
INFORMATICS: OPTIMIZATION

Master Thesis

Exact methods for solving the small scale
single vehicle pickup and delivery

problem with time windows.

Author: Yacine Lakel

Supervisor: Dag Haugland

August 15, 2016

Acknowledgement

I would first like to start off by thanking Dag Haugland for his guidance, commitment,
and patience, the Department for Informatics for providing a good environment for stu-
dents to thrive and my fellow colleagues who have provided years of friendship, inspira-
tion and support. Finally, I would like to thank Silje Marie Smitt for the constant encour-
agement throughout this process. I have learned so much through this difficult journey.

i

Abstract

The single vehicle pickup and delivery problem with time windows (1-PDPTW) is a well-
known problem in transportation and combinatorics. In practice, these routes are rela-
tively small with less then 30 stops. In this thesis, we consider two exact methods to solve
this problem for small instance sizes. The first is solving the corresponding MIP-model
using commercial linear programming software and the second is a forward dynamic
programming algorithm. The motivation for this thesis is to determine the usability of
exact methods as a heuristic to solve the multi vehicle pickup and delivery problem.

ii

Contents

Acknowledgement i

Abstract ii

List of Figures iv

List of Listings iv

1 Introduction 1

2 Literature Review 2

3 Problem Formulation 6

4 A Forward Dynamic Programming Approach 13

5 Implementation Details 20

6 Experimental Analysis 22

7 Conclusion 26

References 27

Listings 29

Figures 36

iii

List of Figures

1 An example of a 1-PDPTW graph with two transportation requests 8
2 Data distribution over instance size . 36
3 MIP Strategy Comparison of the Optimal Solutions Found 37
4 MIP Strategy Comparison of Optimal and Feasible Solutions Found 38
5 MIP Average Solutions Found . 39
6 MIP Strategy Runtime Comparison . 40
7 FDP Result Overview . 41
8 FDP Average Depth Reached Compared to Route Size 42
9 FDP vs MIP Number of Solutions Comparison 42
10 FDP vs MIP Best Runtime Comparison . 43

Listings

1 MIP Model Snippet . 29

iv

1 Introduction

In the transportation sector, developing efficient routes is key in terms of reducing both
the total company costs and route durations. A well known problem that is derived
from optimizing these types of routes is the General Pickup and Delivery Problem with Time
Windows (PDPTW). In this problem, a fleet of vehicles must service a set of transportation
requests, consisting of a pickup and delivery location. Additionally, each location has
a given time window in which a vehicle must have serviced the location. This problem
consists of two major tasks: assigning subset of the transportation requests to each vehicle
and finding a route to service their requests. The goal is to minimize the total cost of
servicing all transportation requests. Multiple factors can effect this cost, such as the
number of vehicles used, the total duration and total travelled distance.

In designing an algorithm to find minimal cost solutions to this problem, one can divide
the algorithm into two problems. The first problem is a assigning transportation requests
to each vehicle, while the second is a simplified version of our original problem, where
there is only one vehicle available. This simplified version of the problem is named the
Single Vehicle Pickup and Delivery Problem with Time Windows (1-PDPTW). An instance of
a PDPTW can thus generate multiple instances of the 1-PDPTW. In practice, solutions to
the PDPTW will usually generate instances of the 1-PDPTW with a size of less then 10-15
requests (20-30 stops). Given this relatively small size, exact methods can be considered
to solve each 1-PDPTW instance.

The goal for this thesis is to analyze the practical and theoretical capabilities of solving
small scale 1-PDPTW problems with exact methods. We will first give both a formal and
mathematical formulation of the 1-PDPTW and then give a review of the literature related
to this problem. For our experimental tests, we will consider two exact methods to solve
this problem. The first method is by solving the underlying MIP-model using Gurobi, a
commercial MIP-solver. The second method is a forward dynamic programming algo-
rithm developed by Desoires et al.[2] to solve the Single Vehicle Dial-a-Ride Problem. By
analysing the results from our experimental , we will determine how efficient the exact
methods are in terms of computational time and how they perform as the route size in-
creases.

1

2 Literature Review

The 1-PDPTW belongs to a class of problems named Vehicle Routing Problems (VRP). These
types of problems have been studied for over 50 years, greatly influenced by the introduc-
tion to vehicle routing problems by Danzig and Ramser in 1959 [1]. In the general VRP,
goods must be delivered from a depot by a fleet of vehicles to a set of customers. The
problem is to construct vehicle routes that serve all customers while the sum of the total
distances of all routes are minimized. A valid set of vehicle routes must satisfy the follow-
ing three constraints: each vehicle starts and ends at the depot, each customer is visited
exactly once by one vehicle, and the capacity of the vehicle must not be exceeded.

To solve the VRP, one must consider two sub problems. The first one is to assign a subset
of customers to each vehicle and the second one is to find the minimal route that starts and
ends at the depot and only visits a vehicle’s assigned customer exactly once. The second
sub problem is a constrained variation of one of the most famous NP-hard problems in
combinatorial optimization, named the Travelling Salesman Problem (TSP). This is the sim-
plest type of vehicle routing problem. In this problem you are given a set locations to visit
and distances between each pair of location. The goal is to find shortest route that visits
each location exactly once and returns to the city the route originated at. Thus, the VRP
is a generalization of the TSP and is therefore NP-hard.1 The VRP with Backhauls (VRPB)
is a variation of the VRP where both delivery and pickup requests are considered. The
customers are thus partitioned into two subsets: delivery requests and pickup requests.
A delivery request requires a vehicle to deliver a given load from the depot to a customer,
while a pickup request requires a vehicle to pickup a certain load at a customers location
and deliver it to the depot. Toth and Vigo (2002) provide a comprehensive introduction
on the VRP and many of its variations[11].

While the VRP and VRPB deals with the transportation of goods between the depot and
customers, the Pickup and Delivery problem (PDP), an extension of the VRPB, considers
the transportation of goods or persons between pickup and delivery locations without
transshipment at intermediate locations. In particular, the PDP problem that deals with
the transportation of persons is defined as the Dial-a-Ride problem (DARP)[10]. In the
PDP (and DARP), each vehicle is assigned a set of transportation requests. Each request

1All variations of the VRP stated in this section are NP-hard due to the underlying TSP sub problem.

2

consists of a pickup location and its corresponding delivery location that must be serviced
in a similar manner as in the VRP. Thus, the PDP includes an additional precedence con-
straint, where a vehicle must visit a pickup location before it can visit its corresponding
delivery location.

The PDP, as well as the other problems stated previously, can be further extended with
the addition of time windows. This extension is referred to the PDP with time windows
(PDPTW). Time windows are time intervals assigned to each location (customers and
depot) in which the service at the location must be started. In the general PDPTW, if a
vehicle arrives at a location before the time window, the vehicle must wait until it is able
to service the request. 2

The PDPTW problem has a special instance where only one vehicle is available to service
all the customers. In this special instance, the assigning of customers to vehicles is not
needed, thus we only consider the problem of finding the minimal route that services all
customers. This instance is defined as the Single Vehicle PDPTW (1-PDPTW). The general
instance is often denoted as the m-PDPTW. 3 Note that the 1-PDPTW is a variation of the
TSP, where precedence, capacity and time window constraints are added.

