
Visualization and Interaction with Medical Data in
Immersive Environments

Yngve Devik Hammersland

December 2008

Visualization Group
Department of Informatics

University of Bergen

Master Degree esis

Visualization and Interaction with Medical Data in
Immersive Environments

by Yngve Devik Hammersland
December 2008

supervised by Ivan Viola

Visualization Group
Department of Informatics

University of Bergen

Trademarks used in this thesis generally belong to respective owners.

Abstract

Immersive visualization techniques are just starting to see limited adoption in medical ap-
plications. e Visualization Group at the University of Bergen wish to expand its research
efforts into such immersive visualization techniques. A new immersive environment in-
stalled at the University is meant to be utilized for this purpose.

is thesis presents a solution which enables the use of VolumeShop in the immersive
environments for presentation of volumetric data and for combination of 2D and 3D med-
ical imaging modalities. VolumeShop is a rapid prototyping environment for visualization
techniques, which is oen used by our visualization group.

For general use of the immersive environment, motion tracking support needs to be
added to VolumeShop. is motion tracking support can then be utilized to realize the im-
mersive visualization pipeline. is pipeline computes correct perspective projection based
on the user’s position. Additionally it implements intuitive gesture based interaction with
the data using a handheld interaction device.

A multimodal visualization pipeline is described and implemented, which enables the
visualization of 2D+time ultrasound images combined with MRI volumes. To realize this
pipeline, components for motion tracking of the ultrasound probe, for synchronization of
the time offset between the motion tracking and the ultrasound series, picking landmarks
in the ultrasound slice and MRI cross-section, and computation of the registration trans-
formation which spatially unifies the two of the modalities.

e result of this thesis is a general purpose motion tracking component as well as the
two described pipelines.

i

Contents

1 Introduction 1

1.1 Contribution . 3
1.2 esis outline . 5

2 State of the Art 7

2.1 Background Material . 7
2.1.1 Homogenous Coordinates and Matrices 7
2.1.2 Elastography Phantom . 8

2.2 Motion Tracking Technologies . 9
2.2.1 Tracking Devices . 9
2.2.2 Tracking MiddleWare . 11
2.2.3 Tracking in the Medical Domain 13

2.3 Stereoscopic Display Technologies . 14
2.3.1 Filtering . 14
2.3.2 Displays . 14

2.4 Visualization Techniques . 15
2.5 Registration Techniques . 16

2.5.1 Modalities . 17

3 Immersive Visualization Pipeline 19

3.1 Overview . 19
3.1.1 Immersive Visualization on Large Screen Stereo Display 20
3.1.2 Visualization of 3D Modality with 2D Ultrasound 23

3.2 Acquisition and Tracking Devices . 28
3.2.1 Motion Tracking . 28
3.2.2 Acquisition of Medical Data . 30

3.3 Immersive Visualization . 32
3.3.1 Interaction . 33
3.3.2 “Lookingrough a Window” 35

3.4 Multimodal Visualization . 38
3.4.1 Time Synchronization . 38
3.4.2 Registration . 40
3.4.3 Computing the Registration Matrix 42
3.4.4 Multimodal Visualization . 44

iii

CONTENTS

4 Implementation 47
4.1 e VolumeShop Framework . 48
4.2 Plugins . 49

4.2.1 plugin_interactor_opentracker 50
4.2.2 plugin_interactor_transform_playback 51
4.2.3 plugin_interactor_matrix_compensator 53
4.2.4 plugin_interactor_slice_provider 54
4.2.5 plugin_interactor_trackedmouse 55
4.2.6 plugin_interactor_trackercamera 56
4.2.7 plugin_renderer_slice . 58
4.2.8 plugin_renderer_matrix . 59
4.2.9 plugin_interactor_point_specifier 60
4.2.10 plugin_interactor_coreg . 62

5 Results 65
5.1 General Purpose Tracking . 65

5.1.1 Precision . 66
5.2 Immersive Visualization . 66

5.2.1 Viewpoint Dependent Perspective Projection 67
5.2.2 Gesture Based Immersive Interaction 67
5.2.3 Demonstration of the Immersive Environment 68

5.3 Multimodal Visualization . 68
5.3.1 Ultrasound Scan of a Liver . 70
5.3.2 Multimodal Visualization of the Elastography Phantom 72

6 Summary 77
6.1 Summary . 77

6.1.1 Motion Tracking . 77
6.1.2 Immersive Visualization . 78
6.1.3 Multimodal Visualization . 79

6.2 Conclusion . 80
6.2.1 OpenTracker . 81
6.2.2 VolumeShop . 81

6.3 Future work . 82

iv

1
Introduction

In recent times, the possibility to acquire volumetric data sets has become a reality. In certain
domains it has even become commonplace, e.g. in themedical domain, 3D anatomical scans
has partially replaced x-ray. With the availability of such data, the importance of being able
to make sense of it in a timely manner has emerged.

e sheer size of volumetric data is staggering. Comparing an image to a volume with
512 units along each of the dimensions, shows how much the size of the data grows by
adding an additional dimension of comparable size. For example if a image has 5122 =

262 144 elements whereas a volume has 5123 = 134 217 728 elements; the volume contains
512 timesmore data than the image. emost commonway tomake sense of such data, is to
reduce the volume to a set of images representing consecutive cross-sections of the volume.
A volume becomes 512 images, and one inspects the images one by one, not being able to
look at the big picture. is allows the inspection of the data with a very small amount of
processing as volumes are usually stored as a sequence of images.

e science of visualization has the noble goal ofmaking sense of the aforementioned big
picture. As the name visualization implies, the data is presented to the user visually taking
advantage of the processing power of the human visual cortex. Presenting all the available
data may cause information overload, so one of the aspect of visualization is to reduce the
amount of data presented. In addition it is essential to present only the important parts of
the data, but still present the rest of the data to a lesser degree to enable exploration. is
kind of emphasis on the important parts of the data is called focus+context [13].

In recent years, the advance of computers processing power and of dedicated graphics
hardware in particular has skyrocketed. ese advances have been driven by the consumer
market, especially the computer gaming community, which is demanding more powerful
graphics hardware to display 3D computer games with higher resolutions and with more
details than before. is trend is further reinforced by themanufacturers, since the only real
differentiating measure between graphics hardware is its performance. e reason for this
is that the feature set have been more or less standardized by Microso’s Direct3D and the

1

CHAPTER 1. INTRODUCTION

OpenGLprogramming interface standards. e result is thatmost computers sold today, for
the domestic market, is powerful enough to perform visualization of volumetric data. On
the other hand this has also resulted in reduced focus on high end features in consumer-
grade hardware such as true support for stereoscopic displays.

Stereoscopic displays have advantages when it comes to presenting volumetric data. Hu-
mans use several depth cues to interpret the depth of the perceived images. e depth cues
a monoscopic desktop setup is able to give us are occlusion, perspective, atmospheric fog
and lighting. A stereoscopic setup is able to also give us binocular disparity which is the
differences in the images perceived by the le and right eyes. Using the stereoscopic display
to simulate binocular disparity enables us to use our depth perception to aid the processing
of the volumetric data. In our case, we also track the users position which enables us to
simulate parallax. at is, objects close to the observer appear to move faster than objects
farther away when the user moves.

As a result of the consumer driven market for graphics hardware, readily available and
cheap commodity hardware are sufficient to perform research on visualization. Cheap hard-
ware and the lack of support for stereoscopic displays on said hardware, has caused visual-
ization of volumetric data to be realized mostly on desktop, using monoscopic displays and
rendering technology. is is evident in our own visualization group at the University of
Bergen as most of their research is carried out on desktop systems.

In certain domains — such as seismic data exploration — stereoscopic immersive envi-
ronments are being used in the workflow. e companies dealing with these kinds of data,
are mostly in the oil and gas industry which have the resources to acquire the necessary
immersive environments and to develop immersive tools and techniques.

In medicine, monoscopic computer aided diagnosis is mostly used, however there is
active research in image guided surgery and mixed medical reality approaches. Such tech-
niques are used especially under neurosurgical intervention which is performed using pre-
cise tracking and registration of the patient.

To further aid the understanding and exploration of volumetric data, interaction tools
are used to interact with the data. Interaction is an important aspect of data exploration in
immersive environments, and is the key to fully utilize immersive environments. An im-
portant aspect of interaction is responsiveness. e user is basically blind in the sense that
she is not able to see the consequences of her actions until it is presented on the display. is
problem can be reduced by using intuitive interaction tools, which increase the chance that
the user knows what to expect. If the consequences of the user’s actions are immediately ap-
parent, it is much easier to pinpoint where features of interest occur. e responsiveness in
an immersive system is defined by the time it takes from when the user moves, to when the
display is updated to reflect this. us there are two latency factors in immersive environ-

2

1.1. CONTRIBUTION

ments; the time to get the position from the motion tracker and the time it takes to render
the image and display it. In fact, if this lag is significant, it can cause motion sickness [14].

In addition to the visualization and data exploration mentioned above, a use of such an
immersive environment can be used in a collaboration environment. Because of the size of
the screen, it is possible to be used by more than one person at a time. Multiple users may
collaborate in exploration of data or a user may give a prepared demonstration to a group
of people. One example of this is medical use; where doctors may explore a 3D anatomical
or functional scan of a patient while discussing the diagnosis.

1.1 Contribution

In this thesis an open-source solution for immersive stereoscopic volume visualization with
motion tracking is provided. is thesis aims to use existing solutions where available and
to adapt these to work with the rapid prototyping environment already in use within our
visualization group. is will allow the use of existing research results in the immersive
environment with no changes to the implementation. It will also enable the use of other
existing immersive installations, e.g. equipped with optical or acoustic motion tracking.

Our visualization group has done a great deal of research in the fields of direct volume
rendering and illustrative techniques amongst others. e research has been focused on
visualization on the desktop. We oen use the VolumeShop framework [5] for rapid proto-
typing which was conceived for use on the desktop.

ere is ongoing collaboration effort with our clinical partners at Haukeland Univer-
sity Hospital in Bergen. A goal of this collaboration is to combine multiple modalities in
visualizations to aid both in diagnosis and treatment planning.

e data acquired from the medical acquisition devices usually does not include in-
formation about its spatial-temporal frame of reference. Most data are specified in some
implicit frame of reference relative to the acquisition device itself. is means that multi-
ple modalities acquired from different sources are specified in different frames of reference,
some of whichmay not be known. What is needed for combined visualization, is for the data
to be specified in a common reference frame, preferably relative to the patient or the object
under investigation. us multiple modalities must be aligned by changing their frames of
reference, so they can be effectively combined. is process of aligning data sets is called
registration.

Until recently, there has not been an immersive environment on site at our university.
is changed in mid 2007, when the Institute of Informatics at the University of Bergen
installed a new immersive environment. It consists of a back-projected stereo wall and a set
of magnetic motion trackers.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: A visiting pupil with the
head tracker mounted onto a helmet and
the hand-held intraction device interaction
with a CT scan of a head in the immersive
environment

Aer this immersive environment was in-
stalled, work on development of visualization
and interaction techniques for immersive envi-
ronments could begin. ere were still many
problems le to be solved, most of which is ad-
dressed by this thesis. Of these problems, the
biggest was the lack of a soware platform for
both the stereo wall and the tracking equipment.
e installation of this environment and the
medical collaboration is the main motivations
for this thesis, as it aims to supply the missing
components and tries to accommodate existing
research. Support for a wide range of tracking
equipment will enable the use of this platform
on most immersive environments.

Using the described solution, wewill demon-
strate its application in real world scenarios; in-
cluding in immersive environments and in medical domains to track acquisition of medical
data. is thesis has three main contributions which are the following:

1. We demonstrate its use in immersive environments using head tracking and hand
tracking. In this scenario, we simply addmotion tracking to VolumeShop to allowing
us to track the position of the users head and hand relative to the power wall. Using
a custom plugin which computes the correct perspective projection for the users po-
sition enables us to render the volume as seen from the direction of the user. Such
a projection will give the user an illusion of that the volumetric data is positioned in
physical space.

A second tracker is used to accommodate the interaction. We implemented a simple
form of interaction, namely letting the rendered volume follow the gestures of the
user. e combination of the viewpoint-dependent perspective and the gesture based
interaction, enables immersive visualization of volumetric data. See Figure 1.1 for an
example of real-world usage.

2. We demonstrate the use of the trackers alone by tracking the position of ultrasound
probes. Such tracking allows us to annotate the ultrasound images with its position
and play back the ultrasound session by loading the annotated data. is playback is
an invaluable tool for research on these kinds of data, as it allows testing of solutions
without having to perform an actual ultrasound imaging session.

4

1.2. THESIS OUTLINE

3. We demonstrate further use of the annotated ultrasound images mentioned above by
performing registration of the images with a 3D anatomy scan. Basically this means
to position the ultrasound images in the 3D anatomy scan where they were acquired.

ese demonstrations will ensure that the soware platform provided by this thesis, is
general enough to be used for both multimodal visualization and immersive environments.
e pipelines and their components will also form implementations on which further work
can be based on.

1.2 Thesis outline

Chapter 2 starts out by describing the basics of tracking and registration, as well as some
work which has been done in the different fields utilized in this thesis. It continues to give a
high level overview of the acquisition and visualization pipelines implemented in this the-
sis and describe the steps it consists of in Chapter 3. e steps of these pipelines include
data acquisition, both medical and motion tracking, registration of said data, as well as the
visualization, interaction and immersion. Chapter 4 will go into further details of the steps
described in Chapter 3. In Chapter 5 it will present the results of this thesis and Chapter 6
summarizes the work, draws a conclusion and sheds some light on possible future work.

5

2
State of the Art

is thesis will focus on medical multimodal visualization and immersive visualization
techniques. First some backgroundmaterial for the reader is presented, in particular a short
description of homogenous coordinates and matrices, as this thesis is using homogenous
matrices extensively for its spatial transformations. en relatedwork as well as display, mo-
tion tracking and acquisition technologies being touched upon are presented. Section 2.2
presents an overview of the existing tracking devices and middleware solutions for inter-
facing said devices, Section 2.4 will present related work in immersion and Section 2.5 will
describe techniques relevant for multimodal medical registration.

2.1 Background Material

Homogenous coordinates and matrices are utilized in the pipelines, most notably in Sec-
tion 3.3.2 which deals with perspective projection matrices. A basic knowledge of this topic
is needed to fully understand the presented formulas. See [3] for more thorough discussion
on homogenous coordinates and matrices.

In elastography, or other medical imaging technologies, a reference object is oen used
to calibrate scanners. e reference object used in this thesis, called an elastography phan-
tom, will be mentioned in Section 5.3.2 and is described in this section.

2.1.1 Homogenous Coordinates and Matrices

Graphics pipelines, such as the OpenGL rendering pipeline, usually uses matrices to per-
form transformations for example rotations and translations on vectors and vertices. In 3D
space, using 3×3matrices is adequate formost linear transformations but not all; translation
is a linear transformation which cannot be represented by a 3×3 matrix. Homogenous 3D
coordinates can be used to solve this problem. e homogenous coordinate representing

7

CHAPTER 2. STATE OF THE ART

the point [x, y, z]T is defined by:

[x, y, z]T −→ [wx,wy, wz, w]T for all w (2.1)

is means that homogenous coordinates basically represents each point in 3D space as an
unique line in 4D space identified by its direction. To convert a homogenous 3D coordinate
to a regular 3D coordinate, one divides all the other components by w:

[x′, y′, z′]T = [
x

w
,
y

w
,
z

w
]T (2.2)

In practice only two values for w are used; 1 and 0. Coordinates where w = 1 are
handled as vertices whereas coordinates with w = 0 are handled as vectors. Other values
for w can also be used for special purposes such as perspective projection

A homogenous 3Dmatrix consists of four homogenous coordinates and as such it is 4×4

in size. e first three columns are usually vectors (w = 0) which represents any rotation,
scaling, shearing, etc. transformations the matrix might contain and the last column are
usually a vertex (w = 1) which represents the translation. Other values for w are also
possible, but are rarely used. For example, projection matrices usually lets the third column
vector z have w = −1.

It turns out that using homogenous coordinates, both perspective projection and trans-
lation can be expressed by homogenous transformation matrices. For perspective projec-
tion matrices, the basic principle is to define a transformation matrix, which encodes the
distance from the camera in thew coordinate. e division byw performed when convert-
ing the homogenous coordinates to regular coordinates will then scale objects farther away
accordingly. For translation matrices, the fourth column vector contains the translation.
is vector will be added to transformed vertices, because a vertex’s w = 1, and not added
to vectors, because a vector’sw = 0. e primary reason for using homogenous coordinates
and matrices in computer graphics is to unify rotation, scaling, translation and perspective
projection into a single type of transformation; matrix multiplication.

2.1.2 Elastography Phantom

e elastography phantom [8] will be encountered later in this thesis and will be shortly
described here. e phantom is an elasticity reference tool. is means that it is basically
a box shaped rubber object with calibrated elasticity properties to simulate the elasticity
properties of so tissue.

e phantom is made of solid polymer with embedded spherical inclusions made of
the same polymer, but with differently tuned elastic properties. e inclusions’ hardness

8

2.2. MOTION TRACKING TECHNOLOGIES

is different from the surrounding material, but exhibit the same acoustic-reflective proper-
ties. e result is that the inclusions are almost impossible to spot using regular B-mode
ultrasound, but are detectable using elastography. e phantom is therefore suitable as a
reference for elastography scanners.

2.2 Motion Tracking Technologies

Tracking is an essential part of an immersive environment. e user of immersive environ-
ment needs to be tracked to produce images to provide the illusion of immersion. ere
exists a number of different manufacturers of tracking equipment. Amongst them are As-
cension Technologies which has produced the equipment used in thesis and NDI, vendors
of mainly optical and magnetic tracking systems.

