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1
Introduction

There is currently a shift underway in processor architecture. Previously, one could
expect the performance of a program to increase as faster and faster processors were
introduced. Eventually, processor manufacturers reached the limit of what was phys-
ically viable. Increasing clock frequencies and smaller die sizes create more and more
heat, so much so that it became impractical to cool them by conventional means.
Moore’s law, somewhat paraphrased, states that the number of transistors doubles
every eighteen months. Single core processors are no longer able to convert these
added transistors to increased performance. Instead, manufacturers have sought to
keep Moore’s law relevant by adding several central processing units (CPUs) on a
single die, dubbed multi-core or many-core processors. These rely on several sim-
pler cores which communicate through a system bus or shared hardware caches. By
offering processors with more and more cores one can expect the performance of
programs to keep increasing. Unlike single core processors where increased speed
directly translates to improved performance, this improvement does not come for
free.

Parallel computing is a field of study where problems are broken up into smaller
ones and solved in parallel. The area has seen much research going back as far as the
fifties. This was first a purely theoretical field, but later put into practice for solving
computational intensive problems, dubbed high performance computing. Also known
as supercomputers, these systems can contain several thousand processing units
connected in a cluster. Each node in a cluster has its own memory to store data and
send messages to each other when the need for communication arises. This approach
is called message passing. Message passing scales well for problems where each node
can mostly work independently of the rest of the cluster. This is because the major
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Chapter 1. Introduction

bottleneck is the communication channel. This form of parallelism is referred to as
coarse grained parallelism.

Multi-core systems, as mentioned, communicate through shared-memory and
can access the same data structure instances. Such systems are referred to as shared
memory systems. An advantage when compared to message passing is lower cost of
communication in terms of latency. This allows for a much more fine-grained levels
of parallelism to be achieved efficiently. A usual strategy when using large computer
clusters is to split a large problem into reasonably independent parts and distribute
each part to a node. Each node is a shared memory system. Supercomputers are
programmed mostly by researches or other experts in the field of parallel computing.
Previously these were programmed using raw threads. This means to work directly
with the thread API provided by the operating system. Using raw API threads, like
POSIX threads (pthreads) on UNIX systems or Windows threads, is informally re-
ferred to as the assembly language of parallelism. Like assembly programming, raw
threads provide a great deal of flexibility at the expense of a high cost in effort and
complexity. Another common approach was for each computer vendor to provide
their own set of parallel directives. These allowed a programmer to express paral-
lelism by communicating to the compiler which constructs, typically loops, should
be run in parallel. The syntax of the parallel directives varied from system to system
since no standard was in place.

With the introduction of multi-core processors in commodity computers and
mobile phones, parallel computing is no longer considered a niche in programming,
but something every programmer has to be aware of. It is not expected that every
programmer should become an expert in parallel programming. A lot of research
has therefore been done and approaches have been introduced to abstract away the
hardware details. These approaches have been realized in programming languages
specifically designed to express parallelism and various libraries. Working directly
with threads is complex, time consuming and error prone. By building our parallel
programs with abstractions we can get more done, in less time and with fewer bugs.

The focus of this thesis is approaches that allow the programmer to express par-
allelism in current programming languages. More specifically, using OpenMP [4] and
Intel Threading Building Blocks (TBB) [18] to express parallelism in C++. These
approaches provide abstractions to relieve programmers from having to work directly
with threads. In the remainder of this chapter we will give background information
about parallel programming. This includes some fundamental theory about max-
imum expected improvement, the terminology used throughout this thesis as well
as brief sections about the programming language used in the implementations and
physical processor considerations.

In Chapter 2 we formally present OpenMP and TBB. A brief history of each
approach is given. Following this is a description of the terminology used in the
literature of each approach as well as a trivial example to give the reader a feel
for the syntax. The chapter concludes with a comparison where the strengths and
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1.1. Maximum expected improvement

weaknesses of each approach is discussed.
In Chapter 3 several implementations of the mergesort sorting algorithm are

presented. This serves as an thorough example of how to achieve speedup with
the two approaches. Algorithms using both iterative and recursive techniques are
presented, analyzed and implemented. The implementations are then tested and re-
sults presented showing favorable performance when compared to the parallel sorting
algorithm provided by the TBB library.

Chapter 4 presents the first non-trivial parallel program and deals with finding
connected components in graphs using disjoint set data structures. Several variations
of union-find algorithms are presented and implemented with OpenMP and TBB.
In addition to implement algorithms based on mutual-exclusion, a novel technique
which make use of an additional verification step is presented. An implementation
of Rems algorithm is shown to scale well in all tests performed. This suggests that
the parallel algorithm presented could have practical implications.

Chapter 5 sums up the thesis by suggesting further work and some closing
thoughts on OpenMP and TBB.

1.1 Maximum expected improvement

Amdahl’s law

The speedup S of a program is defined as the reduction in running time when adding
more processing units. In this section we will look at what speedups we can expect to
get. Ideally, doubling the number of processor from p to 2p would lead to a halving
in the time it takes to compute a solution. This is sadly, often not the case. Many
problems have some parts that provably needs to be executed sequentially. This
fact was covered in [1] which would later be referred to as Amdahl’s law. Amdahl’s
law describes the theoretical maximum speedup we can expect when a computation
is carried out using p processors, assuming solving the problem sequentially gives
S = 1.0. Let f be the fraction of the problem that can be run in parallel. The
sequential part then takes time 1 − f and the parallel part takes time f

p . Overall
the computation takes time 1− f + f

p . Amdahl’s law says that the best speedup we
can hope for is S = 1

1−f+ f
p

What does this say about the speedup we can achieve?

Let us assume we have a problem where 10% needs to be run sequentially, and
the remaining 90% can be run concurrently. This gives us f = 9

10 . If we had a
processor with 16 cores the best speedup we could hope for is S = 1

1
10 + 9

16
= 6.4. As

the number of cores increase toward infinity a larger and larger percent of the time
is spent in the sequential part. This is a long way from the S = 16 we can hope
to achieve when dealing with an embarrassingly parallel problem. Embarrassingly
parallel problems are defined as problems where f = 1. In other words, problems
where no communication between processors is necessary.
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Chapter 1. Introduction

Gustafson’s law

The situation seems pretty dire when the repercussions of Amdahl’s law are con-
sidered. Some years after Amdahl published his famous paper another researcher
presented a more optimistic view. This view is known as Gustafson’s law. In [17],
Gustafson points out a wrong assumption made by Amdahl, the size of a problem
instance is not fixed. What we are really trying to do is compute the solution for
the largest problem size possible in some “reasonable” time. More formally the law
reads Sp,n = a(n) + p ∗ (1 − a(n)), where S refers to the speedup, p to the number
of processors, n the problem size and a is the sequential part of the problem. As-
suming that a(n) decreases with increasing values of n, the speedup S approaches
p as n approaches infinity. In other words, as we add more and more processors
the fraction of time spent in the sequential part decreases. This law redefined the
meaning of efficiency to mean reducing the sequential part of a program, even if it
increases the total amount of computation.

Parallel paradigms

Programming multi-core systems add some extra issues the programmer needs to
be aware of. Because of the added complexity involved when sharing data between
processors, one must make sure that data is accessed in a safe manner. The lack of
such guarantees may lead to indeterminate program behavior and hard-to-find bugs.

When reasoning about multicore systems we imagine multiple threads running
in parallel performing operations on some shared objects. It is trivial to imagine
some scenario where several threads attempt to update an object simultaneously and
leave the object in a non-correct state. Thus, there needs to be some mechanisms
for ensuring correct execution.

There are several semantics that all approaches to parallelism need to support,
implicitly or explicitly. These include, in no particular order, constructs for work-
sharing, load balancing, mutual exclusion and synchronization. Work sharing refers
to how we distribute the problem set over available threads. Splitting up a problem
can be a non-trivial task since equal ranges do not necessarily imply equal work. As
an example, suppose we are trying to find all prime numbers from 1 to n. A naive
approach would split the input in n/p ranges where p is the number of concurrent
threads. There are several problems with this approach. First, prime numbers are
not evenly distributed among the set of integers. Secondly, it takes longer to check
whether a value close to n is prime or not. This example is contrived, a better way
to find primes would make use of the Sieve of Eratosthenes, but it shows the need
for a way to specify how the work should be shared. Load balancing refers to the
distribution of work over several threads. Mutual exclusion constructs ensures that
accesses to shared objects is limited to one thread at a time. This can be realized
through the use of locks, or through transactions. Synchronization constructs allows
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the programmer to declare which parts of an algorithm has to be completed by all
running threads before execution can commence.

We usually distinguish between two different forms of parallelism; data and task
parallelism. Data parallelism means applying the same operation on each element
of a data set. An example of this would be applying a squaring function on each
element of an array of integers. An example of special hardware that excels at data
parallelism are graphic processing units (GPU) which offer an order of magnitude
more concurrent threads than are available on CPUs, but with several limitations.
For instance, on a typical GPU, eight or more processors share a common instruc-
tion pointer. Data parallelism is not the focus of this thesis but is mentioned for
completeness.

The other, task parallelism, allows entirely different parallel operations to be
performed on each element. In task parallelism a problem is broken down into
distinct task. These may or may not need to be performed in a given sequence.
Note that it is possible to have a problem consisting of only one logical task. In this
case each task instance computes the result of a sub problem and these results are
then aggregated to provide the result of the entire computation.

Note the distinction between parallelism and concurrency. Parallelism refers to
several threads cooperating to solve a computational problem while concurrency
refers to several threads executing different computations that may be competing
for shared resources. In this thesis we focus on applying parallelism to single task
problems.

1.2 Terminology

This sections covers some of the terminology used in parallel programming. The
terms defined here will be used throughout the thesis.

Race-condition: When a thread wishes to perform a computation on some data
stored in main memory it has to be moved into a local register of the processor
executing the thread. Latency refers to the time it takes from a processor requests
a piece of memory until it is available. Both when reading into a register and
when writing back to memory some latency is unavoidable. When considering only
correctness this is not an issue in sequential programs. However, in parallel programs
incorrect answers can occur if data access is done without any form of coordination.
This is referred to as a race-condition. The classical example of a race-condition is
a counter that is incremented by several concurrent threads. Assume we have two
threads accessing some shared integer value, initialized to 1. If the two threads read
the value at approximately the same time, both will read the value 1. Unaware of the
fact that the other thread is also accessing this integer, each of the threads will load
the value into a register and increment the value to 2. Since there is no coordination
between the threads when accessing shared data the counter ends up with the wrong
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value. It is clear that we need some way to prevent this from happening. One of the
most prevalent forms of coordination is through mutual-exclusion

Mutual-exclusion: Write access to shared memory occurs in what is called a
critical section of program code. Only one thread can occupy a critical section at
a time. Every change made to shared memory should happen in a critical section.
There are several different ways to implement critical sections and different prop-
erties to consider. The standard way of implementing mutual-exclusion is by using
locks. When a thread enters a critical section it must first acquire a lock. If the lock
is already held by someone else the thread waits until the lock is released. Critical
sections should be used sparsely and be as short as possible. Sparsely because of
overhead in acquiring and checking for locks; a lock should only be used to prevent
race-conditions. It should also be short to minimize the time other threads have to
wait to acquire a lock.

Dead-lock: When using multiple critical sections it is easy to imagine scenarios
where a thread t1 is holding a lock a waiting for lock b while thread t2 is holding
lock b waiting for lock a. Such situations are referred to as dead-locks. When a
program enters a dead-lock the execution may halt indefinitely. There exists several
useful heuristics for avoiding dead-locks. For instance, a thread should ideally never
request a new lock while holding another, but if it holds several, locks should be
released in the opposite order of which they where acquired.

Starvation: Every thread that attempts to acquire a lock should eventually suc-
ceed. If not, we say that the thread is starving. Note that no starving threads
implies no dead-locks.

Fairness: If thread t1 requests a lock before thread t2 then t1 should enter the
critical section before t2. We call this property the fairness of a locking scheme.

Scalability: By adding more processors one would expect the time to complete a
computation would go down. When we say a problem scales well, we mean that our
speedup is increasing as more processors are added. In mutual-exclusion approaches
it is not uncommon for a problem to achieve speedup for a few processors only to
stagnate or even diminish in performance as more processors are added.

