfying the

properties, assuming we have an arbitrary independent set I ′ of size at least k. By definition, for each

unnecessary triple X3 ⊆ X ∩ I ′, there is at least one anchor triangle P ⊆ F such that NG(P ) = X3.

Since X3 ⊆ I ′, we have that no vertex of P is in I ′. Let pu ∈ V (P ) be an arbitrary vertex of P , and

let u ∈ X3 be the neighbor of pu in X3. Observe that we can replace u by pu in I ′, and still have

I ′ be an independent set of the same size. We do this for every unnecessary triple X3 ⊆ X ∩ I ′ to

obtain I, which then satisfies the requirement of the lemma.

3.2 Reduction Rules

We introduce here the reduction rules. Each reduction receives as input an instance (G,X, k)

of Independent Set/Degree-2 Modulator, and outputs an equivalent instance (G′, X ′, k′).

Reductions 3.1, 3.2, 3.4 and 3.5 originates in the result by Jansen and Bodlaender [20], though

Reduction 3.4 is altered to fit the context of a graph with maximum degree 2, which required

significant changes to the proof. Reduction rules will be applied exhaustively, and a lower number

rule is always applied before a higher number rule if at any point they are both applicable.

Reduction 3.1 ([20, Reduction 1]). If there is a vertex v ∈ X such that ConfF ({v}) ≥ |X|, then

delete v from the graph G and from the set X. We let G′ := G− v, X ′ := X − v and k′ := k.

Reduction 3.1 is safe due to Lemma 3.3.

Reduction 3.2 ([20, Reduction 2]). If there are distinct vertices u, v ∈ X with uv /∈ E(G) for which

ConfF ({u, v}) ≥ |X|, then add edge uv to G. We let G′ := (V (G), E(G) ∪ {uv}), X ′ := X and

k′ := k.

Reduction 3.2 is safe, because there always exists a maximum independent set I in G leaving at

least one of {u, v} outside I by Lemma 3.3. Adding uv to E(G) thus does not reduce the size of

the maximum independent set. The backward direction is trivial, since removing an edge does not

reduce the maximum size of an independent set.

Reduction 3.3. If there are distinct u, v, w ∈ X such that ConfF ({u, v, w}) ≥ |X|, the set {u, v, w}

is independent in G, and for which there is no anchor triangle P with NG(P ) = {u, v, w}, then add

an anchor triangle P ′ = {pu, pv, pw} to the graph such that NG(P ′) = {u, v, w}, and increase k by

one. Let V (G′) := V (G) ∪ {pu, pv, pw} and let E(G′) := E(G) ∪ {pupv, pupw, pvpw, puu, pvv, pww}).

Further, let X ′ := X and let k′ := k + 1.

Note that Reduction 3.3 makes the triple {u, v, w} ⊆ X unnecessary as defined in Definition 3.5.

Lemma 3.7. Reduction 3.3 is safe. Let (G,X, k) be an instance of IS/D2M to which Reduction 3.3

is applicable, and let (G′, X ′, k′) be the output instance resulting from the reduction. Then (G,X, k)

is a yes-instance if and only if (G′, X ′, k′) is a yes-instance.
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Proof. For the forward direction of the proof, assume (G,X, k) is a yes-instance, let u, v, w ∈ X be

the elements which triggers the reduction, and let V (P ′) = {pu, pv, pw} be the vertices of the added

anchor triangle in the output instance. Let I be an independent set of G with |I| ≥ k. By Lemma 3.3,

we assume that at least one of u, v, w is not in I. Without loss of generality (by symmetry), let

u /∈ I. For the output instance, observe that I ′ := I ∪ {pu} is an independent set of G′ with size

|I ′| = |I|+ 1 ≥ k + 1 = k′, which makes (G′, X ′, k′) a yes-instance.

For the backward direction, assume that (G′, X ′, k′) is a yes-instance, and let P ′ be the added

anchor triangle in the output instance. Let I ′ be an independent set of G′ with |I ′| ≥ k′. Because P ′

induces a triangle in G′, at most one vertex of P ′ is in I ′. Thus, I := I ′ \ V (P ′) is an independent

set of G with |I| ≥ |I ′| − 1 ≥ k′ − 1 = k, which makes (G,X, k) a yes-instance.

The next reduction rule originates in the paper by Jansen and Bodlaender [20, Reduction 3], but

it has been altered to fit our purposes. Because chunks are defined differently, and because F now

contains cycles, the proof of safeness of this reduction is in some aspects very different.

Reduction 3.4. If there exists a connected component P in F which is not a non-redundant anchor

triangle, and for every chunk X ′ ∈ X there is no conflicts induced by X ′ on P , i. e. ConfP (X ′) = 0,

then remove P from G and reduce k by α(P ). We let G′ := G− P , X ′ := X and k′ := k − α(P ).

To prove that Reduction 3.4 is safe, we will rely on the following lemma, which states that any

connected component with maximum degree at most two (paths and cycles), has a small (at most

size three) obstruction in terms of obtaining a maximum independent set.

Lemma 3.8. Let P be a connected component with maximum degree two, and let Z be a set of vertices

such that α(P ) > α(P −Z). Then there exist three (possibly non-distinct) vertices u, v, w ∈ Z ∩V (P )

such that α(P ) > α(P − {u, v, w}).

Proof. Since P has maximum degree 2, it is either a path or a cycle. Moreover, the number of

vertices in P is either even or odd. We consider each case separately:

• P is an odd path. Then there is a unique maximum independent set for P containing every

odd-indexed vertex of P . Since α(P ) > α(P − Z), at least one odd-indexed vertex u ∈ V (P ) is

in Z. See that also α(P ) > α(P − u).

• P is an even path. Then there are exactly two distinct maximum independent sets; one

containing all the odd-indexed vertices of P and one containing all the even-indexed vertices of

P . Since α(P ) > α(P − Z), at least one odd-indexed vertex u ∈ V (P ) and one even-indexed

vertex v ∈ V (P ) are also in Z. See that also α(P ) > α(P − {u, v}).

• P is an even cycle. Then there are exactly two distinct maximum independent sets, and

by an analogous argument to the previous case there exists u, v ∈ Z ∩ V (P ) such that

α(P ) > α(P − {u, v}).
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• P is an odd cycle. Pick an arbitrary vertex u ∈ Z ∩ V (P ). Observe that α(P ) = α(P − u).

Then we must have that α(P − u) > α((P − u)−Z). But since P − u is an even path, we have

already shown in a previous case that there exist two vertices v, w ∈ (Z ∩ V (P − u)) such that

α(P − u) > α(P − {u, v, w}). Then it follows that α(P ) > α(P − {u, v, w}).

We are now able to make the following observation:

Observation 3.9. Let P ⊆ F be a connected component in F and let X ′ ⊆ X be an independent

set such that ConfP (X ′) > 0. Then there exists some X ′′ ⊆ X ′ with 1 ≤ |X ′′| ≤ 3 such that

ConfP (X ′′) > 0.

Proof. We see that the observation is true, since by Lemma 3.8 there exist u, v, w ∈ NG(X ′) ∩ V (P )

such that α(P ) > α(P − {u, v, w}). Then for each element u, v, w, pick an arbitrary neighbor

xu, xv, xw ∈ X ′ (they need not be distinct) to form the set X ′′ := {xu, xv, xw}. See that then

ConfP (X ′′) > 0.

We are now equipped to prove safeness of Reduction 3.4.

Lemma 3.10. Reduction 3.4 is safe. Let (G,X, k) be an instance of IS/D2M to which Reduction 3.4

is applicable, and let (G′, X ′, k′) be the output instance resulting from the reduction. Then (G,X, k)

is a yes-instance if and only if (G′, X ′, k′) is a yes-instance.

Proof. Let P ⊆ F be the connected component which triggered the reduction. For the forward

direction of the proof, assume (G,X, k) is a yes-instance and let I be an independent set of G

with size at least k. Let I ′ := I \ V (P ). Clearly I ′ is an independent set of G′. Now observe

that |I ∩ V (P )| ≤ α(P ), and thus |I ′| = |I| − |I ∩ V (P )| ≥ k − α(P ) = k′. Hence (G′, X ′, k′) is a

yes-instance.

For the backward direction, we assume that (G′, X ′, k′) is a yes-instance, and has an independent

set I ′ of size at least k′. Because of Lemma 3.6 we can assume that I ′ contains no unnecessary triples.

We want to show that we can always pick some independent set IP ⊆ V (P ) with |IP | = α(P ) such

that I := I ′ ∪ IP is an independent set with size at least k′ + α(P ) = k. Since I ′ and V (P ) are

disjoint by construction, it will suffice to show that α(P −NG(I ′)) ≥ α(P ).

Assume for the sake of contradiction that α(P − NG(I ′)) < α(P ). Since P was a connected

component in F , all its neighbors NG(P ) are in X. Thus we have that ConfP (X ∩ I ′) > 0. By

Observation 3.9, we further have that there exists some X ′′ ⊆ X ∩ I ′ such that 1 ≤ |X ′′| ≤ 3 and

ConfP (X ′′) > 0.

For any such X ′′, there are two cases. In the first case, ConfF (X ′′) < |X|. Because X ′′ is also

independent and has size at most three, it is a chunk of X in the input instance. This contradicts

the preconditions for Reduction 3.4, so this case can not happen.
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In the second case, ConfF (X ′′) ≥ |X|. But then one of Reductions 3.1, 3.2 or 3.3 would have

previously been applied to X ′′, yielding it either unfeasible for an independent set or making it an

unnecessary triple in the input instance. Because non-redundant anchor triangles are not chosen for

removal by Reduction 3.4, X ′′ is also an unnecessary triple in the output instance, which contradicts

that I ′ contains no unnecessary triples. This concludes the proof.

The final reduction is originally by Jansen and Bodlaender, though slightly altered to make sure it

does not destroy any triangles of F . This change is also required for the safeness of the reduction in

the context of a degree-2 modulator as opposed to a feedback vertex set. The proof of safeness itself

is not altered, except to account for the new definition of chunks, but is included for completeness.

