
Evaluation and design of readout
electronics for electron and proton

detectors

A thesis by

Aleksander Kårstad Nes

for the degree of

Master of Science in Physics

Department of Physics and Technology

University of Bergen

June 2017

i

Abstract

Researchers at Birkeland center of space science have initiated a project where the
precipitating flux of energetic electrons and protons into the middle atmosphere will be
measured. An instrument will be attached to a low earth orbit (LEO), polar satellite.
At the start of this thesis, only the radiation detectors were specified. It was also
determined that the detector readings would be oversampled by an analog to digital
converter (ADC), and processed on a field programmable gate array (FPGA). Finding
an ADC that can be used in this project, and creating interfaces and an evaluation
system to it are the main goals of this thesis.

A block diagram overview is made for the entire measurement system. The discussion
around this proved helpful to define tasks needed in this project, and it will continue
to be helpful for future work. A potential candidate for an ADC is identified after
an extensive search. Potential reliability concerns are discussed, as well as the analog
signal processing that might be necessary with the ADC in question. FPGAs that are
potential candidates for this project are considered. Digital design methods for ADC
data acquisition and ADC control are discussed in relations to the project and the
FPGA alternatives. All methods are at various levels realized and tested.

A synthesizable VHDL model of the ADC is made to test the digital designs close to
the real-life application. To test against the actual ADC, a testboard is made. This
testboard also contains electronics for differential conversion, electronics that enable
having multiple sample-clock sources, as well as voltage level mitigation circuitry. A
VHDL testbench is made to verify the digital designs in the development phase. A
system on chip (SoC) is made to interface with the ADC testboard. The functionality
of the SoC includes setting various output data from the ADC and checking readout
data automatically, accessing ADC configuration memory, testboard-component control,
ADC sample-clock generation, “real-time” monitoring of readout data, and error tracking
and error alerts for long term testing.

The SoC is tested and verified in all design stages before implementation. A system
is made where the SoC is internally connected to the ADC model. This is tested
and verified in a computer-aided testbench in the pre-synthesis-, post-synthesis-, and
post-layout- stage. After implementation, the SoC is tested in a physical, software-based
testbench. A similar system is made where the signals between the digital designs and
the model are looped back through I/Os on the FPGA. This is also tested in computer-
aided- and physical- testbenches. The testboard SoC is also tested and verified in a
computer-aided testbench. The testboard is realized at a late stage in this thesis. It was
not enough time to properly test the testboard SoC and testboard together. Some issues
are found, but it is possible that the first version of the testboard is fully functional. If
so, further testing can commence.

ii

iii

Acknowledgments

First and foremost, I would like to give special thanks to my supervisors Johan Alme
and Kjetil Ullaland for giving me support and perspective, as well as always being
available when help was needed.

I would also like to thank Hilde Tyssøy and Johan Stadsnes for the help they gave
me regarding the project background.

I would like to thank Bilal Hasan Qureshi for designing the PCB for my circuit
designs, and for performing measurements on it post-assembly. I must also thank
Shiming Yang for supervising the entire testboard process, and Per Heradstveit
for assembling the components on the testboard.

My fellow students deserve thanks for a great environment at our office these two years
at UiB.

Last but not least, I would like to thank my friends, and especially my family, for
supporting me throughout my studies, and in general.

iv

Contents

1 Introduction 1

1.1 DEEP background and motivation . 1

1.2 About this work . 3

1.3 Thesis outline . 3

1.4 Citations . 4

2 Background and related work 5

2.1 Radiation . 5

2.2 Electronics in space . 5

2.3 Measurement system . 6

2.3.1 Radiation measurement . 7

2.3.2 Charge sensitive amplifier and pulse shaping 10

2.3.3 Analog to digital conversion . 11

2.3.4 FPGA . 12

2.3.5 Data storage . 12

2.3.6 FPGA-implemented system . 12

2.3.7 Other functionality . 16

3 Component selection and considerations 17

3.1 General consideration . 17

3.2 FPGA . 17

3.3 ADC . 18

3.3.1 AD9257-EP . 19

3.4 Analog front-end of AD9257 . 22

v

vi CONTENTS

4 Digital design 24

4.1 AD9257 readout logic . 24

4.1.1 Readout source considerations 24

4.1.2 Specifications . 25

4.1.3 Serializer/deserializer interface 25

4.1.4 Custom logic . 26

4.1.5 Preliminary conclusion . 31

4.1.6 Realized readout design . 32

4.2 AD9257 control logic . 33

4.2.1 SPI slave considerations . 33

4.2.2 SPI master specifications . 34

4.2.3 Custom SPI master in fabric . 34

4.2.4 CoreSPI . 37

4.2.5 MSS SPI peripheral . 38

4.2.6 Preliminary conclusion . 39

4.2.7 Realized SPI master . 39

5 Test and verification systems 40

5.1 Introduction . 40

5.2 Development testbench . 42

5.2.1 HDL model of AD9257 . 43

5.2.2 Clock generation . 49

5.2.3 Readout wrapper . 49

5.2.4 Dynamic PLL . 50

5.3 FPGA-internal SoC . 51

5.3.1 Computer-aided-verification system 53

5.3.2 FPGA-internal SoC structure and design process 54

5.4 FPGA-loopback SoC . 57

5.4.1 Computer-aided verification . 57

5.4.2 Implemented FPGA-loopback SoC 60

5.5 AD9257-testboard SoC . 60

5.5.1 Computer-aided verification . 61

5.5.2 Implemented AD9257-testboard SoC 61

5.6 AD9257 testboard . 62

5.6.1 Practical considerations . 62

CONTENTS vii

5.6.2 Design of the AD9257 testboard 64

5.6.3 PCB layout . 71

5.6.4 1st board configuration . 71

5.7 Embedded software . 73

6 Tests and results 78

6.1 Tests . 78

6.1.1 Computer-aided test sequence . 78

6.1.2 Physical test sequence . 81

6.2 Results . 82

6.2.1 Custom SPI-master . 82

6.2.2 Readout methods . 82

6.2.3 Development testbench . 82

6.2.4 FPGA-internal SoC . 84

6.2.5 FPGA-loopback SoC . 84

6.2.6 AD9257 testboard SoC & testboard 85

7 Discussion & conclusion 88

7.1 Future work . 90

A: Method 91

B: Tools 99

C: Project setup 102

D: AD9257 testboard extras 110

Acronyms 123

viii CONTENTS

CHAPTER 1

Introduction

This chapter gives an introduction to the background of the distribution of energetic
electrons and protons (DEEP) project. The goals of this thesis are also defined, and an
overview of the thesis structure is given.

