
WSDL Workshop

Semantic web application in HTML5 for the discovery,

construction and analysis of work�ows

Rafael Adolfo Nozal Cañadas

20.11.2013

Master thesis
Department of Informatics

University of Bergen

1

1 Thanks

I want to acknowledge the aid that the following people gave me during the
making of my master:

Steinar Heldal; who in�nite patient overcome the in�nite paperwork of Span-
ish bureaucracy during my enlisting process, and who also aid me into getting
some work as teacher assistance during this time.

Dr. Ingvar Eidhammer: First contact I had with bioinformatic and who
explained the essentials about this world during my �rst year. Also aiding and
guiding me in the making of this thesis.

Dr. Pål Puntervoll: I don't have enough papers to begin to make justice
about how much his guidance and support helps during this time. I'm hope to
work with him in the future again and maybe have some biology courses under
his supervision.

Dr. Natalie Reuters: For the course she tough about applied bioinformatics.
Help me to understand and have a higher perspective on how everything works
together. Also to open my head on how to work in a biology environment.
Being my background of pure informatic engineering, seeing thing from a non
mathematical perspective could be uncanny and scary the �rst time; unless you
have her as a teacher.

Matú² Kala²: Helped me with the understanding of WSDL in general and
let me use his EDAM work which is one of the main pillars on which this thesis
is based.

1

2 Table of Contents

Contents

1 Thanks 1

2 Table of Contents 2

3 List of �gures 4

4 Abstract 5

5 Introduction 6

6 Background 8

7 Aims 11

8 Technologies 12
8.1 HTML . 12
8.2 XML . 12
8.3 SOAP . 13
8.4 WSDL . 13

8.4.1 Example . 14
8.4.2 WSDL . 22
8.4.3 Types . 22
8.4.4 Messages . 25
8.4.5 Ports . 25
8.4.6 Operations . 25
8.4.7 Bindings . 25

8.5 EDAM Ontology . 25
8.5.1 Sub-ontologies . 25
8.5.2 Relationships . 26

8.6 SAWSDL . 28
8.7 CSS3 . 29
8.8 JavaScript . 29
8.9 HTML5 . 29
8.10 Acid Test . 29
8.11 Summary . 29

9 Mathematical model for web services 30
9.1 Previous comments on technologies 30

9.1.1 OWL-S Semantic Markup for Web Services - The OWL
Services Coalition . 31

9.1.2 The Web Service Modeling Framework WSMF 31
9.1.3 WSCL 1.0 . 31
9.1.4 WS-BPEL . 31
9.1.5 SWWS . 31

9.2 Review of a WSDL structure . 32
9.3 Flattening operations and shredding elements 32
9.4 Operation and port duality . 34

2

9.5 Mathematical de�nitions . 35
9.6 Inheritance property in a WSDL 36
9.7 Making links between an input and an output 36
9.8 Links interchangeable property 39
9.9 Making links simpli�ed version 39
9.10 Semantic correlation between operations 40
9.11 Semantic interchangeable . 41
9.12 The puzzle view . 42
9.13 The Work�ow level . 43
9.14 The Work�ow score . 45
9.15 Summary . 47

10 The WSDL-Workshop program 48
10.1 Design choices . 48

10.1.1 GUI . 48
10.1.2 EDAM optimization . 48
10.1.3 Drawing process optimization 48
10.1.4 HTML functionality vs JavaScript functionality and Server

workload . 49
10.1.5 Documentation . 49

10.2 License . 49
10.3 Prerequisites . 49

10.3.1 Chromium Browser . 49
10.3.2 Computer Minimal Specs 49

10.4 Starting the program . 50
10.5 Sidebar; WSDL listing and discovering functionality 51

10.5.1 Top . 51
10.5.2 Middle . 52
10.5.3 Bottom . 53

10.6 Tool bar; creating a design environment 54
10.7 Piece; the operation representation 56

10.7.1 Top bar . 56
10.7.2 Middle space . 57
10.7.3 Foot bar . 57

10.8 Canvas; the drawing board where everything work together . . . 58
10.8.1 Scale anchor . 58
10.8.2 Multiple selection . 59
10.8.3 Deleting Links . 59
10.8.4 Work�ow score . 59

10.9 Keyboard shortcuts . 59
10.10An simple test case . 60
10.11Summary . 61

11 Discussion 62
11.1 EDAM . 62
11.2 Choice of language . 63
11.3 Bad WSDL practices which required adjustments 64
11.4 WSDL1.1 vs other options . 64
11.5 Open Source . 66
11.6 GUI . 66

3

11.7 Future updates . 66
11.8 Summary . 67

12 Conclusion 68

13 Appendices 69
13.1 GIT Package . 69
13.2 Index . 69

14 References 72

3 List of �gures

List of Figures

1 A graphical overview of a WSDL �le simpli�ed. 15
2 A complete graphical representation of a port in a WSDL �le. . . 16
3 An overview of the path of Phylogenetic Tree Construction to the

root, using the is_a relationship. 27
4 Semantic Relationships between a WSDL and EDAM. 28
5 An operation �attened . 32
6 An operation �attened which is also shredded 32
7 A port which is a candidate to be �attened 33
8 A �attened port . 33
9 Scheme of a port that can be �attened 34
10 The puzzle view . 42
11 A true table with all possible combinations of properties 43
12 A representation of every possible work�ow 44
13 An overview of the di�erent levels of information. 45
14 An example of the server Glash�sh running. 50
15 The program is running in the client side and is ready to use. . . 51
16 An overview of the entire sidebar. 54
17 Two operations about to be linked 57
18 An example of a piece showing it semantic annotations. 58
19 An overview of a work�ow. 60

4

4 Abstract

WSDL-Workshop is a HTML5 web application for the discovery and exploration
of web services and for analyzing the compatibility between web services. This
is the result of a mathematical model developed from WSDL1.1. The program
provides a graphical user interface and let the user build a work�ow composed
of services described with WSDL1.1 and tells if:

• An output is compatible with an input.

• It is correct to link an output with an input.

• It is correct to link a given operation after another.

• If many operations correctly linked together still make sense as a group.

In order to do that the WSDLs must have semantic annotations so the
computer can recognize what is the purpose of certain data or operation. WSDL-
Workshop uses the EDAM Ontology as a reference for semantic concepts.

In the discovery aspect; for a given set of WSDLs you can �nd services by
�ltering by operation name, input or output names, or semantic annotations.
For a given operation output it can also �lter by WSDL which have inputs which
are correct to link with that output. For a given operation it can also �lter by
operations which are correct to link after.

5

5 Introduction

In computing there is a concept call a �black-box�. When you implement some
functionality you specify the inputs of your function, the output of your function
and what the function does; but you don't tell how does it.

Similar to this concept, in the web, we can �nd what is known as �web
services�. These are programs where we know what they do, what we are suppose
to give to them, and what will be received. Yet we don't known how they do it.

We can make a chain of such programs, and give the output of program A to
the input of program B. It is the responsibility of the designer that the output
of program A is compatible with the input of program B. The designer must
also have in mind some kind of objective of why is he doing that, and what
kind of meaning the output of B will have. For example, we can have program
A that subtract two numbers and square the result, and program B which add
two numbers and square-root the result. In principle they don't seem to have
anything in common but if we link program A with program B, we end up with
the euclidean distance between two points given as an input to the programs A.

In another example and using such web services, we can ask a weather fore-
cast service for the temperature of a city. We can use the number we receive as
a z-score to calculate the probability of having that temperature. If you know
a little of statistic (or meteorology), you will realize that this is a huge mistake.
The correct way would be to, given a normal distribution, with an average and
standard deviation; normalize the temperature received, and that will be your
z-score. Yet is possible to do it the wrong way and get a z-score of +25oC
from a spring day in Nassau (The Bahamas), which will give you an area of
0.99999999... and the result will be that it is impossible to get a temperature
over that temperature ever. In reality, a +25oC day in The Bahamas is a very
normal day; so the designer makes the mistake of given the incorrect concept to
another function, even thought the input is perfectly compatible and could be
any real number.

For a computer is it trivial to understand if an output is compatible with an
input. If you try to give a string to an integer the computer will complain and
won't even let you do the operation. But is it possible for a computer to realize
whether compatible data make sense together?

We can do it if the data have their meaning as extra information. This
is known as a concept which has semantics associated with it. We can have
di�erent concepts such as inputs and outputs, operations, datatypes, and so on.
At a data level we can tell that a car's license plate (string) is not compatible
with a street address (also string). At the operation level we can tell that an
operation that takes a �ight reference and gives you back destination city and
time, makes sense to link with another operation that books hotels in a given
city and time.

Furthermore, we can try to make sense of a chain of operation as a whole.
Having the booking reference we can �nd a hotel in a city. Having a hotel we
can search for critics. Having a critic we can search the text for data mining

6

concepts. Having concepts we can �nd their etymology. Having etymologies we
can �nd for near historical events. And we can continue to in�nity.

All of these concepts can be imported into a biological context, where the
operations are not hotel booking but searching relevant places in a DNA, neither
look for a parking spot but �nd similar proteins. In that case you will have a
semantic web application centered on biological concepts, which is what this
thesis is all about.

7

6 Background

In biology you frequently make use of PC programs that essentially analyze some
data and give you some new data in return. For example you have a protein,
which is a datatype of list of residues (encoded as a character each). Then
you can perform an operation called BLAST that will get you similar proteins
within the database. And in return you get new data with information about
that protein, as for example species which have the same or similar protein and
how far away are they in the evolution tree with respect the initial protein.
Or you could have a 3D structure de�ned, which is a representation of, for
example, a physical enzyme. It could be interesting to �nd if some external
atoms �t somewhere inside the structure, so you use a program to search for
cavities; now you have some coordinates with points and surfaces where an ion
of Calcium could �t inside.

This collection of programs for data retrieving, data storage, analysis, dis-
covery, exploration and ultimately gaining a bit more of knowledge by using
them, is what is known a bioinformatics. Here you will �nd two main groups
of people; those who develop software to help others and those who use that
software in research. This thesis belong to the �rst group, and I'm developing
a web application to help the second group to analyze which combination of
programs should be used to meet their objectives.

Lets take a look to some other examples of programs which I will later refer
to:

The Jaspar Database [1] contains a collection of DNA binding sites [2]. In a
DNA chain there are special areas where other molecules can attach to it. That
concept has signi�cant importance because you can develop compounds that
prevent or enhance the binding of the DNA with that molecule. That could
make it possible to encourage or repress such bindings, ultimately changing the
health of a multicellular organism such a human being.

ClustalW2 Phylogeny [3] is a service that allow you to create phylogenetic
trees. This is a type of representation that gives us a visual overview of how
far away are sequences from each other. One well known example is the tree of
life which gives a summary of the evolution of the species. Is not only for that;
a phylogenetic tree also tells us di�erences of group of sequences and allows for
di�erent types of metrics to calculate similarities. This is important because if
we �nd a protein that is similar to another, it is very possible that the second
protein have the same function as the �rst one. So we can develop a substitute
that have the same active principle but maybe with less side e�ects, or others
that are less dangerous for a patient. Or for example could be that a given
protein which is produced in a very rare endanger or extinct specie, has a sister
protein extremely common in nature, which will drop the price of a medicine.

In these examples we see that we need to �nd something that �ts in a given
binding site, or that we need to retrieve the species of a sequence given by the
phylogenetic tree. You often use the data gathered from a program as an input
to another program. And so the chain continue from your original idea until
you have the �nal desired data acquired by the number of transformations you

8

considered necessary. This chain of programs and transformations is known as
work�ow.

Making a work�ow is not a trivial task. There are several alternatives out
there to �nd and construct such chain [4] [5]. And there has been an extensive
work into discovering relevant programs to be use in such constructions [6]; not
only in bioinformatics but in di�erent areas as well.

But discovering the programs is not good enough. You also need to �nd
possible relationships between them. Is program A compatible with program B
or do I have to make manual tweaks to make it work? Is program A related to
DNA analysis or am I actually using a program that have nothing to do with
it? Overall; is my chain of programs good for my interest?

There are programs out there known as �Workbenches�. These programs
allow you to import a web service, send some data as input and receive the
output. Instead of receiving the output you can make the program give the
output to another web service. And so you can make a work�ow with many
services and receive only the last output, which it is what is relevant to you.
Once again this is a challenge in the bioinformatic area and there are several
alternatives out there.

Taverna [7] [8] for example provide you with a graphical user interface and
allow you to build a work�ow and execute it. Taverna uses a decentralized
approach and sends and receives data from services around the world. Later on
you can share your results in a social network call myExperiment [9] [10], and
other fellow scientist can copy your �nding or point to errors in the methodology.
A di�erent approach of this is Galaxy[11] [12]. Galaxy work similar to Taverna,
it allow you to make track of services and keep track of where each output
was connected. Such a log of techniques is also a work�ow. Galaxy however
is a monolithic application and only let you use services inside Galaxy. An
advantage is that your results are much more likely to be reproduced again at
the expenses of having a small varieties of services. Taverna depends on third
party services which can change their implementation or just disappear from
the Internet, but you have richest pool of resources. A mixture of the two could
be eSysbio,[13] [14] [15] which keep track of the executions to aid reproducibility
as in Galaxy, plus allow you to add new services and R scripts, and add sharing
options like in Taverna and myExperiment. There are more workbenches such
as Chipster [16] [17] or GenePattern2.0 [18] [19]. Even the European Union is
pushing intro create a common research environment such as Elixir [20] which
will also have its own workbench similar to Galaxy.

While all of these alternatives are great, none of them provide a semantic
analysis of their services, so none of them allow you to search for services that
are relevant for you. You are responsible to look out there for services, and you
are responsible to make manually work�ows that works and make sense.

If we want the computer to work for us and be able to do it automatically we
�rst need to create a set of knowledge, a web of relationship between concepts
to be able to tell what is relevant for a given topic or objective. This is what
an ontology is. An ontology tells you what is the relationship between �car�

9

and �house�. Navigating the concept �car� we could �nd a relationship called
�parking place� which point into �garage�, while �house� can have a relationship
of �composed of� which point to �garage�; and you can even want to discover
the di�erent types of garages that could be. But instead of having an ontology
centered on architecture like in this example, we need an ontology centered in
bioinformatics concepts. Such an ontology is the EDAM ontology [21].

10

7 Aims

This thesis aims to develop an experimental system called WSDL-Workshop
which functionality is to analyze whether di�erent services are compatible. It
will not only check if datatypes match, which is what system like Taverna and
Galaxy do; but it also will pay special attention if they are semantically com-
patible. It will also allow to search relevant services which are compatible with
a selected service. Summarizing, it will try to bring understanding of concepts
to a computer so it is able to construct good work�ows automatically. A task
that until now was exclusive of humans with experience in biology. Following
you can see the hightlights of each part.

Develop a method to be able to tell if:

• A data is compatible with another data.

• An operation is compatible with another operation.

• For a given chain of compatible operations if there are alternative ways of
doing the same task and determine which one is best.

• For a given task �nd automatically the best chain of operations (work�ow).

Create an application to test that method. The application must have the
following requirements.

• Easy access for the user.

• Can be easily copied and modify by others.

• Help the user in the construction of a work�ow.

• Help the user discover web services suitable for that work�ow.

In this thesis you will �nd a list of technologies and concepts used in here and
several description to understand each of them, the theoretical model developed
using these technologies, the program developed in order to test this theoretical
model, a discussion about choices and problems encounters during the making,
and the conclusion. The end product is a very promising application that allows
for automatic work�ows construction.

11

8 Technologies

Here we will talk about the di�erent concepts and previous knowledge which
you need to comprehend in order to understand the theoretical part. Also to
understand some decisions made during the design of this project. You will �nd
explanations about HTML, XML, XSD, WSDL, EDAM ontology, SAWSDL,
CSS3, JavaScript, HTML5 and the Acid Test and SOAP protocol.

8.1 HTML

HTML is a language used to describe information and the way that it is displayed
[22]. Generally the main function of this language is to describe a web page in
a structural manner, so later on the web browser can read it, interpret it, and
display it on a screen for a human.

