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Chapter 1

Introduction

1.1 Image Processing

Images are all around us, from the computer to the TV to the pet scanner, the
staggering development in information technology has made digital images
an integral part of modern life. What is unknown to most people is that these
images often have been processed in order to make them look good. It should
not be surprising though. Anyone who has ever taken photos will know that
some of them will come out less then perfect. This is where the field of
image processing comes in. By using mathematical tools, we can improve
the images. We can enhance certain qualities, remove unwanted noise, and a
lot of other similar tasks. Image processing is a large and diverse field with
a lot of different methods. And with all these different methods, there is
one common factor that ties them all together, and that is the fact they use
computers to process digital images.

1.1.1 Computer Vision and 3-D Reconstruction

Our focus in this thesis have been on computer vision. In broad terms this is
an intuitively easy concept, our aim is simply to create computers that can
see. Creating them however, is easier said than done. The human eye is an
extremely complex organ, but this is not the main problem, we can simulate
the eyes fairly well with cameras. The real problem is interpreting what we
see, and that is the work of our brains. The brain is an expert in interpreting
what we see, but it can still be fooled by optical illusions as illustrated below
in Figure 1.1. So our brains have a lifetime of experience, not to mention 4
billion years of evolutionary training, and sometimes still get it wrong! This
shows the daunting task of computer vision, and in order get somewhere, we
must restrict ourselves.
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Figure 1.1: Optical illusions. We see how easily the brain is fooled. Although
they look completly different, square A and B are actually the same color.
There is also no white triangle in reality, even though it looks like there is.
Images: Wikimedia Commons

Strictly speaking, the aim in computer vision is to get a computer to
obtain information from images. What kind of information one wants, and
what to do with it, is up to the individual programmer. There are a myriad
of interesting problems we could look at, but since our time is finite, we must
choose to explore only a small spot in the map of computer vision. In this
thesis we have chosen to look at the reconstruction of 3-D objects from a set
of images, that is, the task of making a 3-D model of an object seen from
multiple images.

Why do we seek to do this with images? After all, there exists highly
accurate time-of-flight 3-D laser scanners, used in everything from gaming
to art conservation [18], that gives almost perfect reconstruction, so why do
we bother? In fact, reconstruction from images has several advantages over
reconstruction with 3-D lasers. First of all, laser scanners are expensive,
digital cameras are not. By developing methods for 3-D reconstruction from
images, we make reconstruction available not only for big corporations, but
for small companies, doctors, and the population in general. Second, to be
able to use a laser scanner, the object you wish to reconstruct must be in
your possession. One can easily imagine situations where one would wish to
reconstruct objects that are far away, in space for example, or objects that
only exist in images, like the Buddhas of Bamyan, which were destroyed by
the Taliban in 2001. See Figure 1.2.
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Figure 1.2: Can not be reconstructed via laser scans.

1.2 Applications

As all art, the process of doing mathematics is in itself worthwhile, so no
further justification should be needed. However, our problem do have several
applications in real life. As mentioned above, the gaming industry uses a
lot of 3-D models, and a cheap method to obtain these would definitely
do them good. Transport companies have also shown some interest in 3-D
reconstruction. When they deliver packages they are paid by the weight,
but light and large, or oddly shaped packages can be just as much trouble
as heavy ones. They would therefore like a way to measure the volume of
the packages as well as the weight, and this can be done by creating a 3-D
reconstruction of the package. Also, in the past years there has been a trend
to make cultural treasures available through the internet. A lot of famous
paintings and old books can be find online, and the idea of making virtual
museums, i.e. a complete 3-D model of a museum and all the objects inside it,
are being discussed. Such a thing is impossible without good reconstruction
methods.

Lastly there is the medical industry, where one could use the images from
PET-scan, CAT-scan and other machines to reconstruct good 3-D models of
internal organs. If the reconstruction is good enough, this would be a great
tool for the doctors.

1.3 Thesis Outline

Let us take a brief look at the structure of the thesis. First, in the next
chapter, we will introduce and explain the mathematical tools and ideas
utilized throughout this thesis. In Chapter 3, will take a quick look at the
segmentation problem, a common problem in image processing. Then, in
Chapter 4, we will look at concepts from computer vision. Since this is a
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mathematical thesis, no knowledge of computer vision is expected from the
reader. Then, in Chapter 5, we will use ideas and tools explained in Chapter
2, 3 and 4 to develop a reconstruction model, posed as energy minimization.
In Chapter 6 we will see the results of our method. Finally, in Chapter 7, we
discuss the results, and look at what we could do further to improve upon
the method. To summarize:

� Chapter 1 : Introduction

� Chapter 2 : Mathematical Background and Ideas

� Chapter 3 : A Quick Look at The Segmentation Problem

� Chapter 4 : The Reconstruction Problem from Computer Vision

� Chapter 5 : Developing the Energy Minimization Reconstruction Model

� Chapter 6 : Results

� Chapter 7 : Discussions

Once again, so we do not forget. Our goal in this thesis is to construct
realistic 3-D models of objects given from different image sets. That is, we
will use a set of images of an object, taken at different angles, to reconstruct
the object in the images. This will be achieved by using visibility constraints
and photo-consistency to formulate a convex energy minimization problem,
which we then solve with the piecewise constant level set method of Tai et.
al. from [19].



Chapter 2

Mathematical Background

Before we can begin discussing the problem at hand, we first need to define
and explain key concepts used throughout the thesis. Although important for
understanding, this chapter can easily be skipped by the experienced reader,
and simply used when needed.

2.1 Digital Image Representation

It might be self evident, but since this is a thesis regarding digital image
processing, we should first explain what a digital image is. A digital gray
scale image is a discrete representation of the continuous real world. It
is obtained by superimposing a regular, usually rectangular, grid on the
continuous world, and then assigning a number to each square on the grid,
for example the average brightness in that square. These squares are called
pixels, and its value is called the gray level or brightness. Mathematically,
we can look at these images as an intensity function, I : m × n → [t, T ],
where t = 0, T = 255 is the most common. Often, these intensity functions
are written as I = u(x), where u(x) returns the intensity value of pixel x.

The size of the image is called the resolution, and it increases as the size
increases. Digital images are found in all sizes, but to give the idea, typical
grids can be 460× 320, 720× 576, 1920× 1440, and so on.

2.1.1 Colour Images

Most image processing is done on gray scale, also called monochromatic or
“black and white”, images. This is because colour images are made by com-
bining sets of gray scale images, and methods for gray scale images can
therefore often be easily expanded into colour images. The most common
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color image composition is to combine three gray levels, each representing
either red, green or blue. This is called the RGB model.

2.2 Normalized Cross Correlation

Cross correlation is a standard tool in image processing. It is used for match-
ing images, that is, finding whether a given object or region of interest, called
the template, is contained in another image.

Figure 2.1: Image and Template. Cross correlation finds the area in the
image in which the template fits best.

Essentially, what we do, is that we slide the template across the entire
image, calculating the cross correlation for each position. The higher the
value, the closer the images resemble each other. When we have gone through
the image, we find the position that gave the maximum score, and this is the
part of the original image that is most similar to the template.

We see in Figure 2.1 and 2.2 how this works. Imagine the B template from
Figure 2.1 sliding across the middle of the ABC image. Starting from the
left, sliding the template to the right. We would expect the largest similarity
to be when the B template is in the middle, near one of the letters. Of course,
we would also expect to get the greatest value when the B template is over
the letter B. As we see on the graph in Figure 2.2, this is exactly what we
get.

What else can these images tell us? Most importantly, we see that even
though we know the B template to be exactly equal to the B sub image, they
are after all taken from the same picture, it is only in a narrow band that
we get top score. This tells us that we have to be careful when moving the
template. If we move it too many pixels at a time, we risk losing valuable
information.
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Figure 2.2: The normalized cross correlation score for different parts of the
ABC image using the B template as shown in Figure 2.1. The location of the
letters on top are approximate and for visual benefits only.

2.2.1 Calculating cross correlation

The calculation of cross correlation is motivated by the use of the squared
Euclidean distance as a measure of difference. Using the squared Euclidean
distance, we can formulate the difference between a part of the image, and
the template as

d2(u, v) =
∑
x,y

[I(x, y)− t(x− u, y − v)]2,

where I is the image and the sum is over (x,y) under the region containing
the template t positioned at (u,v). If we expand this, we get

d2(u, v) =
∑
x,y

[I(x, y)2 − 2I(x, y)t(x− u, y − v) + t(x− u, y − v)2].

Since the template does not change, we see that the last term is constant.

Also, if the term
∑
x,y

I(x, y)2 is approximately constant, we get that

c(u, v) =
∑
x,y

I(x, y)t(x− u, y − v) (2.1)
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is a measure of the similarity between the template and sub image. This
is the standard formula used for calculating cross correlation, but unfortu-
nately is has some disadvantages. For example, our assumption that the sum∑
I(x, y)2 is approximately constant need not be true, and the equation is

not invariant to amplitude changes, which we expect to get under different
lightning. To overcome this, [12] introduces the correlation coefficient which
normalizes the image and its feature vectors. Using this, we get

γ(u, v) =

∑
x,y[I(x, y)− Iu,v][t(x− u, y − v)− t]

{
∑

x,y[I(x, y)− Iu,v]2
∑

x,y[t(x− u, y − v)− t]2}0.5
. (2.2)

Here t is the mean of the template, and Iu,v is the mean of I(x, y) in the region
under the feature. The expression in Equation (2.2) is called the Normalized
Cross Correlation (NCC).

One of the reasons that Equation (2.1) is used instead of Equation (2.2) is
that Equation (2.1) can be computed fast in the Fourier domain, something
Equation (2.2) can not. However, as we will see below, [12] provides us with
a fast way to compute the NCC.

2.2.2 Fast Normalized Cross-Correlation

Looking at the numerator in Equation (2.2), we can rewrite it as

γnum =
∑
x,y

I(x, y)t′(x− u, y − v)− Iu,v
∑
x,y

t′(x− u, y − v),

where t′(x, y) = t(x, y) − tu,v. We note that t′ has zero mean, and thus the
sum is also zero. This leaves us with

γnum =
∑
x,y

I(x, y)t′(x− u, y − v)

which is a normal convolution, and can be calculated fast using the Fourier
transform.

Having found a way to calculate the numerator efficiently, we turn our
attention to the denominator. The tricky part here is the term∑

x,y

[I(x, y)− Iu,v]2.

This is the image mean and local energy, and it must be computed at every
point (x,y). Since an image usually consists of very many points, this can
lead to a very slow algorithm.
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However, the term can be efficiently calculated using precomputed tables
of the running sum of the image and the image square over the search area.
That is, we calculate the cumulative sums for the image in all the points,

s(u, v) = I(u, v) + s(u− 1, v) + s(u, v − 1)− s(u− 1, v − 1)

s2(u, v) = I2(u, v) + s2(u− 1, v) + s2(u, v − 1)− s2(u− 1, v − 1)

with s(u, v) = s2(u, v) = 0 when we are outside of the image, that is, when
either of u, v < 0. For a short explanation of running sums, see Figure 2.3.

Now the energy of the image under the feature can be computed by

ef (u, v) = s2(u+N − 1, v +N − 1)− s2(u− 1, v +N − 1)

− s2(u+N − 1, v − 1) + s2(u− 1, v − 1).

Using the precomputed tables, the problematic term
∑
x,y

[I(x, y) − Iu,v]2

can now be calculated efficiently, and we have obtained a fast method for
calculating the NCC.