Solution approaches to PDP problems vary depending on the variation of that problem.
Savelsbergh’s et al. [10] survey on variations of PDP problems uses three distinguishing
characteristics. Based on the combination of characteristics, a new solution approach
might be needed. The first characteristic is if the problem is static or dynamic. In a static
PDP, all requests are determined in advance of constructing the routes, while dynamic
problems allow some requests to arrive during the execution of the route(s). Note that all
problems stated previously have been static variations. The second characteristic is time
windows. The inclusion of time windows adds an additional set of constraints to the PDP
which makes the PDPTW more complex. The third characteristic is the number of vehicles,
specifically if the problem is a 1-PDP or a m-PDP. Instances of the m-PDP require two sub
problems to be solved, while instances of the (1-PDP) require only one sub problem to be
solved (as stated in the previous paragraph). Furthermore, choosing an exact approach

2Wang [13] distinguishes between two types of time windows: hard and soft. Soft time windows allow
a vehicle to violate the time window at a given penalty cost. Hard time windows, on the other hand, must
be strictly held.

3The notation distinguishing between one and many vehicles is commonly used in vehicle routing
problems.[10]

3

over an approximate approach can lead to a faster time complexity at the cost of higher
cost routes.

In finding optimal solutions for the 1-PDPTW, the main approaches are algorithms us-
ing dynamic programming. Psaraftis et al. (1983) [9] and Desrosiers et al (1986) [2] both
propose a dynamic programming approach to solve the 1-PDPTW. Psartif previously pro-
posed a dynamic programming approach using backwards recursion to solve the 1-DARP
which was then modified to use forward recursion as well as a state elimination proce-
dure to remove infeasible states. The algorithm has a time complexity of O(n23n).

Desrosiers presents a similar approach to solve the 1-DARP with a more elaborate elimi-
nation criteria due to the structure in which states are represented. This algorithm proved
very effective when time windows are tight and vehicle capacity is small. Despite the
problems complexity, when capacity constraints are considerably tight, the running time
seems to increase only linearly with problem size. The algorithm has been tested success-
fully on problems with up to 40 transportation requests (80 customers). This algorithm
was developed to solve the large-scale 1-DARP.

Many techniques have been used when developing approximate solutions. Bruggen et
al. (1993) [12] developed a heuristic consisting of a 2-phase approach. The algorithm first
creates an initial feasible solution and then tries to improve on this solution. This heuristic
uses a variable depth arc exchange procedure in both phases, where the number of arc
exchanges is dynamically calculated during the search. This algorithm can reach near
optimal solutions for problem sizes of up to 38 customers. A problem that arises from
this algorithm is that it does not guarantee a solution as well as producing low quality
solutions. This occurs when the 2-phase procedure is trapped in local optima. The author
proposes a meta heuristic that uses simulated annealing as an alternative approach, but
at the cost of high processing time.

Jih and Hsu[6][7] have produced two algorithms that utilizes genetic algorithms. The
algorithm produced in 1999 [6] combines dynamic programming and a genetic algorithm.
This approach creates sets of sub routes which are then sent to a genetic algorithm which
create an initial population. The genetic algorithm uses crossover operators to mutate
solutions which are encoded as permutations of the locations. Jih and Hsu (2002) [7] later
proposes a family competition genetic algorithm to improve on their previous work.

4

The work of Landrieu et al. (2001)[8] utilizes a tabu search based heuristic to solve the
1-PDPTW. First, an insertion heuristic is used to create a route respecting capacity and
precedence constraints. Two tabu search methods are then used to create an initial mini-
mal solution. This approach produced solutions for instances of sizes between 10-40 cus-
tomers in a reasonable amount of time. When the instance size exceeded 60 customers,
however, processing time was greatly increased (over one hour).

For further information on approximation algorithms used to solve the 1-PDPTW, Hosney
and Mumford (2010)[5] provides detailed research on various approximation approaches,
as well as providing experimental work and attributing with there own proposed heuris-
tic.

5

3 Problem Formulation

In the 1-PDPTW we are given a single vehicle and a set of transportation requests. As
stated previously, each transportation request consists of a pickup location, a delivery lo-
cation and a load to be transported. In order for a vehicle to service a location it must
arrive at the location within its respective time window. If the vehicle arrives before the
time window it must wait before it can service the location.

The goal of the 1-PDPTW is to find a valid route that serves all requests. A route is valid
if:

• The route starts at the origin depot and ends at the destination depot.

• Each location is visited and serviced exactly once.

• For each request, the pickup location is visited before its corresponding delivery
location. This is named the precedence constraint.

• The vehicles capacity is never exceeded at any stop in the route.

• Each location is served within its time window.

Travelling from one location to another has two cost values: a time cost and a distance
cost. The objective is to minimize the sum of the total time used and the total distance
travelled. 4

Mathematical Formulation

The mathematical formulation and notation for 1-PDPTW is based on X. Wang’s [1] for-
mulation of the PDPTW.

Lets define the set of transportation requests as follows:

4In the literature and in practice, the objective function can vary depending on the cost values assigned.
Additionally it is often such in experimental tests that distance is equal to time.

6

• R = {1, . . . , n} is the set of requests.

• P = {1, . . . , n} is the set of pickup locations.

• D = {n + 1, . . . , 2n} is the set of delivery locations.

• o and o′ is the starting and ending depots. In other literature (Furtado [4]), the origin
and destination depot are also denoted as 0 and 2n + 1, respectively.

For each request r ∈ R we specify its corresponding pickup and delivery location as
(u, u + n) where r = u ∈ P and u + n ∈ D. In the literature (X. Wang [1]), this pair is
called an origin-destination pair (OD-pair). The load to be transported is denoted as `r

for each request r. This specifies the request’s pickup locations load is `u = `r, and the
delivery locations load is `u+n = −`r where u = r. At each location u ∈ P ∪ D we denote
the time window as [bu, eu], u ∈ P ∪ D, where bu and eu is the earliest and latest time the
vehicle can start its service, respectively. It is assumed that both the service time and load
for the depots o and o′ are defined as 0.

Let us define the problem as a directed graph G = (V, A). The set of nodes V =

P ∪D ∪ {o, o′} represent the locations and the set of arcs A ⊂ V ×V represent roads con-
necting the locations. By the constraints given by the problem, certain edges will never
be traversed. Let (u, v) ∈ V × V be an arc from u to v. We define the complement of A,
denoted A, as

A ={(u, u)|u ∈ V}∪ (1)

{(u, o)|u ∈ V}∪ (2)

{(o′, v)|v ∈ V}∪ (3)

{(o, v)|v ∈ D ∪ {o, o′}}∪ (4)

{(u, o)|u ∈ P ∪ {o, o′}}∪ (5)

{(u + n, u)|u ∈ P, u + n ∈ D} (6)

such that A = V ×V/A. A has no looping arcs , as this has no relevance to the problem
(1). By definition of a valid route, each route must start at the starting depot o and end

7

at the ending depot o′, thus, no edges go to the starting depot (2) and no edges go from
the ending depot (3). By the precedence constraint, the first location visited after the
starting depot must be a pickup location (4) and the location visited before the arriving at
the ending depot must be a delivery location (5). Additionally, for each pickup location
u ∈ P, the edge (u + n, u), u + n ∈ D is never traversed as this violates the precedence
constraint (6).