The structure of the language consist in �tags� which usually come in pairs
known as open and close tags. Whatever is in between these tags is a�ected
by the kind of tag that envelop it. For example will list the
text which is inside with no particular order; each item inside the list must
be tagged with . The tag format the text so is show in
bold. So the following code: Something in
HTML will look like something similar to this in your
web browser:

• Something

• In

• HTML

I must emphasize the word 'similar' because the language is just a guideline
for your web browser. This will display a list with the last two elements in bold;
but it doesn't says how big should be the markers, or the size of the text, or for
example we haven't designated the default style of font for the text. So all of
those minor options will be up for your web browser to decide.

Beside that, there are other aspects that a web browser must comply to
be considered a standard and fully compatible with HTML language. We will
discuss about it in section 8.10 in page 29

8.2 XML

XML is another language very similar to HTML that describe information, but
not how is displayed [23].

The key elements of XML is that also features a tag system and can be read
easily by humans. For example if you want to encode the information about
books we have in our house we could represent the data like this:

<library> <book> <title>My thesis </title> <year> 2013 </year> </book>
<book> <title> Somebody else thesis </title> <author> Finn Author </au-
thor> <year> 2004 </year> <location> Shell A </location> </book> </li-
brary>

12

So as you can see the information and the meaning of each tag is quite
obvious. The information is enclosed nicely between the <book> tag so we
know that every information about a book still refers to the same book until we
close the tag.

There are more complex structures than this one that could be read in the
XML speci�cations. In this case I'm going to describe how to describe an
application using XML which is essentially what a WSDL is.

One component of the XML is the XSD [24], which is also known as 'schema'.
This is a set of metadata that describes a part of the XML document. This is
usually achieved by an independent XSD �le where you can �nd the speci�cation
for the concepts you are talking about. In the context of this thesis, an XSD
is use to describe datatypes. For example what you call a 'matrix' could be
a simple 3x3 integer matrix described in a XSD called mymatrix.xsd; which is
referenced in an XML �le. However for me, a matrix could be a 5xNx9 amino
acids layout, where even the amino acid datatype is described in another XSD.
Ideally these XSDs are unique and when you talk about your matrix you will
de�ne the datatype as for example 'm33:matrix', and when I talk about my
matrix I will identify it as 'aminoM:matrix', so it is possible to see quite easily
that they are both matrices, but have nothing to do one with the other. This is
not always the case, so every XSD must refer to a unique URL. In that case, even
if we have di�erent schema names as is the case for 'xs:string' and 'xsd:string',
as long as xs and xsd refers to http://www.w3.org/2001/XMLSchema they are
consider the same datatype.

8.3 SOAP

This stands for Simple Object Access Protocol [25]. We want computers to talk
to each other, independently of whether we are trying to send the input of a
WSDL, receive an email or have an open stream of video; and to do that we
need to establish a protocol that both computers can understand. SOAP is a
protocol optimized to transmit XML data. It has nothing to do with WSDL
by itself, we can encode any data in XML so it can be use to send anything.
There are much better alternatives depending of your source of the data; for
example it can be use to transmit video but that would be quite ine�cient.
However, WSDL is developed in XML, and it is very convenient to use SOAP
to transmit data described in the WSDL �les, XSD �les, inputs, outputs, and so
on. As a result of this the two of them, WSDL and SOAP, has become closely
interconnected.

8.4 WSDL

This is an extension of the XML language. It stand for Web Service Descrip-
tion Language and the objective is to describe an application that is, typically,
accessible over the Internet.

The point of this language is to describe how the application works and
interacts. It provides de�nitions to the di�erent datatypes. Which data goes

13

http://www.w3.org/2001/XMLSchema

in and out of the application. How the data is related with respect to each
operation. Which operations can be performed with the service. And of course
how to access the service itself.

A web service is a set of functionalities that are available on the Internet.
For example, booking a plane ticket is a web service that needs a date and some
data from your credit card. In return it will give you a booking reference. In a
more scienti�c biology related context, BLAST is also a web service. You just
need to �ll all the forms (the inputs) and the application will return the results
(the output).

There is a lot of ways of de�ning a web service. The most usual technology
is that you have your web service (WS) working in your private server, and you
provide the interface to the user. One of many ways of doing that is in a WSDL
�le. A user with a WSDL �le can use your WS since the �le will contain all the
proper information in order to communicate with the WS, as in which inputs
and outputs are expected, or which protocols and addresses are needed.

Currently there are two versions, WSDL 1.1 [26] and WSDL 2.0 [27]. both
of them are very similar from an abstract point of view, as in both of them have
the exact same features that I described before. The main di�erence between
the two of then is that they don't follow the same syntax, and the structure the
document is di�erent; but both have the same abstract concepts of describing
inputs/output and how to commit/fetch them. In this thesis I'm using WSDL
1.1.

Please visit the W3 references to �nd the excruciating documentation on
how the WSDL works. Here I will give an overview with an example to make
you understand the technology.

8.4.1 Example

First we will start with an example, and explain later on each part of the WSDL.
In �gures 1 and 2 in pages 15 and 16 you can see a graphical overview of each
of the parts we will describe. The WSDL which I'm using for the example is
JasparDB [28] [1].

14

Figure 1: A graphical overview of a WSDL �le simpli�ed.

On top left, a representation of a user fetching data from a computer. The computer
connect to the WS using a SOAP binding address described in the WSDL �le. The
WSDL �le is represented below the SOAP pentagon, while the server computer and
the actual functionality is drawn to the right. The server communicates with the
WS in a way that is hidden to the user. The user can only access the functionality
described as in the WSDL �le. But how the server actually runs the program is
concealed to the user. In grey, the targetNamespace given in the de�nitions section on
where you can �nd this service. The SOAP binding allows to communicate with one
port (green) which have many operations associated. Each operation is represented in
orange. Each operation may have an input and may also have an output. Input and
output communicate with messages represented by a yellow paper. Each operation
can have only one input and output, but a message can have many parts coming in
or out; but in this case the programmer decided to encapsulate all the information in
only one part.

15

Figure 2: A complete graphical representation of a port in a WSDL �le.

This expand the simple view of �gure 1. Each complex element have associated a
complex type represented in blue. Each complex type is made of several sequences
represented with a red stripe, and maybe and some simple elements; in this regard,
the W3 foundation recommends not to use sequences but ultimately allows it as part
of the standard. In this example there is only one sequence in each complex type.
Each sequence is composed by one or more elements. Each element is divided in an
element name, in grey, and an element type. If the type is a simple data type (integer,
�oat, boolean, string, ...) is represented with a green background. If it is a complex
type is represented with a purple background. Every complex type is described either
in the WSDL or in the schemas associated. In this case we have three complex types,
Matrix Type, Row Type, and Tag Type which are not associated with any operation
but which are there described in the WSDL. At the end you can simplify everything
saying that a complex element is decomposed in many simple elements, although in
reality there could be many types and may elements in the middle.

16

In the following lines we will see an example of parts of a WSDL �le.

De�nitions
This is the de�nitions part of the WSDL �le.

<definitionstargetNamespace="http://bccs.uib.no/Jaspar"

xmlns:jas="http://bccs.uib.no/Jaspar"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

We can �nd the target where the server which communicates with the WS
actually is. Also some schemas that describe further the di�erent types
used after this section.

Types

This is the element part of the WSDL �le. Here is were you can �nd
the schema references in the de�nition section; and the descriptions of the
elements and types as well. The datatypes used here are Position Speci�c
Frequency Matrices (PSFM) [29] which are su�ciently complex to see the
recursion relationships of Types and Elements. In this case a PSFM is a
matrix of integers which represent the count of nucleotides in their motif
position (a motif is a regular expression for nucleotides and amino acids).

<types>

<xs:schematargetNamespace="http://bccs.uib.no/Jaspar"

elementFormDefault="qualified"attributeFormDefault=

"unqualified" xmlns:ns1="http://schemas.xmlsoap.org

/soap/encoding/" >

<xs:element>name="Matrix"type="jas:MatrixType">

</xs:element>

<xs:complexTypename="MatrixType">

<xs:sequence>

<xs:element>name="A"type="jas:

RowType"> </xs:element>

</xs:element>name="T"type="jas:

RowType"> </xs:element>

<xs:element>name="C"type="jas:

RowType"> </xs:element>

<xs:element> name="G"type="jas:

RowType"> </xs:element>

<xs:element> name="Tag"type="jas:

TagType"maxOccurs="unbounded">

</xs:element>

</xs:sequence>

17

<xs:attributename="Format"type="xs:string

"use="required"> </xs:attribute>

<xs:attributename="ID"type="xs:string"use

="required"> </xs:attribute>

</xs:complexType>

<xs:complexTypename="RowType">

<xs:sequence>

<xs:elementname="col"type="xs:

string"maxOccurs="unbounded">

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexTypename="TagType">

<xs:sequence>

<xs:elementname="Name"type="xs:string"> <

/xs:element>

<xs:elementname="Value"type="xs:string"

maxOccurs="unbounded"> </xs:element>

</xs:sequence>

</xs:complexType>

...

<xs:elementname="getAllMatricesResponse">

<xs:complexType>

<xs:sequence>

<xs:elementref="Matrix"

maxOccurs="unbounded"/

>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

You can appreciate the XML usage, as you can see, tags are nested inside
each others forming groups. For example; the last element getAllMatri-
cesResponse is made of a complexType which is made of a sequence of
only one element, which is an element of type reference, meaning that is
not de�ned there but in other part of the �le as the name of �Matrix�.
If we look back we can �nd that a Matrix is made of a MatrixType. A
MatrixType is de�ned as a sequence of �ve elements, A,C,T and G of type
RowType and a Tag of type TagType; plus two simple elements Format
and ID which are a string each. To properly �nish describing this we
should search for RowType and TagType. The �rst is made of a sequence
which is made of a lonely element named 'col' of type string. The second
is compose by a sequence of two elements, name as a string and value also
as a string. Associated with that element we can �nd useful information,
as for example how many of these elements are allowed, if the element is

18

mandatory or not, which kind of restrictions a string can have, and many
more as described in the W3C documentation.

Messages

Here we present the messages section of the WSDL �le.

<messagename="getMatrixByNameResponseMsg">

<partname="parameters"element="jas:

getMatrixByNameResponse"/>

</message>

<messagename="getMatrixByNameRequestMsg">

<partname="parameters"element="jas:getMatrixByName"/>

</message>

<messagename="searchByTagRequestMsg">

<partname="parameters"element="jas:searchByTag"/>

</message>

<messagename="searchByTagResponseMsg">

<partname="parameters"element="jas:

searchByTagResponse"/>

</message>

<messagename="getAllMatricesRequestMsg">

<partname="parameters"element="jas:getAllMatrices"/>

</message>

<messagename="getAllMatricesResponseMsg">

<partname="parameters"element="jas:

getAllMatricesResponse"/>

</message>

<messagename="getMatrixByIdRequestMsg">

<partname="parameters"element="jas:getMatrixById"/>

</message>

<messagename="getMatrixByIdResponseMsg">

<partname="parameters"element="jas:

getMatrixByIdResponse"/>

</message>

Each message has a name and one or more parts. In this example there is
only one part for each message with a name and the element associated.

Ports

Here we �nd the port section of the WSDL �le. Each port describe the
operations with it.

<portTypename="JasparDB">

<operationname="getMatrixByName">

<inputmessage="jas:getMatrixByNameRequestMsg"/>

<outputmessage="jas:getMatrixByNameResponseMsg"/>

</operation>

<operationname="getMatrixById">

19

<inputmessage="jas:getMatrixByIdRequestMsg"/>

<outputmessage="jas:getMatrixByIdResponseMsg"/>

</operation>

<operationname="searchByTag">

<inputmessage="jas:searchByTagRequestMsg"/>

<outputmessage="jas:searchByTagResponseMsg"/>

</operation>

<operationname="getAllMatrices">

<inputmessage="jas:getAllMatricesRequestMsg"/>

<outputmessage="jas:getAllMatricesResponseMsg"/>

</operation>

</portType>

Each WSDL have typically one port only. A port have a name and have
many operations inside. Each operation is described with a name and may
have a message associated with the input and may have one message asso-
ciated with the output. So at the end if you want to know what elements
goes inside an operation you have to follow the thread of messages, parts,
element for each part, type for each element, element for each type, and
so on.

Bindings

This is the binding section where the SOAP bindings are described.

<bindingname="JasparDB"type="jas:JasparDB">

<soap:bindingstyle="document"transport="http://

schemas.xmlsoap.org/soap/http"/>

<operationname="getMatrixByName">

<soap:operationsoapAction="http://bccs.uib.no/

Jaspar/getMatrixByName"style="document"/>

<input>

<soap:bodyuse="literal"/>

</input>

<output>

<soap:bodyuse="literal"/>

</output>

</operation>

<operationname="getMatrixById">

<soap:operationsoapAction="http://bccs.uib.no/Jaspar/

getMatrixById"style="document"/>

<input>

<soap:bodyuse="literal"/>

</input>

<output>

<soap:bodyuse="literal"/>

</output>

</operation>

20

<operationname="searchByTag">

<soap:operationsoapAction="http://bccs.uib.no/

Jaspar/searchByTag"style="document"/>

<input>

<soap:bodyuse="literal"/>

</input>

<output>

<soap:bodyuse="literal"/>

</output>

</operation>

<operationname="getAllMatrices">

<soap:operationsoapAction="http://bccs.uib.no/

Jaspar/getAllMatrices"style="document"/>

<input>

<soap:bodyuse="literal"/>

</input>

<output>

<soap:bodyuse="literal"/>

</output>

</operation>

</binding>

In here is described how to communicate with each operation once you
know what is suppose to be sending or receiving from it. For the aim of
this thesis this part is irrelevant.

Services

For the last, but not less important, there is the service section.

<servicename="JasparDB">

<doc:ServiceDocumentationxsi:schemaLocation="http://

www.bccs.uib.no/ServiceDocumentation http://api.

bioinfo.no/schema/ServiceDocumentation.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:doc="http://www.bccs.uib.no/

ServiceDocumentation">

<doc:WebSite>http://jaspar.genereg.net/</doc:

WebSite>

<doc:SampleClient>http://api.bioinfo.no/clients/

JasparClient.java</doc:SampleClient>

<doc:SampleClient>http://api.bioinfo.no/clients/

JasparClient.py</doc:SampleClient>

<doc:SampleClient>http://api.bioinfo.no/clients/

JasparClient.pl</doc:SampleClient>

<doc:Version>0.2 (beta service)</doc:Version>

</doc:ServiceDocumentation>

21

<portname="JasparDB"binding="jas:JasparDB">

<soap:addresslocation="http://api.bioinfo.no/

services/JasparDB"/>

</port>

</service>

Here you will �nd the actual name of the WS. Some clients and webs
where you can �nd it. Documentation, metadata; and for us the most
important which is the list of ports this WS have. Again; typically only
one port per WS is what is most desirable.

Now that we have seen an example for each section lets describe each one of
them.

8.4.2 WSDL

The WSDL itself is composed of a set of services and a set of de�nitions. The
services describe the operations, inputs, outputs, way of communication and so
on; while the de�nitions describe datatypes used inside the WSDL and basic
information about the WSDL (as for example the name).

Although you can de�ne as many services you want in each WSDL, the
logical way of doing it is to de�ne only one since we want our WS to be as
modular as possible (which happen to be one of the most important principles
of programming). Now; inside the service you will �nd the relationship between
the �ports� and the protocol that you must use in order to communicate with
them. I will talk further about the protocols and the ports in section 8.4.7 in
pages 25.

Talking about the de�nitions we can mention three important elements. The
name of the WSDL, where is the actual WS, and some more de�nitions. This
de�nitions are no other things that a namespace where you can �nd further
information about the protocols, types, schemas, semantics and so on. These
de�nitions are also unique identi�ers to avoid colliding name terms. For example
my Sequence de�nition could be made by one letter amino acids symbol while
your Sequence de�nition could be made by nucleotides. So in my namespace you
will �nd what is a sequence for me and it will be use to identify my sequences
in the documents later on.

8.4.3 Types

This is the most di�cult part to understand in a WSDL.

The types are a collection of elements and types. The elements are use by
the operations as input or outputs. Every element will have a type associated.
For example we can have the element named �Sequence� which have a type
�String�.

