
Stian Sivertsen

Ridge Extraction, and Illustrative
Visualization of an FTLE Flow Field.

Master Thesis

supervised by

Hellwig Hauser

Andrea Brambilla

Institute of Informatics

University of Bergen

i

Abstract
Illustrative visualization of a flow is an area that is proving to be interesting and

in later years something that have been somewhat explored, it can provide some

very interesting results and in this thesis we find the required structures needed for

such a visualization. Lagrangian coherent structures are now commonly used in

flow visualization and we establish a simplistic approach to creating them in this

thesis. The problem of occlusion and the general complexity of both the data and

the visual results are still a common thing when working with a structured flow.

This thesis presents a solution that identifies the complex and often large amounts

of data that is inherent in a flow and tries to find a good way of extracting the

structures within. By using the FTLE values found in the flow data we define

these structures so that we can see what is going on in these complex systems, as

well as combining it with an illustrative approach that will provide an interesting

visual aspect to the integral structures found in flows. By using mathematical

analysis of the raw data we obtain the necessary tools we need to define and

extract ridges that form LCS that we can then model. We use a simple approach by

focusing on the basic components of such complex structures as well as utilizing

often long standing principles in an interesting way. Combining the strengths of

both illustrative visualization and the clarity of integral structures we can create a

more visual sound model that loses some of its cluttering complexities but is still

capable of generating a pleasing visual end result.

Contents

Contents ii

1 Introduction 1
1.1 Finding A Solution . 1

1.2 Thesis Outline . 3

2 State of the Art 4
2.1 FTLE And Lagrangian Coherent Structures 4

2.2 Ridges And Ridge Extraction . 8

2.3 Illustrative Flow Visualization 11

3 Presenting The Solution 18
3.1 What Are We After . 18

3.2 Motivations . 19

3.3 Structure . 22

4 Implementation 25
4.1 Defining The Solution . 25

4.2 The 2D Solution . 28

4.3 The 3D Solution . 39

5 Results 51

ii

CONTENTS iii

6 Conclusion 63

Bibliography 66

List of Figures 72

List of Tables 75

CHAPTER

1 Introduction

Begin at the beginning and go

on till you come to the end: then

stop.

Lewis Carroll,

1.1 Finding A Solution

There are many applications in science where visualizing intricate parts of a

model can be difficult. Complex structures and delicate flows often makes it hard

to extract the components that are taking place within the structures. In the later

years newer technologies and methods have appeared that help leviate this prob-

lem, by separating and extracting structures using a selection of algorithms that

focuses on finding correct and interesting information within complex structures.

In this thesis we will use different techniques and structures to aquire a reasonable

result from a given dataset that will ultimately help us in defining the occurences

and changes that takes place in complex flows.

An important structure within the context of this field are lagrangian coher-

ent structures, or LCS for short. These structures help us define and separate the

different regions in the flow that our datasets are based on. The underlying com-

ponent of an LCS are finite-time Lyapunov exponents, or FTLE. These exponents

1

CHAPTER 1. INTRODUCTION 2

help define the separation between the elements of the flow and by extracting cer-

tain components based on the FTLE in the flow we can define LCS that give us a

good idea not only of the different regions of the flow, but also what is happening

inside these regions.

In this thesis we will utilize datasets that have precalculated FTLE values at

every point recorded in the flow, and use this value to evaluate and extract ridges

that define the overall LCS in the flow. This structure is eventually processed and

visualized so we can better understand the underlying components of the flow.

Visualizing the end product of all the calculations and structures is equally

important because this defines the product that describes what is actually happen-

ing in the regions. There are many different methods for visualizing the result

we get, and they all focus on different aspects of the structure. As we will show,

extracting a coherent structure from the dataset is only a step in figuring out what

exactly is going on in the flow. Although there are many visual approaches that

could have been made in finalizing the results, we chose to focus on illustrative

visualization as there are many different areas within this field that helps extract

the smalller components and intricate structures within bigger complex datasets -

as well as producing some very nice visual end results.

Having big datasets and different components poses many difficult questions

as to how to approach the problem. Deciding upon a software to visualize, or a

method to extract the required data are all very important questions to answer. In

this thesis we decided to approach the data using already established methods as

well as using a custom built framework based on C++ and openGL to produce the

end results. Using commercial software for debugging and verification purposes

only.

In this thesis we aim to use existing structures as well as methods to visualize

highly complex flow data based on the FTLE component in the flow. After defin-

ing the structures using ridges, we create a triangle mesh as a final structure that

we will use custom built shaders based on existing work to visualize the different

aspects of the model so that we can produce interesting and intricate results that

give a new perspective on the raw data.

CHAPTER 1. INTRODUCTION 3

1.2 Thesis Outline

The second chapter is divided into different subsections each defining and ex-

plaining the ground principles used within this thesis. Here we try to not only

explain the use and necessity for the many different structures and algorithms we

are basing our work on, but also referencing other work that either contributes

directly to the foundation of our solution or that have an interesting or perhaps

similar approach to getting the results we desire. It does however keep the ex-

planations brief and is mostly a high level overview of the different aspects used

in this thesis, so it is recommended to browse through the referenced material for

further information on the different areas. Chapter three presents the theory of our

solution as well as defines some of the boundaries set for what we are trying to

achieve. We also discuss how we chose our solution as well as some interesting

aspects of the different components of that solution. The fourth chapter delves

into the actual implementation of the proposed solution, and describes the techni-

cal choices made to create the end results, as well as explains what is happening

in more detail.

Results are then presented in the fifth chapter, giving a visual representation of

what we achieved as well as defining some of the end produce of the implemen-

tation and how well it performed on the different datasets. And how far we came

towards our goal. At the end of the thesis we look into some of the conclusions

and what we gained from the solution. The impact or degree of results as well as

looking at some interesting alternate paths or future work.

CHAPTER

2 State of the Art

All cases are unique and very

similar to others.

T.S. Eliot

2.1 FTLE And Lagrangian Coherent Structures

Finite Time Lypanov Exponent

The Finite Time Lypanov Exponent is the basis of all of the calculations and val-

ues in the thesis. This is the value in the data that defines the outcome of our

solution. The FTLE is applicable to time dependant discrete data sets. The flow

systems that are discretely defined as such often have a chaotic nature to them

that might be hard to visualize internally and it is then very helpful to have an

exponential value that describes the state of the discrete flow as to base a com-

puter generated visualization on so that we can better grasp the intricate flows and

structures that are produced within the datasets.

FTLE is an often used and valuable measurement for analyzing the behavior in un-

steady flows. Although it can be hard to prove its accuracy or to measure the rate

of success and likeness to structures in the flow because there is no ”ground truth”

available to measure. It has however proven to be quite valuable and accurate in

its representation. There have also been work done to comparatively measure its

4

CHAPTER 2. STATE OF THE ART 5

Figure 2.1: Illustrating 3 different methods for computing the FTLE. [22]

success and performance by Kuh et al.. [22]. In their definition of what the FTLE

does they note that it ”measures the rate of convergence or divergence between

neighboring flow particles over a finite time interval.” Of the resulting scalar field

that is produced from computing the FTLE value over a vector field, ridges are

one of its most useful and significant structures. These structures closely resem-

bles and fits with the definition of lagrangian coherent structures.It is often then

that the FTLE is used to define ridges that in place construct lagrangian coher-

ent structures, or LCS. These structures define separate regions of the dataset that

have a similar enough component as to coexist as a whole unit. There are a va-

riety of ways to compute the FTLE over a vector field, each process having both

negative and positive components bound to computational complexity and result-

ing accuracy. Three of the most common methods of finding the FTLE can be

seen in figure 2.1 where we see an illustration of the classic method, the reseeding

approach as well as the localized approach that rely on jacobian values.

It can be seen as a relative measure but it has still become a standard way of

observing the separating behavior within unsteady flows. There are many differ-

ent areas that is has been used on. Examples includes describing flow behavior

on a planetary surface [4] [11], the movement of jelly fish [18],[49] and even in

turbine separation analysis, just to name a few.

The computation of FTLE is based on the spatial gradient of a calculated flow

map. The main aspect that different methods for finding the FTLE differ is in the

acquisition of this flow map.

Kuhn et al. gives a benchmark for evaluating FTLE computations in this

paper[22]. Here he discusses the uses for the FTLE as well as different meth-

CHAPTER 2. STATE OF THE ART 6

Figure 2.2: The double gyre : an often used example of an FTLE defined flow
[41]

ods for obtaining it, each having distinct performance and accuracy trade-offs. It

also goes into more detail on how FTLE has helped us understand the complex

flow behavior in unsteady flows. The paper also describes how to better compare

and verify the end result of a FTLE computation.

Lagrangian Coherent Structures

LCS are structures created by segregated components, often from dynamically

distinct regions of a flow. The structures help reveal geometry and phenomenas

that are otherwise hidden when viewing just the vector field, or a single trajectory

in the flow. It is a way to gain an overview of a very complex set of structures

created by a chaotic flow often based on an advanced function. These separate

regions in flow can be described by the previously mentioned FTLE.

There have been a number of attempts to find something that describes the struc-

ture of an unsteady flow field in the same way that topological skeletons describe

a steady flow - using either lines or surfaces. The most prolific way of doing so

has been using LCS defined by ridges identified in the FTLE scalar field. This

provides a very effective way of visualizing both complex and simple flow fields.