Let n be the number of transportation requests. The number of arcs |A| is equal to
the sum of the arcs from the starting depot (n arcs), the arcs to the ending depot (n
arcs) and the arcs that go between the remaining locations. The arcs that go between
the remaining locations equate to a complete directed graph consisting of the pickup
and delivery locations with the removal of the arcs that go from a delivery location
to its corresponding pickup location (2n(2n − 1) − n arcs). Thus, the number of arcs
|A| = n + n + 4n2 − 2n− n = 4n2 − n.

Figure 1 shows an example of a graph representing a 1-PDPTW instance with two trans-
portation requests where R = {1, 2} ,P = {1, 2} and D = {3, 4}.

Figure 1: An example of a 1-PDPTW graph with two transportation requests

Each arc (u, v) ∈ A has two weights: a travel distance duv and a travel time d′uv. Addition-
ally, the set of arcs satisfy the triangle inequality. Furthermore, we include two cost rates,
β and β′, for distance and time, respectively. The cost rates can be used for generating
different types of minimum cost routes.

In order to solve the problem, three variables are needed. The first variable, xuv, is a
binary variable that equals 1 if the vehicle traversed the arc (u, v) ∈ A, and 0 otherwise.

8

The second variable, lu, u ∈ V, is the load after the service at node u is finished. The last
variable, tu, u ∈ V, is the time that service is started by the vehicle at node u.

MIP Model

The 1-PDPTW can be modelled as the following:

min ∑
(u,v)∈A

βduvxuv + β′(to′ − bo) (1)

subject to:

∑
u∈P∪D∪{o}
(u,v)∈A

xuv = 1 ∀v ∈ P ∪ D (2)

∑
v∈P∪D∪{o′}

(u,v)∈A

xuv = 1 ∀u ∈ P ∪ D (3)

∑
v∈P

xo,v = 1 (4)

∑
u∈D

xu,o′ = 1 (5)

xuv(tu + su + d′uv − tv) ≤ 0 ∀(u, v) ∈ A (6)

bu ≤ tu ≤ eu ∀u ∈ V (7)

tu + su + d′u,n+u ≤ tn+u ∀u ∈ P (8)

xuv(lu + `v − lv) = 0 ∀(u, v) ∈ A (9)

`u ≤ lu ≤ Q ∀u ∈ P (10)

0 ≤ ln+u ≤ Q− `u ∀u ∈ P (11)

lo = lo′ = 0 (12)

to = bo (13)

tu ≥ 0 ∀u ∈ V (14)

lu ≥ 0 ∀u ∈ V (15)

xuv ∈ {0, 1} ∀(u, v) ∈ A (16)

(1) The objective function minimizes a weighted sum of total cost of all traversed edges

9

and the total time it takes from the origin depot to the destination depot.

(2)-(3) These constraints guarantee that each location, besides the depots, is visited exactly
once. In particular, constraint (2) specifies that for every node v, the sum over all
arcs xuv going into node v, is equal to 1. Since xuv is a binary variable, then in order
for the sum over all the arcs into v to be equal to 1, exactly one arc can have an x-
variable with value of 1. This represents entering a node only once. Constraint (3)
is similar, but instead of entering a node it guarantees that the vehicle leaves every
node exactly once.

(4) A route must start at the origin depot and thereafter visit a pickup node, since no
delivery node has yet been visited.

(5) A route must end at the destination depot and must have previously been visited
by a delivery node.

(6-7) These constraints define the restrictions on travel and arrival time. Constraint (6)
states that for any travelled arc xu,v = 1, the arrival time at v is the earliest time you
can leave u, denoted as tu + su, plus the travel time from u to v. The arrival time
at tv must also be within the time window at node v, described in (7). Thus, idle
time is allowed, i.e. arrival time at v can be greater then the actual time it takes to
travel from u to v. Note that constraint (6) only holds if the set of arcs adhere to the
triangle inequality.

(8) Constraint (8) describes the precedence constraint (pickup node is visited before
delivery node).

(9)-(11) These constraints describe and bound the vehicles load at any node. Constraint (9)
describes how the load changes from a node u to a node v. For any travelled arc
xu,v, the load lv at node v is the load at lu plus the demand `v at v. Constraints (10)
and (11) bound the load at a pickup and delivery node respectively.

(12)-(14) The last constraints set the load for the depots (12) and the start time at the origin
depot (13)

10

Linearising constraints (6) and (9)

It order to linearise the model, constraints (6) and (9) must be changed. This can be done
in the following way:

(6) : xuv(tu + su + d′uv − tv) ≤ 0⇒ tu + su + d′uv − tv ≤ (1− xuv)M1

(9) : xuv(lu + `v − lv) = 0⇒ lu + `v − lv ≤ (1− xuv)M2 and lu + `v − lv ≥ (1− xuv)M3

where M1,M2 and M3 are sufficiently large integers. If xuv = 1, then constraint (6) and (9)
produce the desired constraints:

tu + su + d′uv − tv ≤ 0

and
lu + `v − lv ≤ 0 and lu + `v − lv ≥ 0⇒ lu + `v − lv = 0

In order to further constrict our model, lower bounds can be found for M1, M2 and
M3. This can be done by considering the lower or upper bounds of the variables in the
constraints. Constraint (6) contains three variables and two constants. In the case that
xuv = 0, the constraint evaluates to tu + su + d′uv − tv ≤ M1. Let M1 = M′1 − (d′uv + su),
thus creating the following in-equality :

tu − tv ≤ M′1

The maximum value that tu - tv can evaluate to is attained when tu is at its upper bound
and tv is at its lower bound. The upper and lower bounds for these variables are defined
in constraint (7). Thus, eu − bv = M′1 which yields the following:

M1 = eu − bv − (d′uv + su)

For constraint (9), there are two variables to consider given that xuv = 0. These are the
load variable lu and lv. Constraint (10) and (11) define the lower and upper bounds for

11

these variables. To determine M2 and M3 in

lu + `v − lv ≤ M2

and
lu + `v − lv ≥ M3

we must determine when lu− lv is at its upper and lower bound respectively. The bounds
for the load variables are:

lu = 0 if u ∈ {o, o′}

`u ≤ lu ≤ Q if u ∈ P

0 ≤ lu ≤ Q− `u−n if u ∈ D

Given the type of location u and v are, the values for M2 and M3 are the following:

M2 = U(lu) + `v + L(lv)

M3 = L(lu) + `v + U(lv)

where U(`u) and L(`u) are the upper and lower bounds on `u respectively.

12

4 A Forward Dynamic Programming Approach

Desrosiers et al. (1986) [2] presents a forward dynamic programming approach to solve
the single vehicle dial-a-ride problem with time windows for large scale. The objective
was to find the route which minimizes the total distance travelled. The idea behind the
algorithm is to reduce the number of states generated by removing dominating state.
Desrosiers proposes a two dimensional labelling of states (time, cost), which was intro-
duced in thier previous paper [3] to solve the shortest path problem with time windows.
This algorithm produced promising results and was able to solve problems with 40 trans-
portation requests (80 nodes). This was due to efficient elimination criteria which elimi-
nated states which were infeasible.