Thread-safe: By thread-safe we mean a piece of code that can be accessed concur-
rently by several threads without risking race-conditions or invalid memory accesses.
To make this clear we provide an example involving the STL data-structure vector.
A vector is a list data structure that can store arbitrary types in sequential memory.
The length of the list can grow and shrink dynamically to fit all its elements. This
makes the vector one of the most versatile data structures found in the STL. It also
makes it inherently not thread-safe. If a vector needs to grow to fit a new element all
elements might have to be copied to a different location in memory. This happens
because of the guarantee that all elements will be stored sequentially. Imagine what
happens if one thread adds an element, or performs a push_back as it is called in the
STL. This might trigger the whole vector to be copied if there is no room to grow in
the current memory location. If another thread tries to access some element while
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this is happening, we get what is in the C++ specification referred to as undefined
behavior. This is used throughout the specification to signal that it is an illegal
operation, but the exact behavior is left to the implementer to decide. Undefined
behavior is always a bad thing. If we need to do any operation that alters the vector
we need to do this in a mutual exclusive manner. Reasoning like this is important
when doing parallel programming. If not, it might lead to program crashes and
hard-to-find bugs. Even worse, the program might function perfectly fine for long
periods of time without any error occurring, until one day when it does not.

Oversubscription: When writing programs to take advantage of available paral-
lelism, it can be hard to create the correct amount of logical threads. Logical threads
map to physical threads provided by the processor. At first glance this might seem
trivial, all that is needed is to create as many logical threads as there are physi-
cal threads. This is easier said than done in cases where, for instance, threads are
created in a loop or a recursive subroutine. Too many logical threads instantiated
leads to overhead caused by context-switches. This is known as oversubscription.
Another issue to watch out for is undersubscription. This occurs when there are
fewer logical threads than there are physical threads. Of the two, oversubscription
is by far the more likely problem.

1.3 Parallel patterns

Programming patterns were popularized with the release of the book Design Pat-
terns [15]. By relying on commonly arising patterns programmers could use new
abstractions that were easy to understand, both in code and when communicating
ideas. As patterns for program design, there exists several reoccurring design pat-
terns in parallel programming. A framework for doing parallel computing should
encapsulate these patterns and provide the programmer with a way to express paral-
lelism using higher level abstractions, without worrying about the underlying details.
A good reference for parallel design patterns can be found in [21]. We will here look
at some of the more common patterns. These patterns will be used extensively in
the implementations presented later.

The most basic construct is the parallel for. This patterns splits iterations of
a loop across available processing units. Write access to shared memory should be
guarded by a lock. Sometimes we need to aggregate some result in a loop. For
instance finding the sum over all elements in an array. A pattern for this operations
is the parallel reduce. Again, the iterations of a for-loop are distributed over available
threads. The difference here is that each thread holds a local variable, accumulating
the values in its iteration space. Upon completion, the threads must synchronize
and each local value must be combined to produce the final result. These patterns
will be referred to as looping constructs.

A pipeline, or producer/consumer is a pattern where one or more threads produce
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Chapter 1. Introduction

some data which is then processed by one or more threads (the consumers). This
approach can be useful when working on streams of data where the data must be
processed in discrete steps. An example is image or video processing.

1.4 C++

The algorithms presented in this thesis are implemented using the C++ program-
ming language. In this section we will give a brief overview and history of the
language. We will also cover template meta programming, a powerful language fea-
ture which enables libraries like TBB to extend the language capabilities. C++ is
a system-level, statically typed, general-purpose programming language developed
by Bjarne Strousrup starting in 1979 as an enhancement to the C programming
language. Renamed to C++ in 1983, it is one of the most popular languages in
use today. C++ was also the first language to popularize the object-oriented pro-
gramming paradigm. It is sometimes referred to as a “middle-level” language since
it offers access to both low level features and high level abstractions. The language
is maintained by the C++ standards committee [9]. The current language standard
was released in 2003. The next version of the language, dubbed C++0x, is expected
to become the new standard in March 2011. A complete history can be found in [28]

The popularity of C++ grew partly from its backward-compatibility with C. This
allowed new programs written in C++ to take advantage of legacy libraries. This
strong connection with C also means that implementing OpenMP, a set of compiler
directives provided to ease the development of parallel code, was fairly easy.

The C++ standard is divided into two parts, the core language and the Stan-
dard library which later got renamed the Standard template library when support
for templates were added. Templates is a powerful abstraction for writing generic
code where the actual data types gets decided at compile time. This removes code
duplication. For instance, a container data structure has the same semantics regard-
less of which data types it is storing. Since the actual types used are inferred during
compile-time, no run time penalties needs to be endured. By combining several ad-
vanced C++ features with templates, language extensions (like remove_if) can be
implemented as libraries akin to lisp macros. Since its initial release, the language
has seen usage in fields and to solve problems not originally envisioned. This has
lead to a somewhat difficult to understand syntax, by humans and compilers alike.

1.5 Multicore processor architecture

When writing parallel programs, performance issues can arise because of the way
memory is physically accessed. A modern processor can access several different
layers of memory. In addition to the main computer memory, a processor typically
has several areas of memory on the processor chip itself, known as amulti level cache.
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1.5. Multicore processor architecture

A modern CPU, like the Intel i7 processor, has 3 levels of cache. These are referred
to as the L1, L2 and L3 cache. There is a trade-off with caches where the purchase
cost per byte of memory increases as the latency of memory look up decreases. From
the L1 to the L3 caches we have strictly increasing size and therefore an increase in
latency. Caches are useful in order to speed up access to commonly requested data.
They do however, present some problems in the context of parallel computing.

When a processor core changes a value residing in a register, this change is not
immediately seen by other cores. The L1 and L2 caches are typically private to a
core and so, for the value change to become visible to other cores, the value needs
to be written to shared memory. In addition, values are not retrieved one at a time.
Instead, enough values are retrieved to fill a cache-line, which is 64 bytes on the Intel
i7. When a write occurs to any element in a cache line, a synchronization of the
whole line follows. This takes time. Even though cache synchronization is usually
implemented in hardware, a parallel program should try to minimize the amount of
data shared between cores to achieve good performance.

It is important to at least be aware of physical issues like cache latency when
applying parallelism.Changes that need to be synchronized require a write to slower
memory. If this is done often it can severely affect the performance of the parallel
program.
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2
Approaches to parallelism

In this chapter we present the two approaches used to express parallelism in this
thesis. In the following sections the core principles behind each approach is covered,
followed by how they are invoked in code. Simple examples are presented to show
the syntax, and to give the reader a general feel for how parallel programs are
expressed. The last section contains a brief comparison noting the advantages and
disadvantages of each approach.

2.1 Intel Threading Building Blocks

Threading Building Blocks (TBB) is a C++ library developed by Intel to ease
the development of multi-threaded applications. It is available as part of Intels
commercial multi-core suite Parallel Studio and also as an open source library. This
thesis focuses on the open source library. TBB is implemented strictly as a library,
there is no extended language syntax or special compiler features needed. This means
that the library should work on all parallel architectures and operating systems
where a feature complete C++ compiler is available. The calling conventions of the
library are similar to those in the C++ Standard Template Library (STL) and, like
the STL, make heavy use of templates.

TBB revolves around the concept of a task. A task is a unit of independent
work. The programmer expresses problems as tasks. At what time the tasks are
executed is decided by the run-time system. In TBB this behavior is realized through
the task scheduler. By focusing on specifying tasks instead of managing threads
the programmer is relieved of issues such as load balancing. TBB also improves
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Chapter 2. Approaches to parallelism

portability by abstracting the details of the underlying system thread APIs. To
guide the execution of tasks, the programmer can use one of many available parallel
algorithm templates. These implement several recurring parallel patterns such as
loop parallelization and pipelines. These patterns can also be combined to create
complex parallel algorithms. Hence the name “building blocks”. As explained in [25],
these templates are optimized for tasks that are non-blocking and can be executed
out of order. For blocking or dependent tasks the programmer can control the task
scheduler directly. An example of which will be shown in Chapter 3.

Threading Building Blocks is inspired by previous work in the field of parallel
computing. Cilk, a general purpose programming language designed for parallel
computing, introduced the concept of work stealing and recursive range splitting [8].
It showed that while sometimes slower on sequential machines, recursive ranges
often leads to performance advantages regarding load-balancing and cache reuse.
TBB also takes many design cues from the C++ standard template library [22].
Version 1.0 was introduced in 2006 [31], one year after the release of the first main
stream dual-core x86 processor, the Pentium D [16]. There has been previous work
showing the merits of TBB, including [3].

For scheduling, TBB uses a recursive divide and conquer approach. Tasks can
be broken down into smaller pieces as required to take advantage of available par-
allelism. This decision was influenced by the Chare Kernel [27] which showed how
splitting a program into many small tasks makes it easier to distribute across threads
than if only a few large chunks are used. These tasks are then mapped to logical
threads and executed as needed by the task scheduler. If cores become idle, the task
scheduler may split a task and distribute a part to an idle thread. This mechanism
is known in TBB as task stealing.

Upon instantiation, the task scheduler initializes several logical threads. Note
the distinction between a logical thread, specified with a threading API, and a
physical thread executing on a processor. These logical threads are placed in a
global thread pool. By utilizing a thread pool, the scheduler removes the overhead of
thread allocation and destruction between each parallel region.

TBB also offer a set of thread-safe containers. Most C++ developers rely on
the containers implemented in the STL for storing data. While STL containers are
optimized for performance and are in general very efficient, some are also inherently
not thread-safe. The containers offered by TBB have the same semantics as their
STL counterparts, but with added mechanisms to make them thread-safe. Using
such containers offers a trade-off in performance for correctness. The concurrent
containers implemented in TBB are vector, queue and hash map.

2.1.1 Example: parallel average

In this section we present a simple parallel program using TBB. The code implements
an embarrassingly parallel problem, finding the average of three adjacent elements
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2.1. Intel Threading Building Blocks

1 struct Average {
2 float * input , output ;
3 void operator ()( const blocked_range <int >& range ) const {
4 for( int i = range . begin (); i != range .end (); ++i )
5 output [i] = ( input [i -1] + input [i] + input [i+1]) /3.0f;
6 }
7 };

Listing 2.1: Parallel Average Task

1 void ParallelAverage ( float * input , float * output , int n ) {
2 Average avg;
3 avg. input = input ;
4 avg. output = output ;
5 tbb :: parallel_for ( tbb :: blocked_range <int >( 0, n, 1000 ), avg );
6 }

Listing 2.2: TBB template invocation

for all elements in a sequence. All elements are stored in sequential memory.
The example takes two arrays of floating point values, I and O, denoting the

input and output respectively, and stores in element Oi the value (Ii−1 +Ii +Ii+1)/3.
The example is taken from [25]. Note that for this example to execute correctly, the
arrays have to be padded with one element at the front and at the end.

Listing 2.1 shows the task body we want to execute. A task body is realized
in code as a C++ function object. A function object, or a functor, is a design-
pattern used in programming languages that do not support higher-order functions.
A detailed explanation can be found in [24]. Functors are useful for passing functions
as parameters to other functions, known as higher order functions, for execution at
a later time. This is often referred to as a callback or delegate function. Local data
stored in a task instance is defined as regular member fields of the object. In this
case, each instance of the task body holds two pointers to a float value. Serving as
an entry point for the parallel template is the overloaded “()” operator. Overloading
the () operator gives the functor the same calling convention as a regular C function.
When executed, the task body receives a parameter referred to in TBB as a range.
This can be thought of as a pair of iterators, giving the starting and ending indexes
of the array elements assigned to be processed by this task instance. In this case
the type of the range is blocked_range<int>. This is a built in range type for one
dimensional iteration spaces. Lines 4 and 5 iterates over the range assigned to this
task instance, retrieves values from the input array, performs the calculation and
writes the results to the output array.

Listing 2.2 shows how the three pieces, task body, range and algorithm template
fit together. First an instance of the task body is created and its pointer fields
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assigned. On line 5, the parallel algorithm template is called, passing in a range and
a task body instance. Behind the scene, the template spawns new task instances with
the Average task body as payload. Notice the strong but subtle distinction between
a task and a task body. A task implements splitting and execution logic, while the
task body implements the computation itself. When using algorithm templates the
former is handled by the template.

The third parameter passed to blocked_range defines a grainsize. The grainsize
sets a threshold for the minimum size of a sub-range. Note that by default this
value is only guiding, the task scheduler will not create more tasks than needed to
utilize available parallelism. When splitting occurs, the range is divided into two
equal parts with any rounding errors going to the first. Determining the ideal size
of the grainsize is more an art than a science and requires experimentation, but a
recommended heuristic is to split a range so that a task takes at least 10,000 machine
instructions to complete. Improving performance through optimizing grainsize is an
ongoing research topic covered in [26].