Reduction 3.5 ([20, Reduction 4]). If there are distinct vertices u, v ∈ V (F ) which are adjacent in

G, are not part of a triangle in F , and for which there is no chunk which induce a conflict on {u, v},

i. e. for all chunks X ′ ∈ X , Conf{u,v}(X
′) = 0, then reduce the graph as follows:

• Delete vertices u, v with their incident edges and decrease k by one.

• If u has a neighbor t in F which is not v, make it adjacent to NG(v) ∩X.

• If v has a neighbor w in F which is not u, make it adjacent to NG(u) ∩X.

• If the vertices t, w both exist and tw /∈ E(G), add the edge tw to the graph.

Formally, let the output instance be defined by the following:

V (G′) := V (G) \ {u, v}

E(G′) := (E(G) \ {xy | x ∈ {u, v}, y ∈ NG[u] ∪NG[v]})

∪ {xy | x ∈ NF (u) \ {v}, y ∈ NG(v) ∩X}

∪ {xy | x ∈ NF (v) \ {u}, y ∈ NG(u) ∩X}

∪ {xy | x ∈ NF (v) \ {u}, y ∈ NF (u) \ {v}}

X ′ := X

k′ := k − 1

t u v w
F
X

t w
F ′

X ′

Figure 3.3: Reduction 3.5: Shrinking 2-paths with no conflict-inducing chunks (k′ = k − 1).

Lemma 3.11 ([20, Lemma 5]). Reduction 3.5 is safe. Let (G,X, k) be an instance to which rule 3.5

is applicable at vertices u, v, and let (G′, X ′, k′) be the instance resulting from the reduction. Then it

holds that (G,X, k) is a yes-instance if and only if (G′, X ′, k′) is a yes-instance.
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Proof. Observe that for Reduction 3.5 to be applicable, NG(u) ∩X and NG(v) ∩X form a complete

bipartite graph in G, i. e. NG(u)∩NG(v)∩X = ∅ and every vertex in NG(u)∩X is adjacent to every

vertex in NG(v) ∩X. If this was not the case, then two non-adjacent (possibly non-distinct) vertices

xu ∈ NG(u)∩X and xv ∈ NG(v)∩X would induce a conflict on {u, v}, i. e. Conf{u,v}({xu, xv}) > 0.

Since none of the reductions 3.1 and 3.2 were applicable to {xu, xv}, it must be the case that

Conf{u,v}({xu, xv}) < |X|, and {xu, xv} is thus a chunk. This contradicts the preconditions for the

reduction. Thus, for every independent set I of G, we can assume at least one of NG(v) ∩X ∩ I and

NG(v) ∩X ∩ I is the empty set. The same will hold for the output graph G′, since no edges between

NG(u) ∩X and NG(v) ∩X were removed by the reduction. Notice also that since the reduction is

not applied to triangles, t and w are distinct if they both exist. We now prove the two directions of

the proof separately.

For the forward direction, let I be a maximal independent set of G with |I| ≥ k. We first prove

that one can assign exactly one of u, v to be in I. Observe that no independent set in G can contain

both {u, v} since they are adjacent. If I does not contain any of {u, v}, assume without loss of

generality (by symmetry) that NG(u) ∩X ∩ I = ∅. Then I must contain t, and t must exists — if

not, then NG[u] ∩ I = ∅, contradicting that I is maximal. But if t is in I, we can easily replace t by

u in I, not changing the number of elements in I while still maintaining an independent set. This

way, we ensure one of {u, v} is in I.

We next show how to obtain an independent set I ′ of G′ with |I ′| ≥ k − 1 = k′. Without loss of

generality (by symmetry) we assume that u is in I. Let I ′ := I \ {u}. Then |I ′| ≥ k − 1. It remains

to show that I ′ is an independent set of G′. It will suffice to show that Reduction 3.5 does not add

any edge between vertices in I ′. Observe that any edge added is either between t and NG(v) ∩X or

it is between w and NG(u) ∩X. Because t ∈ NG(u) and NG(u) ∩X ⊆ NG(u), all edges added by

the transformation have at least one endpoint in NG(u); this endpoint is outside of both I and I ′.

For the backward direction of the proof, let I ′ be an independent set of G′ with |I ′| ≥ k′ = k − 1.

We show how to obtain an independent set I for G with size at least k. It is not hard to see that I ′

is also an independent set of G. Depending on how I ′ interacts with G, we will build I in different

ways.

• If t exists and t ∈ I ′, then let I := I ′ ∪ {v}. To prove that I is an independent set, we show

that NG(v) ∩ I ′ = ∅ by showing that {u,w} ∩ I ′ = ∅ and NG(v) ∩ I ′ ∩X = ∅. Clearly, u /∈ I ′,

because u /∈ V (G′). Because t ∈ I, it must hold that w /∈ I ′ as t and w are neighbors in G′ if

w exists. Finally, every vertex in NG(v)∩X was a neighbor of t in G′, so they can not be in I ′

either.

• If w exists and w ∈ I ′, then let I := I ′ ∪ {u}. The correctness argument is symmetric to that

of the previous case.
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In the remaining cases, we know that {t, w} ∩ I ′ = ∅. Since at least one of NG(v) ∩ X ∩ I ′ and

NG(v) ∩X ∩ I ′ are empty, there are two cases left.

• If NG(u) ∩X ∩ I ′ = ∅, let I := I ′ ∪ {u}. Since t /∈ I ′ and v /∈ I ′, we have that NG(u) ∩ I ′ = ∅,

and thus I is still an independent set.

• If NG(v) ∩X ∩ I ′ = ∅, let I := I ′ ∪ {v}. The correctness argument is symmetric to that of the

previous case.

3.3 Bound on Size of Reduced Instances

In this section we will prove that the number of vertices in a reduced instance (G′, X ′, k′) is at most

O(|X|7) where |X| is the size of the modulator in the original problem (G,X, k). Note that none of

the reduction rules increase |X|, so any bound in terms of |X ′| is a better or equally good bound as

a similar bound in |X|. The bound on the reduced instances we give here is done differently than

how Jansen and Bodlaender [20] show their bound, though some elements are similar, such as the

use of König’s theorem on a perfect matching in a bipartite graph.

In order to prove this bound, we will first find a maximum matching M for F , and let the

unmatched vertices constitute the set X̂ := V (F ) \ V (M). Clearly, |V (G)| = |X| + |V (F )| and

|V (F )| = |V (M)|+ |X̂|. The two main parts of our analysis will be (a) to show that |X̂| ≤ O(|X|4),

and then (b) to show that |M | ≤ |X̂| · O(|X|3).

Notice that Reduction 3.4 will remove connected components from F . When the reduction is not

applicable, we should then be able to give some bound on the number of connected components in F .

The next lemma gives such a bound:

Lemma 3.12. Let (G,X, k) be a reduced instance of IS/D2M. Let CF denote the set of all connected

components P ⊆ F . Then |CF | ≤ |X | · |X|+ |X|3, i. e. the number of connected components in F is

at most |X | · |X|+ |X|3.

Proof. Let AF denote the set of all non-redundant anchor triangles in F . Consider the bipartite

graph B between the chunks X and connected components CF \ AF where there is an edge between

X ′ ∈ X and P ∈ CF \ AF if and only if ConfP (X ′) > 0. Because Reduction 3.4 is not applicable,

every connected component P ∈ CF \ AF will have at least one edge incident to it in B. Thus any

bound on the number of edges in B will also be a bound for |CF \ AF |.

For every chunk X ′ ∈ X , we have by definition that ConfF (X ′) < |X|. Since conflicts induced

by a chunk X ′ on F in different connected components of F are distinct, each X ′ ∈ X is incident to

less than |X| connected components in B. We then get that |CF \AF | ≤ |X | · |X|. It remains to show

that |AF | ≤ |X|3 to conclude the proof. This can be verified by observing that every anchor triangle

has a neighborhood in X of size exactly 3. If two anchor triangles had the same neighborhood in G

(and hence in X), they would be redundant, so there is at most one non-redundant anchor triangle

for each distinct triple of X. Observe that the number of such distinct triples is less than |X|3.
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Observation 3.13. Let (G,X, k) be a reduced instance of IS/D2M. Let M be a maximum matching in

F , and let X̂ := V (F ) \ V (M) be the unmatched vertices. Then it holds that |X̂| ≤ |X | · |X|+ |X|3.

We see that the observation is true since F is a collection of paths and cycles. Then a maximum

matching M of F will leave at most one vertex out of the matching for each connected component,

and thus by Lemma 3.12 the observation follows immediately.

Next, we will do part (b) of our analysis, namely to give a bound for |V (M)|. In this endeavor

we will make use of the following lemma:

Lemma 3.14. Let (G,X, k) be a reduced instance of IS/D2M and let M be a maximum matching

in F yielding a set of unmatched vertices X̂ := V (F ) \ V (M). Let F̂ := F − X̂ be the graph induced

by the maximum matching. Then for all chunks X ′ ∈ X it holds that ConfF̂ (X ′) ≤ |X|+ |X̂|.

Proof. Consider an arbitrary chunk X ′. By the definition of chunks we have

ConfF (X ′) ≤ |X| (3.1)

By applying the definition of conflicts we then get

α(F ) ≤ |X|+ α(F −NG(X ′)) (3.2)

Since removing vertices never will increase the independence number, we have

α(F − X̂) ≤ α(F ) (3.3)

Recall that F̂ = F − X̂. Combining equations 3.2 and 3.3, we then get

α(F̂ ) ≤ |X|+ α(F −NG(X ′)) (3.4)

By the definition of conflicts, we know that

α(F̂ ) = ConfF̂ (X ′) + α(F̂ −NG(X ′)) (3.5)

Combining equations 3.4 and 3.5, we get

ConfF̂ (X ′) ≤ |X|+ α(F −NG(X ′))− α(F̂ −NG(X ′)) (3.6)

Since removing |X̂| vertices will reduce the independence number by at most |X̂|, we observe

α(F −NG(X ′)) ≤ α(F −NG(X ′)− X̂) + |X̂| (3.7)

Recall that F̂ = F − X̂. Combining equations 3.6 and 3.7, we get

ConfF̂ (X ′) ≤ |X|+ |X̂| (3.8)

We will here state König’s theorem, which we will refer to whilst proving the bound on M in the

lemma that follows.