Figure 2.3: Explaining running sums. Imagine we needed the integral of all
the different line segments [a-b], [a-c], ..., [a-i], [b-c], [b-d], ..., [b-i], and so
forth. We could of course calculate the integral from one point to another for
each segment, but this would not be cost effective. If we instead calculated the
running integral sums from [a-i], we can easily compute all the others with
little effort. To calculate the integral [c-e], we could just take the cumulative
sum [a-e], which is 7, and subtract the cumulative sum [a-c], which is 3.9.
Hence, the integral from point c to point e is 7-3.9 = 3.1. This is the method
we have used when calculating the NCC.
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2.3 Transformations and Homogenous Coor-

dinates

Homogenous coordinates are commonly used in computer graphics as a way
to make calculations with different types of transformations easier. The three
basic types of transformations are, translation, rotation and scaling. We can
represent these as the following matrix operations

P ′ = T + P

P ′ = R ·P

P ′ = S ·P.

We see that while translation is addition, the others are multiplication. This
is unfortunate, because it means we can not treat all the transformations the
same. And in turn, this can decrease the speed and simplicity of our code.

In order to overcome this, it is usual to introduce homogenous coordinates.
The trick is to represent each point (x,y,z) as an infinite number of four
dimensional vectors, and not as a single vector in three dimensional space as
is usually done. So what we do isxy

z

 −→

Tx
Ty
Tz
T

 .

Using this representation we can do translation as matrix multiplication. The
translation matrix will look like

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


where (tx, ty, tz) are the translations in the x,y,z directions. This means we
now can do all forms of basic transformations as matrix multiplication.

2.4 Functional Analysis

Often, in applied mathematics, we seek solutions that are not just a numbers,
but functions, satisfying some given constraints. For example finding the
shortest path connecting two point, or how a particle behaves in a gravity
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field. This is the field of functional analysis and what we are dealing with
are equations involving unknown functions.

Such expressions dealing with unknown functions are called functionals
and are used a lot in image processing. Formally, a functional F is a mapping
from a vector space X to a scalar field,

F : X → R.

The functionals we will be working on in this thesis are formed by integrals
over unkown functions, and we are trying to minimize the functionals. That
is, we have a functional

F (u) =

∫ b

a

f(x, u(x))dx,

where f(x, u(x)) is an unknown function, and we are trying to find

inf F (u).

Usually, the unknown function have certain constraints it must uphold.
We therefore search for functions belonging to function spaces that have
those constraints. Therefore, to understand functional analysis, we must
first thoroughly define and explain some concepts about function spaces.

2.4.1 Functions Spaces

We define a real vector space as a triple (X,+,·) in which X is a set, and +
and · are binary operators which satisfy certain axioms, cf. [6]. These axioms
are:

� If x and y belong to X, then so does x + y. (closure axiom)

� x + y = y + x. (commutativity)

� x + (y + z) = (x + y) + z. (associativity)

� X contains a unique element, 0, such that x + 0 = x for all x in X.
(identity element)

� With each element x there is associated a unique element, -x, such that
x + (-x) = 0. (inverse)

� if x ∈ X and λ ∈ R, then λ· x ∈ X. (closure axiom)

� λ· (x+y) = λ· x + λ· y (λ ∈ R). (distributivity)
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� (λ + µ) · x = λ· x + µ· x (λ ∈ R) (distributivity)

� λ· (µ· x) = (λµ) · x. (associativity)

� 1 · x = x. (identity element)

Once we have a vector space, we can define a norm on it. A norm is a
real valued function, written as ‖ ‖ which satisfies three axioms:

� ‖x‖ > 0 for each nonzero element in X.

� ‖λx‖ = |λ|‖x‖ for each λ ∈ R and each x ∈X.

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈X. (Triangle Inequality)

If we have a vector space with a norm on it, we call it a normed lin-
ear space. This makes it possible to study sequences whose convergence is
measured by a norm. Of special importance here is the so called Cauchy
sequences

Definition 1. A sequence [xn] in a normed linear space X is said to be a
Cauchy sequence if

lim
n→∞

sup
i≥n,j≥n

||xi − xj|| = 0.

If every Cauchy sequence in the space X is convergent, then the space X
is said to be complete. A complete normed linear space is a Banach space.
These are the spaces we will be working in throughout the thesis.

2.4.2 Total Variation

The total variation norm is a measure of the oscillation of a function and is
commonly used in image processing. We will just give the definition and not
go into details. For details, the interested reader can look at [3].

The total variation of a real-valued integrable and differentiable function
f defined on a bounded domain Ω ⊂ Rn is simply

TV (f) =

∫
Ω

|∇f |. (2.3)

Since the total variation measures oscillation, we can interpret it as a measure
of smoothness. It is therefore often used to ensure correct smoothness in a
solution.
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2.4.3 Convex Analysis

If there is one thing mathematicians enjoy, it is extending good methods and
theory into more general settings. It should therefore come as no surprise that
there has been a lot of work in extending the “standard” convex optimization
results from calculus into a more general functional analysis setting. This
work has grown into the field of convex analysis, which we will now take a
quick look at.

First of all, we need to know what it means for a set to be convex. Loosely,
we can describe a convex set as a set which has no bumps or corners. More
mathematical, we can say that it is a set in which any two given points x
and y can be joined by a straight line. This can be written into a formal
definition, cf. [16].

Definition 2. A set C is convex if and only if

x, y ∈ C =⇒ αx+ (1− α)y ∈ C ∀α ∈ [0, 1], x, y ∈ C.

Figure 2.4: A convex and a non convex set

Knowing what a convex set is, we now take a quick look at the concept of
a convex hull. A understanding of the convex hull will be useful in the next
chapter, when we introduce the concept of a visual hull.

Definition 3. The convex hull for a set of points P in a real vector space X
is the minimal convex set containing P .

An intuitive way of visualizing this is the rubber band analogy. If we have
a set of points in the plane, we can imagine a rubber band being stretched
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Figure 2.5: Convex hull. A rubber band is stretched to surround all the points,
and then released. The set within the resulting red lines is the convex hull.

to surround all the points, and then released. The resulting set inside the
rubber band would then be the convex hull. This is shown in Figure 2.5.

Having looked at convex sets, we shall now turn our attention to convexity
for functionals. We go straight to the definition.

Definition 4. A functional F is convex if and only if

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y) ∀α ∈ [0, 1], x, y ∈ X.

We now know what it means for a functional to be convex. We will
use this and known properties from convex optimization in this thesis. In
particular, we will use a extremely useful property from convex optimization,
namely that all minimums are global. Hence, we can avoid getting stuck in
local minimums when optimizing convex functionals, as all local minimums
are global.

2.5 The Variational Method

We remember from the last section that we are dealing with a minimization
problem over unknown functions, and that we want these functions to be
from a Banach space. We will therefore take a closer look at optimization
problems in Banach spaces.

2.5.1 The Direct Method in Calculus of Variations

If we have a minimization problem over a Banach space, we first need to
be sure that the solution actually exists. This is often done by using the so



2.5 The Variational Method 15

called direct method in calculus of variations. The method will be explained
below, but to understand, we need some definitions. Let (X,+, |· |) denote a
real Banach space. We denote by X’ the topological dual space of X:

X ′ = {l : X → R linear such that |l|X′ = supx 6=0
|l(x)|
|x|X

<∞}.

Classically, X can be endowed with two topologies.

Definition 5. Topologies on X

� The strong topology, denoted by xn →
X

x, is defined by |xn − x|X →
0 (n→ +∞).

� The weak topology, denoted by xn ⇀
X

x, is defined by l(xn)→ l(x) (n→
+∞) for every l ∈ X ′.

Now, back to the minimization problem. Let F : X → R, and consider
the problem

inf
x∈X

F (x).

What can we say about the existence of a solution of this problem? As
mentioned above, proving existence is usually done by the following steps,
which constitute the direct method in the calculus of variation.

� Construct a minimizing sequence xn ∈ X, i.e., a sequence satisfying

lim
n→+∞

F (xn) = inf
x∈X

F (x).

� If F is coercive, i.e.
lim
|x|→+∞

F (x) = +∞,

one can obtain a uniform bound |xn|X ≤ C. If F is not coercive, i.e.,
reflexive, then use properties of sequential compactness.1

� To prove x0 is a minimum point of F it suffices to have the inequality

lim
xnj⇀x0

F (xnj) ≥ F (x0)

which obviously implies that

F (x0) = min
x∈X

F (x).

1See [3] for details.
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This last property is called weak lower semi continuity, and can be defined
more precisely as

Definition 6. F is called lower semi continuous (l.s.c) for the weak topology
if for all sequence xn ⇀ x0 we have

lim
xnj⇀x0

F (xnj) ≥ F (x0).

The same definition can be given with a strong topology.

The problem with l.s.c. for the weak topology is that it generally very
hard to prove. However, this is where convexity comes in. We take the
following theorem from [3].

Theorem: 1. Let F : X → R be convex. Then F is l.s.c. for the weak
topology if and only if F is l.s.c. for the strong topology.

This is a quite useful theorem, as in most cases l.s.c. for the strong
topology is easy to prove. In practice this means that for most cases con-
vexity is a sufficient condition for the existence of a minimizer of the original
minimization problem.

2.5.2 Optimization in Calculus

Having seen that convexity is usually enough to ensure existence of some
minimizers, we can now turn our attention on how to find them, i.e., the
optimality conditions. We will first remind ourselfs how this is done in regular
calculus.

We know that a optimization problem is a problem of the form

max f(x)

where f(x) is a continously differentiable function. This kind of problem
is easily solved by finding the extremum points, that is, the points where
f ′(x) = 0. But sometimes, in addition to the optimization, we have other
conditions that the solution must satisfy. For example, a factory owner might
wish to optimize the production of goods. But he can not make his workers
work more than ten hours a day, nor can he make the machines produce
more than their limit. This leads to a constrained optimization problem.
Mathematically, we can write this as

max f(x) subject to g(x) = c
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where g(x) is the constraint, or condition, the solution must satisfy.
How do we solve such a problem? The solution is Lagrange multipliers.

They work by introducing a new variable λ, called a Lagrange multiplier.
This variable λ is then used to define a Lagrangian function,

Λ(x, λ) = f(x)− λ(g(x)− c).

The point of this is that a solution to the original constrained optimiza-
tion problem corresponds to a stationary point of the augmented Lagrangian
function. So just as we had to find the points where f ′(x) = 0 for the normal
optimization problem, we need to find the points where Λ′(x, λ) = 0 for the
constrained optimization problem.

It should be noted however, that just like in regular optimization, not all
stationary points of the Lagrangian functional is a solution to the original
problem. Some test, or other justification, should be used before concluding
that a maximum2 is found.

We now know how to do both regular and constrained optimization in
regular calculus. As we will see below, both these methods extend nicely into
function spaces as well.

2.5.3 Optimization in Function Spaces

Instead of the usual derivative, we now need a generalized version that works
on function spaces. We choose the Gâteaux derivative, which is also some-
times called the Gâteaux differential.

Definition 7. Let X be a Banach space and F : X → R. We call

d[F (u;h)] = lim
λ→0+

F (u+ λh)− F (u)

λ

the directional derivative of F at u in the direction h if the limit exists. More-
over, if there exists ũ ∈ X ′ such that d[F (u;h)] = ũ(h), ∀h ∈ X, we say that
F is Gâteaux differentiable at u and we write d[F (u)] = ũ.