This has in turn caused the fluid dynamic community to embrace the LCS. How-

ever a drawback with the LCS is the computational cost of producing them. Al-

though most algorithms are very easily parallelized, and they perform very will

CHAPTER 2. STATE OF THE ART 7

in this manner, they still require quite a long time to produce results. One of the

more popular approaches is to use a ridge tracking algorithm.

Figure 2.3: Showing backward(a) and forward (b) LCS for Sarsia tubulosa.

Haller and Yuan [13] introduce a lagrangian definition to represent the bound-

aries of coherent structures in two dimensional turbulent flows. These boundaries

represent lines that are responsible for stretching the passive tracers, and they have

been using this to study coherent vortexes. Shadden et al. [42] define LCS from

FTLE values much the same as we do in this thesis, however they focus more on

the representation of the LCS - where they want to show that the flux generated

for a LCS is negligibly small. Green et al. [10] also uses the same concepts to

create LCS from FTLE values to study fluid mechanics. Here they study three di-

mensional flows like a vortex and compare the results to Eulerian methods. They

find that ”Despite additional computational costs, the DLE(FTLE) method has

several advantages over Eulerian methods, including greater detail and the ability

to define structure boundaries without relying on a preselected threshold”

Another very nice paper on extracting LCS from both steady and unsteady

flows have been written by G. Haller et al.[12] where they find coherent structures

in three-dimensional flows. Here they use FTLE values as a successful approach

for getting the structures directly from particle paths in the flow.

CHAPTER 2. STATE OF THE ART 8

2.2 Ridges And Ridge Extraction

Ridges and valleys define what constitutes as the main components of a surface.

The mathematical definition of a ridge as a curve has been known for quite some

time and ridges have been heavily used in geomorphology. As mentioned by Peik-

ert and Sadlo ”In Image analysis and computer vision, a digital image can be seen

as a sampled scalar field or height field, making ridges available as characteristic

structures complementary to the more popular edges.” So ridges can be seen as a

valid form of defining interesting regions by representing the dataset as a height

field and then identifying the local maxima areas in this height field as a ridge.

These ridges then combine to define a resulting structure.In essence a ridge is de-

fined as a single curve and a 1-dimensional entity, but they can be extended to

other dimensions, as done by Kindlman et al.[19] where they used ridge surfaces

to visualize MRI data.

Figure 2.4: A representation of a single Ridge [25]

Assortment Of Ridges

There are many different variations of how a ridge can be defined as well as con-

flicting views as to what constitutes as a ridge. The most common ridge used is

the simple height ridge. In the paper by Peikert and Sadlo [30] a height ridge is

defined by its second derivative values. This equates to a height ridge as a set of

points that define a local maxima where the direction of the ridge is the direction

of the maximum second derivative q and the orthogonal axis of minimum second

CHAPTER 2. STATE OF THE ART 9

derivatives p. Giving the definition of a height ridge according to Eberly [3]:

Lp = 0

Lpp < 0

Lpp ≤ Lqq

(2.1)

This is the ridge type that we focus on in the solution but there are also other

ridges that vary in complexity.

Second derivative ridges are found in a similar way to height ridges, but it

uses higher derivatives to define it. This leads to a number of differences from

the height ridges, most apparently the number of ridges that are found giving it a

more refined response.

C ridges is also a variant and is a further evolution of the standard height ridge.

The C-ridge differs from the height ridge in that it uses the major eigenvector as a

defining component instead of defaulting to the minor eigenvector of the hessian,

as is done with a height ridge. This ridge can also be extended to 3D by utilizing

the local FTLE maximum. For more information about the use and applicabil-

ity of C-Ridges Schindler et al. [38] is a recommended read. For more detailed

information about the definition of the height ridge as well as the second deriva-

tive ridge the thesis by Majer [25] is a good read. There are however different

approaches to define a ridge that are valid, so finding an exact definition is not al-

ways that simple. This mostly affect the number of ridges found and how coarse

they are - and it also depends on the filters and directions used to detect the ridges.

Applicability Of Ridges

Ridges, represented as a set of curves are often used to define important geometric

information within structures. They have been used in many different aspects of

image analysis as well as computer visualization. This pertains to both medical

as well as flow visualization. In the paper by J.Sahner Et Al [35] they utilize

height ridges to help define topological separatrices of vortices and strain skele-

tons. Sadlo and Peikert [34] visualize components of flow inside turbines, and

more generally LCS that are computed from grids of trajectories. Another ex-

ample is Shadden and Lekien [42] where they use ridges to find LCS that define

CHAPTER 2. STATE OF THE ART 10

flow separation. In medical visualization there have been work done using ridge

surfaces, most notably by Kindlmann et all. [19].

Ridge Extraction

After the ridges have been separately defined it is often important to find the

structures that they create as a whole. This is done after detecting the ridges by

the FTLE values and validating that the ridges actually exist and represent the data

correctly. In most cases when building LCS from ridges the approach is to create

a seed point in the data and then iteratively expand the ridges in the appropriate

direction to get a general structure that is defined by neighboring ridge points.

There have been many algorithms and methods as to figure out how to best extract

the ridges, and it is not always easy. Extraction depends a lot on the available

data, as well as finding a suitable way to reduce the computational cost of finding

neighboring points.

The method used for extracting ridges are often based on what information is

easily available from the data points, as well as the wanted dimension and struc-

ture of the found ridges. A simple approach to extracting ridge lines is using the

parallel vectors approach described in the paper by Peikert and Roth [29]. Here

they utilize vector fields and an operator to get the resulting lines. One of the

more general approaches to extracting ridge points from a dataset is using march-

ing ridges [6]. This method is based on the marching cubes algorithm and it uses

a set of criteria to define the different ridges that can be found depending on user

defined parameters and dimensions of the data. It then uses a seeded approach

where it iteratively expands a found ridge point by locating neighbors and seg-

ments the data into a valid neighborhood. Another approach for ridge extraction

is the AMR Filtered approach used by Sadlo Peikert [34]. Here they subdivide the

dataset into neighboring cells and then grow the ridges in the appropriate neigh-

borhood based on the filters and criteria set for a valid ridge. They also use a look

ahead approach, as to not neglect smaller components of the ridge structure.

Lipinski and Mohseni [24] uses a tracking algorithm to define the LCS that

are created by the resulting ridges. Here they focus on finding a better computa-

tional approach to massive amounts of complex data by using approximation and

CHAPTER 2. STATE OF THE ART 11

estimation using tracer particles.

2.3 Illustrative Flow Visualization

Figure 2.5: Hand-drawn illustration of water flow behind an obstacle by Leonardo
da Vinci. (b) Depiction of a dynamical system with stream arrows by Abraham
and Shaw

The combination of the two techniques produce a large existent field within

visualization as some of the previous examples have shown. Although using an

illustrative approach to this kind of data is in no way new. It has been used to

describe scientific phenomenons for as long as 500 years. In more recent years

we have an attempt to use hand drawn pictures to describe flow structures found

in Abraham and Shaws paper [1].

To better describe the mixing of two disciplines Brambilla et al STAR [2] has

created a very nice categorization of the areas within both flow and illustrative

visualization. The categories are defined are:

1. Raw data - original data produced by simulations or measurements.

2. Integral structures - linear structures used to describe the flow.

3. Flow features - the relevant data as it pertains to the user.

To better understand the different areas of both flow visualization and illus-

trative visualization they have been separated into two subcategories, but both of

them focusing on flows and the structures within them.

CHAPTER 2. STATE OF THE ART 12

Flow Visualization

Integral surfaces are surfaces that are created of separate regions. In the case of

LCS the different ridge surfaces created by the ridge extraction is combined to

define an integral surfaces that is required to create a proper visual representation

of what is happening in the dataset. The ridge lines produced, be it 1 dimen-

sional curves or 2 dimensional surfaces tell interesting and intricate tales of what

is happening within the flow of a dataset.

Integral curves have been used in visualizing these complex concepts for a

long time, and have proved invaluable to simplify everything that can happen

within a chaotic flow. Integral surfaces take the concept of streamlines and streak

lines to another level. Computing the surfaces of advanced structures can be very

expensive but with the latest development in technology the added flexibility and

visual results created by using integral surfaces have been more than worth it.

Integral structures first entered the research field when Hultquist [15] proposed

a way to represent particles moving through a flow as a surface by using a stream

surface algorithm. There are many different ways to represent an integral surface

using both a triangle mesh as well as particles. Some even utilize point based

rendering - and work has been done on both CPU and GPU to try and speed up

the often very costly surface generation that is required for advanced flows. The

popularity of integral structures can be attributed to the ability of these structures

to create a clear representation of the trajectories of particles in the flow.

Integral lines was the first attempt to harness the usefulness of these structures

done by Schroeder et al. [40] where an n-sided polygon is swept along a stream-

line and is deformed to local flow properties. Ueng et al. [45] extended this to

work with unstructured grids and Schirski et al. [39] tries to speed up the process.

When increasing the dimension of the structures we get problems with self

occluding and the like. Therefore as we move into the second dimension new

approaches had to be carved out to better represent the data inherent in the flow.

This resulted in a focus on visibility issues instead of more perceptual ones.

Expanding into further dimensions have not been a priority, mostly because

the increased complexity is not justified by the result. There has however been

some attempts at it and Xue [48] visualizes streamvolumes using a texture advec-

CHAPTER 2. STATE OF THE ART 13

tion technique.

Post et al. [31] categorized the flow visualization techniques into four main

groups, and in the last few years a fifth group has also been suggested by Salzbrunn

et al. [36]:

1. Direct Visualization - maps the data directly to a visual representation. Low

complexity.