22

An element won't be as simple as one of the typical elemental data types such
integers, strings, boolean, binary, hexadecimal and so on in most of the cases.
An element usually will be compose by many elements inside. Sometimes you
will have to choose one and only one element from a list to use in your program.
An element can have other elements inside it by making use of a Complex Type
or a Simple Type. This Complex or Simple Type will have other elements
de�ned inside in various ways which can also contain Complex or Simple Type
with more elements until in�nity. Because of this recursive relationship it is
di�cult to visualize the relationship between them.

Elements

In here you will �nd a list with the kind elements used in WSDLs �les.
The W3C does not make this distinction. I separated the di�erent kind
of elements to help the reader to understand the WSDL �le.

An element have a name, this in one of the two attributes which all these
kind of elements have in common. The other thing that all of them can
have is a list of semantic annotations, which we will see deeper in detail
in chapter 8.6 in page 28.

inLine Elements

These kind of elements are de�ned in a single line in the WSDL �le,
hence the name. They are de�ned by a name and a type (which
remember, could be elemental datatype, complex or simple). They
also could be �xed to a given value de�ned in the �le. This kind of
element is the lower level of recursion possible, and at the end, every
other element, no matter how complex it is, must be de�ned by a lot
of inLine elements which have a type that is an elemental datatype.

References Elements

These elements are just pointers that refer to another element de�ned
before in the �le. So instead of copy and pasting the part of the �le
that de�ne that element (which would also work) you just write this
pointer, and the program that process this WSDL should be clever
enough to interpret it and understand to which element is actually
referring to.

Choice Elements

These kind of elements have a set of elements de�ned inside them,
usually inLine Elements. What is di�erent from Complex Elements
is that you can only use one of the elements de�ned inside, and you
must choose one of them. For example in a BLAST search you could
search by element Amino acid Sequence or by element Nucleotides
Sequence, but you can't mix them or not use any of them; you must
select one.

23

Simple Elements

This element has a Simple Type de�ned inside it. You will see later
what is a Simple Type; but basically it has a type and a set of rules
associated such as �only A, T, C, G characters� or �smaller than
three� for example.

Complex Elements

This element have a list of Complex Type de�ned inside it, although
it will be usually only one Complex Type.

Types

Here I'm going to describe the types. The name is unfortunate because
they are inside the section of types in a WSDL; so sometimes it could be
confusing to understand if we are talking about the types of a WSDL or
the types de�ned inside the Types section of a WSDL which are use by
the elements. Here again, both simple and complex types can have a list
of semantics annotations, and they could also have a name, but this is not
mandatory if they are de�ned inside an element.

Simple Types

This type has a name and a base associated. The base is just another
name for de�ning a type of variable. So a base would be something
like String, Integer and so on. The name of the Simple Type is just
an identi�er and not important at all since the base is what de�ne
the kind of type is the Simple Type. The simple Type can have
a list of restrictions de�ned which are a set of options from where
you have to pick one to give as value to the base. Again with the
BLAST example, a simple Type could be de�ned with name equal
to �Sequence Type�, base as �String� and the restrictions would be
�Amino acid� , �DNA�, �Amino acid-Three Letters� and �RNA� for
example. Each of these enumerations can have a semantic annotation
associated.

Complex Types

This last type is de�ned sometimes by a name, a list of sequences
and a list of attributes. A sequence is a list of elements given in
an order and the complex type can have many sequences, although
usually is only one. An attribute is a special kind of element but it
behaves exactly as an inLine Element. They are special because how
the XML document that you gives to the WS is formatted. The W3C
actually discourages their use. In �gure 2 in page 16 we can see that
the programmer decided to use Complex Types nevertheless.

One last thing to comment about the type section in a WSDL. When
you �nd the type you will �nd it with the proper namespace that I men-
tioned before. So instead of �String� you will actually �nd something like

24

�xs:String� and in the de�nitions of the WSDL what does it means the
pre�x �xs� and how the type �String� is de�ned in there.

8.4.4 Messages

A message is what you give to an operation or what the operation gives back to
you. It has a name that identi�es it uniquely. Beside that it has a list of part
and each parts has an element from the Type section associate to it.

Lets suppose we have a multiplication operation. It needs two numbers as
input. You could de�ne as input for that operation a Message which has two
parts and each part is associate with the element �Number�. Or you could
have a Message with only one part which is associate with the element called
�Number_pair� which inside has a Complex Type with two elements �Number�
inside.

8.4.5 Ports

A port is a collection of operations. A WSDL can have several ports that shares
operations between them but again it would be more logical to create another
WSDL �le to keep the principle of modularity. The port have a name as unique
ID and can have a list of semantics associated.

8.4.6 Operations

An operation is exactly what it sounds. A function that can have an input and
can have an output. They could also have a �failure� but this is not important
for the scope of this thesis. Both input and output receive or gives a Message.
The operation have a name and could have a list of semantics related.

8.4.7 Bindings

In this section is described how to communicate with the WS. Each port has a
binding and each binding can have a set of protocols associated; usually SOAP.
For each protocol you have a set of operations and how to communicate with
them. In my application I'm going to ignore any binding restrictions and I'm
going to assume that every given two WS have some sort of universal commu-
nicator that allow then to talk freely without human intervention.

8.5 EDAM Ontology

An ontology is a relationship between concepts[30]. There are many types of on-
tologies that focus on a particular scenario. In here I'm going to use the EDAM
ontology [21] that describe relationships between biology concepts oriented to
the web services.

8.5.1 Sub-ontologies

The ontology consist on 5 main sub-ontologies called �Data�, �Format�, �Oper-
ation�, �Identi�ers� and �Topic�. The ontologies are setup in a non-cyclic graph
and each node of the graph represent some abstract concept inside that ontol-
ogy. For example �Sequence� node in Data subontology, �Sequence Alignment

25

Construction� in Operation subontology, and so on. All subontologies have the
common property of having abstract concepts at the top levels while having
more detailed and speci�c examples at bottom levels.

8.5.2 Relationships

Subontologies can have relationships with each other or with themselves. The
di�erent relationships that are in EDAM are the following:

HAS_INPUT/HAS_OUTPUT:
This de�nes a relationship between an operation element and a data ele-
ment. For example, the operation element Sequence Alignment Analysis
has a relationship HAS_INPUT with the data element Sequence Align-
ment.

IS_A:
This de�ne an specialization between A and B. For example, a phyloge-
netic tree construction is an analysis operation (specialization), but not all
analysis operations are about phylogenetic trees; we can have for example
analysis of structures like �nding cavities. The relationship is transitive.
If A is a B and B is a C, then A is a C. The transitivity still applies for the
has_input/has_output relationship. For example, if A has input B and B
is a C, then A can accept both inputs B or C. This relationship only apply
with elements of the same subontolgy. Operation can be a generalization
of another Operation but not a generalization of a Data element. In �gure
3 we see an example of this relationship.

26

Figure 3: An overview of the path of Phylogenetic Tree Construction to the
root, using the is_a relationship.

In this �gure we can see several elements of the subontology Operation. Each element
is represented by a rectangle with round corners with a light blue background. At
the bottom of the �gure we �nd the Phylogenetic Tree element. At the top, the
Operation element. In between them the di�erent paths that you can follow to reach
the Operation element from the Phylogenetic Tree element using the is_a relationship.
This image was acquired using a visualization tool for ontologies at http://bioportal.
bioontology.org/ontologies/EDAM/?p=summary.

HAS_TOPIC:
This is a relationship between Data and Topic or Operation and Topic. If
A has topic B, it means that A is somehow included in the scope of Topic
B. For example, the operation Protein model evaluation has the topics
Homology modeling, Protein tertiary structure prediction, and Molecular
modeling

IS_IDENTIFIER_OF
A relation between an Identi�er and a Data. In the context of this thesis,
this relationship is not in use.

IS_FORMAT_OF
Designate a Format for a Data element. This speci�es the di�erent kinds
of formats that a Data element can have. Be aware that this doesn't
tell which Format the Data actually has. So for example, we can have a
sequence of amino acids like AVLI... , and another sequence like Ala, Val,
Leu, Ile... They are exactly the same sequence but de�ned with di�erent
format.

27

http://bioportal.bioontology.org/ontologies/EDAM/?p=summary
http://bioportal.bioontology.org/ontologies/EDAM/?p=summary

8.6 SAWSDL

This stands for Semantic Annotations for WSDL. A semantic annotation is
a link between a part of the WSDL and a semantic concept. The semantic
concept is likely to be described somewhere else outside the WSDL and more
in particular in an ontology. In our case, we are going to use the concepts from
the EDAM ontology but be aware that it is perfectly possible to �nd links to
another ontologies.

In �gure 4 in page 28 we can see a graphical example between the relation-
ships inside the sub-ontologies and the relationships from a WSDL.

Figure 4: Semantic Relationships between a WSDL and EDAM.

In yellow, links between elements of the ontologies. In green, links from a WSDL to
an element of an ontology. Later on in chapters 9.7 and 9.10 in pages 36 and 40 I'm
going to expand the idea of why the semantic annotations are important and which
kinds of properties I'm going to give to them.

If we want to annotate a concept in a WSDL �le we simply add the keyword
'sawsdl:modelReference' to the concept tag. Here is an example of an element
sequence being annotated with a Data element and a Format element:

<xsd:element name="sequence" type="xsd:string" sawsdl:

modelReference="http://edamontology.org/data_2043 http://

edamontology.org/format_2200"/>

28

8.7 CSS3

CSS stand for Cascading Style Sheet. It is a code used to describe the formatting
of a document. Normally it is use for describing HTML and XML documents;
although there are examples for many other uses [31]. The purposes of CSS is to
separate the de�nition of how the document look from the document itself. In
that way you can share documents in a more simple way, or program websites
that looks di�erent on a smart phone than in your 24 inches monitor.

CSS is implemented in a series of modules that add functionality and a
greater variety of potential uses. There are more options to represent a par-
ticular layout in CSS2 than in CSS1 and so on. This program is using CSS3
because at the time of the implementation the documentation for CSS4 was still
not released.

8.8 JavaScript

JavaScript is an interpreted programming language [32] , this means the code is
not compiled but executed as it is needed. It is use by a web browser to execute
code in the client-side and create anything that the program would do, such a
games, media players, o�ce applications and many di�erent types of programs.

8.9 HTML5

This is just the combination of HTML + CSS + Javascript. So if I say that
the program is implemented in HTML5 is means that there are pieces of the
program in each of these sections.

8.10 Acid Test

Acid Test is a test done in web browsers to grade how well they are handling
web standards. It is particularly emphasized in CSS and JavaScript [33]. The
last version is the Acid3. I will make a brief reference to this later on speaking
about WSDL-Workshop in section 10.3.1 in page 49.

8.11 Summary

Here so far we have reviewed every concept which you need to know in order
understand the more creative part of the thesis, which follows in the next section.

29

9 Mathematical model for web services

The overview of this thesis is that we should connect several web services in
some sort of chain. A web service can connect to several others web services,
and at the same time several other can connect with it.

When a web service connects to another we say that at least one output of a
WS connects with an input of a WS. We will call these WSOut for the one that
gives outputs and WSIn for the one that receive them.

A random WSOut can connect to a WSIn if the type of input match the type
of output. That will make sense to connect from the technical point of view; as
in when you give a string to a function that requires a string. However there
are more than only that.

A human could randomly connect WS's and at the end get an output, al-
though this output will lack of any kind meaning. We would like to be able to
connect to WS's that makes sense to connect. So we could start by connecting a
WSOut to a WSIn which has the same kind of data; not in the sense of elemental
datatypes (such us integer, �oat, char, etc...) but connecting WSOut that gives
a peptide to a WSIn that receive a peptide, independently from the datatypes
used to describe the peptides.

How to achieve this? That is where the semantics come into play. If WSOut

has a semantic annotation that points to, for example, peptide, and the WSIn
has a semantic annotation that point to peptide, this means that the WS's have
make sense to connect.

Now that I have presented the general idea behind this, let's see each prop-
erty in detail. First I'm going to show the state of the art, and show current
technologies that make WS to talk to each other. Here we will see that the
current technology is not good enough, specially using scienti�c WS, although
the use of commercial WS is promising. Since none of them provide the tools
needed, I will then proceed to describe my own hypothesis. In the next chapter
we will see the program that test that hypothesis. And in the next one the
results.

9.1 Previous comments on technologies

Currently there are many many technologies that works with WSDLs or other
concepts which are similar to WSDLs. Some of them are available right now,
some of then are in development and some of then are just concepts in early
stages. And of course many of then are not even free-software. For every
technology that you investigate you will �nd references to other technologies
which you haven't hear before. So the �rst challenge was to identify something
that was able to help with task at hand.

We want a workbench with nice functionality like Taverna or Galaxy. And
we want it to be able to analyze the semantics between services but the current
technologies neglect the semantic part of the WSDLs and the only alternative,
which is SWWS (below) doesn't exist yet. This is an overview of the most
popular options:

30

9.1.1 OWL-S Semantic Markup for Web Services - The OWL Ser-
vices Coalition

OWL-S is an ontology with an extension for declaring abstract WS [34] [35].
You will construct such abstract WS, and make the connections between them
at a high level of abstraction. Later on you will have to �nd a WSDL that �ts
your abstract WS.

9.1.2 The Web Service Modeling Framework WSMF

WSMF describe a theoretical solution for businesses WS [36] [35]. The de�nition
speaks about four essential entities, that working in common, will make a better
overall semantic web state. First ontologies, giving approximately the same use
as in here or other technologies. Then we have goal repositories, which is just
the functionality for each WS, but not for a work�ow. Furthermore, talks about
Web Services and how to connect them to each other at low level to make the
data �ow. And for the last it describe the concept of mediator and discuss
several cases. A mediator is something I will later call translator, and is a piece
of software which will communicate to WS which are in principle compatible
but who talk a di�erence language (use di�erent data structures, use di�erent
transmission protocol, and so on).

9.1.3 WSCL 1.0

Web Service Conversation Language [37] was a proposed by the Hewlett-Packard
Company to provide an XML �le to complement the WSDL �le and make a WS
from a company be able to interact with the WS from another company.

9.1.4 WS-BPEL

Web Services Business Process Execution Language is a language based on
WSDL1.1 to specify WS and for them to interact automatically. It describes two
kind of processes. Executable processes, a model of the behavior of a business
interaction, and Abstract processes which are just descriptions of the possible
use case and are not intended to be executed. What it does is add more code to a
WSDL1.1 �le with a tag system to model how the WSDL is executed. Examples
of these tags at operation level are <receive>, <reply>, <invoke>, <assign>,
<throw>, <exit>, <wait>, <empty>, <sequence>, <if>, <while>, <repea-
tUntil>, <forEach>, <pick>, <�ow>, <scope>, <compensate>, <compen-
sateScope>, <rethrow>, <validate>, <extensionActivity>. [38].

9.1.5 SWWS

This is just a framework of the several technologies described before [35] [39]. It
stands for Semantic Web enabled Web Services and it is a long term objective
to combine the semantic web and web services into Intelligence Web Services.
It relies heavily on WSMF and is funded by the European Union. Aim to be
the standard in the near future and it is probably the best option in the future.
However there is nothing implemented yet and everything is pure theoretical.

31

9.2 Review of a WSDL structure

In �gures 1 and 2 in page 15 and 16 we saw an overview of the di�erent
part of a WSDL. I will refer to this image and their shapes and color scheme
in future comments to identify di�erent parts of the WSDL. Following, we will
see what kind of variables compose an operation. How to link such data in
a correct manner. How to link operations in a correct manner. An abstract
idea of linking variables and operations. And an approach to di�erentiate good
work�ows from irrelevant work�ows.

9.3 Flattening operations and shredding elements

We saw in the WSDL description in section 8.4 in page 13 all the components of
a WSDL. Now I'm going to simpli�ed the model a little bit by removing super-
�uous information without loosing important elements. Flattening an operation
means to take out the messages and link the elements directly to the input and
output. With these we can skip the message component of the operation and
refer directly to the inputs and outputs.

Figure 5: An operation �attened

In here we see an operation with no messages. Instead we took the content of the
messages and gave it to the operation to simplify the view. However we haven't gained
any useful information because the messages were composed of only one complex type.

Shredding an element means to take out from a complex element the �nal
elements that compose it. For example, an operation usually have only one
input element which name is something like �Name of the operation�+�Request�
which is made of a complex type with a set of elements. For the user the vari-
able �alignRequest� doesn't have too much sense but it would be more intuitive
to have the three elements that �alignRequest� has; which are for example �Se-
quence A�, �Sequence B� and �Algorithm�. Shredding can be done recursively
until only basic datatypes remain.