We have now seen an example of a typical usage pattern for Threading Building
Blocks. The steps described in the example above, where the programmer provides
task bodies and ranges to templates, will be a recurring theme in this thesis. It is
therefore important to be comfortable with the definitions given here.

2.2 OpenMP

As mentioned, parallel computing is not a new phenomenon. Already in the 1970’s
several vector- and parallel computers were used. Support for programming these
machines came in the form of language extensions to popular languages, first For-
tran and later C. Each computer vendor provided their own extensions with similar
semantics but different syntax. Because of this, moving programs between platforms
was non-trivial. This problem only increased onward into the eighties and nineties.
Several attempts where made to standardize these extensions with a varying degree
of success. In April of 1996, SGI; a manufacturer of high-performance computers,
bought one of its rivals Cray. Since the software tools for the two companies plat-
forms were not compatible a new extension had to be specified. Not wanting this
problem to arise every few years, SGI spearheaded the forming of the Architecture
Review Board (ARB). The goal of this board was to write an open specification
for parallel computing on shared-memory systems. Eighteen months later, in Oc-
tober 1997, OpenMP was born. The standard is backed by several large computer
companies like Intel, IBM, Compaq and Silicon Graphics, and is today the defacto
standard for parallel programming on shared-memory systems. The OpenMP spec-
ification [23] is currently in its third major revision.

The OpenMP Application Programming Interface (API) enables portable shared-
memory parallel programming in C/C++ and Fortran. It consists of a set of com-
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piler directives, library routines and environment variables. OpenMP has seen wide-
spread adoption and is implemented by most popular compilers like the GNU Com-
piler Collection (GCC), Intels C/C++ compiler (ICC) and the Microsoft C/C++
compiler.

OpenMP allows a section of code to be executed by several cooperating threads.
This is done using the “Fork and Join” programming model [12]. A master thread
forks and creates several worker threads. These threads then performs a series of
instructions in parallel which make up a parallel region. At the end of the parallel
region the worker threads waits until all threads have finished and are then killed
off. After this, sequential execution is continued by the master thread. The astute
reader may notice that the only high-level difference from a thread pool approach is
the termination of worker threads after the parallel region

The programmer specifies which sections should be executed concurrently by
inserting directives. In C/C++ any line that starts with a # sign is interpreted
as a command for the preprocessor. A preprocessor is defined as a program than
alters its input in some way before passing it as output to some other program,
in this case the compiler. An example of this is the #include directive. When
the preprocessor encounters a line like #include <stdlib.h> it replaces the line
with the content of the file named in brackets, in this case stdlib.h. All OpenMP
C/C++ directives start with #pragma omp, followed by one or more clauses. The
initialization and destruction of the worker threads is handled by the compiler. This
high-level specification can turn a sequential program into one that utilizes multiple
processors fairly easily. However, to get a satisfactory performance increase, some
optimization and code restructuring is often necessary. Nonetheless, this approach
of turning a sequential program into one that can execute in parallel in incremental
steps, is one of the most appealing features of OpenMP.

OpenMP also includes several helper functions. These functions let the program-
mer manage threads at run-time. The most useful of which allows querying a thread
for its id and to get the total number of available threads.

OpenMP was created as a way to unify the myriads of directive based dialects
that were common in the field of high-performance computing. When it was created
this mostly meant ways of parallelizing loops used for numerical calculations. More
recently, the sophistication required by programmers from their threading packages
have increased. Several types of parallelism used to be hard to express with OpenMP,
like recursive parallelism. While not impossible, such types of parallelism used to
require a substantial effort and hand-tuning by the programmer to yield efficient
implementations. This would defeat some of the main selling points of OpenMP,
the speed of which parallel code can be written. With version 3.0 of the OpenMP
specification, support for a tasking model has been added. Like in TBB, this allows
the programmer to specify tasks and delegate time of execution to the run-time
system. Chapter 3 presents a mergesort-algorithm implemented using this task
construct. An evaluation of the OpenMP tasking model can be found in [5].
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1 void ParallelAverage ( float * input , float * output , int n) {
2 # pragma omp parallel for
3 for(int i = 1; i < n; ++i) {
4 output [i] = ( input [i -1] + input [i] + input [i +1]/3.0 f;
5 }
6 }

Listing 2.3: OpenMP Parallel Average

2.2.1 Example: parallel average

The example presented here implements the same semantics as in Section 2.1.1. An
array of floating point values, a sufficiently large output buffer and the length of
the input is passed in as parameters. We then proceed to calculate the average over
input[i− 1] + input[i] + input[i+ 1].

By looking at Listing 2.3 it is clear that OpenMP has a decidedly lower barrier
of entry than TBB. The only change of the sequential code needed to make it run in
parallel is to add the pragma directive on line 2. #pragma omp marks the start of a
parallel region, and inside a parallel region we can request that code be executed in
parallel. This is called a parallel construct in OpenMP terms. The parallel construct
used here is a parallel for, which distributes iterations over available threads. Note
that the syntax for a parallel for construct is #pragma omp for. The pattern of
declaring a parallel construct immediately after a parallel region is so common that
the two can be combined into a single statement. OpenMP supports several different
constructs and predicates, all of which are relatively easy to understand. These will
be covered as needed when explaining code listings. For complete coverage of the
functionality provided by OpenMP [12] is recommended.

This example shows how little effort is required when retrofitting loops to run
in parallel with OpenMP. Of course, this is a trivial example. Given more involved
algorithms, code analysis has to be performed to identify potential race-conditions.
Code may also need to be restructured to optimize it for multiple threads.

2.3 Comparison

OpenMP and TBB are two potential solutions to the same problem, enabling the
programmer to construct correct programs that utilize parallelism without resorting
to manual thread management. The differentiating factors are performance, level
of abstraction and ease of use. In this section we will try to give the reader an
understanding of the major differences between the two approaches.

Availability: OpenMP needs to be implemented in the compiler. Most popu-
lar compilers implement support for the OpenMP specification, the only notable
exception is Clang, a C/C++ front-end for the Low-level virtual machine(LLVM)
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1 for (int i = 0; i < n; ++i) {
2 if(i<n/2){ DoCubedWork (); }
3 else{ DoLinearWork () ;}
4 }

Listing 2.4: A loop with unevenly distributed workload

compiler. Being so closely tied to the compiler yields some advantages. Foremost one
can be reasonably sure a program will compile on most machines. Another benefit
inherited in the specification is that OpenMP pragma statements not supported by
the compiler will be ignored. This means that the programs will compile even with
compilers that do not support OpenMP. TBB, on the other hand, is a C++ library.
This means that the library has to be installed for a program to take advantage of
it. In addition, the TBB shared-library (or DLL on Windows) has to be available
on the machine that runs the program. While this can cumbersome, it also means
that no special compiler support is needed, since TBB is written in C++.

Load balancing: Another benefit of TBB is the way load-balancing is achieved.
We will make this point clear by means of an example. The loop in listing 2.4 shows
that the amount of time taken by each iteration is not equal. DoCubedWork() runs
in time θ(n3) and DoLinearWork() runs in time linear in n. Clearly, most of the
time spent in this loop will be in iterations 0 to n/2. With OpenMP, a programmer
would first attempt parallelizing this loop by inserting a parallel for pragma.

#pragma omp parallel for

This would split the work among available threads. In TBB one would have to
include the loop in a function object, the task body. As an experiment, the functions
shown in Listing 2.4 where implemented in both OpenMP and TBB. The results
printed below are from execution on a machine with an Intel Core 2 Duo Processor
which supports two concurrent threads.

Using tbb : Time elapsed: 0.877825 seconds.
Using omp : Time elapsed: 1.65978 seconds.
Sequential: Time elapsed: 1.6593 seconds.

When using OpenMP, the iterations get evenly distributed among the available
threads. This means that thread 0 gets iterations 0 to n/2 − 1 and thread 1 gets
iterations n/2 to n. Notice that there is no speedup by invoking OpenMP, in fact it
is slightly slower. This is because when a thread finishes is has to wait for all other
threads in the parallel region to finish. In the example, thread 1 is finished much
faster than thread 0. If we look at the results for TBB we see that we achieved
significant speedup. This is due to task stealing. In the example given, we could
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easily fix the OpenMP performance by using dynamic scheduling. Doing this is very
simple, the programmer just has to append schedule(dynamic) to the pragma.
With dynamic scheduling threads will request additional iterations after running
chunksize number of iterations, where chunksize is specified by the programmer.

Remember that in TBB, the programmer specifies tasks, not threads. The exact
number of tasks created is handled by the task scheduler. After a core has finished all
of its tasks, then if there are tasks queued up at another core that is still processing
a task, the thread can “steal” a queued task. So while the TBB code takes longer
to implement up front, we gain performance because the implementation has more
flexibility at run-time.

Implementing: While TBB requires more code than OpenMP and programs
often have to be written from scratch to adhere with the design of the library, there
are some clear cut advantages to using TBB over OpenMP. First of, it offers a
higher level of abstraction. Where a parallel region in OpenMP can only operate
on primitive values and arrays, TBB works with any thread-safe data structure.
Secondly, TBB allows more complex parallelism to be expressed. The programmer
is free to use the task scheduler directly to create their own parallel patterns, while
OpenMP is limited to the built in constructs. The open source TBB library also
offers slightly better support during development. For instance, assert statements
are provided to catch common programming errors.

In OpenMP a programmer has the choice of one of three scheduling techniques,
static, guided and dynamic. TBB replaces this with a single, automatic, divide and
conquer technique. This technique has been shown to be superior to guided and
dynamic scheduling, but beaten by a finely tuned static scheduler [25].

The greatest advantage of OpenMP is the small amount of changes needed to uti-
lize parallelism in existing code. This can make it a better choice when retrofitting an
existing code base. In professional development, time is often a scarce resource, the
amount of time needed to add pragma statements is drastically less than refactoring
computations into task bodies.

Another, maybe minor, point in TBBs favor is that it is written in a programming
language. Since OpenMP is a set of directives it is not immediately obvious to a
programmer with no experience using the approach. Simple constructs may easily
convey their semantics but a complex directive containing several clauses and a
scheduling strategy may be harder to grok. TBB on the other hand is written
in pure C++. This means that a programmer who thoroughly understands the
language semantics, which is in no way a small feat, will understand the intention.

The two approaches are not mutually exclusive. TBB, being the newer of the
two, was designed to not interfere with any OpenMP threads. In fact, OpenMP can
be used inside TBB code and vice versa. This does however suffer a performance
penalty.
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3
Mergesort

In this chapter we take a more in-depth look at the parallelization approaches by
implementing a sorting algorithm, Mergesort. This algorithm was chosen because it
is a basic algorithm that most readers should already be familiar with. The recursive
nature of the algorithm also makes it an ideal candidate to highlight the differences
between an effective sequential and parallel implementation. The following section
presents an overview of the sequential algorithm, as well as some background infor-
mation and research activity. After this comes a section explaining the optimization
techniques used in the implementation. The section then goes on to explain how the
algorithm can be made parallel. After this comes a section detailing the code itself.
The chapter ends with a section presenting experimental results and a discussion.

3.1 Overview

Mergesort is a comparison based, stable sorting algorithm with run-time complexity
O(n logn). It is covered in most introductory books on algorithms. A good example
of which is Cormen et al. [10]. Sorting, being one of the fundamental operations
used in programs, has been extensively covered in the literature. In [7], Bitton
presents a taxonomy of parallel sorting algorithms which include several parallel
Mergesort algorithms on shared-memory systems. Parallel mergesort algorithms are
in wide-spread use today being, particularly useful in online sorting.

The algorithm sorts a sequence of comparable objects by splitting the input
into two pieces and then solves each by applying recursion. The invocations of the
recursive calls form a balanced binary-tree with depth logn, where n is the length
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of the sequence. After the tree has been expanded, a parent node merges the sorted
sequences from its two children with the Merge algorithm. The Merge algorithm
defines pointers to the start of each sorted sequences given as input. It then proceeds
to store the element of whichever pointer points to the smallest element in a new
list, after which the pointer is incremented. This is continued until all pointers have
traversed their respective input sequences, yielding a combined sequence of all input
sequences in sorted order. The recursive Mergesort algorithm is shown as Algorithm
1. It is invoked by passing the sequence to be sorted as well as pointers to the start
and end of the sequence, denoted in Algorithm 1 as A, p and r respectively.