2. Texture-based Visualization - Use local flow attributes to create a noise tex-

ture. Further information found in [37] and [23]

3. Geometric Visualization - Uses integral structures as a basis. More infor-

mation can be found in the paper of McLoughkin et al. [27].

4. Feature-based Visualization - Focuses the visual result on the most impor-

tant aspects of the vector field. Details found in Post et al. STAR[31]

5. Partition-based Visualization - Tries to effectively partition the spatial and

temporal domain using flow properties.[36]

Figure 2.6: (a) The visualization method described in [20] uses concepts from
painting to visualize 2d incompressible flows: arrows represent velocity, colors
represent vorticity and ellipses represent strain, divergence and shear. (b) Illustra-
tive volume rendering of flow by Svakhine et al. [44]. (c) Texture-based visual-
ization with color-coding of local flow properties [46] (d) 3D-LIC of flow around
a wheel, visualized with the aid of a clipping plane [32]. Image taken from STAR
[2]

There has also been attempts at utilizing a focus+context approach to integral

structures. There have been 3 major areas that have been explored in this regard.

CHAPTER 2. STATE OF THE ART 14

And they all provide different but interesting goals. In Fuhrmann and Gröllers

paper [5] we see a user-applied focus. Here they have a magic lens or a magic

box that the user employs to enhance and focus the visualization so that what they

perceive as important is kept in focus. Another approach based on Hauser and

Mlejnek [14] has the focus aspect on the seeded regions within the flow. This

approach is further explored in [26] and [21]

The third category focuses on entire integral curves in the visual result. Jones

and Ma [17] did just that by presenting a flow exploration framework that al-

lows the user to select the focus+context streamlines that are then enhanced and

displayed. Wei [47] created an interface where the users first sketches the most

interesting streamline shape and similar streamlines are identified within the data

and then set in focus.

The field of flow visualization has been around for many years but there are

still a lot of unanswered questions. Some of the challenges present are finding

more effective ways of producing and generating the data as it can be quite time

consuming. This makes it difficult to have any sort of interaction with the data as

a lot of preprocessing is required. The complexity and organization of the data

also gives different problems in regard to the grid the data is stored in. There is

a gap between structured and less structured grids that provide a problem when

trying to process and visualize data.

Also the amount of data present in a flow makes it hard to avoid and reduce

clutter when the visualization goes into three dimensions. The data itself and the

constructs it creates also makes it so that twists,overlapping folds etc. are present.

And as more areas within the different categories are explored we also see that

the complexity is ever increasing within this field so finding solutions that reduce

the complexity but still keeps the visual result intact, or better yet improves it

are venues that researchers are very interested in. Garth et al. [7] describes an

approach for generating integral surfaces in time-dependent vector fields. The

method described uses surface approximation and a graphical representation to

directly compute the surfaces. Hummel et al. [16] also uses integral surfaces

when implementing illustrative rendering to enhance and produce structures that

describe what is happening in complex flow structures. They go on to describe

integral surfaces as ”ideal tools to illustrate vector fields and fluid flow structures.”

CHAPTER 2. STATE OF THE ART 15

Figure 2.7: A stream surface visualizes flow inside a vortex breakdown bubble.
In (a), the surface is rendered with strong normal variation transparency and light
silhouettes. The opaque red stripe illustrates the front of the surface. In (b), a
modulated stripe texture conveys the impression of dense particles traces; here,
flow direction is indicated by intensity modulation, and velocity is expressed as
the length of the traces. Images taken from [16].

Illustrative Visualization

There are many ways of representing a structure or visualize a model. Photoreal-

istic visualization is often used, especially for models and components that have

a real life counterpart as to create a bigger sense of realism. Illustrative visual-

ization is based on a more artistic approach to representing data. Here the main

concept is to use artistic techniques that have been refined and helpful throughout

history to simplify and focus the context on the important aspects of the model. As

mentioned previously we also have different aspects of illustrative visualization.

The main focus is to use the illustrative techniques, often in the sense of shaders

CHAPTER 2. STATE OF THE ART 16

and transparancy to simplify or refocus the structure so unecessary structures and

obstructive components are removed, or minimized.

A very good example of this is again the paper by Hummel et al. [16]. Here

they generate surfaces from a turbulent jet dataset and render them using differ-

ent illustrative techniques as to enhance the understanding of what is happening

within the flow represented by the surface. For more specific techniques used

within illustrative visualization there is Gooch et al [8] explaining how to use tone

shading to keep edge lines and highlights to give a clear picture of what is being

represented. There is also a paper by Sousa et al. [43] that explains the method of

graphite pencil rendering as well as a paper citeSousa2003 that accurately reveal

the geometric forms that give subjects their characteristic shape.

Figure 2.8: A path surface generated from a turbulent jet dataset, rendered using
an adaptive stripe pattern. [16]

There are very few techniques that uses illustrative approaches to deal with

flow features in a focus+context approach compared to the areas explored with

integral surfaces. There has however been some work done by Muelder and Ma

[28].

More related to surface rendering Gorla et al. [9] study the effect of textures

as a way to represent the line orientation of the surface flow. This helps the viewer

follow the flow in a more static manner, so as to not be overwhelmed by everything

CHAPTER 2. STATE OF THE ART 17

that is happening - but still have access to all the information present. For a

more general approach to volume illustration Rheingans and Ebert [33] describes

not only the benefits of utilizing a nonphotorelaistic approach but also gives a

collection of methods that extend common NPR techniques to volume objects.

Using photorealistic rendering as a counterpart when explaining the process.

CHAPTER

3 Presenting The Solution

Once upon a midnight dreary.

Poe

3.1 What Are We After

The basis for this thesis is to take components from existing areas within computer

visualization. Starting by examining the different qualities of advanced flows, and

the difficulties inherit within this data a number of valid solutions proved apparent.

Having big datasets comprising of time dependant flow can prove challenging to

examine, and especially figuring out and internally visualizing all the components

that are within such flows is a challenge.

Often the structures and components within these flows are so obscure and

abstract that finding real world components to base a resulting visualization on,

as well as having it provide sufficient detail and informative properties so that the

end gain is substantial enough can prove difficult. There is also the question of

how to approach the different data structures when composing a solution, as to

best utilize the different aspects and data structures of the data we are handling.

In this thesis however the main goal of the solution was to use an existing

technique on new and interesting data, and seeing if it was possible to produce

similar positive results with different data, then what had been previously tested.

18

CHAPTER 3. PRESENTING THE SOLUTION 19

Defining and handling the data structures became an integral part of the solution

as we moved forward with testing. It also proved apparent that it was important

to gradually escalate the complexity and dimensions of the solution as we moved

forward because of all the different components, and the sensitivity of not only

the properties of the data but also the intricate parts that needed to be established

before the next step could be made.

Going over this we focused on having a simple and well established data struc-

ture - basing the solution on LCS that were created from ridges extracted from a

pre- generated flow dataset with existing FTLE values. Now the goal of the so-

lution is to not to only execute a satisfying way of extracting the necessary com-

ponents for a useful visualization of structures within a complex flow, but also

finding a good visual technique for presenting the end results. The visual tech-

nique that proved most interesting for this purpose was illustrative visualization.

As mentioned earlier there had already been some success with going non photo-

realistic when composing complex data structures, specifically in the way details

and important objects in the data was preserved.

This all resulted in the solution being a gradual 2d to 3d representation of a

pregenerated flow dataset with designated FTLE values. These FTLE values then

of course form a height field that is solved with the emphasis on finding valid LCS

structures using a form of ridge extraction that would enable us to create a triangle

mesh that we can utilize some form of illustrative visual technique on to produce

satisfying results as to containing components of the flow, and to preserving the

more intricate details of the dataset.

Having read and been inspired by a paper by Hummel and Garth [16] that not

only provided valid results of advanced flows based on integral surfaces, also gave

very interesting and almost artful results of complex structures that we wanted to

execute and replicate on other structures - or flows.

3.2 Motivations

Now be able to generate a valid solution to the problem at hand we needed ways

to:

CHAPTER 3. PRESENTING THE SOLUTION 20

1. Define and store the data to be worked on.

2. Validate and refine the data so it can be properly processed.

3. Retrieve the structural components required for a visual representation of

the data.

4. Apply a visual technique or component to the resulting structures, as to

enhance its internal structures and properties.

5. Compare the resulting structures with existing similar results - for verifica-

tion.

Thinking about the concepts and motivation behind the solution we can see

that there are many problems that arise when working on bigger sets of complex

data. Delving into the problem without first looking at all the possible choices to

make and what the implications of these choices are can be difficult. This resulted

in a decision to use pregenerated datasets with all the necessary and validated

information for producing the end results. A choice made also on the basis that

the main asset of this thesis is not on the actual data generation and validation but

more on the resulting visual experience.

Handling the data and verifying that it is correct as well as that it captures

all the important qualities of the data we used is of course an important part, but

having to also calculate and validate the data that the resulting structures are based

on would delude the focus of the solution. Instead finding a valid and often used

way of capturing the internal structures of the data was important.

This led us to utilizing ridges as it is a often used concept when generating

some form of model of a flow. This also led us to utilizing the FTLE values

within the flow as it proved very good information on the overall structure as well

as provides a very fluid way of extracting good structures of lagrangian nature,

using some form of ridge extraction that will result in the desired model we are

after.