2.2.1 Tracking Devices

ere are several techniques used to determine the position and orientation of the trackers,
each with their own advantages and disadvantages. emain techniques that are used today
are described here:

Magnetic Tracking: Magnetic trackers are usually based on a transmitter and a tracker
which both consist of three coils oriented perpendicular to each other. e transmit-
ter applies an electric current to these in order to generate an electromagnetic field
which is registered by the coils in tracker. e position and orientation of the tracker
can then be deduced from the strength of the received magnetic field in the different
coils.

e advantages of magnetic tracking are that it does not require line of sight and the
tracker can be miniaturized by using small coils. e disadvantages are that it is sen-
sitive to the presence of metals in the proximity [19] and it is affected by temperature
changes due to the electrical components.

Systems using alternate current magnetic fields are more sensitive than systems using
direct current [1]. Magnetic motion tracking systems available today include Polhe-
mus’ Liberty Latus and Ascension’s Flock of Birds.

Optical Tracking: Optical tracking systems usually consists of one or more cameras and
one or more optical markers. In some systems, the cameras are stationary observing
the position of themarked trackers. In others, the camera aremounted on the tracker,
such as a helmet for head tracking, and the markers are fixed.

9

CHAPTER 2. STATE OF THE ART

e markers can vary in size and shape relying on its perceived shape to recognize
its orientation. Markers may also be active, in the sense that they emit light for the
cameras to pick up, such markers are usually infrared so their emitted light does not
distract the user. Today, optical tracking setups generally utilize infrared LEDs, which
are reflected off hyper-reflective markers instead of utilizing active markers.

e advantages of optical tracking is that it is insensitive to temperature and humidity.
eir disadvantage is that themarkers may be occluded by the user or other objects in
the working area. Adding more cameras reduces the occlusion problem as the cam-
eras observe the marker from different directions. Optical tracking systems include
the Spectra by NDI, the HiBall by 3rdTech [26] and the laserBIRD by Ascension.

Ultrasound Based Tracking: Ultrasound trackers work by emitting ultrasonic sounds at
predefined intervals. e receiver knows the predefined intervals and is able to com-
pute the time the signal used to reach the receiver. Several receivers are then able
to triangulate the position of the tracker. To be able to compute the orientation, the
tracker needs three transmitters.

Ultrasound Based Tracking generally suffers from high latency due to the speed of
sound in air. us such trackers are very dependent on the air temperature, humidity
and pressure. Available ultrasound tracking systems include the IS-900 by InterSense.

Mechanical Tracking: Mechanical trackers relies on a physical connection to the tracked
point. ey are usually constructed by a jointed arm where the angles of the joints
are measured. Mechanical Trackers are usually accurate and has little latency but can
constrict the user’s movement because of the jointed arm. Fakespace makes mechan-
ical trackers, i.e. the Boom.

Mechanical tracking is not widely used any more, except when haptic feedback is
required. Available mechanical trackers include the Phantom Omni and Phantom
Desktop by SensAble and the Falcon by Novint.

Inertial Based Tracking: Inertial based trackers utilize tri-axis accelerometers to provide
the projection of the gravitational field onto the three axes. ese three magnitudes
are used to compute the trackers orientation much like a magnetic tracker does.

Pure inertial based trackers exists, but generally provides only the orientation due to
the lack of a point of reference. is lack of positional tracking is their main disad-
vantage. e advantages of inertia based trackers is that it is not affected by anything;
the force of gravity is constant. e exception is that they are affected when moved
as applied acceleration will accumulate on top of the gravity. Available inertia based
trackers includes Intersense’s InertiaCube product series.

10

2.2. MOTION TRACKING TECHNOLOGIES

Hybrid Trackers: Hybrid tracker are also available. e most common combination is to
combine optical tracking with inertia based tracking to add positional data to inertia
based trackers.

e Nintendo Wiimote has this combination. It has a built-in accelerometer for ori-
entation and an infrared camera for position. e sensor bar used in combination
with the Wiimote is basically two LEDs which serves as a point of reference. Com-
bining these measurements, it can compute its position and orientation relative to
the reference points. Its main advantages is that it is cheap and wireless. On the other
hand it is not very accurate, and fails function when the reference points stray out-
side of the trackers field of vision. Another example of available hybrid trackers are
Intersense’s IS-1200.

is concludes the overview of the different tracking techniques and some of the avail-
able devices. e next section will look at motion tracking middleware solutions.

2.2.2 Tracking MiddleWare

e tracking systems in general needs a soware driver to be usable in a soware system.
Most tracking systems use RS-232 communications ports or ethernet for communication
with the client computer and their protocol is oen simple. us it is feasible to write a
custom component for interfacing the tracker.

A middleware library will ease the development of the motion tracking interface, espe-
cially if several trackers are used or the immersive environment consists ofmultiple comput-
ers. Middleware solutions generally support most available devices and can be configured
by configuration files or run-time by the client program directly.

In this section, a number of available middleware solutions are presented along with
some of their advantages and drawbacks. e open source solutions will be presented first
followed by a commercial alternative.

Open Source

is thesis focuses on open source motion tracking libraries as they offer the advantage of
high customizability. ere exists a number of virtual reality toolkits, but since this thesis
uses VolumeShop for the visualization, pure tracking device libraries are focused on. e
most prominent open source motion tracking libraries are:

Gadgeteer: Gadgeteer is the input manager of the VR Juggler suite [2]. It provides a high-
level abstraction from devices categorizing input into the following abstract cate-
gories; analog, command, digital, glove, gesture, position, simulator and string. For

11

CHAPTER 2. STATE OF THE ART

example an analog joystick would fall into the analog category, whereas a position
tracker is in the position category.

Gadgeteer is tightly integrated intoVR Juggler and there exists no documentation that
the author of this thesis is aware of that states that it is possible to use it separately from
VR Juggler.

Virtual Reality Peripheral Network (VRPN): VRPN [22] is, as its name indicates, a virtual
reality peripheral network. at is; a networked library to connect to virtual reality
peripheral devices, such as motion tracking devices. VRPN is cross platform and
runs on Windows, Linux and a number of different architectures including Linux-
based PDAs. It is written in C++ and has bindings to Java and has recent acquired
bindings to the .NET platform allowing it to be used in programswritten in C#, Visual
Basic.NET, etc.

VRPN has separated the client and server components. It can be run in-process and
be called directly from client code or as it is designed to do, in its own process, com-
municating with the client through the network. e server may be hosted on an
entirely different machine and it is all handled transparently.

OpenTracker: Similar to VRPN, OpenTracker [21] is a fully networked tracking interface
with dynamic configuration of the devices. e configuration is stored in the Xml
format. e OpenTracker configuration is generally a directed acyclic graph which
acts as a data flow graph and consists of data sources, data sinks, filters and transfor-
mations. In fact, OpenTracker has VRPN sink and source so it can act as a VRPN
client and server if needed enabling full interoperability between these two libraries.

OpenTracker is possible to set up on several computers, where one ormore computers
can connect to the trackers and act as data sources supplying a second set of comput-
ers with the data. To realize transparent network operation, OpenTracker defines a
network sink and a network source. All this is configured at run-time with configu-
ration files in such a way that there is no difference for the application whether the
trackers are connected locally or not. As the tracking setups dealt with in this thesis
are directly connected to the main computer, these features were not utilized in the
scope of this thesis.

emain difference betweenOpenTracker andVRPN, is that OpenTracker is not split
into a server and a client part. e ability to configure network mostly resolves this
problem.

12

2.2. MOTION TRACKING TECHNOLOGIES

Commercial Alternatives

One of the commercial alternatives to the open source libraries just mentioned are trackd.
Trackd is a standalone commercial library for interfacing motion tracking devices made by
VRCO. It is implemented as a daemon, a background process, which makes the motion
tracking data available to other applications. It also ships with a server executable which
reads data from the daemon and makes it available over the network.

Trackd supports a wide range of operating systems and architectures and a wide vari-
ety of tracking devices. It is used by VRCO in its all virtual reality soware solutions, e.g.
CAVELib and VRScape.

Decision for Tracking Middleware

e tracking library used for this thesis should be open source, making it possible to fix,
modify or extend the library if needed, and additionally, be free of charge. is ruled out the
commercial alternatives. Gadgeteerwas ruled out due to its integrationwithVR Juggler. e
final choice stood between OpenTracker and VRPN. Finally OpenTracker was chosen due
to its support for the wiimote and active cooperation with the OpenTracker development
teamofGrazUniversity of Technology, even thoughVRPN ismarginally the better technical
solution, mainly due to the client-server separation.

It would be possible to use VRPN and then connect it to an OpenTracker server con-
nected to the Wiimote, but it is preferable to only use one of the solutions. us Open-
Tracker was chosen as the motion tracking middleware for this thesis. Chapter 5 will de-
scribe the results of this choice.

2.2.3 Tracking in the Medical Domain

In the medical domain, the most important characteristics of tracking is precision and low
latency. Precision is needed because tracking is generally used to determine whether the in-
tervention tools are in the proximity of arteries and such to avoid damaging those structures.
Low latency is equally important since it is imperative that the surgeon receives immediate
feedback from her actions. is also places constraints on the latency of the visualization.

Optical tracking is oen used because it has generally low latency and is very precise.
In non-invasive surgery, the probe is usually occluded by the patient and in such scenarios,
optical tracking is unfeasible. In such cases, magnetic tracking is oen used. For minimally
invasive robotic surgery, mechanical tracking which mirrors the joints of the robot is oen
used. us the urgeon is restricted from performing movements which the robot is unable
to perform. One example of such robots are theDaVinci robotic system by Intuitive Surgical
Inc. [12].

13

CHAPTER 2. STATE OF THE ART

2.3 Stereoscopic Display Technologies

Stereoscopic displays are able to present independent images to the user’s two eyes. ebasic
premise is to present an image to each eye, which presents the scene from the direction of
the corresponding eye. For this reason, several methods for filtering out the “wrong” image
exists. e two main categories of filters are active and passive.

A category of displays, which will not be discussed in detail in this thesis, are head-
mounted displays. Head-mounted displays generally mount one screen in front of each eye
or use other techniques to directly project the image onto the retina. Traditional displays
which are discussed later, needs some kind of filtering to separate the right and le images.
e two main filtering techniques are discussed next:

2.3.1 Filtering

Active filters actively changes their state. In stereoscopic display technologies, the display
presents the image for the right and le eye sequentially, while the filters are toggled syn-
chronously so that the le eye only observes the le image and equally for the right eye. A
problem with this is method is that the refresh rate of the display is effectively halved and
may cause eye strain since the eyes are in the dark 50% of the time. e advantage of prop-
erly synchronized active filters is that they always filter out 100% of the light from the wrong
image which passive filtering does not always achieve.

Passive filters passively block the emitted light usually by employing polarized filters.
Polarized filter can be compared with the red-cyan glasses used with anaglyphs. e dif-
ference is that they filter vertically or horizontally aligned light instead of colors. Polarized
filters can also filter right handed and le handed circulating light which makes them in-
variant to head tilting. Passive filters needs to have two images presented simultaneously
each filtered for the respective eye. e advantage is that they operate in the full refresh rate
of the display but may suffer from bleed through, that is; when some of the light reaches
the wrong eye. Passive filters are usually paired with back-projected screens which have the
screen made of polarization preserving material.

Active and passive filtering may be combined to cater for more than one user [10]. On
a related note, solutions exists for three or more users [15] by using a mask and letting each
user only see a portion of the display.

2.3.2 Displays

Immersive displays usually consist of back-projected screens with one or more projectors.
e reason for this is mainly the size of the displays which leaves back-projection displays

14

2.4. VISUALIZATION TECHNIQUES

the only feasible option. Front projection is also becoming more common as canvas to cope
with the polarization has become available. It has been more difficult to make polarization
preserving reflective canvas than to make polarization preserving pass-through canvas.

To increase the resolution of the display, multiple projectors may be used on a single
screen. In this configuration, they usually overlap a bit, fading out in the edges to keep the
intensity constant. Such multi-projector setups are also utilized on curved screens. Barco’s
MoVE environment consist of a single screen and three projectors side by side. e side
projectors along with a bendable screen can be configured at run-time to be a flat screen (0°
bends) to be a three sided CAVE (90° bends).

A CAVE environment [9] is a name given to a setup consisting of three or more back-
projected stereo screens configured to enclose the user in a box like fashion where the dis-
plays acts as the walls, floor or roof of the box. For full immersion, all six sides are replaced
by screens. Such setups are very expensive, usually built into the infrastructure and are not
very common.

Autostereoscopic displays are a recent development in display technology and are just
now becoming available as consumer products. e basic premise, of such displays is that
they direct the emitted light towards the observing eye and are able to direct two different
images in two different directions simultaneously.

e Varrier [23], is an immersive stereoscopic environment which does not require the
use of trackers or filters. It is a complete system using infrared cameras to track the position
of the user, and with the help of this position project the images to the position of the eyes
using autostereoscopic displays.

Consumer grade autostereoscopic displays generally do not include head tracking and
have a fixed position in front of the center of the display where the user needs to be located
to experience stereo, otherwise both eyes will perceive the same image.

2.4 Visualization Techniques

To visualize volumes, one needs to fit the data into the rendering pipeline, e.g. OpenGL.
Graphics pipelines are geometry centric in the sense that they only render geometric prim-
itives such as triangles. More complex geometric structures are usually represented by a
collection on triangles.

e obvious way to display the data, is to convert it to geometric structures. is can
be done by extracting isosurfaces from the volume or by representing the volume as a set of
cross section slices textured by a 3D texture containing the volume data [27].

Direct volume rendering (DVR) techniques render the volume directly without con-
verting it to geometric structures first. Ray casting is a method for direct volume rendering,

15

CHAPTER 2. STATE OF THE ART

which casts rays from the view-point through the pixels of the screen, while sampling the
volume along the length of the ray. DVR used to be implemented in soware, but with
recent advances in graphics processors, they have become increasingly programmable and
powerful, it has become possible to perform ray casting on the graphics processor.

In DVR, transfer functions are used to map intensities of the measured scalar field to
optical properties such as color and opacity. It is also possible to utilize multi-dimensional
transfer functions [17] and [16] with which it is possible to map multiple properties to op-
tical properties, i.e. the intensity combined with the length of the gradient vector.

Transfer functions do not need to map from voxels to color and opacity, for example,
style transfer functions [6] may be used. Style transfer functions utilize style spheres which
encode the color and opacity based on the normal of the data relative to the camera. e
normal is used to look up the color, thus it is possible to encode the lighting and shading in
the sphere.

Illustrative techniques, also called non-photo-realistic techniques, have also been re-
searched and aim to replicate handmade illustrations. is is a surprisingly difficult task. A
technique utilizing style transfer functions to achieve illustrative results has been made [4].
Another technique using the gradient to find contours have also been made [7].

is thesis makes use of color-opacity transfer functions to create the images presented
in Chapter 5

2.5 Registration Techniques

As noted in the introduction, registration is the process of aligning data sets so that they
share the reference frame. e different registration techniques utilize different methods
and work on different sets of data. e main categories of registration techniques are;

Voxel Property Based: Voxel property based techniques operate directly on the intensities
in the data sets and utilizes image processing techniques to identify mutual infor-
mation. Such methods are usually fully automatic, but do not always produce good
results.

Segmentation Based: Segmentation based techniques rely on an existing segmentation of
the data set and aligns the segments defined by the segmentation. e registration
obtained using such techniques are only as good as the initial segmentation.

Landmark Based: Landmark based techniques depends on finding corresponding land-
marks in both data sets and aligning these using various methods. ree or more
landmarks needs to be identified in order to align the data.

16

2.5. REGISTRATION TECHNIQUES

Landmark based registration is used in this thesis and the landmarks are supplied by the
user. Voxel property based techniques aremost widespread, but require more computations
to perform, especially when registering 3D modalities. Previous work has been done in
the area of registering ultrasound images against CT volumes using voxel property based
methods [25].

A thorough overview of voxel property based techniques, was made by Pluim et al. [20]
and an overview of all kinds of techniques used in the medical domain byMaintz et al. [18].
Existing techniques can operate on both 2D or 3D modalities or a combination of both.

Rigid versus Nonrigid Transformations

A rigid transformation is basically a linear transformation and means that one modality is
linearly transformed into the reference frame of the other modality. Linear transformations
do not deform the shape of the data. Nonrigid transformations apply local transformations
to areas in the data set and necessarily deform the data set. Sometimes this deformation
is desired, i.e two volumetric anatomical scans of a patient will be impossible to register
if the patient is not positioned exactly the same manner for the different scans. Nonrigid
transformations are able to align the data even if the data sets differ in shape. Nonrigid
transformations are also much more difficult to effectively implement, and requires more
information to compute than a rigid transformation. Both kinds of transformations can be
used in voxel property based techniques as well as point based techniques.

2.5.1 Modalities

As noted, the acquisition of modalities can result in both 2D images and 3D volumes. Ex-
amples of 2D modalities are ultrasound and X-ray imaging and examples of 3D modalities
are computed tomography (CT), positron emission tomography (PET) and magnetic reso-
nance imaging (MRI).

In addition they may be time-varying so that they effectively become 2D+time and
3D+time. Time-varying data may also need to be registered from time step to time step
if the scanner is not fixed in place in relation to the scanned object. Hand-held ultrasound
is an example of amobile device not spatially fixed in relation to the patient. Here previously
reviewed tracking technologies become widely utilized.

In the scope of this thesis, the modalities used were ultrasound images and elastograms
registered with MRI volumes. e ultrasound images needed to be spatially defined which
was accomplished by attaching amagnetic tracker to the ultrasoundprobe. A simple landmark-
based technique was used as a proof of concept.

e next chapter will describe the pipelines for immersive visualization andmultimodal

17

CHAPTER 2. STATE OF THE ART

visualization, which is the theoretical foundation for procedures and results obtained in the
scope of this thesis.