1.1 DEEP background and motivation

The content in this section is mostly based on relevant work performed by Linn-Kristine
Glesnes Ødegaard [1], and on the conceptual design report of the project [2].

In the simplest way, the earth can be seen as a dipole magnet. A magnetic field resides
from the south hemisphere (magnetic north) to the north hemisphere (magnetic south).
It protects the earth from charged particles coming from the sun, also known as the
solar wind. This is mostly composed of electrons and protons. The magnetic field
deflects most of these particles and effectively shields the earth and its atmosphere from
the direct impact of this radiation [3]. Figure 1.1 shows an illustration of the magnetic
environment around the earth. This is generally called the magnetosphere [3].

Some of the radiation gets trapped in belts that surround the earth and its atmosphere.
These are called Van Allen belts, named after their discoverer. Figure 1.2 shows an
illustration of the belts. It is generally believed that the solar wind is the source of the
particles in these belts [3]. The inner belt mostly contains protons, while the outer belt
mainly contains electrons. The energy range in the outer belt is depicted in figure 1.1.

The belts are caused by interactions between charged particles and the magnetic field.
One process causes particles to move between the magnetic poles in a bouncing motion.
This depends on the angle between the particle velocity vector and the magnetic field.
This angle is defined as the pitch angle. The pitch angle grows larger when the particle
approaches one of the poles. If it becomes 90° at some point, it mirrors. Hence the
bouncing motion. However, if this does not happen before the particle has entered
the atmosphere, it can lose its energy to atmospheric atoms. This is called particle
precipitation.

Some of the precipitating particles have energies that allow them to travel into the
middle atmosphere before their energy is lost. This transfer of energy can affect the

1

2 1.1. DEEP BACKGROUND AND MOTIVATION

Figure 1.1: Illustration of the magnetosphere [4]

Figure 1.2: Illustration of Van-Allen radiation belts. [5].
Satellite trajectory of an LEO satellite has been added.

CHAPTER 1. INTRODUCTION 3

atmosphere in different ways. One effect is the creation of certain gasses that destroy
ozone gas. Ozone gas has the well known function, amongst others, of absorbing harmful
ultraviolet radiation from the sun. To accurately quantify the effects, the number
of particles, their energy, and where in the atmosphere they precipitate should be
measured globally and continuously. Results from the satellites NOAA POES with the
particle detector MEPED provide the closest match to these criteria. However, the
measurements have insufficient pitch angle coverage, proton contamination effects of
measured electron data, and vice versa. This complicates reliable use of the obtained
data.

By using newly designed detectors, it is possible to obtain the data that is needed to
correct the pitch-angle uncertainties. Birkeland centre of space science has initiated the
creation of an instrument that measure, process and transfer the measurement data
to earth. The instrument will be attached to an LEO satellite in a polar orbit, as
illustrated in figure 1.2. The launch is expected to be in 2019. Starting the development
of this instrument is the focus in this thesis.

1.2 About this work

At the time of writing, the detectors are the only specified parts in the system. The
functionality of the system is decided, but specifications on how to achieve it are
not entirely specified. In this thesis, a general overview of the necessary parts in the
measurement system is made. The primary objectives are however to find a way to
convert the detector readings into a digital format, create and implement interfaces for
the digitized data, and test against the device. Testing it imply that a test system must
be made as well.

1.3 Thesis outline

Chapter 2 provides a basic understanding of the challenges microelectronics face in
space, as well as for radiation mitigation techniques. It also provides a basic overview
of the functionality that needs to be implemented in the measurement system.

Chapter 3 contains information about components that were found to be possible
alternatives in the measurement system. This concerns an ADC with necessary analog
circuitry and an FPGA which is used as the platform for digital functionality.

Chapter 4 discusses methods of interfacing from the FPGA to the ADC. Different
alternatives are discussed, and considerations are made towards the measurement system.

Chapter 5 describes the test and verification systems that were made in order to
evaluate the digital designs that were made, as well as the actual ADC.

Chapter 6 presents an overview of the testing that was performed and the test results.

4 1.4. CITATIONS

Chapter 7 contains a discussion and conclusion about the work that is done in this
thesis, and a discussion about future work of the project.

Appendices contain information about methodologies used in this thesis, tools that
were used, details about components that were considered, and how to set up the FPGA
systems that were made.

1.4 Citations

It was chosen to deviate from standard citation-placement rules in certain cases. The
following rules apply, in falling order: If the citation is before the punctuation, it applies
to statements in the sentence. If it is after the punctuation, it applies to all statements
made before the citation. If citations are made at the top of a section, it applies to all
the statements in the section.

CHAPTER 2

Background and related work

This chapter goes through some aspects of the environment for a LEO satellite, and
challenges of electronics in space. It also introduces a basic overview of the different
parts of the instrument that will measure the radiation, and process the information.