Figure 6: An operation �attened which is also shredded

In this operation we took out the complex type from the message and assigned it to
the operation the elements which compose the message; in contrast with giving the
complex type with have no information of what is inside.

Flattening a port can only be achieved if a port is suppose to have all its
operations correlated. For example you give a sequence to an operation A and
the operation gives you a job id. Later on, that job id is given to another
operation B in order to collect your results. In that way we can simplify the

32

port that contains operations A with input A and output A, and operation B
with input B and output B to just a port with input A and output B. But this,
again, might not be possible.

Figure 7: A port which is a candidate to be �attened

In this case you can give the output of alignFasta operation to getResultFasta input;
so the port would be �attened.

Figure 8: A �attened port

Same port of �gure 7 after being �attened.

Flattening an operation and shredding an element is very easy for a computer
to do. However is di�cult for a given set of operations to check if they have
a �rst and last operation; or if in the contrary the operations are completely
unrelated. Here is my suggestion to try to �at ports automatically. Some
examples are provided in the description; this examples refer to �gure 9 in
page 34. All of these conditions must occur at the same time.

A port is candidate to be �attened if:

• Has a semantic link to an operation; lets call this �Link S�. (Green Arrow
from port to operation ID601 in the �gure 9)

• The operation inside the ontology has input and output, and both are
internally linked inside the ontology with at least one data; lets call this
data DIIS and DOIS . (Yellow arrows from ID601 to ID000, ID026 and
ID999)

• The amount of internal links with the input data is de�ned as Input Mul-
tiplicity. Note that an operation may require several inputs of the same
data; each one of those would add 1 to the Input Multiplicity. Same idea
applies to the output, which will be called Output Multiplicity.

33

• It has only one candidate to �rst operation and only one candidate to last
operation.

An operation is candidate for �rst operation if:

• The number of inputs it has match the Input Multiplicity of the port.

• These inputs have a set of semantically annotated links (green arrows) to
elements of the Data Ontology. This set must be equal to DIIS .

An operation is candidate for last operation if:

• The number of outputs it has match the Output Multiplicity of the port.

• These outputs have a set of semantically annotated links (green arrows)
to elements of the Data Ontology. This set must be equal to DOIS .

Figure 9: Scheme of a port that can be �attened

In dark green the semantics annotations of the �rst and last operation. In light green
other semantics annotations from other operations that doesn't �t the de�nition for
either �rst operation or last operation.

In the worse case scenario that the computer fail to achieve this automat-
ically, the user can still link operations manually. So the port operations are
executed in the proper order.

9.4 Operation and port duality

An operation have inputs and outputs. A port that has been �attened also have
inputs and outputs. In essence a �attened port and an operation is the same

34

concept, a black box with inputs and outputs that are semantically annotated
and are made of di�erent datatypes. So both will follow the same rules that I'm
going to explain now.

9.5 Mathematical de�nitions

Until now we have see diagrams and images to help to understand the situation.
Let me de�ne formally some of the elements that I'm going to use later on.
Remember that this model is based on the �attening version of a WSDL:

All WSLDs in existence are contained in the set Ξ and each one is denoted
uniquely as WSDL0, WSDL1, ... , WSDLN .

A random WSDLi have a set of Ports noted as Φi and each one is denoted
uniquely as Pi1, Pi2,... ,PiM . Typically a WSDL will only have one port, but
by de�nition it can have many.

A random Pij have a set of Operations noted as Ωij and each one is denoted
uniquely as Oij1, Oij2,..., OijO. This set is never empty.

The intersection of a pair ΩiA and ΩiB with A 6= B is not necessarily empty.

A random operation Oijk have a set of inputs and outputs noted as OijkIN
and OijkOUT. These sets can be both empty and by de�nition of the W3C a
WSDL may have no outputs at all. In the case they have elements, each one
of them are denoted uniquely as OijkIN1, OijkIN2,..., OijkINX and OijkOUT1,
OijkOUT2,..., OijkOUTY respectively.

A random input or output may be a complex element or a complex type,
and thus be discomposed in several parts. If it is complex it will be denoted
with a + next to the number that identi�es it, like: OijkOUTy+. Each one of
these parts will be notated with more numbers, as in OijkOUTy1 , OijkOUTy2

,... , OijkOUTyn . At the same time, each one of these parts can also be
a complex part and thus be able to expand further, so they will be denoted
again with a + if that is the case and be noted with a / to separate with the
rest of the identi�er if we want to write it in an expanded form. For example:
OijkOUTy1+, OijkOUTy2/1, OijkOUTy2/2+, OijkOUTy2/3/1+,OijkOUTy2/3/2,
OijkOUTy2/3/3, OijkOUTy2/4, OijkOUTy3, . . . , OijkOUTyn.

A random input or output may be a choice element. It will have a list of ele-
ments (complex or simple) from which you must choose one. In this case we will
denote it with a 'c' next to name in order to indicate that is a choice element, and
in between '{}' the possible choices if we want to expand the view: OijkOUTy1+,
OijkOUTy2+, OijkOUTy3, OijkOUTy4c, OijkOUTy5{1,2+,3/1,3/2c,3/3+}, . . . ,
OijkOUTyn.

A random input or output have a type associated. This is represented by
':' next to the �nal character of the input or output. However choice ele-
ments can't have this notation unless they are expanded, because a choice ele-
ment don't have any type by itself, the choices are the one with the properties:
OijkOUTy1+:matrix, OijkOUTy2+:ID, OijkOUTy3/1:string, OijkOUTy3/2:int ,
OijkOUTy3/3:float, OijkOUTy4c, OijkOUTy5{1:int,2+:matrix,3/1:string,3/2c,3/3+:row}

35

, . . . , OijkOUTyn:PBD.

Finally; any random input or output, any operation, or any port, have a set
of semantic annotations which can be empty. The set is notated by the name of
the concept plus Σ and the elements are labeled as S1, S2,... , SP . If we want to
refer to a particular subset of the semantics, we notated as Σ(<list of names>)
, as for example Σ(data, operation) to refer to only semantics that belongs to
the sub-ontologies Data and Operation. In the case of the operation we can
refer to the �has_input� or �has_output� semantics conditioning the data, like
as Oijk Σ(data|input).

9.6 Inheritance property in a WSDL

Pij Σ have its elements copied to every Ωij Σ.

If a OijkΣ contains an operation element A which has a relationship of
'is_input' to an element B, then, either there is at least one element in OijkIN
which have an element in OijkINΣ equal to B or there is one that can potentially
be linked to B. This property works as well for the outputs counterpart.

9.7 Making links between an input and an output

This section will talk about the possibility of linking datatypes and won't take
into account the semantics, which will be described later. Two consecutive oper-
ations could be semantically compatible, but has no compatible inputs/outputs.

Given two random operations Oijk and Oxyz, we can describe how compat-
ible are the output from the �rst operation OijkOUTA with the input of the
second operation OxyzINB .

There are three things to consider here. The type, the semantics with the
data ontology, and the semantics with the format ontology.

The type alone is not good enough to evaluate how compatible they are.
If we have a String with a String, sure, that is easy and they are probably
compatible. What about a 'matrix' with 'matrix'? What about 'int' with
'integer'? Or '�oat' with 'int'? Or maybe the WSDLs are even in di�erent
languages and the programmer set up the datatype to his mother language
and forgot to change it to English, or have a typo, or who knows. I'm going
to say that a datatype is the same of other datatype if the string that iden-
tify the type is the same and if the schema that de�ne the datatypes are the
same. The list of elemental datatypes are de�ned by the W3C and you can �nd
them here: "duration", "dateTime", "time", "date", "gYearMonth", "gYear",
"gMonthDay", "gDay", "gMonth", "boolean", "base64Binary", "hexBinary",
��oat", "double", "anyURI", "QName", "NOTATION", "string", "decimal",
"normalizedString", "integer", "token", "nonPositiveInteger", "long", "nonNeg-
ativeInteger", "language", "Name", "NMTOKEN", "negativeInteger", "int",
"unsignedLong", "positiveInteger", "NCName", "NMTOKENS", "short", "un-
signedInt", "byte", "unsignedShort", "unsignedByte". So for example xs:string
is equal to xsd:string if 'xs:' and 'xsd:' have the same de�nitions.

36

Let's call the datatype of the output DTA and the datatype for the input
DTB , and lets take a look to every possible combination. Each combination has
an identi�er in the form of [i] which I will reference later on. I'm setting a tree
model. For [i] to be true, all conditions of each of the branches that leads to [i]
must happen at the same time.

• DTA = DTB

� OijkOUTAΣ(data) 6= ∅ and OxyzINBΣ(data) 6= ∅.
∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = OijkOUTAΣ(data)

· OijkOUTAΣ(format) 6= ∅ and OxyzINBΣ(format) 6= ∅.
OijkOUTAΣ(format) = OxyzINBΣ(format) [1] As equal as
it can get. We have a complete description of the ontology
for all the pieces. Everything match, no doubt that this
must be possible to link with each other.

OijkOUTAΣ(format) 6= OxyzINBΣ(format) [2] Everything
else match except the format. For example, my aminoacids
are described as ACT,GTA,GGC,... while yours are de-
scribed as Ala,Gly,Ser.

· OijkOUTAΣ(format) = ∅ or OxyzINBΣ(format) = ∅. [3]
We know that one aminoacid goes out and one goes in; but
we have no idea of the format of one of them.

∗ OijkOUTAΣ(data) ∩OxyzINBΣ(data) 6= OijkOUTAΣ(data) and
|OijkOUTAΣ(data) ∩ OxyzINBΣ(data)| ≥ 1 [4] Among other el-
ements that doesn't match, there is at least one element in com-
mon between the input and the output in the semantic set. We
cannot say anything about the format, because the format refer-
ences are mixed and could refer to other data annotation which
is not the one they have in common.

∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = ∅
· DTA and DTB are elemental datatypes.

OijkOUTAΣ(format) = OxyzINBΣ(format) or OijkOUTAΣ
(format) = ∅ or OxyzINBΣ(format) = ∅ [5] There are se-
mantic annotations to data and they are all wrong. How-
ever is an elemental datatype. This case should be impos-
sible. It is like trying to describe a car license plate the
same way you describe a street address.

OijkOUTAΣ(format) 6= OxyzINBΣ(format) [6] They are el-
emental datatypes but the semantics and formats have
nothing in common.

· DTA or DTB is not elemental datatypes. [7] Although the
datatypes have the same name, they are complex datatypes
and is di�cult to say that they are the same because the
semantic they have doesn't �t at all. In this case I'm going
to say that they are not compatible and they can't be linked.

� OijkOUTAΣ(data) = ∅ or OxyzINBΣ(data) = ∅.
∗ OijkOUTAΣ(format) = OxyzINBΣ(format) [8] We don't have
semantic data, but for some reason the format is in there and it
is the same. So we are good and they can be linked.

37

∗ OijkOUTAΣ(format) 6= OxyzINBΣ(format) [9] We don't have
semantic data and the format is di�erent.

• DTA 6= DTB

� OijkOUTAΣ(data) 6= ∅ and OxyzINBΣ(data) 6= ∅.
∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = OijkOUTAΣ(data)

· OijkOUTAΣ(format) 6= ∅ and OxyzINBΣ(format) 6= ∅.
OijkOUTAΣ(format) = OxyzINBΣ(format) [10] They don't
have the same name but they match in everything else.
My guess is that this is impossible for elemental datatypes
(otherwise they won't have the same format). This is a
case of two di�erent people programing the same kind of
variable but with di�erent datatype name.

OijkOUTAΣ(format) 6= OxyzINBΣ(format) [11] Same as
before. Probably impossible for elemental datatypes. This
concept output match the input of the other one even
though they have di�erent formats; so is just a problem
of translation between data.

· OijkOUTAΣ(format) = ∅ or OxyzINBΣ(format) = ∅. [12]
We know that there is something similar going on but we are
unsure of the speci�cation of the format.

∗ OijkOUTAΣ(data) ∩OxyzINBΣ(data) 6= OijkOUTAΣ(data) and
|OijkOUTAΣ(data) ∩ OxyzINBΣ(data)| ≥ 1 [13] Among other
elements that doesn't match, there is at least one element in
common between the input and the output in the semantic set.
This is actually a poor possible link, you would have to take a
look at this manually to see if it can be �xed to work somehow.

∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = ∅
· DTA and DTB are elemental datatypes.

OijkOUTAΣ(format) = OxyzINBΣ(format) or OijkOUTAΣ
(format) = ∅ or OxyzINBΣ(format) = ∅ [14] Don't have
the same semantic not even the same name. For an elemen-
tal datatypes this is something very bad even if somehow
the manage to share the format.

OijkOUTAΣ(format) 6= OxyzINBΣ(format) [15] This is the
bigger di�erence that you can have. Elemental datatypes
with di�erent semantics and di�erent format.

· DTA or DTB is not elemental datatypes. [16] Once again,
this is a complex datatype with di�erent semantic and even
the format match by miracle they are not remotely the same
kind of variable.

� OijkOUTAΣ(data) = ∅ or OxyzINBΣ(data) = ∅.
∗ OijkOUTAΣ(format) = OxyzINBΣ(format) [17] We don't have
semantic data, but for some reason the format is there and is the
same. The name is di�erent, so it would be a tentative to call
this di�erent.

38

∗ OijkOUTAΣ(format) 6= OxyzINBΣ(format) [18] We don't have
semantic data and the format is di�erent and the name is di�er-
ent. Again a wild guess but this doesn't look similar at all.

Beside all of these there is one more thing to consider. Sometimes a data
is a specialization of another data. So even if the semantic link is not equal
the semantic data is still valid. For example an operation that accepts an
input which is a Sequence could handle amino acids, alignments, and all type
of sequences in general. That needs to be taken care of, and when we check if
a semantic is equal to other, we need to see if they are not equal they can still
be a specialization of the other. For example a protein sequence should be able
to link with a sequence; despise that they are not the same element in the data
ontology, you can still reach sequence from protein using the �is_a� relationship.

This however only works for outputs which are specializations of the next
input. If the input is the specialization of the output, we cannot assure that
everything works �ne.

We will say that Operation A can link with Operation B if at least one
element from the output of A can link with one element from the input of B.

9.8 Links interchangeable property

Lets consider 3 operations which are joined in a work�ow called A, B, and C.
We say that a forth operation D can be interchange with the middle one B if
all the link types between A and B and B and C are the same types of links
between A and D and D and C.

9.9 Making links simpli�ed version

In the �nal implementation I simpli�ed the types of links that you can have.
It is quite trivial to expand everything and make all possible 17 combinations;
however to have 18 di�erent color scheme for links in between operations is quite
overwhelming for the user. So just for a proof of concept demo I reduced all
cases to just the following.

In the �rst place, the format disappears and I'm going to consider that
somewhere there is a universal translator between formats. This could actually
be a potential master thesis on its own, to make a program that translate in
between every possible format that can be converted to another (for example
AGCCTAA... format to Arg,Glu,... format.). This concept is what some other
technologies call �mediator�.

With that in mind we are left with the following links possible:

• DTA = DTB

� OijkOUTAΣ(data) 6= ∅ and OxyzINBΣ(data) 6= ∅.
∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = OijkOUTAΣ(data)
Perfect link [1]

39

∗ OijkOUTAΣ(data) ∩OxyzINBΣ(data) 6= OijkOUTAΣ(data) and
|OijkOUTAΣ(data) ∩ OxyzINBΣ(data)| ≥ 1
Possible link [2]

∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = ∅
· DTA and DTB are elemental datatypes. Elemental data link,
but it has nothing to do one with the other, for example
String person name vs String car license plate [3]

· DTA or DTB is not elemental datatypes. Wrong link and
wrong semantics, they just happened to have same name [4]

� OijkOUTAΣ(data) = ∅ or OxyzINBΣ(data) = ∅.
Possible link because some names match with each other. In reality
we don't have any idea of what's going on but we give a vote of
con�dence [5]

• DTA 6= DTB

� OijkOUTAΣ(data) 6= ∅ and OxyzINBΣ(data) 6= ∅.
∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = OijkOUTAΣ(data)
Possible link, names doesn't match but we have enough semantic
information. [6]

∗ OijkOUTAΣ(data) ∩OxyzINBΣ(data) 6= OijkOUTAΣ(data) and
|OijkOUTAΣ(data) ∩ OxyzINBΣ(data)| ≥ 1
Possible link, names doesn't match and some semantic informa-
tion �ts. [7]

∗ OijkOUTAΣ(data) ∩ OxyzINBΣ(data) = ∅
Wrong link with wrong semantics and di�erent names. [8]

� OijkOUTAΣ(data) = ∅ or OxyzINBΣ(data) = ∅. They have di�er-
ent datatypes and we don't have enough semantics to judge in favor,
so this will be a wrong link also. [9]

At the end we can group this categories which are the �nal feedback that
the user is going to receive in the program:

• Green - Everything is perfect, only for case [1].