Algorithm 1 Recursive mergesort
MergeSort(A, p, r)
if p < r then
q = floor((p+ r)/2)
MergeSort(A, p, q)
MergeSort(A, q + 1, r)
Merge(A, p, q, r)

end if

Mergesort belongs to a set of algorithms known as Divide and conquer algo-
rithms. This makes it an ideal candidate for increased parallel performance since
the partitioning of the problem into independent sub problems comes naturally. The
recursive nature of algorithms makes it problematic to express parallelism using a
parallel loop construct. This is highlighted in [29].

3.2 Analysis

Here we present two well known optimizations that can be applied to Mergesort.
First, iterative languages are able to process data iteratively more efficiently than
recursively. This has been studied extensively in the literature [19]. By turning
the recursive implementation into an equivalent iterative implementation, we can
eliminate the overhead of stack frames during execution. This will be referred to
as recursive flattening. A recursive Mergesort algorithm can be run iteratively by
sorting sub-sequences of length 2i, starting from 20 and ending with 2log n−1 = n

2 .
This assumes that n is a power of two.

Mergesort requires a temporary buffer to hold the sorted sequence produced by
the Merge algorithm. In a naive implementation, this buffer is created for every
invocation of Merge. This can be optimized by allocating the buffer once, at the
start of the algorithm. For each of the logn passes over the sequence, the input- and
temporary buffer are then switched. This optimization will be referred to as double
buffering.
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3.2.1 Exploiting parallelism

Mergesort, being a divide and conquer algorithm, parallelizes quite easily. Observe
thatMergeSort(A, p, q) andMergeSort(A, q+1, r) in Algorithm 1 can be executed
in parallel. This is a well known fact and is presented in, among others, [32]. Each
node in the recursion tree has a dependency on its children. This limits the amount
of parallelism that can be utilized near the root of the tree. At each depth d, 0 <
d < log(n), there are 2d non-overlapping sequences. This means that at any given
depth at most m = 2d−1 threads can be utilized. To improve this, a Parallel Merge
can be applied to levels where m < p, with p referring to the number of processors
available. The technique is presented by Reinders in [25]. Figure 3.1 illustrates the
algorithm. Given two sorted sequences, s1 and s2, to be merged, we define m1 as a
pointer to the middle element of s1, and m2 as a pointer to the position m1 would
be inserted into s2 by a insertion based sorting algorithm. This splits s1 into two
independent pieces a and b, where all elements in a are less than or equal to m1 and
all elements of b are greater thanm1. c and d are defined similarly for s2. a and c can
now be merged on one processor, while b and d gets merged on another in parallel.
The algorithm can also split the sequences further if more than two processors are
available. After all merges are complete the sequences are concatenated to yield the
complete sorted sequence. The efficiency of the algorithm depends on m2 splitting
s2 into similarly sized parts.

Figure 3.1: Illustration of splitting two sorted sequences into four that can then be
merged in parallel.

For sufficiently small sequences, sequential sorting is more efficient than a par-
allel algorithm. As the input is split into smaller and smaller parts by recursive
invocations of Mergesort, a cutoff can be introduced. For input smaller than this
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cutoff, sequential sorting will be applied. An algorithm using this technique will be
referred to as small sequence sequential.

3.3 Implementations

This section covers the implementation of the Mergesort algorithms. In order to
compare the speedup of each parallel algorithm, a sequential, iterative Mergesort
algorithm was implemented. This was optimized with recursive flattening and double
buffering. To demonstrate how easily a loop based algorithm can be made parallel
with OpenMP, it makes use of an optional parallel for directive. We cover this
algorithm in Subsection 3.3.1.

In Subsection 3.3.2 and Subsection 3.3.3 we present parallel recursive mergesort
algorithms implemented in OpenMP and TBB respectively. Both of these algorithms
make use of a Parallel Merge to utilize available threads, the implementation of which
is covered in Subsection 3.3.4.

3.3.1 Iterative mergesort

1 int* MergeSort (int* a, int n, bool use_omp ) {
2 int log_n = log2(n);
3 int * scratch = (int *) malloc (n * sizeof (int));
4 for (int i = 0; i < log_n ; ++i)
5 {
6 int interval = 2 << i;
7
8 # pragma omp parallel for if ( use_omp )
9 for (int j = 0; j < n; j += interval )

10 {
11 merge (a+j, a+j+interval , scratch +j);
12 }
13 std :: swap(a, scratch );
14 }
15 free( scratch );
16 return a;
17 }

Listing 3.1: Iterative mergesort with optional OpenMP directive

Listing 3.1 shows an iterative mergesort algorithm. The algorithm uses logn
passes over the input to produce a sorted sequence. Each of these passes can be
done in parallel. This is achieved by adding an OpenMP parallel for directive. This
also demonstrates the first use of an OpenMP clause in this thesis, an if clause. It
evaluates the expression given in parenthesis. If the expression evaluates to true, the
loop following the directive is made to run in parallel. This is included to achieve two
things. First, the algorithm will be timed and used without the parallel region as a
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base time from which the speedup of the parallel algorithms is calculated. Second,
we will see how much speedup can be achieved with minimal effort. Whenever a
nested loop is parallelized it is always best to apply the parallel directive to the
outermost loop. By doing this, threads do not have to be created and destroyed
more than once. In this case, iterations of the outer loop have to be performed in
sequence to get the correct result, so this is not possible.

1 void inline merge (int* start , int * const end , int* scratch ){
2 // Get pointers to the start of each sequence
3 int* fst_seq = start ;
4 int* sec_seq = start + (int) (end - start )/2;
5 const int* middle = sec_seq ;
6
7 // Calculate the length of the combined sequences
8 int len = (int) (end - start );
9

10 // Take min(fst_seq , sec_seq ), add to scratch and increment
11 for (int i = 0; i < len; ++i) {
12 // If elem in fst_seq is smaller and fs_seq has more elems
13 // or sec_seq is empty
14 if( ( *( fst_seq ) <= *( sec_seq ) && fst_seq != middle )
15 || sec_seq == end)
16 {
17 *( scratch ++) = *( fst_seq ++);
18 } else {
19 *( scratch ++) = *( sec_seq ++);
20 }
21 }
22 }

Listing 3.2: The merge function used in Mergesort (Listing 3.1)

As input the algorithm takes a pointer to an array of integers and its length. On
line 3 the temporary buffer, scratch, is allocated. Each iteration of the outer for
loop represents the merge performed on a given depth of the recursion tree. The
variable interval define sub-sequences of increasing length, from 20 to 2log n−1.
Each of which are merged by the helper routine merge in the inner for loop. The
code for merge is shown in Listing 3.2. merge merges the sequence defined by
the two first parameters into the buffer given by the third using a standard merge
implementation. Since the two sequences are assumed to be stored one after the
other in adjacent memory and of equal size, we only need two input pointers. The
length of each sequence is then calculated as the distance between the pointers
divided by two. Finally, the input and temporary buffers are swapped for each
iteration of the outer for loop.
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3.3.2 Recursive OpenMP Mergesort

We now turn to a recursive parallel Mergesort algorithm, implemented using the
tasking model introduced in OpenMP 3.0. Listing 3.3 shows the top-level algorithm
that serves as the entry point to the recursive merge_sort function. After a tem-
porary buffer has been allocated a parallel region is defined. This directive tells the
compiler to emit code to create worker threads. Inside the parallel region another
OpenMP directive containing two clauses, single and nowait, is defined. The single
clause signals that the following code is to be executed by one thread only. By de-
fault, any thread not executing the function will idle until the call completes. This
is not what we want as worker threads will be assigned work inside merge_sort.
By adding the nowait clause this behavior is overridden. The merge_sort function
takes five parameters, pointers to the start and end of the two buffers and a pointer
to an integer. The last parameter is used to determine which of the two buffers
contain the final sorted sequence.

1 int* OMP_MergeSort_Task (int* data , int n) {
2 int * scratch = (int *) malloc (n * sizeof (int));
3
4 int dirval = -1;
5 # pragma omp parallel
6 {
7 # pragma omp single nowait
8 merge_sort (data , data+n, scratch , scratch +n, & dirval );
9 }

10 if( dirval == 1){
11 free ( scratch );
12 return data;
13 }
14 free (data);
15 return scratch ;
16 }

Listing 3.3: Top-level OpenMP Mergesort function

Listing 3.4 shows the recursive Mergesort algorithm. The algorithm starts by
checking if sorting should be done sequentially. Sequential sorting is done for se-
quences with less elements than some CutOff, the exact value of which will be
discussed in Section 3.4. If the input contains more elements than the cutoff value,
the buffers are swapped and pointers to the middle of the input sequences defined.
After this, merge_sort is called recursively for each sub-sequence, the first of which
is decorated with a task directive. The OpenMP task directive declares the function
immediately following to represent a new task. Notice that in each recursive invoca-
tion of merge_sort only one new task is created. The second recursive call, shown
on line 16, gets executed by the current thread. After this comes a directive with
a taskwait clause. This clause acts as a synchronization barrier, ensuring that the
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1 void merge_sort (int* begin , int* end , int* begin2 , int* end2 , int* direction )
{

2 int n = end - begin ;
3 if(n <= CutOff ) {
4 std :: sort(begin , end);
5 }
6 else {
7 if (* direction == -1) {
8 std :: swap(begin , begin2 );
9 std :: swap(end , end2);

10 }
11 int* middle = begin + (end - begin )/2;
12 int* middle2 = begin2 + ( middle - begin );
13 # pragma omp task
14 merge_sort (begin , middle , begin2 , middle2 , direction );
15
16 merge_sort (middle , end , middle2 , end2 , direction );
17 # pragma omp taskwait
18 if ( n >= pmCutoff ) {
19 ParallelMerge (begin , middle , middle , end , begin2 );
20 } else {
21 std :: merge (begin , middle , middle , end , begin2 );
22 }
23 }
24 * direction *= -1;
25 }

Listing 3.4: OpenMP mergesort with tasking

two recursive calls have run to completion before continuing.
After the barrier on line 17, a check is performed to see if the sequence is large

enough to justify a Parallel Merge. The cutoff value used here, pmCutOff, is de-
fined as the size of the whole sequence to be sorted divided by the number of
threads available. This allows all threads available to be utilized in the merge.
The ParallelMerge function is implemented using TBB. This shows that OpenMP
and TBB can be used together. We leave the discussion regarding if this is efficient
or not to Section 3.4, where we present the results.

If the input is less than the cutoff, a sequential merge is done instead. Note that
std::merge is not the merge routine shown in Listing 3.2, but rather the Merge
algorithm provided by the STL.
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3.3.3 TBB Mergesort

Listing 3.5 shows the top level of the TBB Mergesort implementation. Because of
the dependencies between tasks, a parallel algorithm template cannot be applied.
Instead the algorithm implements a new task, MergeSortTask. On line 5, the task
object gets allocated using a special new operator provided by TBB. The operator
is parameterised on the type of task being allocated, in this case a root task. This
enables task hierarchies to be declared. The task constructor takes two pairs of
iterators as input. These iterators point to the beginning and end of their respective
sequences. On line 8 the task scheduler is instructed to spawn the newly allocated
task with a call that blocks until the task has completed.

1 template < typename Iterator >
2 void TBB_MergeSort ( Iterator begin , Iterator end , Iterator out , Iterator

out_end )
3 {
4 // Allocate a new root task
5 MergeSortTask <Iterator >& a = *new(task :: allocate_root ())
6 MergeSortTask <Iterator >( begin , end , out , out_end );
7 // Spawn the task and wait for it to terminate .
8 task :: spawn_root_and_wait (a);
9 }

Listing 3.5: TBB mergesort task

When a task is spawned, the task scheduler calls its execute method. This
happens from within the TBB library. Listing 3.6 shows the implementation of
the execute method for MergeSortTask, an object which inherit from an abstract
baseclass tbb::task. Once called by the task scheduler, the method first checks if
the input should be sorted sequentially. For inputs larger than the cutoff, the two
buffers are swapped and two child tasks get allocated and initialized. The thread
scheduler keeps track of allocated tasks via reference counting. Reference counting
is a common idiom in languages that do not offer garbage collection. It is used to
keep track of how many objects hold a reference to the object in question. Once a
reference counter reaches 0, the referee can no longer be accessed and can therefore
be destructed. This is set on line 22 through the method set_ref_count inherited
from the task base class. The count is set to 3, since the parent has to be included.
The children are then spawned and the parent waits for them to complete. The tasks
are then spawned and the method waits for the child tasks to complete. After all
child tasks are finished, a parallel merged is formed for long sequences. As with the
recursive OpenMP algorithm covered in Subsection 3.3.2, the cutoff value, pmCutOff,
is defined as the size of the complete sequence to be sorted divided by the number
of threads available.