It was important to verify each step of the process, so not only was the filters

and other methods based on well tested solutions, but it was also an important

step to provide a first step into the process as to validate the initial data. This is

CHAPTER 3. PRESENTING THE SOLUTION 21

why we first started creating a 2 dimensional solution of the 3d flow. This enabled

us to verify the different aspects of the data and our algorithms in a less complex

environment before extending the resulting algorithm to three dimensions.

Seeing as most ridge extracting techniques are based around a seeding and

neighbourhood expanding we had to come up with a different approach to gen-

erating the resulting structure of our flow since we already had all the necessary

information stored within all points in our dataset and just wanted to extract or

grasp the actual structural components that these data points defined.

So after defining the data we had to work on in a valid structure, and then

validate and refine it using well known techniques like applying a sobel filter and

using different mathematical analysis and algorithms to extract all the necessary

information we needed to create and retrieve the structural components. First in

a simplified 2d case and then later extend the solution into three dimensions we

also needed a valid way to construct the end results into a workable model.

There are many different ways not only to represent the structures within a

flow - but also many different approaches as to how we can obtain them. Initially

we thought we could modify existing techniques used for ridge extraction and

surface construction. So the goal was to take a process that used a seed and grow

approach and adapt it to instead just extract the structure directly using some of

the same principles. This proved difficult however seeing as the structure of our

data made it then difficult to assign the found components to their respective re-

gions as well as finding a valid way to create the entire structure. Instead we used

the analytical part of one of the proposed solutions, the AMR Ridge Extraction by

Sadlo and Peikert. [34] We then used the data found with the mathematical anal-

ysis to incorporate the a marching ridges approach [6] to the structure. This also

proved difficult seeing as this also uses a more expanding approach to building

ridge surfaces - however with a slight modification on how to define the struc-

tures found resulted in the desired result that we could then proceed to visualize

using our illustrative approach.

Again being able to validate the information gathered along the way was an

important aspect of our solution and we utilized third party software to validate

our resulting model before starting the more visual process of our solution.

CHAPTER 3. PRESENTING THE SOLUTION 22

After we were happy with the resulting model we started to contemplate on

some of the different visual approaches we had discussed on using. Keeping with

the previous stages of our approach to this implementation we chose to focus on

well defined and validated approaches that could be implemented in a simple way

and that would provide a satisfiable and testable end product. This resulted in

focusing on implementing a custom shader that would extensively enhance the

inherent properties of our model.

3.3 Structure

So the end result of what we have is a valid solution that take pre-existing tech-

niques and well established approaches to the problems faced and place them in

an we then define them in such a way that we can retrieve the desired end result

of our data. The first step in our solution becomes defining an import function

based on the dataset, where we are able to store all the important pre-generated

values of the data. This helps us organize the flow in a logical way and it is there-

fore important to make it easy to apply the filters and analysis on the data that

we plan on doing. This results in a n-dimensional array that organizes the flow

and its enclosures in a grid fashion so that every coordinate of the flow is easily

accessible.

After we have organized the data we need to find a structure for applying the

appropriate filters and analysis. Most well known filters for these kind of data

are organized in a grid or box fashion, like for instance the sobel operator. This

makes them ideal for our data since we have already organized it in a grid fash-

ion running through the array in either a two-dimensional or three-dimensional

procedure becomes trivial. This is also the case for more mathematical analytics,

seeing as most is done by an approximation filter, and not by calculation to ease

up on the complexity and cost of the algorithm. Storing the results of these anal-

ysis also becomes trivial seeing as we have access to each individual point in the

data, and this makes it possible to also update and store new data at each given

point.

Retrieving the structure from the then processed data points becomes a matter

CHAPTER 3. PRESENTING THE SOLUTION 23

of adapting an algorithm that correctly recognizes the building blocks we are after,

in our case we are looking for ridge lines for 2d and ridge surfaces for 3d. This

equates to curves in 2d and a triangle mesh in 3d. Now as mentioned most of the

predefined algorithms use a seed and expand approach so we need some way to

identify the construction of each cell and then create the appropriate structure -

and then in the end combining them all together to form the resulting model that

is represented by the combining surfaces.

After we have the model we need, we need to custom build our shaders and

apply them directly to the model to produce our end visual result. Refining and

adding post processing effects as needed. With this end product we can now check

it for consistency and validity. Either by comparing it to existing results or by the

validity of the original data that we know is correct.

The illustrative part then comes last as we have to define a way to better view

our model in a way that it makes sense and enhances the structures within the

flow. We therefore need to construct an illustrative approach that makes sense for

the complex data and model we have obtained. Post processing the model and

the data is also an option as we can further refine our results seeing as one of the

bigger issues when it comes to flow visualization is general noise and hard to read

data. There is also the problem that most flow visualizations face which is the fact

that the complex data often occludes and makes it hard to see what is going on.

This is why we need to apply a shading technique that addresses these issues

while still maintain the simplistic nature of our approach.

So our solution is then condensed into these separate steps to fulfill our initial

assumption:

1. Store the data as data points in a logical array representing the entire dataset.

2. Apply filters and mathematical analysis on the data to extract the required

information we need.

3. Use an existing modified algorithm to construct our model from the ana-

lyzed data.

4. Apply a custom built shader on the resulting model to give us our visual

end result.

CHAPTER 3. PRESENTING THE SOLUTION 24

5. Verify our end result versus pre-existing models, and the initial data.

After we have obtained a valid and formed model and applied our illustrative

approach to it we then have to expand our datasets and validate the method so

that it works for all different kinds of flow structures based on the same principles

that we have in our test data. We also need to verify that our approach works on

real data, however this could be more related to future work as well as further

exploration of these types of data. There are many different and interesting data

that can be obtained and that can prove interesting for further validation.

CHAPTER

4 Implementation

If I have ever made any

valuable discoveries, it has been

owing more to patient attention,

than to any other talent.

Sir Isaac Newton

4.1 Defining The Solution

As mentioned earlier we decided to make the solution from scratch using com-

mon libraries and frameworks. Primarily we used openGL for the graphical rep-

resentation and Qt for the framework. Writing the solution in C++ and using

ShaderMaker for initial testing of the initial Illustrative Visualization Part.

There were also several choices available both in representing the data and

extracting the different components that we need to properly visualize the results

and get the solution we wanted. The more common ways of creating LCS con-

sisting of ridge components are by seeding and expanding areas of the data and

then joining it together to form a coherent structure. Seeing as we had all the

initial values precomputed we only wanted to structure the data logically as well

as providing easy access and a coherent way to execute extraction of structures,

25

CHAPTER 4. IMPLEMENTATION 26

applying filters and processing the data to conform into the values and structures

we needed for the end result.

Seeing as the data can become very complex and that many different aspects

and parts of it are used as parameters in the algorithms and mathematical analysis

to define the model we need it was needed to first create a 2D result that would

limit the complexity and in the minimal dimension possible remove all the arti-

facts and define the proper algorithms and preprocessing needed and still keep the

data and result coherent so that we can better perform error checks and validation

of the data.

This is why we first elected to produce a simple height map of the 3d data in

2d slides to get an overview of the data and to help decide not only the correct

approach to identifying the ridges in the data but also the best way to structure the

data and model containing them as well as the best algorithms for constructing

the structures defined by the ridges and how to best store the information found.

When we were happy with the ending results in the minimal dimensions we ex-

panded the implementation and its algorithms and analysis to a third dimension

and then compare this result to the 2d to verify the correctness of the model.

To easier understand the implementation and information when describing the

two main approaches taken when implementing the solution we will first go over

some of the key components and aspects of the implementation and briefly de-

scriber their relevance and use in the final implementation. We will then refer to

these concepts and go into greater detail within both the 2D and 3D implementa-

tion and how they were utilized to create a cohesive and sound end result.

We organize the data that forms the flow in a grid structure for easy access and

navigation. Giving it the dimensions X,Y, and Z given by the restricting boundary

of the flow structure compartment. This also allows us to easily switch from 2D

to 3D as the 2D case is accessing slices in one direction.

In each data point we store the precomputed components we have acquired

like flow velocity, FTLE value,position etc. recognized by either filters or anal-

ysis like the gradient and the transverse direction. We also decided to divide the

sections of the data into something called grid elements. These grid elements

represent an appropriate dimensional structure for the overall dimensional result.

This means that for a 2D result we would have a slice comprising of grid elements

CHAPTER 4. IMPLEMENTATION 27

represented as squares of 4 data points. Within this square there can exist ridge

points that in the end define a ridge line.

These ridge lines are then bound together automatically in the entire slice

when they are singularly identified within each grid element. Now this creates the

main goal of our implementation, use the precomputed data structured in our grid

and define grid points that eventually gives us the ridge lines we need to define

a proper Lagranghian Coherent Structure. To do this we employ mathematical

filters and analysis, principally using convolution to apply filters to the data in

its appropriate dimensional forms that results in good approximations for the first

and second derivatives, or the gradient and hessian values needed to identify ridge

points within the data.

These points are then stored as interesting and tested by analysing the eigen

properties to existing principals that define different ridges. As we focus on height

ridges we need the notable data points found to adhere to the principals found in

the definition of a height ridge. This means that it has to be a local maxima in

the height field. When all the ridge points have been acquired within our dataset

we then use an appropriate method, depending on the dimension of our result, to

construct the ridge constructs that give us our final model.