• Blue - Possible link, some semantics works and names are ok, for cases [2],
[6] and [7].

• Yellow - We have no idea of what's going on, use at your own risk, for
case [5].

• Red - This link is bad, for cases [3], [4], [8] and [9].

9.10 Semantic correlation between operations

Here I'm going to talk about a concept that is very similar to linking types, but
linking operations instead. As explained before an operation can be semanti-
cally linked with a data with the relationship of �has_input� and �has_output�.
Essentially if an operation A has output X, and another operation B has input
X, they are semantically correlated.

40

We will explore now the di�erent combinations as we did with the types
links. Luckily this time, format is irrelevant. Two operations can make sense
to link or not, but we do not care about going down to data structure levels to
check if they are actually compatible.

One more thing. The same concept of data being a specialization of another
data continue to apply in here. If an operation has output the specialization
of another data from another input of another operation, the link is still valid.
But can't say the same if a generalization is linked with a specialization. When
we say that operation A correlate with operation B we means the outputs of A
correlate with the inputs of B. Note that if A correlate with B is not necessarily
true that B correlate with A.

• OijkΣ(data|output) 6= ∅ and OxyzΣ(data|input) 6= ∅

� OijkΣ(data|output) ∩ OxyzΣ(data|input) = OijkΣ(data|output)

The semantic data match and the correlation is perfect. [1]

� OijkΣ(data|output) ∩ OxyzΣ(data|input) 6= OijkΣ(data|output) and
|OijkΣ(data|output) ∩ OxyzΣ(data|input)| ≥ 1

Some of the outputs can go in the inputs. This still makes sense to
link although probably you will need another operation to link with
the input. [2]

� OijkΣ(data|output) ∩ OxyzΣ(data|input) = ∅
Semantic doesn't match at all, these operations have nothing to do
with each other or the semantic annotation is incomplete. [3]

• OijkΣdata|output) 6= ∅ or OxyzΣ(data|input) 6= ∅
The semantic annotation is incomplete. We can't judge in one way or the
other. [4]

This will translate into the following color scheme

• Green - Everything is perfect [1].

• Blue - Possible link, some semantics works [2].

• Yellow - We have no idea of what's going on [4].

• Red - This link is bad [3].

9.11 Semantic interchangeable

If we have operations A, B and C, and A semantically correlate with B, and B
correlate C, and A correlate with D, and D correlated with C; then we will say
that B and D are semantically interchangeable.

41

9.12 The puzzle view

Until now we have talk about sets and properties in a mathematical way. We
can simplify everything if we consider the two properties of link and semantic
correlation as pieces of a puzzle.

Two pieces of a puzzle can be snapped together if the shape match. That is
what we call linking. The puzzle makes sense if the �nal picture looks like the
one in the cover of the box. That's what we call semantic correlation. We can
make a puzzle out of pieces of several puzzles, we make sure that the pieces can
snap with each other and at the end we will have an aberration. That's is what
happen when we link things and we don't care if they semantically correlated.
Alternative, we can make a pretty picture if we collect di�erent pieces which
images match the box's cover, but if the pieces won't snap with each other the
puzzle will collapse. This is what happen if you don't link properly.

Following that principle let's take a look at the following diagrams.

Figure 10: The puzzle view

From left to right: two operations that can interchange links, two operations that
can be link, two operations that semantically correlate, two operations that are se-
mantically interchangeable, a chain of operations which are linkable and semantically
correlated one after the other.

In total we have 6 di�erent properties:

• A can link B

• B can link A

• A can interchange links with B

• A correlated B

• B correlated A

• A can interchange semantic with B

We can take a look at all possible combinations and see if we can �nd any
interesting properties:

42

Figure 11: A true table with all possible combinations of properties

Here are listed the 64 possibilities that we have for linking two operations. The �gure
is divided in 4 groups of 16 possibilities each. The �rst column represent when the
service B correlate with A. The second column when A correlate with B. The third
column when A can link with B. The fourth column is when B can link with A. The
�fth when links of A and B are equivalent. The sixth when A and B are semantically
equivalent. Next to each row a graphical representation of the puzzle view for that
case. Some cases are impossible to reproduce, they are label with a black tag over the
puzzle.

Following up, this properties arise:

• If A correlated with B and A links with B then the two operation can be
set together.

• If A and B are both semantically equivalent and link equivalent, then
A and B can swap each other. This means that they are equal for our
purposes.

This properties are important when it comes to WS discoveries.

9.13 The Work�ow level

We still don't know if it is a good idea to place A after B. We can make sure
that the outputs of A are semantically compatible with the inputs of B. But
that doesn't mean that the result makes any sense.

For example, the derivative of a function take a function and gives a function.
We can change that WS with an integration operation. The inputs and outputs
are still the same, a function, but the result is completely di�erent, an integral
rather than a derivative. That is something we can prevent with the semantically
related part. However, we can link the derivative with the integration operation
and the result will be the �rst input again. That respects the links rules and
the semantics rules. However that would be a silly work�ow because we will get
the original input again and accomplish nothing.

43

Now that we have a chain of WS that makes sense as links and sense as
semantic correlation. How do we evaluate it as a good work�ow?.

Figure 12: A representation of every possible work�ow

A representation of every possible work�ow in red, compare with every work�ow that
actually makes sense in blue. We still haven't done anything to be able to tell if we
are in a red path or a blue path. But if we follow the rules set before we are at least
in a red path for sure.

44

Figure 13: An overview of the di�erent levels of information.

We start with simple services scattered around and we start joining them if they can
be linked. Among those which are link we select only those who has a nice semantic
correlation. Now we need to �lter those to reach the ultimate work�ow level.

I personally think that if the service is properly annotated then we can
distinguish between good and bad work�ows using the Topic sub-ontology.

9.14 The Work�ow score

The semantic structure of a graph, and the nature of a work�ow also as a graph,
gives us the possibility of devise the concept of Work�ow Score.The work�ow
score represents how good or bad a work�ow is with a numerical value. It goes
from 0 to∞ , being 0 the most desirable value possible. It measure the distances
between topics from di�erent operations. If you ascend from topic to topic in
the ontology, the penalty is almost nothing. However if you change from one
branch to another you get full penalty.

Lets suppose we have an operation Z, which have two kind of semantics
annotations OzΣ(topics) and OzΣ(operations). Each of the OzΣ(operations)
can have several topics associated with it through the relationship �has_topic�
from EDAM. We extract those topics from there and we added to the set of
topics of OzΣ(topics); at the end we have a set of unique topics elements from
EDAM for operation Z, and let say that the total of topics is |Z|.

We can have several operations that connect with Z. Each one of these
operations, Ox1

, Ox2
, ... , Oxn

also have a set of topics de�ned just as before
which have a total of |x1|, |x2|, ... , |xn| each.

45

For each one of the operations that connect with Z we can create a matrix
of |Z|×|xi|. The element Aa,b of the matrix is the distance from topic a in the
Z set and topic b in the xi. The peculiarity of this distance is that the total
distance will be the 10% of the distance if we can go from topic a to topic b
without changing branch in the EDAM graph for topics. Otherwise it will just
be how many jumps we need to take using the 'is_a' relationship. In this way
we rewards operations that are closely related.

Once the matrix is complete we have exactly n numbers for operation Z.
Each of them comparing the distance for each of the operations. The total
score for operation Z will be the sum of all those numbers divided by n. We
take the average of the operations because we don't want to penalize operations
with many inputs.

Now; each operation of the work�ow have it own score calculated as we just
described. A work�ow is an acyclic graph made of operations as nodes. The
Work�ow Score for a given part of a work�ow would be the sum of all the
previous nodes scores.

With this variable now we can take measures for many valid work�ows. We
de�ne valid work�ow when all links between elements or operations are green or
blue. This measure can be represented graphically in a scatter-plot where the
X-axis would be the size of the work�ow (greater distance between nodes) and
the work�ow score. With such scatter-plot we can also made a regression model
and �nd the best equation that �ts the sample we took from empirical data. We
already have a vast database of work�ows which are valid and rated by users
in myExperiment; so mining the information from there, apply the Work�ow
Score to them, and add the result to the scatter-plot would be an easy task.

This function will determine a region in the 2D space where the work�ow
score is suppose to be. If the points are more scattered this region will be
wider and viceversa. For us to declare a work�ow valid it should be around
that region. In a more formal de�nition, we can de�ne a distribution with a
population average and standard deviation for each of the possible dimensions
of a work�ow based on the sample data we gather. For a given wor�ow with its
own work�ow size and work�ow score, we can now determine what is the chance
of that being a valid work�ow according to our distribution. We can give a 95%
con�dent interval center in the average of that distribution and if the work�ow
score fall outside that interval we discard the work�ow as non-valid.

The ultimate goal of this is that we now have a method to, by brute force,
explore all the possible work�ows between two operations.

Suppose we know from where to start and which operations is the �nal one.
We can even de�ne the desired output of such operation. We can start a branch
and bound algorithm to create every possible work�ow in between that leads to
the desired output (if any). If one branch goes higher or lower that our interval
threshold for that given work�ow size we stop exploring that path. Notice that
we are talking about valid work�ows only, so the possibilities are quite narrow.

In this way we can get the computer to test experiments for us automatically
until we �nd a series of transformation for a desired output, much more quicker

46

than a human doing it manually.

9.15 Summary

So far we discussed the mathematical model of a WSDL and made some pre-
dictions on properties which are yet to be tested. We saw also that current
technologies are not good enough for the idea presented here. What comes now
is a tutorial on how to use the program to test this ideas.

47

10 The WSDL-Workshop program

The program was developed following the theoretical analysis mentioned in
chapter 9 in page 30, This section will explain you how to use the program
WSDL-Workshop in detail.

10.1 Design choices

10.1.1 GUI

For the design of the Graphical User Interface (GUI) I used a concept called
Experiential Metaphor [40]. This mean to try to evoke in the user a feeling or
a visualization of abstract ideas. In this case the work�ow can be compared to
a jiggsaw puzzle just like we saw in chapter 9.12 in page 42. Hence the use of
pieces to talk about operations. These kind of puzzle however rely on a unique
2D geometry for each of the pieces. To speed up work�ow building we use the
guide lights to give the user a preview of what is going to happen if you connect
two datatypes before they get connected. We even get the user the �lter to
be able to �nd a piece that �t another one automatically, something that will
render a jiggsaw into a very easy challenge. Likewise we want the user to be able
to construct the puzzle for his problem as quickly and easy as possible, even if
that means spoiling the fun of having to �gure the answer out all by himself.

At the same time we tried to give each element unique information through
color coding. All operations are orange, all input/output are either green or
purple depending if they are simple or complex. Links goes from red (bad)
to green (good). When something is selected or can be interacted it highlight
automatically, as in all elements in HTML that exploit the CSS e�ects. Aes-
thetically can have some improvements with the choice of the geometries, font
styles, size of the elements, animations, lights e�ect and so on. But the general
idea that colors convey information still remain.

10.1.2 EDAM optimization

In EDAM you have relationships to traverse the graph from the bottom to the
root but not the other way around. I implemented the data structure so you
can transverse it in all directions. You also won't �nd IDs in the node of the
graphs but pointers to the actual elements. Please refer to the source code where
you can �nd much more detailed information about algorithm used to traverse
graphs.

10.1.3 Drawing process optimization

The program is designed so it only draw sections which have changed. For ex-
ample if you drag one element to another place the program doesn't recalculate
coordinates in the drawing function; the dragging action order the element to
self-validate and the drawing function later on get the data. Beside minimizing
the resources required for drawing it also helps for a multi threading render of
the screen. This is not necessary because the program doesn't use complex 3D
graphics or lightning scenes, but it is nice to have in case somebody decided
that it will work better in another environment.

48

10.1.4 HTML functionality vs JavaScript functionality and Server
workload

There was a great deal of e�ort invested into letting the browser adjust the
window using only HTML+CSS coding and minimize the use of JavaScript as
much as possible. Also the server only works when sending the WSDL and
ontology �les and when you ask to save your data into a �le. It was also an aim
to make the application as lightweight for the server as possible to reduce the
cost of deployment.

10.1.5 Documentation

The source code also o�er a lot of comments to guide other developers about
design choices and help them to make modi�cations. There are also standard
UML diagrams available. If you want to implement this program in another
language you shouldn't �nd any troubles other than making the translation; no
redesign should be required. Furthermore, everything was done with standard
JavaScript libraries and no third party support is necessary.

10.2 License

I decided to license it under a Creative Common Share alike - Non pro�t - By
license. [41]

Here is a list of works or tools that I made use of:

The EDAM Ontology was developed in the University of Bergen. The WS-
DLs and XSDs which accompany the source code were taken from the University
of Bergen also. Please refer to this institution if you want to use any of that
work.

During the process of this work I made use of Geany [42] editor in a Ubuntu
10 [43] most of the time. And Netbeans [44] with Glass�sh [45] server plugging
for certain demonstration purposes running in a Ubuntu 12. The private server
in which I'm running this program is a Linux Mint Server Edition [46] which is
based in Apache. All of this have a GNU license [47]. The icons in the toolbar
and in the side menu have a LGPLv3 [48] license. The thesis written document
was made with Kile [49], a LaTeX editor, with license GNU v2.

10.3 Prerequisites

10.3.1 Chromium Browser

Chromium [50] is a open source web browser. It has an 100/100 Acid3 score and
is free. It is licensed under several GNU-like licenses. The commercial version
derived from this browser is call Chrome. The browsers are 99% similar; the
main di�erence is that the �rst is open source while the latest is not.

10.3.2 Computer Minimal Specs

Tests show that the program and the server runs on a 1GHz Intel/512MB RAM
computer without any problem. The program itself is fairly lightweight and it

49

will only run slow at the very beginning, while it initializes the ontology and
parses the WSDLs. This process shouldn't take longer that 5 seconds using the
default WSDLs,XSDs, and ontology �les.

You should be able to run it also in any device that has a browser with
JavaScript enabled, such a smart phone or a tablet; and given that the browser
you are using has a compatible rendering engine with WebKit [51], such as Safari
[52] or Chrome, for example. The program will scale automatically to the size
of your window, so if the screen is very tiny, as long as you have slim �ngers or
a pointer device, you should expect no troubles.

10.4 Starting the program

In order to start running the program you must do three things:

A) Setup a server. As stated earlier, the most simple solution is to run
Netbeans and start the Glass�sh server from there. Notice that if you want
to be able to save or load �les from or to the client side you have to give
POST permission to your server. But this is not necessary to run every other
functionality; since the server has access to a default directory of WSDLs it is
not essential to modify this.

Figure 14: An example of the server Glash�sh running.

Notice the green �play� icon that indicates the server is running. In the image we also
see other options that Netbeans o�ers and part of the window with the source code to
the right.

B) Get the source code into place. If you use the Glass�sh option add the
docroot folder directly into the docroot folder of the Glass�sh directory, and it
should run �ne. You can download it from https://github.com/rafanozal/

WSDL-Workshop.

C) With a Chromium Browser, go to the index.html page. If you run your
server locally, the default address is http://localhost:8080/index.html.

Once everything is running the program will start automatically as soon as
you visit the index.html. The program will �rst show you a welcome splash
screen where you can read �WSDL Workshop�. In the background, the program
will start parsing the default WSLDs and XSDs which come in the /wsdl and
/xsd folder. It will also parse the ontology in /res/ontology, and create the

50

 https://github.com/rafanozal/WSDL-Workshop
 https://github.com/rafanozal/WSDL-Workshop

necessary data structures in memory. Once �nish it is ready to use; the splash
screen will turn white as soon as you click anywhere.