Upon completion, the method returns NULL to signal to the task scheduler that
the task is completed, which decrements the reference count by 1. The count will
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1 class MergeSortTask : public tbb :: task
2 // ... Member declaration and ctors here.
3 task* execute ()
4 {
5 int n = end - begin ;
6 if ((end - begin ) <= CutOff )
7 std :: sort(begin , end);
8 else {
9 if (* direction == -1){

10 std :: swap(begin , begin2 );
11 std :: swap(end , end2);
12 }
13 // Get iterator for middle of both arrays
14 Iterator middle = begin + (end - begin )/2;
15 Iterator middle2 = begin2 + (middle - begin );
16 // Allocate space for child nodes
17 MergeSortTask & a = *new( allocate_child () )
18 MergeSortTask (begin , middle , begin2 , middle2 );
19 MergeSortTask & b = *new( allocate_child () )
20 MergeSortTask (middle , end , middle2 , end2);
21 // Set reference count
22 set_ref_count (3);
23 // Spawn tasks and wait.
24 spawn ( b );
25 spawn_and_wait_for_all ( a );
26
27 if ( n >= pmCutoff ) {
28 ParallelMerge (begin , middle , middle , end , begin2 );
29 } else {
30 std :: merge (begin , middle , middle , end , begin2 );
31 }
32 }
33 return NULL;
34 }
35 };

Listing 3.6: The execute method of MergeSortTask. Constructor and
member declaration have been omitted to save space.

reach 0 as the root task (allocated in Listing 3.5) terminates.
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3.3.4 Parallel Merge implemented with TBB

The top level code for ParallelMerge, shown in Listing 3.7, is similar to the example
shown in Listing 2.2, in that both use a parallel_for algorithm template. As
mentioned, a parallel_for template takes two parameters, a range; specifying
how the input data is to be split among task instances and a task body; the actual
computations to perform. While the example in Subsection 2.1.1 made used of a
blocked_range, which is provided as part of TBB, this algorithm uses a custom
range, ParallelMergeRange. The implementation of which is shown in Listing 3.8.
The struct ParallelMergeRange is taken from a reference book on TBB [25]. In
the book, Parallel Merge serves as an example of input distribution using a non-
trivial range object. When deciding if a new task instance should be created, the
task scheduler checks if the input can be divided any further is divisible. A custom
range therefore needs to provide the methods empty() and is_divisible(), shown
on lines 5 and 6. If is_divisible returns true, the task scheduler invokes a special
constructor, known as a splitting constructor. The splitting constructor implements
the logic for instantiating a new range, which takes half the data covered by the range
passed in as parameter. The second parameter is an object of type tbb::split, the
sole purpose of which is to distinguishing a splitting constructor from the C++ copy
constructor. The constructor performs pointer arithmetic to split the sequence as
explained in Section 3.2. Notice that elements never get copied. This makes range
splitting very efficient.

1 template < typename Iterator >
2 void ParallelMerge ( Iterator begin1 , Iterator end1 , Iterator begin2 , Iterator

end2 , Iterator out ) {
3 parallel_for ( ParallelMergeRange <Iterator >( begin1 ,end1 ,begin2 ,end2 ,out),
4 ParallelMergeBody <Iterator >());

Listing 3.7: Top-level Parallel Merge function.

Listing 3.9 shows the implementation of the task body, which is quite trivial,
since the logic interesting parts has to do with how the data gets split. Given
a range, the body passes iterators stored in the range object to the std::merge
function.
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1 template < typename Iterator >
2 struct ParallelMergeRange {
3 static int grainsize ;
4 Iterator begin1 , end1; // First input sequence
5 Iterator begin2 , end2; // Second input sequence
6 Iterator out; // Output buffer
7 bool empty () const { return (end1 - begin1 )+( end2 - begin2 ) ==0;}
8 bool is_divisible () const {
9 return std :: min( end1 -begin1 , end2 - begin2 ) > grainsize ;

10 }
11 // Splitting constructor
12 ParallelMergeRange ( ParallelMergeRange & r, tbb :: split ) {
13 // Iterator to middle of r's first sequence .
14 Iterator m1 = r. begin1 + (r.end1 -r. begin1 )/2;
15 // Get an iterator to where *m1 would be inserted
16 // into r's second sequence by insertion sort.
17 Iterator m2 = std :: lower_bound ( r.begin2 , r.end2 , *m1 );
18
19 // Assign member iterators
20 begin1 = m1;
21 begin2 = m2;
22 end1 = r.end1;
23 end2 = r.end2;
24 // Our output buffer comes after r's
25 out = r.out + (m1 -r. begin1 ) + (m2 -r. begin2 );
26
27 // Update r's pointers to reflect changes
28 r.end1 = m1;
29 r.end2 = m2;
30 }
31 // Constructor
32 ParallelMergeRange ( Iterator begin1_ , Iterator end1_ ,
33 Iterator begin2_ , Iterator end2_ ,
34 Iterator out_ ) :
35 begin1 ( begin1_ ), end1( end1_ ),
36 begin2 ( begin2_ ), end2( end2_ ), out(out_) {}
37 };

Listing 3.8: The range used in Parallel Merge

1 template < typename Iterator >
2 struct ParallelMergeBody {
3 void operator ()( ParallelMergeRange <Iterator >& r ) const {
4 std :: merge ( r.begin1 , r.end1 , r.begin2 , r.end2 , r.out );
5 }
6 };

Listing 3.9: The task body used in Parallel Merge.
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3.4 Tests setup and results

The experiments were conducted on a machine with 2 six-core AMD Operton 2431
processors (2.4 GHz) with 8 GB of memory. The machine was running Linux with
kernel version 2.6.18. The program was compiled with GCC version 4.5.2 using the
O3 optimization level. Version tbb30_20100406oss of the TBB library was used.

For each test five different arrays of random integers where generated. This
was done to reduce the likelihood that a particular array instance would have some
order that would make some algorithm come out favorably. Set of five arrays with
length ranging from 219 to 228 were then created, initialized with random integers.
The random numbers were generated with the srand function from the C standard
library. The running times given is the time an algorithm used to sort the arrays
divided by the number of arrays. Each algorithm got the same five arrays as input.

In addition to varying the length of the input, all algorithms were tested with
1,2,4,6,8,10 and 12 cores enabled. The cutoff below which the two recursive algo-
rithms would resort to sequential sorting was set to 216. Parallel merges was used
for sequences larger than the size of the input divided by the number of cores used.

The TBB library includes a sorting routine, parallel_sort. This was included
in the evaluation to see how the algorithms presented here measure up to a parallel
sorting routine in wide-spread use. From [25], parallel_sort is a non-recursive
quicksort algorithm, which has a run-time complexity not exceeding O(n log(n)) on
a single processor and approaches O(N) as more processors are used.

3.4.1 Results

We will now look at the result of the experimental evaluation. Table 3.1 shows
the average execution time of all algorithms presented. The two first entries, It.MS
and OMP It. MS, refer to the iterative algorithm presented in Subsection 3.3.1.
Following those two are OMP MS and TBB MS ; the recursive implementations
covered in Subsection 3.3.2 and 3.3.3 respectively. The last entry, TBB Sort, refers
to the parallel quicksort algorithm provided by TBB. The fastest run-times for each
input size is marked with green.

The recursive Mergesort algorithms compare favorably to TBB Sort, beating the
algorithm in all runs for input of length 225 and above. This can also be seen in
Figures 3.4 and 3.5. The speed difference between the algorithms varies widely based
on the size of the input and how many cores where enabled. Figure 3.2 visualizes this.
Note especially the performance of TBB Sort and OMP MS here. The performance
of the two algorithms vary a great deal when using different numbers of threads,
with TBB Sort offering little speedup when going from 4 to 6 enabled cores, while
OMP MS performance increases greatly. This then changes when going from 6 to 8
cores, where TBB Sort sees a performance boost not seen in OMP MS. This is most
likely caused by how efficient the work gets distributed because of the grainsize.
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Algorithm 224 225 226 227 228

It.MS 2.2582 4.6233 9.6445 19.0842 38.9676
OMP It.MS 0.4222 0.8832 1.8516 3.7149 7.9209
OMP MS 0.3993 0.4722 1.4010 1.7271 5.3037
TBB MS 0.2653 0.4225 1.1002 1.8444 4.5177
TBB Sort 0.2641 0.5895 1.1488 2.6189 5.4585

Table 3.1: Run-time in seconds on a 12 core machine. Best run-time for each length
is highlighted in green.

Overall, TBB MS performs better than OMP MS. This seem to suggest that the
task scheduler is more efficient than the tasking model of OpenMP as implemented
in GCC 4.5. Also, TBB MS not does exhibit the change in performance depending
on how many cores are active, even though it uses the same cutoff value as OMP
MS. This suggests the issue with OpenMP performance stems from calling Parallel
Merge, which is implemented in TBB. Figure 3.6 confirms this by plotting results
from the two recursive algorithms with Parallel Merge disabled. The performance
of both TBB MS and OMP MS decreases when not using Parallel Merge, but OMP
MS no longer displays the “jagginess” observed earlier.

3.4.2 Comparison of OpenMP and TBB

TBB MS offered the greatest speedup of all algorithms. While the complexity of
implementing the parallel recursive algorithms was about the same, the TBB im-
plementation requires more supporting code. This results in a longer development
time.

The parallel merge algorithm was only implemented using TBB, since implement-
ing the algorithm using OpenMP would be much more complex. OpenMP does not
offer any mechanisms for separating the assignment of data and the computation
itself. This flexibility along with the fact that TBB yielded greater performance
speaks heavily in TBBs favor.

On the other hand, the iterative algorithm was only made parallel using OpenMP.
While not performing nearly as well as the recursive algorithms, it can be argued
that the speedup achieved is impressive when considering the effort put into it.

We conclude this chapter by noting that TBB offered better performance and
flexibility while OpenMP provided an easier route to a parallel program. Which of
these factors are more important varies depending on the task at hand.
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Figure 3.2: The speedup of each algorithm compared to the sequential algorithm as
more cores are added. Input length is 228.

Figure 3.3: Same as Figure 3.2, but with running time in seconds.
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Figure 3.4: Running time in seconds on a 12 core machine with increasing input
size.

Figure 3.5: Same as Figure 3.4 but with a log2 based y-axis.
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Figure 3.6: Comparison with and without Parallel merge on input of length 228

Figure 3.7: Same algorithms as Figure 3.6 but with running time in seconds as input
size increases.
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4
Parallel union-find for finding connected

components in graphs

This chapter covers an experimental evaluation of several new implementations of
disjoint set data structures for shared-memory systems. Algorithms that operate on
these data structures are often referred to as Union-Find algorithms. These algo-
rithms have several practical applications, among others in image decompositions
and sparse matrix computations. Union-Find algorithms are also useful for finding
minimum spanning trees and connected components in graphs. The latter of which
will be the focus of this chapter. There has been previous effort to construct parallel
Union-Find algorithms for shared memory systems. In [11], Cybenko et al. present
a parallel Union-Find algorithm for both shared- and distributed memory systems.
However, the results were not promising, showing a decrease in performance as more
processors were added. In [2], Anderson and Woll describe an approach using wait-
free objecs, but no experimental results were presented.

In [20], Patwary, Blair and Manne describes an experimental evaluation of se-
quential Union-Find algorithms for disjoint sets. The paper concluded that a simple
Union-Find algorithm developed by Rem, ran faster than classic algorithms, despite
having a higher asymptotic upper bound. This chapter builds on that work and
presents an experimental evaluation of parallel variants of algorithms the authors
described, implemented using OpenMP and TBB.
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4.1 Overview

This chapter covers two set of algorithms that operate on disjoint set data structures,
the Union-Find algorithm and Rems algorithm. Based on these two, several variants
will be implemented. The following subsection formally present the algorithms.