18

3
Immersive Visualization Pipeline

3.1 Overview

Asmentioned in Section 1, the need for visualization and immersion increases as the amount
of available data increases. e amount of data has long since surpassed the abilities of the
human perception and only specialists are able to interpret the data. A host of visualiza-
tion techniques have been developed and still more are being developed to help humans
make sense of the data. Visualization of spatial data, volumetric data in particular, can take
advantage of stereoscopic displays to aid in the understanding of the data. Stereoscopic
displays combined with motion tracking of the user has great potential to convey spatial
relationships within the data.

e collaboration with Haukeland University Hospital in Bergen and the Visualization
group of the Institute of Informatics at the University focuses on combining modalities in
a single representation. e first issue which needs to be tackled is to align the reference
frames of the different modalities to enable them to be presented in the correct positions in
relation to each other.

is thesis aims to address both of the above scenarios; the immersive visualization and
the combination of the different modalities. us there are two different but overlapping
pipelinesmade in this thesis. efirst is themotion tracking pipeline used for the immersive
visualization whereas the second is concerned with the registration of the volumes with the
ultrasound image slices.

Both use the same acquisition device for the motion tracking but in different configu-
rations. ey are also both implemented as a set of plugins to VolumeShop so they may
easily share implementation details. Otherwise they differ greatly and are in principle two
unrelated systems.

19

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

3.1.1 Immersive Visualization on Large Screen Stereo Display

One of the goals of this thesis is to enable the user to interact with 3D medical volumes –
including manipulation, clipping and changing transfer functions. In an immersive envi-
ronment the user is usually standing in front of thewall experiencing stereoscopic projection
from the large screen. e stereoscopic screen is used to display different images for each
eye. e computer computes the correct perspective for each eye and applies it to the data so
that the user sees the same scene with both eyes but with a slightly different perspective. e
user’s position has to be known for the computer to be able to figure out the correct perspec-
tive. To be able to interact with the immersive environment the user needs an interaction
device which tracks her position in three dimensions.

e immersive environment at our institute is equipped with a motion tracking system
with two trackers attached, see Figure 3.1 for details. e two trackers are used to enable

5

4

6

3

8

7

2

1

1

2

3

4

5

6

Legend:

7

8

Hand Tracker
Head Tracker
Transmitter
Controllers
Computer

Large Screen
Projectors

Volumetric Data

Figure 3.1: e immersive setup at our institute

immersion and interaction. e first of these is used to track the position of the user’s head
enabling the display to reflect the location as illustrated in Figure 3.2. is will enable the
user tomove around and even into the data. e second tracker is used to track the position
of the user’s hand enabling the user to interact with the data using physical gestures. e
combination of the interaction and immersion will make the user feel he is dealing with real
objects.

e viewing frustum is the volume the user can see within the frames of the display. It is
the pyramid formed by the viewpoint and the screen. If the viewing frustum is updated to
follow the user’s position as illustrated in Figure 3.3, it will enable the user to move around
the data and observe it from several directions. is can be compared to looking through
a window rather than looking onto a painting. It is even possible to place object in front of
the window which will make the data appear to hover in front of the display.

For interaction, the user will hold the other tracker in his hand allowing the soware to

20

3.1. OVERVIEW

(a) User at the le of the screen (b) User at the right of the screen

Figure 3.2: e images produced with regards to user position

User

Viewing Frustum

Screen

Data

(a) User at the le of the screen

User

Viewing Frustum

Screen

Data

(b) User at the right of the screen

Figure 3.3: Viewing frustum computed with regards to user position

track its position and orientation. e tracker supplies its absolute position and orientation.
We can use this to compute the derivative, that is, the amount of motion currently being
applied.

Both the absolute and the derivative transformation can be used for interaction. e
absolute may be used for pointing, like a laser pen, whereas the derivative can be used to in-
terpret gestures, like making the data follow the user’s movement as illustrated in Figure 3.4.
Alternatively itmay be used tomimic a knob to enable the user to dial in a value ormode, i.e.
the user rotates her hand clockwise to zoom in, counter-clockwise to zoom out. ese are
just a few of the interaction possibilities available when using motion tracking equipment.

To realize the immersive visualization a set of components are created which transforms
user input from the trackers to the images presented on the display. See Figure 3.5 for an
overview of the components and the data flow from user to image.

As described inChapter 2OpenTracker is an open sourcemiddleware solution for track-

21

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

Figure 3.4: e data follows the gestures of the user

Gestures Translation(x,y,z)
Rotation(q)

OpenTracker

Software

VolumeShop

Existing Components
- Volume Renderer
- Stereo Compositor

New Components
- OpenTracker Adapter
- Viewpoint dep. Perspective
- Interaction by Gestures

Images

Figure 3.5: e data flow for the immersive visualization pipeline

ing which supports a variety of tracking devices which have been chosen to use for this the-
sis. It supports dynamic configuration of the trackers through xml files. VolumeShop is the
application framework used by our visualization group which supports rapid prototyping
of visualization applications.

e position of the user’s head and hand are picked up by the transmitter and sent to
the controller. e positions are then converted to binary form to be transmitted to the
computer. e receiving application has an instance of OpenTracker running which is set
up by a configuration file to receive data on the appropriate communications port.

e OpenTracker adapter component created for this thesis is given the position in the
form of a position vector and the orientation in the form of a quaternion. For further pro-
cessing, the position and orientation is converted to two separate homogenous matrices
representing the respective transformations. e final step for this component is to make

22

3.1. OVERVIEW

the combined transformation available to the other components. e transformations are
named with the names given in the OpenTracker’s configuration file so they can be handled
separately by the receiving components.

e component computing the viewpoint dependent perspective observes the head tracker’s
position and computes a corresponding perspective transformation. is component also
needs to know the size and position of the screen relative to the reference frame of the track-
ers to be able to compute the correct perspective. e computation of the perspective pro-
jection transformation is discussed in greater detail in Section 3.3.2.

For the interaction, a component similarly observes the transformation of the hand
tracker. Whenever the hand transformation changes and the user has trigged the interaction
mode, the data transformation is updated tomirror the changes to the hand transformation.
e result of this update is that the object on screen follows the user’s gestures. e gesture
interaction component is described in greater detail in Section 3.3.1.

3.1.2 Visualization of 3DModality with 2D Ultrasound

As mentioned in Chapter 1, through the collaboration with our clinical partners, there is a
desire to perform multimodal visualization of medical data – volumetric modalities com-
bined with 2D ultrasound in particular. It was also noted that to successfully combine data,
their relation between the reference frames needs to be known, and this relation is generally
unavailable. To realize the combined visualization three problems needs to be addressed.

1. e annotation of medical data with their orientation and position in relation to a
stationary frame of reference. is is only necessary for time series acquired using
mobile or handheld scanners such as ultrasound probes where the spatial relationship
between scans at different times needs to be known.

2. To register the different modalities. at is; to align their frames of reference in such
a way that the features in the different data sets aligns.

3. To visualize the combined modalities on a display.

It was decided to use VolumeShop as the framework for the creation of the solutions and
to use OpenTracker as the provider of the tracking input. As noted in the previous section,
VolumeShop and OpenTracker is also used for the immersive visualization, and using the
same for both pipelines will enable sharing of common components. e most prominent
of the shared components is the OpenTracker adapter component. An overview of the setup
can be seen in Figure 3.6.

In addition to the motion tracking acquisition we also need to acquire data for the reg-
istration of slices against volumes, namely acquisition of the time series of slices and the

23

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

acquisition of the reference volumes. During the course of this thesis, ultrasound and elas-
tography imaging was used for the time series whereas MRI was used for the reference vol-
ume.

OpenTracker

VolumeShop

Existing Components
- Volume Renderer
- Stereo Compositor

New Components
- OpenTracker Adapter
- Tracker Playback
- Point Picking
- Computation of Registration
- Custom Slice Renderer

Storage

Frame Grabber

2

1

3

6

4
5

7
8

9

1

2

3

US Probe

Translation+Orientation

Transformation Matrix

4

5

6

US Video Out

US Slices

US Time Series

7

8

9

Load US Time Series and Medical Volumes

Log and Replay Tracking Transformations

Multimodal Visualization

Figure 3.6: e data flow for multimodal visualization

To get motion tracked slices, we needed motion tracking of the ultrasound probe. is
was solved by mounting the motion tracker onto the ultrasound probe, see Figure 3.7. e
resulting position and orientation is then used to create a frame of reference in which to
place the ultrasound slice. e placement of the ultrasound slice is based on physical mea-
surements of the probe and its mounting point for the tracker.

As shown in Figure 3.6 it is possible to store the tracking transformations to a file. is
file can be read back into VolumeShop for playback. Using this playback in conjunction
with stored time series, the multimodal visualization of the session may be repeated at a
later time. In the case of this thesis, the frame grabber pictured in the illustration was not
available. erefore, the process of visualizing the multiple modalities was split in two. First
acquiring the tracking transformations and the ultrasound slices fromVolumeShop and the
ultrasound scanner respectively. Second reading the stored ultrasound time series and the
tracking transformation for combination and visualization.

e following is a short explanation of the reference frames and matrices involved in
the registration process. e goal of this pipeline is to render the slices combined with the

24

3.1. OVERVIEW

reference volume. If we were to render the volume only, the transformation stack would
look like Figure 3.8(a). is matrix stack only contains the data transformation D. e
graphics pipeline also implicitly contains the projection matrix P and the model matrix V
which forms the full stack P · V ·D. V andD are omitted from this description as they are
irrelevant to the process of registration.

e matrix stack of the ultrasound slice illustrated in Figure 3.8(b) and more detailed
in Figure 3.7. Pictured are the transmitter frame of reference T , the motion trackerM and

2

1

4

5

3

C

M
T

1 Ultrasound Image, C

2 Ultrasound Probe
33

4

5Ultrasound Probe Tracker, M
Transmitter, T

Display

Figure 3.7: e reference frames and matrices involved with ultrasound

the probe compensation C instead of just D. ese matrices model the spatial relations
between the reference frames of the ultrasound image, the tracker, the transmitter and the
display. Of these, onlyM will change during the course of a session, or eventually playback.

e system described so far, is fully able to visualize the ultrasound slices and the volu-
metric scan separately. It turns out, to combine them, the only thing necessary to do is to
align the world spaces of the two modalities. e alignment is done by finding a transfor-
mationR, which maps the world space of the slice onto the world space of the volume. e
complete matrix hierarchy for the registered ultrasound slice and the volume is shown in
Figure 3.8(c).

Before the registration can be performed, the slice time series and the motion track-
ing needs to be synchronized. If they are acquired real-time, one might suspect that time
synchronization is not necessary. Synchronization might still be necessary due to different
latencies for the ultrasound scanner and frame grabber compared to the trackers. Laten-

25

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

World Spacev

Volume Space

D

(a) the volume

World Spaces

Slice Space

C

M

T

(b) the slice

World Space

Slice Space

C

M

T

R
Volume Space

D

(c) both combined

Figure 3.8: e matrix stacks for the rendering pipeline.

cies might also show up within VolumeShop since images might take longer to process than
simple matrices do.

In the opposite case where the registration is performed off-line, the modalities must
also be synchronized since the tracking and the ultrasound images is performed on separate
devices which are not always equipped with synchronization facilities.

e synchronization is performed by manually specifying a time offset for the motion
tracking data and also the number of slices per second. ese two parameters combined
define a customizable linear map between the time parameters of the slices and the motion
tracking data.

e specification of these two parameters is done manually by the user. e frame rate
of the slices is commonly a parameter of the acquisition device. In our case, it is stored in the
DICOM files or overlaid on the image slices themselves. e time offset on the other hand
is more difficult to specify correctly and deduced by the user by inspecting the transformed
slices for correlations. is is obviously a difficult task and is usually carried out by trial and
error. erefore it is important to try to synchronize the start of the acquisition between the
slice acquisition device and the motion trackers as much as possible. A nicely synchronized
start can ease the synchronization by narrowing the search domain considerably.

To realize multimodal visualization, integrating 3D modality and 2D ultrasound, the
user interface consist of three different views as illustrated in Figure 3.9. e first view (1)
renders the ultrasound slice orthogonally scaled to fit. e second view (2) displays a slice
of the volume in a similar fashion to view (1). In both of these views, the user is able tomove
through the data viewing the respective slices at any point independently of each other. In
the volume by changing the z-position and in the time series of slices by changing the time
parameter.

e third view (3) is the presentation view which renders the multimodal visualization.
is view renders the reference volume using direct volume rendering combined with the

26

3.1. OVERVIEW

Figure 3.9: A mock-up of the graphical user interface

slices presented in the other two views. e slice from view (2) is positioned in the volume in
its correct position to aid orientation. e ultrasound slice from view (1) is transformed us-
ing the computed slice transformation and registration matrixR to place it in the reference
volume in its correct position.

To compute R, three corresponding points needs to be specified in view (1) and (2).
ese points are placed on corresponding landmarks in the ultrasound slices and the 3D
volume. R is defined to be the matrix that maps the points specified in the ultrasound slices
to the points in the 3D volume. us the landmarks needs to be specified in the same order
for both modalities, otherwise the landmarks in the ultrasound slices will map to the wrong
landmarks in the 3Dvolume. Finallywhen all three points are specified in bothmodalities, it
is possible to computeRwhichmaps the points in the slice time series to the corresponding
points in the volume. is transformation is the rigid transform which registers the slices
with the volume.

is concludes the overview of the pipelines. Following is a more detailed description
of the pipelines and the components they consists of. As the medical data acquisition de-
vices and tracking devices is shared by the two pipelines, it will be described separately in
Section 3.2. Section 3.3 describes the components which make up the rest of the immersive
visualization pipeline. Finally Section 3.4 describes the multimodal visualization compo-
nents.

27

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

3.2 Acquisition and Tracking Devices

is section will shortly describe the modalities and the corresponding acquisition devices
which have been utilized in this thesis. As alreadymentionedwe have usedmotion tracking,
ultrasound imaging which is also used for elastography imaging and MRI for the reference
volume.

3.2.1 Motion Tracking

For motion tracking we have two Flock of Birds setups made by Ascension Technologies.
One which is used in combination with the large screen immersive environment and a sec-
ond used for the tracking of the ultrasound probe. Flock of Birds are magnetic tracking
devices, which means they use a transmitter to apply a magnetic field to the area being
tracked. e trackers have a much smaller but similar transmitter which registers the mag-
netic field. e position and orientation of the trackers are computed from the perceived
magnetic field.

ese trackers are coupled together using a proprietary bus called Flock of Birds Bus
(FBB) and are connected to the computer using an RS-232 port. It would be possible to
write a module to extract the data needed from the birds, but we opted to use an existing
library to enable support for several kinds of trackers. ere are basically three open source
frameworks which deals with tracking equipment suitable for our application. ese are
OpenTracker, Gadgeteer and VRPN discussed in Section 2.2.

Gadgeteer is a part of the bigger virtual reality library VR Juggler and there was no doc-
umentation suggesting it could be used on its own. OpenTracker and VRPN on the other
hand is a standalone fully networked motion tracking libraries which it supports a wide
range of devices. OpenTracker also provides a bridge to VRPN so it supports all the devices
VRPN supports.

At the outset of this thesis, there was a desire to experiment with the wiimote interac-
tion device for the Nintendo Wii gaming console. At that time, only OpenTracker claimed
support for the wiimote and thus OpenTracker was chosen. In retrospect, it is apparent
that OpenTracker’s wiimote support was not finished so this experimentation was put on
ice indefinitely. At the time of writing, wiimote support has been developed for VRPN, so
it might have been the better choice.

On the hardware side, there is the Flock of Birds setups. ere is one installed at the im-
mersive environment which is illustrated in Figure 3.10 and the stand-alone setup is mobile
and is used for tracking the ultrasound probe. It consists of a tracker attached to a helmet
(1) and a tracker built into an interaction device (3) which doubles as a hand-held mouse.
e interaction device is shaped to hold in the hand like a remote control and has replaced

28

3.2. ACQUISITION AND TRACKING DEVICES

1

2

3

4

5

1 Helmet worn by the user

2

33

4

5

6

A

B C

6

B

7

C

Helmet mounted tracker

Mouse w/ built-in tracker

Transmitter

7

FOB Controllers

Computer

Confguration DIP switches

A

B

C

Received signal

RS-232 w/ transformations

Flock of birds bus

Figure 3.10: e flock of birds setup

the ball normally found on a computer mouse with a directional button on top. is button
works similarly to a pointing stick found on laptop computers. Nudging this button any
direction will move the cursor on screen in the same direction.

e trackers and the transmitter is connected to a corresponding controller (5). us we
have twoFlock of Birds controllers and oneExtendedTransmitter controller. e controllers
are connected to each other with a proprietary serial bus (C) interface called Flock of Birds
Bus (FBB). Note that the endpoints of the FBB needs to be electrically terminated and is
done by setting a jumper located inside the controllers.

e controllers receive themagnetic signals directly from the trackers (A) and computes
the position and orientation of each tracker. One of the controllers act as amaster controller
which the computer (6) communicates with through an RS-232 port (B). e baud rate of
the RS-232 port is configured on the DIP switches (7) on the back of the master. e other
controllers are addressed through the master. Each controller needs to be assigned an ID by
setting theDIP switches on the back of the respective controllers. emaster controllermust
to be assigned ID 1 and the other controllers must be assigned sequential IDs thereaer. See
Figure 3.11 for the DIP switch configuration.