Proposition 3.15 (König’s theorem [28, Theorem 16.2]). For every bipartite graph G, the size of a

minimum vertex cover equals the number of edges in a maximum matching.
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Lemma 3.16. Let (G,X, k) be a reduced instance of Independent Set/Degree-2 Modulator

and let M be a maximum matching in F yielding a set of unmatched vertices X̂ := V (F ) \ V (M).

Then it holds that |M | ≤ (|X̂|+ |X|) · |X |+ |CF |.

Proof. Let MT ⊆M denote the edges which are a part of a triangle connected component in F . Now

consider the bipartite graph B between X and M \MT where there is an edge between X ′ ∈ X and

the edge uv ∈M \MT if and only if Conf{u,v}(X
′) > 0. Because Reduction 3.5 has been applied

exhaustively, every matched pair in M \MT has at least one edge incident to it in the bipartite

graph. Thus, any bound on the number of edges in B will also be a bound for |M \MT |.

Observe that M is a perfect matching for F̂ , and that F̂ is also bipartite (all odd cycles were

broken when removing X̂). Then by König’s Theorem (Proposition 3.15), every minimum vertex

cover of F̂ contains exactly one endpoint from each edge in M . Furthermore, since M is perfect, any

maximum independent set for F̂ also contains exactly one endpoint from each edge in M . See that

when a chunk X ′ ∈ X induces a conflict with some number p of pairs in M , then ConfF̂ (X ′) ≥ p,

since each pair is independently contributing to a conflict induced on F̂ .

By Lemma 3.14 we have that ConfF̂ (X ′) ≤ |X|+ |X̂| for every X ′ ∈ X , which then limits the

number of edges in B, and we get |M \MT | ≤ |X | · (|X|+ |X̂|). In order to complete the proof, it

remains to show that |MT | ≤ |CF |. But this must be true, since there is at most one edge in MT for

each connected component.

Theorem 3.17. Independent Set/Degree-2 Modulator admits a kernel on O(|X|7) vertices:

There is a polynomial time algorithm that transforms an instance (G,X, k) to an equivalent instance

(G′, X ′, k′) such that

• k′ ≤ k + |X|3

• |X ′| ≤ |X|

• |V (G′)| ≤ 2|X|7 + 6|X|6 + 8|X|5 + 11|X|4 + 10|X|3 + 5|X|2 + |X|

Proof. We will begin with the proof that k′ ≤ k + |X|3. The only transformation which increase k is

Reduction 3.3, which rise k by 1 each time it is applied. Note that none of the other reductions will

ever remove or destroy a non-redundant anchor triangle in such a way that it will trigger Reduction 3.3

for the same triple twice. Thus the transformation will de done at most once for each triple in X,

and k is increased by less than |X|3.

Next, observe that no reduction rule ever increase X. The only reduction which change X is

Reduction 3.1, which removes a vertex from X. Thus X ′ ⊆ X, and we have |X ′| ≤ |X|.

For the bound on |V (G′)|, consider a maximum matching M of F ′ which yield a set of unmatched

vertices X̂ := F ′ − V (M). Let X ′ be the collection of chunks in the reduced instance, and X the

collection of chunks in the original instance.
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We start by observing that

|V (G′)| = |X ′|+ |V (F ′)| = |X ′|+ 2|M |+ |X̂|

By Observation 3.13 we have

|X̂| ≤ |X ′| · |X ′|+ |X ′|3 ≤ |X | · |X|+ |X|3

By Lemmata 3.16 and 3.12 we have

|M ′| ≤ (|X̂|+ |X ′|) · |X ′|+ |X ′| · |X ′|+ |X ′|3 ≤ |X̂| · |X |+ 2 · |X| · |X |+ |X|3

Combining the above, we get

|M ′| ≤ |X |2 · |X|+ |X|3 · |X |+ 2 · |X| · |X |+ |X|3

For the bound on |V (G)| we then get

|V (G′)| ≤ |X|+ 2|X |2 · |X|+ 2|X|3 · |X |+ 4|X| · |X |+ 2|X|3 + |X | · |X|+ |X|3

Observing that |X | ≤ |X|3 + |X|2 + |X| and expanding the expression, we get the following bound

|V (G′)| ≤ 2|X|7 + 6|X|6 + 8|X|5 + 11|X|4 + 10|X|3 + 5|X|2 + |X|

Finally, observe that each reduction runs in polynomial time.

Corollary 3.18. Vertex Cover/Degree-2 Modulator admits a kernel on O(|X|7) vertices:

There is a polynomial time algorithm that transforms an instance (G,X, k) to an equivalent instance

(G′, X ′, k′) such that |V (G′)| ≤ 2|X|7 + 6|X|6 + 8|X|5 + 11|X|4 + 10|X|3 + 5|X|2 + |X|.

Proof. First, we transform the instance (G,X, k) of VC/D2M to an instance (G,X, |V (G)| − k) of

IS/D2M. Then we apply Theorem 3.17 to obtain (G′, X ′, |V (G′)|−k′), which we can transform back

to an instance of VC/D2M (G′, X ′, k′). Since the transformations between VC/D2M and IS/D2M

preserve both the graph and the modulator, the bounds on the number of vertices in Theorem 3.17

also holds for VC/D2M.
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Chapter 4

Kernel for Vertex Cover
Parameterized by
Pseudoforest Modulator

This chapter gives a kernel for Vertex Cover on O(|X|12) vertices, where the parameter |X| is the

size of a minimum pseudoforest modulator of G. We define the problem as follows:

Vertex Cover/Pseudoforest Modulator (VC/PFM)
Input: A graph G, a pseudoforest modulator set X ⊆ V (G) such that G−X is a pseudoforest,
and an integer k.
Parameter: Size of the pseudoforest modulator |X|.
Question: Does G contain a vertex cover of size at most k?

Note that we here state the problem with a pseudoforest modulator given as part of the input, but

this condition can be omitted, seeing that a pseudoforest modulator can be approximated. For

example, computing a modulator to a pseudoforest is a special case of the F-Deletion problem,

thus there exists a randomized constant factor approximation algorithm of running time O(nm) [14].

For ease of presentation, we will first develop a kernel for Independent Set parameterized by

the size of a minimum pseudoforest modulator, and then by the immediate correspondence between

the Vertex Cover and Independent Set problems the kernel for VC/PFM will follow. For the

remainder of this section, we will thus focus on the following problem:

Independent Set/Pseudoforest Modulator (IS/PFM)
Input: A graph G, a pseudoforest modulator set X ⊆ V (G) such that G−X is a pseudoforest,
and an integer k.
Parameter: Size of the pseudoforest modulator |X|.
Question: Does G contain an independent set of size at least k?

4.1 Tools

Throughout the chapter, let F := G−X be the induced subgraph remaining after the modulator

X has been removed from G. Note that F is a pseudoforest. We will for completeness restate

unconventional definitions here, even if they have appeared elsewhere in the thesis.
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Definition 4.1 (Conflicts [20, Definition 3]). Let (G,X, k) be an instance of IS/PFM where F ′ ⊆ F

is a subgraph of the pseudoforest F and X ′ ⊆ X is a subset of the modulator X. Then the number

of conflicts induced by X ′ on F ′ is defined as ConfF ′(X ′) := α(F ′)− α(F ′ −NG(X ′)).

F
X

X ′

F ′

Figure 4.1: Conflicts: In the figure, we observe that α(F ′) = 3, and α(F ′ −NG(X ′)) = 1. Hence, we
get that ConfF ′(X ′) = 2. In other words, the number of conflicts induced by X ′ on F ′ is 2.

Choosing X ′ to be in the independent set I of G may prevent some vertices in F ′ from being included

in same set I. In particular, no vertex v ∈ V (F ′) ∩NG(X ′) can be chosen to be in I. In light of

this, the term ConfF ′(X ′) can be understood as the price one has to pay in F ′ by choosing to

include X ′ in the independent set. Observe that ConfF ′(X ′) is polynomial time computable when

the independence number is.

Next, we will introduce chunks. This concept originates in the paper by Jansen and Bodlaender [20,

Definition 2], but a is altered for our purposes in two ways: The size of the chunks are here of size at

most three (as opposed to two), and we have additionally introduced the requirement that a chunk

cannot induce a conflict on F which is of size |X| or larger.

Definition 4.2 (Chunks). Let (G,X, k) be an instance of IS/PFM. A set X ′ ⊆ X is a chunk if the

following hold:

• X ′ is independent in G,

• the size of X is between 1 and 3, i. e. 1 ≤ |X| ≤ 3, and

• the number of conflicts in F induced by X ′ is less than |X|, i. e. ConfF (X ′) < |X|

We let X be the collection of all chunks of X.

The collection of chunks X can be seen as all suitable candidate subsets of size at most three from

X to be included in a maximum independent set I of G. The idea is that I may contain a chunk

as a subset, but it is never necessary to include a subset X ′ ⊆ X of size at most three which is not

F
X

X =

Figure 4.2: Chunks: Independent subsets of X with size ≤ 3 which induce a small conflict on F .
There is no chunk which includes both the pink and the green vertex, since there is an edge between
them in G.
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a chunk. This will allow us to discard potential solutions containing non-chunk subsets of X with

size at most three. In order for this intuition to hold, we provide the following lemma, originally by

Jansen and Bodlaender though slightly altered to fit our purposes. For completeness, we also provide

a proof.

Lemma 4.3 ([20, Lemma 2]). Let (G,X, k) be an instance of IS/PFM where α(G) ≥ k. Then

there exists an independent set I of G such that |I| ≥ k and for all subsets X ′ ⊆ X ∩ I it holds that

ConfF (X ′) < |X|.