Now, if F is Gâteaux differentiable and if the problem inf F (u) has a
solution u0, then we have

d[F (u0)] = 0.

Conversely, if F is convex, then a solution u0 of d[F (u)] = 0 is a solution of
the minimization problem. This type of equation is called an Euler-Lagrange

2We have been using the maximum in this section, but Lagrangian multipliers work
just as well for minimization problems.
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equation. This means that in order to minimize a functional, we need to
solve that functionals corresponding Euler-Lagrange equation.

But what if we have some constraints? A theorem from [16] tells us the
following.

Theorem: Lagrange Multiplier 1. Let X and Y be Banach spaces, F :
X → R, and G : X → Y. Suppose that:

� F and G are Frẽchet3 differentiable on an open set O ⊆ X.

� The derivatives x0 7→ d[F (x0)] and x0 7→ d[G(x0)] are continous.

� xo ∈ O is a regular point4 of the constraints G(x).

If F has a local extremum under the constraint G(x0) = 0, then there is a
Lagrange multiplier λ ∈ Y such that the Lagrangian

F (x) + λG(x)

is stationary at x0. That is, we have

d[F (x0)] + λ ◦ d[G(x0)] = 0

This theorem tells us that given functional F and constraint G, we can
use Lagrange multipliers, just as in regular calculus.

We now know we can formulate our minimization problem by using the
Euler-Lagrange equation and Lagrange multipliers. But we still do not know
how to solve the equations we get. We will therefore now take a look at
one method that is commonly used to solve the kind of partial differential
equations generated by the Euler-Lagrange condition, namely the gradient
descent method.

2.6 Gradient Descent

Gradient descent is an optimization method which uses gradient information
to find a minimum. It does this by moving in steps proportional to the
negative of the gradient. It is well known that the gradient points in the
direction of the greatest rate of increase. Therefore, going in the negative

3We use the Gâteaux derivative, but this is not a problem. If a function is Fréchet
differentiable at a point then it is also Gâteaux differentiable at that point. The converse
is not true though.

4A regular point is a boundary point that is not a singular point.
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direction of the gradient we get the greatest rate of decrease. Due to this,
gradient descent is also known as method of steepest descent.

Gradient descent is an iterative method. This means that we start out
with an initial guess x0, and then produce a sequence of iterates xn+1. If
the algorithm is successful, then xn converges to the real solution x when
n → ∞. A good initial guess x0 will make the algorithm converge fast, but
a bad one might destroy the convergence altogether.

Lets see how this works. If we let f(x) be a function differentiable in the
neighborhood of a point x0. Then f(x) decreases the most if we go in the
negative direction of the gradient in point x0. That is, if

x1 = x0 − α∇f(x0)

then
f(x0) ≥ f(x1)

for a suitable α. Continuing this, we get f(x0) ≥ f(x1) ≥ · · · ≥ f(xn). If this
sequence converges, then f(xn) will be either a local or a global minimum of
f(x). We see an example of the gradient descent method in 1-D in Figure 2.6.
Notice how easy it gets stuck in a local minimum. This is a big problem, but
it can be avoided by a good initial guess x0, or if we have a convex function
or functional, as discussed above.

Figure 2.6: Gradient descent in 1-D. We see how easy the method get stuck in
local minimums. The bad initial guess x1 will get us stuck in local minimum
P1. A move in any direction from point P1 will lead to an increase of the
functional value of f(x), so the algorithm will stop. To avoid getting caught
in local minimums, we either need a good initial guess, like x2, or a convex
function.
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2.7 Level Set Method

In applied mathematics, when we solve equations, we often want to track
how regions move and evolve. We might want to investigate how a pocket of
gas dissolves or how a wave breaks against the beach. And in our case, we
want to see how our 3-D object evolves in time under our given constraints.

This can be done explicitly, by choosing markers on the boundary and
“tying a rope” between the markers. So when the markers move, the bound-
ary of the region follows. We see this in Figure 2.7.

Figure 2.7: Explicit tracking. When the markers move, the boundary follows.
But what happens when a region splits in two, or two regions merge?.

In simple cases, when the region just expands or shrinks, this is a perfectly
reasonable method. However, when we have more complex cases, things start
to get difficult. What happens if the region splits in two, or two separate
regions merge into each other after some time, or two markers cross each
other? In these cases you must add or remove markers, and the explicit
method mentioned above quickly becomes quite complicated and computa-
tionally hard.

The solution to these problems? We enter the next dimension! Instead
of a explicit formulation, we make an implicit one by regarding our object in
Rn as a surface in Rn+1. By representing our object as a surface in the next
dimension, we can easily keep track of merging and splitting of regions. We
see how this works in Figure 2.8.

Let us formulate this a bit more mathematically. We are representing our
region Γ as the zero level set of a auxiliary function ϕ,

Γ = {(x, y)|ϕ(x, y) = 0}.
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Figure 2.8: Implicit tracking. We see how easy the level set method handles
splitting by using the next dimension. Instead of keeping track of all the
boundary markers, we simply translate the level set upwards. The blue plane
is the zero level set Γ. The function φ gives the distance from a given point
to the plane Γ. Image: Wikimedia commons.

This auxiliary function ϕ can be defined in several ways, but we will only
look at the two most used. First, the “standard” way to describe ϕ, which
is by the signed distance function.

ϕ(x, y) =


d(Γ, x) if ξ is inside Γ
0 if ξ is at Γ
−d(Γ, x) if ξ is outside Γ

where d(Γ, x) is the euclidean distance between Γ and x. We see that ϕ gives
a positive value inside the region Γ, is exactly 0 at the boundary, and is
negative outside of Γ. With this ϕ, we now have a one to one correspondence
between the region Γ and the function ϕ, and thus if we know the solution to
one, we know the solution to the other. We know from [20] that the motion
of ϕ is described by

∂ϕ

∂t
+ v· ∇ϕ = 0

where v is the velocity of the boundary. So by solving this, we can follow
the progress of Γ in time.
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2.7.1 Piecewise Constant Level Set Method

The second way we will define our auxiliary function ϕ is as a piecewise
constant function. This way of defining ϕ is due to [19], and is called the
piecewise constant level set method.

The advantage of the piecewise constant level set method is that one can
identify an arbitrary number of sub regions using just one level set function.
Assume we want to partition our domain Ω into several sub domains Ωi,
i = 1, 2, . . . , n, where n is known. We can then assign a value to the piecewise
constant level set function ϕ for each sub domain, such that

ϕ = i in Ωi, i = 1, 2, . . . , n

With such a level set function, the characteristic functions of the sub
domains are given as

ψi =
1

αi

n∏
j=1, j 6=i

(φ− j), αi =
n∏

k=1, k 6=i

(i− k).

If we now define a piecewise constant function as

u =
n∑
i=1

ciψi

we can make sure that this function is uniquely represented, i.e. that different
values of ϕ gives different values of u(ϕ), by defining

K(ϕ) = (ϕ− 1)(ϕ− 2) . . . (ϕ− n) =
n∏
i=1

(ϕ− i)

and forcing
K(ϕ) = 0.

If this is satisfied, then for all functions ϕ : Ω → R, we have a unique
i ∈ {1, 2, . . . , n} ∀x ∈ Ω such that ϕ(x) = i. This means that a point x ∈ Ω
can only be part of one region, which again means that the function is well
defined.

The simplicity of the basis functions we have defined makes it possible
for us to measure both the length of the curve surrounding Ωi and the area
of Ωi simply by

|∂Ωi| =
∫

Ω

|∇ψi dx and |Ωi| =
∫

Ω

ψi dx,
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where |∂Ωi| is the total variation (TV) norm.
The piecewise constant level set method is the one we have chosen to use in

this thesis. One of the reasons for this approach is that the piecewise constant
level set method is the easiest to extend into several regions. Although we
do not use more then 2 regions in this thesis, it is a natural point in which
one could extend the work, and by using the piecewise constant level set
method here, we are making this extension easier for the future. Also, it
is known from the work of Knudsen in [13] that this method works for 3-D
reconstruction.



Chapter 3

Image Segmentation and the
Chan-Vese Method

As we will see below in Chapter 4, a crucial part of the reconstruction method
we are using depends on your ability to segment images. We will therefore
use this chapter to explain what is meant by segmentation and how it is done.
It would have been no problem writing an entire thesis about this topic alone,
but since segmentation is just the initial part of our reconstruction method,
a concise introduction will have to do.

3.1 Image Segmentation Basics

We can describe image segmentation as the process of partitioning an image
into non-overlapping regions. This is done in order to find special regions
of interest. The standard way is to partition the image into two regions,
background and object. See Figure 3.1. However, it is not necessary to
restrict ourselves to only background and object, if necessary, we can segment
an image into as many regions as we like. Mathematically, we can write the
decomposition as

I =
n⋃
i=1

Ii

where I is the entire image, Ii the segmented sub images and n the number
of segmented regions.

Image segmentation is one of the oldest problems in image processing,
and there is a multitude of different methods. To better illustrate the idea of
segmentation, we will now give an example of a segmentation method. We
will explain one of the most basic methods. This is the method of threshold-
ing. In this method we simply label all pixels above a certain value, called

24
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Figure 3.1: Original and segmented image. Only background (black) and
object (white) is part of the segmented image

the threshold level, as the object. Those pixels below the threshold level
are labeled as the background. That is, we create the thresholding function
f : I → [0, 1] corresponding with threshold level t0 for every pixel x by

f(x) =

{
1 if x ≥ t0
0 if x < t0

Although very primitive, this method can work well on certain images, espe-
cially if the images are smoothed1 first.

3.2 Mumford-Shah Model

For more difficult images, we need more advanced methods. The Mumford-
Shah model is a classic in image processing and constitutes the basis for our
method of choice. We will therefore quickly explain this model.

The original Mumford-Shah model is formulated as a optimization prob-
lem. We want to find the optimal approximation of the perfectly segmented
image. Let Ω be a bounded open set, Γ the set of edges, u0(x) represent the
initial image and u be the true segmented image that we are trying to find.
We can then without loss of generality assume that 0 ≤ u0(x) ≤ 1 a.e. x ∈ Ω.
The idea is then to search for a pair (u,Γ) which minimizes

F (u,Γ) =

∫
Ω

(u− u0)2 dx dy + α

∫
Ω−Γ

|∇u|2 dx dy + β

∫
Γ

dσ

1Smoothing is a sort of blending of the pixels in a region, making the region more
homogenous. For example using the average of all neighborhood pixels.
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where α and β are non-negative constants and
∫

Γ
dσ is the length of the

boundary Γ. This is the classical Mumford-Shah model. The three terms
have the following properties.

� Term 1 : Minimizing the difference between the perfectly segmented
image, u, and our approximation u0

� Term 2 : Ensuring smooth regions outside of the edges.

� Term 3 : Minimizing the length of the boundary, ensuring a tight fit.

Having explained the Mumford-Shah model, we can move on to the
method of choice for this thesis, the Chan-Vese method.

3.3 Chan-Vese Method

Chan and Vese, in their paper [11] used the Mumford-Shah model above to
develop a new region based segmentation method. That is, a method that is
able to segment regions without clear edges. See Figure 3.2.

Figure 3.2: The block to the left has clearly defined edges and can easily be
found by a edge based segmentation method such as the Mumford-Shah model.
The noisy image of the plane to the right however, has no clear edges, and
need a region based segmentation method.