29

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

1

0

The master bird (ID 1)
-or-

The single bird setup 1

0

The slave bird (ID 2)

1

0
The transmitter (ID 3)

Baud rate ID Test mode

Figure 3.11: e DIP switch configurations used for the
two Flock of Birds setups

eFlock of Birds are also able
to work in stand-alone mode. In
this mode, a single bird is directly
connected to a transmitter and
must be assigned ID 0. is mode
was not used during the course
of this thesis becauseOpenTracker
does not support the stand-alone
mode. It does on the other hand,
support a single tracker in group
mode where it is assigned ID 1.
Note also that OpenTracker needs
the Extended Range controller to
be connected as the last controller
at the FBB, thus being assigned the
highest ID.

Aer receiving the transformations fromOpenTracker, they need to be transformed into
the world space of the graphics pipeline. For the immersive visualization the world space
equals the reference frame of the large screen. us, as noted in Section 3.1.1 the spatial
relations of the tracker, transmitter, large screen and the tracked object needs to be known.
e process of transforming the reference frame of the tracked object into world space is
henceforth called compensation.

Assuming the transformations of the tracked object in relation to the tracker C , the
tracker in relation to the transmitterM and the transmitter in relation to the large screen
T . en the compensated transformationM ′ is defined by

M ′ = T ·M · C (3.1)

e implementation of these are discussed in Section 4.2.1 and 4.2.3.

3.2.2 Acquisition of Medical Data

To realize multimodal visualization of medical 3D volumes and ultrasound sessions, data
of the respective modalities are obviously needed. In this thesis, the modalities that are
used are 3D MRI volumes and 2D+time ultrasound images. e acquisition devices and
the process of moving the data modalities into VolumeShop for visualization is described in
this section.

30

3.2. ACQUISITION AND TRACKING DEVICES

Reference Volume Acquisition

e reference volumes can be acquired from Magnetic Resonance imaging (MRI), Com-
puted Tomography (CT) or other 3D anatomical and medical scanning devices. e scan-
ning devices store the volumes in DICOM format. e volumes are then manually con-
verted fromDICOM to a set of images, where each slice is stored as a separate image. ese
images are then finally converted to a volume and stored in the dat format for easy loading
into VolumeShop.

Converting the volume to dat format is not really necessary as VolumeShop can load
volumes from a set of images, but it is more convenient to handle a single file than hundreds
of images.

In short, the dat format is a non-standard format which is basically a raw volume pre-
fixed by the dimensions. e individual values as well as the dimensions are stored in two
bytes. e values only use 12 bits of the 16 available in the two bytes.

2D Ultrasound Acquisition

e ultrasound sessions were performed on a General Electric Logiq 9 ultrasound scanner
for the ultrasound imaging and a Hitachi 900 HI VISION scanner for the elastography ses-
sions. Both of them are ultrasound acquisition devices as the elastography are computed
from the ultrasound data. e ultrasound and elastography time series is generally avail-
able in the same manner as the volumes; as DICOM files. It is also common to be able to
burn the session as a DVDmovie.

e Logiq 9 device is able to store the sessions directly to an USB thumb-drive in the
DICOM format. From DICOM the time series are converted to images and finally to a
volume in the dat format in the same manner as the MRI volume.

e Hitachi device stores the elastography sessions as DVD movies. e elastography
time series are converted to images in the same manner as the ultrasound time series are,
but they are not converted to dat volumes. e reason for this is that the elastography are
color coded and as a color image it has 3 channels (red, green and blue) instead of 1 and
VolumeShop’s dat format importer only supports a single channel.

Aer this process, we have both the ultrasound and elastography time series converted
to suitable formats. ese volumes are not really volumes but rather time series. ey are
only loaded into VolumeShop as volumes but are treated by my plugins as time-series.

Real-time Acquisition of Ultrasound Slices Real time acquisition of slices is possible with
the Logiq 9 device. e Logiq 9 device has a VGA output which mirrors its screen and can
be connected to a frame grabber which itself is connected to the PC via USB. e compo-
nents described later in Section 3.4 is fully capable of utilizing real-time ultrasound slices.

31

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

e only thing missing is a plugin for VolumeShop which interfaces with the frame grabber
and updates its slice. Such a plugin would essentially act as the slice provider component de-
scribed in as the slice provider and work with the rest of the framework without any further
modifications. Due to the lack of a frame grabber this feature was not implemented.

For the implementation of the acquisition VolumeShop has existing importers for the
dat format and image series as needed. See Section 3.4.4 for details on the visualization of
the data.

3.3 Immersive Visualization

Utilizing the opentracker adapter described in Section 3.2.1 we can define the viewing frus-
tum and the model matrix to enable the perception of

1. looking through a window in that the perspective projection changes as the user
moves, and

2. interacting with a real object giving the data 6 degrees of freedom, i.e. make the object
follow the user’s motions.

e main goal of immersive visualization is that the user can use her skills of spatial
orientation and visual processing to easier gain a better understanding of the data. By the
end of this section, it becomes apparent that the immersive visualization can be realized by
implementing two components which is together maintaining three matrices; a projection
matrix P , a camera matrix C and a model matrix V as illustrated in Figure 3.12.

Camera Controller Object Controller

Visualization Components

Head Tracking Matrix Hand Tracking Matrix

Projection Matrix P
Camera Matrix C

Viewing Matrix V

Figure 3.12: e components and matrices involved with the immersive visualization

32

3.3. IMMERSIVE VISUALIZATION

3.3.1 Interaction

For interaction, this means that the user should be able to handle objects intuitively, just like
in real life. For example, selecting an object and translating it to match the user’s gestures
should be a possible interaction mode.

Model Matrix

e model matrix M determines how the object is viewed. It dictates the position and
orientation of the object. Traditionally, computer graphics pipelines have two main matrix
stacks. e first is the projection matrix stack which dictates the projection, the second is
the model-view matrix stack which is the camera matrix and the model matrix combined.

To make the interaction work, theM needs to be updated with the transformation mir-
roring the change in the tracker transformations. e translation and rotation of the con-
secutive trackingmatrices needs to be preserved and applied toM independent ofM ’s value
as illustrated in Figure 3.13(a).

Unless otherwise noted, all variables described in this section arematrices. e tracking
input is a live feed of motion tracking matrices from the opentracker plugin. Assume Tn
and Tn+1 are any two consecutive motion tracking matrices from the opentracker adapter
originated from the interactor,∆T which transformsTn toTn+1 andMn is themodelmatrix
corresponding to Tn.

To preserve rotation and translation of ∆T , Mn is simply translated to Tn’s position.
en ∆T is applied and the result is finally translated back by the inverse of the first trans-
lation as illustrated in Figure 3.13(b). ∆M will not be explicitly computed, but it is the
concatenation of the above transformations.

Tn
Tn+1

Vn+1Vn

∆T

∆V

(a) Preservation of translation and rotation inde-
pendent of reference frames

∆V

Tn

Tn+1

Vn+1
Vn

∆T

∆TM M -1

(b) Computation of the updated model
transformation

Figure 3.13: e relationship between the tracking and model transformations

As noted above, ∆T transforms Tn to Tn+1. Similarly, there exists a matrix ∆M which

33

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

transformsMn into the desiredMn+1. us, we have:

Tn+1 = ∆T · Tn ⇐⇒ ∆T = Tn+1 · T−1
n (3.2)

Vn+1 = ∆V · Vn (3.3)

To define the transformations a function is needed which extracts the translation part
of any matrix into a translation matrix. It is defined:

Tr




a b c d

e f g h

i j k l

m n o p



 =


1 0 0 d

0 1 0 h

0 0 1 l

0 0 0 p

 (3.4)

FirstU is computed as the transformation translatingMn toTn and the translatedmodel
matrixM ′n:

U = Tr(Tn) · Tr(Mn)−1 (3.5)

M ′n = U ·Mn (3.6)

Applying ∆T from Equation 3.2,M ′n+1 is obtained which is basicallyM ′n moved from
Tn’s reference frame to Tn+1’ reference frame. Finally, the initial translation is undone and
Mn+1 is obtained:

M ′n+1 = ∆T ·M ′n (3.7)

Mn+1 = U−1 ·M ′n+1 (3.8)

Using the previously defined equations, it is possible to define a function f which com-
putes Vn+1 based on Vn, Tn and Tn+1 in the following way by Equation 3.8:

=Mn+1 = U−1 ·M ′n+1

(substitution by Eq. 3.7) = U−1 ·∆T ·M ′n
(substitution by Eq. 3.6) = U−1 ·∆T · U ·Mn
(substitution by Eq. 3.2) = U−1 · Tn+1 · T−1

n · U ·Mn
(substitution by Eq. 3.5) = Tr(Mn) · Tr(Tn)−1 · Tn+1 · T−1

n

·Tr(Tn) · Tr(Mn)−1 ·Mn (3.9)

= f(Mn, Tn, Tn+1) (3.10)

As observed in Equation 3.9, f is defined entirely in terms ofMn, Tn andTn+1. e function

34

3.3. IMMERSIVE VISUALIZATION

f also preserves translation and rotation as specified earlier in this section. is concludes
the discussion on the interaction. For details on the implementation of this component, see
Section 4.2.5.

3.3.2 “Lookingrough a Window”

As stated in Section 3.1.1, for the immersive display to be convincing, the display must act
the role of a window. is can be compared to the normal use of a display in which it acts
the role of an interactive image.

Since the immersive visualization uses a stereo display. e visualization needs to be
rendered twice for each frame, that is; once for each eye. e only difference between the
frames are the perspective projection matrices.

One could easily assume that the difference is the model matrix specified by the posi-
tion of the eye and a focus point as illustrated in Figure 3.14(a).. e shape of the viewing
frustum would then be the same for both eyes while the position differ. e problem with
this approach is that the plane of focus is not parallel for the two eyes as illustrated by the
dotted lines in Figure 3.14.

To remedy this problem, the plane of focus needs to be aligned with the display. e
solution is to shape the viewing frustum to fit the viewpoint and the display [11] instead of
translating and rotating it as illustrated in Figure 3.14(b). e viewing frustum is shaped so
that:

1. e viewing direction is orthogonal to the picture frame. is ensures that the ren-
dering plane is parallel to the picture plane. More importantly, it ensures that the
right and le rendering planes are parallel.

2. e shape of the viewing frustum matches the shape of the pyramid defined by the
picture frame and the eye position.

For the stereoscopic visualization, it is required to not only take into account the position
of the head, but the individual eyes as well. ese positions are acquired from the Open-
Tracker adapter through the tracking compensation component described in Section 3.2.1.
e probe offset in the tracking compensation component is configured to place tracking
point approximately at the nose ridge of the user. is point is used as the viewpoint is used
when using a monographic display. By placing the point here wemay use a fixed offset right
and le to obtain the approximate positions of the eyes. is offset is basically half of the
distance between the user’s eyes. ese points are suitable for a basis when computing the
stereo projection matrices. Given the motion tracker matrix T and the eye distance d, then

35

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

Left Eye

Viewing
Frustum

Screen

Data

Right Eye

(a) asymmetric viewing frustums

Left Eye

Viewing
Frustum

Screen

Data

Right Eye

(b) symmetric viewing frustums

Figure 3.14: e right and le viewing frustums.

the viewpoints for the head ph, the le eye pl and the right eye pr are:

ph = T


0

0

0

1

 pr = T


d/2

0

0

1

 pl = T


−d/2

0

0

1



With the position of the eyes in hand it is possible to proceed to define the projection
matrix for each eye separately. e position of the eye in question will be denoted the view-
point and is denoted p. e frame of reference will be the center of the picture where x
points right, y up and z towards the user. e frame of reference is then completely defined
by its widthW and heightH .

Taking the formula for the viewing frustum from the OpenGL reference manual [24]:



2zn
xr−xl

0 A 0

0 2zn
yt−yb

B 0

0 0 C D

0 0 −1 0

 where

A = xr+xl
xr−xl

B = yt+yb
yt−yb

C = − zf+zn
zf−zn

D = −2zf �zn
zf−zn

(3.11)

where xr and xl are the x-coordinate of the right and le sides, yt and yb are the y-coordinate
of the top and bottom sides and zn and zf is the z-coordinate of the near and far plane. Note
thatxr, xl, yt and yb are the coordinates at the near plane; z = zn. Using the definition above
for the frame of reference,W and H and the viewpoint v = (xv, yv, zv), we can compute

36

3.3. IMMERSIVE VISUALIZATION

the sides of the view frustum as follows:

right side: xr = W/2− xv (3.12a)

le side: xl = −W/2− xv (3.12b)

top: yt = H/2− yv (3.12c)

bottom: yb = −H/2− yv (3.12d)

To be able to place objects in the space in front of the display we need tomove zn accordingly
so the objects are not clipped as zn defines the near clipping plane.

Additionally, whenever zn changes, the coordinates for the sides need to scale propor-
tionally relative to the viewpoint. Given a side us, the new z′n and old zn, and the appropriate
viewpoint coordinate uv where v ∈ {x, y, z}, the new u′s is computed as:

u′s = (us − uv)
z′n − zv
zn − zv

+ uv (3.13)

e only element not defined yet is the far plane zf . Since it is not used to determine the
shape of the frustum, it can potentially assume any value. Generally, the far plane should be
farther away than any object rendered to ensure that no objects are clipped.

Equippedwith these formulas, it is possible to define a viewing frustumwhich adheres to
the points outlined above. As noted above, the viewpoint v is provided by the OpenTracker
adapter and the tracking compensation component. e size of the display is configured by
the user and the near and far plane are set to appropriate constants.

e formula computing the perspective transformation matrix (Equation 3.11) places
the camera at the origin which is fine for monoscopic displays. For stereo displays it is im-
portant that the position and orientation of the screen in the right and le viewing frustums
are the same.

e solution is to translate both viewing frustums so that the screens are positioned at
the origin instead of the camera. e coordinates of the center of the screen are basically the
translation part of the projection matrix P . Applying the inverse of the translation part of
P to the model transformationM will yield the corrected model matrixM ′ which has the
screen positioned at the origin. M ′ is computed by applying a corrective translation matrix
C as follows:

C = Tr(P)−1 (3.14)

M ′ = C ·M (3.15)

Finally, to avoid that the size of the rendered object on screen depends on the screen’s

37

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

physical size, all sizes are normalized by the screen height, that is; divided byH . is has the
advantage that the rendered objects scale with the screen height and avoids the problem of
rendering only a tiny area of the big screen. is problem can of course be fixed by scaling
the model matrix, but it will require rescaling at every computer with different screen sizes
which our approach removes the need for doing.

To sum up, the component needs to supply two matrices; the projection matrixM ′ and
a corrective translation matrix C which needs to be applied to the model matrix stack. See
Section 4.2.6 for details on the implementation of this component.

3.4 Multimodal Visualization

e second scenario addressed by this thesis is the multimodal visualization of 2D ultra-
sound combined with 3D anatomical scans. e acquisition of the required data has already
been described in Section 3.2. In short, the Flock of Birds are used in conjunction with the
OpenTracker adapter for tracking, whereas the medical data are acquired by ultrasound
scanners and MRI scanners.

As described in Section 3.1.2, there are four main obstacles to overcome and these will
be addressed in this order in the next sections:

1. e acquisition of the required data; tracking, ultrasound and MRI.

2. e time synchronization of the tracking and the ultrasound time series.

3. e specification and computation of the registration transformation matrix.

4. e multimodal visualization of the combined data.

e components described in this section are a component for playing back tracking trans-
formation from log files, a component for displaying a slice image, a component which
extracts a slice image from a 3D volume, a component for picking points on the slice image
and a component for computing the registration transformation.

3.4.1 Time Synchronization

eultrasound slice images andmotion tracking data are acquired from twodifferent sources.
is means that the data are not synchronized as we did not realize any mechanism to per-
form this across the devices – mainly due to lack of synchronization facilities in the acqui-
sition devices we used. To make the synchronization process easier, it was attempted to
synchronize the acquisition devices as much as possible during the sessions. In practice,
this means agreeing on the time of start and stop of the acquisition. is is by no means a

38

3.4. MULTIMODAL VISUALIZATION

perfect solution but it makes it easier to perform the synchronization when it is known the
modalities are only offset by at most a couple of seconds.

If the acquisition is performed in real-time during the visualization, the need for syn-
chronization is removed, but due to latencies in the system, a delay mechanism needs to be
implemented instead. Since real-time acquisition and visualization was not performed due
to lack of appropriate hardware, the rest of this section will describe an off-line visualization
which is realized by playing back a log file containing the tracking data.

e tracking transformations read from the log file are named and time stamped. is
time stamp is defined as the time since VolumeShop started in seconds, with millisecond
resolution. e time series of slices are also time stamped as the DICOM header includes
the time of acquisition, but this time stamp is lost when converting the data to the dat

format. e DICOM header also includes the total session time and the number of frames
captured which can be used to compute the frame rate of the slices.

e manual synchronization effort described above ensures that the first image slice
is approximately acquired at the time the first tracker transformation were time stamped.
Combining these facts, it is possible to synchronize the tracking transformations with the
slice time series.

e three components responsible for rendering the image slices in the correct positions
are the slice renderer, the slice provider and the tracking transformation playback compo-
nents. e time synchronization is implemented in slice provider and the tracking trans-
formation playback components. Basically, the slice provider component supplies a slice of
the ultrasound time series volume from a specified time.

As noted above, the frame rate of the slice images are known and the frame rate value
of the slice provider component is set to match it. is leaves only the time offset to be
specified.

To find the time offset a motion has to be found which can be recognized in both the
slice images and the transformation. e best motions are abrupt change of direction or
speed. Both these kind of change are easy to spot under visual inspection of the tracker data
but are not always as easy to spot on the ultrasound slice.

When such amotion is found, the time offset can be set tomatch thesemotions together.
e way this is done is to move the time slider so that the ultrasound slice shows the slice
at initiation of the motion. Now move the time offset slider so that it also shows the trans-
formation at the initiation of the motion. Note that moving the time offset slider results in
changing the time for the transformation but not the slice. So the slice will move around,
but the ultrasound image will be still which makes it possible to align the motion of the two
modalities.