2.1 Radiation

In this project, radiation is a source of information, as well as a source of concern. Thus,
a brief explanation should be made. Radiation is a term used to describe mass and
energy transportation through space. Examples of such radiation are electrons, protons,
heavy ions, neutrons, and gamma. These different types of radiation have different
properties. Radiation may interact with matter, i.e. a medium composed of an atomic
nucleus and extranuclear electrons. The interaction process depends on properties of
the radiation, as well as properties of the medium. The common factor is that if an
interaction occurs, energy is transferred to the medium. This absorption of energy may
influence the medium. As will be discussed in 2.3.1, this transfer of energy can be
utilized so that the energy of the radiation can be measured. As will be discussed in
section 2.2, this energy transfer can cause problems in microelectronic devices. [6, 7]

2.2 Electronics in space

As mentioned in section 1.1, the instrument will be attached to a low earth, polar orbit
satellite [2]. The trajectory will be at a height of about 600 km above the surface of the
earth. Each orbit will take around 100 minutes. Most of the mass of the atmosphere
is below 100 km, and thus, this is where space begins [1]. Due to the low density of
mass and low pressure, regions above this altitude can be considered a vacuum. The
environment is quite different compared to the environment experienced on the surface
of the earth. Some of the challenges are: [8, 9]

• The experienced temperature will cycle between -20°C to+60°C [2].

5

6 2.3. MEASUREMENT SYSTEM

• The heat generated in the electronic circuits can only be dissipated through
radiation.

• The absence of an atmosphere provides no shielding against the high-energy
radiation present in this region.

Charged-particle-radiation effects deserve some extra attention because of its effects
on integrated circuits (IC). In a low earth orbit, the electronics will be exposed to
electrons and protons in the inner radiation belt, and solar energetic protons and galactic
cosmic rays in the polar regions [2]. Long term exposure to these sources will cause
degradation of the electrical properties. At some point, the device will fail to function. It
is important that the device can handle the expected radiation over the entire operation
lifetime. Single event effects (SEE) is a term that covers multiple effects caused by a
single particle strike. Examples of these are single-event latchup and single-event upset
(SEU). Latchup can cause a short circuit in CMOS transistors, which will lead to device
malfunction if not detected in time [10]. SEU causes data corruption as it changes
the content stored in a memory element, such as a D-flip-flop (DFF) or an SRAM-cell.
[11, 12]

Shielding around the electronic device can decrease the effects of charged-particle
radiation, but it can not prevent them entirely. Microelectronic devices can be made
more radiation tolerant by using different techniques. Radiation-hardening by design
implies using specialized architectures on memory elements. By increasing the area, and
applying feedback, an SEU error can be corrected [10]. Error detection-and-correcting
codes is a method where control bits are added to memory data. By including logic
circuitry, an eventual error can be detected, and in some cases corrected. Scrubbing
is a method where content in a memory is read often and checked for errors. Tripple-
majority voting (TMR) is a method where a logic path is implemented three times in
different areas, where their outputs are connected to a majority voter. Thus, if an SEU
happens in one path, it will be neglected as the data in the other two paths have the
majority [10, 13]. The problem of latchup can be removed by using silicone-on-insulator
(SOI)-transistors, which are immune from latchup [10]. By employing these mitigation
techniques, reliable operation of microelectronics in space can be achieved.

2.3 Measurement system

This section presents a high-level overview of the functionality that should be included
in the system. Some parts of the system are discussed in more depth than others. The
idea behind this is to provide support for the decisions that are made in this thesis, as
well as a visual representation for the future work. The content is mostly based on the
project design report [2].

Figure 2.1 shows the block diagram of the main circuit-board-mounted components in
the measurement system. Charged-particle detectors composed of multiple sensors are
the sensing elements of the system. When a sensor is struck by a particle, an electrical
signal that is proportional to the absorbed energy is generated. The signal magnitude
and duration are often too small for further use. Therefore, the magnitude is amplified.
This is followed by circuitry that changes the shape of the signal, and consequently,
increases the duration of the pulse. [14]

CHAPTER 2. BACKGROUND AND RELATED WORK 7

Sensor ADC

FPGA

Current pulse Voltage pulse Sampled data

On-board
mass storage

Transfer of stored
data to earth

Amplifier
and shaperChannel 1

Sensor ADC
Amplifier
and shaperChannel 2

Storage of number of
measured energies from
different directions of entry.

Sensor ADC
Amplifier
and shaperChannel 72

Satellite
radio link

Figure 2.1: Conceptual measurement system

The processed signal is sourced to an ADC. The pulse magnitudes are converted from a
continuous signal to a set of digital codes. These codes are transferred into an FPGA,
which contains functionality specific to this project. The main functionality of the
implemented system is to determine particle energies, the number of particles with said
energies, and from which direction the particle came from. This information is then
stored in a digital storage unit. After each orbit, stored data is wirelessly transferred to
a ground station on earth via a satellite radio link.

2.3.1 Radiation measurement

In this project, the primary scientific objective is to measure electrons that precipitate
into atmospheric heights between (50-100) km. The particle energy corresponding to this
is (30-500) keV. This is the energy range of the electron sensors. Proton measurement
is mandatory because protons will contaminate electron data. Thus, these data can be
used to correct the electron measurement data. The range of energies that is monitored
for protons is 30 keV-10 MeV. The extended range also allows measurements of other
phenomena, but this is not discussed further.

Figure 2.2 shows the detector houses. Electrons and protons will be measured by three
houses each. The houses will point in different directions so that the combined field of
views cover the angles of interest. A combination of aluminum and tungsten forms a
house around the detectors to stop electrons of energies less than 6 MeV and protons
of less than 45 MeV. The opening has a nickel foil shield to reduce light sensitivity,
and to stop low energy protons. The proton housing is made from the same materials
to prevent unwanted particles in the same energy range. Unlike the electron-detector
housing, a magnetic field of 0.2 Tesla is applied at the entrance of the collimator. This
prevent electrons of energies less that 1 Mev from reaching the sensors.

Figure 2.3 shows the structure of the detectors. An electron house consists of 16 sensors
divided evenly in two layers, while a proton house has 8 sensors. Each sensor has its
own readout electronics, which gives a total of 72 readout channels. The setup makes
it possible to determine the direction of entry. As a first order explanation, a particle
that enters through the hole will strike two vertically adjacent sensors. Thus, the total
particle energy is the combination of both sensor outputs. If only one sensor in a pair
provides an output, the particle did not enter through the hole. If this is the case, the
measurement is not valid.