Solution method

Desrosiers et al. solves the problem using a forward dynamic programming method with
1 ≤ k ≤ 2n iterations, where n is the number of transportation requests. The set of nodes
are denoted as {0, . . . , 2n + 1}, where node 0 and 2n + 1 are the origin and destination
nodes, respectively, and nodes {1, . . . , n} and {n + 1, . . . , 2n} are the pickup and delivery
nodes, respectively, such that every delivery node n + i ∈ {n + 1, ..2n} corresponds to
the pickup node i ∈ {1, ..., n}. The vehicle is initially located at the origin node 0. At
the first iteration, the states are made up of routes visiting a single pickup node. At
each subsequent iteration 2 ≤ k ≤ 2n, the states are constructed from the states of the
previous iteration and are made up of routes visiting one additional node from among
the pickup and delivery nodes. After 2n iterations, the vehicle must return to the origin
node (destination node) 2n + 1. For each iteration, states are considered for elimination
based on feasibility.

Definition of States

Let S ⊆ {1, . . . , 2n} be the non-ordered set of visited nodes at iteration k with cardinality
k. If there exists a feasible route starting at origin node 0 that visits all nodes in S and
terminates at node i ∈ S, we denote the corresponding state as (S, i).

13

Definition of Labels and Label Elimination

There can be multiple feasible routes that start from the origin node to a node i for each
state (S, i). We denote a route that corresponds with the state (S, i) as (Sα, i), where Sα

describes the order of visitation for the route. Regardless to the order of which the nodes
in S are visited, every route has the same vehicle load at node i denoted y(S). On the other
hand, routes differ in terms of distance travelled and arrival time at node i depending
on the order of which the nodes were visited. For each route, a cost label is defined as
(t(Sα, i), z(Sα, i)), where t(Sα, i) represents the arrival time at node i and z(Sα, i) represents
the distance travelled to reach node i.

Not all labels (i.e routes) are considered for a given state. These labels are eliminated if
they cannot be part of the minimal cost route from node 0 to node 2n + 1. We denote the
set of minimal cost routes as Ω(S, i) and denote the minimal cost labels as:

H(S, i) = {(t(Sα, i), z(Sα, i))|Sα ∈ Ω(S, i)}

Labels and routes are eliminated using the following partial relation in Lemma 1.

Lemma 1 A route (Sα, i) and its associated label (t(Sα, i), z(Sα, i)) is eliminated from the set of
minimal cost routes and labels if there exists a route with both a lesser or equal time and a lesser
or equal distance.

Proof. We show that a label cannot be part of the minimal cost route from 0 to 2n+ 1 using
the following optimality principle:
Given a state (S, i) at iteration k , let (R, j), R = S∪ {j} be the subsequent state at iteration
k + 1 and (t(Rα, j), z(Rα, j)) be the label associated with a route from 0 to j visiting the
nodes in R. If Rα is a minimum cost route from among all routes (R′α, j) arriving at node
j at times t(Rα′ , j) ≤ t(Rα, j) and z(R′α, j) ≤ z(Rα, j) and arc (i, j) is the last in this route,
then the sub route from 0 to i is a minimal cost route from among all routes ending in i.
The corresponding costs for the sub routes are t(Rα′ , j)− si − d′i,j ≤ t(Rα, j)− si − d′i,j and
z(Rα′ , j)− di,j ≤ z(Rα, j)− di,j. Thus the label (t(Rα, j)− si − d′i,j, z(Rα, j)− di,j) is not part
of the minimal cost labels from 0 to i.

14

Forward Recursion

At the first iteration, the set of states are:

{({j}, j)|j ∈ {1, . . . , n}}

For each of the states, the load and label are easily calculated:

y({j}, j) = `0 + `j j ∈ {1, . . . , n}

H({j}, j) = {(max[b0 + d′0,j, bj], d0,j)} j ∈ {1, . . . , n}

These states correspond to visiting a single pickup node from the origin depot. Each
states load consists of the initial load at the origin node plus the load at the pickup node.
As there is only one possible route for each state, there is only one label associated with
the state. The time cost is calculated as the maximum of the sum of the initial start time
and the time from the origin node to the pickup node, and the earliest arrival time at the
pickup node. The distance cost is set to the distance from the origin to the destination.

At each subsequent iteration 2 ≤ k ≤ 2n, new states are created by adding a single node
to the total visited nodes at the preceding iteration. Let (S ∪ {j}, j), j ∈ S, be such a state.
The load for this state is found by:

y(S ∪ {j}) = y(S) + `j

The set of labels H(S ∪ {j}, j) consist of the labels of all states (S, i) used to construct the
state (S∪ {j}, j) when node j is added to the state (S, i). These time and distance costs are
adjusted by the following function:

fij(t(Sα, i), z(Sα, i)) =

(max[t(Sα, i) + si + d′i,j, bj], z(Sα, i) + di,j) if t(Sα, i) + si + d′i,j ≤ ej

∅ otherwise

15

The function creates a new label iff starting at node i, it is possible to visit node j before
the latest arrival time for the time window at node j. Using this function, for each state
(S, i) we have the following set of adjusted labels:

Fij(H(S, i)) =
⋃

Sα∈Ω(S,i)

f (ij)(t(Sα, i), z(Sα, i))

The new set of labels for the state (S ∪ {j}, j) can now be created :

H∗(S ∪ {j}, j) =
⋃

Fij(H(S, i))

The * symbol represents the list of new labels remaining after the elimination of labels
according to Lemma 1 to create the set of minimal routes.

State Elimination Criteria

It is useful to limit the number of states created when using dynamic programming. States
are eliminated based on the set S and the state (S, i).5 A state is feasible iff it is both
ante-feasible and post-feasible. The state (S, i) is ante-feasible if there exists a route which
visits the nodes in S and terminates in i which abides by the constraints of the 1-PDPTW
(vehicle capacity, precedence and time windows). The state is post-feasible if there exists
a route starting at i that visits all nodes in S = V\S and abides by the same constraints.
All states which are not ante-feasible are eliminated by the algorithm, yet not all states
that are post-feasible are eliminated as some post-feasible states would be more costly to
identify than the savings that could be achieved.

5Desrosier et al. [2] mentions a third elimination bases if multiple nodes are in the same geographical
location. We choose to ignore this elimination as it is highly instance dependent.

16

Elimination criteria based on the set S

Let S be the set at iteration k − 1 where we wish to add a node j to create the state (S ∪
{j}, j) at iteration k. A state is eliminated if one the criteria is not respected. The following
four criteria are completely independent of the terminal node i.

(1) : Node j must not be previously visited.

(2) : If node j is a delivery node, then j− n must be previously visited (j− n ∈ S).

(3) : If node j is a pickup node, then the vehicle capacity constraint must be respected:

y(S) + `j < Q

(4) : The earliest time at which node j can be visited is tj = bj. Using this property, we
can eliminate states where time window constraints are not respected :

bj + sj + d′jν ≤ eν ∀ν ∈ S ∪ {j}

where ν is an unvisited node. If any node cannot be visited after j, then the state is
eliminated.