These ridge constructs are then represented in a triangular mesh that define our

model consisting of LCS. Finding this construct is pretty straightforward in the

lower dimensions as we only connect ridge points using lines. It gets a bit more

complicated when expanding it to 3D as we have to create appropriate triangular

compositions within each grid element that makes sense and does not contort the

resulting model. We use the marching ridges algorithm as a starting point for this.

To summarize the general approach for the implementation after we have or-

ganized all the data from the flow is:

1. Convolute the data using an appropriate filter to get the derivatives.

2. Perform an eigen analysis to get values required for detecting ridges.

3. Go through the data and detect ridge points using the values gathered and

finally create ridge lines.

4. Extract the model from the ridge lines that have been found.

CHAPTER 4. IMPLEMENTATION 28

4.2 The 2D Solution

Figure 4.1: A simple visualization of a 2d slice Using a color code for the FTLE
values from low blue to high red. a)Early instance b)Later stages

We started at the lower dimensionality so that we can better understand the

process and make it easier to not only internally visualize the correct result but

also easier and faster to improve the method and reduce errors. The grid elements

used in the 2D case are squares defined by 4 connected edges. Each edge has a

possibility of identifying a ridge point in what is known as a zero crossing.

Now as we started implementing the solution we wanted to focus on clarity

when approaching the 2D. This way we could have a good overview of how the

flow behaved and how the FTLE values formed the slices in the data. As a first

approach we then displayed the slices of the flow as a height map defined by it’s

FTLE values. This can be seen in figure 4.1. Here we can see an indication of the

ridges in the slice as they form peaks in the slice. This served as reference images

for later algorithms and data processing as we could always compare the results

on a visual basis with the raw data.

After a simple visualization we needed to process the data so that we had the

necessary computations needed for detecting ridge points and ridge lines. Ridge

points are defined as possible areas in each grid element (In the 2D case we have 4

possible locations for a ridge point) that can contain a valid ridge point as defined

CHAPTER 4. IMPLEMENTATION 29

by the height ridge. So in essence these ridge points, once detected and verified

would serve as the component when finding the ridges we need to get our resulting

model.

To compute the correct ridge points we looked into a number of approaches

utilized earlier but we landed on an algorithm that takes the convoluted data as

well as the values found in eigen analysis and uses the core principals found in

the marching ridges algorithm to recognize a possible ridge point and verifying it

by comparing the gradient,hessian and transverse direction to predefined values

that gives us a valid height ridge.

Starting with the convolution we apply a sobel filter that gives us the gradient

and hessian at every point in the data. The gradient is estimated using the filter

and gives us an indication of the change at every point in the height field defined

by the FTLE values. The Hessian gives us an indication of the curvature. These

values are used to further identify a height ridge. Before we can go through the

data and identify height ridges we still need some more information. This is

done in a second step where we identify the eigenvalues and vectors associated

as well as finding the transverse direction. The transverse direction is used when

extracting the ridges. This is to make sure all the ridges are ordered properly when

combining them into a final structure.

Going back to our first step, there are many variations and filters that can be

used to compute the derivative values needed. As we are utilizing height ridges

we found that one of the more simple and well known approaches would be to use

a sobel operator to estimate these values. Computing them individually would not

be cost effective. And in our 2D case we create matrices of each slice that hold

the actual values at each index comparable to where the data point is stored. In

this way we can quickly access the relevant data for each part of the model in a

slice by slice basis.

For our 2D case we then get our gradient Gand our hessian Has our first step,

going through a single 2D slice in the data and for each valid non-empty data

calculating G and H.

G =

[
Dx

Dy

]
H =

[
DxDx DxDy

DyDx DyDy

]

CHAPTER 4. IMPLEMENTATION 30

These are all identified using the sobel operators defined below. These values are

then stored in each data point for quick access when needed in later calculations.

Sobel filters used for 2D:

Dx =

−1 0 1

−2 0 2

−1 0 1

Dy =

 1 2 1

0 0 0

−1 −2 −1



DxDx =

1 −2 1

2 −4 2

1 −2 1

DxDy/DyDx =

 1 0 −1

0 0 0

−1 0 1

DyDy =

 1 2 1

−2 −4 −2

1 2 1


The second step in our implementation is then to go through the slice again and

this time identify the eigenvector corresponding to the smallest eigenvalue. This

eigenvector is then used to check the transverse direction of that point. The eigen-

vector is again stored in the data points and we can now begin identifying ridges

seeing as we have all the necessary information needed.

The definition of a ridge, in our case a height ridge is given by a couple of

criteria. The information we have gathered so far can go along way to identify

potential ridges within the data but we need a set criteria that defines, in our case,

the height ridge so that we can fully verify it as a ridge and make it part of our final

model. Seeing as the algorithm we use is based on marching ridges it is executed

in a way that it identifies a ridge defined within a grid element by verifying the

second derivatives of a zero crossing on the edges of that grid element. In the

2D case a grid element consists of 4 edges and an edge consists of two endpoints

in our dataset. This means that an edge can be a member of more than one grid

element so they are therefore marked in the implementation so to not be checked

more than once for a valid ridge point. So for each edge we check the transverse

direction against the average transverse and we do this by finding the greatest

eigenvector from the 2x2 matrix C. This matrix is defined as C = 1
2 ×~v×~vT .

We then check our current transverse direction vs the average and adjust if the

CHAPTER 4. IMPLEMENTATION 31

dot product of our stored eigenvector and the newly found eigenvector of C is

negative.

After this is done we have to identify if there exists a zero-crossing on the

edge, and if so where it is. This is done by interpolating between the first deriva-

tives or gradients at each endpoint of the edge. So there can only exist a zero-

crossing if the first derivatives of the two sides have opposite signs and when this

is the case we have a possible ridge point on our edge.

To then check that the zero-crossing we found is in actuality a ridge point we

have to check the second derivatives at this location, which is again interpolated

using both the transverse direction and the hessian we can interpolate to find the

second derivatives at the possible ridge point. If this interpolated value is less than

zero we have identified a correct ridge point and it is added in a collection that

in our 2D case will eventually form a set of curves that represents our ridges as a

set of lines. We also define the magnitude of the second derivative at each ridge

point so that we can describe the convexity at each ridge point. This convexity is

used when forming ridge lines within grid elements when there are more than one

choice for connecting the ridge lines formed by several points in a grid element.

After we have defined and validated all the ridge points in a slice we then have

to go through each grid element and define the lines that connect them. In our 2D

case we need a way to connect the two ridge points in a way that it makes sense

for the resulting construct. For exactly two ridge points the ridge line is trivial,

and a line is defined between them. For the cases where 3 and 4 ridge points are

contained within a single grid element we need some way of connecting the ridge

points that makes sense.

It is here that we utilize the convexity that we calculated when validating ridge

points. In this case we connect the two ridge points that are most convex. Here

the convexity s between point a and point b is defined as s = aC×bC.

These lines are then added to define the ridges found in a 2D slice and can be

represented visually.

The method described here in the 2D case was done to establish the founding

steps needed to create construction of height ridges that defined the FTLEs in a

flow. Some example images are given below to illustrate the results and displaying

both ridge points and ridge lines found.

CHAPTER 4. IMPLEMENTATION 32

Figure 4.2: Ridge points identified on a 2D slice rendered over the volume at the
appropriate height.

CHAPTER 4. IMPLEMENTATION 33

Figure 4.3: More Ridge points identified on a 2D slice rendered over the volume
at the appropriate height.

CHAPTER 4. IMPLEMENTATION 34

Figure 4.4: Just the identified ridge points of the slice.

CHAPTER 4. IMPLEMENTATION 35

Figure 4.5: Early implementation of ridge lines.

CHAPTER 4. IMPLEMENTATION 36

Figure 4.6: Early implementation of ridge lines.

CHAPTER 4. IMPLEMENTATION 37

Figure 4.7: Early implementation of ridge lines with ridge points.

CHAPTER 4. IMPLEMENTATION 38

Figure 4.8: Another early implementation of ridge lines with ridge points.

CHAPTER 4. IMPLEMENTATION 39

4.3 The 3D Solution

In the 2D solution we ended up with a construct consisting of ridge lines, this gave

us an indication of how the ridges lined up with the data as well as generating a

general idea of how the different methods were performing. It is however not that

helpful forming an overall picture of our construct, as well as providing a basis

for our illustrative part where we need a 3D model to visualize.

We therefore expand upon the methods used in 2D to create a valid 3D model

that we can then use to give us our wanted illustrative results. We are therefore

expanding the methods implemented in the 2D case to give us a triangular mesh

defined by the height ridges in the flow data.

The grid element in the 2D case was pretty basic, a rectangular element con-

sisting of 4 edges. In the 3D case we are now dealing with a cube element that

is defined by 12 edges. And this creates a higher complexity not just for the data

needed but especially for the number of ridge points that can exist in a single grid

element. We are also now describing the ridge constructs in each grid element as

a set of triangles instead of a set of lines.

However we still follow the same basic steps defined in the start of this chapter

but the complexity is increased since we are now dealing with the entire volume

and not just a single slice. We again start with convoluting the data but here fil-

tering the entire volume, and therefore we need a cubic filter. We go through the

entire volume and calculate the gradient Gand hessian H at each location defined

as:

G =

Dx

Dy

Dz

H =

DxDx DxDy DxDz

DyDx DyDy DyDz

DzDx DzDy DzDz


These are all identified using the sobel operators defined below. These values are

then stored in each data point for quick access when needed in later calculations.