Figure 15: The program is running in the client side and is ready to use.

10.5 Sidebar; WSDL listing and discovering functionality

In the sidebar you will �nd 3 main sections. The WSDL �lter on top, the WSDL
entities in the middle, and some extra �ltering options in the bottom.

10.5.1 Top

In the top you can read �WSDLs �lters:�

Tree/List view

To the right of the title you can �nd the tree/list view swapper. What
this does is change the middle view. By default it is set to start in list
mode. So you will see all the default WSDLs in the middle. These WSDLs
start with no �lter applied to them. If you press this button it will change
into a tree view where you can �nd the ontology viewer. This viewer will
allow you to discover WSDLs related to a topic that you search. You can
tune your �ltering with the options in the bottom of the sidebar.

Filter text
This bar allow you to write some text. As you write you will �nd a
collection of operations, inputs, outputs and topics that are displayed to
the left of it. These are all the concepts which are currently available in
all the WSDLs in the program. These concepts contain the text that you
inputted in their title. You can modify this �lter with the options at the
bottom.

Sort by name

This option will sort the WSDL list alphabetically, or in reverse if it

51

was currently starting by A. If the view is set in Tree-mode, it will sort
the tree accordingly.

Add new WSDL

When this icon is clicked it will start an explorer window so you
can localize your own WSDL �le and import it into the program. If the
program is not able to recognize and parse the WSDL you will be prompted
with a comprehensive error message. Otherwise the WSDL will be added
and be ready to use. Make sure that your �lter options are compatible
with the WSDL you just enter, otherwise it won't be shown until you set
the �lter so that the WSDL ful�lls all the requirements.

10.5.2 Middle

In the middle of the side bar you can encounter two types of views: the list view
and the tree view. By default you have the list view and you can change this
with the button at the top of the sidebar.

List view
In the list view you can �nd the WSDLs listed in the order they were
parsed. You can sort them alphabetically by their title if you wish so. Each
WSDL can be expanded with the �+� button on its side. Once expanded
you will see the di�erent ports that compose the WSDL. Normally you
will only �nd one port per WSDL. Ports can be expanded too; once done,
you will see the operations list that compose each port.

The operations are the entities that you can add to the canvas. You will
�nd two buttons in each operation. You can expand the operation to
see a preview of the inputs and outputs which will show their names and
datatypes. The other thing you can do is to add the operation into the
work�ow canvas.

You can collapse the operation, port and WSDL by clicking in the �-� sign
which will replace the �+� sign once you expand them.

Tree view
In the tree view you can explore the operations of the WSDLs you have
available from the ontology point of view. For each ontology entry you
will �nd also a �+� sign which will expend the concept, or a �-� sign which
will collapse it again.

You can �nd four sub-ontologies here. Operations, Data, Topic and For-
mat. Each of these concepts, once expanded, will show the concepts that
hangs under them. Please refer to the relationship �is_a� in the ontology
section in chapter 8.5.2 in page 26 to know more.

In the Operations ontology you can �nd operations which have the given
concept annotated in them, and you can add them the same way you do
in the list view.

52

In the Data ontology you can �nd operations which have either an input
or an output annotated with the concept which you are exploring at that
moment.

In the Topic ontology you can �nd operations which have the current
topic annotated inside. This could be at any level, the operation, one of
the data, the element of the data, the type of the data, and so on.

In the Format ontology you can �nd operations which have either an input
or an output annotated with that format.

In general this view is useful for exploring the ontology and discover op-
erations related to a concept that you didn't think it could exist or didn't
remember.

10.5.3 Bottom

Here you can �nd �ltering options that will hide or show WSDLs or operations
in the middle section of the sidebar.

Filter options
On the top of the sidebar you can �nd a text searcher. As you type in
that bar you will �nd concepts that pop out. By default you will �nd this
�lter set to nothing, and it will look for that concepts in the operation
names, inputs names, outputs names, and semantically annotated topics.

You can however change the �lter option. If you select one ore more, it
will �lter by those groups, and will show you operations that match all of
the cases. For example if you select �operation� and �input� and enter the
word �sequence� it will show you WSDLs which contains operations with
the string sequence and at least one input with the name sequence.

You can combine this with the tree view as well.

Input compatible
If you have selected an operation output in the canvas you can use this
option.

This will �lter the operations in the middle of the sidebar to only those
which are compatible (or not, depending of your selection) with the cur-
rent selected output. So for example if you want to make sure to �nd
an operation that can receive the string that your current operation is
outputting and you have selected, you will make use of this option, and
select the options �yes� and �possible�. Please refer to the chapter Making
Links Simpli�ed in section 9.9 in page 39 for a complete documentation
of what each of them exactly means.

Semantic compatible
This works similar to the �Input Compatible� option. When you select an

53

output of an operation or a single operation, you can �lter the WSDLs to
show only WSDLs which operations are compatible (or not, depending of
your selection) with the selected piece in the canvas. Please refer to the
chapter Semantic Correlation in section 9.10 in page 40 for a complete
documentation of what means each of them exactly.

Figure 16: An overview of the entire sidebar.

The user has decided to enter the text �seq� to look for operations that have at least
one input call �seq�, probably referring to the word �sequence�. At the middle, four
WSDLs match the criteria. Each one of them show only those operations that match
also the criteria. In this case only one operation in each does.

10.6 Tool bar; creating a design environment

This is the bar that appears in the bottom of the screen and below the canvas
section. This is a series of tools to interact with the canvas.

New

Reboot the canvas and start a new work�ow project.

54

Open

Open an old work�ow project �le. Your current project will be lost
if you don't save it �rst.

Save

Save the current project into a �le in your device.

Cut

Delete the selected operation including links and save them in a
temporary variable. If you cut something else your old operation will be
lost. If you copy something else your old operation will be lost.

Copy

Copy the selected operations including links and save them in a tem-
porary variable. If you cut something else that will replace the temporary
variable, if you copy something else that will also replace it.

Paste

Put the temporary variable inside the canvas. If there is no temporary
variable nothing will happen.

Zoom in

This will increase the zoom in the canvas and everything will appear
bigger. You can also do this with the keyboard shortcut �+�. The program
limit the zoom level to +5; which is a screen 32x smaller than the original.

Zoom 1:1

This will modify the zoom to return to the default state.

Zoom out

This will decrease the zoom in the canvas and everything will appears
smaller. You can also do this with the keyboard shortcut �-�. The program
limit the zoom level to -2; which is a screen 8x bigger than the original.

Delete piece

Delete the selected operation from the canvas. You can also do this
with the button in the operation itself and with the keyboard shortcut
�Del�.

Delete all

Delete every piece in the canvas. In practice this has no di�erence
with the New work�ow option except that you can still undo this.

Take picture

Save the current status of the canvas into a PNG image. The picture
will be opened in a new window.

55

Help

It will display the manual in a new window.

Aligning options

Its allow you to move the operations so they align nicely to each
other. You can �nd the six standard aligning option that you will �nd in
any other design program. You need to select two or more pieces to see
the e�ect.

10.7 Piece; the operation representation

A piece is each of the operations that you can add to the work�ow. The piece
have several elements. On top of it you will see a black bar with several buttons.
Then you will �nd an empty space with the operation name. Then a bigger space
with the inputs and outputs. And �nally the foot bar with the �nal options. In
�gure 18 in page 58 you can see a complete representation of a piece.

10.7.1 Top bar

This is the thin black bar and the orange thick bar on top of each operations.
You will �nd a series of options in it.

Delete operation
You can delete the operation with the red button. All links coming from
or coming out the operation will also be deleted.

Minimize operation
This is the yellow button. It will hide the middle space. You can still see
links that come out of the piece or into it. You can undo the process by
simply clicking in the button again. If two operations which are connected
are minimized then only the operation link will be show, and the links in
between inputs and outputs of those two operations will be hidden.

Expand semantic view
This button will show you all annotations which are related with this
piece. The operation annotations are shown at the button of the piece,
while the data annotations are displayed below each data. Sometimes the
data annotations can be a bit overwhelming. In that case, if you collapse
the operation box it will only show the annotations for that level and
nothing from the levels bellow.

Title
In this section you will �nd the title of the operation. At both sides, you
can �nd the operation links if the operation is connected with anything.

Semantic Correlation Link
When you link types between operations the operations headers will be
automatically linked. The color scheme of the operation link represent the
semantic correlation between then. Please refer to the Semantic Correla-
tion chapter in section 9.10 in page 40 for more information.

56

10.7.2 Middle space

This is the space where all input and output are collected.

Input and output connection boxes
In order to make a link between two operations just click in an output
�rst and then in the input you want to link. You will see a preview of the
link next to the input in the form of a highlight color which indicates what
kind of link it will be. Please refer to the chapter �Making links simpli�ed�
in section 9.9 in page 39 for a complete documentation of what each of
them exactly means.

Once you made a linked between an output and an input, the operations
will also be link. Remember that the quality of the operation link has
nothing to do with the quality of the links of it's outputs or inputs.

Note that there is an important restriction when making links. You shall
never form a cycle. You can however copy the same operation several time
and link one after each other.

Figure 17: Two operations about to be linked

In this example, the output resultFasta is highlighted because it has been selected.
The operation �run� shows the preview of each input and the semantic correlation of
the operation itself with �getResultFasta�. In this case, only the input �sequence� is
evaluated as a good idea. The rest of the inputs have not the same datatype (in red),
or haven't being semantically annotated (in yellow)

10.7.3 Foot bar

This is the last part of the piece at the bottom of it.

57

WSDL Name
This is a reminder of from which WSDL did the operation came. Some
times the operations have the same generic title; as in �getDataByID�. So
it is nice to distinguish one from the other by the original WSDL �le.

Color roulette
This gives user organize operations by background color.

In order to change the color simply click the rectangle, and without release
the click, move the lever around the color wheel to select a new one.

Figure 18: An example of a piece showing it semantic annotations.

Notice that neither program not jobid have being annotated and thus nothing is dis-
played under them. Bellow the foot bar the semantics for the operation itself is shown.
This includes the relationships of has_input and has_output of the operation seman-
tics, to the left and to the right respectively.

10.8 Canvas; the drawing board where everything work

together

This is where you will interact with the program. Here is where the pieces are
added and where you have to connect pieces witch each other. If you click in
the adding button of the sidebar a new piece will appear in the canvas.

10.8.1 Scale anchor

When an operation is clicked you have the opportunity of change the size of the
piece. The links and texts which are inside will automatically change size too,
and keep the same proportion of the original box.

58

10.8.2 Multiple selection

If you click on an empty space and drag the mouse you will form a rectangle.
Once you release the bottom, the program will select every piece which is inside
the rectangle. Multiple pieces can be deleted at once or be move.

10.8.3 Deleting Links

If you want to delete a link or more than one link, click with the right button
of the mouse and drag a line. Every link that the line cross will be cut and
deleted. If this leave two operations unconnected, the operation link will be
sever as well. If you try to delete an operation link nothing will happen. You
must cut the link between two operation inputs/output for successfully cut the
link at the operation level.

10.8.4 Work�ow score

If you click the middle mouse the canvas will shift into work�ow view. Here
you can see the work�ow score for each operation and the accumulated score
for every operation that is connected before.

In each operation you will see the topics which have been annotated. Also
you can see a list of operations which is connected to it. If an operation have
no previous operations or no topic the work�ow score will be 0, and a message
regarding this will be show.

Please refer to the chapter of Work�ow Score in section 9.14 in page 45 for
a more detailed insight on how does it work and what does it means.

10.9 Keyboard shortcuts

Arrow keys
Pressing the keys have two di�erent e�ects. If you have selected one or
more pieces it will move the pieces in that direction. If you haven't select
anything it will move the camera in that direction.

If SHIFT is pressed it will move the camera or the pieces ten times faster.

+/- keys
These keys will increase the zoom or decrease the zoom.

Delete key
If one piece or more are selected it will delete them.

Ctrl + N
This will make a new work�ow.

Ctrl + O
It will open the dialog for opening a work�ow �le.

Ctrl + S
It will open the dialog for saving a work�ow �le.

59

Ctrl + X
This will cut the selected pieces.

Ctrl + C
This will copy the selected pieces.

Ctrl + V
This will paste the selected pieces.

10.10 An simple test case

In this section we will see an example of simple work�ow example. Let fetch
sequences from a database, then align them, and �nally lets construct the phy-
logenetic tree of the collection of sequences give it to us by the alignment. This
is represented in �gure 19

Figure 19: An overview of a work�ow.

The work�ow is branching at the sequence alignments operation and show that only
the operation that belongs to the WSDL ClustalW has been annotated. Following
that branch the work�ow continue into a phylogenetic tree construction operation.
The user decided to change the background of each piece, and assign a color to each
WSDL. So pieces with the same background belongs to the same WSDL.

Navigating the sidebar you can �nd a WSDL called 'WSDBFetchServerSer-
vice'. We should add two operations from there, 'getDbFormats' and 'fetch-
Batch'. The element 'getDbFormatReturn' from the �rst operation is an array
of strings and each of these strings are annotated with 'Database name'. We
can connect the string to the element 'db' of the second operation which is an-
notated with 'Database identi�er'. The program creates a green link because
'Database name' is actually an specialization of 'Database Identi�er' so both
elements are perfectly compatible. At operation level we can't say anything be-
cause 'getDbFormats' has no annotations at the operation level. Even though
we know that this two operations make sense link, the WSDL is not su�ciently
annotated and the program can't judge in one way or the other.

Now lets add two new operations from a WSDL called 'ClustalW'. Opera-
tions 'alignFasta' and 'getResultFasta' can be found inside. If we link the �rst
to the second we can see the opposite case from before. The element jobid, in
both cases, has no semantic annotations so we can't judge that link as valid or
invalid; hence the yellow link is created. However at the operation level we see

60

that they are actually the asynchronous version of the same operation, so they
are awarded with a green link.

If we select the output from 'fetchBatch' called 'fetchBatchReturn' we will
see that the program recommends to join it with the input 'sequence' of align-
Fasta. In this case is possible to do so at datatype level because both are
annotated as sequences (plus they have similar format). Also, they can be link
at operation level because 'fetchBatch' is a 'Sequence retrieval' operation which
will give you a sequence, and 'alignFasta' is a 'Sequence alignment construction'
operation which receive a Sequence. So they are perfect for each other as the
program recommended.

Lets make some use of the �lter. If we select 'fetchBatchReturn' and we look
for 'sequence' that is either fully compatible or possible we will �nd two more
possible operations. Both of them are call 'alignFasta', one from 'MultipleSe-
quenceAlignment' WSDL and the other one from 'MAFFT' WSDL. If we try
to link 'fetchBatch' with these we can see that the datatype is compatible, but
at operation level we don't have any information because neither of them has
been annotated at operation level; so we will continue with our original branch.

Finally, lets add the operation 'run' from the WSDL 'clustalw2_phylogeny'.
We select the output 'resultFasta' from 'getResultFasta'. Among the many
inputs options that the operation 'run' have, the program only recommend to
link it with the one call 'sequence'. At operation level we don't have information
despite the fact that the 'run' operation is semantically annotated with the
operation 'Phylogenetic tree construction'. This is because the EDAM ontology
doesn't provide a relationship of 'has_input' to that operation. If the EDAM
is updated to have this information then the program also recommend the link
at operation level.

10.11 Summary

In this chapter we saw the design choices and how to start the program and run
it at di�erent levels. With all the information given so far the user should be
able to understand every detail of the program and the theory behind it.

61

11 Discussion

WSDL-Workshop tests shows that the developed theory of how to use seman-
tic annotations to di�erentiate good from bad work�ows is very promising; for
instance the test case gives you the correct information wherever there are se-
mantic annotations, and the �lters works perfectly for discovering relevant oper-
ations for our interest. This section is dedicated to ask possible questions about
design choices and for me to voice some detailed opinions.

11.1 EDAM

The user is responsible for introducing a properly semantically annotated WSDL
in the program. The discovery of WSDL is a huge problem on its own as
we saw in the introduction, but it is even more di�cult is to �nd WSDLs
semantically annotated; and to be precise with the EDAM ontology in par-
ticular. There is a discoverer for EDAM SAWSDLs which can be found in
EMBOSS [53], but currently the options are pretty limited to what you can
�nd at the Computational Biology Unit (CBU) of the University of Bergen
(http://cbu.bioinfo.no/wsdl), what you can annotate in eSysbio (http:
//esysbio.org/about) and some extra custom SAWSDLs made for testing the
this very application. All of them are already added by default in the sidebar
of the application. It would be very easy to add a repository from where the
program fetched EDAM SAWSDLs automatically and keep it updated, but at
the moment such repository doesn't exist. Since the collection of SAWSDLs is
limited, the concept of Work�ow Score couldn't be tested properly, and it can-
not be said that it works or doesn't work for �nding the best chain of operations
automatically.