Proof. Assume that I ′ ⊆ V (G) is an independent set with |I ′| ≥ k for which there exists some

X ′ ⊆ I ′ ∩X such that ConfF (X ′) ≥ |X|. We will show that then there exists another independent

set I such that |I| ≥ |I ′| and for all subsets X ′′ ⊆ X with ConfF (X ′′) ≥ |X|, it holds that X ′′ is

not a subset of I.

Because ConfF (X ′) ≥ |X|, we have that α(F ) ≥ |X| + α(F − NG(X ′)). Now consider the

independent set I ′. Some of its vertices are in X, however no more than |X|. The remainder of

vertices of I ′ are in V (F ), however no more than α(F −NG(X ′)). Thus |X|+α(F −NG(X ′)) ≥ |I ′|.

But then α(F ) ≥ |I ′|, and we see that a MIS of the pseudoforest F satisfies the requirements of the

lemma.

Definition 4.4. (Anchor triangle) Let (G,X, k) be an instance of IS/PFM. Let P be a triangle

connected component in F with V (P ) = {p1, p2, p3}. Then P is an anchor triangle if there exists

three distinct vertices x1, x2, x3 ∈ X such that:

• NG(p1) = {p2, p3, x1}

• NG(p2) = {p1, p3, x2}

• NG(p3) = {p1, p2, x3}

An anchor triangle is redundant if there is also another anchor triangle with the same open neighbor-

hood in G, and it is non-redundant if there is not.

p1

p2

p3

x1

x2

x3

F
X

Figure 4.3: The connected component P ⊆ F with vertices V (P ) = {p1, p2, p3} is an anchor triangle
for the triple {x1, x2, x3} ⊆ X.
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Definition 4.5. (Unnecessary triple) Let (G,X, k) be an instance of IS/PFM, and let X3 ⊆ X be

a triple, i. e. a set containing three distinct vertices. Then X3 is an unnecessary triple if there exists

an anchor triangle P in F such that NG(P ) = X3.

The fact that a triple X3 ⊆ X is unnecessary as defined above should intuitively be understood with

respect to constructing an independent set. If a triple X3 is unnecessary then there exists a MIS

which does not contain all of X3. This intuition is supported by the next lemma.

Lemma 4.6. Let (G,X, k) be an instance of IS/PFM. If there exists an independent set of size

at least k in G, then there exists an independent set I of G with |I| ≥ k containing no unnecessary

triple X3 ⊆ X.

Proof. We will prove the lemma by constructing the required independent set I satisfying the

properties, assuming we have an arbitrary independent set I ′ of size at least k. By definition, for each

unnecessary triple X3 ⊆ X ∩ I ′, there is at least one anchor triangle P ⊆ F such that NG(P ) = X3.

Since X3 ⊆ I ′, we have that no vertex of P is in I ′. Let pu ∈ V (P ) be an arbitrary vertex of P , and

let u ∈ X3 be the neighbor of pu in X3. Observe that we can here replace u by pu in I ′, and still

have I ′ be an independent set of the same size. We do this for every unnecessary triple X3 ⊆ X ∩ I ′

to obtain I, which then satisfies the requirement of the lemma.

4.2 Reduction Rules

We introduce here the reduction rules. Each reduction receives as input an instance (G,X, k) of

Independent Set/Pseudoforest Modulator, and outputs an equivalent instance (G′, X ′, k′).

Reductions 4.1, 4.2 and 4.4 originates in [20], though Reduction 4.4 is altered to fit the context of a

pseudoforest, which also required changes to the proof.

Reduction rules will be applied exhaustively starting with lower number rules, until Reduction

4.4 is no longer applicable. During this process, a lower number rule is always applied before a higher

number rule if at any point they are both applicable. Then Reductions 4.5 and 4.6 will be applied

once each to obtain the final reduced instance. Note that each reduction is computable in polynomial

time.

Reduction 4.1 ([21, Reduction 1]). If there is a vertex v ∈ X such that ConfF ({v}) ≥ |X|, then

delete v from the graph G and from the set X. We let G′ := G− v, X ′ := X − v and k′ := k.

Reduction 4.1 is safe due to Lemma 4.3.

Reduction 4.2 ([21, Reduction 2]). If there are distinct vertices u, v ∈ X with uv /∈ E(G) for which

ConfF ({u, v}) ≥ |X|, then add edge uv to G. We let G′ := (V (G), E(G) ∪ {uv}), X ′ := X and

k′ := k.
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Reduction 4.2 is safe, because there always exists a maximum independent set I in G leaving at

least one of {u, v} outside I by Lemma 4.3. Adding uv to E(G) thus does not reduce the size of

the maximum independent set. The backward direction is trivial, since removing an edge does not

reduce the maximum size of an independent set.

Reduction 4.3. If there are distinct u, v, w ∈ X such that ConfF ({u, v, w}) ≥ |X|, the set {u, v, w}

is independent in G, and for which there is no anchor triangle P with NG(P ) = {u, v, w}, then add

an anchor triangle P ′ = {pu, pv, pw} to the graph such that NG(P ′) = {u, v, w}, and increase k by

one. Let V (G′) := V (G) ∪ {pu, pv, pw} and let E(G′) := E(G) ∪ {pupv, pupw, pvpw, puu, pvv, pww}).

Further, let X ′ := X and let k′ := k + 1.

u v w

F
X

pu pw

pv

u v w

F ′

X ′

Figure 4.4: Reduction 4.3: Adding an anchor triangle to the independent triple {u, v, w} (k′ = k+ 1).
This makes {u, v, w} an unnecessary triple in the output instance.

Note that Reduction 4.3 makes the triple {u, v, w} ⊆ X unnecessary in the output instance as defined

in Definition 4.5.

Lemma 4.7. Reduction 4.3 is safe. Let (G,X, k) be an instance of IS/PFM to which Reduction 4.3

is applicable, and let (G′, X ′, k′) be the output instance resulting from the reduction. Then (G,X, k)

is a yes-instance if and only if (G′, X ′, k′) is a yes-instance.

Proof. For the forward direction of the proof, assume (G,X, k) is a yes-instance, let u, v, w ∈ X be

the elements which triggers the reduction, and let P ′ = {pu, pv, pw} be the vertices of the added

anchor triangle in the output instance. Let I be an independent set of G with |I| ≥ k. By Lemma 4.3,

we assume that at least one of u, v, w is not in I. Without loss of generality, let u /∈ I. For the output

instance, observe that I ′ := I ∪ {pu} is an independent set of G′ with size |I ′| = |I|+ 1 ≥ k + 1 = k′,

which makes (G′, X ′, k′) a yes-instance.

For the backward direction, assume that (G′, X ′, k′) is a yes-instance, and let P ′ be the added

anchor triangle in the output instance. Let I ′ be an independent set of G′ with |I ′| ≥ k′. Because P ′

induces a triangle in G′, at most one vertex of P ′ is in I ′. Thus, I := I ′ \ P ′ is an independent set of

G with |I| ≥ |I ′| − 1 ≥ k′ − 1 = k, which makes (G,X, k) a yes-instance.

The next reduction rule originates in the paper by Jansen and Bodlaender [20, Reduction 3], but

it has been altered to fit our purposes. Because chunks are defined differently, and because F now

contains cycles, the proof of safeness of this reduction is in some aspects very different.
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Reduction 4.4. If there exists a connected component P in F which is not a non-redundant anchor

triangle, and for every chunk X ′ ∈ X there is no conflict induced by X ′ on P , i. e. ConfP (X ′) = 0,

then remove P from G and reduce k by α(P ). We let G′ := G− P , X ′ := X and k′ := k − α(P ).

To prove that Reduction 4.4 is safe, we will rely on the following lemma, which states that any

pseudotree has a small (at most size three) obstruction in terms of obtaining a maximum independent

set.

Lemma 4.8. Let P be a pseudotree and let Z be a set of vertices such that α(P ) > α(P −Z). Then

there exist three (possibly non-distinct) vertices u, v, w ∈ Z ∩V (P ) such that α(P ) > α(P −{u, v, w}).

The proof of the above lemma is quite technical, and is postponed till Section 4.4 in order to preserve

the flow of the kernelization algorithm. Taking Lemma 4.8 as a black box, we are able to make the

following observation:

Observation 4.9. Let P ⊆ F be a connected component in the pseudoforest F and let X ′ ⊆ X be

an independent set such that ConfP (X ′) > 0. Then there exists some X ′′ ⊆ X ′ with 1 ≤ |X ′′| ≤ 3

such that ConfP (X ′′) > 0.

Proof. We see that the observation is true, since by Lemma 4.8 there exist u, v, w ∈ NG(X ′) ∩ V (P )

such that α(P ) > α(P − {u, v, w}). Then for each element u, v, w, pick an arbitrary neighbor

xu, xv, xw ∈ X ′ (they need not be distinct) to form the set X ′′ := {xu, xv, xw}. See that then

ConfP (X ′′) > 0.

We are now equipped to prove safeness of Reduction 4.4.

Lemma 4.10. Reduction 4.4 is safe. Let (G,X, k) be an instance of IS/PFM to which Reduction 4.4

is applicable, and let (G′, X ′, k′) be the output instance resulting from the reduction. Then (G,X, k)

is a yes-instance if and only if (G′, X ′, k′) is a yes-instance.

Proof. Let P ⊆ F be the connected component which triggered the reduction.

For the forward direction of the proof, assume (G,X, k) is a yes-instance and let I be an

independent set of G with size at least k. Let I ′ := I \ V (P ). Clearly I ′ is an independent set of

G′. Now observe that |I ∩ V (P )| ≤ α(P ), and thus |I ′| = |I| − |I ∩ V (P )| ≥ k − α(P ) = k′. Hence

(G′, X ′, k′) is a yes-instance.

For the backward direction, we assume that (G′, X ′, k′) is a yes-instance, and has an independent

set I ′ of size at least k′. Because of Lemma 4.6 we can assume that I ′ contains no unnecessary triples.