4.1.1 Union-Find

The Union-Find algorithm operates on data structures known as disjoint sets. These
are collections of disjoint sets {S1, S2, ..., Sn} each containing elements from a finite
universe U . Each set is represented by some element x, usually a member of the
set. Two sets S1 and S2 are said to be disjoint if S1 ∩ S2 = ∅. Each set is usually
implemented as a rooted tree where the root node serve as the representative. Each
node in a set contains a pointer to its parent and an id. Each component in a
graph is represented by a set in the data structure. Initially, each node in a graph
is represented as a singleton set. This is done with the Makeset operation. If two
nodes, x and y, share an edge, they belong to the same component. This is realized
by setting the parent pointer of one node to point to the other. However, this linking
has to be done between the root node of the components x and y belong to. The root
node of the component containing x is denoted r(x). The root is located with the
Find operation. It does this by traversing the parent pointers from x to r(x). This
path will be referred to as the find-path. A root node has the property p(x) = x.
Upon finding the root nodes, the components containing x and y are linked with the
Union operation provided the components are not the same. When the algorithm
terminates, each tree of parent pointers will represent a connected component. This
is shown in Algorithm 2. Notice that the edges which result in a Union operation
together form a minimum spanning tree. In [30], Tarjan showed that UnionFind
has time complexit O(n +mα(m,n)) for any combination of m Makeset, Union
and Find operations on n elements, where α is the very slowly growing inverse of
Ackermann’s function.

Algorithm 2 Sequential Union-Find algorithm
1: for x ∈ Nodes do
2: Makeset(x)
3: end for
4: for (u, v) ∈ Edges do
5: ur = Find(u)
6: vr = Find(v)
7: if ur 6= vr then
8: Union(ur, vr)
9: end if

10: end for
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As mentioned, FIND(x) returns r(x); the root of the component x belongs to.
This is done by traversing the find-path of x. By using compression techniques,
which hopefully reduce the distance from x to r(x), subsequent FIND operations
for nodes on the same find-path become faster. Two such techniques are evaluated
in this thesis.

The first, Path Compression (pc), uses a two-pass approach. After finding the
root node a second pass sets the parent pointer of all nodes on the find-path to the
root.

The second, Path Splitting (ps), sets the parent pointer of each node on the find-
path to point to its grandfather. This technique has the advantage of only needing
a single pass, while pc offers greater compression.

Union(x, y) links the sets containing x and y. This is done by changing the
parent pointer of one root node to point to the other. How the two roots are linked
together will be referred to as our union-strategy. Two classic union-strategies will
be evaluated.

The first, known as Link-by-Rank (lr) associates a rank value with each node.
The rank value is initially set to 0. When linking two nodes with equal rank, the
parent pointer of the node with the lowest rank is set to point to the node with
greater rank value. When linking two root nodes with equal rank, the rank of the
new root is incremented by 1. In all other cases the ranks stays the same. This
implies that once a node is no longer root, its rank does not change. The rank of
a parent is always greater than its children. This is known as the increasing rank
property.

The other union-strategy evaluated is known as Link-by-Index (li). This strat-
egy links root nodes by comparing their id. Whichever one has the higher id becomes
the new root. Linking of nodes with equal id cannot occur since the ids are unique.
With this strategy, the id of a parent is always greater than the id of its children.
This is known as the increasing id property. Whenever a point is made that holds
true for both properties, they will together be referred to as the increasing value
property.

With lr the length of a find-path is at most log(n) given a graph with n nodes.
On the other hand, when using li the length can be as much as n. One advantage of
li is that it requires less storage since, depending on the underlying data structure,
ids do not have to be stored explicitly.

4.1.2 Rems algorithm for union find

As explained in [20], Rems algorithm belongs to a set of union-find algorithms called
interleaved algorithms. Instead of doing Find(x), then Find(y), both are started
simultaneously by setting rx ← x and ry ← y. Then, whichever of rx and ry has the
lowest parent id is moved one step along its find-path. This process continues in a
loop until one of two conditions are met. If the nodes are in the same component,
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then at one point p(rx) == p(ry). In this case, the loop can terminate since no
Union is required. If this is not the case, then at some point one of the nodes will
be a root node. Assume r(rx) has a lower id then r(ry). rx is then linked with the
component containing y as a sibling of ry. This means that the two Find operations
do not necessarily have to traverse their entire respective find-paths.

Rem uses a compressing technique known as Splicing, which works as follows.
Assume rx has a lower parent id than ry. Before rx gets assigned the parent value
of x, the algorithm sets p(rx) = p(ry). Since p(ry) must have a higher id than
p(rx), this will hopefully result in a shorter find-path for x. Algorithm 3, shows the
algorithm applied to an edge (x, y). Splicing occurs on lines 7 and 12.

Algorithm 3 Rem with Splicing
1: rx ← x, ry ← y
2: while p(rx) 6= p(ry) do
3: if p(rx) < p(ry) then
4: if r(rx) = rx then
5: p(rx) = p(ry), break
6: end if
7: z ← p(rx), p(rx)← p(ry), rx ← z
8: else
9: if r(ry) = ry then

10: p(ry) = p(rx), break
11: end if
12: z ← p(ry), p(ry)← p(rx), ry ← z
13: end if
14: end while

4.2 Analysis

This section presents how parallelism will be applied. We present two distinct ap-
proaches, one based on mutual-exclusion to prevent race-conditions and an alterna-
tive technique, which does away with mutual-exclusion in favor of a verification step
performed after all edges have been processed.

After all nodes have been initialized, both the classic Union-Find algorithm and
Rem process each edge one by one in a for loop. This can be made parallel by
distributing the edges over available threads using a parallel for pattern. We then
have to consider potential race-conditions that can arise in the parallel execution.
A race-condition can occur whenever a thread writes to shared-memory. Here, this
happens when the parent pointer of a node is updated and when the rank of a
node is incremented. Parent pointer updates occur in Union operations and also

40



4.2. Analysis

Find operations if compression is used. We start by considering only the Union
operation.

4.2.1 Union

If several Union operations run in parallel, a race-condition can occur if Union
operations share one or more node among them. Consider two threads, t1 and t2,
performing Union(a, b) and Union(a, c) in parallel, where a, b and c are root nodes.
Assume a has the id of the three nodes. Since both t1 and t2 believe that a is a root
node, both will attempt to update the nodes parent pointer. The pointer will end
up being set to b or c, depending on which thread updates it last, resulting in two
components. Now consider the sequential execution. If Union(a, b) is performed
first, a will no longer be a root node after the link has occurred. The algorithm
would then proceed to find the representative of the components containing a and
c. This would lead to Union being called with b and c as parameters, making
a, b and c part of the same component after the link. This means that updates to
parent pointers need to occur in a mutual-exclusive code region. In addition, the
Union operation can not assume the nodes passed in are root nodes as the sequential
operation can, since another thread might have updated the parent pointer. Next,
we consider Find operations.

4.2.2 Find

Observe that a Find operation never updates the parent pointer of a root node. We
now consider a Find operation using pc. After finding the root node, another pass
is done setting all nodes on the find path to point directly to the new found root.
If another thread performs a Find operation on a node residing on the same find-
path, the same root node will still be found since the find-path cannot be broken.
This because the parent pointer either points to the next node on the find-path or
to the root node. This argument works for ps as well. The Splicing compression
used in Rem changes the parent pointer if the parent node of the sibling has a
higher index value than the current node. Assuming that the race-condition that
can occur in Union is guarded by mutual-exclusion, Splicing will not result in a
broken find-path since both possible parent pointer settings will lead to the same
root after linking. This means that as long as Union operations are performed with
mutual-exclusion, the parallel algorithms will yield the correct result.

4.2.3 Verification

As covered in Section 1.1, the maximum theoretical speed up of a parallel program
is dependent on minimizing the sequential part. By removing locks, which represent
sequential parts of the program, the potential speedup would increase. As stated,
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this would result in a race-condition. We need to determine the consequences of
race-conditions and show how these errors could be corrected.

Most importantly, we need to make sure that the increasing link value property
is never broken. If this happens it might introduce a cycle in the data structure.
This would lead to an infinite loop in the Find operation for nodes on a find-path
containing a cycle. When using li, it is trivial to see that the increasing link value
property cannot be broken. Since the id of a node never changes, race-conditions
are irrelevant. A race-condition can, however, lead to a cycle when using lr. The
same argument as applied in Subsection 4.2.1 can be used to show this, only applied
to rank values instead of parent pointers. This means that only li can be used as a
union-strategy when doing verification.

The second issue that can arise as a result of a race-condition is that the wrong
number of connected components get reported. Notice that, if this occurs, the
algorithm can only report more components than there actually are, not less. This
means that we can correct the answer by doing a second pass over all edges that
resulted in a Union operation, verifying that both endpoints of each edge are in
the same component. The edges can be checked in parallel, but if any errors are
found they cannot be fixed during this pass. Doing so would introduce the same
race-condition we are trying to correct. Instead, edges where the endpoints are not
in the same component are marked. After all edges have been processed, the marked
edges can be passed as input to the Union-Find algorithm for further processing.
We can then alternate between a Union-Find step and verification step until no edge
given as input to the former result in a Union operation. While this would yield an
entirely parallel algorithm, for practical purposes and since the likely hood that an
error will occur is quite low, a sequential step can be performed after the parallel
verification step to fix any errors found.

The big downside to using verification instead of mutual-exclusion is that a
minimum spanning tree is no longer defined by the edges which resulted in a Union
operation. There exists no easy way to correct this using a post-processing step.

4.3 Expressing parallelism with OpenMP and TBB

Aside from the parallel constructs, the implementations using OpenMP and TBB
are similar. Algorithm 4 shows the general pattern for how all Union operations
work by using lr as an example. Given two pointers to root nodes, the algorithm
first checks if both nodes have equal rank. If not, the node with the lowest rank
value changes its parent pointer to the node with higher rank value. If the ranks are
equal, the node pointed to by ry becomes the root in the new component its rank
is incremented by one. Note that Algorithm 4 is a sequential algorithm. For the
algorithm to be thread-safe, some additional checking has to be performed. This
was left out for clarity but is covered in Subsection 4.3.1.
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Algorithm 4 Link By Rank
1: LinkByRank(rx, ry)
2: if rank(rx > rank(ry) then
3: parent(ry) = x
4: else if rank(rx) < rank(ry) then
5: parent(rx) = y
6: else
7: parent(rx) = y
8: increment rank(ry)
9: end if

Algorithm 5 shows pseudo-code for Find with path-compression. On line 2, a
copy of the input pointer is stored. After which the root node is found by traversing
the find-path, updating the pointer until a root node is found. Remember that a
root node is defined as a node with a parent pointer pointing to itself. On line 6,
the second pass starts which does the compression. Notice that the condition for
the while loop on line 6 uses the less than operator instead of checking for equality.
The reason for this is that another thread might have updated the tree so the node
currently pointed to by px is no longer root. If so, applying compression until a root
node is found would break the increasing rank property.

Algorithm 5 Find with path-compression
1: FindPC(px)
2: t← px

3: while parent(px) 6= px do
4: px ← parent(px)
5: end while
6: while parent(t) < px do
7: temp← parent(t)
8: parent(t)← x
9: t← temp

10: end while

The algorithms were implemented using an object-oriented style. For the classic
Union-Find algorithm, a top-level algorithm implements the pseudo-code given in
Algorithm 2. When constructed, this object takes two objects as parameters which
implement the Union and Find operation to be used. This allows all combinations
of Find and Union techniques to be tested with minimal code duplication. In
total, six Union operations were implemented, three for each of the two union-
strategies presented in Section 4.1.1. The three variations make use of locks provided
by OpenMP, locks provided by TBB as well as a implementation without locking.
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Three different Find methods were implemented, including both the compression
techniques covered in Section 4.1.1 as well as a third which does not apply any
compression. This will be referred to as no compression(nc). Section 4.2.2 concluded
that all Find operations were thread-safe. Therefore the same implementations can
be used with OpenMP and TBB.

For Rem, only one union-strategy and compression technique is used. Because of
this the modular approach used for the classic Union-Find algorithm is not required.
However, a mechanism was implement to toggle the use of Splicing

Two variations of the verification step was implemented, one using OpenMP and
one using TBB. This was done to avoid the performance hit associated with calling
TBB code from OpenMP which was shown to be the case in Section 3.4.1.