Assuming the framerate is correct, then themodalities should be properly synchronized.

39

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

e implementation of the components discussed in this section are found in the follow-
ing sections; the tracking transformation playback are described in Section 4.2.2, the slice
provider is described in Section 4.2.4 and finally the slice renderer in Section 4.2.7.

3.4.2 Registration

With the synchronization complete, it is possible to register the data sets. As noted in Chap-
ter 1, registration is the process of aligning different data sets, generally with different ref-
erence frames, so that they share reference frame. In this thesis, a semi-automatic rigid
registration method has been implemented.

e basic premise of this method is to locate three landmarks which is recognizable
in both data sets. All three features are then marked in both data sets by specifying their
location on the display. ese points are specified in world space. Note that we operate with
two world spaces prior to a successful registration; one for each data set which equates to
their respective frames of reference. Using these points, we compute a matrix R aligning
the two world coordinate systems.

Picking Reference Points

e user interface for the reference point picking is designed to be simple to use. It is con-
figured to map a key on the keyboard to the picking mode, usually the keys 1, 2 and 3 are
mapped to the properties “Point 1”, “Point 2” and “Point 3” respectively. e user then
presses and holds the key to activate the point picking for the associated point which is ac-
tive until the user releases it again. Clicking the le mouse button while in picking mode
sets the point. When the mouse is clicked, the point associated to the key will be updated
with the result of the intersection computation. All the points are made available in both
world space and data space. e data space representations are postfixed with “(data space)”
to differentiate them from the world space variants.

To pick reference points, the projection matrix P , the model matrix M , and the data
matrix D and the normal of the plane nD specified in data space needs to be taken into
account. As noted in Section 3.1.2, the line defined by the mouse cursor (Figure 3.15) and
the plane defined by the slice is transformed into world space for intersection testing.

To simplify things, P , M and D are converted into two matrices which performs the
desired transformations, namely converting the input parameters to world space:

• Mws which transforms world coordinates to screen coordinates.

• Mdw which transforms data coordinates to world coordinates.

40

3.4. MULTIMODAL VISUALIZATION

Display

Mouse
Cursor

Ultrasound Slice

Line

Intersection

Figure 3.15: Picking reference points on the ultrasound slice

is simplification turns out to be helpful for another feature of this component. Due
to the differences of two slice views in the user interface, this component needs to have two
operationmodes. Bothworks as already described picking points at the plane defined by the
slice. e difference between the modes is how the relations between the world space and
camera space is defined. e firstmode (modeA) assumes that the world space relates to the
screen space through the P · V transformation as illustrated in Figure 3.16(a). e second
mode (mode B) on the other hand, assumes that the world space is not related to the screen
space at all and that the plane is initially defined in world space illustrated in Figure 3.16(a)
and is thus parallel to the xy plane. D−1 is still used to convert the intersection point to data
space.

World Space

Screen Space

Data Space

V

P

D

(a) Plane displayed in data space

World SpaceScreen Space

Data Space

V

P
D

(b) Plane displayed in screen space

Figure 3.16: Two modes of operation.

Depending on the mode of operation , Mws and Mdw will be defined differently. In
mode A where the plane is rendered in data space is the traditional mode where the full
transformation stack is applied to the plane. In this case the matrices can be computed
straight forward, like this:

Mws = V · P, Mdw = D (3.16)

41

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

In mode B, where the plane is rendered in world space some more thought is required.
D is not applied to the plane when it is being rendered so one can say that the world space
is the data space and the true world space is something entirely different defined byD. By
this reasoning the matrices is computed as follows.

Mws = P · V ·M−1, Mdw = D (3.17)

OnceMws andMdw are defined, it is possible to carry on with the rest of the computations
and can the mode of operation can be disregarded.

e input is the point p = [x, y]which is the position of themouse cursor is screen space.
We then create two points in 3D spacewhich forms the basis of the line through p perpendic-
ular to the screen. ese points are defined by p0 = [x, y, 0, 1]T and p1 = [x, y, 1, 1]T . ese
points are then transformed into world space where the rest of the computation will take
place. eir world space representations are defined asw0 =M−1

ws · p0 andw1 =M−1
ws · p1.

e direction of the line is defined d = w1 − w0 and the line itself:

l(t) = w0 + t · d (3.18)

e plane is defined by the normal n = [xn, yn, zn, 0]T and the point v = [0, 0, 0, 1]T

in the data space. ese needs to be converted to world space like the points p0 and p1. e
plane in world space is defined by the normal nw = Mdw · n and the point vw = Mdw · v.
e plane is then defined by:

nw · (x− w0) = 0 (3.19)

With both the point and plane defined in world space the intersection computationmay
be carried out. Assuming the plane is not parallel to the line we know that there is a single
point of intersection. Substituting x with l(t) and again l(t) with its definition by Equation
3.18 we get an equation with t as the only unknown:

t =
nw · (vw − w0)

nw · d
(3.20)

Plugging t back into l(t) gives us the point of intersection. e resulting point is stored in
one of the point properties of the plugin as indicated by the user.

e description of the implementation of this component can be found in Section 4.2.9.

3.4.3 Computing the Registration Matrix

Bymarking the required number of landmarks, two sets of points (a0, a1, a2) and (b0, b1, b2)

is acquired for the image slices A and the medical volume B. Once these points have been

42

3.4. MULTIMODAL VISUALIZATION

identified, a transformation matrix R is computed which transforms ai into bi. is trans-
formation is then used to transform points fromA’s to Bs reference frame.

For affine transformations in three dimensions, we really need four points to unambigu-
ously define the transformation. e reason for this is that the transformations are specified
by 4 × 4 matrices and basically one point is needed to for each column to unambiguously
define. us 4 points is needed.

Assuming that A and B are orthogonal – that is; all three axes are orthogonal to each
other, not counting the translation part – and uniformly scaled, the fourth point can be
synthesized. is assumption is not unreasonable as A and B is the reference frames of
the ultrasound images and the MRI volume respectively and both are real world reference
frames and disregarding relativistic space-time bending of space, they can be assumed to be
orthogonal and uniformly scaled.

Specifying three points automatically defines the translation part and two of the axes
of a matrix. e assumption of orthogonality fixes the direction of the third vector and
similarly the assumption of uniformly scaled vectors fixes its length. us the entire matrix
is unambiguously defined by only three points.

Assuming the three points (p0, p1, p2) specified by the user we are able to construct a
matrix that is a reference frame for the points. We assume p0 to be the origin of the reference
frame. en two of the axes are defined by:

v1 = p1 − p0 and v2 = p2 − p0 (3.21)

e last axis is computed from these as:

v0 =
v1 × v2
|v1 × v2|

|v1| (3.22)

By crossing v1 with v2 we obtain a vector perpendicular to both v1 and v2. is vector
is then normalized and scaled to the length of v1 which ensures that the new vector’s length
is proportional to v1. It is important that the constructed vector is proportional to the other
two vectors, otherwise the resulting registration transformation would scale non-uniformly
and would contradict our assumption of the reference frames being uniformly scaled. e
choice of v1 is arbitrary, it can be any linear combination of v1 and v2. Having computed
the reference origin p0 and three vectors (v0, v1, v2)we can proceed to construct the matrix
defining the reference frameM as follows:

M = [v0 v1 v2 p0]

With the described method, we can construct a reference frame for the points specified

43

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

in A and B separately. e resulting matrices;MA andMB like the points they are based
on are specified in world coordinates of the different data sets. Defining the matrixR as the
transformation mappingMA toMB as:

MB = R ·MA (3.23)

which yields R = MB ·M−1
A (3.24)

We find that R not only maps MA to MB but also maps A’s reference frame to B’s
reference frame because MA and MB are defined in those reference frames respectively.
Plugging this matrix into the matrix stack in Figure 3.8(c) as the matrixRwe obtain correct
registration so long as the points are properly defined by the user.

As described in Section 3.4.2, the point specifier uses the world space as a reference
frame when specifying points. e result is that it is not necessary to pick all three points
in the same slice easing the process of finding suitable features since the odds of finding a
single feature in a slice is much greater than finding three.

is computation is carried out by the registration component and is described in detail
in Section 4.2.10.

3.4.4 Multimodal Visualization

e final stage in this pipeline is the multimodal visualization of the combined modalities.
As already noted, the user interface consists of three views. One presenting the ultrasound
slice, a second presenting a slice of the volume and the last displays the combined modali-
ties. To realize these views, visualization components from VolumeShop and custom made
components were utilized.

VolumeShop comes with a set of standard components for visualization of 3D volumes
in different ways. For this pipeline, two custom visualization components were made; a
slice renderer and a matrix renderer. e two built-in renderers used in this pipeline are the
volume slice renderer – called the volume slice renderer to differentiate it from the custom
slice renderer – and the volume renderer.

e reason a custom slice renderer were created was that the built-in volume slice ren-
derer applies a transformation to the slice based on the z-coordinate to place it inside the
volume in the correct location. at translation is incompatible with the goals of this thesis
and since the slice needs to be placed according to the tracking information instead. Addi-
tionally, to support real-time images from an ultrasound scanner, the slice renderer needs
to be able to accept a single image instead of a whole volume.

e three views each utilizes the following components:

Ultrasound Slice View shows the untransformed ultrasound slice and uses the custom slice

44

3.4. MULTIMODAL VISUALIZATION

renderer to render the slice and the matrix renderer to render the picked points.

Volume Slice View shows the volume slice and uses the built-in slice renderer to render the
slice and renders the picked points in the same manner as the ultrasound slice view.

Combined View shows the combined modalities and uses the built in volume renderer to
render the reference volume and the custom slice renderer to render the slice.

Matrix Renderer

e matrix renderer was initially created to visualize matrices for debugging purposes. It
evolved to be able to visualize matrices using different representations so it could be used
in more scenarios, these representations are illustrated in Figure 3.17. e matrix renderer
renders the origin of a matrix and its axes relative to the origin.

px

py

pz

po

(a) Vector mode

px

py

pz

po

(b) Point mode

px

py

pz

(c) Point mode without
the origin

Figure 3.17: e different display modes for the matrix renderer

Given the matrixM = [x y z w], the reference points of the representation are:

p0 = w (3.25a)

pv = w + v where v ∈ {x, y, z} (3.25b)

Where p0 is the origin and px, py and pz is the position of the axes.
e different representations have the coloring in common. e component always ren-

ders px as red, py as green and pz as blue. In the single case where the origin p0 is rendered
separately, it is drawn using cyan.

is exact coloring was chosen because it is intuitive to map the vectors to colors, as
colors are really vectors in color space. us the vector [x, y, z] is mapped to the color
[r, g, b]. e cyan color were chosen with two criteria in mind. It must not be the same
color as the other three colors and neither be black or white, at the same time being bright
and easily discernible.

Arrows which is three arrows pointing from p0 to each of the three points px, py and pz .

45

CHAPTER 3. IMMERSIVE VISUALIZATION PIPELINE

Points which the four point is rendered as a point each. e points are made 2 pixels in
diameter to make them easier to spot.

Points (no origin) which is the same as the previous, but omitting v0. is style is used to
draw the three points picked by the user.

Slice Renderer

As noted above, the built-in slice renderer was not adequate for the needs of themultimodal
visualization pipeline so a custom slice renderer was created. e slice renderer used for the
multimodal visualization had three requirements.

• To render the slice according to the projection transformation, the model transfor-
mation and the slice transformation. In particular, it should not apply a translation
based on the z-position of the slice in the volume.

• To render the slice with the original colors and intensities or by applying a transfer
function.

• To accept a single image for rendering as opposed to the built-in slice volume renderer
which accepts a volume.

It is fairly straightforward to define this component. Basically, it applies the projection
matrix, the model matrix and the slice matrix to the matrix stacks in the OpenGL pipeline
and renders the slice as a textured quadrilateral with the following vertices:

v0 =


0

0

0

 , v1 =


1

0

0

 , v2 =


1

1

0

 , v3 =


0

1

0

 (3.26)

x

y

z
xQuadliteralSlice image

Figure 3.18: e ultrasound slice
placed in the slice matrix

Matching texture coordinates will ensure that the
slice texture is stretched across the whole quadrilat-
eral. e size of the quadrilateral is defined by the
length of the x and y axes of the slice matrix, see Fig-
ure 3.18, which in contrast to the model matrix do
not have to be uniformly scaled.

e implementation of the slice renderer is de-
scribed in greater detail in Section 4.2.7 and the ma-
trix renderer component in Section 4.2.8.

With this the description of the pipelines is con-
cluded. e next chapter will describe the implementation details of these pipelines and
aer that Chapter 6 will discuss the results.

46

4
Implementation

e implementation of this thesis consists of a set of components which works together to
produce immersive visualizations on large stereo screen and multimodal visualization of
2D ultrasound with 3D modality. e components in the framework for the pipelines have
been described on a conceptual level in Chapter 3 and now the implementation aspects will
be presented.

e pipelines consists of a shared OpenTracker adapter which is configurable for the
different setups.

e immersive visualization pipeline is made up of a camera controller component and
an interaction controller component, both of which utilize the OpenTracker adapter for
tracking input. ese plugins defines the projection transformation, the camera transfor-
mation and themodel transformationmatrices. Any visualization can be utilized with these
plugins, all that is needed is for the renderers to make use of the supplied matrices as illus-
trated in Figure 4.1.

interactor_opentracker

Head Transformation
Hand Transformation

Tracker Transformation
Compensated Transformation

interactor_matrix_compensator

Tracker Transformation
Compensated Transformation

interactor_matrix_compensator

Hand Transformation
Model Transformation

interactor_trackedmouse

Head Transformation
Projection Transformation
Camera Transformation

interactor_trackedmouse

Model Transformation
Projection Transformation
Camera Transformation

any_renderer

Figure 4.1: e immersive visualization pipeline and its components

emultimodal visualization pipeline illustrated in Section 4.2 utilizes theOpenTracker
adapter for the tracking of the ultrasound probes. e tracking data is stored to a log file and
read by the transformation playback component for off-line processing. e visualization
of the slice is performed by a custom slice renderer which gets the slice images from a slice
provider and the tracking data from the transformation playback plugin. e visualization

47

CHAPTER 4. IMPLEMENTATION

of the 3Dmodality is performed by the built-in volume renderer and volume slice renderer.
e landmark picking is performed by a point picker component and the registration is
performed by a registration component which computes the registration matrix based on
the picked points.

Simplifed Interface

Time
MRI Position
Time Offset
Slice Frequency

Tracker Transformation
Registration Transformation
Compensated Transformation
Registered Transformation

interactor_matrix_compensatorinteractor_transformation_playback

File Name
Probe Transformation
Time
Time Offset

Slice Transformation
Slice

renderer_slice

Resources

Ultrasound Volume
MRI Volume

interactor_slice_provider

Time
Slice Frequency
Volume
Slice

Position
Volume
Slice Transformation

renderer_volume_slice

Slice Transformation
Slice

renderer_slice

Volume

renderer_volume_simple

interactor_coreg

Points Slices
Points Volume
Registration Matrix

Slice Transformation
Points

interactor_point_specifer

Slice Transformation
Points

interactor_point_specifer

Ultrasound Slice View

MRI Cross-section View

Combined View

Figure 4.2: e multimodal visualization pipeline and its components

4.1 The VolumeShop Framework

e implementation has been realized as a set of plugins for a volume visualization frame-
work called VolumeShop. e VolumeShop framework is designed to enable rapid proto-
typing of visualization applications. e most important features are features are:

Plugin Architecture Almost all the functionality of VolumeShop is defined by plugins with
a core component responsible for communication between the plugins. VolumeShop
itself serves as little more than a scaffold for the plugins to be placed in. e plugins
come in several different categories including data importers, rendering compositors
and the ones used most in this thesis; interactors which are responsible for user in-
teraction and renderers which are dedicated to the display.

Properties Every plugin and a few built-in types have a set of properties. Properties are
basically named variants which can be added or removed at run-time. Variants have

48

4.2. PLUGINS

dynamic type in that they may hold any type of values as long as that particular type
is supported. Variants can also be typed so that it may only hold data of a single type.
Common value types are integers, floating point numbers, vectors, matrices, images
and volumes.

Variant Observing and Linking Variants may be observed by one or more observers. By
adding an observer to a variant, the observer will receive notifications when the value
of the variant changes. Observers are light-weight objects which forwards the notifi-
cation to the desired destination. Observers are used when implementing a plugin to
get notifications when the input properties change.

Linking is defined at run-time and basically uses observing to enable the user to link
the values of two properties. When two properties are linked, their values will always
be the same. Change the value of any of them and the other will change to match the
first. It is also possible tomake a chain of links to ensure that any number of properties
have the same value. is technique is used for communication between plugins.

An example of linking is the link from the model matrix of an interactor to the model
matrix of the renderer. e result is that the interactor doesn’t need to know about
the renderer. It only hosts its own model matrix which anyone can observe when
desirable.

e plugins are compiled against VolumeShop’s core library and are stored in a folder con-
taining all the executable files. ese plugins are then loaded at runtime into VolumeShop
by the user and are linked to create a configuration which produces the desired results. e
configuration of plugins and the data links can at any time be stored as a project as an xml

file. ese projects stores all plugins, the links between the plugins and all references to
external files.

VolumeShop also has an export/import feature which basically creates a bundle contain-
ing the xml project file and all files referenced by the plugins. is feature allows projects to
be safely moved between folders and even computers.

e result, illustrated in Figure 4.3, is a dynamic and loosely bound systemwhich enables
rapid prototyping by letting the plugins be developed in isolation without having to take
considerations to other plugins.

4.2 Plugins

e components described in Chapter 3 are implemented as individual plugins for the Vol-
umeShop framework. e following sections will describe the implementation of all the
plugins made for this thesis. e properties of the plugins are listed in the following style:

49

CHAPTER 4. IMPLEMENTATION

Xml

PluginA.dll
PluginB.dll
Volume.dat
...