Criteria (1), (2) and (3) are ante-feasible criteria, while state (4) is a post-feasible criteria.
Note that in criteria (4), checking every unvisited node for each state is very costly. To
overcome this, let the nodes be pre-ordered in decreasing order of their latest arrival time
ei. It is reasonable to presume that this ordering will be relatively similar to the optimal
solution. Desrosiers proposes to carry out criteria (4) on the unvisited nodes ranked from
k − 2 to k + 4 as these are the most probable to be visited. This can be altered at the
potential cost of computational time.

Elimination criteria based on the state (S,i)

Let (S, i) be a state at iteration k− 1, let (S ∪ {j}, j) after adding j, and let ti be the earliest
arrival time at node i given by the first label in H(S, i). The following four criteria are

17

based on the time at j, the time after visiting a subsequent node, the time after visiting
two subsequent pickup nodes, and the time after visiting two subsequent delivery nodes,
respectively.

(5): The time constraint must be respected: ti + si + d′ij ≤ ej

(6): Suppose that node j is visited at time tj = max{bj, ti + si + d′ij}, it must be possible to

visit each unvisited node ν ∈ S ∪ {j}while respecting the time constraints: tj + sj +

d′jν ≤ eν, for all ν ∈ nS ∪ {j}. This criterion tightens criterion (4).

(7): Suppose that node j is visited at time tj = max{bj, ti + si + d′ij}, for every pair of
unvisited delivery nodes n + ν1 and n + ν2 whose corresponding pickup nodes ν1

and ν2 have been previously visited while respecting the time constraints. With two
visiting permutations for n + ν1 and n + ν2, the following must be satisfied:

max{bn+ν1 , tj + sj + d′j,n+ν1
}+ sn+ν1 + d′n+ν1,n+ν2

≤ en+ν2

or
max{bn+ν2 , tj + sj + d′j,n+ν2

}+ sn+ν2 + d′n+ν2,n+ν1
≤ en+ν1

with ν1, ν2 ∈ S ∪ {j} and n + ν1, n + ν2 ∈ S ∪ {j}.

(8): Suppose that node j is visited at time tj = max{bj, ti + si + d′ij}, it must be possi-
ble to visit all pairs of unvisited pickup node ν1 and ν2 while respecting the time
constraints. With two visiting permutations for n + ν1 and n + ν2, we must satisfy:

max{bν1 , tj + sj + d′j,ν1
}+ sν1 + d′ν1,ν2

≤ eν2

or
max{bν2 , tj + sj + d′j,ν2

}+ sν2 + d′ν2,ν1
≤ eν1

with ν1, ν2 ∈ {1, . . . , n} ∩ S ∪ {j}.

Criteria (6), (7) and (8) checks if a state is post-feasible while criteria (5) checks if a state is
ante-feasible. Criteria (6) is checked in the same way as criteria (4). Criteria 7 and (8) are
only check for one pair of delivery and pickup nodes, respectively.

18

Previous Results

The tests done by Desrosier showed promising results. They investigated 93 problems
with up to 40 requests, where the problems were derived from actual routes from cities
in Canada. Almost all of the tests done with a problem size less than 25 requests were
solved in less than two seconds, and was able to easily solve problems with 40 requests.
The relationship between computation time and problem size was almost linear, with the
exception of a few "hard" problems. For a more detailed explanation of the test results
and algorithm, see [2].

19

5 Implementation Details

In this section, we will give an overview of certain implementation details used in im-
plementing the FDP algorithm and the MIP model. Additionally, we discuss the slight
alterations to the instance data used in the experimental analysis.

Data

The Li & Lim benchmark [4] provides a vast amount of PDPTW instances ranging from
100 to 1000 locations. An instance is represented as a text file, where the first line con-
tains three integers representing the number of available vehicles, the max capacity for
each vehicle, and the speed at which a vehicle travels, respectively. We choose to ignore
the speed as it is irrelevant to our problem. The following n + 1 lines, n is the num-
ber of locations, describe the necessary information about the depot and each location.
Since only one depot is given, we set the starting and ending depot to be in the same
location. It should be noted that no time or distance costs between locations were given.
In both implementations, the distance cost between locations was set to the straight-line
distance between the locations position (given in xy-coordinates). We also set the time
cost between locations to be equivalent to their respective distance cost. This requires no
alteration to our algorithm or problem, as the triangle inequality still holds.

Using Gurobi’s Java API

The Gurobi Optimizer provides extensive APIs for multiple languages and frameworks.
For coherence with the FDP implementation, we chose to implement the model found in
Section 3 using the Java API. For a more detailed explanation of how to use Gurobi Op-
timizer and it’s tools, see the Gurobi documentation for the Java API.6 Although Gurobi
provides tools to import models written in many types of modelling languages, we have
chosen to implement our model purely using the Java API. The API’s modelling syntax is
very intuitive and allowed us to use previously written code to import instance data. The

6Gurobi documentaion is available at http://www.gurobi.com/documentation/

20

http://www.gurobi.com/documentation/

implemented model is shown in Listing 1.

Implementing the FDP in Java

We have chosen a similar implementation method as described in [2]. The data structure
is split into three levels. The first level retains information of the feasible set S, current
load, and a reference to the terminal nodes. The second level contains the terminal nodes,
which form the states (S, i). Each terminal node has a reference to the set of labels H(S, i),
which are stored in the third level. Each label consists of the time cost and distance cost
for that particular route.

As new states are generated at each iteration, the DP table can become quite large. For
large instances, certain implementation techniques may be needed to limit the memory
requirement. Additionally, at each iteration, only the previous and current set of states
are required. At the end of iteration k, only the labels from iteration k − 1 which were
used to generate the labels of k need to be stored in order for backtracking. For theoretical
purposes, we choose to store the entire DP table.

Certain elimination criteria are checked at different levels in the data structure. Each state
holds information on which nodes it can visit. Let N = {1, ..., n} be the possible nodes
that can be visited at the initial state (starting depot). This set comprises of all pickup
nodes. When visiting a node j ∈ N, j is removed from N. If j ∈ {1, ..., n} (a pickup node),
we add it’s corresponding delivery node j + n to N. By using this process, criteria (1)
and (2) are respected. In the first level, criteria (3) and (4) are checked when a node j is
considered to be added to a state. Criteria (6), (7) and (8) are checked in the second level
after the state (S ∪ {j}, j) is created. Finally, criteria (5) is checked before creating each
label. Once all feasible labels are created, all labels that are not part of the set of minimum
cost labels are removed.

21

6 Experimental Analysis

In this section we will describe the experiments done on both the MIP model using Gurobi
and Desrosier’s[2] FDP algorithm . The data to be solved was retrieved from the Li & Lim
benchmark[4] for PDPTW problems. Each instance of a PDPTW problem used has been
previously solved. These solutions were used to extract multiple SPDPTW problems from
a single instance. This generated ca 4500 SWPDPTW instances varying from 3 - 121 total
nodes (1 - 60 requests). The majority of instances range from a size of 11 to 21 nodes. The
graph in figure 2 shows the number of instances per instance size.7 Both algorithms were
run on a computer with an Intel Core i-7-4700HQ processor with a speed of 2.4GHz with
and 16GB of memory.