The Chan-Vese method can be taught of as the level set implementation
of the piecewise constant version of the Mumford-Shah model. Knowing this,
we take a look at the piecewise constant version of the Mumford-Shah model.

When we assume a piecewise constant image, the second term of the
Mumford-Shah disappears. Thus, we can now write the functional as

F (u,Γ) =
∑
i

∫
Ω

(u− u0)2 dx dy + β

∫
Γ

dσ.

The minimization of this is simply

ci = mean(u0) in Ωi.
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Using this, Chan and Vese came up with a new functional to be minimized,

F (c1, c2,Γ) = λ1

∫
Inside(Γ)

(u0(x, y)− c1)2dx dy

+λ2

∫
Outside(Γ)

(u0(x, y)− c2)2dx dy + β

∫
Γ

dσ

where λ1 and λ2 are fixed non-negative constants, Γ the contour, and u0 is
the initial image as always. The first two terms can be interpreted as two
forces. The first term is there in order to shrink the contour and the second
term is there in order to expand the contour. These two forces get balanced
when they reach the boundary of the region of interest. The last term is a
regularizing term regarding the length of the contour.

To represent this in the level set form, we use the level set function from
Section 2.7 in the last chapter, φ(x), x ∈ Ω.

φ(x) > 0 inside the object
φ(x) = 0 on the boundary of the object
φ(x) < 0 outside the object

.

and the Heaviside function H(x) x ∈ Ω,

H(x) =

{
1 if x ≥ 0
0 if x < 0

Thus our level set representation becomes

F (c1, c2,Γ) = λ1

∫
Ω

(u0 − c1)2H(φ)dx dy

+λ2

∫
Ω

(u0 − c2)2(1−H(φ))dx dy + β

∫
Ω

|∇H(φ)|dx dy

where c1 and c2 are the average brightness over the inside and outside

c1 =

∫
Ω
u0H(φ)dx dy∫

Ω
H(φ)dx dy

, c2 =

∫
Ω
u0(1−H(φ))dx dy∫
Ω

(1−H(φ))dx dy
.

This functional is then minimized by finding the Euler-Lagrange equation
and then solving it by gradient descent as explained in the last chapter.
Details of how this is done will not be given here, as we will do much the
same for another functional later on in the thesis. The details can be found
in [3] and [11] if the reader is interested.



28 Image Segmentation and the Chan-Vese Method

We have used the Chan-Vese method to segment the images we have
in this thesis. Its region based approach makes it a good choice for both
normal and noisy images2. This makes our reconstruction method more
robust against noise.

2Noisy images are images corrupted by some function. This removes information from
the image, and makes them harder to analyze



Chapter 4

Multi-view Surface
Reconstruction

The reconstruction of 3-D objects from images is one of the oldest in com-
puter science. However, until recently it was not possible to create good
reconstruction due to the lack of computational power. This has all changed
the last years, and now there are a multiple of different methods. In this
thesis, we are looking at the task of recreating an object seen from many
different angles. The cameras are situated all around the object, making all
of the object in question seen. This allows for good reconstruction of the
object, but also makes the problem quite heavy computationally.

4.1 The Multi-view Reconstruction Problem

First, to clarify, we give a concise statement of the problem.

“The multi-view reconstruction problem is the problem of recon-
structing a 3-D object as seen in a set of images.”

That is, using only the information from a set of images, we want to partition
a volume V into object and background. This partitioning can be written as
V = f(x), where f(x) ∈ {0, 1} ∀x ∈ R3. A voxel of value 1 is said to be part
of the object, and a voxel of value 0 is part of the background. We see in
Figure 4.1 an illustration on how the set of images we are using is obtained.

Unfortunately, this is, as the cliché says, “easier said than done”. What
we are dealing with here is an inverse problem. Given the 3-D object, we
could easily create the images in our set, but to go the other way around is a
different matter. Inverse problems are notoriously difficult, and in fact, often
insolvable. To understand what this means, we look at the concept of well
posedness.

29
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Figure 4.1: The 3-D object we wish to reconstruct are surrounded by a set of
cameras. Each camera will take one photo of the object, and this, in addition
to information on the location of the cameras, are used to reconstruct the 3-D
model

4.1.1 Well Posedness

The French mathematician Hadamard believed that all mathematical models
describing the physical world, should fulfill certain properties. These prop-
erties are:

1. A solution exists for the problem.

2. The solution is unique.

3. The solution depends continuously on the data given in the problem

If the conditions are fulfilled, we say that the problem is well-posed, oth-
erwise, it is ill-posed.

Let us look at these criterion for the general reconstruction problem.
Since we know that the images we are given comes from a real object, a
solution must exist. So criterion 1 is fulfilled. But even though a solution
exists, it does not necessarily imply we can find it, and also, this is for the
physical problem only. It is not given from this that our mathematical model
of the problem has a solution.

Is the solution unique? The answer is unfortunately no. An image does
not capture all the information about the object, and even if it did, we
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are only given a limited amount of images to work on. This means that
he reconstruction problem is inherently ill-posed. No matter how we try
to model it mathematically, we can not hope to attain more than a good
approximation of the true object.

Since we are dealing with the physical world, condition 3 is fulfilled. A
small perturbation in viewpoint will never radically change an image. Note
that once again this is for the general reconstruction problem. It is not given
that our mathematical model fulfill this criterion.

Even though we know our problem is ill-posed, we would like to try to
solve it. We therefore add certain constraints to the problem. That is, we
try to make the problem better by restricting ourselves to certain cases, as
we will see below. But even when we do this, we can not be sure our problem
is well-posed. In the end it is up to our own judgment to deem the results
as realistic and trustworthy or not.

4.1.2 Camera Models

When dealing with inverse problems, it is always helpful to understand the
original problem, i.e., how an image captures the 3-D object in the first place.
We therefore quickly explain some principles of how cameras work.

The easiest of the camera models, is the so called pinhole camera. This
is quite simply a light-proof container, with a small hole in it. The principle
of the pinhole camera is quite similar to the way our own eyes work. Light
rays from the object all pass through the single hole and these project an
inverted image of the object onto the other side of the container. We see how
this works in Figure 4.2.

Now, if the hole in the camera is too big, the light rays will not pass
through the same point, causing disturbance in the inversion. The solution
seems obvious, reduce the size of the hole. However, this will also create
problems. Due to the wave properties of light, we will experience diffraction.
Diffraction is a physical phenomena concerning waves, which was first de-
scribed, posthumously, in 1665 by Francesco Maria Grimaldi [10]. It tells us
that light passing through a small passage will “break up” and form specific
patterns, which in our case will cause blurring of the image.

This means that both a too small and a too large hole in the camera
will cause blurring, so what do we do? The solution is ancient, humans have
used glasses to correct for blurry vision for thousand of years, and there is
no reason why we can not use glasses in a camera. Glasses are of course
just lenses that focus the light, and by putting a lens in the camera we can
achieve a much sharper image. This is known as lens-based imaging.

In lens-based imaging, the convex lens focuses the light beams of certain
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Figure 4.2: Pinhole camera model. Light projected from the object through
the hole creates an inverted image at the back of the box, but only if they all
pass through the same point. Image: wikimedia commons

wave lengths through a single point called the optical center. The advantage
of this is that the image becomes much sharper, but in exchange only certain
ranges are in focus. But if our entire scene is in the given range, we get sharp
and good images.

Lens-based imaging is not perfect, and it carries with it some problems,
but all of these are manageable, and we will not go into the details here.

4.1.3 Light and Reflectance Models

Having looked at how cameras create images, it is natural to look at the
process which makes it all possible, light itself. In order to reconstruct a
scene, we need a basic model for the light and reflectance in the images which
describe the scene. As always when we want to model a natural phenomenon,
we seek inspiration from the grandest of all models, nature itself.

In nature, photons are emitted from a light source, and then travels in a
straight1 line until the photons hit a surface. When the photons hit, any com-
bination of four effects can happen. These are absorption, reflection,

refraction and fluorescence.

1We ignore relativistic effects here.
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Absorption means that the energy from the photons is transferred into
other kinds of energy, and thus the light “disappear”, it is absorbed by the
object.

Reflection is that the photons are “bounced back” from the object, as we
know from common mirrors.

Refraction is what we observe when light hits water or other surfaces.
The angle of the light is changed, giving us a straight line that is bent where
the photons hit the surface.

Fluorescence is an form of cold body radiation where a photon hits an
object which then absorbs it and the object then releases a photon of lesser
energy, often leading to nice color schemes.

All of these effects are something we would have liked to model, however,
it would be time consuming and would be almost impossible to do without
extensive knowledge about the object in question. We therefore do as is com-
mon in the image processing community and assume a Lambertian surface
for the rest of this thesis.

A Lambertian surface, or Lambertian reflectance as it is sometimes called,
is a surface where the brightness is independent of the angle of the surface.
In other words, a given spot on a Lambertian surface looks the same from
all angles that can see it. Although we can experience this in the real world
when we look at rough surfaces, like unfinished wood, most surfaces are not
Lambertian, and if they are far from Lambertian, like transparent surfaces,
we can not expect good results.

4.2 Projections, Rotations and Translations

A difficult part of the multi-view surface reconstruction is how to transform
the 2-D information in the image into 3-D information about the object.
One of the reasons for this is that we are dealing with 3 different coordinate
systems, the camera coordinates, the image coordinates and the real 3-D
world coordinates. We have to somehow combine all of these together. To
do this we need to know the location of the camera, the cameras intrinsic
calibration and also the orientation of the camera. We will soon explain in
detail how this is done.

The cameras intrinsic calibration parameters can be found by doing so
called camera calibration, using a few fixed points in each image. However,
this is prone to error, time consuming, and not what this thesis is about. And
even if we did find the the camera calibration parameters, we would also need
to find the relative location and orientation of the cameras involved. This
would be exceptionally hard, so instead, we are going to use an image set
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where all these parameters are given. This image set is supplied by the
Middelbury Vision Group [21].

Still, given the camera parameters we need to combine the three coordi-
nate systems together. Following [8], we do this by creating a so called 3× 4
Projection matrix. By strict definition this is not a projection matrix as it
is not square, but we can expand it into 4× 4 by adding a row consisting of
zeros and a 1 in the lower right corner. However, this is not necessary for
computations, so we will be using the 3× 4 matrix in the rest of this thesis.

4.2.1 Camera Coordinates

First, let us look at how the image is captured by the camera. If we assume a
pinhole model of the camera, the 3-D object is projected into a viewing plane.
We remember from linear algebra that this can be represented with a per-
spective projection. That is, a projection that maps each point (x, y, z) onto
an image point (x∗, y∗, 0) so that the two points and the center of projection,
i.e. the pinhole camera, are on a line.

Figure 4.3: Perspective projection.

We let Xc, Yc, Zc be the points projected into the image points and use
homogeneous coordinates as described in Chapter 2. Then this perspective
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projection can be represented, up to a scale factor, as a matrix.yx
f

 =

1 0 0 0
0 1 0 0
0 0 1 0



Xc

Yc
Zc
1

 .

4.2.2 Image Coordinates

Next, lets look at the internal camera coordinates. These are different for
different cameras, and describe how motion is handled by the camera. To
express this, let us define a coordinate system using the top left corner as
origo. We then define u0 and v0 to be the center pixel. We can now express
all the pixels in the image as

kux = u− uo

kvy = v0 − v,
where k is the pixels. See Figure 4.4. In matrix form we can write this asuv

1

 =

fku 0 u0

0 −fkv v0

0 0 1

xy
f

 = C

xy
f


where the 3 × 3 upper triangular matrix C is called the camera calibration
matrix. This is the matrix that gives the transformation between image
points and a ray in 3-D space. The scaling is given by the parameters fku
and fkv and the point (uo, v0) is the principal point, i.e. the point where the
optical axis intersects the image plane.