We want to show that we can always pick some independent set IP ⊆ V (P ) with |IP | = α(P ) such

that I := I ′ ∪ IP is an independent set with size at least k′ + α(P ) = k. Since I ′ and V (P ) are

disjoint in G by construction, it will suffice to show that α(P −NG(I ′)) ≥ α(P ).

Assume for the sake of contradiction that α(P − NG(I ′)) < α(P ). Since P was a connected

component in F , all its neighbors NG(P ) are in X. Thus we have that ConfP (X ′ ∩ I ′) > 0. By
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Observation 4.9, we further have that there exists some X ′′ ⊆ X ′ ∩ I ′ such that 1 ≤ |X ′′| ≤ 3 and

ConfP (X ′′) > 0.

For any such X ′′, there are two cases. In the first case, ConfF (X ′′) < |X|. Because X ′′ is also

independent and has size at most 3, it is a chunk of X in the input instance. This contradicts the

preconditions for Reduction 4.4, so this case can not happen.

In the second case, ConfF (X ′′) ≥ |X|. But then one of Reductions 4.1, 4.2 or 4.3 would have

previously been applied to X ′′, yielding it either unfeasible for an independent set or making it an

unnecessary triple in the input instance. Because non-redundant anchor triangles are not chosen for

removal by Reduction 4.4, X ′′ is also an unnecessary triple in the output instance, which contradicts

that I ′ contains no unnecessary triples. This concludes the proof.

Notice that Reduction 4.4 will remove connected components from F . When the reduction is not

applicable, we should then be able to give some bound on the number of connected components in F .

The next lemma gives such a bound:

Lemma 4.11. Let (G,X, k) be an instance of IS/PFM which is irreducible with respect to Reductions

4.1, 4.2, 4.3 and 4.4. Let CF denote the set of all connected components P ⊆ F . Then |CF | ≤

|X | · |X|+ |X|3, i. e. the number of connected components in F is at most |X | · |X|+ |X|3.

Proof. Let AF denote the set of all non-redundant anchor triangles in F . Consider the bipartite

graph B between the chunks X and connected components CF where there is an edge between

X ′ ∈ X and P ∈ CF if and only if ConfP (X ′) > 0. Because Reduction 4.4 is not applicable, every

connected component P ∈ CF will have at least one edge incident to it in B, unless the component is

a non-redundant anchor triangle. Thus any bound on the number of edges in B will also be a bound

for |CF \ AF |.

For every chunk X ′ ∈ X , we have by definition that ConfF (X ′) < |X|. Since conflicts induced by

a chunk X ′ on F in different connected components of F are distinct, each chunk X ′ ∈ X is incident

to less than |X| connected components in B. We then get that |CF \ AF | ≤ |X | · |X|. It remains to

show that |AF | ≤ |X|3 to conclude the proof. This can be verified by observing that every anchor

triangle has a neighborhood in X of size exactly 3. If two anchor triangles had the same neighborhood

in G (and hence in X), they would be redundant, so there is at most one non-redundant anchor

triangle for each distinct triple of X. The number of such distinct triples is less than |X|3.

When the above reduction rules have been exhaustively applied, the next two reductions will be

executed exactly once each.

Reduction 4.5. Let X̂ ⊆ V (F ) be a set such that X̂ contains exactly one vertex of each cycle in F .

For the output instance, let G′ := G, X ′ := X ∪ X̂, and k′ := k.
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Figure 4.5: Reduction 4.5: One vertex from each cycle in F is moved to X.

The reduction is safe because neither G nor k was changed. Observe that X is now a feedback vertex

set (which is fine, since every feedback vertex set is also a modulator to pseudoforest). This reduction

may increase the size of X dramatically. This is why the Reduction is applied only once, such that

we can give guarantees for the size of the reduced instance.

Observation 4.12. Let (G′, X ′, k′) be an instance of IS/PFM after Reduction 4.5 have been applied

to (G,X, k). Then X ′ ≤ |X|4 + 2|X|3 + |X|2 + |X|.

Proof. Since the input instance (G,X, k) was irreducible with respect to Reductions 4.1, 4.2, 4.3 and

4.4, we have by Lemma 4.11 that the number of connected components in F is at most |X | · |X|+ |X|3,

where X is the chunks in the input instance. Since |X | < |X|3 + |X|2 + |X|, then the number of

connected components is less than |X|4 + 2|X|3 + |X|2. Further, because F is a pseudoforest, there is

at most one vertex from each connected component in X̂. We thus have that |X̂| ≤ |X|4+2|X|3+|X|2,

which in turn yields |X ∪ X̂| ≤ |X|+ |X|4 + 2|X|3 + |X|2.

After Reduction 4.5 has been applied once, the returned instance (G,X, k) is ready for the final

reduction step. Note that since X is now a feedback vertex set, (G,X, k) is now an instance of

Independent Set/Feedback Vertex Set as well.

Independent Set/Feedback Vertex Set (IS/FVS)
Input: A simple undirected graph G, a feedback vertex set X ⊆ V (G), and an integer k.
Parameter: Size of the feedback vertex set |X|.
Question: Does G contain an independence set of size at least k?

The next step relies on the following result of Jansen and Bodlaender [20, Theorem 2]:

Proposition 4.13. Independent Set/Feedback Vertex Set has a kernel with a cubic number

of vertices: There is a polynomial-time algorithm that transforms an instance (G,X, k) into an

equivalent instance (G′, X ′, k′) such that |X ′| ≤ 2|X|, and |V (G′)| ≤ 56|X|3 + 28|X|2 + 2|X|.

Reduction 4.6. Let the output instance (G′, X ′, k′) be the kernel after applying Proposition 4.13

to (G,X, k). This reduction is applied once only.
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4.3 Bound on Size of Reduced Instances

In this section we will prove that the number of vertices in a reduced instance (G′, X ′, k′) is at most

O(|X|12) where |X| is the size of the modulator in the original problem (G,X, k).

Theorem 4.14. Independent Set/Pseudoforest Modulator has a kernel with O(|X|12)

vertices: There is a polynomial time algorithm that transforms an instance (G,X, k) to an equivalent

instance (G′, X ′, k′) such that

• |V (G′)| ≤ 56(|X|4 + 2|X|3 + |X|2 + |X|)3 + 28(|X|4 + 2|X|3 + |X|2 + |X|)2 + 2(|X|4 + 2|X|3 +

|X|2 + |X|),

• |X ′| ≤ 2|X|4 + 4|X|3 + 2|X|2 + 2|X|, and

• k′ ≤ k + |X|3.

Proof. We will begin with the proof that k′ ≤ k + |X|3. The only transformation which increase k is

Reduction 4.3, which rise k by 1 each time it is applied. However, this transformation will be done

less than |X|3 times, since the rule will be applied at most once for each distinct triple of X.

Next, we focus on the bound |X ′| ≤ 2|X|4 + 4|X|3 + 2|X|2 + 2|X|. Let (G′′, X ′′, k′′) be the

instance of IS/PFM after Reduction 4.5 has been applied. Observe that none of Reductions 4.1, 4.2,

4.3 or 4.4 increase X. Then by Observation 4.12 we have that |X ′′| ≤ |X|4 + 2|X|3 + |X|2 + |X|. By

Proposition 4.13 we have that the size is at most doubled after applying Reduction 4.6. Thus the

bound holds.

For the bound on V (G), let us consider the instance of IS/FVS (G′′, X ′′, k′′) to which Re-

duction 4.6 was applied in order to obtain the final reduced instance (G′, X ′, k′). We have al-

ready established that |X ′′| ≤ |X|4 + 2|X|3 + |X|2 + |X|. It follows from Proposition 4.13 that

in the final reduced instance, |V (G′)| ≤ 56|X ′′|3 + 28|X ′′|2 + 2|X ′′|, which in terms of |X| yields

|V (G′)| ≤ 56(|X|4+2|X|3+|X|2+|X|)3+28(|X|4+2|X|3+|X|2+|X|)2+2(|X|4+2|X|3+|X|2+|X|).

Finally, observe that each reduction can be done in polynomial time.

Corollary 4.15. Vertex Cover/Pseudoforest Modulator has kernel with O(|X|12) vertices:

There is a polynomial time algorithm that transforms an instance (G,X, k) to an equivalent instance

(G′, X ′, k′) such that |V (G′)| ≤ 56(|X|4 + 2|X|3 + |X|2 + |X|)3 + 28(|X|4 + 2|X|3 + |X|2 + |X|)2 +

2(|X|4 + 2|X|3 + |X|2 + |X|).

Proof. First, we transform the instance (G,X, k) of VC/PFM to an instance (G,X, |V (G)| − k) of

IS/PFM. Then we apply Theorem 4.14 to obtain (G′, X ′, |V (G′)|−k′), which we can transform back

to an instance of VC/PFM (G′, X ′, k′). Since the transformations between VC/PFM and IS/PFM

preserve both the graph and the modulator, the bounds on the number of vertices in Theorem 4.14

also holds for VC/PFM.

45



4.4 Proof of Lemma 4.8

In this section we prove Lemma 4.8. Our starting point will be the following result by Jansen and

Bodlaender [19, Lemma 4], rephrased here in terms of a vertex set Z:

Proposition 4.16. Let T be a tree, and let Z be a set of vertices. If α(T ) > α(T − Z), then there

exist two (possibly non-distinct) vertices u, v ∈ Z ∩ V (T ) such that α(T ) > α(T − {u, v}).

We also need to establish a framework for reasoning about independent sets in trees which rely on

whether a vertex is α-critical or not. We will use the following definition:

Definition 4.17 (α-critical). Let G be a graph, and let v ∈ V (G) be a vertex of G. If v is in every

maximum independent set of G, i. e. α(G) = 1 + α(G− v), then v is α-critical in G.

Observation 4.18. Let G be a graph and let v be a vertex in G. Then v is an α-critical vertex of G if

and only if α(G− v) = α(G−N [v]).