8 2.3. MEASUREMENT SYSTEM

(a) Electron house cross sections (b) Proton house cross sections

Figure 2.2: Illustration of detector houses with incoming radiation [2]

sensor16

Top view

Side view

Electron detectors

sensor8

Top view

Side view

Proton detectors

sensor1 sensor1

Top layer
Bottom layer

1 mm

1 mm

0.3 mm

1 mm

Figure 2.3: Illustration of detector configurations

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.4: Semiconductor detector [14]

2.3.1.1 Sensors

The detectors are made from a solid-state, semiconducting material. N-doped semi-
conductors have mobile, negatively charged electrons in the material. P-doped semi-
conductors have too few electrons in the crystal structure, which is commonly referred
to as having mobile, positively charged holes in the material. When a p-type and an
n-type semiconductor are connected, a pn-junction is formed. Electrons from the n-type
material will diffuse into the p-type material, and vise versa. This causes a region
between the two junctions where there are no mobile charge carriers. [6] Figure 2.4
shows a version of a semiconductor detector. A silicon wafer is made to have a lightly
n-doped bulk. A heavily p-doped layer is made on the wafer top to create a pn-junction.
A metallic contact is placed on top of this layer. [14]

The depleted pn-junction in the diode, commonly called the depletion region, is quite
narrow. By applying a reverse bias voltage, this region increases. This is the area that
is sensitive to radiation. If a particle traverses through it, electron-hole pairs are created.
The number of generated pairs are proportional to the incident particle energy. Because
of the reverse-bias potential, the electrons are pulled toward the positive terminal, while
the holes are pulled to the negative terminal. [14] Thus a current is flowing. The
described process is illustrated for a pn-junction in figure 2.5a.

The depletion region should be as large as possible to have a large, radiation-sensitive
area. In a pn-diode, this must be done by increasing the reverse-bias voltage. If the
voltage is greater than a certain magnitude, the structure of the crystals will breakdown.
Therefore, it can be difficult to get a sufficient depletion region in this type of detector. A
way of mitigating this is to insert an undoped layer between the p-and n- type materials,
called an intrinsic layer. Figure 2.5b illustrates this. This reduces the need for a large
reverse-bias voltage. This is a common method, and this is the type of sensor that will
be used in this project. [6]

As shown in figure 2.3 the thickness of the sensors in each layer is equal in the electron
houses. A thickness of 1000 µm is specified for these sensors. The thickness of the
sensors in the proton houses is different in each layer. The top layer is specified to
be 300 µm, while the bottom layer is 1000 µm. Electrical contact is enabled through
a 20 µgcm−2 thick aluminum film. The pn-junction is going to be totally depleted,

10 2.3. MEASUREMENT SYSTEM

(a) Charged particles traversing through the de-
pletion region of a pn-junction[6]

(b) PIN diode [6]

Figure 2.5: PN and PIN radiation detectors

meaning that the thickness of the depletion region extends to the negative terminal of
the sensor [2, 14].

2.3.2 Charge sensitive amplifier and pulse shaping

Figure 2.6 shows the amplifier and shaping circuitry, as well as the shape of the electrical
signal in different stages.

Figure 2.6: Charge sensitive amplifier with pulse shaping [14]

The input stage is a charge sensitive amplifier (CSA). The current signal from the
detector is injected into the feedback capacitor which acts as a charge integrator. The
resulting output is a voltage step with a short rise time and long decay time. The
voltage amplitude depends on the amount of charge that is injected into the feedback
capacitor. Thus, it is proportional to the particle energy. [14]
If another particle strikes the detector before the voltage has returned to the baseline
voltage, the amplitude of the output voltage from the CSA will represent a combination
of multiple particle energies. This is called pile up. To avoid this, a high-pass filter
is used to decrease the decay time to a suitable value. The resulting voltage signal
is a narrow pulse. As the amplitude is of interest, an increase in the time where
the amplitude is present is practical for further use as this reduces the sample rate
requirements of the following ADC. The high-pass- and low-pass- filters change the rise
time and decay time, and as a result of this the shape of the pulse. In the frequency
domain, this translates to a reduction in the bandwidth of the signal. This improves
the signal-to-noise (SNR) ratio as the thermal noise contribution is reduced. [14]

CHAPTER 2. BACKGROUND AND RELATED WORK 11

A maximum shaping time of 1 µs has been determined to be necessary to avoid pile
up. It is wished to use an application specific integrated circuit (ASIC) where both
CSA and pulse shaping is integrated. At the time of writing, this part has not been
determined. Finding a suitable ASIC was not a part of this thesis, and will not be
discussed any further.

2.3.3 Analog to digital conversion

An ADC converts the time- and amplitude- continuous signal from the previous stage
into a discrete set of values that represent the magnitude of the sampled analog signal.
A general ADC operation begins by sampling the input signal at fixed time intervals.
The value is held between each sample. It is then quantized, i.e. rounded to the nearest
value of a finite set of discrete values. The value is then encoded, i.e. converted to a
number format such as the binary number system. [15]

In order to get a proper representation of the sampled signal, the sampling frequency
must be Fs ≥ 2Fmax, where Fmax is the highest signal frequency component [15]. The
resolution of the ADC is a combination of a reference voltage and the number of bits of
the output code, or:

Vres=
Vref

2n

where n is the number of bits. If the input signal Vp−p is larger than the reference
voltage, the ADC will saturate. [16]

Fluctuations in temperature, supply voltage and atmospheric pressure amongst others,
affect the transfer function of an ADC. These can however be compensated for. Intrinsic
non-linearities will also create transfer-function deviations. Unlike environmental effects,
these cannot be compensated for. In certain cases, this can result in missing output
codes, which can be severe for low-resolution converters. [16, 15]

The non-linear transfer function causes harmonic frequency products, which consequently
causes distortion. The noise that is present in the signal paths will decrease SNR. Signal-
to-noise-and-distortion (SINAD) is a term that combines the effects of distortion and
noise, as a measure of the total dynamic performance of the device. It is common to
convert this to the effective-number-of-bits (ENOB). ENOB and the specified number
of bits should be as close as possible. [16, 17]

Finding applicable ADCs was the starting point in this thesis. This is discussed further
in section 3.3.