The goal of this experiment was to compare the number of solutions found and how
running time changes with respect to the instance size. Additionally, as our major focus
is solving relatively small instances (20 - 30 nodes) in a short period of time, we will
restrict all running time to 10 seconds. If a solution is not found with this time limit, it is
terminated. A special case is given to the MIP model, where a feasible solution might be
found.

MIP Model Results

The MIP model is implemented in Java using the Gurobi API and solved with Gurobi.
Gurobi allows to alter the solution strategy of the solver with a given parameter. There are
four strategies available: a balanced strategy between finding feasible solutions and prov-
ing optimality (MIP 0), priority on finding feasible solutions (MIP 1), priority on proving
optimality (MIP 2) and priority on finding better bounds for the objective function (MIP
3). By choosing the correct strategy, one can potentially improve the overall runtime. Our
first experiment is comparing the four strategies in order to decide on which to use when
comparing this solution method with the FDP algorithm.

7All figures presented in this section can be found in the Figures section.

22

Strategy Analysis

To compare these strategies, we will first observe how each individual strategy preforms.
Afterwards, we will compare the strategies based on the amount of instances solved and
the runtime for each instance.

Figures 3 and 4 show a comparison of the results produced from each strategy. Figure 3
shows the optimal solutions found while figure 4 shows the total solutions, either optimal
or feasible, that were found. From these results, we observe that all strategies, except for
MIP 3, managed to find optimal solutions for all instances with a size less then 15. The
amount of optimal solutions found for instance sizes greater then 15 starts to decrease
gradually. For instance sizes greater than 63, none of the strategies produced optimal
or feasible solutions. MIP 3 generally produced the worst results, only producing equal
results for 11 out of the 31 instance sizes. MIP 0 produced the best overall results, with
either equal or more optimal solutions for 23 out of the 31 instance sizes.

This strategy also produced on average more solutions (21 out of 31). It can also be ob-
served that MIP 1 provides consistently more solutions than MIP 2. The total overall
difference of both optimal solutions found and total solutions found between all strate-
gies is on average around ≈ 7%. There are also an average of ≈ 9% feasible solutions
found for each instance size. A more detailed visualization of the average amount of op-
timal and total solutions can be found in figure 5 . Although this difference is significant,
it is not yet clear which strategy to choose. When the instance size is greater than 35 the
best performing strategy varies mainly between MIP 0 and MIP 1.

To confirm our findings from the results analysis, we will now analyse the runtime results
for each instance. Figure 6 shows comparisons of runtime results for each strategy. The
charts visualize how many more instances a strategy performed better than the compared
strategy. Charts (6a), (6e) and (6f) show MIP 3 compared to MIP 0, MIP 1 and MIP 2
respectively. This confirms our previous assumption that MIP 3 is a less adequate strategy
to solve our problem. The results from chart (6d) show that MIP 1 and MIP 2 perform
similarly, with MIP 1 performing slightly better (ca. 5% better). Charts (6a), (6b), and
(6c) show that the balanced strategy, MIP 0, performs significantly better than the other
strategies. This confirms our previous assumption concerning MIP 0.

23

From both the results analysis and the runtime analysis, we can conclude that a balanced
strategy is better than optimizing a single aspect (feasibility, optimality or bounds). Thus,
we will be using this strategy when comparing the MIP model with Gurobi and the FDP
implementation. Although MIP 0 seemed a superior strategy, further analysis could be
done in determining which types of instances each strategy performs better. It would also
be interesting to see how each strategy performs given a larger time limit.

FDP Algorithm Results

In this section we will analyse the results produced from the FDP. Figure 7 shows the
result overview for the FDP. The FDP implementation managed to solve all instances with
instance size less then 25. After this point, the number of solutions found decreases in a
similar manner as with the MIP implementation. The largest solved instance had a size
of 73 (36 requests). For our goal sizes (20-30 nodes), the FDP implementation managed
to solve the majority of the instances, with the largest instance size of 31 being the lowest
percent solved (60%).

Figure 8 shows the average depth for each instance size compared to the route size. When
the instance size is greater than 25, the difference between average depth reached and the
actual route size increases.

Comparison

To compare these two implementations, we will first compare the amount of solutions
produced and then compare the runtime for each instance as we did in section 1. Figure
9 shows a comparison of solutions found for instances sizes of 19 to 37 (9a) and instance
sizes of 37-73 (9b). For all instances, except for instance sizes of 31, the FDP implemen-
tation provided more solutions than the MIP implementation. On average, the FDP pro-
vided ca 10% more solutions.

Our runtime analysis in Figure 10 also shows an overwhelming dominance of the FDP
implementation. Out of the 4695 instances tested, both implementations either did not

24

find a solution or had the same runtime for 2334 instances (50%). The FDP managed
to find a solution faster for 2279 instances (48%), while the MIP implementation only
managed to solve 82 instances (2%) faster.

Observing our goal region (20-30 nodes), we can see that the FDP finds more optimal
solutions than the MIP implementation. Not only that, but the FDP finds almost all of
these solutions faster as well.

Experimental Conclusions

From the comparisons shown in the previous section, it leads us to believe that the FDP
implementation is superior to the MIP implementation given a time limit of 10 seconds.
An interesting finding to be noted is that when running both implementations, the FDP
needed far more memory than the MIP-model. The MIP model on the other hand used far
more processing power than the FDP. This makes sense, since the FDP algorithm needs
to save previous states in a table, while Gurobi (and other MIP-solvers) utilize far more
processing power to manipulate constraints. From this observation, one can conclude that
managing and optimizing memory can lead to better results for the FDP and increased
processing capabilities can lean to better results for the MIP-model.

25

7 Conclusion

In this thesis we have considered two exact methods to solve the small scale 1-PDPTW.
Desrosier’s et al.[2] FDP algorithm proved to be more efficient at solving the problem
given the time constraint on the runtime. Both algorithms managed to find an optimal
solution for over 50% of all instance sizes with less then 30 stops. The FDP algorithm
solved all instances with less then 25 stops while the MIP-solver began to drop off in
the number of optimal solutions for instance sizes of less then 15. The FDP algorithm
provided overall more solutions as well as finding the solutions faster.

Based on the experimental results, the FDP algorithm proved to be the most promising
choice for small-scale instances. It should be noted that FDP algorithm utilizes far more
memory, and thus must be taken into consideration when implementing this algorithm.
With larger instance sizes, this can become an issue and can be thus advantageous to solve
the MIP model as MIP-solver mainly are dependent on processing power.

Future research should be directed towards the application of exact methods as a sub-
routine to solve the PDPTW. As implementation is key in the FDP algorithm, designing
techniques should be further researched in order to decrease processing time. Finally, as
we were able to solve instances with up to 73 locations, it would be interesting to research
methods of preprocessing instances to determine their complexity. This would provide a
powerful tool to determine which algorithm to choose based on the difficulty of a partic-
ular instance.

26

References

[1] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Manage. Sci., 6(1):80–
91, oct 1959.