Lemma 4.19. Let T be a tree rooted at r. Then r is α-critical in T if and only if a is not α-critical

in Ta for all children a of r.

Proof. For the forward direction of the proof, assume r is α-critical in T . Since T is a tree rooted at

r, we have that α(T − r) =
∑
a∈C(r) α(Ta) and α(T −N [r]) =

∑
a∈C(r) α(Ta − a).

Assume for the sake of contradiction that there is some a′ ∈ C(r) such that a′ is α-critical

in Ta′ . Then we have α(Ta′) = 1 + α(Ta′ − a′), which lead us to conclude that
∑
a∈C(r) α(Ta) ≥

1 +
∑
a∈C(r) α(Ta − a). This contradicts that r is α-critical in T by Observation 4.18.

For the backward direction of the proof, assume that for all children a of r, a is not α-critical for

Ta. Seeing that T is a tree, we recall that α(T − r) =
∑
a∈N(r) α(Ta). Adding the single vertex r

back will increase the independence number by at most one. It remains to show that it also increase

by at least one to conclude the proof. But this can be done by picking a maximum independent

set in T − r which avoids all of C(r), and then include r. Note that such a set exists by the initial

assumption that no child a of r is α-critical for Ta.

r

Figure 4.6: Lemma 4.19: Let T be a tree rooted at r. A vertex a ∈ V (T ) is marked with orange
stripes if a it is α-critical in the subtree Ta. Then a is α-critical if and only if, for all its children
b ∈ C(a), b is not α-critical in Tb.
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Observation 4.20. Let G be a graph and let a be an α-critical vertex of G. If there is a set of vertices

Z such that a is not α-critical in G− Z, then α(G) > α(G− Z).

Observation 4.21. Let T be a tree rooted at r, and let Z be a set of vertices. Then the following

holds:

• If r is α-critical in T − Z, then α(T − Z) = 1 +
∑
a∈C(r) α(Ta − Z). In particular, if r is

α-critical in T then α(T ) = 1 +
∑
a∈C(r) α(Ta).

• If r is not α-critical in T − Z, then α(T − Z) =
∑
a∈C(r) α(Ta − Z). In particular, if r is not

α-critical in T then α(T ) =
∑
a∈C(r) α(Ta).

Armed with Proposition 4.16 and the framework for reasoning about independent sets in trees

presented above, we are now prepared to show the next lemma:

Lemma 4.22. Let T be a tree rooted at r, and let Z be a set of vertices. Then the following holds:

(a) If α(T ) > α(T − Z) and r is α-critical in T , then either

(i) There exist two (possibly non-distinct) vertices u, v ∈ Z ∩ V (T ) such that α(T ) > α(T −

{u, v}) and r is still α-critical in T − {u, v}.

(ii) There exists a vertex u ∈ Z ∩ V (T ) such that α(T ) > α(T − u) and r is not α-critical in

T − u.

(b) If α(T ) = α(T − Z) and r is α-critical in T − Z but not in T , then there exists a vertex

u ∈ Z ∩ V (T ) such that r is α-critical in T − u.

Proof. The proof is done by strong induction on the height of the tree, where we will go two levels

deep. For the base case we consider trees of height 0 and 1, i. e. the single vertex and stars rooted at

the center vertex. In both cases, it is easy to verify that the lemma holds. For the inductive step, we

let T be a tree rooted in r. By the induction hypothesis we assume the lemma holds for all strict

subtrees of T , as these have all strictly smaller height than T . We will now show each part of the

lemma separately.

Part (a). We assume that α(T ) > α(T − Z), and that r is α-critical in T . First consider the

case when r ∈ Z. Then just pick u := r to meet the requirement for (ii). Thus, for the remainder of

the case we can assume r /∈ Z. By Lemma 4.19, we can also assume that there is no child a of r such

that a is α-critical in Ta. We will now consider two cases.

Case 1. This case applies if there is no child a of r such that α(Ta) > α(Ta−Z). Then there must

exist at least one child a′ of r such that a′ is α-critical in Ta′ − Z, or else there is a contradiction

with the assumption that α(T ) > α(T − Z). Hence we can apply the induction hypothesis (b) to

Ta′ and find that there exists a vertex u ∈ Z ∩ V (Ta′) such that a′ is α-critical in Ta′ − u. Observe
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that by Lemma 4.19, r is not α-critical in T − u. Further applying Observation 4.21 to find that

α(T ) > α(T − u), we see that we have met the requirement of (ii).

Case 2. This case applies if there exists a child a of r such that α(Ta) > α(Ta − Z). Before we

proceed further, we want to establish that there must exist some child b′ of a such that α(Tb′) >

α(Tb′ − Z). For the sake of contradiction, assume there is not, i. e.
∑
b∈C(a) α(Tb) =

∑
b∈C(a) α(Tb −

Z). Because a is not α-critical in Ta by Lemma 4.19, we have that α(Ta) =
∑
b∈C(a) α(Tb) by

Observation 4.21. Now note that
∑
b∈C(a) α(Tb − Z) ≤ α(Ta − Z). Combining the above, we obtain

α(Ta) ≤ α(Ta − Z), which contradicts the initial assumption of this case. Thus for the remainder

of the case we can assume there is at least one child b′ of a such that α(Tb′) > α(Tb′ − Z). By

Lemma 4.19, we also have that there exists at least one child b′′ of a which is α-critical in Tb′′ . Now

we will again distinguish between two different cases:

Subcase 2.1. This subcase applies if there exist two distinct children b and b′ of a such that

α(Tb) > α(Tb − Z) and b′ is α-critical in Tb′ (see Figure 4.7). By Lemma 4.16, there exist u, v ∈

Z∩V (Tb) such that α(Tb) > α(Tb−{u, v}). Note that a is not α-critical in Ta−{u, v} by Lemma 4.19

because b′ is α-critical in Tb′ − {u, v} (Tb′ is untouched by u, v). In order to meet the requirements

of (i), we will proceed to show that α(Ta) > α(Ta − {u, v}).

To show this, we use Observation 4.21 to find that α(Ta) =
∑
b∈C(a) α(Tb) and α(Ta − {u, v}) =∑

b∈C(a) α(Tb − {u, v}). Because there exists a child b of a such that α(Tb) > α(Tb − {u, v}), it then

follows that α(Ta) > α(Ta − {u, v}). Because a is not α-critical in Ta − {u, v} and the siblings of

a are untouched by u, v, it follows that r is α-critical by Lemma 4.19. By symmetric reasoning as

above but using T and r rather than Ta and a, we conclude that also α(T ) > α(T − {u, v}), thus

obtaining the requirements for (i).

Subcase 2.2. This subcase applies if there is exactly one child b of a which is α-critical in Tb, and

this is the only child of a for which α(Tb) > α(Tb −Z) (see Figure 4.7). The vertex a may have other

children besides b, but for all of these children b′ ∈ C(a) \ {b}, we have that b′ is not α-critical in Tb′

and α(Tb′) = α(Tb′ − Z). By the induction hypothesis (a) there are two cases:

• There exist two (possibly non-distinct) vertices u, v ∈ Z∩V (Tb) such that α(Tb) > α(Tb−{u, v})

and b is α-critical in Tb − {u, v}. This case leaves a not α-critical in Ta − {u, v}, and yields

α(Ta) > α(Ta − {u, v}). By an analogous argument to that of the previous subcase, we obtain

the requirements for (i).

• There exists u ∈ Z ∩ V (Tb) such that α(Tb) > α(Tb − u), and such that b is not α-critical in

Tb − u. In this case, a is α-critical in Ta − u. This, however, in turn yields r not α-critical in

T − u, which must reduce the independence number of T by Observation 4.20. Thus, we have

obtained the requirement for (ii).
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Figure 4.7: Proof of Lemma 4.22 (a), Case 2: Orange stripes indicates that the vertex is α-critical in
the subtree rooted at that vertex. Subtrees where α(Ta) > α(Ta − Z) are drawn with a red color.

We have now exhausted all possibilities, and in each case obtained the requirements for either (i) or

(ii). This concludes the proof for part (a).

Part (b). We assume that α(T ) = α(T − Z) and that r is α-critical in T − Z, but not in T . By

Lemma 4.19, we know that r is α-critical in T −Z if and only if no child a of r is α-critical in Ta−Z.

If there are two or more children which are α-critical in their respective subtrees before forbidding

Z, we note that α(T ) > α(T − Z) by Observations 4.20 and 4.21, contradicting the premise of part

(b) in the lemma. Thus there is exactly one child a of r which is α-critical in Ta, and for all other

children a′ of r it holds that a′ is not α-critical in neither Ta′ nor Ta′ − Z, as this would contradict

either that α(T ) = α(T − Z) or that r is α-critical in T − Z.

By Observation 4.20, we know that α(Ta) > α(Ta − Z). By the induction hypothesis (a),

there are two possibilities; either (i) is true for Ta, and there exist vertices u, v ∈ Z such that

α(Ta) > α(Ta − {u, v}) and so that a is α-critical in Ta − {u, v}. That, however, would contradict

the premise that α(T ) = α(T − Z). We may then assume that only (ii) is true, and that there exists

a vertex u ∈ Z ∩ V (Ta) such that α(Ta) > α(Ta − u) and which leave a not α-critical in Ta − u. See

that this choice of u will also leave r α-critical in T − u, concluding the proof for part (b).

We will now move on to pseudotrees, i. e. graphs which contains at most one cycle, and study how

maximum independent sets behave in them when a set Z of vertices forbidden to be included in any

independent set is introduced. We can view a pseudotree P as a cycle C with rooted trees being

attached to vertices of C (if there is no cycle, P is a tree and behaves accordingly). A vertex in C

may have zero, one or several trees being attached to it. Every non-cycle vertex with a neighbor in

C is the root r of a tree T attached to the cycle. Formally, we use this definition:

Definition 4.23 (Attached tree). Let P be a pseudotree which contains a cycle C ⊆ P . Each

connected component T of P − C is then an attached tree of C. Further, let c ∈ V (C) and r ∈ V (T )

be the two vertices such that cr ∈ E(P ) (there is a unique pair with this property since P is a

pseudotree). Then r is designated as the root of T , and c is the attachment point vertex for T . We

say that c has an attached tree T , and that T is attached to C at c.
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Figure 4.8: Attached tree: A pseudotree consists of a cycle C and attached subtrees. We say that
the attached tree T1 is rooted at r1, and is attached to C at its attachment point vertex ci. The
cycle vertex cj has two attached trees, T2 and T3.