The EDAM ontology have a couple of �aws that a�ect the behavior of the
program. EDAM doesn't have any entries for asynchronous operations. These
are the kind of operations that you submit your inputs and gives you back
a job identi�er. Later on, when your query is �nished, you can submit your
job ID and retrieve your actual outputs. This can be easily corrected if each
operation of EDAM which is a leaf in the acyclic graph, get the extra spe-
cializations of two operations that represent the same operation, but one have
as output the job ID, and the other one have as input the same job ID. This
has being successfully tested in the program, and if you look in the ontology
�le you will �nd custom entries with the text �created_in: 'WStest� ' which
are the custom operations added. A more e�cient way of doing this would
be to add a keyword to the annotation system, so you don't need to mod-
ify each operation in the ontology. That keyword could be used as for example
�sawsdl:http://edamontology.com/operation_1234:AsynchronousOutput� to re-
fer to the element Operation 1234 in the ontology, and to express that this
particular WSDL will give you back a job ID instead of the normal output.

The second problem with EDAM is that the program allow you to link
a job ID from WSDL X to a job ID from WSDL Y. This of course won't
work, it will try to fetch the results of a job in WSDL Y that nobody has
submitted yet. It can be �xed by either annotating the service with a custom
JobID semantic which shall be a specialization of the ontology entry Data 1676

62

http://cbu.bioinfo.no/wsdl
http://esysbio.org/about
http://esysbio.org/about

�Job ID�. The problem is that you will have to add an entry for almost every
asynchronous operation out there, which would be mathematically correct but
quite overwhelming. An easiest way would be to make an exception for Data
1676 in the rules for making a link. And if you try to link something with that
output, it must be with another Data 1676 which belong to the same WSDL.

11.2 Choice of language

One of the aims of this thesis is to provide the user with an easy access applica-
tion which doesn't need to install special packages or tinker with the operative
system. The two options here are either make an online application or make a
desktop stand alone application. We decided to go for the web application. For
this case there are four main approached. Either you make it with Flash, Java,
HTML5 or you run it in the server side.

If we provide an application for the user we want to have the lower monetary
cost as possible for us. It is possible to be done in the server-side and use any
other language code but in that case you will be putting stress on the server
which will increase the cost for the server runner; plus this is likely to decrease
the experience for users because bottlenecks, slow internet connections and many
other reasons. So this option was out of the equation.

Flash is proprietary, non-standard, breaks conventions associated with nor-
mal HTML pages, has low performance, has withdrawn support to mobile de-
vices in favor of HTML5, and the drivers for 64-bits version of Linux have been
neglected in the past. Because all of these Flash is de�nitely not an option.

I chose HTML5 because of the simplicity for the user. You just need a web
browser with Internet access and you are ready to start using the application.
Java is the next option, but because of security concerns [54] [55] [56] [57] and
similar or worse in e�ciency [58] [59] I discarded that option. Recently, even
the major browsers stopped supporting and enabling Java by default [60].

It is impossible to make this program only in HTML + CSS. There are
still some issues with JavaSctipt that we need to review. Some users may have
JavaScript blocked in their browser for privacy or security reasons. Many de-
velopers make an abuse of its functionality in order to �ood the user with ad-
vertisement, take private navigation data or other nefarious ends. Normally is
considered a bad programming when you cannot navigate a website without us-
ing JavaScript. For example trying to see a slide share of pictures and forcefully
has to use JavaScript is a big mistake. That is because you can provide the
user with the HTML links to the images instead of forcing the user to use your
interface; as a thumb rule if you could have done it in 1995, then JavaScript
just add pretty e�ects and no functionality. In this case JavaScript is justify
because it doesn't just increase the functionality of the web or make it pretty
or something mundane; it is needed from the computer to �nd data for me and
make complex calculations such as the Work�ow Score.

JQuery is a JavaScript library [61] developed to simplify the client-side
scripting. When making an application in JavaScript one need to think about

63

using JQuery because sometimes can make things easier. Among the bad things
is that you depend of third-party developers that maintain JQuery and it is
quite di�cult to read code in JQuery. The good things is that it makes easier
to do �pretty� things and the algorithms are quite e�cient. I decided to not use
JQuery in the thesis. Another aim of the thesis was that you should be able
to pick up the program, understand was going on inside the project easily, and
modify to your will. However; in a commercial and �nal version of this program
I would consider the trade o� of increasing e�ciency that JQuery provide.

JavaScript however is very di�cult to program. Not because the syntax is
complicated but because it is prototype-oriented. This means that, for example,
if a variable doesn't exist, it won't complain about it and won't give an error
until you reach the part of the code where that variable is used. Things like this
increase the testing time of an application exponentially and increase greatly
the total developing time. Based on that, I will now considered do this for a
desktop application instead. But still, making the browser application make
the application more available and easy to use. Since this is an experimental
application to test some hypothesis I will do it again with JavaScript. But if a
commercial application is needed, the choice of a desktop application would be
quite strong.

About the desktop application version. In that case the chosen program
language would be C/C++ [58] [59]. That is the most e�cient solution and
would have give a more robust software, although more complicated for the
user to compile and execute the code. Still you can still provide the binaries for
users how doesn't want to use the make�le.

11.3 Bad WSDL practices which required adjustments

As we saw in the section 9.3 in page 32 and �gures 1, 5 and 6, programmers
tend to encapsulate the inputs/outputs of an operation in only one part of the
message. This is very bad because is make it more di�cult to understand to
somebody else who want to use your WS, and of course you always want your
code to be readable for the next person who use it. In this case we had to com-
pensate with shredding. This help the user to have a better visualization of the
required input or output for an operation. Otherwise the user can understand
quickly just by looking to the graphical representation of the operation what is
going in or out of the operation. Variables names have meanings and are im-
portant. If an operation have input 'GetMatrixByNameRequest:Complex' we
don't know what we are suppose to give. But with this correction that input
transform into 'Name:String' , 'Format:String', 'Database:String' which is much
more intuitive. Lets remind here that the W3 foundation discourage the use of
Complex Types.

11.4 WSDL1.1 vs other options

A WSDL �le is just one of many technologies out there to run a WS.

I chose WSDL 1.1 above WSDL 2.0 because that was what the department
used most at that moment; and for example there were no EDAM annotations
for WSDL 2.0.

64

In previous sections we talked about current technologies other that WSDL.
We will now take a look on the disadvantages and why did I have to come up
with something new.

Each technology description is a leap of faith. Everybody claim that the one
they made are the best. However there are very few that gives real examples.
Most of the time there is no algorithm behind the process, or no benchmarks for
their implementation. The amount of tutorials is also very limited. So you need
to spend a great deal of time studying a random technology, teaching yourself to
use and hope for the best. In contrast, with the source code of this program you
will �nd every documentation that I can think of which is going to be useful to
somebody else in order to expand or understand how the program works. The
problem when you study alternatives is the lack of proper documentation.

This is an overview of the most popular options. We talk about them in
chapter 9.1 in page 30. In here we will review speci�c problems for each one:

OWL-S Semantic Markup for Web Services - The OWL Services CoalitionWith
this approach you will need an external tool for linking the WDSL to your
constructions. However using the EDAM approach the annotation are
made in theWSDL itself without interfering with any previous declaration.
So it is up to analyze the WSDL and see what it actually does rather
than design something and hope for the best that you will actually �nd
something that resemble your idea.

The Web Service Modeling Framework WSMF The problem with this tech-
nology is that is not implemented. Is just a theoretical approach and it
haven't been tested at all. Also is highly focus on commercial WS and
the complexity of the problems are limited; as in trying to solve which
commerce you want is nearest to you, or how to make invoices between
two companies be compatible. Alas, nothing as complex as for example
trying to �nd an alternative protein which is cheaper to manufacture but
does the same e�ect.

WSCL 1.0 In its own way, is similar to the XSD extensions. It doesn't really
contribute to anything new and I view it as a failed attend to create a new
standard to monopolized the technologies when this is not needed [62].

WS-BPEL The language only work on two services at the time so it only use to
communicate between them and is not intended to analyze the semantic
meaning behind them; or to analyze the signi�cant of the entire work�ow.

SWWS Aim to be the standard in the near future and it is probably the
best option for the future. However as described before, there is nothing
implemented yet and everything is pure theoretical.

So none of these give an actually solution for our goal. We want a workbench
with nice functionality like those described in the introduction. And we want
it to be able to analyze the semantics between services. Lets take a look to my
proposed solution.

65

11.5 Open Source

There is a strong correlation in between the quality of the software and how
free or open the software is [63] [64] [65]. There is a strong community behind
software that become popular which improve them. Anybody who pick up my
work should be able to upgrade without my help; thus eliminating the attach-
ment of the original programmer to the future version or any other program
that may spire.

My master is almost 100% �nanced by the Norwegian government. In my
opinion, every public institution �nance by public taxes should release all its
�ndings with the most general public license possible and seek no other private
funding.

During the making of this thesis I had to decide one browser for which the
program will work for sure and be optimized. Based on the result of Acid
Test, market share, operative system in which it runs and popularity of saying
operative system, permissive license and open source philosophy, I decided to
choose Chromium as the main browser for which I will develop the application.

Note that the software is optimized for Chromium, but it should work as
well in Safari [14] since they both share the same rendering engine. I also made
modi�cation so it run in Firefox although I haven't test it extensively in that
browser. The only part of the code you need to modify in order to make it work
in a browser is the CSS �le. CSS describe the rendering e�ects, so you need
to specify the behavior for each engine. If you don't the application still works
anyway, but you will �nd that the sidebar or the tool bar appears clunky and
the elements have an estrange placement.

11.6 GUI

The Graphical User Interface of the program is a bit di�erent from what a person
might be used to. However the graphical engine is not attached to the kernel
application and you can run the program even from the JavaScript console if you
like. That also gives you the possibility of design your own graphical interface.

11.7 Future updates

You can automatically annotate WSDL with a brute force approach. Imagine
you have a valid dataset of inputs and outputs for a set of ontologies that goes in
an element. You can run the WS for every example of the dataset and compare
the given output. If they match you have an element which you know the valid
ontology. So in that case you will just add the SAWSDL �eld where correspond.

Is possible to expand the program in order to process di�erent concepts from
di�erent ontologies simultaneously.

A minimap view for when you have a lot of images inside the workshop.

An ontology explorer that complement the tree view. Basically, if you click
on an ontology box, its adjacent elements will pop out. The only reason of why

66

I didn't do this is because there is an overwhelming amount of data for the user
already and you will need even a bigger screen.

A shortcut to show all active operation and bring them inside the current
camera view.

Minimize the right column so you have a full screen canvas. You won't be
able to add WSDL but you will have more space to design something with your
current workshop state.

Allow users to manually annotate WSDL. Then the suggestions are send to
the server and a human evaluate the most popular ones. If they are correct
update the WSDL �le with the given suggestion.

Allow user to rate WS. Some services are better than other, as in for example
execution time, very few false negatives or positives, etc... So a work�ow which
could use operation A or operation B can decide which one to use based on
users rating and experiences.

Save the work�ow so another workbench can execute it. However there is
still the problem with the translations between elements. And although it could
be a good work�ow idea according with the program it could be impossible to
execute without some manual tweaks between inputs/outputs.

11.8 Summary

In this section we explained why did we make some decisions during the mak-
ing of this project. We also talked about possible improvements to implement
provided we had an in�nite number of time. I feel like there are many possible
expansions to this idea and I did my best to make an open source project with
proper documentation so other people how likes it can expand it or modify it
with their own vision, ideas, or visual design which they like most.

67

12 Conclusion

The program shows that in theory EDAM ontology is su�cient to annotate se-
mantically WSDLs and allow for the automatic construction of work�ows. With
the exception of the Job ID problem, the program doesn't give you any false
positives or false negatives. So if the program say that you can't link something
is almost certain that you shouldn't try to do so. And with proper annotation,
if the program tells you that you can connect to operations is because it makes
sense to do it. Given this result I'm con�dent to conclude that WSDL-Workshop
can give you every possible and correct combination of WSDL. This is a great
breakthrough because you can let the computer do experiments automatically
until you �nd one that gives you back the desire results, instead of having to
search for it manually during days.

All aims were accomplished, except one that couldn't being tested. WSDL-
Workshop tells if some data is compatible with another, using semantics and
analyzing the datatypes. If an operation is compatible with another, using
semantics. If one chain of operations makes more sense than other with the
work�ow score. It can easily be accessed by anyone with an Internet connection
and a web browser; no installation or registration required. Anybody can modify
the code or reproduce the results. It has a graphical user interface for the
work�ow construction, and an independent functionality that allows the user to
discover and explore WSDLs by a variate of di�erent �lters.

I personally believe that the prototype was a success and that it can be
easily made into a commercial version capable of competing with other simi-
lar programs like Galaxy or Taverna. Futhermore, it shows the potential use
of semantics annotations to help professionals design experiments or to train
students into understanding the concept of a work�ow.

As stated in 8.4.7 in page 25 and the theory this program relies on a uni-
versal translator between two programs which are compatible but use di�erent
formats. Such system doesn't exist at the moment, although there are approx-
imations focused on di�erent topics. For example Benchling [66] or BioWord
[67] focused on DNA sharing between WS and users.

There are also small issues with the EDAM. First is that at the moment
very little annotated WSDL exists. Second, minor concepts that required a few
modi�cations to work as described in the discussion of the EDAM ontology in
section 11.1 in page 62. The Work�ow Score is implemented as described;
however very little combination of work�ow are possible at the moment due
the lack of WSDL semantically annotated. In the near future we can expect to
draw a su�ciently populated scatter-plot that allow us to tell when a work�ow
is within expected parameters.

68

13 Appendices

13.1 GIT Package

In here I'm going to overview the important �les which you can �nd in the
source code at https://github.com/rafanozal/WSDL-Workshop.

/Doc Folder with documentation.

/Res Here you can �nd the images for the icons, the CBU logo and the ontolo-
gies �les.

/WSDLs Here you can �nd all the default WSDL �les. Note the �le direc-
tory.xml; using this you don't need to give additional directory listing to
your server.

/XSD These are all the schema references that you can �nd inside any WSDL
�le.

�le.txt This is an empty �le. The server save your work�ow state in here
and send it to the user when the user want to save his work. JavaScript
doesn't allow writing or reading �les directly for security reasons, so this
adjustment is require.

help.html Contain a plain HTML version of this document. When the user
clicks help, he is automatically redirected to the WSDL-Workshop section.

index.html Is the main page of the program.

readme.txt A text �le that contain this very description.

style.css Is the CSS �le for index.html

WSDLWorkshop.js Contain the JavaSctipt code.

13.2 Index

69

 https://github.com/rafanozal/WSDL-Workshop

Index

Acid Test, 30

Bindings, 20
bioportal, 27
BLAST, 8

C, 71
C++, 71
Chipster, 9
Choice Elements, 23
Chromium, 52
CLustalW2 Phylogeny, 8
Complex Elements, 24
ComplexTypes, 24
Creative Common, 52
css, 29

De�nitions, 17
DNA Binding Site, 8

EDAM, 25
Elixir, 9
eSysbio, 9

Filter options, 57
Filter Text, 56
Flash, 70
Flattening, 33

Galaxy, 9
GenePattern2, 9
Glass�sh, 52
GUI, 73

has_input, 26
has_output, 26
has_topic, 27
HTML, 12
HTML5, 30

Inheritance, 37
inLineElements, 23
Input compatible, 57
Interchange Links, 40
is_a, 26
is_format_of, 28
is_identi�er_of, 27

JasparDB, 8

Java, 70
JavaSctipt, 30
JQuery, 70

Link, 37
List view, 55

MatrixType, 18
myExperiment, 9

Netbeans, 52

Ontology, 9
OWL-S, 32

Phylogenetic Tree, 8
Piece, 61
PSFM, 17
Puzzle, 43

References Elements, 23
RowType, 18

SAWSDL, 28
Schema, 13
Semantic compatible, 58
Semantic Correlation, 41
Services, 21
Shredding, 33
Sidebar, 55
Simple Elements, 24
Simple Types, 24
SOAP, 13
SWWS, 32

TagType, 18
targetNamespace, 15
Taverna, 9
Tree view, 55
Types, 17

Workbench, 9
Work�ow, 9
Work�ow Score, 48
WS, 14
WS-BPEL, 32
WSCL1.0, 32
WSDL, 13

70

WSDL-Workshop, 51
WSMF, 32

XML, 12
XSD, 13

71

14 References

References

[1] Jan Christian Bryne, Eivind Valen, Man-Hung Eric Tang, Troels
Marstrand, Ole Winther, Isabelle da Piedade, Anders Krogh, Boris
Lenhard, and Albin Sandelin. Jaspar, the open access database of tran-
scription factor-binding pro�les: new content and tools in the 2008 update.
Nucleic Acids Res, 36(Database issue):D102�6, January 2008.