12 2.3. MEASUREMENT SYSTEM

2.3.4 FPGA

An FPGA is chosen as the platform where digital processing and system control will be
implemented. FPGAs are ICs that can be configured to perform any logical function.
Figure 2.7 shows the architecture of IGLOO2 (IG2), which is an FPGA from Microsemi.
Naming convention differs between vendors, but the implementation is similar. The
fabric, which is the programmable section, is composed of multiple logic clusters. The
clusters can be connected together through an interconnecting array, which is also
programmable. Each logical cluster contains multiple logical elements, as shown in
figure 2.8. A lookup table (LUT) is the programmable element. It can be configured to
act as any combinational element of up to 4 variables [10]. If more variables are needed,
multiple LUTs can be connected. The logical elements also contain a sequential element.
Both can be used separately or together. [18]

To configure an FPGA, the logic functionality must be described in a hardware descrip-
tion language (HDL). In this thesis, the language very high speed integrated circuit
HDL (VHDL) is used. Syntactically, it has resemblances to software languages such as
C. However, where software is sequential instructions of what a microprocessor will do,
VHDL describes the implementation of digital hardware. Examples are combinational
logic, sequential elements, and memory cells.

Special purpose sub-systems are often also included in the device as hard components.
Typical examples are phase locked loops (PLL) for clock conditioning, storage memory,
and mathblocks. A microprocessor, i.e. a CPU, can be implemented in the fabric. This
is referred to as a soft implementation. However, certain devices contain a hard CPU to
increase performance. Such a system-on-chip, or SoC, gives the possibility to implement
functionality in both hardware, and software.

For the system that will be implemented, it will most likely be necessary to use the
SEU mitigation techniques that were presented in section 2.2.

2.3.5 Data storage

Storage of data between each satellite orbit is necessary. In applications where the data
amount is small, the internal FPGA memory could have been used. Most likely, this does
not apply for this project. An external, higher capacity data-storage unit must be used
to store the data of interest. The required memory capacity will depend on the number
of incoming particles in the energy ranges and directions of interest. It is crucial that
the memory is not corrupted by radiation. Therefore, the memory must be radiation
hardened, or at least made radiation tolerant by employing the radiation-mitigation
techniques mentioned in section 2.2.

2.3.6 FPGA-implemented system

Figure 2.9 shows a conceptual block diagram of the application-specific system that
needs to be implemented on the FPGA.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

Figure 2.7: Smartfusion2/IGLOO2 fabric architecture [18]

Figure 2.8: Smartfusion2/IGLOO2 LUT [18]

14 2.3. MEASUREMENT SYSTEM

Evaluation
correction,
histogram

ADC readout
sensor
energy

time, position
stamping

Memory
control

Transmission
control

To mass
storage

From ADC

FPGA

Ch 1

Ch 2 ADC readout
sensor
energy

Ch 72 ADC readout
sensor
energy

time, position
stamping

time, position
stamping

Combining
measurements

Measurement analysis

Combining
measurements

Eval. and
correction

To satellite
link

Figure 2.9: FPGA internal system

2.3.6.1 ADC readout

The first stage consists of logic that acquires the data from the ADC. The functionality
of this block depends on the ADC output format. Data can be transferred serially or on
a parallel bus. The transfer standard can be differential, such as low-voltage differential
signaling (LVDS), or single-ended such as LVCMOS. The transfer protocol can be a
common protocol such as serial peripheral interface (SPI), or it can be custom to the
device. Independent on how it is transferred, data must be captured correctly for further
processing.

2.3.6.2 Measurement analysis

As discussed in 2.3.2, the voltage amplitude of the output from the amplifier-and-shaping
circuitry is proportional to the particle energy. As illustrated in figure 2.10, there are
several methods that can be applied to extract information about such a signal. Peak
search is the process of searching for the peak value in the sampled data set. Curve
fitting calculates the amplitude by using an equation that describes the signal shape
[19]. The third method calculates the area of the pulse by integrating the sample-data
set.

As the ADC samples data at a fixed interval, data that does not contain information
about particle energies will be captured as well. Ideally, the voltage input to the ADC
should be at a fixed level between particle hits. In reality, noise from circuit-board
components and electromagnetic interference can cause the voltage to fluctuate. It is
necessary to include circuitry that evaluates if the readout data is caused by noise, or if
it is an actual measurement.

The previously mentioned voltage fluctuations will mix with the signal voltage. As
this influences the amplitude of the signal, it corrupts the energy information. Thus,
filtering of this noise must be done. Instead of using the methods mentioned to extract
the needed information, an averaging filter can be used. This will not give an accurate
representation of the energy, but it will filter away the noise. If all details about the
transfer function and uncertainties are known, it should be possible to determine the
actual energy. The advantages of this method are that the needed logic uses a small
area, and it is not complex. This reduces the probability of SEU, and the chances of

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Figure 2.10: Different methods of analyzing a semi-gaussian pulse: peak detection
(arow), curve fitting (red line) and area calculation (integrating samples between blue
lines) [19]

something going wrong due to inadequate testing, respectively. A proper study of the
methods mentioned in this section were beyond the scope of this thesis.

As mentioned in section 2.3.1, the detectors are composed of two layers, where the
energy of a particle is the sum of the outputs of two vertically adjacent sensors. Protons
will contaminate electron measurements and are amongst other reasons also measured.
Functionality that adds the sensor-pair-measurement data to get the total particle
energy must be included. Before this can be done, it must be determined that both
sensor pairs give an output. Adding a time stamp to the measurement data can be used
to determine if the measurements are valid. If the two sensors provide data that is close
in time, it is likely that they originated from the same particle hit. One method is to
create logic that only evaluates the belonging pairs. If both sensors provide valid data
that are close in time, the values are added. An evaluation of proton contamination
must then be performed. If so, a correction must be made to get the actual electron
energy. As the input angles of particles also are of interest, this information must be
added. Each sensor pair in each detector cover certain angles. Therefore, the angle can
be measured by adding a stamp that tells which sensors provided the data.