CHAPTER 4. IMPLEMENTATION 40

Some example sobel filters used for 3D:

DxTop =

−1 0 1

−2 0 2

−1 0 1

DxMiddle =

−2 0 2

−4 0 4

−2 0 2

DxBottom =

−1 0 1

−2 0 2

−1 0 1



DzDzTop=

 1 2 1

−2 −4 −2

1 2 1

DzDzMiddle=

 2 4 2

−4 −8 −4

2 4 2

DzDzBottom=

 1 2 1

−2 −4 −2

1 2 1



Figure 4.9: The cube filter designed in 3 layers, top middle and bottom.

As we can clearly see here the complexity of the convolution and the amount of

data it produces is greatly increased, but the end results are very much the same.

We still end up with a gradient and a hessian defined at each data point that we

can use to identify possible ridge points just as in the 2D case. So in the end we

now use a substantial more data, and it therefore takes a bit longer but since we

are keeping the main principle of convoluting the data using a simple filter the

complexity is kept down and we can still follow and fulfill the steps required to

define a suitable model for our illustrative results.

CHAPTER 4. IMPLEMENTATION 41

The next step in the process is the eigen analysis. We now have more eigen-

values to consider but are still only looking for the smallest one so that we can

get the eigenvector that corresponds to this smallest value. This results in more or

less the same procedure as in the 2D case but with a bit more work done, much

the same as with finding the derivatives of the data.

So far we have seen that with expanding the implementation in dimensions

we have still kept the basic principles of our solution and only the magnitude of

the data has been affected, the end results are more or less the same as we still

need the same values to identify possible ridge points. We are still looking for the

same type of ridges, and we are essentially still checking edges in the end - but the

complexity of the 3D implementation comes in the form of creating the resulting

model.

In the lower dimensional case it was just a matter of connecting points to form

lines, that then formed a resulting image defining the height ridges in a 2D slice.

In 3D we need to define a set of triangles that not only represents the different

formations of the ridge points within the edges of a cube but also makes sense in

the resulting model. There are many ways to approach this, and as we showed in

our 2D case we based our solution on the marching ridges algorithm, and this was

in turn based on the more well known marching cubes algorithm. [?]

Now in the marching cubes algorithm there are a set amount of cases that

can occur within a 3D model and these cases are then reduced into 15 unique

triangle formations that are rotated and moved around to form all the possible

arrangements. These different cases are represented using an edge list that defines

the many cases and is stored in a list that is checked when inspecting a cube

element when executing the algorithm.

We did try this at first, using a predefined edge list that would define our grid

elements and then give us the resulting correct triangle arrangement, but after

further examining the data we have we found that the cases used in the marching

cubes algorithm did not correspond to the different cases we had because of how

the ridge points are detected they create different patterns that are harder to define

using a set list of unique edges. This resulted in that we had to then identify

the edges that have a valid ridge point, and construct the triangles as simply and

as straightforward as possible without ending up with artifacts or clutter from

CHAPTER 4. IMPLEMENTATION 42

wrongly arranged triangles.

But first we have to find the ridge points needed on each edge of the grid

element so that we can identify the different cases and assign appropriate visual

representation in form of triangles.

This is done in a similar approach to the 2D case where we go through each

grid element and check all the edges individually for a possible ridge point using

the values we have obtained through convolution and eigen analysis.

We again start with identifying and checking the transverse direction of the

edge points now using the 3x3 matrix C using the same definition as in the 2D

case. Similar to the eigen analysis we now have an added eigenvector we need

to consider, but the end result is still the same - in that we are still just after the

greatest eigenvector from C so that we can compare the edges transverse direction

with the average transverse direction and make sure it is not negative.

We now move on to detecting a zero crossing in the first derivatives on of the

edge by interpolation, and if a zero crossing is found we have a possible ridge

point that is affirmed by the second derivatives being negative in the same way as

we did in the 2D case.

So as we can see identifying the ridge point in the 3D case is not much dif-

ferent from the 2D case, but as mentioned earlier there is a bigger change in the

last step of our implementation as we now need to define the triangles defined by

these ridge points and get a resulting surface that we can use as a model.

As we have been focusing on keeping the approaches straightforward and sim-

ple we will continue along these lines when constructing the triangles in the grid

elements. We therefore take the grid elements in a case by case basis and check

exactly how many ridge points are contained within them and construct the most

straightforward triangle orientation that can be found without generating bad or

conflicting results. The grid elements with exactly 3 ridge points are in this case

trivial and are drawn as a single triangle, and the rest of the triangles are treated

in an equal manner using this algorithm:

In principle the algorithm designed reduces the problem of constructing an

interconnecting and overall model into defining the triangles in each grid element

separately. Because there are so many possibilities as well as the complexity of the

data that identifies ridge points creating a consistent list that represents all would

CHAPTER 4. IMPLEMENTATION 43

Figure 4.10: A grid element defined as a cube. The edges and faces on the cube
help define and organize the grid element so that we can construct our triangles.
a) shows the 12 edges that define it b) shows the 6 faces that are used to check
adjacent and opposing edges for ridge points.

not be the optimal way to approach this problem. Instead we take the fact that

only a single ridge point can exist on each edge as well as the fact that we want

simple and well formed triangles that are not obscured or fold in an unnatural way.

This is done by organizing the 12 edges into 6 faces that define the neighborhood

of the grid element. This is shown in this figure4.10.

We then use adjacency lists and define the triangles in a consistent manner for

each grid element. We want to combine the closest ridge points first, so opposing

faces are deprioritized. In this way we can separate the grid elements into 2 dif-

ferent cases. The first case consists of triangles formed by adjacent faces and the

second case consists of triangles formed by opposing faces. So in essence what

we do is:

1. Check if there are lines(defined as two separate ridge points) in the cube

with shared vertices and connect them.

2. Prefer adjacent faces.

3. If no adjacent lines are available look for opposing lines to connect.

Where we define neighboring faces as faces that are directly in contact, so for

instance the front face would have four adjacent faces in left,right,top, and bottom.

Opposing faces are then defined as faces that are not directly in contact e.g. the

front and back face. So if we look at the figure ?? we can see that in the case

CHAPTER 4. IMPLEMENTATION 44

Figure 4.11: A selection of triangle constructions that can be found in our grid
elements. a) the trivial solution b) the neighboring solution c) a more complex
neighboring solution with a predefined configuration.

Figure 4.12: Another special construct consisting of 4 ridge points but only a
single triangle.

of a) we simply connect the shared lines to form a triangle even though we don’t

have more than 1 shared line. In the event of b) we first connect the adjacent lines

formed by the red line where lines on both the front and top face share vertices.

Then we see that the there are also adjacent lines at both the bottom and back faces

and therefore connect them to create our final structure. In our last example we

have a bit more of a tricky situation seeing as there can be multiple final structures

depending on how we start and how we draw the lines between the points. In these

special cases we simply define a solution and when it is identified we draw it the

CHAPTER 4. IMPLEMENTATION 45

same way each time. This is done by how we implement the priority of faces so in

this case we check the left side before the right side for a shared line and therefore

end up with the configuration shown. Another special case that can be found is

the instance of e.g. four ridge points found where three of the points are adjacent

and the last point is on an opposing face. This case is shown in this figure 4.12

and our solution is to simply ignore the point that does not share a line with any

of the other to prevent clutter and to keep the constructs simple. After we created

the model we needed to make sure it was valid and working as intended. We

therefore exported the resulting mesh and had a look in meshlab to get a better

understanding on how the resulting model looked. However to end this section

we round off with some images taken from the triangles created in our solution.

CHAPTER 4. IMPLEMENTATION 46

Figure 4.13: Triangle mesh formed from our 3D implementation.

CHAPTER 4. IMPLEMENTATION 47

Figure 4.14: A closer look at our triangle mesh formed from our 3D implementa-
tion.

CHAPTER 4. IMPLEMENTATION 48

Figure 4.15: Ridge lines as they are defined in the grid elements combined to form
a skeleton of our structure.

CHAPTER 4. IMPLEMENTATION 49

Figure 4.16: Another view of the ridge lines

CHAPTER 4. IMPLEMENTATION 50

Figure 4.17: A normal variation view-dependent transparency rendering. From
[16]

The Illustrative Approach

To create our illustrative result we need a custom built shader. We base our ap-

proach on some of the techniques utilized in the paper by Hummel et al. [16]

Specifically we intend to implement a shader that utilizes a normal variation to

create transparency so that we can more easily see what is going on within our

structure. This approach can be seen in fig. 4.17

So what is needed is a shader that can process our model in such a way that

it creates a normal variation view-dependant transparency of the LCS created by

the ridges previously extracted and combined. We therefore need to make this a

two-step process seeing as we have to take into account the fact that it is view

dependant. This means that we need to create a layered approach to our shader in

such a way that we can strip it down and show the different structures in the data.

CHAPTER

5 Results

In the end, it’s not the years in

your life that count. It’s the life

in your years.

Abraham Lincoln

The end results in this thesis prove the complexities and difficulties inherit in

both flow data and how to visualize them. Having provided an accessible way to

extract and create the needed structure to visualize using mathematical procedurs

and finding both normals and we have a brief look at how the end results came

together to form a LCS created by reducing the data into separate gridelements

and then producing a compatible triangle mesh that defined the inherent structures

within the flow.