4.2.3 Real World Coordinates

Now we look at the 3-D world coordinates. As above, let Xc be the coordi-
nates from the camera point of view. We also introduce Xw as the coordinates
in the real world. We can then write the Euclidean transformation between
the camera and the real world as

Xc = RXw + t,

where R is a rotation matrix and t is a translation matrix.
Xc

Yc
Zc
1

 =

(
R t
0T 1

)
Xw

Yw
Zw
1

 .
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Figure 4.4: Image coordinates.

Combining this with the camera calibration matrix C and the expression
for the perspective projection as described above, we finally get the 3 × 4
projection matrix we can use.

x =

uv
1

 = C

1 0 0 0
0 1 0 0
0 0 1 0

(R t
0T 1

)
Xw

Yw
Zw
1

 = C
(
R| t

)
Xw

Yw
Zw
1

 .

So we get that the projection matrix is P = C(R|t). Hence, we can find the
projection for an image point into the real world, by taking

x = P

(
X
1

)
.

Now that we know the projections from image to real world, we can start
working on what to do with them.
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4.3 Visual Hull

In real life, when a human being looks at an object, the first thing one usually
notices is the shape of the object. The shape, or the silhouette, contains a lot
of information, and of special importance for us is that it gives an accurate
description of the location of the object. This trivial fact, that an object
must lie within its own silhouette, is quite useful for us.

If we assume a perfectly segmented binary image, and extend a ray from
each pixel into 3-d space, then the physical 3-D object must lie inside this
volume given by the silhouette ray. Using this, we can combine the silhouette
information from all the images, and obtain a volume which encloses the true
object. This silhouette constructed volume is know as the visual hull. A more
formal definition given by Laurentini in [17] states that the visual hull is the
maximal volume consistent with an objects silhouettes as seen from some set
of viewpoints.

Mathematically we can write this as the intersection of all the silhouette
rays, that is S = I1 ∩ · · · ∩ Ii, where S ∈ {0, 1} is the visual hull and Ii is the
projection of the silhouettes into 3-D.

Although the visual hull is guaranteed to enclose the true object, it will
usually not be the same as the true object, since the visual hull does not
capture depth concavities. This is because a camera can only see in straight
lines and contain no depth information. Hence, all depth concavities in the
object will be “filled”. Although not entirely correct, the visual hull can be
taught of as a sort of collection of convex hulls in 3-D.

Figure 4.5: Visual hulls. From left to right, 1,5,10 and 16 viewpoints.

An implementation of the Chan-Vese model was used to segment the
images in this thesis. 2

2In retrospect, this was unnecessary advanced, as some smoothing and a simple thresh-
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4.4 Photo-Consistency

Once we have obtained the visual hull, we can start removing parts that
should not be there. Remember, the visual hull contains the entire object,
so we only need to remove, not add, voxels. We do this by looking at the
images and checking how consistent they are. We know that if we assume a
Lambertian surface, the value of a voxel that is part of the true object should
be approximately the same in all cameras that can see it. See Figure 4.6.

Figure 4.6: Point A is a true surface point, so both cameras will observe
approximately the same value in that point. Point B is a false surface point,
the cameras will have different values there.

A voxel, or a group of voxels, is assigned a photo-consistency value by
projecting the voxels into all cameras that see it, and then comparing how
similar the values are in the different images. In other words, we are com-
paring the projection of the voxels into different images. This is done for all
voxels in the visual hull.

Now there are several ways we can compare the values we get in the in the
different images. There are of course the direct comparison, we can use the
average of neighborhood pixels, and a host of other simple statistical tools.
In this thesis however, we will be using the Normalized Cross Correlation
(NCC), as explained in chapter 2. The NCC method have shown very good

olding did just as well on the images used in this thesis
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results in [14] and [24] and should give good results for us as well. Details
about how we actually calculate the photo-consistency values will be shown
in the next chapter.



Chapter 5

Surface Reconstruction using
Photo-Consistency

The basic idea of photo-consistency was given in the last chapter. We will
now explain in more detail how we can use this idea to compute actual
values for the voxels, and how this can be used in surface reconstruction.
We will also look at some of the problems we encounter when calculating
photo-consistency, and what tools we use to overcome this.

5.1 Photo-Consistency

We remember from the last chapter that in order to calculate photo-consistency
values, we need an approximate shape, and that this shape is given by the
visual hull. Now, the visual hull is an ideal place to start, as it not only is a
good approximation of the shape, but it is also known to contain the entire
true object. Strictly speaking, this is only true if the images are perfectly
segmented, but if the images are reasonable well segmented it has little effect
on the end result. This means that if a voxel is outside of the visual hull,
we know that it is a part of the background. Thus, we can set it perma-
nently to be part of the background. This reduces the risk of artifacts1 in
our reconstruction.

Once we have obtained the visual hull, we can start going through each
voxel or block of voxels on the surface. We project each voxel into every
camera that can see it. Using the values in the different cameras, we can
calculate a score. If we let Ii be the image captured by camera i, and πi(x)
the projection of surface points x into camera i we can write the value of

1Artifacts are erroneously reconstructed objects that can appear due to noise or other
corruption.

40
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points x projected into camera i as Ii(πi(x)). Using this terminology we
can write a very general pseudo algorithm for surface reconstruction using
photo-consistency. See Algorithm 1.

Algorithm 1 Surface Reconstruction with Photo-Consistency

Create Visual Hull
while Reconstruction not complete do

for All voxels p on the surface of object do
Project p into all cameras in which it is visible, i.e find Ii(πi(p)) for
all cameras in which point p is visible.
Calculate photo-consistency value for voxel p.

end for
Reconstruct object using updated photo-consistency.

end while

Although crude, this algorithm tells us what tools we need in order to
accomplish our goal. The projection matrix and the visual hull have both
been explained earlier, so that leaves us with only two more areas to explore,
visibility of voxels, and the concrete calculation of photo-consistency when
given the image values.

5.1.1 Visibility

Visibility is intuitively simple, but how to express it mathematically and
implement it is not. We can create a visibility function associated with a
given camera i, such that. χi(ξ) : Ω→ [0, 1] where

χi(ξ) =

{
1 if ξ is visible from camera i
0 if ξ is not visible from camera i

.

But in order to know if a given voxel is visible from a camera, we not only
need the position of that voxel and the camera, we need to know if there are
any other voxels blocking the view. That means that for each voxel, we have
to check the position of a large number of other voxels! This quickly turns
out to be computationaly hard.

We therefore choose a simple and intuitive method. We partition our 3-D
domain into different parts, and say that a voxel is visible in a camera if it is
in the same region as the camera, or a neighboring region. This is shown in
Figure 5.1. For example, a camera in region 1, can see voxels in region 1,2
and 8.

This visibility model might not be the most sophisticated, but simplicity
is not to be frowned upon, and as we will see, the model achieves good results.
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Figure 5.1: Dividing our space into regions. A voxel is set as visible if it is
in the same or neighboring region as the camera.

5.1.2 Calculation using NCC

We now have all the tools we need to calculate the photo-consistency, so lets
take a closer look at how this is done. As mentioned, there are several ways
to do this, but we will focus on the calculation of photo-consistency using the
normalized cross correlation described in Chapter 2. This method is known
to give very good results.

As before, let Ii be image i, and πi(x) the projection of voxels x into
image i. Then Ii(πi(x)) is the projection of voxels x into image i. In other
words, Ii(πi(x)) is the subimage of image i in which we can see the part of
the object where the voxels x are situated.

Given a set of voxels, we now project these into all cameras in which they
are visible, and obtain several subimages, one from each image who can see
the voxels.

We can now use the NCC to compare these images with each other, and
find how similar they are. We do this by the method proposed by Kolev
et.al. in [14].

Let V ⊂ R3 be the domain containing our scene and S ⊂ V the surface of
our reconstruction. For each x ∈ S we can then express the photo-consistency
on the surface by

C(x) =
1

N

∑
j

∑
i

NCC(Ii(πi(x)), Ij(πj(x))) (5.1)

where N is the number of relevant camera pairs, and i 6= j. By relevant pairs,
we mean that both cameras are in a region that can see the voxels.

This gives us a photo-consistency value for all the voxels on the surface.
Our initial surface is of course the visual hull, and we could integrate the
photo-consistency values calculated by the surface of the visual hull to get
a new surface. Using the new surface we could once again calculate the
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Figure 5.2: Voxels from the column projected into 3 different images in which
the voxels are visible. Number of voxels are exaggerated for visual conve-
nience.

photo-consistancy and so forth. This method would achieve decent results.
However, we would like to go further, and use a probability based photo-
consistency along visual rays, as done by Kolev et.al. in [14] and [15].

5.2 Probability Based Photo-Consistency

The main problem with just using the method described above is that it uses
only the information on the surface. It could easily get stuck on a surface that
looks good, not knowing that a even better surface lies beyond. Therefore,
it is possible that the method might not capture concavities well, and could
favor a surface reconstruction that would be close to the visual hull.

This is solved by propagating classic on-surface photo-consistency into
values inside and outside of the volume. This gives us much more information
about the volume, and makes us better equipped to find the best surface.
See Figure 5.3.

Our ability to do this comes from the following basic property.

Property 1. Let S be an arbitrary surface, which is consistent with the
silhouettes of a set of given images I1, . . . , In. Then each visual ray passing
through a point x in the interior of S intersects the real observed surface S̃
at least once.

If there is a visual ray going through a point x, which does not intersect
the real surface S̃, then that point x will not project within the silhouette
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Figure 5.3: Propagation of photo-consistency. Voxels inside and outside of
the volume are given probability values calculated using the point of best photo-
consistency.

of the image, and can therefore not lie inside a silhouette consistent shape,
which the visual hull is.

This leads to the final idea. We can calculate photo-consistency along
visual rays, and take the position of the maximum value as the point of
intersection between the visual ray and the real surface S̃. Using this, we
can convert classical photo-consistency which describes the likelihood of lying
on the surface into likelihood of being inside or outside of the volume.

Let rj(x, t) be the visual ray of camera j, where t is the position, starting
at the initial camera position, and let tcur be the current position. Also,
as usual, let πi(x) be the projection of x into camera i. We then measure
photo-consistency along the ray j, according to another camera i as

Cj
i (x, t) = NCC(πi(rj(x, t)), πj(rj(x, t))). (5.2)

Adding over several cameras, we get the final score for the visual ray of
camera j

Cj(x, t) =
n∑
i=1

Cj
i (x, t). (5.3)

There still is a problem in how to turn these values into probability values,
namely that the NCC gives values between -1 and 1. In order to give the
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voxels a probability score, we need to turn these numbers into numbers in
the range 0 to 1. This can be done by the following function from [23]

f(x) = 1− exp(−
tan(π

4
(x− 1))2

σ2
), (5.4)

where σ ∈ [0, 1]. In this thesis σ was set to 0.25, as this have been used to
good effect by others

We can now determine the maximum photo-consistency along the visual
ray, and the position where the maximum is found by using

Cmax(x) = max
t
Cj(x, t), tmax(x) = argCmax(x). (5.5)

We now define interior and exterior photo-consistency along a ray j as

ρjobj(x) = H(tmax − tcur)· (1− f(Cj
max)) + (1−H(tmax − tcur)· f(Cj

max)

ρjbck(x) = H(tmax − tcur)· f(Cj
max) + (1−H(tmax − tcur)· (1− f(Cj

max)).