The determined particle energy with angle information can be used as inputs to circuitry
that counts the occurence of different energies, for different input angles. Keeping track
of all measured energies for each input angle require a huge amount memory. Therefore,
using histograms with bins of certain energy ranges is a more likely solution. Some
energies might be more interesting than others. Hence, the size of the bins should be
programmable, so that it is possible to alter the bin sizes. Another parameter can be
how long data is collected before a histogram is stored, as some phenomena depend on
time. The data that will be stored after analysis is done, is thus a factor of input angle,
energy ranges, and data-collection time. A tag that makes it possible to identify what
the data represents must therefore be added.

16 2.3. MEASUREMENT SYSTEM

2.3.6.3 Memory control

A controller for the storage unit must be implemented. This controls where the analyzed
data is stored, as well as read and write operations to the memory. Read and write
operations depend on what type of memory is used, and the transfer protocol of the
chosen memory. Multiple memories might be used, so multiple RW-controllers might
be necessary. To ensure that all data is stored, the operations must be sufficiently fast.
Including memory buffers might be necessary to store data temporarily before it is
written to the memory. Error detecting and correcting circuitry as mentioned in section
2.2 must be implemented to correct any potential SEU.

2.3.7 Other functionality

Each satellite orbit takes approximately 100 minutes. After each orbit, the stored data
will be sent to earth via radio transmission. This will be achieved by a satellite radio
link, which is a module that handles the radio communication between the satellite and
a ground station on earth. Once transmission is due, the module will receive a stream
of data. Internally on the FPGA, logic that controls when data will be transferred must
be added. This logic must also initiate the transfer of the data stream from the storage
unit. Thus, a timer could control when data transfer must occur. This, however, would
require that the orbit time is exact for each orbit. Further investigations on how this
can be done in a reliable way were not done.

So far, only the measurement-related functionality has been mentioned. The mea-
surement system will have a default setup, I.e. all components will have a default
configuration that assures optimal functionality. This can change after the satellite is
deployed. Therefore, it must be possible to reconfigure all the components in the system.
This includes resetting digital devices, power cycling analog devices, and altering the
content in devices with internal memories. Environmental effects such as temperature
and supply-voltage fluctuations can change the transfer function characteristics of com-
ponents. This must be measured so that it is possible to correct the deviations. Current
must be measured in case latchup occurs, so that the charge in the component can
be drained before it causes permanent damage. To have the possibility of doing all
this, a control system must be implemented on the FPGA. It must monitor the entire
measurement system , and perform the necessary operations once an event occurs.

CHAPTER 3

Component selection and considerations

In this chapter, general specifications are set for electronic components that are alter-
natives in the project. A discussion is made about what types of FPGA that might be
used in the project. One of the goals in this thesis was to find an applicable ADC based
on some predefined requirements. The ADC that was found to be the best alternative is
presented. Some considerations about the reliability of the ADC is also discussed. The
signal might have to be processed before the ADC input. This is also discussed.

3.1 General consideration

Certain manufacturers produce space qualified electronics. There are strict requirements
concerning manufacturing and testing of such ICs. The resulting components are
expensive, and often outdated compared to commercial products because the process
is time consuming. While finding components in this thesis, performance, capability
and cost of the parts had priority over reliability. Electronics made for commercial
use were not considered as it is unlikely that they would work in a space environment.
Space qualified electronics were not considered as they generally are to expensive. The
alternative option is to acquire a component which is not space qualified and test it,
i.e. upscreen it to the requirements set for space operation. The latter is the preferred
method in this project. The initial general requirement that was set was that the device
must be able to operate in the expected temperature range of -20°C to +60°C [2].

3.2 FPGA

Memory-based FPGAs are alternatives to fuse-based FPGAs and ASICs. An issue with
memory-based FPGAs is the possibility of radiation-induced upsets in the configuration
data. This can change the intended functionality, and power-cycling or re-configuration
must be done. Configuration-memory technologies used in modern FPGAs are generally
SRAM or FLASH. Standard 6-transistor SRAM cells are more susceptible to SEU than
FLASH-transistors. The energy transfer that is necessary to flip a bit in the latter is
large, so FLASH cells are often referred to as SEU immune. The mitigation techniques

17

18 3.3. ADC

mentioned in section 2.2 can be employed to make SRAM more radiation tolerant.
This can however increase the cost, reduce performance, etc. On this basis, flash-based
FPGAs will be considered for this project. [20, 21, 13].
The main vendor of these types of FPGA is Microsemi. They deliver FPGAs for
many applications, ranging from commercial to space applications. Differences lie in
specialized features. Examples are integrated high-bandwidth transceivers, integrated
microcontroller system, double-data-date (DDR) memory systems and number of in-
puts/outputs (I/O). Other factors are number of logic clusters, number of PLLs, power
consumption, etc. Table 3.1 lists FPGA alternatives. Although all of the listed devices
are options for this project, SmartFusion2 (SF2) and IG2 are mostly treated as the
FPGAs of interest in the remaining sections. These and PolarFire can be delivered with
military classification. PolarFire was however announced in the midst of this thesis,
and was not evaluated beyond the contents in table 3.1. RTG4 is a radiation-hardened,
space qualified FPGA.

Table 3.1: Microsemi FPGA comparison

RTG4 SF2/IG2 PolarFire

Logic clusters 151824 146124 481000

DSP 462 240 1480

PLL 8 8 8

High speed interface 24 16 24

Hard CPU No Yes/no No

Class Space Military Military

SF2 and IG2 have the same fabric, as shown in figure 2.7. The difference between
the two is that SF2 has a hard microcontroller subsystem (MSS). Figure 3.1 shows
an internal overview. It contains an ARM Cortex-M3 CPU which connects to hard
peripherals through a bus matrix. The logic implemented in the fabric can be connected
to the MSS trough fabric interface controllers (FIC). Thus, custom logic can be accessed
and controlled by a software program.