[2] Wikipedia. Dna binding site � wikipedia, the free encyclo-
pedia. http://en.wikipedia.org/w/index.php?title=DNA_binding_

site&oldid=577518026, 2013. [Online; accessed 14-November-2013].

[3] Clustalw2 - phylogeny. http://www.ebi.ac.uk/Tools/phylogeny/

clustalw2_phylogeny/.

[4] K. Sivashanmugam, K. Verma, and A. Sheth. Discovery of web services
in a federated registry environment. In Web Services, 2004. Proceedings.
IEEE International Conference on, pages 270�278, 2004.

[5] Uddi/xml. http://uddi.xml.org/.

[6] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the
world wide web. In WWW2008 Beijing, China. Web Engineering - Web
Service Deployment, pages 795�804, 2008.

[7] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil
Wipat, and Peter Li. Taverna: a tool for the composition and enactment
of bioinformatics work�ows. Bioinformatics, 20(17):3045�54, November
2004.

[8] UK. School of Computer Science at the University of Manchester. Taverna.
http://www.taverna.org.uk.

[9] Manchester Southampton, led by David De Roure Oxford in the UK, and
Carole Goble. Myexperiment. http://www.myexperiment.org/.

[10] David De Roure, Carole Goble, and Robert Stevens. The design and real-
isation of the virtual research environment for social sharing of work�ows.
Future Generation Computer Systems, 25(5):561�567, 2009.

[11] Belinda Giardine, Cathy Riemer, Ross C Hardison, Richard Burhans,
Laura Elnitski, Prachi Shah, Yi Zhang, Daniel Blankenberg, Istvan Al-
bert, James Taylor, Webb Miller, W James Kent, and Anton Nekrutenko.
Galaxy: a platform for interactive large-scale genome analysis. Genome
Res, 15(10):1451�5, October 2005.

[12] Mathematics and Computer Science departments at Emory University.
Galaxy. https://usegalaxy.org/.

72

http://en.wikipedia.org/w/index.php?title=DNA_binding_site&oldid=577518026
http://en.wikipedia.org/w/index.php?title=DNA_binding_site&oldid=577518026
http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny/
http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny/
http://uddi.xml.org/
http://www.taverna.org.uk
http://www.myexperiment.org/
https://usegalaxy.org/

[13] AAke Edlund, Maarten Koopmans, Zeeshan Ali Shah, Ilja Livenson,
Frederik Orellana, Jukka Kommeri, Miika Tuisku, Pekka Lehtovuori,
Klaus Marius Hansen, Helmut Neukirchen, and Ebba Hvannberg. Practi-
cal cloud evaluation from a nordic escience user perspective. In Proceedings
of the 5th International Workshop on Virtualization Technologies in Dis-
tributed Computing, VTDC '11, pages 29�38, New York, NY, USA, 2011.
ACM.

[14] H. Sagehaug, P. Venkataraman, A. Töpfer, K. Tekle, M. Kala²,
P. Sztromwasser, A. K. Stavrum, M. Dondrup, S. Subramanian, F. Roque,
S. M. Hollup, I. Jonassen, K. Petersen, and P. Puntervoll. esysbio: an
adaptable workbench for collaborative life science research. eSysbio, 2013.

[15] Uni Computing and the University of Bergen. esysbio. http://esysbio.
org/about.

[16] Aleksi Kallio Taavi Hupponen Petri Klemelä Massimiliano Gentile Kimmo
Mattila Ari-Matti Saren Mikael Karlsson Eija Korpelainen. Chipster. http:
//chipster.csc.fi/.

[17] M Aleksi Kallio, Jarno T Tuimala, Taavi Hupponen, Petri Klemelä, Mas-
similiano Gentile, Ilari Scheinin, Mikko Koski, Janne Käki, and Eija I Kor-
pelainen. Chipster: user-friendly analysis software for microarray and other
high-throughput data. BMC Genomics, 12:507, 2011.

[18] Michael Reich, Ted Liefeld, Joshua Gould, Jim Lerner, Pablo Tamayo, and
Jill P Mesirov. Genepattern 2.0. Nat Genet, 38(5):500�1, May 2006.

[19] Jill P. Mesirov Principal Investigator Jon Bistline Jared Nedzel Peter Carr
Michael Reich Barbara Hill Jim Robinson Dong-Keun Jang Cathy Stein
Heidi Kuehn Thorin Tabor Ted Liefeld Pablo Tamayo Judith McLaughlin
Helga Thorvaldsdóttir Marc-Danie Nazaire. Genepattern. http://www.

broadinstitute.org/cancer/software/genepattern/.

[20] University of Bergen, Trondheim Tromso includes the Universities in Oslo,
and Aas. Elixir. http://www.bioinfo.no/elixir.

[21] Jon C. Ison, Matús Kalas, Inge Jonassen, Dan M. Bolser, Mahmut Uludag,
Hamish McWilliam, James Malone, Rodrigo Lopez, Steve Pettifer, and
Peter M. Rice. Edam: an ontology of bioinformatics operations, types of
data and identi�ers, topics and formats. Bioinformatics, 29(10):1325�1332,
2013.

[22] Html. http://www.w3schools.com/html/.

[23] Xml. http://www.w3schools.com/xml/.

[24] Schema. http://www.w3schools.com/schema/.

[25] Soap. http://www.w3.org/TR/soap/.

[26] Wsdl. http://www.w3.org/TR/wsdl.

[27] Wsdl2.0. http://www.w3.org/TR/wsdl20/.

73

http://esysbio.org/about
http://esysbio.org/about
http://chipster.csc.fi/
http://chipster.csc.fi/
http://www.broadinstitute.org/cancer/software/genepattern/
http://www.broadinstitute.org/cancer/software/genepattern/
http://www.bioinfo.no/elixir
http://www.w3schools.com/html/
http://www.w3schools.com/xml/
http://www.w3schools.com/schema/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/

[28] Jaspar wsdl. http://129.177.120.189/cgi-bin/jaspar2010/jaspar_

db.pl.

[29] Belgique. Laboratoire de Bioinformatique des Génomes et des Réseaux (Bi-
GRe) Jacques van Helden Université Libre de Bruxelles. Position-speci�c
scoring matrices (pssm). http://biologie.univ-mrs.fr/upload/p202/

01.4.PSSM_theory.pdf.

[30] Ontology. http://www.w3.org/standards/semanticweb/ontology.

[31] Css. http://www.w3schools.com/css/.

[32] Javascript. http://www.w3schools.com/js/.

[33] Acid test. http://acid3.acidtests.org/.

[34] SRI International (editor) Mark Burstein BBN Technologies Jerry Hobbs
USC Information Sciences Institute Ora Lassila Nokia Drew McDermott
Yale University Sheila McIlraith University of Toronto Srini Narayanan
International Institute of Computer Science Massimo Paolucci Carnegie
Mellon University Bijan Parsia The MIND Laboratory of the University of
Maryland at College Park Terry Payne University of Southampton Evren
Sirin The MIND Laboratory of the University of Maryland at College Park
Naveen Srinivasan Carnegie Mellon University Katia Sycara Carnegie Mel-
lon University David Martin. Owl-s: Semantic markup for web services.
http://www.w3.org/Submission/OWL-S/.

[35] Ruben Lara, Holger Lausen, Sinuhe Arroyo, Jos de Bruijn, and Dieter
Fensel. Semantic web services: description requirements and current tech-
nologies. In International Workshop on Electronic Commerce, Agents, and
Semantic Web Services, In conjunction with the Fifth International Con-
ference on Electronic Commerce (ICEC 2003),, 2003.

[36] D. Fensel and C. Bussle. The web service modeling framework wsmf.
WSMF.

[37] Wscl1.0. http://www.w3.org/TR/wscl10/.

[38] Web Services Business Process Execution Language Version 2.0.

[39] University of Innsbruck Juan Miguel Gomez. Brief survey of swws and
wsmf. In SWWS, 2003.

[40] Rusch Doris C. Mechanisms of the soul &#8211 tackling the human
condition in videogames. In Breaking New Ground: Innovation in Games,
Play, Practice and Theory. Brunel University, September 2009.

[41] Cc3.0. http://creativecommons.org/licenses/by-nc-sa/3.0/.

[42] Geany. http://www.geany.org/.

[43] Ubuntu. http://www.ubuntu.com/.

[44] Netbeans. https://netbeans.org/.

[45] Glass�sh. https://glassfish.java.net/.

74

http://129.177.120.189/cgi-bin/jaspar2010/jaspar_db.pl
http://129.177.120.189/cgi-bin/jaspar2010/jaspar_db.pl
http://biologie.univ-mrs.fr/upload/p202/01.4.PSSM_theory.pdf
http://biologie.univ-mrs.fr/upload/p202/01.4.PSSM_theory.pdf
http://www.w3.org/standards/semanticweb/ontology
http://www.w3schools.com/css/
http://www.w3schools.com/js/
http://acid3.acidtests.org/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/wscl10/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.geany.org/
http://www.ubuntu.com/
https://netbeans.org/
https://glassfish.java.net/

[46] Linux mint. http://www.linuxmint.com/.

[47] Gpl. http://www.gnu.org/copyleft/gpl.html.

[48] Lgpl. http://www.gnu.org/licenses/lgpl.html.

[49] Kile. http://www.kde.org/applications/office/kile/.

[50] Chromium. http://www.chromium.org/Home.

[51] Webkit. http://www.webkit.org/.

[52] Safari. http://www.apple.com/safari/.

[53] Emboss. http://www.ebi.ac.uk/Tools/emboss/.

[54] Jack Tang. Java native layer exploits going up. http:

//blog.trendmicro.com/trendlabs-security-intelligence/

java-native-layer-exploits-going-up/.

[55] Anthony Joe Melgarejo. A new exploit kit in neutrino. http:

//blog.trendmicro.com/trendlabs-security-intelligence/

a-new-exploit-kit-in-neutrino/.

[56] Christopher Budd. How the java security situation qui-
etly got much worse. http://blog.trendmicro.com/

java-security-situation-quietly-got-much-worse/?sf17098354=1.

[57] Gelo Abendan. Java 6 zero-day exploit pushes
users to shift to latest java version. http://blog.

trendmicro.com/trendlabs-security-intelligence/

java-6-zero-day-exploit-pushes-users-to-shift-to-latest-java-version/.

[58] Benchmarks. http://attractivechaos.github.io/plb/.

[59] Perl, python, ruby, php, c, c++, lua, tcl, javascript and java comparison.
http://raid6.com.au/~onlyjob/posts/arena/.

[60] Security Engineer Justin Schuh. Saying goodbye to our
old friend npapi. http://blog.chromium.org/2013/09/

saying-goodbye-to-our-old-friend-npapi.html.

[61] Jquery. http://www.w3schools.com/jquery/.

[62] Randall Munroe. Standards. http://xkcd.com/927/.

[63] Annual coverity scan report �nds open source and proprietary software
quality better than industry average for second consecutive year. Press
release, Coverity, 2013.

[64] Donato Barbagallo and Chiara Francalanci. The relationship among de-
velopment skills, design quality, and centrality in open source projects. In
Susan Newell, Edgar A. Whitley, Nancy Pouloudi, Jonathan Wareham, and
Lars Mathiassen, editors, ECIS, pages 2024�2035, 2009.

75

http://www.linuxmint.com/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.kde.org/applications/office/kile/
http://www.chromium.org/Home
http://www.webkit.org/
http://www.apple.com/safari/
http://www.ebi.ac.uk/Tools/emboss/
http://blog.trendmicro.com/trendlabs-security-intelligence/java-native-layer-exploits-going-up/
http://blog.trendmicro.com/trendlabs-security-intelligence/java-native-layer-exploits-going-up/
http://blog.trendmicro.com/trendlabs-security-intelligence/java-native-layer-exploits-going-up/
http://blog.trendmicro.com/trendlabs-security-intelligence/a-new-exploit-kit-in-neutrino/
http://blog.trendmicro.com/trendlabs-security-intelligence/a-new-exploit-kit-in-neutrino/
http://blog.trendmicro.com/trendlabs-security-intelligence/a-new-exploit-kit-in-neutrino/
http://blog.trendmicro.com/java-security-situation-quietly-got-much-worse/?sf17098354=1
http://blog.trendmicro.com/java-security-situation-quietly-got-much-worse/?sf17098354=1
http://blog.trendmicro.com/trendlabs-security-intelligence/java-6-zero-day-exploit-pushes-users-to-shift-to-latest-java-version/
http://blog.trendmicro.com/trendlabs-security-intelligence/java-6-zero-day-exploit-pushes-users-to-shift-to-latest-java-version/
http://blog.trendmicro.com/trendlabs-security-intelligence/java-6-zero-day-exploit-pushes-users-to-shift-to-latest-java-version/
http://attractivechaos.github.io/plb/
http://raid6.com.au/~onlyjob/posts/arena/
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
http://www.w3schools.com/jquery/
http://xkcd.com/927/

[65] Eugenio Capra, Chiara Francalanci, and Francesco Merlo. An empirical
study on the relationship between software design quality, development
e�ort and governance in open source projects. IEEE Transactions on Soft-
ware Engineering, 34(6):765�782, 2008.

[66] Benchling. https://benchling.com/.

[67] Laura J Anzaldi, Daniel Muñoz-Fernández, and Ivan Erill. Bioword: a
sequence manipulation suite for microsoft word. BMC Bioinformatics,
13:124, 2012.

76

https://benchling.com/

	Thanks
	Table of Contents
	List of figures
	Abstract
	Introduction
	Background
	Aims
	Technologies
	HTML
	XML
	SOAP
	WSDL
	Example
	WSDL
	Types
	Messages
	Ports
	Operations
	Bindings

	EDAM Ontology
	Sub-ontologies
	Relationships

	SAWSDL
	CSS3
	JavaScript
	HTML5
	Acid Test
	Summary

	Mathematical model for web services
	Previous comments on technologies
	OWL-S Semantic Markup for Web Services - The OWL Services Coalition
	The Web Service Modeling Framework WSMF
	WSCL 1.0
	WS-BPEL
	SWWS

	Review of a WSDL structure
	Flattening operations and shredding elements
	Operation and port duality
	Mathematical definitions
	Inheritance property in a WSDL
	Making links between an input and an output
	Links interchangeable property
	Making links simplified version
	Semantic correlation between operations
	Semantic interchangeable
	The puzzle view
	The Workflow level
	The Workflow score
	Summary

	The WSDL-Workshop program
	Design choices
	GUI
	EDAM optimization
	Drawing process optimization
	HTML functionality vs JavaScript functionality and Server workload
	Documentation

	License
	Prerequisites
	Chromium Browser
	Computer Minimal Specs

	Starting the program
	Sidebar; WSDL listing and discovering functionality
	Top
	Middle
	Bottom

	Tool bar; creating a design environment
	Piece; the operation representation
	Top bar
	Middle space
	Foot bar

	Canvas; the drawing board where everything work together
	Scale anchor
	Multiple selection
	Deleting Links
	Workflow score

	Keyboard shortcuts
	An simple test case
	Summary

	Discussion
	EDAM
	Choice of language
	Bad WSDL practices which required adjustments
	WSDL1.1 vs other options
	Open Source
	GUI
	Future updates
	Summary

	Conclusion
	Appendices
	GIT Package
	Index

	References