Where H is the heavyside function

H(x) =

{
1 if x ≥ 0
0 else

and f(x) as in Equation (5.4). Notice that ρobj(x) + ρbck(x) = 1 ∀x ∈ V , as
we would expect from a probability based method.

5.2.1 Choosing the Size of the Visual Ray

Having defined photo-consistency along visual rays, a natural question arises.
What size should the visual ray be? This is a classical case of having to weigh
two options against each other. If we choose a small visual ray, we should be
able to reconstruct more details, but it is harder computationally. Also, if
the visual ray is too small, there will not be enough information in the images
to compare them properly. On the other hand, if we choose a larger visual
ray, we will experience faster computation, but less detailed reconstruction.

It is clear that we need the visual ray to be big enough to capture enough
information from the images, otherwise the NCC will give us nothing useful,
and the reconstruction will fail. Also, we need some details, so the visual ray
can not be too large. It is therefore natural to choose something in between,
the “golden mean”, as the philosophers would say.

We would of course like to be more precise than this, but what a suitable
“golden mean” is will depend on the object being reconstructed. In practice
we will mainly have to find the size of the visual rays through experiments.
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Figure 5.4: Probability based photo-consistency. The highest probability is
set at the intersection where the two beams meet. We see here how this
intersection point is found. The view from one camera beam is projected into
a second camera and NCC is used to find the location where they are most
similar.

5.2.2 Obtaining the Energy Functional

Having obtained expressions for background (ρbck ∈ [0, 1]), foreground (ρobj ∈
[0, 1]) and classical on-surface photo-consistency (ρ ∈ [0, 1]), we can now
construct an energy functional suitable for surface reconstruction. If we as
usual let V ∈ R3 be a volume containing our scene and let S be a surface
estimation, we can use S to divide the volume V into background and object,
V = RS

obj∪RS
bck. We can also assign each point in the volume a probability for

being on the surface by using classical photo-consistency and turning it into
probability by using Equation (5.4). Using this, we get the final optimization
problem,

E(u) =

∫
RSobj

ρobj(x) dx+

∫
RSbck

ρbck(x) dx+ ν

∫
S

ρ(x) dx. (5.6)
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The surface we are trying to find, Ŝ, is then

Ŝ = arg min
S⊂V

E(S).

Here ρobj(x) and ρbck(x) impose correct division into object and background
and the last term, ρ(x), seeks a minimum surface with respect to photo-
consistency, and can therefore be seen as a smoothing constraint. The pa-
rameter ν ∈ [0, 1] is there to regulate this smoothing property.

5.3 Global Minimization

Having described our problem as an energy functional needing to be mini-
mized, we must take a look at the properties of such functionals. A common
problem in variational image processing techniques is that the energy func-
tional needing to be minimized has local minimums, and can get stuck there.
This is a big problem, because these local minimums often have the wrong
level of detail and scale, and in fact, the local minimum might not look like
the real solution at all!

Adding to our problems, the solutions of the variational problems we
encounter in image processing are often based on gradient descent methods,
and these are quite sensitive to local minimums. Therefore, we either need a
very good initial guess, or we need a way to avoid local minimums.

From basic calculus, it is well known that all the minimums of a convex
function are global minimums. Thus the idea arises, if we can somehow
force the energy functional to become convex, without losing its essential
properties, we can minimize without fear of local minimums.

5.3.1 Global Minimization of Binary Images

We can look at surface reconstruction as a binary problem. We want to
partition our domain V into either background or object. We are given a
shape, the visual hull, that consists of the “real” shape with some added
distortions, and we want to recapture the original shape. In 2-D this is
called binary image denoising and have been studied quite a lot, and even
though we are in 3-D, some of the tools developed for the 2-D case might be
applicable.

As mentioned, in binary image denoising the noise manifests itself as
pertubations in the geometry of the shape of the object, and the goal is to
find the true object. This is just as in our reconstruction case, and it is
therefore not far fetched to seek inspiration from the binary image denoising
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field. We will not go into details about binary image processing here, it will
suffice to mention one article from Chan et al [5], which ideas we will utilize.

Given a optimization problem, it is, surprisingly, harder to minimize in
the binary case than it would in the normal case. This is because the space
of binary functions is non-convex, and thus the optimization problem itself
becomes non-convex for the binary case. However, in [5] it was shown that
by introducing a convex penalizer, we can for many cases turn the problem
into a convex one.

This is due to the fact that when we minimize the total variation norm
of the space of all functions, u : Ω→ R, the values of u(x) converge to ±∞
almost everywhere. Hence, we can get a convex problem on the convex space
of functions Ω→ [0, 1] by enforcing 0 ≤ u(x) ≤ 1, using the convex penalizer
in [5]

θ(u) := max

{
0, 2|u− 1

2
| − 1

}
. (5.7)

Now, if we minimize over the space of the real valued functions, and then
threshold the result, we will get a global minimizer for the original non-convex
problem.

5.3.2 Ensuring Global Minimization in Our Model

As discussed above, [5] gave us a framework for constructing convex mini-
mization problems out of non-convex ones. In this section, we will follow [15]
and prove that the same technique can be applied to our case, and that we
can formulate the reconstructing problem as a convex optimization problem.

Remember that our problem is the minimization of Equation (5.6). If we
wish to formulate this as a convex optimization, we need to represent the
surface S implicitly by the characteristic function u : V → {0, 1}. In other
words, u = 1RSbck and 1 − u = RS

obj. Using this, we can write the original

functional, Equation (5.6), as

E(u) =

∫
V

(ρbck(x)− ρobj(x))u(x)dx+ ν

∫
V

ρ(x)|∇u(x)|dx, (5.8)

such that u(x) ∈ {0, 1}. Now, as noted above, the space of binary functions
is non-convex, and thus our minimization problem is also non-convex. If
we now forget about the binary condition, and instead let u take all values,
u(x) : V → R, we will, as above, get that u(x) converges to ±∞ almost
everywhere. To get around this, we keep 0 ≤ u(x) ≤ 1 by adding the convex
penalizer θ(u) from Equation (5.7). This gives us

E(u) =

∫
V

(ρbck(x)− ρobj(x))u(x)dx+

∫
V

νρ(x)|∇u(x)|+ αθ(u)dx, (5.9)
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where we choose α big enough, such that we are ensured u(x) ∈ [0, 1]. This
gives us a convex minimizer. Although note that it is not strictly convex, i.e.
the minimas are not unique.

The point of all this is that a minimizer of the convex problem in Equation
(5.9) is also a minimizer of the original non-convex problem in Equation (5.8)!
This is given from the following theorem in [15], based on the work in [5].

Theorem: 1. If u : V → R is any minimizer of the functional in Equation
(5.9), then for any threshold µ ∈ (0, 1), the binary function 1Σµu∗(x) : V →
{0, 1} with Σµ(x) := {x : u(x) > µ} is also a minimizer of Equation (5.9)

Proof. See [15]

Now, the theorem does not mention the non-convex problem in Equation
(5.8), but any thresholded minimizer of the convex problem in Equation (5.9)
must be binary, and since Equation (5.9) fulfills the minimization criterion of
Equation (5.8), we have achieved a convex binary optimization. This method
can be summarized in two steps:

1. Find a minimizer of the convex problem in Equation (5.9).
2. Threshold the result from 1 with µ ∈ {0, 1}.

So, now the problem becomes how to minimize the convex problem in Equa-
tion (5.9). We do this via the piecewise constant level set and gradient
descent methods.

5.4 Minimization by Piecewise Constant Level

Sets and Gradient Descent

We now wish to use the piecewise constant level set method to solve Equation
(5.9). From the discussion about this method in Chapter 2, we get the
following problem

E(u) =

∫
V

(ρbck(x)− ρobj(x))u(x)dx+

∫
V

νρ(x)|∇u(x)|+ αθ(u)dx

subject to
K(u) = 0,

where K(u) = u(u − 1). This is a constrained optimization problem and to
solve it we use the method of Lagrangian multipliers as described in Chapter
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2. Expanding our functional with a Lagrangian mulitiplier, we get that a
minimizer of E(u) corresponds to a saddle point of the following functional

H(u, λ) = E(u) +

∫
V

λK(u) dx (5.10)

We know that at a saddle point, the following must be satisfied;

∂H

∂u
= 0 ,

∂H

∂λ
= 0. (5.11)

What we want to do is to minimize H with respect to u, and maximize
H with respect to λ. To do this, we use a gradient descent method. The
derivatives of the functional H will give gradient information, and using these
gradients, we can decrease or increase the functional value. Moving in the
negative of the gradient direction will decrease the functional value, and so
we will do this for u. Similary, moving in the positive gradient direction will
increase the functional value, and this will be done for λ.

Normaly, this would be done with a small step size and would only give
local information. We could not know if we had converged at the right
solution or if we were caught in local minimum or maximum. However, since
we have turned our functional into a convex one, we know that all local
minimums and maximums are global, and thus we have no fear of getting
caught in one. This allows us to be less careful with the inital values u0 and
λ0.

To do the minimization, we introduce an artificial time parameter, t, and
define the following

∂u

∂t
=
∂H

∂u
,

∂λ

∂t
=
∂H

∂λ
(5.12)

with u = u0, λ = λ0 at time t = 0. We now want to minimize ∂u
∂t

and
maximize ∂λ

∂t
.

We remember from Chapter 2 that in order to solve the original con-
strained problem we have to find the extremum points of the augmented
Lagrangian functional. To do this we need to find the weak derivative. To
illustrate how this is done, we will show the differentiation for the most dif-
ficult part of our functional,

∫
V
ρ(x)|∇u(x)|dx. If we define that term to be

f , what we need to do is find a g such that∫
V

f
∂h

∂xi
dx = −

∫
V

gih dx ,

for all h ∈ C∞0 (V ). Such a g will be the weak derivative of f .
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d[

∫
V

ρ|∇u|dx](u;h) = lim
τ→0

∫
V

ρ|∇(u+ τh)| − ρ|∇u|
τ

dx

=

∫
V

lim
τ→0

ρ|∇u+∇τh| − ρ|∇u|
τ

dx

=

∫
V

lim
τ→0

ρ|∇u+∇τh| − ρ|∇u|
τ

dx · ρ|∇u+∇τh|+ ρ|∇u|
ρ|∇u+∇τh|+ ρ|∇u|

=

∫
V

lim
τ→0

ρ2|∇u+∇τh|2 − ρ2|∇u|2

τρ[|∇u+∇τh|+ |∇u|]

=

∫
V

lim
τ→0

ρ2[(∇u)2 + 2∇u∇τh+ (∇τh)2 − (∇u)2]

τρ[|∇u+∇τh|+ |∇u|]

=

∫
V

lim
τ→0

ρ2[2τ∇u∇h+ τ 2(∇h)2]

ρ[2τ |∇u|+ τ 2∇h|]

=

∫
V

ρ
∇u∇h
|∇u|

.