3.3 ADC

Specifications listed in table 3.2 applies for the ADC. The sample rate requirements of
the ADC is set so that the signal is oversampled by a factor of 5-10. This should be
enough to detect the peak voltage of the signal with a tolerable uncertainty. A resolution
of 10-12 bit is specified for the same reason. Multiple channels in one package reduce the
printed circuit board (PCB) footprint. A serial output interface is desired as a parallel
interface requires a vast amount of inputs on the FPGA. Based on the CSA-and-shaper
ASICs that were previous alternatives, the ADC should expect a single-ended input. No
power budget is specified for the ADC. The power consumption should however be as
small as possible. Details regarding the process of finding an ADC, and the alternatives
that were considered, is presented in “A.1: Finding an applicable ADC” in “Appendix
A: Methods”.

CHAPTER 3. COMPONENT SELECTION AND CONSIDERATIONS 19

Figure 3.1: Smartfusion2 overview [22]

Table 3.2: ADC specifications

Sample rate 5 - 10 MSPS

Bit resolution 10 - 12

Input phys interface Single-ended

Output phys interface Serial

Power usage Low

Nr. of channels 16

Rating Military

3.3.1 AD9257-EP

Information is this section is obtained from the datasheets of AD9257-EP [23] and
AD9257 [24].

AD9257-EP, hereby referred to as AD9257, was determined to be the best alternative.
This was based on its high number of channels per package, low power consumption,
and serial output interface. It is evaluated in the military temperature range, but not
classified as a military device. Figure 3.2 shows a block diagram of the converter.

AD9257 is a 14-bit ADC with a sample rate of 10-65 MSPS. It has eight individual
channels which are composed of multiple pipelined stages. All stages but the last are
low-resolution flash ADCs in combination with a DAC. The final stage is a flash ADC,
delivering the final digitized data to the output stage. The output stage aligns and
corrects errors in the data before it is passed to the output buffers. Here, data is
serialized and aligned to a frame clock output (FCO), and a data clock output (DCO).
[24, p.18] These clocks can be used by the readout system to capture and deserialize
data. Sampled data is coded into a 14-bit word with a reference of +1V. Table 3.3

20 3.3. ADC

Figure 3.2: Block diagram of AD9257

Table 3.3: AD9257 output coding format[24]

Input (V) Condition(V) Offset binary Twos complement
(VIN+) − (VIN−) > (+VREF) − (0.5 LSB) 11 1111 1111 1111 01 1111 1111 1111
(VIN+) − (VIN−) = (+VREF) − (1.0 LSB) 11 1111 1111 1111 01 1111 1111 1111
(VIN+) − (VIN−) = 0 10 0000 0000 0000 00 0000 0000 0000
(VIN+) − (VIN−) = (−VREF) 00 0000 0000 0000 10 0000 0000 0000
(VIN+) − (VIN−) < (−VREF) − (0.5 LSB) 00 0000 0000 0000 10 0000 0000 0000

shows the available output coding formats. Twos complement is default.

The converter can be configured through a three-wire SPI-bus. One particularly helpful
feature for testing and verifying the readout logic is the ability to set output data to
built-in- or user-defined-patterns. The configuration memory is loaded with default
values if the device is reset. The operating state can be toggled via SPI or via a dedicated
input PDWN. If multiple devices are used in a system, as would be the case in this project,
synchronous sampling can be achieved by asserting the dedicated input SYNC. More
detailed considerations regarding the outputs and the control section are presented in
chapter 4, where the digital designs are discussed.

3.3.1.1 Reliability considerations

This device is an enhanced version of a commercial AD9257. It is rated in the military
temperature range of -55°C to +125°C. Leadframes are coated with SnPb or NiPdAu
to prevent the growth of tin whiskers, which can happen with RoHS-compliant, i.e. lead-

CHAPTER 3. COMPONENT SELECTION AND CONSIDERATIONS 21

(a) LFCSP top and bottom (b) LFCSP cross section

Figure 3.3: LFSCP package overview [29]

free, devices. Wire-bonds are of a non-copper material. There are stricter requirements
for manufacturing as one assembly site, one test site and one fabrication site are used
for all enhanced products. Manufacturing is done via a single processing flow baseline.
Qualification data can also be provided by request.[23, 25, 26]

The device has a plastic, LFCSP package which is displayed in figure 3.3. It has I/O
pins beneath the package, i.e. it has no leads. Packages that have leads are more robust
if the circuit board is exposed to mechanical shocks. This is because the leads offer
some mechanical flexibility. [27] Vibrations will ripple through the circuit board during
satellite launch [28], and thus directly to the package, and can therefore pose a reliability
problem.

Hermetically sealed ceramic- or metal- packages are often used in high-reliability appli-
cations. The use of plastic packages poses many reliability concerns, such as outgassing,
and thermal-cycling-induced degradation of the molding compounds. However, parts
with plastic packages have been used in space before. Though not as reliable, they
offer advantages in areas such as size, weight, and cost. There is an abundance of
components that use these packages. Consequently, there are more available options.
[28, 30] Screening this device to ensure reliable operation in the LEO environment must
be done. An in-depth analysis of what to test, and how to upscreen this device to higher
reliability requirements were beyond the scope of this thesis.

22 3.4. ANALOG FRONT-END OF AD9257

3.4 Analog front-end of AD9257

AD9257 has differential, switched capacitor inputs. The signals applied to the inputs
should therefore also be differential. The input voltage on each pin on the differential
input must not exceed 2 V, and a common-mode voltage of 0.9 V must be present. The
differential signal voltage-span should not be greater than 2Vp−p as this equals the
full-scale output. As shown in table 3.3 this would result in a differential voltage greater
than ±Vref=±1V. [24]

At the time of writing, it is believed that the signal from the CSA-and-shaper has to
be converted from a single-ended signal to a differential signal and that it must be
attenuated. This depends on the ADC front-end circuitry that is used for the project,
which is not yet decided. Table 3.4 lists different elements that perform single-end-to-
differential (SED) conversion. The generated differential signals should ideally have the
same magnitude, and have a 180° phase relationship. The differential output voltage is
(+V) − (−V). Mismatches in either magnitude or phase of one or both of these causes
distortion, which in turn will degrade the overall accuracy of the system.