Throughout the code examples, several typedefs will be used to minimize clut-
ter. The types they refer to are shown in Listing 4.1. Listing every line of code
would serve little purpose. Instead, we present only enough to cover all parallel
constructs used in the implementation. Subsection 4.3.1 presents OpenMP and is
divided into two parts. The first presents the top-level algorithm for Union-Find.
This demonstrates the use of the parallel reduction directive. The second presents
li implemented with mutual-exclusion provided by OpenMP locks. Subsection 4.3.2

1 struct Node {
2 int parent , rank;
3 };
4 typedef std :: pair <int , int > NodePair ;
5 typedef std :: vector < Node > NodeList ;
6 typedef std :: vector < NodePair > EdgeList ;
7 typedef tbb :: concurrent_vector < NodePair > SafeEdgeList ;
8 typedef tbb :: spin_mutex MutexType ;
9 typedef std :: vector < MutexType > MutexList ;

10 typedef std :: vector < omp_lock_t > OmpLockList ;

Listing 4.1: The typedefs used in the code examples

presents Rem with splicing implemented in TBB and explain the equivalent con-
structs for parallel reduce and locking.
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4.3.1 OpenMP

Top-level Union-Find algorithm

Listing 4.2 shows the top level Union-Find algorithm. Since the algorithm is im-
plemented as a class, it first needs to be instantiated. This is done by passing
objects implementing Find and Union operations in addition to a char pointer and
a boolean value conveying if this is a mutual-exclusion or verification instance. The
char pointer is used for printing the name of the algorithm by the test harness and
is not important for this discussion.

The algorithm is invoked by calling the objects run method with a graph instance
given as a list of nodes and a list of edges, as shown on line 4. If locking is used the
algorithm starts by initializing n locks, where n is the number of nodes in the graph
instance. These locks will be used in the Union operation. The algorithm then
declares a vector which is used to store edges which resulted in a Union operation.
Notice that these edges are only store if they are needed for the verification step.

Parallelism is achieved through a parallel for directive appended with a reduction
clause. A reduction clause takes as parameter one or more variables and a reduction
operation to be performed at the end of the parallel region. Thread private copies of
each variables are then made for each variable. In this case, the addition operation
is performed over private copies of the variable unions. This variable is used assert
that all algorithms perform the same number of Union operations.

If this algorithm instance uses verification, the edges resulting in a Union op-
eration are added to a vector. Since a vector is not thread-safe, insertions must be
performed in a critical section. A critical section is an OpenMP directive that defines
a mutual-exclusive region. The critical section takes an optional name argument, in
this case add_union_edge, to distinguish it from other critical sections. If omitted,
all critical sections are treated as the same section. If a thread is currently executing
the critical section and another thread attempts to enter it, it will block until the
first thread exits the critical section. This is generally faster than a lock, but has
some limitations. Most importantly only code regions can be guarded by a critical
section. This can impact performance compared to a lock, since a lock can guard
specific data elements updated in the region. Another limitation of critical sections
is that they only have a single point of exit. This means that a thread cannot exit
a critical section through a return, goto, continue or break statement.

After the parallel region defined by the parallel for directive terminates, a
Verifier object is instantiated as necessary and the solution is verified. The verifier
uses the same Find and Union operations as its caller.

Link By Index

Both union-strategies make use of the same OpenMP directives, so only li is pre-
sented. Listing 4.3 shows the implementation. The method checks if the nodes
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1 extern OmpLockList ompLocks ;
2 UnionFindOmp :: UnionFindOmp ( Union & u_ , Find& f_ , const char* n, bool useLocking

):
3 UnionFind (u_ , f_ , n), lock( useLocking ){}
4 int UnionFindOmp :: run( NodeList & nodes , EdgeList & edges )
5 {
6 if(lock){
7 ompLocks . resize ( nodes .size () );
8 for( size_t i = 0; i < ompLocks .size (); ++i)
9 omp_init_lock (& ompLocks [i]);

10 }
11 std :: vector <NodePair > union_edges ;
12 int unions = 0;
13 int size = (int) edges .size ();
14 # pragma omp parallel for reduction (+: unions )
15 for(int i = 0; i < size; ++i) {
16 int xp = f.find( edges [i]. first , nodes );
17 int yp = f.find( edges [i]. second , nodes );
18
19 if(xp != yp)
20 {
21 int unionPerformed = u. doUnion (xp , yp , nodes );
22 unions += unionPerformed ;
23 if (! lock && unionPerformed > 0) {
24 # pragma omp critical ( add_union_edge )
25 {
26 union_edges . push_back ( edges [i]);
27 }
28 }
29 }
30 }
31 if (! lock) {
32 Verifier v(nodes , union_edges , typeid (u).name () == linkbyrankid );
33 v. verifySolution ();
34 }
35 return unions ;
36 }

Listing 4.2: OpenMP parallel union find

passed as input are in fact root nodes. This is necessary since another thread might
have updated the parent pointer of the input nodes. If the nodes are still root nodes,
the thread attempts to acquire the lock associated with the lock. By requesting locks
according to a predetermined ordering, deadlocks are avoided. If a thread is not able
to acquire a lock, it blocks until the lock is released. If several threads block waiting
for the same lock to be released, which of them get the thread is indeterministic. In
other words, the lock is not fair.

Upon acquiring the lock the root check is performed again. This is done because
another thread might have changed the parent pointers. This “double-checking” is
a common idiom when locks are acquired given a condition being true. If the input
nodes are still root nodes, the two trees represented by x and y are linked, after
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which the locks have to be manually released. If the input nodes are no longer root
nodes, the new roots need to be found. Some other thread might have done a Union
operation resulting in the two nodes belonging to the same component. If this is
the case, 0 is returned, signaling that no Union operation was performed by this
call. If the nodes still belong to different components, the doUnion method is called
recursively.

1 extern OmpLockList ompLocks ;
2 int LinkByIndexOmpLock :: doUnion (int x, int y, NodeList & nodes )
3 {
4 bool changed = false ;
5 if( parentsNotUpdated (x, y, nodes ) )
6 {
7 omp_set_lock (& ompLocks [std :: min(x,y)]);
8 omp_set_lock (& ompLocks [std :: max(x,y)]);
9 if( parentsNotUpdated (x, y, nodes ) )

10 {
11 if ( x > y )
12 nodes [y]. parent = x;
13 else
14 nodes [x]. parent = y;
15 }
16 else changed = true;
17 omp_unset_lock (& ompLocks [x]);
18 omp_unset_lock (& ompLocks [y]);
19 }
20 else changed = true;
21
22 if( changed ) {
23 NodePair np = findNewRoots (x, y, nodes );
24 if(np. first == np. second )
25 return 0;
26 return doUnion (np.first , np.second , nodes );
27 }
28 return 1;
29 }

Listing 4.3: Link-by-index using OpenMP locks
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1 RemTbb ( const char* n, bool useSplicing , bool useLocking ) :
2 Rem(n, useSplicing ), lock( useLocking ) { }
3
4 int run( NodeList & nodes_ , EdgeList & edges_ ) {
5 SafeEdgeList union_edges ;
6 RemTbbTask rtt(nodes_ , edges_ , union_edges , sp , lock);
7 if(lock)
8 mutexes . resize ( nodes_ .size ());
9 parallel_reduce ( blocked_range <size_t >(0 , edges_ .size () , 100000) , rtt);

10 if (! lock) {
11 TbbVerifier :: verifySolution (nodes_ , union_edges , false );
12 }
13 return rtt. unions ;
14 }

Listing 4.4: Top-level TBB Rem

4.3.2 TBB

Top-level Rem

We now turn our attention to how the code was made parallel using TBB. Listing
4.4 shows the object which implements the top-level Rem algorithm. To store the
union edges, a concurrent vector is used. As mentioned in Section 2.1, this is a
thread-safe container with the same semantics as an STL vector. A task body of
type RemTbbTask is then instantiated and passed to a parallel_reduce parallel
algorithm template, along with a blocked_range. This template requires the task
body to implement a join method in addition to the overloaded “()” operator. This
method is used to implement the reduction. Listing 4.5 shows the join method and
the operator overload for the task body. When two tasks have completed, the task
scheduler combines their results by invoking the join method of one task with a
reference to the other as parameter. Since join is a regular C++ method, a TBB
reduction is very flexible. As opposed to the OpenMP reduction clause, where only
arithmetic operations can be performed to combine data, arbitrary computations
can be performed. In this case, the only thing needed is to combine the respective
tasks unions value. When all tasks have been completed, the task allocated on line
6 of Listing 4.4 will contain the accumulated value.

Rem task body

The computation performed by the task body consists of calling one of two Rem
methods for each edge in its range. The choice of which depends on if this in-
stance uses mutual-exclusion or verification. Listing 4.6 shows the implementation
doRemWithLock. Only half the algorithm is listed, since the other half is a practi-
cally identical else block for the case where p(x) ≥ p(y). The method implements
the algorithm shown in Algorithm 3 with some additional code to support locking,
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1 void join( const RemTbbTask & x) { unions += x. unions ; }
2
3 void operator ()( const blocked_range <size_t >& r) {
4 if(lock) {
5 for( size_t i = r. begin (); i < r.end (); ++i) {
6 unions += doRemWithLock ( edges [i]. first , edges [i]. second , nodes );
7 }
8 }
9 else {

10 for( size_t i = r. begin (); i < r.end (); ++i) {
11 int u = doRem ( edges [i]. first , edges [i]. second , nodes );
12 if(u > 0) {
13 unions += u;
14 union_edges . push_back ( edges [i]);
15 }
16 }
17 }

Listing 4.5: Join method and overloaded “()” operator for RemTbbTask.

as well as the possibility to disable Splicing. On line 4, a check is done to see
if p(x) < p(y). If this is the case, another check is performed to see if x is a root
node. As explained in Subsection 4.3.1, this is done since another thread might have
performed a Union on this node. If the node is still root, the thread attempts to
acquire a lock. When using Rem, only the node with the lowest parent id has to be
locked, since the other node does not need to be a root node. The lock is created by
passing a mutex to its constructor. If a thread attempts to acquire a lock held by
another thread, the thread blocks while waiting. Like the OpenMP lock discussed
in Subsection 4.3.1, the lock is not fair.
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1 int RemTbbTask :: doRemWithLock (int x, int y, NodeList & nodes ) const {
2 while ( nodes [x]. parent != nodes [y]. parent ) {
3 if ( nodes [x]. parent < nodes [y]. parent ){
4 if( nodes [x]. parent == x) {
5 MutexType :: scoped_lock xlock ( mutexes [x]);
6 if( nodes [x]. parent == x) {
7 nodes [x]. parent = nodes [y]. parent ;
8 return 1;
9 }

10 continue ;
11 }
12 if(sp){
13 int z = nodes [x]. parent ;
14 nodes [x]. parent = nodes [y]. parent ;
15 x = z;
16 }
17 else x = nodes [x]. parent ;
18 }
19 // Same code as above but with p(x) >= p(y)
20 }
21 return 0;
22 }

Listing 4.6: Rem algorithm with mutual-exclusion provided by TBB
locks.

4.4 Test setup and Results

The experiments were conducted on a machine with 2 six-core AMD Operton 2431
processors (2.4 GHz) with 8 GB of memory. The machine was running Linux with
kernel version 2.6.18. The program was compiled with GCC version 4.5.2 using the
O3 optimization level. Version tbb30_20100406oss of the TBB library was used.

Since the performance of graph algorithms can vary depending on the topography
of the graph, the algorithms were tested with several graph instances. The graphs
used are shown in Table 4.1. The first graph in the table, er, is a random graph
generated by GTgraph [6]. The second, lg, is a one-component graph were every node
has a degree of one. This graph is included as a worst-case instance for verification
algorithms. The three next graphs are randomly generated instances of small-world
graphs. A small-world graph is a graph where most nodes are not neighbors, but
most nodes can be reached from any other in just a few steps. Lastly, two real-world
graphs were used. The first of which is used in linear programming and the second
in medical science [13].

Test were performed on all algorithms for all graphs with an increasing number
of cores utilized. At each number of cores, each algorithm ran 5 iterations. The
running times presented are the average of the five iterations.
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Graph |V| |E| Comp
er 4,000,000 10,000,000 27385
lg 400,000 399,999 1
sw1 75,000 12233404 9465
sw2 100,000 16383918 34465
sw3 175,000 27339040 43929
rw1 (af_shell10) 1,508,065 25,582,130 1
rw2 (boneS10) 914,898 27,276,762 1

Table 4.1: The graph instances used in the experiments

Algorithm er lg sw1 sw2 sw3 rw1 rw2
NC LR 2.0342 0.0427 0.2612 0.3814 0.7896 0.3905 0.4219
PS LI 1.5852 0.0406 0.3164 0.4603 0.9168 0.5574 0.6131
PS LR 1.5541 0.0437 0.3087 0.4511 0.8942 0.4571 0.4937
PC LI 1.5557 0.0404 0.2791 0.4052 0.8302 0.4585 0.5236
PC LR 2.0067 0.0442 0.2689 0.3943 0.8081 0.4037 0.4397
Rem SP 1.1249 0.0190 0.1118 0.1620 0.3625 0.2709 0.2563

Table 4.2: Run time in seconds for the sequential algorithms. The fastest algorithm
for each graph is highlighted in green.