In building a maximum independent set I for a pseudotree P , each attached tree is faced with two

possibilities; either their attachment point vertex c ∈ C is in I, or it is not. In some cases, c being in

I may reduce the number of vertices available to pick in a tree T attached to c, since the root r of

T is forbidden in I due to it being a neighbor of c. In cases like this, we observe that it is always

at least as good to let c be left outside I and rather pick the larger independent set from T . This

motivates distinguishing between trees where the root is α-critical in the tree from those where it is

not.

With this in mind, we observe that the following greedy strategy for finding a MIS in a pseudotree

P is correct: First, pick a MIS in every tree T attached to C which avoids the root r of T unless r is

α-critical in T . Next, find a MIS for the cycle C which avoids any c ∈ C which has an attached tree

T where the root r is α-critical in T . The union of found independent sets will be a MIS for P . We

can easily extend this algorithm to also avoid a set Z of vertices:

Algorithm 4.24 (Greedy MIS for pseudotree avoiding Z). Input: A pseudotree P and a set of

vertices Z. Output: A maximum independent set I of P − Z.

1. If P contain no cycle C, then return the MIS of P avoiding Z.

2. Let Z ′ := ∅. This set is for cycle vertices which will be marked as forbidden due to α-criticalness

of roots in attached subtrees.

3. For every tree T0, T1, · · · , Tt attached to the cycle C, let ri be the root of Ti and let ci ∈ C be

the attachment point vertex for Ti. Then for i ∈ {1, 2, · · · , t}, do the following:

(a) Let ITi
be a MIS for Ti − Z which avoids ri unless ri is α-critical in Ti − Z.

(b) If ri is α-critical in Ti − Z, mark ci as forbidden: Let Z ′ := Z ′ ∪ {ci}.

4. Let IC be a MIS for the cycle vertices C − (Z ∪ Z ′).

5. Let the final solution be the union of the found sets: Return (
⋃t
i=1 ITi

) ∪ IC .
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When Algorithm 4.24 is called on input (P,Z), we refer to sets of this solution with a superscript

(P,Z), e. g. the set I
(P,Z)
Ti

refers to the set ITi
when the algorithm is called on input (P,Z). However,

note that we will never actually call this algorithm during the kernelization of IS/PFM, it is used

only for analysis. Seeing that the above algorithm is correct, we are now ready to prove the final

lemma of this section:

Lemma 4.8. Let P be a pseudotree and let Z be a set of vertices such that α(P ) > α(P −Z). Then

there exist three (possibly non-distinct) vertices u, v, w ∈ Z ∩V (P ) such that α(P ) > α(P −{u, v, w}).

Proof. Assume the condition of the lemma holds. If P has no cycle, then by Lemma 4.16 there

exist u, v ∈ Z ∩ V (P ) such that α(P ) > α(P − {u, v}), and we have obtained the requirement of the

lemma (we simply let one of the elements repeat, e.g. let w := v). For the remainder of the proof, we

may therefore assume that P has a cycle C.

If there is a vertex w of the cycle C in P which is also in Z, then pick it as one of the three elements.

Unless α(P ) > α(P − w), we have by Lemma 4.16 that there are two vertices u, v ∈ Z ∩ V (P ) such

that α(P − w) > α(P − {u, v, w}). In either case we have obtained the requirement of the lemma.

For the remainder of the proof we may therefore assume that there is no vertex of the cycle C ⊆ P

which is also in Z.

Let us next consider the trees attached to C. If there exists a tree T rooted at r which is of one

of the following types, then we can find u, v, w ∈ Z which satisfy the requirement of the lemma:

• r is not α-critical in T and α(T ) > α(T −Z). Then by Lemma 4.16, there exist u, v ∈ Z∩V (T )

such that α(T ) > α(T − {u, v}). Observe that Algorithm 4.24 will produce sets |I(P,∅)T | >

|I(P,{u,v})T | and |I(P,∅)C | ≥ |I(P,{u,v})C |, so by the correctness of the algorithm we conclude that

α(P ) > α(P − {u, v}). The requirement of the lemma is thus satisfied.

• r is α-critical in T , α(T ) > α(T − Z), and case (i) of Lemma 4.22 (a) holds for T, r, Z. Then

there exist u, v ∈ Z ∩ V (T ) such that α(T ) > α(T − {u, v}) and r is α-critical in T − {u, v}.

In order to show that α(P ) > α(P − {u, v}), consider what Algorithm 4.24 will do: Whether

called on (P, ∅) or (P, {u, v}), the attachment point vertex c ∈ C for T will still be marked as

forbidden. Thus the only difference occurs in IT , which is strictly smaller in the latter case.

Hence, the requirement of the lemma is satisfied.

• r is α-critical in T , and α(T ) = α(T − Z). Let c be the attachment point vertex for T .

Observe that α((P − T )− c) > α((P − T )− ({c} ∪ Z)), or else there is a contradiction with

the preconditions of the lemma. Since (P − T ) − c is a tree, we then have by Lemma 4.16

that there exist u, v ∈ Z ∩ V ((P − T )− c) such that α((P − T )− c) > α((P − T )− {c, u, v}).

Observe that also α(P ) > α(P − {u, v}), and the lemma is satisfied.

From now on, we can assume that there are no trees attached to C of the above types. We observe

that every tree T which is attached to C with root r must then be one of these three types instead:
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(a) r is α-critical in T , and α(T ) > α(T − Z). Case (i) of Lemma 4.22 (a) does not apply, so

by case (ii), there exists a singleton u ∈ Z ∩ V (T ) such that α(T ) > α(T − u) and r is not

α-critical in T − u.

(b) r is α-critical in T −Z, but not in T . We know that α(T ) = α(T −Z), and by Lemma 4.22 (b)

that there exists a singleton u ∈ Z ∩ V (T ) such that r is α-critical in T − u.

(c) r is α-critical in neither T nor T − Z. We know that α(T ) = α(T − Z).

If there is a vertex of the cycle c ∈ C such that two trees Ta and T ′a both of type (a) are attached

to c with respective roots r and r′, then we have that there exists u ∈ Z ∩ V (Ta) such that

α(Ta) > α(Ta − u). Note that u is sufficient to yield α(P ) > α(P − u). To see this, consider what

happens in Algorithm 4.24: Regardless of whether it was called with parameters (P, ∅) or (P, {u}), c

will be marked as forbidden since r′ is still α-critical in T ′a − u (u is not in T ′a). The only difference

between the two runs of the algorithm is that ITa
will be strictly smaller in the latter case. Hence

the requirement of the lemma holds, and going forward we can assume no such cycle vertex exists.

If there is a cycle vertex c with two attached trees Ta and Tb of types (a) and (b) respectively,

then there are elements u ∈ Z ∩ V (Ta) and v ∈ Z ∩ V (Tb) such that α(Ta) > α(Ta − u) and rb is

α-critical in Tb − v. Note that then α(P ) > α(P − {u, v}). To see this, consider what happens in

Algorithm 4.24: Regardless of whether it was called with input (P, ∅) or (P, {u, v}), c will be marked

as forbidden because ra is α-critical in T , and rb is α-critical in Tb − v. Since I
(P,{u,v})
Ta

is strictly

smaller than I
(P,∅)
Ta

, we have reached the requirement of the lemma. From now on we assume there

are no such cycle vertices.

We can now partition all the cycle vertices c ∈ C into the following three categories:

Redeemable A cycle vertex c ∈ C is redeemable if it has exactly one attached tree T of type (a),

and all other attached trees are of type (c). We know there exists a singleton u ∈ Z ∩ V (T )

such that c is redeemed, i. e. such that T will have its root r not α-critical in T − u. Informally

we may note that the price payed in T for redeeming c is at least one by Observation 4.20, i. e.

Algorithm 4.24 yields |I(P,∅)T | > I
(P,{u})
T .

Blockable A cycle vertex c ∈ C is blockable if it has at least one attached tree T of type (b). It

may also have any number of attached trees of type (c). We know there exists a singleton

u ∈ Z ∩ V (T ) such that c is blocked, i. e. such that the root r of T will be α-critical in T − u.

Free A cycle vertex c ∈ C is free if all attached trees are of type (c).

If there are no redeemable cycle vertices in C, then consider some blockable cycle vertex cu. It exists,

or else we have that α(P ) = α(P − Z). Because there are no trees where Z cause a drop in the

independence number of the tree, the difference must occur in |IC | when using Algorithm 4.24 on
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the inputs (P, ∅) and (P,Z). By Lemma 4.16, we can extrapolate that there exist two (possibly

non-distinct) blockable cycle vertices cv, cw ∈ C − cu such that α(C − cu) > α(C − {cu, cv, cw}). If

we now let u, v, w be elements that block their respective cycle vertex cu, cv, cw, then we have that

α(P ) > α(P − {u, v, w}), and the lemma is satisfied. Going forth, we will assume there is at least

one redeemable cycle vertex.

If there is exactly one redeemable cycle vertex c, observe that Algorithm 4.24 will pick α(C)

vertices of C when finding the MIS for input (P, ∅). Let T be the tree of type (a) attached to c. See

that there is no way to compensate the cost occurring in IT when u redeems c. Thus, α(P ) > α(P−u),

and the lemma holds. Assume then, there are at least two redeemable cycle vertices.