By applying the implemented methods on our testdata sets we have created

several triangle meshes that represent the LCS within the complex flowdata. We

utilized our ridge extraction method to generate and verify ridgepoints and by bas-

ing our surface constructing method on existing techniques such as the marching

ridges [6] as well as other important ridge generating methods like filtered AMR

ridge extraction [34] and Parallel Vectors [29] we constructed a resulting model

in both 2D and 3D that can then be used or exported in such a way that we can in-

hance and focus on its inherent properties. The method is also easily expandable

if we take into account that the FTLE values are predefined and the datasets are

51

CHAPTER 5. RESULTS 52

managed by a cartesian grid.

We were however not able to integrate our custom shader to provide an illus-

trative approach to this data due to lack of time and the inherent complexities in

handeling the data as well as definig a proper solution. The shader proved more

complex than previously thought and nfortunately the end results of our proposed

solution were not met in the end.

There has however been provided some shaded visualizations of our final

aquired 3D model of the testdataset taken in two different time intervals.

CHAPTER 5. RESULTS 53

Figure 5.1: Resulting triangle mesh with simple phong shading of our testset,
TS43.

CHAPTER 5. RESULTS 54

Figure 5.2: Resulting triangle mesh with simple phong shading of our testset,
TS43.

CHAPTER 5. RESULTS 55

Figure 5.3: Resulting triangle mesh with simple phong shading of our testset,
TS43.

CHAPTER 5. RESULTS 56

Figure 5.4: Resulting triangle mesh with simple phong shading of our testset,
TS43.

CHAPTER 5. RESULTS 57

Figure 5.5: Resulting triangle mesh with simple phong shading of our testset,
TS43.

CHAPTER 5. RESULTS 58

Figure 5.6: Resulting triangle mesh with simple phong shading of our testset,
TS43.

CHAPTER 5. RESULTS 59

Figure 5.7: Resulting triangle mesh with simple phong shading of our testset,
TS35.

CHAPTER 5. RESULTS 60

Figure 5.8: Resulting triangle mesh with simple phong shading of our testset,
TS35.

CHAPTER 5. RESULTS 61

Figure 5.9: Resulting triangle mesh with simple phong shading of our testset,
TS35.

CHAPTER 5. RESULTS 62

Figure 5.10: Resulting triangle mesh with simple phong shading of our testset,
TS35.

CHAPTER

6 Conclusion

When I examine myself and my

methods of thought, I come to

the conclusion that the gift of

fantasy has meant more to me

than any talent for abstract,

positive thinking.

Albert Einstein

Summary and Problems Faced

To conclude the project there are a lot of possibilities still within this area. And

it is important to notice the complexity and the size of even such a simplistic and

well defined approach. Having success in preparing and identifying interesting

areas of visual output as well as the vast Creating visually stimulating shaders

and utilizing different techniques taken from both illustrative visualization and

other areas could prove very interesting with this type of data. As we can clearly

see in the paper by Hummel et al. [16] there is a clear potential within this area.

However handling such an amount of complex data proved more difficult than

early assumptions as well as the complexities going from a lower 2D approach

and extending it to a third dimension also had its difficulties. In the end we can

conclude that there is definitely interesting aspects if further explored within this

63

CHAPTER 6. CONCLUSION 64

area and the fact that complexity is one of the major issues within the field of flow

visualization it is going to be very interesting to see what the future holds both

in form of having more interaction as well as being able to handle the data bet-

ter. Extracting and finding the necessary information isn’t always straightforward

when working with this type of data and that was shown in this thesis.

The solution we went in with was sound and although we had to try quite a few

approaches to extracting and defining the data in 3D, mostly because the preexist-

ing methods and algorithms usually does not have all the information gathered as

well as using more of a seeded approach to constructing the necessary structures.

it was in the end implemented as we had intended in regards to the extraction and

forming of the final model.

Future Work

As mentioned there is a huge potential for future work within this area, not only

to further test the boundaries and try to reduce the complexity, but also in that

we try to create easier and simpler implementations that still work fast. An illus-

trative approach to this area can work really well as there are numerous ways of

representing complex structures in a simpler fashion. There is even an area where

focus+context based solutions can provide helpful insight in the huge amount of

data often found in flows.

Acknowledgements

I would like to take the opportunity to thank some people that helped me not only

understand the complexities within this thesis but also helped me define and find

solutions to problems I faced. Thanks to my fellow students for providing healthy

discussion and a good reason to keep working.

I would really like to thank professor Hellwig Hauser for guiding me towards a

final goal and providing me feedback and discussion on how to organize and what

to focus on when formulating such a big project.

I would also like to express a special thanks toward my supervisor, Andrea Bram-

billa for finding solutions to problems I had and helping me not only figure out the

basics but the complex answers often needed to complete this thesis. I would also

give a special thanks for providing me with interesting information and papers

that kept me interested in this project, Thank you.

65

Bibliography

[1] Ralph Abraham and Christopher D Shaw. Dynamics: The Geometry of Be-

havior. Number 1. Addison-Wesley, 1992.

[2] Andrea Brambilla, Robert Carnecky, Ronald Peikert, Ivan Viola, and Hel-

wig Hauser. Illustrative flow visualization : State of the art , trends and

challenges. Proceedings of Eurographics State of the Arts Reports, 2012.

[3] D Eberly, R Gardner, B Morse, S Pizer, and C Scharlach. 1 the need for

ridges in image analysis. Analysis, 4(4):1–24, 1994.

[4] Cinzia G Farnetani and Henri Samuel. Lagrangian structures and stirring in

the earth’s mantle. Earth and Planetary Science Letters, 206(3-4):335–348,

2003.

[5] A Fuhrmann and E Groller. Real-time techniques for 3d flow visualization.

Proceedings Visualization 98 Cat No98CB36276, pages 305–312, 1998.

[6] Jacob D Furst and Stephen M Pizer. Marching Ridges, pages 22–26. 2001.

[7] Christoph Garth, Han Krishnan, Xavier Tricoche, Tom Bobach, and Ken-

neth I Joy. Generation of accurate integral surfaces in time-dependent vec-

tor fields. IEEE Transactions on Visualization and Computer Graphics,

14(6):1404–1411, 2008.

[8] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A Non-

photorealistic Lighting Model For Automatic Technical Graphics. 1998.

66

BIBLIOGRAPHY 67

[9] G Gorla, V Interrante, and G Sapiro. Texture synthesis for 3d shape repre-

sentation, 2003.

[10] M A Green, C W Rowley, and G Haller. Detection of lagrangian coher-

ent structures in three-dimensional turbulence. Journal of Fluid Mechanics,

572(-1):111, 2007.

[11] Melissa A Green, Clarence W Rowley, and Alexander J Smits. Using hy-

perbolic lagrangian coherent structures to investigate vortices in bioinspired

fluid flows. Chaos Woodbury Ny, 20(1):017510, 2010.

[12] G Haller. Distinguished material surfaces and coherent structures in three-

dimensional fluid flows. Physica D: Nonlinear Phenomena, 149(4):248–

277, 2001.

[13] G Haller and G Yuan. Lagrangian coherent structures and mixing in two-

dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4):352–

370, 2000.

[14] H Hauser and M Mlejnek. Interactive Volume Visualization of Complex Flow

Semantics, pages 191–198. 2003.

[15] J P M Hultquist. Constructing stream surfaces in steady 3d vector fields.

Proceedings of IEEE Visualization 1992, pages 171–178, 1992.

[16] Mathias Hummel, Christoph Garth, Bernd Hamann, Hans Hagen, and Ken-

neth I Joy. Iris: illustrative rendering for integral surfaces. IEEE Transac-

tions on Visualization and Computer Graphics, 16(6):1319–1328, 2010.

[17] C Jones and Kwan-Liu Ma Kwan-Liu Ma. Visualizing flow trajectories us-

ing locality-based rendering and warped curve plots. IEEE Transactions on

Visualization and Computer Graphics, 16(6):1587–1594, 2010.

[18] Stuart Kent. Lagrangian coherent structures : Generalizing stable and un-

stable manifolds to non-autonomous dynamical systems dynamical systems

: Background. Spring, pages 1–15, 2008.

BIBLIOGRAPHY 68

[19] Gordon Kindlmann, Xavier Tricoche, and Carl-Fredrik Westin. Anisotropy

creases delineate white matter structure in diffusion tensor mri. Medical Im-

age Computing and Computer-Assisted Intervention, 9(Pt 1):126–133, 2006.

[20] R M Kirby, H Marmanis, and David H Laidlaw. Visualizing Multivalued

Data from 2D Incompressible Flows Using Concepts from Painting, pages

333–340. IEEE Computer Society Press, 1999.

[21] J Kruger, P Kipfer, P Konclratieva, and R Westermann. A particle system

for interactive visualization of 3d flows. IEEE Transactions on Visualization

and Computer Graphics, 11(6):744–756, 2005.

[22] A. Kuhn, C. Rössl, T. Weinkauf, and H. Theisel. A benchmark for evaluating

FTLE computations. In Proc. IEEE Pacific Visualization, pages 121–128,

Songdo, Korea, February 2012.

[23] Robert S Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk,

Frits H Post, and Daniel Weiskopf. The state of the art in flow visual-

ization: Dense and texture-based techniques. Computer Graphics Forum,

23(2):203–221, 2004.

[24] Doug Lipinski and Kamran Mohseni. A ridge tracking algorithm and error

estimate for efficient computation of lagrangian coherent structures. Chaos

Woodbury Ny, 20(1):017504, 2010.

[25] Peter Majer. A Statistical Approach to Feature Detection and Scale Selection

in Images. PhD thesis, der Universität Göttingen, 2000.