We know we can write ∇h = ( dh
dx1
, ..., dh

dxi
). We also define a vector

ψ = ρ
∇u
|∇u|

= [ψ(1), ..., ψ(n)]

and use standard integration by parts. We then get that for each direction i,∫
V

dh

dxi
ψ(i)dx = −

∫
V

h
dψi

dxi
dx+

∫
S

hψ(i)n(i) dx,

where n(i) is the outward unit surface normal and S is the surface of the
volume V . Since h ∈ C∞0 (V ), the last term disappers. If we do summation
over all i, we get that∫

V

ρ
∇u∇h
|∇u|

=

∫
V

div (ρ
∇u
|∇u|

)h dx.

Which means we have found the weak derivative for that term. Doing this
for all the terms in our functional, we end up with∫

V

h[(ρbck − ρobj)− ν div (ρ
∇u
|∇u|

) + αθ′ε(u)] dx = 0.

For this to be zero, we only need whats within the integral sign to become
zero. Since h is in every term, we can remove it from the equation. What
we end up with is the Euler-Lagrange equations for our problem.

(ρbck − ρobj)− ν div (ρ
∇u
|∇u|

) + αθ′ε(u) = 0 (5.13)
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K(u) = 0 (5.14)

The first equation is not well defined at points where ∇u = 0, due to the
term 1/|∇u|. It is common to overcome this problem by a slight perturbation
of the |∇u| term. We say

1

|∇u|
≈ 1√

|∇u|2 + β

where β is a small positive parameter. It is shown in [1] that the solution of
the perturbed problem converge to the solution of the original problem when
β → 0. Using this, we get the following equations to be solved

∂u

∂t
= (ρobj − ρbck) + ν div (ρ

∇u√
|∇u|2 + β

)− αθ′ε(u) (5.15)

∂λ

∂t
= K(u) (5.16)

These coupled equations are solved by a modified version of the algorithm
from the original piecewise constant level set method [19].

Algorithm 2 Piecewise Constant Level Set Method using Gradient Descent

Set u0 to visual hull
Initialize λ0

Calculate ρobj, ρbck and ρ
ε = tol //Set the tolerance
while |ui − ui−1| > ε do

Update ρ given new surface S //Updating photo-consistency

ui = ui−1 + ∆t∂H(ii−1,λi−1)
∂u

//Updating level set using G.D.
λi = λi−1 + rK(u) //Updating Lagrangian multiplier
i = i+ 1

end while

This algorithm will solve our minimization problem and will give us our fi-
nal reconstruction. Note that the probability based photo-consistency terms,
ρobj and ρbck are only calculated once. This is because these terms are calcu-
lated using only the information in the images and the corresponding projec-
tions, and not the surface itself, so these do not change, while the standard
photo-consistency term, ρ, is dependent on the surface, and therefore has to
be updated in each iteration.



Chapter 6

Results

Having described and explained all the tools and methods we are using, we
can now take a look at how this turns out in practice.

6.1 Image set

Making our own image sets would be very complicated, so we have tried
our method on a image set from the Middelbury Vision Group [21]. This set
comes with given camera set up, so there is no need to do camera calibration,
we can just follow the description from Chapter 3 on how to make a projection
matrix and use it.

Our image set is the sparse temple grid, which consists of 16 images of
the temple of the Dioskouroi in Sicily. See Figure 6.1.

Figure 6.1: Four of the original sixteen temple images.
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6.2 Visual hull

The first step in our method is to construct the visual hull. In order to do
this, we must first define a rectangular grid for us to work in. The size of this
grid is known as the resolution of the model. A large grid gives more detail
and thus better resolution, but a large grid is also harder computationally.
The opposite is of course true for a small grid. We are therefore once again
faced with the problem of quality vs computation. What to choose depends
on the application of the result. In practical application it is often necessary
to sacrifice some quality for speed, but since the purpose of this thesis is
mere presentation, we can choose quality. Still, we are working in 3-D, and
a small increase in the resolution leads to a large increase of data points.
Thus we quickly find ourselves at the edge of what our computer memory
can manage. The unfortunate consequence of this is that we can not achieve
the resolutions we would have liked, and hence quality may suffer. For the
remainder of this thesis, unless specified otherwise, we use use the resolution
90× 120× 70 for the model.

Having defined our grid, we are ready to start the reconstruction. As we
remember from Chapter 3, in order to construct the visual hull, we first need
to segment the images in the sets properly.

6.2.1 Segmented Images and Projection into 3-D

As explained, we have chosen to use the Chan-Vese method to segment our
images. This method works fairly well on our images. Once the segmentation
had been achieved, we used the projection matrices to project the silhouette
into 3-D. The result can be seen in Figure 6.2.

6.2.2 Visual hulls

Using the segmented images, we can now construct the visual hull for our
image set. Having noticed that the segmentation is not perfect, we loosen
on the constraints a bit. Instead of demanding that all images agree on the
location of the object, which is the standard visual hull algorithm, we say
that only 14 of the 16 images must agree, thus allowing for some error in the
segmentation.

We see the computed visual hulls in Figure 6.3.
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Figure 6.2: Samples of the original images, the segmented images and the
projection of the silhouettes into 3-D.

6.3 Final Version

Having obtained the visual hull, we can now use the probability based photo-
consistency, and our gradient descent method, to complete the reconstruc-
tion.

The temple in the image set has many features that makes for a good
visual hull. The columns in particular are easy to recreate for the visual hull,
and this gives us a very good initial reconstruction. In fact, the only big flaw
of the visual hull is the failure to capture the concavity on the backside of the
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Figure 6.3: Visual hulls. From left to right, 1,5,10 and 16 viewpoints. Reso-
lution: 140× 80× 70

temple. This concavity will have to be identified by the photo-consistency
terms.

We set the smoothing parameter ν to be 10−5. We then calculate the
photo-consistency terms ρobj and ρbck using a template of 20 × 20 pixels,
moving the template 4 pixels at a time. Having done this, we use Algorithm
2 from Chapter 5 to solve the system. We see the results of the temple
reconstruction in Figure 6.4.

These results are quite good. We have captured all the major characteris-
tics of the temple. Especially we have captured the concavity on the back of
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Figure 6.4: The final reconstruction. Notice the capture of the concavity.
Resolution: 90× 120× 70.

the temple very well. We notice there is a lack of small details. The pattern
below the roof has not been reconstructed and neither has the stairs on the
side of the temple. The pattern can be explained by our low resolution. The
stairs on the side however, are harder to explain. We have reconstructed the
stairs on the front of the temple, so why are we not able to reconstruct the
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stairs on the side? It would be easy to point to our simplistic visibility func-
tion, but it seems this is not to be blamed. To test the visibility function,
we ran reconstructions using only the images that can see those particular
stairs and we got the same results as before. One possible reason is that the
stairs on the side is much longer than those in front. This makes the edge less
noticeable, and could make the reconstruction of those stairs more difficult
than the others.

It is unfortunate that we are unable to provide reconstructions of higher
resolution. We are certain that we would have captured the pattern and
other lesser details at a higher resolution. It is also very likely that a higher
resolution would have resolved the stairs issue.

6.4 Quality of Reconstruction

Having reconstructed the object, we would like to get an idea of how good
our reconstruction is. This is not the easiest task, as it is difficult to de-
termine the quality of a reconstruction. A horrible reconstruction might be
easy to identify, but telling the difference between a good and a very good
reconstruction is far worse.

Knowing this, the Middelbury vision group [21] obtained the “ground
truth” of the object in our image set using laser scanners. They then created
a web page for comparing different methods. A researcher may submit their
results to this web page and see how it compares to other methods and the
ground truth. Unfortunately, the submitting process is not straightforward,
so we will not be submitting the results from this thesis. However, we can
use the results from known models to do a comparison with our own. This
will give us a fairly good idea of how good our reconstruction is. Keep in
mind that the reconstructions we are comparing with are of higher resolution
than we can achieve on our computer, so we should not expect the same level
of detail.

In Figure 6.5 we compare our temple reconstruction with some of the
results from the web page and the ground truth. The results are from Fu-
rukawa [9], Delaunoy [7], Auclair [4] and Starck [22]. The percentages are
taken from the Middelbury web page.

Although our model is certainly not the best, it can easily stand the
comparison with the other models. This must be said to be fairly good.
We are after all comparing it with the best results out there. And we must
remember that our reconstruction has much lower resolution than the others.
We don’t know the exact resolution of the models we are comparing with here,
but [14] uses a resolution of 256×384×192 and it is likely that the others use
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Figure 6.5: Top left to right; Ground truth 100 %, Furukawa 99,3% , De-
launoy 95,9%. Lower left to right; Auclair 92,5% , Starck 87,7%, Our model.
The percentage reflects how many of the voxels are within 1.25 mm of the
ground truth mesh.



60 Results

a similar resolution. This is huge compared to our resolution of 90×120×70.
In fact, it’s over 18 million more points! This explains the difference of the
level of detail in the models. To quantify a reconstruction percentage for our
model is hard, but it seems to be at least above the 80% mark.

6.5 Effect of Resolution

We have mentioned a couple of times that our inability to use a high resolu-
tion in the reconstruction makes it difficult to handle small details. To see
how much effect resolution has on details, we reconstructed the temple using
different resolutions.

Figure 6.6: The reconstruction using different resolutions. Resolution, from
left to right: 10× 20× 10, 20× 40× 20, 40× 60× 40, 90× 120× 70.

As we see in Figure 6.6, the resolution has a big effect on the reconstruc-
tion. It is clear that the lower the resolution, the less detail we have.

6.6 Robustness of Algorithm

The ultimate goal of surface reconstruction is to let any person take a few
photos of any object, and then reconstruct that object in 3-D. If this is to
be achieved we must create algorithms that are robust, that is, not sensitive
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to errors in the information we use. We can not expect perfect images and
perfect camera calibration outside of laboratory conditions, and we must
therefore test how our algorithm fares under less then ideal conditions.

6.6.1 Error in Images

One of the most common problems with images is the inclusion of noise.
Noise is some kind of disturbance, corrupting the value of the pixels in the
image. This results in loss of information and a lesser visual appeal. See
Figure 6.7.

There is all kinds of different noise, but in the image processing commu-
nity it is usually assumed that the noise is additive noise. That is, noise that
has been added to the original image. This is written

Iobserved = Ioriginal + n

where n is the noise. Noise removal is a large field in image processing, with
many different method. It is likely that by using additional noise removal
tools in our algorithm, we could be able to deal with almost all kinds of noise
without losing much detail in the final reconstruction. However, for the sake
of testing robustness, we will not be using any noise removal methods on the
images, except for the standard smoothing of images before segmentation.

We add Gaussian noise to the images. Gaussian noise is just random
noise, Gaussian distributed, and independent in each pixel. We find the
average of the variance of the original noiseless images, and then use half of
that variance in our Gaussian noise. This gives us a 2:1 signal to noise ratio.
This is considered a reasonably large amount of noise.

As we can see in Figure 6.7 the segmentation of the images is relatively
good. Some of the reason is our segmentation method, but we have to admit
that the images used in this thesis are fairly easy to segment, even with the
added noise. We could of course make the segmentation harder by adding a
difficult background, but we do not wish to spend too much time on the seg-
mentation problem. What is more interesting is how the photo-consistency
term copes with noise.

We see the reconstruction from the noisy images in Figure 6.8. The
reconstruction is quite good considering the amount of noise in the images.
There are some irregularities, but not many.

One of the reasons we get such a good reconstruction even with noisy
images is that the noise is random. Since we are using several images to find
the photo-consistency value at each point, it is probable that the information
lost due to noise in one image, will be there in another. If we had structured
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Figure 6.7: Images with added Gaussian noise and the resulting segmentation.
Mean of the noise was set to zero, and the variance to half of the average
variance of the noiseless images.