ProjectPluginA.dll PluginB.dll

DLL DLL

BA

dat

Volume.dat

VolumeShop

Figure 4.3: e VolumeShop architecture

[in,out] Property Name here is a short description of the property. e in and out denotes
input and or output properties.

4.2.1 plugin_interactor_opentracker

is plugin’s responsibility is to interface with the OpenTracker library to supply uncom-
pensated real-time tracking information. As noted in Section 3.2.1 the process of com-
pensation is basically to transform the raw tracking matrix into the appropriate frame of
reference. e implementation of the OpenTracker adapter has the following properties:

[in] Configuration File is the path to the OpenTracker configuration file.

[in] Log File Name is the path to the log file.

[in] Is Logging is a boolean indicating whether or not it is logging the transformation to
file.

[out] <name of transformation> is the uncompensated transformationmatrix of the tracker.
ere is one property for each tracker specified in the OpenTracker configuration file.

e OpenTracker library is wrapped by the OTWorker class. is class supplies a sim-
plified interface to the OpenTracker library. It takes care of the initialization, running and
tear-down of the OpenTracker instance.

e name OTWorker stems from the fact that it also runs in its own worker thread. e
reason for this is that the OpenTracker actively polls the inputs while waiting for data to
arrive. Without a worker thread, this activity would reduce the performance of the host
application which in addition would need to do the polling itself. e thread also converts
the incoming data from position+quaternion to matrix representation which is the repre-
sentation used throughout our pipelines.

50

4.2. PLUGINS

OTWorker is hosted in the plugin_interactor_opentracker plugin. Its responsibility is
to supply a matrix property for each tracker which is updated real-time. e actual update
is performed in the idle() method of the plugin. is is a method which is called by the
system continuously while it is idle. e idle() method is used for the polling of the OT-
Worker is that it will not impact the performance of the application as the method will only
be executed while the system is inactive. is ensures that the polling of themotion tracking
will not contest with other parts of the application for processing resources.

ere is also an option to record the motion tracking data to a log file. is data needs
to be stored to file to enable replay of the transformation later as part of the registration
process of the multimodal visualization pipeline. All that is needed to log is for the user to
supply the path of the log file. e logging can be started and stopped as appropriate. In our
case we attempted to synchronize the start of the ultrasound acquisition with the start of the
logging of the tracking transformations to reduce the manual effort needed to synchronize
the two data streams.

4.2.2 plugin_interactor_transform_playback

e plugin_interactor_transform_playback plugin is playing back a tracking session previ-
ously logged by the plugin_interactor_opentracker plugin. e interface to these two plu-
gins for other plugins is the same, and is basically only to link to its supplied matrix which
makes them interchangeable. is plugin has the following properties:

[in] File Name is the path to the log file. e history will be read from this file whenever
this path changes.

[in] Time is the point in time from when the transformation matrices is acquired.

[in] Playback is the current mode of operation. Its value can be “Playback” or “Paused”.

[out] <name of transformation> is the uncompensated transformationmatrix of the tracker
at the time specified Time property. ere is one property for each tracker named in
the log file. us, it supports any number of trackers.

is plugin can either play back the motion tracking data automatically or it can be
controlled by the user with a slider controlling the Time property in the user interface. e
latter is usedwhen performingmultimodal visualization since the ultrasound slices needs to
keep still when the user is pinpointing landmarks in them. is is because a moving target
is harder to hit than a still target.

Essentially, the number of tracking records can be different from the number of images
in the ultrasound time series. is is because the frame rate of the ultrasound is different

51

CHAPTER 4. IMPLEMENTATION

from the update frequency of the tracking device. To cope with this, the transformation
matrices, and ultrasound slices are addressed by time instead of directly indexed. Because
of this, there is a need to map the time into indices and further, to transformation matrices.

Algorithm 1 is used for finding the corresponding transformation matrix for the re-
quested time. the algorithm starts with finding the record just prior to or exactly at that time.
is record is containing a (time stamp,transformation) pair and is denotedRn = (ti,Mi)

for 0 ≤ i ≤ N where N is the total number of records. e records are sorted so that
i < j ⇐⇒ ti < tj . If the requested time is outside the range [t1, tN], where N is the
number of records, it returnsM1 andMN respectively.

Algorithm 1: ComputeMatrix(t)
Input: the recordsR = (R1, R2, ..., RN)
Input: the requested time t
Result: the interpolated matrix at time t
/* Return endpoints when outside range */1

if t ≤ t1 then returnM12

if t ≥ tN then returnMN3

/* approximate and find the correct index */4

i← floor (t/(tN − t1))5

if ti = t then6

returnMi7

else if ti < t then8

while i < N ∧ ti+1 < t do9

i← i+ 110

end11

else12

while ti > t do13

i← i− 114

end15

end16

/* Now linearly interpolate */17

s← (t− ti)/(ti+1 − ti)18

return (s− 1)Mi + sMi+119

It is assumed that the records are uniformly distributed over time so it is possible to
compute the approximate index. From this approximation we start to search for the correct
record.

When Rn is found, the algorithm linearly interpolates fromMn toMn+1 to get an ap-
proximate transformation at the exact time requested. It was opted not to use spherical
linear interpolation (SLERP) as the trackers are updated about 30 times per second and the
tracking matrices vary relatively little from one update to the next.

52

4.2. PLUGINS

Linear Interpolation

SLERP

Figure 4.4: SLERP vs. regular linear interpolation

e problem, illustrated in Figure 4.4, that occurs with regular linear interpolation of
matrices is that when the rotation component is large, the length of the axes are reduced.
Since the matrices operate with only small rotations, it is assumed that the reduction in axis
lengths is small enough to disregard. In practice, this was the case.

4.2.3 plugin_interactor_matrix_compensator

e tracking transformation matrices from OpenTracker needs to be compensated. at is;
to be transformed into the appropriate frame of reference. Basically the tracking transfor-
mation specifies the position and orientation of the tracker in relation to the transmitter.
What is needed is the position and orientation of the tracked object in relation to a tar-
get reference frame, e.g. the reference frame of the dislay. is plugin has the following
properties:

[in] Tracker Transformation is the uncompensated transformation matrix of the tracker
and is denotedM .

[in] Transmitter Reference Frame is the matrix specifying the position and orientation of
the transmitter and is denoted T (See Section 3.2.1).

[in] Probe Transformation is thematrix specifying the position andorientation of the tracked
point in relation to the tracker and is denoted C (See Section 3.2.1).

[out] Compensated Transformation is the compensated tracker transformation and is de-
notedMC .

[in] Registration Transformation is the registration transformation matrixR.

[out] Registered Transformation is the compensated and registered tracker transforma-
tion and is denotedMR.

53

CHAPTER 4. IMPLEMENTATION

Given the reference frame of the trackerM and the two user defined matrices, the ref-
erence frame of the tracked objectMC is:

MC = T ·M · C (4.1)

T and C is able to compensate for every possible linear transformation to the data needed
under any circumstances. Any additional pre or post multiplied transformations can be
concatenated into T or C .

For example, ifMC needs to be further compensated byA andB like so:

M ′C = A ·MC ·B (4.2)

en, by Equation 4.1:

M ′C = A · T ·M · C ·B (4.3)

= (A · T) ·M · (C ·B) (4.4)

= T ′ ·M · C ′ where T ′ = A · T and C ′ = C ·B (4.5)

us, by assigning T ← T ′ andC ← C ′ it becomes apparent that any linear transformation
needed to compensateM further can be included in T and C .

In practice,C either models the small offset from the tracker to the ultrasound probe or
to the eyes, whereas T models the offset and axis permutation from the transmitter to the
reference frame of the screen.

e registered transformationmatrixMR isMC transformed by the registrationmatrix:

MR = R ·MC (4.6)

4.2.4 plugin_interactor_slice_provider

For the multimodal visualization pipeline, a plugin which supplies the appropriate ultra-
sound slice is needed as described in Section 3.4.1. is plugin is used in conjunction with
the slice renderer plugin. Its task is to supply an image slice of a volume and a slice trans-
formation for placing the slice in the volume.

In practice this plugin is used to extract an ultrasound slice from a time series stored as
a volume specified by time. In this scenario the slice transformation is not used as it is only
used for visualization of regular volumes; that is, true 3-dimensional volumes and not time
series.

is plugin has the following properties:

54

4.2. PLUGINS

[in] Volume is the volume to extract slices from and is denoted V .

[in] Time is the time coordinate of the slice to extract from the volume. is value is con-
verted to a z-coordinate in the volume from which a x-y slice is extracted.

[in] Slice Frequency is the number of slice images to display per second. is is used to
compute the time interval between the slices which is used when computing the z-
coordinate of the slice in the volume.

[out] Slice is the slice image for the position.

[out] Slice Transformation is the reference frame of the slice assuming the volume is a reg-
ular volume. is transformationmakes it possible to use the slice renderer described
in Section 3.4.4 to visualize slices of regular volumes.

Since the volume is a time series, the time coordinate needs to be specified in seconds
to be able to synchronize it with other time dependent data. is time coordinate is con-
verted to a z-coordinate which determines which slice to fetch from the volume. e slice
frequency is thus user configurable and will in most cases, if not all, match the actual frame
rate of the acquisition device.

is plugin also computes an affine transformation which describes the position of the
slice in the volume. is is included to make it possible to use this plugin to provide slices
of regular 3-dimensional volumes as well. is transformation is needed to place the slice
correctly when it is rendered using plugin_renderer_slice which is described in this chapter.

4.2.5 plugin_interactor_trackedmouse

Described in Section 3.3.1 is a component which controls the position and orientation of the
rendered objects based on the user’s gestures. is plugin maintains a model matrix which
mirrors the changes to the input matrix when the le mouse button is pressed. is plugin
has the following properties:

[in] Hand Tracker is a matrix containing the reference frame of the hand tracker and is
denoted T .

[in] Screen Height is the height of the screen in centimeters. is is used to normalize the
coordinates. As described in Section 3.3.2 all coordinates are normalized by dividing
them by the screen height to remove the dependence of the size of the screen.

[in] Camera Transformation is the camera transformation matrix supplied by the camera
component which was described back in Section 3.3.2.

55

CHAPTER 4. IMPLEMENTATION

[out] Model Transformation is the model transformation maintained by this plugin. It is
used to place the data in the scene. As pointed out in Section 3.3.1, this is really the
object transformation.

[out] Camera * Model Transformation is the concatenation of the camera andmodel trans-
formation. It is combined with the model matrix for plugins which do not support
separate camera and model matrices. In OpenGL terms this matrix is called the
model-view matrix.

is plugin observes all input parameters and recomputes the model matrix whenever a
change occurs while the lemouse button is pressed. emodel matrix is updated to reflect
the changes to the tracker matrix according to the formula described in Section 3.3.1.

Since the update is not triggered until aer the motion tracking matrix is changed, the
previous tracker matrix Tn−1 is not available during the update. us when an update is
completed it stores Tn internally so that it is available at the next update as Tn−1.

For this plugin to work properly, the reference frame of the transmitter defined in the
matrix compensator plugin needs to be axis aligned with the screen’s reference frame. Oth-
erwise the object does not follow the user’s motions as the user is observing it but as the
transmitter observes it.

4.2.6 plugin_interactor_trackercamera

is plugin is the implementation of the camera controlling component described in Sec-
tion 3.3.2. Its responsibility is to compute projection matrices for monoscopic and stereo-
scopic displays based on the users position. is plugin has the following properties:

[in] Head Tracker is a matrix containing the reference frame of the head tracker and is
denoted T .

[in] Screen Width is the width of the screen in centimeters and is used with the height to
determine the aspect ratio of the screen. ey are manually set by the user.

[in] Screen Height is the height of the screen in centimeters, denoted h.

[in] Stereo.Separation is the distance between the eyes of the user specified in centimeters.
It is set manually and should ideally be adjusted for every user.

[out] Projection Transformation is a computed projectionmatrix suitable for use onmono-
scopic screens and is denoted P .

[out] Camera Transformation is the camera transformationwhich specifies the position of
the camera and is denoted C .

56

4.2. PLUGINS

is plugin has in addition properties for the right and le eye containing the projection
and camera transformation. In total there are three pairs of projection and camera trans-
formations. All the inputs are observed and triggers a re-computation of the outputs when
a change is observed. e workhorse, which does the heavy liing of this plugin, is the
computeProjectionMatrix method and its algorithm is described in Algorithm 2. It im-
plements the formulas described in Section 3.3.2 to provide the projectionmatrix according
to the viewpoint which is given as a parameter.

Algorithm 2: computeProjectionMatrix(w,h,p)
Input: the height and width of the screen w and h
Input: the position of the viewpoint p = [xp, yp, zp]
Result: a projection matrix matching the viewpoint and the screen size
/* First normalize by the screen height. */1

pn ← p/h2

wn ← w/h3

hn ← 14

/* Set reasonable near and far clipping planes */5

z0 ← max(zpn − 5, 0.1)6

z1 ← zpn + 57

/* Compute the rest of the clipping planes at z0. */8

x0 ← (−wn/2− xpn) · z0/zpn9

x1 ← (wn/2− xpn) · z0/zpn10

y0 ← (−hn/2− ypn) · z0/zpn11

y1 ← (hn/2− ypn) · z0/zpn12

/* Finally, compute the matrix */13

a← (x1 + x0)/(x1 − x0)14

b← (y1 + y0)/(y1 − y0)15

c← −(z1 + z0)/(z1 − z0)16

d← −2 · z0 · z1/(z1 − z0)17

return


2·z0
x1−x0 0 a 0

0 2·z0
y1−y0 b 0

0 0 c d
0 0 −1 0


18

e three projection matrices are computed by plugging three different viewpoints into
computeProjectionMatrix. As noted in Section 3.3.2, given the motion tracker matrix T
and the eye distance d, then the three viewpoints are

ph = T


0

0

0

1

 pr = T


d

0

0

1

 pl = T


−d
0

0

1

 (4.7)

57

CHAPTER 4. IMPLEMENTATION

Also noted in the same section are the camera matrix Cn which is simply a translation
by pn where n ∈ {h, r, l}, the normalized viewpoint coordinates. Cn is computed by:

Cn = Tr(computeProjectionMatrix(pn))
−1 where n ∈ {h, l, r} (4.8)

Screen

VolumeShop

View

h

w

xv

w v

hv

yv

Figure 4.5: e dimensions needed for
computing a proper perspective projection
matrix

is plugin computes viewpoint-dependent
perspective matrices. ere is one limitation
which originates in the VolumeShop frame-
work. To properly compute the projection ma-
trix, the screen size (w, h) and orientation needs
to be known, and is supplied by the user. If the
view only covers the screen partially this plugin
needs additional information. Specifically, the
view’s size (wv, hv) and position (xv, yv), illus-
trated in Figure 4.5, needs to be known.

Unfortunately, VolumeShop only supplies
the size of the view and since the size and po-
sition changes dynamically it is unfeasible to let
it be supplied by the user. us it is not currently
possible to achieve correct perspective projec-
tion when the view is non-fullscreen.

4.2.7 plugin_renderer_slice

is is the custom slice renderer described in Section 3.4.4. e reason the built-in slice
renderer is not used is that it translates the slice according to the z position of the slice in
the volume. Time series are not volumes but are still stored as volumes. eir time axis is
mapped to the z-axis of the volume and thus, the slice is translated along the z-axis based
on the its time coordinate which does not make any sense.

ere was no way to disable this translation and therefore a custom slice renderer was
made which takes the slice transformation as an input parameter. e properties of this
plugin are:

[in] Projection Transformation is the projection matrix and is denoted P .

[in] Model Transformation is the model matrix and is denoted V .

[in] Slice Transformation is the transformation of the slice and is denoted S.

[in] Slice is the image to render onto the slice and is denoted I . In our case it is limited to
plugin_interactor_slice_provider, but can easily come from a real-time source.

58

4.2. PLUGINS

[in] Transfer Function is the transfer function to apply when rendering the slice. If this is
not present, then the intensity or color of the slice will be used depending on the num-
ber of components. One component gives intensity only whereas three components
gives full RGB color.

[in] Orientation is amatrix used to transformS, the reference frame of the slice. It ismeant
to only be used to change the orientation of the slice.

is plugin basically draws a textured quadrilateral which represents the slice with the
slice image applied as a texture. e quad is drawn as an axis-aligned rectangle with corners
at [0, 0, 0], [1, 0, 0], [0, 1, 0] and [1, 1, 0]. us, the size of this quad is determined by the
length of the x and y axes of S. is means that the configuration of the probe transforma-
tion matrix P from the matrix compensator plugin dictates the size of representation of the
slice.

By linking the transformation computed by the slice provider, this plugin can render vol-
ume slices positioned in the volume as well. In the combined view, the slice transformation
is linked to the compensated and registered output from the plugin_interactor_matrix_compensator.
is allows the slice to be placed in the reference frame of the transmitter, or when the reg-
istration transformation is applied, in the reference frame of the 3D modality.

4.2.8 plugin_renderer_matrix

is plugin is the implementation of the matrix renderer component described in Sec-
tion 3.4.4 and visualizes a frame of reference defined by a matrixM . It has three matrices as
inputs, the first beingM while the two others are the projection and model matrices. e
two latter matrices is needed to transformM into screen space for rendering. is plugin
has the following properties:

[in] Projection Transformation is the projection matrix and is denoted P .

[in] Camera Transformation is the camera positioning matrix and is denoted C .

[in] Model Transformation is the model matrix.

[in] Transformation is the transformation to visualize and is denotedD.

[in] Normalize is a boolean variable which when true, will cause the axes to be normalized,
i.e. their length will be changed to 1.