[26] Oliver Mattausch, Thomas Theußl, Helwig Hauser, and Eduard Gröller.

Strategies for interactive exploration of 3d flow using evenly-spaced illumi-

nated streamlines. Spring Conference on Computer Graphics, pages 213–

222, 2003.

[27] Tony McLoughlin, Robert S. Laramee, Ronald Peikert, Frits H. Post, and

Min Chen. Over two decades of integration-based, geometric flow visual-

ization. Computer Graphics Forum, 29(6):1807–1829, 2010.

BIBLIOGRAPHY 69

[28] Chris Muelder and Kwan-Liu Ma. Interactive feature extraction and tracking

by utilizing region coherency. 2009 IEEE Pacific Visualization Symposium,

pages 17–24, 2009.

[29] R Peikert and M Roth. The ”Parallel Vectors” operator-a vector field visu-

alization primitive, volume 99, pages 263–270. Ieee, 1999.

[30] Ronald Peikert and Filip Sadlo. Height Ridge Computation and Filtering for

Visualization, volume eds, pages 119–126. IEEE, 2008.

[31] Frits H Post, Benjamin Vrolijk, Helwig Hauser, Robert S Laramee, and Hel-

mut Doleisch. The state of the art in flow visualisation: Feature extraction

and tracking. Computer Graphics Forum, 22(4):775–792, 2003.

[32] C Rezk-Salama, P Hastreiter, C Teitzel, and T Ertl. Interactive exploration of

volume line integral convolution based on 3d-texture mapping. Proceedings

Visualization 99 Cat No99CB37067, Li(section 6):233–240, 1999.

[33] P Rheingans and D Ebert. Volume illustration: nonphotorealistic rendering

of volume models, 2001.

[34] Filip Sadlo and Ronald Peikert. Efficient visualization of lagrangian co-

herent structures by filtered amr ridge extraction. IEEE Transactions on

Visualization and Computer Graphics, 13(6):1456–1463, 2007.

[35] Jan Sahner, Tino Weinkauf, Nathalie Teuber, and Hans-Christian Hege. Vor-

tex and strain skeletons in eulerian and lagrangian frames. IEEE Transac-

tions on Visualization and Computer Graphics, 13(5):980–990, 2007.

[36] Tobias Salzbrunn, Heike Janicke, Thomas Wischgoll, and Gerik Scheuer-

mann. The State of the Art in Flow Visualization: Partition-Based Tech-

niques, pages 75–92. SCS Publishing House e.V., 2008.

[37] A Sanna, B Montrucchio, and P Montuschi. A survey on visualization of

vector elds by texture-based methods. Citeseer, 2000.

[38] Benjamin Schindler, Ronald Peikert, Raphael Fuchs, and Holger Theisel.

Ridge concepts for the visualization of lagrangian coherent structures. In

BIBLIOGRAPHY 70

Topological Methods in Data Analysis and Visualization II. Springer Berlin

Heidelberg, 2012.

[39] Marc Schirski, Torsten Kuhlen, Martin Hopp, Philipp Adomeit, Stefan

Pischinger, and Christian Bischof. Efficient visualization of large amounts

of particle trajectories in virtual environments using virtual tubelets. Pro-

ceedings of the 2004 ACM SIGGRAPH international conference on Virtual

Reality continuum and its applications in industry VRCAI 04, 1(212):141,

2004.

[40] W J Schroeder, C R Volpe, and W E Lorensen. The stream polygon-a tech-

nique for 3d vector field visualization, 1991.

[41] S.C. Shadden. Lagrangian coherent structures: Analysis of time-dependent

dynamical systems using ftle. http://mmae.iit.edu/shadden/LCS-tutorial/,

2005.

[42] Francois Lekien Shawn C. Shadden and Jerrold E. Marsden. Definition and

properties of lagrangian coherent structures from finite-time lyapunov expo-

nents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenom-

ena, 212(4):271–304, 2005.

[43] Mario Costa Sousa and John W Buchanan. Computer-generated graphite

pencil rendering of 3d polygonal models. Scientist, 18(3):195–207, 1999.

[44] Nikolai A Svakhine, Yun Jang, David S Ebert, and Kelly P Gaither. Illustra-

tion and photography inspired visualization of flows and volumes. Method-

ology, pages 687–694, 2005.

[45] Shyh-Kuang Ueng, Christopher Sikorski, and Kwan-Liu Ma. Efficient

streamline, streamribbon, and streamtube constructions on unstructured

grids. IEEE Transactions on Visualization and Computer Graphics,

2(2):100–110, 1996.

[46] Timothy Urness, Victoria Interrante, Ivan Marusic, Ellen Longmire, and

Bharathram Ganapathisubramani. Effectively visualizing multi-valued flow

data using color and texture, pages 115–121. IEEE Computer Society, 2003.

BIBLIOGRAPHY 71

[47] Jishang Wei. A sketch-based interface for classifying and visualizing vector

fields. Strategy, pages 129–136, 2010.

[48] D Xue, C Zhang, and R Crawfis. Rendering implicit flow volumes. Proc

IEEE Visualization 04 Conference, pages 99–106, 2004.

[49] Zhonglin J Zhang and John Dabiri. Identification of lagrangian coherent

structures around swimming jellyfish from experimental time-series data.

Mechancial Engineering, 2008.

List of Figures

2.1 Illustrating 3 different methods for computing the FTLE. [22] 5

2.2 The double gyre : an often used example of an FTLE defined flow [41] 6

2.3 Showing backward(a) and forward (b) LCS for Sarsia tubulosa. 7

2.4 A representation of a single Ridge [25] 8

2.5 Hand-drawn illustration of water flow behind an obstacle by Leonardo

da Vinci. (b) Depiction of a dynamical system with stream arrows by

Abraham and Shaw . 11

2.6 (a) The visualization method described in [20] uses concepts from

painting to visualize 2d incompressible flows: arrows represent veloc-

ity, colors represent vorticity and ellipses represent strain, divergence

and shear. (b) Illustrative volume rendering of flow by Svakhine et al.

[44]. (c) Texture-based visualization with color-coding of local flow

properties [46] (d) 3D-LIC of flow around a wheel, visualized with

the aid of a clipping plane [32]. Image taken from STAR [2] 13

2.7 A stream surface visualizes flow inside a vortex breakdown bubble. In

(a), the surface is rendered with strong normal variation transparency

and light silhouettes. The opaque red stripe illustrates the front of

the surface. In (b), a modulated stripe texture conveys the impression

of dense particles traces; here, flow direction is indicated by inten-

sity modulation, and velocity is expressed as the length of the traces.

Images taken from [16]. 15

72

List of Figures 73

2.8 A path surface generated from a turbulent jet dataset, rendered using

an adaptive stripe pattern. [16] . 16

4.1 A simple visualization of a 2d slice Using a color code for the FTLE

values from low blue to high red. a)Early instance b)Later stages . . . 28

4.2 Ridge points identified on a 2D slice rendered over the volume at the

appropriate height. 32

4.3 More Ridge points identified on a 2D slice rendered over the volume

at the appropriate height. 33

4.4 Just the identified ridge points of the slice. 34

4.5 Early implementation of ridge lines. 35

4.6 Early implementation of ridge lines. 36

4.7 Early implementation of ridge lines with ridge points. 37

4.8 Another early implementation of ridge lines with ridge points. 38

4.9 The cube filter designed in 3 layers, top middle and bottom. 40

4.10 A grid element defined as a cube. The edges and faces on the cube

help define and organize the grid element so that we can construct our

triangles. a) shows the 12 edges that define it b) shows the 6 faces

that are used to check adjacent and opposing edges for ridge points. . 43

4.11 A selection of triangle constructions that can be found in our grid

elements. a) the trivial solution b) the neighboring solution c) a more

complex neighboring solution with a predefined configuration. 44

4.12 Another special construct consisting of 4 ridge points but only a single

triangle. 44

4.13 Triangle mesh formed from our 3D implementation. 46

4.14 A closer look at our triangle mesh formed from our 3D implementation. 47

4.15 Ridge lines as they are defined in the grid elements combined to form

a skeleton of our structure. 48

4.16 Another view of the ridge lines . 49

4.17 A normal variation view-dependent transparency rendering. From [16] 50

5.1 Resulting triangle mesh with simple phong shading of our testset, TS43. 53

5.2 Resulting triangle mesh with simple phong shading of our testset, TS43. 54

List of Figures 74

5.3 Resulting triangle mesh with simple phong shading of our testset, TS43. 55

5.4 Resulting triangle mesh with simple phong shading of our testset, TS43. 56

5.5 Resulting triangle mesh with simple phong shading of our testset, TS43. 57

5.6 Resulting triangle mesh with simple phong shading of our testset, TS43. 58

5.7 Resulting triangle mesh with simple phong shading of our testset, TS35. 59

5.8 Resulting triangle mesh with simple phong shading of our testset, TS35. 60

5.9 Resulting triangle mesh with simple phong shading of our testset, TS35. 61

5.10 Resulting triangle mesh with simple phong shading of our testset, TS35. 62

List of Tables

75

	Contents
	Introduction
	Finding A Solution
	Thesis Outline

	State of the Art
	FTLE And Lagrangian Coherent Structures
	Ridges And Ridge Extraction
	Illustrative Flow Visualization

	Presenting The Solution
	What Are We After
	Motivations
	Structure

	Implementation
	Defining The Solution
	The 2D Solution
	The 3D Solution

	Results
	Conclusion
	Bibliography
	List of Figures
	List of Tables