[2] Jacques Desrosiers, Yvan Dumas, and François Soumis. A dynamic programming
solution of the large-scale single-vehicle dial-a-ride problem with time windows.
American Journal of Mathematical and Management Sciences, 6(3-4):301–325, 1986.

[3] Jacques Desrosiers, Paul Pelletier, and François Soumis. Plus court chemin avec con-
traintes d’horaires. Revue française d’automatique, d’informatique et de recherche opéra-
tionnelle. Recherche opérationnelle, 17(4):357–377, 1983.

[4] H.Li and A.Lim. Pickup and delivery problem with time windows instances.
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/m.

[5] Manar I. Hosny and Christine L. Mumford. The single vehicle pickup and delivery
problem with time windows: intelligent operators for heuristic and metaheuristic
algorithms. Journal of Heuristics, 16(3):417–439, 2010.

[6] Wan-Rong Jih and J Yung-Jen Hsu. Dynamic vehicle routing using hybrid genetic
algorithms. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Con-
ference on, volume 1, pages 453–458. IEEE, 1999.

[7] Wan-rong Jih, Cheng-Yen Kao, and Jane Yung-jen Hsu. Using family competition
genetic algorithm in pickup and delivery problem with time window constraints. In
Intelligent Control, 2002. Proceedings of the 2002 IEEE International Symposium on, pages
496–501. IEEE, 2002.

[8] Antoine Landrieu, Yazid Mati, and Zdenek Binder. A tabu search heuristic for the
single vehicle pickup and delivery problem with time windows. Journal of Intelligent
Manufacturing, 12(5-6):497–508, 2001.

[9] Harilaos N Psaraftis. A dynamic programming solution to the single vehicle many-
to-many immediate request dial-a-ride problem. Transportation Science, 14(2):130–
154, 1980.

27

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/m

[10] Martin WP Savelsbergh and Marc Sol. The general pickup and delivery problem.
Transportation science, 29(1):17–29, 1995.

[11] P. Toth and D. Vigo. The Vehicle Routing Problem. Monographs on Discrete Mathe-
matics and Applications. Society for Industrial and Applied Mathematics, 2002.

[12] LJJ Van der Bruggen, Jan Karel Lenstra, and PC Schuur. Variable-depth search for
the single-vehicle pickup and delivery problem with time windows. Transportation
Science, 27(3):298–311, 1993.

[13] Xin Wang. Vehicle routing. In Operational Transportation Planning of Modern Freight
Forwarding Companies: Vehicle Routing under Consideration of Subcontracting and Re-
quest Exchange, pages 7–23. Springer Fachmedien Wiesbaden, Wiesbaden, 2015.

28

Listings

Listing 1: MIP Model Snippet

1 /**

* This programs is an implementation of a MIP model for a 1-

PDPTW instance

3 * using Gurobi Optimizer as a solver.

* For Gurobi documentation see : {@link http://www.gurobi.com/

documentation/6.5/refman/java_api_overview.html}

5 * @author Yacine Lakel

* @date 15.08.2016

7 *

*/

9

public class Mip {

11

13 public Mip(String file){

DATA.createData(file);

15 }

17

/**

19 * Solves an instance of the 1-PDPTW

* @param MIP_FOCUS

21 * an integer representing the strategy the user wants the mip

solver to use.

* Min value: 0

23 * Max value: 3

* See Gurobi Java API documentation for more detail.

25 * @param TIME_LIMIT

* a double the represents the time limit for the solver.

27 * Min Value: 1.0

* @return a String representing the solution found, if any.

29

29 */

public String solve(int MIP_FOCUS, double TIME_LIMIT){

31

assert(MIP_FOCUS >= 0 && MIP_FOCUS <= 3);

33 assert(TIME_LIMIT >= 1.0);

35 String solution ="";

try {

37

// Create Model

39 GRBEnv env = new GRBEnv();

env.set(GRB.IntParam.MIPFocus,MIP_FOCUS);

41 env.set(GRB.DoubleParam.TimeLimit, TIME_LIMIT);;

env.set(GRB.IntParam.OutputFlag,0);

43 GRBModel model = new GRBModel(env);

45 // Create Flow Variables (x_ij)

GRBVar[][] flow_vars = new GRBVar[DATA.getNumberOfLocations

()][DATA.getNumberOfLocations()];

47 createFlowVariables(model,flow_vars);

49 // Create Load Variables (l_ij)

GRBVar[] load_vars = new GRBVar[DATA.getNumberOfLocations()

];

51 createLoadVariables(model,load_vars);

53

// Create Arrival Time Variables (t_ij)

55 GRBVar[] time_vars = new GRBVar[DATA.getNumberOfLocations()

];

createTimeVariables(model,time_vars);

57

// Integrate Variables

59 model.update();

30

61 // Create Objective expression (sum { x_ij * d_ij + e_o’)

GRBLinExpr expr = new GRBLinExpr();

63 // Sum all edges travelled (x_ij * d_ij)

for(int i = 0; i < DATA.getNumberOfLocations(); i++){

65 for(int j = 0; j < DATA.getNumberOfLocations(); j++){

if(flow_vars[i][j] != null)

67 expr.addTerm(DATA.getDist(i, j), flow_vars[i][j]);

}

69 }

// Add total time used (e_o’)

71 expr.addTerm(1, time_vars[DATA.getNumberOfLocations()-1]);

model.setObjective(expr,GRB.MINIMIZE);

73

75 // ----- CONSTRAINTS --------

77 // C0: STARTING CONSTRAINT

// A route must start from the origin depot and visit a

pickup node

79

expr = new GRBLinExpr();

81 for(int i = 1; i <= DATA.getNumberOfRequests(); i++){

expr.addTerm(1, flow_vars[0][i]);

83 }

model.addConstr(expr, GRB.EQUAL, 1, "C0");

85

// C1: ENDING CONSTRAINT

87 // A route must end at a delivery node and then visit the

destination node

89 expr = new GRBLinExpr();

for(int i = DATA.getNumberOfRequests() ; i <= 2*DATA.

getNumberOfRequests(); i++){

31

91 expr.addTerm(1, flow_vars[i][DATA.getNumberOfLocations()

-1]);

}

93 model.addConstr(expr, GRB.EQUAL, 1, "C1");

95 // C2_(E/L)i: ENTERED AND LEFT ONLY ONCE CONSTRAINT

// Every node is visited exactly once

97

for(int u = 1; u < DATA.getNumberOfLocations()-1; u++){

99 expr = new GRBLinExpr();

for(int i = 0; i < DATA.getNumberOfLocations()-1; i++){

101 if(flow_vars[i][u] != null){

expr.addTerm(1, flow_vars[i][u]);

103 }

}

105 model.addConstr(expr, GRB.EQUAL, 1, "C2_L"+u);

expr = new GRBLinExpr();

107 for(int j = 1; j < DATA.getNumberOfLocations(); j++){

if(flow_vars[u][j] != null){

109 expr.addTerm(1, flow_vars[u][j]);

}

111 }

model.addConstr(expr, GRB.EQUAL, 1, "C2_E"+u);

113 }

115 // C3_i: TIME PRECEDENSE CONSTRAINT

// a pickup node must be visited before its corresponding

delivery node

117

119 for(int i = 1; i <= DATA.getNumberOfRequests();i++){

expr = new GRBLinExpr();

121 expr.addTerm(1, time_vars[i]);

expr.addConstant(DATA.getTime(i, i+DATA.