If there are exactly two redeemable cycle vertices c1 and c2, then similarly to the previous case,

Algorithm 4.24 will pick at least α(C) − 1 vertices of C on input (P, ∅). If we pick u, v such that

they redeem c1 and c2 respectively, then the price payed is at least two, out of which at most one

can be compensated in C. Thus, α(P ) > α(P − {u, v}), and the lemma holds. Assume then, there

are at least three redeemable cycle vertices.

Pick two redeemable vertices ci and cj and a maximal length path along the cycle Q =

{c1, c2, · · · , ci−1, ci, ci+1, · · · , cj−1, cj , cj+1, · · · , cq} such that ci and cj are the only redeemable ver-

tices in Q. Since there are at least three redeemable vertices in C, such a path exists, and c1 is not

a neighbor of cq. Let α(Q) be the maximum independent set of Q after ci and cj have been both

redeemed. It remains to observe that α(Q) ≤ 1 + α(Q− {ci, cj}) to conclude that redeeming ci by u

and cj by v will cause α(P ) > α(P − {u, v}). This concludes the proof of the lemma.
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Chapter 5

Conclusions

In this section we will give a summery of the thesis, give some comments on the progress of writing

the thesis, and provide some open questions for future work.

5.1 Summary

In this thesis we have studied parameterized kernelization algorithms for the Vertex Cover problem,

which is an approach for dealing with the NP-hardness of the problem by relaxing that all instances

are solved in polynomial time. We have examined some parameterized algorithms for solving Vertex

Cover, and seen examples of how to obtain a linear kernel when parameterizing by the natural

parameter, the size of the solution.

We have discovered how some parameters are structurally related to each other, which motivates

the search of kernels parameterized by structurally stronger parameters. As an introductory example,

we showed that Vertex Cover yields a cubic kernel when parameterized by the size of a minimum

degree-1 modulator. This is a simplified version of the cubic kernel for Vertex Cover parameterized

by a the size of a minimum feedback vertex set given by Jansen and Bodlaender [20].

We have then presented two new results, namely a kernel for Vertex Cover/Degree-2

Modulator on O(|X|7) vertices, and a kernel for Vertex Cover/Pseudoforest Modulator

on O(|X|12) vertices. Independently from our work, Majumdar et al. showed another polynomial

kernel for VC/D2M on O|X|5 vertices. Combining this with related kernelization results, we get a

parameter ecology for Vertex Cover shown in Table 5.1.

Parameter k Kernel upper bound (number of vertices)

Minimum vertex cover 2k [3]
Minimum degree-1 modulator O(k2) [25]
Minimum feedback vertex vet O(k3) [20]
Minimum degree-2 modulator O(k5) [25]
Minimum pseudoforest modulator O(k12)
Minimum treewidth-2 modulator No polynomial kernel unless NP ⊆ coNP/poly [8]

Table 5.1: Parameter ecology for Vertex Cover
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We have also given a (d+ 2)–approximation algorithm for Degree-d Modulator intended for

use by the practitioner, which is found in the appendix.

5.2 Notes on the Progress

We started the work by reading and understanding the paper by Jansen and Bodlaender [20] which

gave a cubic kernel for Vertex Cover parameterized by a feedback vertex set. It follows from this

result that there is also a polynomial kernel when parameterizing by the size of a degree-1 modulator.

However, it remained open if there also was a polynomial kernel when parameterizing by a degree-2

modulator, which is another parameter structurally stronger than D1M.

The first step was to simplify the kernelization of [20] to accommodate only a degree-1 modulator.

This is shown is section 2.5. Our next task was then to come up with a solution to the degree-2

modulator version.

The first idea that appeared, was the one of breaking apart the cycles in the analysis of the

reduced instances by introducing the set X̂ containing one vertex of every cycle. However, the

possibility of odd cycles in F posed a problem even before we could apply such a rule, since the

reduction which originally removed connected components (Reduction 2.3) was unsafe.

For a starter, it was not sufficient to consider only chunks of size at most two, since the

independence number of odd cycles will not drop if only two of its vertices are forbidden to be picked.

Thus, the collection of chunks were expanded to include subsets of X of size three. This in turn posed

challenges in the analysis, which were circumvented by adding another restriction to the definition of

chunks, namely that they had a conflict smaller than |X|. At first we didn’t find any problems with

this change.

But then, whilst confidently working out the finer details of our newfound kernel, we suddenly

discovered that removing a connected component could potentially turn a non-chunk into a chunk

in the reduced instance, which previously was not possible. This invalidated the safeness of the

reduction, and a fix was required.

We began by observing that the kernel could still work for another problem, namely the variation

of Independent Set where also a set of forbidden triples is provided with the input. If we could find

a reduction from this problem to our problem (which we knew existed by the Cook-Levin theorem,

seeing that Independent Set is NP-complete), then we could still say something interesting. It

turned out that there is very a nice reduction using what we call “anchor triangles,” which we could

also incorporate directly into our kernelization procedure. The kernel was luckily saved, and is found

in Chapter 3.

Our next step was asking ourselves whether we could apply the same techniques in order to obtain

a kernel for Vertex Cover/Pseudoforest Modulator. The answer turned out to be yes, but

with a twist. In the analysis of reduced instances, it is important that we can argue that the number
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of vertices in the pseudoforest is polynomially bounded by the number of chunks, and in order to do

so the argument by Jansen and Bodlaender for the FVS case require that each structure of a certain

type in F has triggered a certain reduction. The claim is unfortunately not true for pseudoforests,

even when we introduce the set X̂ in the analysis. The solution was to introduce the set before the

analysis, at the cost of some factor in the exponential. This kernel is found in Chapter 4.

Pseudotrees also required a much more elaborate proof to show that chunks of size 3 were sufficient

to witness the existence of obstructions in X to picking a MIS for the pseudotree.

The journey certainly as has had its ups and downs, but overcoming the setbacks were in the end

what made it such an exciting experience.

5.3 Open Questions

In working with this thesis, we have encountered some problems which beseech further research:

• Upper bounds. Can the upper bound for the kernels demonstrated in this thesis be im-

proved? In particular, does there exist a kernel on at most O(|X|7) vertices for Vertex

Cover/Pseudoforest Modulator?

• Closing the gap. It was recently showed that VC/D1M does not admit a kernel on O(|X|2−ε)

vertices, and that VC/D2M does not admit a kernel on O(|X|3−ε) vertices, for any ε > 0

unless NP ⊆ coNP/poly [25]. This also implies that VC/FVS is unlikely to have a kernel on

O(|X|2−ε), and VC/PFM is unlikely to have a kernel on O(|X|3−ε) for any strictly positive ε.

This yields an open gap for all four problems except VC/D1M.

• Obstruction to kernelization. What characterizes a structural parameter which yields a polyno-

mial kernel to Vertex Cover? Why does a modulator to pseudoforest yield a polynomial

kernel, whereas a modulator to treewidth 2 do not? Does Vertex Cover admit a polynomial

kernel when parameterized by the size of a minimum modulator to cactus graphs?

• Technique application. Can the techniques for finding polynomial kernels for Vertex Cover

and Independent Set demonstrated in this thesis be applied to other problems and/or pa-

rameters? Does the Degree-1 Modulator problem admit a polynomial kernel parameterized

by the size of a minimum degree-2 modulator?

5.4 Afterthought

There are many complex problems in the world, but most of them has some inherent structure, or

is not very far from one. As decision makers we are all algorithm designers, so we should not be

discouraged when faced with a seemingly impossible task; it might just be tractable if we find the

right parameter.
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Appendix A

Approximation for
Degree-d Modulator

We will here give a (d+ 2)–approximation algorithm for the Degree-d Modulator problem, which

can be implement to run in time O(n+m) on a graph with n vertices and m edges. The algorithm

is a generalization of the well-known 2-approximation to Vertex Cover by Gavril [15, page 134],

and for the case when d = 0 the algorithms are identical.

Algorithm A.1 (d+ 2)–approximation for Degree-d Modulator

Input: Graph G, non-negative integer d.
Output: A vertex set X ⊆ V (G) such that 4(G −X) ≤ d, and such that |X| ≤ (d + 2) · |X?|
where X? is a minimum degree-d modulator for G.

1: X := ∅
2: G′ := G
3: while 4(G′) > d do
4: Pick v ∈ V (G′) arbitrarily such that degG′(v) > d.
5: Pick d+ 1 distinct neighbors of v arbitrarily, u1, u2, . . . , ud+1 ∈ NG′(v).
6: X := X ∪ {v, u1, u2, . . . , ud+1}
7: G′ := G−X
8: end while
9: return X

Lemma A.2. Algorithm A.1 is correct: Given as input a graph G and an integer d, the algorithm

will output a degree-d modulator X to G which is contains at most (d+ 2) · |X?| vertices, where X?

is a minimum degree-d modulator to G.

Proof. Let the number of iterations of the while-loop be denoted by k. Observe that |X| = (d+ 2) · k.

It remains to show that X? ≥ k to conclude the proof.

For each iteration i of the loop, let Xi be the vertices added to X, and let vi be the vertex that

was chosen at line 4 at that particular iteration. We will now show that X? contains at least one

element from Xi for every i ∈ {1, 2, . . . , k}.
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Assume for the sake of contradiction that there is some Xi such that Xi ∩X? = ∅. But then vi

has at least d+ 1 neighbors in G−X?, which contradicts that X? is a degree-d modulator. Since

every Xi is disjoint, we can thus conclude that |X?| ≥ k, and the lemma holds.

Lemma A.3. Algorithm A.1 can be implemented to run in time O(n+m) on an arbitrary graph on

n vertices and m edges.

Proof. Given an adjacency list representation of G, one possible implementation is to iterate once

over all the vertices of G, and then for each vertex v ∈ V (G), iterate over its neighbors to see if there

are more than d+ 1 of them which are not yet marked to be in X. Whenever such a vertex is found

where v itself is also unmarked, it and its first d + 1 unmarked neighbors are marked to be in X.

After this loop is finished, do a single iteration of the vertices and include the marked ones in the

set X. This implementation will visit each vertex twice and follow each edge at most twice, thus

obtaining a runtime of O(n+m).
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