[in] Scale is the scale to draw the axes in and is denoted s. It is only in effect when normal-
ization is enabled.

59

CHAPTER 4. IMPLEMENTATION

[in] Representation is a choice of how the reference frame should be rendered. See below
for description.

[in] Z Culling Enabled is a boolean that, if true, will enable the depth-buffer. It is some-
times desirable to disable the depth-buffer when the reference frame should not be
obscured.

Basically, this plugin renders the translation of the matrix and each of the axes relative
to it. e translation v is the fourth column of the matrix and the axes x, y and z are the
first, second and third columns respectively. e point v is used as the base for the vectors.
us the actual points which are rendered are v as the origin and x+ v, y + v, z + v and v
as the axes.

When the normalization is enabled, the axes x, y and z will be assigned:

x← x
|x|
· s, y ← y

|y|
· s, z ← z

|z|
· s (4.9)

is plugin supports three rendering styles to cater different usages. e vector style
renders a frame of reference where the axes are rendered as arrows pointing away from the
origin. e point styles plots a point at each of the endpoints of the arrows. e rendering of
the origin can be toggled on or off by choosing the appropriate rendering style. It is the latter
of these two that are used to draw the points picked by user in the multimodal visualization
pipeline. e depth buffer can be disabled for this plugin which is useful when the occlusion
of the points is not wanted.

e last configuration option is the ability for this plugin to use or disregard the depth
buffer. is is used to be able to see these points when embedded in volumes or obscured
by slices.

4.2.9 plugin_interactor_point_specifier

As described in Section 3.4.2 there is the need for a component which can compute the
coordinates of the point under the mouse cursor which intersects an arbitrary plane. e
properties of this plugin are the following:

[in] Projection Transformation is the projection transformation matrix of the parent view
and is denoted P .

[in] Model Transformation is the model transformation of the parent view and is denoted
V .

[in] Data Transformation is the data transformation matrix of the slice and is denotedD.

60

4.2. PLUGINS

[in] Plane Normal is the normal of the plane specified inD and is denoted n⃗

[in] Data Transformation Applied is a boolean indicating whether or not the slice is ren-
dered in camera space or data space and is denoted b and is true if the latter is the
case.

[out] Point n is the three resulting points specified in world space and is denoted pn, where
0 ≤ n ≤ 2.

In addition to these properties, there are three more points and two more matrices. e
three points dn are the same as pn but specified in data space, so:

dn = D · pn where 0 ≤ n ≤ 2 (4.10)

e two matrices are basically the points pn and dn packed into separate matricesMp and
Md. ese matrices are only used with the matrix renderer component to plot the points in
the views.

is plugin also needs user input in the form of mouse cursor position, mouse button
clicks and keyboard key-presses and key-releases. ree actions are set up, one for each
point. When the key associated with a point is pressed, the plugin enters reception mode
for that point. is plugin will accept and process mouse button clicks only when it is in this
mode. Releasing the key will make this plugin leave reception mode. is ensures that one
can use the mouse for other purposes without disabling this plugin, i.e. it may be desirable
to have a track ball interactor plugin enabled to be able to rotate the view.

e plugin_interactor_point_specifier basically implements the formulas described in
Section 3.4.2, see Algorithm 3 for the actual implementation. e points are updated when
the appropriate key is pressed on the keyboard and the user clicks the mouse so none of the
properties are observed for change. When a point is specified by the user, the position of the
mouse cursor is converted to an intersection point and stored in the appropriate property.

Note that when the plane normal is perpendicular to the direction of the line, the algo-
rithm will result in a division by zero on line 15 of Algorithm 3. is causes t to become
infinite and the result is then discarded.

Aer the point p is computed usingAlgorithm 3 it is converted toworld space and stored
in the point property pn and dn with n being the index of the point associated with pressed
key. e points are finally packed into the matrices mentioned earlier. In the case that p
is infinite, which as noted above is caused by t being infinite, it is discarded and no further
action is taken.

61

CHAPTER 4. IMPLEMENTATION

Algorithm 3: ComputeIntersection(p,d)
Input: the matrices P , V andD
Input: the boolean b determining the reference frame of the slice
Input: the position of the mouse cursor p = (px, py)
Result: the intersection of the plane and the mouse cursor in world space
/* Figure out the correct matrices */1

Mdw ← D2

if b then3

Mws ← P · V4

else5

Mws ← P · V ·D−16

end7

/* Convert the geometry to world space */8

w0 ←M−1
ws · [px, py, 0, 1]T9

w1 ←M−1
ws · [px, py,−1, 1]T10

n←Mdw · n⃗11

v0 ← n ·Mdw · [0, 0, 0, 1]T12

/* Compute the intersection */13

∆w ← w1 − w014

t← (n · (v0 − w0))/(n ·∆w)15

return w0 + t ·∆w16

4.2.10 plugin_interactor_coreg

As described in Section 3.4.3 this plugin has the responsibility to compute the registration
matrix from two sets of three points usually supplied by two separate plugin_interactor_point_specifier
plugins, one for the image slice and the second for the 3D modality. It has the following
properties:

[in] Point n Ultrasound the nth point in the ultrasound image data set and is denoted un,
where 0 ≤ n ≤ 2.

[in] Point n Volume the nth point in the volume data set and is denoted vn, where 0 ≤
n ≤ 2.

[out] Coreg Transformation e resulting registration transformationR.

As with the plugin_interactor_point_specifier the main algorithm for this plugin is a
straight forward implementation of the formulas described in Section 3.4.3. is plugin
observes all its input parameters for change and invokes the computation of the registration
transformation described in Algorithm 4 on that event.

As noted in Section 3.4.3 the choice of scale on line 4 and 9 of Algorithm 4 is not relevant
as long as the choice is consistent for both U and V .

62

4.2. PLUGINS

Algorithm 4: ComputeRegistrationTransformation()
Input: two sets of points un and pn, 0 ≤ n ≤ 2
Result: the intersection of the plane and the mouse cursor in world space
/* Compute the reference frame of the slice; U */1

uv1 ← u1 − u02

uv2 ← u2 − u03

uv0 ← (uv1 × uv2)/|uv1 × uv2| · |u1|4

U ← [uv0 uv1 uv2 u0]5

/* Compute the reference frame of the slice; V */6

vv1 ← v1 − v07

vv2 ← v2 − v08

vv0 ← (vv1 × vv2)/|vv1 × vv2| · |v1|9

V ← [vv0 vv1 vv2 v0]10

return V · U−111

Also noted in the aforementioned section is that this algorithm aligns un to vn so the
user must be careful to let the primary, the secondary and the ternary points in both data
sets specify the corresponding landmark in the two modalities. at is; when specifying
features A, B and C with the points uA, uB , uC , vA, vB and vC , then if the point ui = uX

implies that vi = vX and vice versa. e algorithm will still perform the registration if this
is not the case. Tt will just align the wrong points and the result will be nonsensical.

63

5
Results

e results obtained with the implementation described in Chapter 4 will be presented in
this chapter. e implementation was used in three different scenarios:

Immersive Visualization with Large Stereoscopic Screen eimmersive environment at the
University of Bergen gave ample opportunity to use the implementation for immer-
sive visualization as described in Section 3.3. e results of this scenario is presented
in Section 5.2.

Using the immersive visualization pipeline, the immersive environment at our Uni-
versity was used to give a presentation to a group of students from secondary school
and proved to be a huge success with the visitors.

Multimodal Visualization of 2D Ultrasound with 3DModality Working with our clinical
partners at Haukeland University Hospital a pipeline for multimodal visualization of
multiple modalities was realized which is described in Section 3.4.4.

5.1 General Purpose Tracking

e first tangible result is a general solution for tracking input for the VolumeShop frame-
work described in Section 3.2.1 and its implementation in Sections 4.2.1, 4.2.2 and 4.2.3. It
has been successfully utilized during the course of this thesis by enabling the user tracking
on the immersive environment at our university and the tracking of the ultrasound probes,
using essentially the same magnetic tracking technology. e soware has proven reliable
in both cases.

Because of the run-time configuration of the component, such as, the arbitrary con-
figuration of reference frames, and the wide support for tracking devices by the utilized
OpenTracker library it is easily configured for almost any tracking hardware.

e latency of this solution, i.e., the time from when the tracker moves until the client
is notified, is low. It is hard to measure this latency because the total latency of the system

65

CHAPTER 5. RESULTS

is the time from when the tracker moves until it is reflected on the display which makes it
hard to measure the latency of the two components separately. e time to render a frame
is effectively added to the latency of the tracking system when discussing perceived.

To minimize this effect, VolumeShop was configured to run with only the tracking and
a matrix renderer to visualize the tracker’s frame of reference. e result was a barely no-
ticeable delay from when the user moved the tracker to it was presented on the screen. No
good way to measure this latency has been made, but it is at least more than good enough
for the scenarios described in this thesis. Essentially it was not noticeable for the viewer.

5.1.1 Precision

As noted in Section 2.2 the precision of the magnetic trackers used in these scenarios are
susceptible to metals in the proximity of the tracker and the transmitter. A second problem
with the precision and magnetic tracking is that it deteriorates as the distance from the
transmitter to the tracker increases.

e problemwas especially apparent in the immersive environment at our University as
the transmitter is placed on the floor which most certainly contains iron for reinforcement.
Moreover, the transmitter for the magnetic trackers is placed at the very right end of the
screen which gives the setup a unsatisfactory precision at the opposite end. e setup used
for ultrasound tracking did not suffer from these symptoms as the probe was well handled
within the range of the transmitter and there was limited amounts of magnetic metals in the
proximity. ere was some steel tubing in the bed where the volunteer was lying, but the
transmitter used in this case were especially designed to handle the interference of metals.

It is at the time of writing plans to hang it from the roof above the user’s head to rectify
both the problem of proximity to metals and to bring it closer to the user.

5.2 Immersive Visualization

e immersive visualization pipeline described in Section 3.3 has been utilized to give a
presentation. It uses the general purpose tracking module described in the previous section
for the tracking of the user’s head and hand-held interaction device.

As noted in Section 3.3, it consist of two components; the camera controller and the
object controller. e camera controller is responsible for computing the correct perspective
projection based on the user’s position whereas the object controller maintains a model
matrix which defines the position and orientation of the object on screen.

66

5.2. IMMERSIVE VISUALIZATION

5.2.1 Viewpoint Dependent Perspective Projection

As noted in the Section 3.3.2, the image rendered on a display should change according to
the position of the user. To verify that this works as described, a cube was rendered which
was transformed by the projection matrix and camera matrix computed by the camera con-
troller (described in Section 4.2.6).

Rendering a cube makes it easier to verify the projection because it should at all times
look like all its faces are parallel to the screen, floor and walls of the immersive environment.
Notice the produced images look similar to Figure 3.2 in Section 3.1.1. Pictures of the re-
sulting images is presented in Figure 5.1. As seen in the pictures, the result were pleasing

(a) From the le (b) From the right

Figure 5.1: Pictures taken from the right and le side of the display respectively

and principally correct. Notice also the grid behind the cube which is a part of a box of
which the screen is the front face. is box helps to convey the illusion of depth into the
screen.

e presented scene appear volumetric due to the stereoscopic display and also act as if
they were positioned in front of the user in real-world spatial coordinates. Due to the lack of
precision in the le and back of the interaction area and the limitations with non-fullscreen
views mentioned in Section 4.2.6, there were slight offsets perceived. ese offsets were
minor and did not cause any loss of immersion with the exception of the far le hand side
where the trackers were out of range of the transmitter. All in all, the illusion created by the
viewpoint-dependent perspective projection were believable.

5.2.2 Gesture Based Immersive Interaction

Having correct perspective projection is only half way to full interactive immersive. In-
teraction with the data, as described in Section 3.3.1, is also needed to achieve believable

67

CHAPTER 5. RESULTS

immersion. As with the perspective projection, a cube was rendered and the interaction
was tested on it. e results of this can be seen in Figure 5.2.

Figure 5.2: e data follows the gestures of the user

Observe that the cube follows the user’s motion in the same manner as illustrated in
Figure 3.4 in Section 3.1.1. e interaction handles as specified in the aforementioned sec-
tion; in that it preserves translation and orientation changes independent from the reference
frames involved. It turns out to be very intuitive to use and as noted in the next section, the
students from secondary school who tried it had a learning period measured in seconds.

5.2.3 Demonstration of the Immersive Environment

When the Institute of Informatics was visited by a group of pupils from several secondary
schools in the region, the different research groups were asked to make a demonstration to
showcase their domain. For the visualization group, the immersive environment was used
to host the presentation. It was used to demonstrate the immersive visualization pipeline
created in the scope of this thesis and proved to be a impressive experience with the audi-
ence.

As noted above, the pupils quickly grasped how the interaction worked as the interac-
tion is aligned with the handling of real-world objects. Pictures of the event can be seen in
Figure 5.3. Notice the polarized glasses worn by the visitors which work in tandem with the
projectors of the back-projected screen which is similarly polarized to achieve separation of
the le and right images.

5.3 Multimodal Visualization

emultimodal visualization of 2D ultrasound and 3Dmodality described in Section 3.4.4,
was successfully utilized to combine ultrasound or elastography with MRI volumes. e

68

5.3. MULTIMODAL VISUALIZATION

(a) Presentation utilizing the immersive visualization of a 3D CT scan to the visiting pupils demon-
strating gesture based interaction

(b) One of the visiting pupils gets a hands-on experience with the immersive visualization pipeline

Figure 5.3: A presentation of the immersive environment at our University

general tracking solution was used to track the ultrasound probes and the tracking infor-
mation was used to successfully register the slices with the MRI volumes.

69

CHAPTER 5. RESULTS

5.3.1 Ultrasound Scan of a Liver

For the visualization of the ultrasound, there were several acquired ultrasound series which
focused on the liver region. In addition anMRI scanwas acquired from the same abdominal
region of the same volunteer.

e specification of points are done in a straightforwardmanner, see screenshotObserve
that the landmarks are presented as colored dots emphasized by the rings and that they
specify the corresponding landmarks in both data sets. e similarity is hard to see in the
screen shot since the landmarks in the MRI is not all located in the same cross-section. On
the le hand side, there is the controls for the time, the position of the MRI cross-section,
the time offset and the frequency. Figure 5.4.

Figure 5.4: e specification of the landmarks, the colored dots in the rings denote the specified
landmarks

Next, two sets of images are presented which presents the combined visualization with
the final registration. efirst set of imageswhich shows the spatial location of the registered
slice in the MRI volume at a fixed time coordinate are presented in Figure 5.5. Observe that
the ultrasound slice is placed, as expected, skin deep into the MRI volume. e different
images include only increasingly dense tissue, starting with everything, including the skin,
to showing mostly muscle tissue to end up with the segmented liver only.

e second set of images shows the ultrasound slice with only the liver segment visual-
ized in various time steps, see Figure 5.6. It can be seen that the features in the ultrasound
slice roughly follow the features of the MRI volume. Notice especially the veins which are
black round patterns on the ultrasound slice match closely the veins which show up as cav-

70

5.3. MULTIMODAL VISUALIZATION

Figure 5.5: e registered ultrasound slice located in the MRI volume showing the entire volume
with various densities omitted, from including skin to only including a segmentation of the liver

ities in the MRI volume. ere are several reasons why the registration is not exact, i.e., the
features in the slice only roughly follows the features in the volume. First of all, it is im-
possible for the volunteer to lie in exactly the same position for both acquisitions, secondly
there are parameters such as the amount of air in the subject’s lungs, the pressure from the
ultrasound probe amongst other things.

Nevertheless, this registration is very close to ideal, but due to the fact that it was the
author of this thesis that carried out most of the registration process without any medical
background it certainly could be done better. e author is sure that a trained clinician
could perform a much better job in identifying and pinpointing landmarks and features in
the modalities.

When the ultrasound series is loaded into the pipeline, it becomes apparent that the

71

CHAPTER 5. RESULTS

Figure 5.6: e registered ultrasound slice located in the MRI volume showing only the liver

slice is transformed according to how the clinician handled the probe during the session by
visual inspection of the results of the combined visualization. Notice that the features in the
data other than the ones picked for registration are also roughly aligned. e conclusion is
then that the registration provides principally sufficiently correct results as described in Sec-
tion 3.1.2. e following section will discuss the multimodal visualization of the phantom
data sets.

5.3.2 Multimodal Visualization of the Elastography Phantom

A very similar scenario, the multimodal visualization of the elastography phantom sessions,
is utilizing the same pipeline with similar results. e elastography phantom is basically an
elasticity reference tool used to test elastography ultrasound scanners amongst other things
and is described in Section 2.1.2. e elastography phantom was scanned by an ultrasound
scanner capable of producing elastograms from the scanned images. e phantom was also
scanned in an MRI scanner to obtain a reference volume.

Figure 5.7: A cropped elastogram slice
showing one of the inclusions (in blue)

e elastography images are basically processed
B-mode ultrasound images. e clinician pushes
the probe gently into the tissue to obtain ultrasound

72

5.3. MULTIMODAL VISUALIZATION

images of the tissue with varying pressure applied.
ese images are the processed to produce the elas-
tograms. e clinician can only select a portion of
the slice to be analyzed. For this reason, the images
has been cropped so they only include the elastogram
and the image up to the top, see Figure 5.7 for an ex-
ample.

e first set of images, see Figure 5.8, shows
the phantom slightly transparent with the embedded
elastography slice. Note that the slice follows a linear

Figure 5.8: e registrered elastography slice located in the MRI volume of the phantom

motion along the length of the phantom which is exactly what the clinician did during the
acquisition. Observe also that the inclusions are impossible to discern in the MRI volume.
e reason for this is that the spherical inclusions have approximately the same intensity in
the volume as the surroundingmatter and that the direct volume rendering technique is not
well suited to emphasize such small differences.