4.4.1 Results

Two algorithms were omitted from the experiment because they ran several orders of
magnitude slower than the rest. The algorithms omitted are Rem without Splicing
as well as classic Union-Find using nc and li. In addition, nc was omitted from
verification algorithms. The results are divided into three parts. First we present
the running time of the sequential algorithms. Then we cover the parallel variants
of the classic Union-Find algorithm. The third section presents the parallel Rem
algorithms.

Sequential algorithms

Table 4.2 shows the running time for each sequential algorithm on each graph in-
stance. The fastest algorithm by far for all graph instances is Rem. This confirms
the findings presented in [20]. Of the classic Union-Find algorithms, none stand out
as the fastest, with the ordering changing between graph instances. nc lr performs
well on all graphs with the exception of er; a very sparse graph.
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Parallel Classic Union-Find

We now discuss the variations of the classic Union-Find algorithm. Both the ap-
proaches using mutual-exclusion and verification will be covered. Table 4.3 shows
the running times in seconds for each algorithm when utilizing 12 cores. The algo-
rithm with the lowest running time is highlighted in green. The algorithm with the
best run time of all is highlighted in red. As was the case with the sequential al-
gorithms, no one combination of Union and Find operations stand out performing
consistently better than the rest. Combinations using ps do however stand out as
being the slowest of the three Find operations overall.

When considering the algorithms using verification, TBB PC LI performed best
on all graph instances. From this observation we can conclude that the combination
of pc with li outperforms ps with li. Notice the extremely high run times for
verification based OpenMP algorithms. The reason for this is that the algorithm
adds edges which resulted in a Union operation to a vector inside a critical section.
This creates a region of code with high contention. This is particularly obvious for
graph instance where a high percentage of edges result in a Union operation. An
example of this can be seen in the running time for er, where OpenMP verification
algorithms are an order of magnitude slower than the TBB variants. This also shows
that concurrent_vector is implemented efficiently.

Figure 4.1 shows the speedup of all classic Union-Find algorithms on rw1. The
speedup is calculated from the fastest sequential non-Rem algorithm, which for this
graph instance was nc lr. We consider the OpenMP implementations first. With
the exception of the two verification algorithms, all algorithms manage to utilize
additional cores efficiently. The three algorithms that offer the best speedup all use
lr as union-strategy. Of the lock based algorithms, ps li yields the least amount
of speedup. We now consider the TBB implementations. Again, the three best
algorithms use lr. However, the TBB algorithms are only able to achieve close to
a 7x speedup factor, while the same algorithms in OpenMP pass an 8x speedup.
The verification algorithms, while offering some improvement over the sequential
algorithm, performs poorly. This means that the savings achieved by not using
locks do not justify the second pass in this graph instance.

Figure 4.2 shows the results for a different graph; the largest small-world graph,
sw3. Again, we start by considering the OpenMP implementations. For this graph
instance, the amount of speedup is significantly less than for rw1. From 8 cores and
upward, adding more cores has a negative effect on the performance of the algorithm.
On this graph instance, the TBB implementations offer a better speedup, with the
fastest of the locking algorithms being nc lr on 10 cores. From 10 cores onward
though, any additional cores negatively impacts the performance. The algorithm
with the best performance on this graph is a verification algorithm, pc li. The
algorithm continues to show speedup as more cores are added. The reason for this
algorithm performing so well is because of the relative few number of edges which
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result in a Union operation. Since this graph instance is relative dense, the number
of threads blocking while waiting for locks increase. Which shows by the dip in
performance.

Based on sw3, it is likely locks are TBB locks are more efficient.
In total 840 iterations where performed using verification algorithms. Of these,

an error caused by a race-condition occurred twice, both times in er. Both happened
in pc li when using TBB, once when 10 cores were used and once with 12. There
is no reason to think that this means TBB is more prone to errors then OpenMP.
We note however, that errors were extremely rare in these experiments.

Parallel Rem

As shown in Table 4.3, Rems algorithm with Splicing was superior to all other
algorithms tested in all but one graph, lg. However, the difference in execution
time between pc li and Rem implemented with OpenMP and mutual-exclusion
was negligible. On all instances tested, locking was superior to verification. The
difference between using OpenMP and TBB in algorithms were also minimal.

Figure 4.3 shows the speedup of the parallel Rem algorithms on rw1. Like we
observed in Figure 4.1, verification algorithms perform badly on this graph instance.
Both lock based algorithms show speedup until 10 cores are utilized. At which point
the OpenMP implementation stagnates. The reason for this is unknowns. The TBB
algorithm does however, continue to speedup.

Looking at Figure 4.4, which shows the speedup on sw3, we see that Rems
algorithm using locking to not suffer from bad scalability as the classic Union-Find
algorithms do. This is likely because, with Rem, only a single lock needs to be
acquired per Union operation.

Overall, the results for the parallel Rem algorithms look promising, with TBB
RemSP with locking showing speedup as more cores were added across all graph
instances.

4.4.2 Comparison of OpenMP and TBB

We will now cover the biggest differences between the OpenMP and TBB constructs
applied in this chapter. We start by discussing locking. OpenMP, being designed to
work both C/C++ as well as Fortran, do not offer the same level of abstraction as
TBB does. When using locks, the programmer first has to manually initialize the
locks by calling the omp_init_lock function. TBB on the other hand, implicitly
initialize the locks through a default constructor. Also, OpenMP locks have to be
manually acquired and released. TBB, being a C++ library, can make full use
of the features offered by the language. An example of this is the scoped_lock,
which makes use of a C++ feature known as Resource Acquisition Is Instantiation.
This means that the lock is acquired at the time of declaration. When the code
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declaring the lock goes out of scope, the lock is automatically released through the
lock objects destructor. This simplifies the code and removes the risk of introducing
bugs by forgetting to release a lock. This could be implemented for OpenMP locks
as well by wrapping the acquisition and releasing in a class, but is not provided by
default.

Secondly, TBB offers more flexible reductions since it is invoked as a standard
method. The OpenMP reduction clause only supports primitive types as reduction
values and only primitive reduction operations when combining them. The behavior
of the TBB reduction template can somewhat be mimicked in OpenMP. Instead of
using the reduction clause, thread private copies of complex objects can be declared
inside a parallel region. At the end of this region, the objects can then be joined
in a critical section. This would however not offer the same performance as only a
single thread could execute the critical section at a time.

Which of the two parallel approaches offer the best performance varies between
graph instances. The results seem to suggest that the locks offered by TBB are
superior to their OpenMP counterparts. They also seem to suggest that parallel for
loops are faster in OpenMP. These hypothesis have not been tested enough to draw
any conclusions.
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Algorithm er lg sw1 sw2 sw3 rw1 rw2
Omp NC LR L 2.9076 0.0163 0.1091 0.1163 0.2391 0.0477 0.0530
Tbb NC LR L 1.8699 0.0296 0.0705 0.0828 0.1702 0.0593 0.0564
Omp PC LI L 2.7141 0.0147 0.1036 0.1085 0.2267 0.0530 0.0560
Tbb PC LI L 1.6515 0.0302 0.0733 0.0860 0.1710 0.0651 0.0602
Omp PC LR L 2.9474 0.0158 0.1074 0.1153 0.2326 0.0478 0.0487
Tbb PC LR L 1.8588 0.0314 0.0722 0.0822 0.1683 0.0563 0.0544
Omp PS LI L 2.7679 0.0153 0.1912 0.2519 0.4075 0.0646 0.0628
Tbb PS LI L 1.6986 0.0306 0.1633 0.2164 0.3528 0.0778 0.0792
Omp PS LR L 2.9643 0.0164 0.1909 0.2432 0.3977 0.0514 0.0510
Tbb PS LR L 1.8991 0.0322 0.1553 0.2069 0.3235 0.0615 0.0579

Omp PC LI V 6.1788 0.5627 0.1178 0.1305 0.2638 2.1804 1.2751
Tbb PC LI V 0.6186 0.0734 0.0400 0.0520 0.1007 0.2197 0.1378
Omp PS LI V 6.1658 0.5607 0.2034 0.2665 0.4356 2.2203 1.2796
Tbb PS LI V 0.6702 0.0756 0.1310 0.1905 0.2954 0.2337 0.1488

Omp RSP L 0.2241 0.0149 0.0190 0.0267 0.0512 0.0500 0.0426
Tbb RSP L 0.1758 0.0185 0.0254 0.0322 0.0519 0.0417 0.0385
Omp RSP V 6.6109 0.5880 0.1090 0.1199 0.2413 2.2599 1.3307
Tbb RSP V 0.4909 0.0610 0.0230 0.0303 0.0558 0.2043 0.1052

Table 4.3: Execution time in seconds when utilizing 12 cores. The fastest algo-
rithm for each related algorithm type is highlighted in green. The fastest overall is
highlighted in red.
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Figure 4.1: Speedup of all classic Union-Find variations compared to sequential nc
lr on rw1
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Figure 4.2: Speedup of all classic Union-Find variations compared to sequential nc
lr on sw3
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Figure 4.3: Speedup compared to sequential RemSP as more cores are added on
rw1
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Figure 4.4: Speedup compared to sequential RemSP as more cores are added on
sw3
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5
Conclusion

In this thesis we have explored ways to parallelize code using OpenMP and TBB. In
addition, we have presented a parallel algorithm for disjoint set data structures that
shows promise with regards to scalability. This closing chapter offers an overview of
possible further work and presents some final thoughts on OpenMP and TBB.

5.1 Further work

The parallel Rem implementation presented in Chapter 4 looks promising. The
algorithm showed significant speedup in all experiments. These findings should be
verified and tested more extensively, since they could have practical implications.
The results offered in this thesis are not thorough enough to conclude that the
algorithm performs well for all variations of graph. It would also be interesting to
see experiments on a machine with more than 12 cores, since the tests never reached
a point where adding more cores resulted in poorer performance.

Another possible project would be to develop an implementation of Rem with
the goal of having it accepted into the Boost C++ library [14]. Currently, Boost
only offers algorithms for disjoint sets based on the classic union-find algorithm.

5.2 Closing thoughts on OpenMP and TBB

As mentioned several times earlier, OpenMP and TBB shows promise in different
situations. For basic loop parallelizations, OpenMP seems to have the edge over
TBB because of its minimal syntax and intuitive semantics. This ease in expressing
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basic parallelism does however come at the cost of flexibility. Past a certain complex-
ity threshold, expressing parallelism with OpenMP becomes awkward. This point
has not been shown to a great extent in the parallel algorithms presented here, with
Parallel Merge being the exception 3.3.4. This since few advanced constructs were
needed. OpenMP has however, come along way with the introduction of the tasking
model in version 3.0. For the next version of the specification, several interesting
features have been proposed [4]. These include better error handling, better inter-
operability with other threading packages, support for transactional memory and
improvements to the tasking model. These features would go along way in bridging
the gap between the two approaches. Additional features is not necessarily positive.
By introducing more and more advanced constructs, the OpenMP specification does
run the risk of loosing its focus on the areas where it shines.

TBB, being a library and consisting only of pure C++ code, makes it a poten-
tially better fit in enterprise settings. In large projects spanning several years the
ability to understand how different components of a system communicate becomes
greater. The abstractions provided by TBB allows this to be expressed more clearly
and at a higher level. Also, the building blocks provided by TBB makes it possible
to express complex forms of parallelism. These advanced constructs have not been
needed for the algorithms presented in this thesis,and as such any examples of these
constructs would be contrived. The ability to express advanced forms of parallelism
has increased further in recent months with the addition of a message passing system
for shared memory systems to the library [18].

Performance wise, TBB showed a slight edge overall in the experiments con-
ducted for this thesis, but not enough to conclude that it is superior to OpenMP.
To conclude this it might be useful to conduct experiments with OpenMP imple-
mentations in C, since that would likely result in improved performance.

Overall, the choice of which approach to choose depends entirely in the problem
at hand. Hopefully, this thesis has been able to give the reader an intuition to aid
in this choice.
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