Figure 6.8: The reconstruction of the temple using noisy images. We notice
some distortions on the stairs, the columns and the roof. Otherwise the
reconstruction looks fine.
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noise that corrupted the same ares in each image, our reconstruction would
have suffered much more. This test shows that our reconstruction, due to its
use of multiple images in each point, is quite robust against random noise.

6.6.2 Error in the Projection Matrix

Having tested out algorithms robustness against noise, we will now see how
robust it is regarding errors in the projection matrix. We can not expect
the algorithm to handle this very well. The projection matrix tells us which
pixels corresponds to which voxels, and too much corruption in this data will
lead to a total chaos. However, it is interesting to see how much corruption,
or noise if you will, we can handle.

It might be tempting to just add a random matrix to the projection
matrix, but this is not the kind of error we would expect in the real world. It
is more likely that the error would be in the position of the camera, that is,
in the rotation and translation matrices. We will therefore now corrupt the
rotation and translation matrices, and use the projection matrix that results
from these corruptions.

In contrast to when we had image noise, we do not need to run the
entire reconstruction algorithm, it is enough to create the visual hull. This
is because the corruption is in the projection itself, and the visual hull is
the intersection of the projections. Therefore the visual hull gives us a lot
of information about the projections. A good visual hull tells us that the
projections are useable for reconstruction, while a bad visual hull of course
tells us that the projections are not useable. To calculate the size of the
corruption in the matrices we use the relative error,

η =
|u− uapprox|
|u|

.

The results of this test can be seen in Figure 6.9.
We see that the method copes well when there is just errors in the rotation

matrix. Errors in the translation matrix are more difficult though, it can not
handle more than a small relative error of 2.0%. And it is even worse when
we combine the two errors. A relative error of around 3% on both matrices
completely ruins the reconstruction. This tells us that we need accurate data
when calculating the projections, or else the reconstruction will fail.
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Figure 6.9: Four visual hulls constructed using corrupted rota-
tion and translation matrices. Relative error, from left to right;
Rotation: 10.0% Translation: 0% , Rotation: 0% Translation: 2.0%,
Rotation: 1.04% Translation: 0.81%, Rotation: 3.09% Translation: 2.5%.
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Summary and Discussions

7.1 Summary

We have in this thesis looked at the 3-D reconstruction problem. We have
shown that we are able to do 3-D reconstruction by using an initial visual
hull, probability based photo-consistency along visual rays and the piecewise
constant level set method. We used the method first introduced by Chan
et.al in [5] to construct a convex functional, making the minimization process
easier. We also tested the robustness of our algorithm. We found that we
had good robustness against noise in the images, but less so regarding error
in the position of the cameras. In order to do the reconstruction we had to
assume that our object had a Lambertian surface, as this assumption is the
basis for calculating photo-consistency. We know this is not the case in the
real world, but it is usually not very wrong. In the end, we achieved very
good results for our temple reconstruction. There was some small details
missing, but this is most likely due to low resolution. It is clear from this
that the probability based photo-consistency method works very well, and
we see no reason why it should not be used in the future.

We have not mentioned anything about the running time of our code.
This is because the time varies quite a lot, depending on different parameters.
But to give an idea of the timescale we are working on, we can tell that
the final reconstruction in Chapter 6 took over 5 hours to complete on our
slow computer. This is too slow to be usable for industrial purposes, but the
running time is by no means optimized, and there are methods to significantly
reduce the running time.

65
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7.2 Future work: Improving the method

When writing a thesis, there are always something you would have liked to
do, but never had time to. This section is devoted to exploring what could
have been done, if more time was available, to improve our method.

7.2.1 Visibility Function

The visibility function used in this thesis was very basic. We simply divided
the grid into different areas, and assigned visibility based on this. This
worked fine on the temple reconstruction in this thesis, but it might fail on
more advanced objects. To improve upon our visibility function would have
been a top priority if there was more time.

Using an initial surface like the visual hull, it has been proposed to use
the euclidean distance of a point to its nearest surface point to calculate
visibility. This is a direction we would have liked to explore.

There is also the option of choosing not to use a visibility function. In
[24] Vogiatzis et.al. claim to not need a visibility function, due to a use of a
robust photo-consistency metric.

7.2.2 Speed

Speed is always an issue when it comes to computational mathematics. We
want our methods to work fast and well, but these two criterions are often in
conflict. As mentioned before, we have in this thesis sacrificed some speed to
attain better quality. But even when choosing good quality there are some
ways to speed up the algorithm.

Graph cuts is a specialized optimization method used to compute the
maximum flow in a network. It is a much faster method than gradient descent
and have been used with success by many in the image processing community.
Although the visibility term would have posed a challenge, we believe it would
have been possible to use the graph cut method on the model in this thesis.
The reason we choose not implement the graph cut method was that the
main time consumption in our algorithm was not the minimization of the
functional, but the calculation of the photo-consistency terms. Therefore, it
was not that much to gain by using graph cuts.

Another idea to improve speed is to replace the gradient descent with an
iterative linear solver. Our functional is almost linear, with 1

|∇u| being the
only source of non-linearity. If we set an initial u0 we get a system of linear
equations which we can solve. We can then compute a new u1, and solve
the resulting new system of linear equations. This can be done until we we
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have ui − ui−1 < tolerance. This might sound like it would take a lot of
time, but systems of linear equations can be solved very fast, especially by
methods utilizing the Krylov subspace1, like GMRES. The interested reader
may consult any book about numerical linear algebra for details.

Other ideas to improve speed would be implementation of a adaptive step
length in our gradient descent, or the use of quasi-Newton method instead
of gradient descent.

To reduce the calculation time of the photo-consistency terms we would
have to employ a multi-resolution scheme. These as so-called pyramid meth-
ods, that first apply the algorithm on a coarse scale, and then gradually move
into the smaller scale containing the details. If we had the time and knowl-
edge to implement this properly, it would reduce running time considerably.

7.2.3 Testing on Other Image Sets

We have only seen the reconstruction of the object from the temple image
set. It would have been interesting to test our algorithm on other image sets,
with other properties. In particular, an image set containing multiple objects
would have been interesting. It is our belief that due to the visibility function,
and the piecewise constant level set methods ability to deal with multiphase,
that the reconstruction of multiple objects would pose no problem for our
method.

Another interesting image set would be of a semi-transparent item. We
remember that we assumed a Lambertian surface, but it would be interesting
to see how dependent we were of this assumption. If we are able to segment
the item properly, we believe that there is a good chance to achieve a decent
reconstruction, even with a semi-transparent item.

7.3 Future work: Obtaining the “Final Goal”

In the last section we discussed how we could improve on the method used in
this thesis. And although it is important to find ways to improve old methods,
we feel that this is not where the main focus should be in the future. Our
reconstruction result was good, and we know from the work of others that
it is possible to create very good reconstructions in a reasonable fast time.
Therefore, it is time to move away from the theoretical lab reconstruction,
where almost all information is given. We should instead focus on achieving
the final goal of multi view reconstruction. That is:

1A Krylov subspace is a linear subspace spanned by a vector b and a n × n matrix A
Kr = span {b, Ab,A2b, ..., Ar−1b}
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“To be able to reconstruct any object taken by any camera under
any conditions”

Surely a daunting task, but it should be achievable, especially with the help
of new technology. We have in this thesis learned what we need in order to
reconstruct an object. What we need is:

� Pictures of the object

� Camera calibration matrix

� Rotation matrix

� Translation matrix

The first one is trivial and goes without mentioning. The second one, the
camera calibration matrix, is a bit more tricky. However, it is possible to
find the camera calibration matrix for any camera by using standard camera
calibration techniques. And once found, we do not need to calibrate that
camera again. The camera calibration matrix is inherent in the camera,
and does not change if the object changes. Therefore, acquiring the camera
calibration matrix is not a problem for anyone interested in making 3-D
reconstructions.

That leaves us with the last two, the rotation and translation matrices.
These are not easy to find, and this is where the research focus must be.
Finding these automatically and without error is unlikely without any addi-
tional technology. We will therefore first take a look at what can be done
without any additional technology, and then a look at what might be done
with the help of some technology. Please keep in mind that these are just
untested ideas, which may or may not work.

7.3.1 Finding the Projection Matrix Semi-Manually

The underlying idea here is that we humans know what the reconstructed
object should look like. When we see the pictures of the object, we construct
a 3-D model of it in our minds. Surely this additional information can be
used.

The idea we propose is this. Define a suitable grid. Then project the
first image directly into 3-D space without any translation or rotation. This
first projection will then serve as our reference point for the translation and
rotation of the other projections. We then take the second image and using
a 3-D visualization program we manually rotate and translate the 3-D space
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until we find the angle from which the second image was taken. The trans-
lation and rotation away from the original projection is now known by the
3-D visualization program. And since all such 3-D visualization programs
use matrices to do the translation and rotation, we just need to extract these
matrices from the program and we have all the information we need to do
the projection for image number two. This can be done for all the images,
and we will then have all the information we need to do the reconstruction.
This can be summarized in a few simple steps:

� (1) Define suitable 3-D grid

� (2) Project image number one into 3-D space, with translation and
rotation matrix as identity

� (3) Using image number one as reference, rotate and translate 3-D
space manually until the view corresponds with the view from image
number two. See Figure 7.1.

� (4) Extract the rotation and translation matrix from the 3-D visualiza-
tion program

� (5) Project image number two into space using the extracted matrices
and the first projection as reference.

� (6) Repeat for all images

This method is of course sensitive to human error, but with some patience
and skill from the user, it should be able to achieve decent results.

7.3.2 Finding the Projection Matrix by Additional Tech-
nology

This section could of course be filled with dreams of marvelous new technol-
ogy that would make everything possible. However, this would not be very
productive. We will therefore only look at methods that would use common
technology, with only small adjustments or improvements.

The problem of finding the translation and rotation matrix is just a prob-
lem of finding the position of the cameras, relevant to each other and the ob-
ject. And finding the position is exactly what a GPS receiver does. Modern
GPS receivers are highly accurate, finding the receivers position with 3 to 5
meters accuracy, and they are bound to get more accurate with time. A cam-
era equipped with a GPS receiver2 will be able to register the position when

2Modern mobile phones already have both camera and GPS
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Figure 7.1: First project image number one into 3-D. Then rotate and trans-
late that projection until you find the view from image number two. The
rotation and translation matrices can then be extracted from the 3-D visual-
ization program and used for projection of image number two.

an image is taken. Using the positions one could calculate both the trans-
lation and rotation matrices. With the current GPS accuracy, this would
not be suited for small objects, but larger objects, like the statue of liberty
or a building, could possibly be reconstructed. And as the GPS accuracy
increases, the size of a reconstructable object decreases.

Another technology that has become prevalent in the last years is Blue-
tooth technology. This technology is included in almost all new gadgets. It
is a way to exchange information wirelessly over short distances by using
short radio waves. As bluetooth enabled devices has become more a part
of our world, it has attracted a lot of research interest. One of the areas
of interest is bluetooth triangulation. This is a way of finding the position
of other bluetooth devices nearby. In a report by Almaula and Cheng [2]
they claim to achieve an accuracy of 5-10 feet, which is about one and a half
to three meters. With this kind of accuracy, the reconstruction of smaller
objects might be possible. And as with the GPS, we should expect accuracy
to increase as research continues.
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