73

CHAPTER 5. RESULTS

e inclusions are on the other hand possible to discern when the MRI is rendered as
a cross-section, shown in Figure 5.9. In these images the elastography slices are rendered

(a) e first inclusion, t = 22.3s (b) e second inclusion, t = 40.8s

(c) e third inclusion, t = 65.2s (d) e fourth inclusion, t = 97.9s

Figure 5.9: e registered elastography slice located in the MRI volume of the phantom

together with a perpendicular cross-section of the phantom which is placed at the depth of
the inclusions, effectively making them visible. Visualized are the time steps where the slice
passes the inclusions. e second and third inclusions are difficult to spot in the elastograms
since their elasticity are much closer to that of the surrounding matter than the first and
fourth inclusions.

It can be observed that the inclusions align fairly accurately in the two modalities. In
this case, the fourth and second inclusions were used as the registration features. e result
is that the first, second and third inclusion are spot on, whereas the first ball has a small very
slight as can be seen in Figure 5.9(d).

is elastography result concludes this chapter. All in all, the pipeline showed promis-
ing results in all scenarios. From intuitive immersive visualization and interaction with
the immersive visualization pipeline and to the multimodal visualization of ultrasound and

74

5.3. MULTIMODAL VISUALIZATION

elastography slices with MRI volumes the pipelines did what they were designed to do. In
the medical domain related example, a thorough clinical examination will be essential to
draw conclusions with respect to its utility in the daily clinical routine. In the next chapter
a short summary of this work is presented, followed by a conclusion.

75

6
Summary

6.1 Summary

is thesis has presented two pipelines. One for immersive visualization on a large screen
stereo display described in Section 3.3 and another of multimodal visualization of 2D ultra-
sound and 3D modality described in Section 3.4. e pipelines are implemented as a set of
plugins for the VolumeShop framework.

6.1.1 Motion Tracking

e tracking hardware utilized in this thesis is the Flock of Birds made by Ascension de-
scribed in Section 2.2. e Flock of Birds is amagnetic tracker which provides fairly precise,
low latency tracking but are susceptible to magnetic distortions caused by nearby metals.

Both pipelines utilize a common component for interfacing the motion tracking equip-
ment described in Section 3.2.1. e motion tracking component utilizes the OpenTracker
library for the tracking input and combines the position and quaternion acquired from
OpenTracker into a homogenous 3Dmatrix which it makes available to the other plugins in
the VolumeShop framework. As noted in Section 2.2.2, OpenTracker was chosen because
it was open source, has support for a wide array of devices and can be run-time configured.

e tracking component is also able to write the transformation to a log file. A second
component is able to replay this log file whichmakes it possible to performmultimodal visu-
alization off-line aer the acquisition session. is replay component were used extensively
in the multimodal visualization pipeline during the course of this thesis.

A third component compensates the tracker matrixM for any difference in the refer-
ence frames of the tracker versus the tracked object and of the transmitter versus the target
reference frame, i.e. the display. It works by letting the user specify two homogenous ma-
trices which define these spatial relationships, T and C for the transmitter and the tracked
object respectively. e resulting compensatedmatrix is thenM ′ = T ·M ·C . e compen-

77

CHAPTER 6. SUMMARY

sation component also includes a registrationmatrixRwhich is applied to the compensated
matrixM ′ to obtain the registered compensated matrixM ′′ = R ·M ′.

6.1.2 Immersive Visualization

e immersive visualization pipeline uses the tracking component described above to pro-
vide head and gesture tracking. A head mounted tracker provides the position and orienta-
tion of the users head and an additional tracker is incorporated into the interaction device
to provide hand gesture tracking.

e position and orientation the two trackers are compensated for the offset to the
tracked objects. In the case of the head tracker the tracked object is the nose ridge and in the
case of the interaction device tracker no compensation was necessary. ey both share the
same transmitter to screen space transformation which basically translates the origin from
the transmitter to the center of the display.

View-point Dependent Perspective Projection

Using the compensated head position and orientation, the position of both eyes is computed
and is used to compute the perspective projection independently for each eye. is is done
to achieve the “looking through a window” illusion which makes it possible to view the
rendered objects from different angles by moving around the data.

To accomplish this illusion, the perspective projection needs to match the view-point
which then defines the viewing frustum as the pyramid formed by the viewpoint and the
edge of the screen. e projection matrix places the camera in the origin. Since the screen
is defined to be the origin, a translation matrix is created to translate the camera back so
that the screen becomes the origin. ese projection and camera matrices are fed into two
distinct but equal rendering pipelines, one for each eye. It would be more convenient to
only have configure the plugins for stereo once and use it to render both the le and right
image, but VolumeShop does not yet support this.

Interaction Gestures

By using the interaction device position and orientation, hand gestures can be implemented.
is thesis implemented only one hand gesture which is activated as long as a button on
the interactor is pressed and causes the data to follow the user’s movement as described
in Section 3.3.1. e requirement is that the interaction component should preserve the
translation and orientation of the gesture.

To accomplish this gesture, the compensated interaction device matrix is stored in the
interaction component. When the matrix is updated, the difference between the previous

78

6.1. SUMMARY

matrixMn−1 and the new matrixMn is computed by ∆Mn = Mn ·Mn−1. is difference
matrix is applied to the model matrix Dn−1 aer it has been translated toMn−1’s origin.
Finally, the matrix is translated back by the same translation to obtain:

Dn = T−1
n−1 ·∆Mn · Tn−1 ·Dn−1 where Ti = Tr(Mi) · Tr(Di)−1 (6.1)

Equation 6.1 allows the user to translate and rotate the object by moving the interactor
in the same manner. is concludes the summary of the immersive visualization pipeline,
the next section will describe the multimodal visualization pipeline.

6.1.3 Multimodal Visualization

e multimodal visualization pipeline is used in this thesis to visualize ultrasound time
series combinedwithMRI as described in Section 3.4. is pipeline is realized by presenting
three views to the user, one for the ultrasound slice, one for a cross section of the MRI and
one which presents the combined visualization

e first problem is to spatially relate the ultrasound slices to each other. us pipeline
annotates the ultrasound slices with position and orientation to be able to spatially relate
them to each other and to the MRI volume. e motion tracking component was used to
log the motion tracking of the ultrasound probe during the acquisition sessions.

Since the ultrasound slices and the accompanying motion tracking data is acquired on
different machines which lacked a suitable synchronization mechanism, they needed to be
synchronizedmanually aer the acquisition. is is done in the implementation by inspect-
ing the ultrasound slices in two views. e user needs to spot a motion in the slice and the
corresponding gesture in the tracking data and to specify a time offset between the two. e
frequency of the slices also needs to be specified and is usually known as it is a configura-
tion setting on ultrasound acquisition devices. Once the offset and frequency is properly
defined, the ultrasound is synchronized with the motion tracking and one may continue to
specify the registration.

Registration is done by specifying three corresponding points in the two data sets. ese
points are specified by the user in the ultrasound view and the cross-section view. e three
points are used to define a frame of reference of both modalities. e frames of reference
for the ultrasound U and for the MRIM are then used to compute the registration matrix
R which basically maps the points in the ultrasound slice to the points in the MRI volume
and is computed as follows:

R =M · U−1 (6.2)

Using the registered compensated motion tracking matrix for the slice supplied by the
compensation component, the slices are transformed into the reference frame of the MRI

79

CHAPTER 6. SUMMARY

volume and are rendered using a custom slice renderer. e MRI volume is rendered using
the built-in direct volume rendering component.

is section concludes the summary of the two pipelines described and implemented in
this thesis. For implementation details of the components see Chapter 4 and for results see
Chapter 5.

6.2 Conclusion

e cornerstone of this thesis; the incorporation of tracking support into VolumeShop has
had its share of difficulties. e first of these difficulties was to integrate OpenTracker into
the motion tracking component. e choice of motion tracking middle-ware proved to be
sub-optimal and has caused much delay in the implementation of this thesis, Section 6.2.1
will describe this in detail. Aer the tracking support was successfully integrated, the im-
plementation of the pipelines went much smoother.

e immersive visualization pipeline was implemented without difficulties and proved
to give satisfactory results. User feedback confirmed that the pipeline performs satisfactory.
New users managed to interact with the immersive environment without any prior training
confirming that the interaction is very intuitive.

e choice of using homogenous transformation matrices to represent all transforma-
tion has simplified the implementation due to the elimination of conversions to and from
other representation within the pipelines.

Using homogenous matrices for the computation of the registration matrix has proven
simple to implement and has yielded satisfactory results. e formulas are very simple, basi-
cally consisting of only onematrix-inversion and onematrix-multiplication. is approach,
while being simple, has its drawbacks. If themodalities are not acquired simultaneously, the
patient will most certainly move between the acquisitions. is causes the different modal-
ities will contain slightly deformed data compared to each other.

Using a rigid transformation for the registration transformation makes it impossible to
register such nonlinear deformations. is becomes apparent aer specifying the landmarks
which thenmay result in a non-orthogonal registrationmatrix which will result in a sheared
ultrasound slice in the combined view. More advanced registration techniques could have
been utilized to enable a more correct registration of the modalities. For the particular data
sets used in this thesis, the linear registration transformation produced satisfactory results.
e results of this pipeline were discussed in Section 5.3.

80

6.2. CONCLUSION

6.2.1 OpenTracker

As noted in Section 2.2.2, OpenTracker was the motion tracking middle-ware of choice.
OpenTracker is a great middle-ware solution for tracking, but it has caused some problems.
Aer overcoming these problems, it has performed admirably.

One of the decision factors for choosing OpenTracker over VRPN were its support for
the Wiimote. It turned out that this support was questionable at best as it did not provide
positional or orientational data, only the position on the screen it pointed at.

eFlock of Birdsmodule forOpenTracker also le something to desired. It first became
operable aer the author of this thesis fixed a couple of bugs in the initialization procedure.
is was possible due to OpenTracker being open source soware.

Furthermore, the OpenTracker came with a stand-alone executable which just starts
OpenTracker up given the configuration file as a parameter. Configuring it with a terminal
sink node, the tracking information is displayed in a terminal window. e stand-alone
executable were used for testing and determining the proper configuration for the Flock
of Birds but somehow never worked properly. Aer some time, the trials stand-alone exe-
cutable were abandoned and a test program were developed which linked directly with the
OpenTracker library. For reasons still unknown, this worked with the same configuration
the stand-alone executable failed with.

In retrospect, it can be argued that VRPN would have been the better choice and could
have caused less problems. However, the choice was reasonable at the time taken the avail-
able information of the two into account.

6.2.2 VolumeShop

VolumeShop is a very good framework for developing amongst other visualization tech-
niques; direct volume rendering techniques. VolumeShop is not publicly released as of the
time of writing and its lack of maturity shows in some areas.

e Matrix class uses homogenous matrices but the Vector class uses regular 3D coor-
dinates which are treated as vertices when multiplying with matrices; that is the w coordi-
nate is 1. is causes problems where one would like to perform matrix-vector multiplica-
tion and want the vector to act as a vector (w = 0). IfM andN are homogenous matrices
andM = [xM yM zM wM], then:

N ·M ̸= [N ·xM N ·yM N ·zM N ·wM] (6.3)

which should definitively be equal as it is the definition ofmatrixmultiplication. ematrix-
matrix multiplication is correctly performed as it handles the xM , yM and zM as vectors

81

CHAPTER 6. SUMMARY

and wM as a vertex. e matrix-vector multiplication is not correctly performed since the
VolumeShop has no way to distinguish between vectors and vertices as they both are repre-
sented by the Vector class.

e conclusion regarding VolumeShop is that it is a very good framework for visualiza-
tion purposes but can be tricky to work with if one is unfamiliar with its quirks. A devel-
opment documentation would significantly ease the implementation of prototypes in this
otherwise very flexible framework.

6.3 Future work

Since this thesis was mainly focused on implementing the basic functionality to support
research immersive environments, the implemented pipelines served as proof of concept.

e immersive visualization pipeline proved to perform its task in a satisfactorymanner.
Future work in this area can focus on the interaction aspect. More interaction concepts can
be implemented such as a laser pointer enabling the selection of objects on the screen with
the tracker and a wide array of gestures such as flicks of the wrist in a specific direction to
invoke commands.

e multimodal visualization pipeline can be improved in several areas such as the reg-
istration technique, the time synchronization and the visualization itself:

• e registration could for example implement non-rigid registration transformation
to enable the registration of deformed data.

• e time synchronization could also utilize a landmarksmethodwhere points in time
where a correspondence is known is marked and the offset and frame-rate computed
by the computer based on these landmarks.

• e visualization could employ multiple transfer functions, for example, one applied
to the part of the volume in front of the ultrasound plane and a second applied to the
part behind the ultrasound plane. e transfer function in frontwould then in general
be less opaque than the one behind to show the structures in the volume at the slice.
e slice could then be integrated into the volume by making it semi-transparent so
that the structures behind become visible.

• e multimodal visualization pipeline was designed with real-time visualization in
mind. erefore the existing components are capable of handling real-time input of
ultrasound slices. e completion of the real-time acquisition of ultrasound images
only needs the implementation of a plugin which interfaces a frame grabber. is
should be fairly easy and would realize one of the goals of this thesis but which were
foiled by the lack of appropriate hardware, e.g. a frame grabber.

82

Acknowledgements

I would like to thank our clinical partners at Haukeland University Hospital for their help
on the acquisition of the medical data sets and for lending us tracking equipment. I would
also like to thank my supervisor Ivan Viola, and Daniel Patel for their help on making this
thesis even remotely readable.

Bibliography

[1] A, N. Ascension technology puts spotlight on DC field magnetic motion
tracking. HP Chronicle 17, 9 (August 2000).

[2] B, A., J, C., H, P., M, K., B, A.,  C-N,
C. VR juggler: A virtual platform for virtual reality application development. In VR
(2001), p. 89.

[3] B, J.,  R, J. Homogenous coordinates. e Visual Computer 11,
1 (January 1994), 15–26.

[4] B, S., G, S., K, A.,  G, M. E. Illustrative context-
preserving volume rendering. In EuroVis (May 2005), pp. 69–76.

[5] B, S.,  G, M. E. VolumeShop: An interactive system for direct
volume illustration. In Proceedings of IEEE Visualization (october 2005), pp. 671–678.

[6] B, S.,  G, M. E. Style transfer functions for illustrative volume
rendering. Computer Graphics Forum 26, 3 (Sept. 2007), 715–724.

[7] B, M., K, J., R, S., F, A.,  DC, D. Line
drawings from volume data. ACM Trans. Graph. 24, 3 (2005), 512–518.

[8] CIRC. Elasticity QA phantom. http://www.cirsinc.com/pdfs/049.pdf.

[9] C-N, C., S, D. J.,  DF, T. A. Surround-screen projection-
based virtual reality: the design and implementation of the CAVE. In SIGGRAPH
(1993), pp. 135–142.

[10] F, B., H, J., H, J., K�, K., B, R., B, M., 
S, O. Implementing multi-viewer stereo displays. InWSCG conference proceed-
ings (2005).

[11] G, P.,  P, T. Implementation of v-cave display system using the
object-oriented graphics rendering engine. CCECE (2008), 1309–1312.

[12] G, G.,  S, J.K., J. e intuitivetm telesurgery system: overview
and application. ICRA 1 (2000), 618–621 vol.1.

[13] H, H. Generalizing focus+context visualization. Scientific Visualization: e
Visual Extraction of Knowledge from Data (2003), 305–327.

85

[14] J., J. J. L. A discussion of cybersickness in virtual environments. ACMSIGCHI Bulletin
32, 1 (January 2000), 47–56.

[15] K, Y., K, T., Y, S.,  K, F. Interactive stereoscopic
display for three or more users. In SIGGRAPH (2001), pp. 231–240.

[16] K, J., K, G.,  H, C. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. InVIS (2001),
pp. 255–262.

[17] K, J., K, G.,  H, C. Multidimensional transfer functions for
interactive volume rendering. IEEE Transactions on Visualization and Computer Graph-
ics 8, 3 (2002), 270–285.

[18] M, J. B. A.,  V, M. A. A survey of medical image registration.
Medical Image Analysis 2, 1 (1998), 1–36.

[19] N,M. A.,MC, B. C., F,W. R.,  P, N. B. e effects ofmetals
and interfering fields on electromagnetic trackers. Presence: Teleoper. Virtual Environ.
7, 2 (1998), 204–218.

[20] P, J., M, J.,  V, M. Mutual-information-based registration of
medical images: a survey. Medical Imaging, IEEE Transactions on 22, 8 (Aug. 2003),
986–1004.

[21] R, G.,  S, D. Opentracker-an open soware architecture
for reconfigurable tracking based on XML. Virtual Reality, Proceedings. IEEE (March
2001), 285–286.

[22] R M. T, I., H, T. C., S, A., W, H., J, J., 
H, A. T. Vrpn: a device-independent, network-transparent VR peripheral sys-
tem. In VRST (2001), pp. 55–61.

[23] S, D. J., M, T., G, J., G, J., P, T.,  DF, T. A. e
varriertm autostereoscopic virtual reality display. In SIGGRAPH (2005), pp. 894–903.

[24] S, D., Ed. OpenGL Reference Manual - Blue Book, 4 ed. Addison-Wesley Pro-
fessional, 2004.

[25] W, W., R, B.,  N, N. Integrating diagnostic b-mode ultrasonography
into ct-based radiation treatment planning. Medical Imaging, IEEE Transactions on 26,
6 (June 2007), 866–879.

[26] W, G., B, G., V, L., B, S., K, K.,  C, D. High-
performance wide-area optical tracking: eHiBall tracking system. Presence: Teleop-
erators and Virtual Environments 10, 1 (2001), 1–21.

[27] W, R.,  E, T. Efficiently using graphics hardware in volume ren-
dering applications. In SIGGRAPH (1998), pp. 169–177.