32

getNumberOfRequests()) + DATA.getServiceTime(i));

123 model.addConstr(expr, GRB.LESS_EQUAL, time_vars[i+DATA.

getNumberOfRequests()], "C3"+i);

}

125

127 // C4_ij: LOAD FLOW

// Constraints that represents the load flow

129 GRBLinExpr expr1, expr2, expr3;

for(int i = 0; i < DATA.getNumberOfLocations()-1; i++){

131 for(int j = 1; j < DATA.getNumberOfLocations(); j++){

if(flow_vars[i][j] != null){

133 expr1 = new GRBLinExpr();

expr1.addTerm(1, load_vars[i]);

135 expr1.addTerm(-1, load_vars[j]);

expr1.addConstant(DATA.getLocation(j).getDemand());

137

expr2 = new GRBLinExpr();

139 expr2.addConstant(-2*DATA.getVehicleCapacity());

expr2.addTerm(2*DATA.getVehicleCapacity(),flow_vars[i

][j]);

141

expr3 = new GRBLinExpr();

143 expr3.addConstant(DATA.getVehicleCapacity());

expr3.addTerm(-DATA.getVehicleCapacity(),flow_vars[i

][j]);

145

expr2.add(expr1);

147 expr3.add(expr1);

149 model.addConstr(expr2, GRB.LESS_EQUAL, 0, "C4U_"+i+"_

"+j);

model.addConstr(expr3, GRB.GREATER_EQUAL, 0, "C4L_"+i

+"_"+j);

33

151 }

}

153 }

155 //C5_ij: TIME FLOW

//Constraints that represents the load flow

157 double bound = DATA.getLatestTime(0);

for(int i = 0; i < DATA.getNumberOfLocations()-1; i++){

159 for(int j = 1; j < DATA.getNumberOfLocations(); j++){

if(flow_vars[i][j] != null){

161 expr = new GRBLinExpr();

expr1 = new GRBLinExpr();

163 double cost = DATA.getServiceTime(i) + DATA.getTime(i

, j);

// Left hand side

165 expr.addTerm(1,time_vars[i]);

expr.addTerm(-1,time_vars[j]);

167 expr.addConstant(cost);

169 expr1.addConstant(bound);

expr1.addTerm(-bound, flow_vars[i][j]);

171

model.addConstr(expr, GRB.LESS_EQUAL, expr1, "C5L"+i+

""+j);

173 }

175 }

}

177

179 // Optimize model

model.optimize();

181 try{

String dist = String.format("%.2f", model.get(GRB.

34

DoubleAttr.ObjVal));

183 String runtime = String.format("%.2f",model.get(GRB.

DoubleAttr.Runtime));

solution = runtime + " " + getTime(flow_vars) + " " +

dist;

185 }

catch(GRBException e){

187 solution = "- - -";

}

189

// Dispose of model and environment

191 model.dispose();

env.dispose();

193

} catch (GRBException e) {

195 System.out.println("Error code: " + e.getErrorCode() + ". "

+

e.getMessage());

197 }

return solution;

199 }

35

Figures

Figure 2: Data distribution over instance size

36

3
5

7
9

11
13

15
17

19
21

23
25

27
29

31
33

35
37

39
41

43
45

47
49

51
53

55
57

59
61

63

M
IP

 0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
99

.6
98

.5
95

.5
86

.9
81

.7
57

.1
48

.5
43

.5
58

.2
70

.4
64

.4
45

.3
21

.6
25

.0
14

.3
11

.8
15

.8
21

.7
29

.2
10

.7
16

.0
5.

0
12

.5
6.

7
28

.6

M
IP

 1
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
99

.4
95

.9
92

.8
82

.4
77

.8
47

.6
39

.4
46

.4
61

.8
67

.2
65

.8
44

.1
24

.3
25

.0
14

.3
11

.8
15

.8
17

.4
25

.0
14

.3
20

.0
5.

0
6.

3
6.

7
28

.6

M
IP

 2
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
99

.0
95

.1
91

.5
80

.0
73

.0
39

.3
37

.9
43

.5
52

.7
71

.2
65

.1
43

.5
18

.9
25

.0
14

.3
11

.8
15

.8
13

.0
25

.0
10

.7
16

.0
10

.0
6.

3
6.

7
28

.6

M
IP

 3
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

99
.9

98
.4

93
.6

87
.0

75
.6

65
.9

36
.9

36
.4

39
.1

47
.3

64
.8

60
.4

37
.1

18
.9

25
.0

14
.3

11
.8

15
.8

8.
7

16
.7

14
.3

16
.0

5.
0

6.
3

6.
7

14
.3

Figure 3: MIP Strategy Comparison of the Optimal Solutions Found

37

3
5

7
9

11
13

15
17

19
21

23
25

27
29

31
33

35
37

39
41

43
45

47
49

51
53

55
57

59
61

63

M
IP

 0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

99
.6

99
.1

96
.3

89
.7

77
.4

60
.6

50
.7

65
.5

74
.4

75
.2

53
.5

27
.0

33
.3

35
.7

35
.3

21
.1

39
.1

33
.3

21
.4

20
.0

20
.0

12
.5

6.
7

28
.6

M
IP

 1
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

99
.2

97
.3

92
.5

87
.3

67
.9

59
.1

56
.5

67
.3

69
.6

73
.2

50
.6

29
.7

50
.0

28
.6

41
.2

26
.3

39
.1

33
.3

21
.4

20
.0

10
.0

18
.8

6.
7

42
.9

M
IP

 2
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

98
.5

95
.1

90
.6

85
.7

63
.1

51
.5

49
.3

61
.8

73
.6

70
.5

51
.8

27
.0

41
.7

21
.4

17
.6

15
.8

26
.1

29
.2

17
.9

16
.0

15
.0

12
.5

6.
7

28
.6

M
IP

 3
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

99
.9

99
.8

97
.4

92
.8

87
.5

80
.2

52
.4

45
.5

49
.3

63
.6

73
.6

69
.1

47
.6

24
.3

50
.0

35
.7

29
.4

21
.1

34
.8

25
.0

25
.0

16
.0

20
.0

12
.5

6.
7

28
.6

Figure 4: MIP Strategy Comparison of Optimal and Feasible Solutions Found

38

Figure 5: MIP Average Solutions Found

39

(a) 0 vs 1 (b) 0 vs 2

(c) 0 vs 3 (d) 1 vs 2

(e) 1 vs 3 (f) 2 vs 3

Figure 6: MIP Strategy Runtime Comparison

40

Figure 7: FDP Result Overview

41

Figure 8: FDP Average Depth Reached Compared to Route Size

(a) 19-37

(b) 39-73

Figure 9: FDP vs MIP Number of Solutions Comparison

42

Figure 10: FDP vs MIP Best Runtime Comparison

43

	Acknowledgement
	Abstract
	List of Figures
	List of Listings
	Introduction
	Literature Review
	Problem Formulation
	A Forward Dynamic Programming Approach
	Implementation Details
	Experimental Analysis
	Conclusion
	References
	Listings
	Figures