Table 3.4: Single-ended to differential conversion

Converting element Category
transformer coupling / flux coupling passive

balun / transmission line transformer passive

Two operational-amplifiers (opamp) active

Fully differential opamp (FDO) active

The passive devices have advantages when it comes to high-frequency operations, noise
contribution, and power consumption. Having other gains than unity will however
complicate the circuit design. [31, 32, 33] This is a relatively easy process when using
active devices, as attenuation can be achieved by setting the gain to < 1. There are many
factors that must be considered to determine which method suits this project the best.
A thorough comparative study was however beyond the scope of this thesis. To have the
possibility to test the different methods, they were included on a test-and-verification
circuit-board. This is presented in section 5.6.

The switched-capacitor front-end can be modeled as a resistor and capacitor in parallel.
This makes the impedance frequency dependent. The value of the capacitor also
changes depending on if the ADC tracks the input signal, or if it is in hold mode. To
ensure proper signal integrity, and optimal performance of the ADC, an impedance
compensation network should be included between the SED converter and AD9257. A
proper compensation network will minimize the effects of the imaginary part, and also
set the real part to a value that matches the source output, and PCB trace impedance.
[34]

CHAPTER 3. COMPONENT SELECTION AND CONSIDERATIONS 23

Figure 3.4: Fully differential amplifier, single-end to differential conversion [36].

FDOs are made to produce differential output signals, while the two-opamp configuration
simulates such an architecture. Based on this, the FDO was given some extra attention.
Figure 3.4 shows an FDO and the signal propagation with unity gain. This is achieved
by setting RG=RF in both feedback paths. The signal will be attenuated if RG>RF .
The resistor values must be closely matched to avoid phase unbalance. A common and
practical feature on FDOs is the inclusion of an input that sets the output common-mode
voltage. Thus, the required 0.9V can be set via this input. An FDO that could be an
alternative in this project is THS4524-EP [35]. As AD9257-EP, this is an enhanced
commercial product.

CHAPTER 4

Digital design

In order to capture data from AD9257, as well controlling it, systems that match the
transfer protocols of the device must be made. This chapter discusses different methods,
and which methods can be used in the final project. To fully understand the structures
of the VHDL designs that are presented in this chapter, “A.2: VHDL design” and “A.3:
Design flow” in Appendix A: Method should be read.

4.1 AD9257 readout logic

In order to capture the data from AD9257, a readout system must be designed. In this
section, several readout methods are considered. Table 4.1 gives an overview of the
methods that are discussed.

Table 4.1: AD9257 data-capture methods

Readout method Implementation
SERDESIF Hard

DDR-MSIO Hard/soft

DDR-fabric Soft

4.1.1 Readout source considerations

Information in this section is obtained from the datasheet of AD9257 [24]. Figure 4.1
shows the timing diagram of the ADC outputs.
CLK± is the sample clock. After an input has been sampled and digitized, data is
serially loaded onto the output. FCO± is asserted each time the first bit of the 14-bit
word is put on the output. FCO± has the same frequency as CLK±. This clock can be
used to separate the captured words in the readout system. DCO± has a frequency of
7×CLK±, and is aligned to the center of the data output D±. Both edges of this clock
can be used to capture each bit in the 14-bit word. All of the outputs are differential
and conform to the ANSI-644 LVDS standard.

24

CHAPTER 4. DIGITAL DESIGN 25

Figure 4.1: AD9257 sampled data output.[24]

4.1.2 Specifications

IO
The IOs must be configured to receive LVDS signals. To get data from all 72 sensors, 9
AD9257 must be used. This yields 8 data outputs and 2 clock outputs per ADC, for a
total of 90 differential inputs.

DDR data capture
The minimum sampling rate of AD9257 is 10 MHz. In regards to the specifications
of the project, this is closest to the desired sample frequency. This means that the
minimum capture clock frequency is 70 MHz, as DCO is 7×CLK. The data from all
channels, per AD9257, will be captured using this clock.

Deserialization
The data rate with minimum sampling is 140 Mbps. After 14 consecutive bits have been
captured in each channel, data must be deserialized. This puts the data on a 14-bit
parallel bus for further processing.

4.1.3 Serializer/deserializer interface

SF2 has hard serializer/deserializer interface (SERDESIF) blocks with dedicated inputs
that can be used for capturing and deserializing data of differential signals. The block can
be configured to work with standard serial protocols, as well as custom protocols through
an external physical codings sub-layer mode. It is however not fully customizable. The
data bus widths from the deserializer can only be set to predefined widths. 14 bits is
not an alternative. The minimum input reference clock is 100 MHz. This is beyond
the target 70 MHz. The minimum supported data rate is 1 Gbps. The target data
rate in this project is 140 Mbps. Neither of the FPGAs discussed in section 3.2 have
enough SERDESIFs to cover all detector outputs.[37] Using SERDESIF, if possible,

26 4.1. AD9257 READOUT LOGIC

would require multiple FPGAs, and sampling the data inputs at a much higher rate
than what is required.

4.1.4 Custom logic

Custom-made readout logic can be implemented in the fabric of the FPGA. The outputs
from the ADC will in this case connect to the fabric through multi-standard I/Os
(MSIO). These can be configured to accept differential LVDS inputs by connecting the
input signal to compatible N- and P-inputs. Versions of SF2 and IG2 with enough I/Os
to capture data from all sensors are also obtainable. [18]

Figure 4.2 shows a 14-bit capture- and deserialize-circuit. The circuit is based on the
12-bit circuit in [38]. The data input and DCO connect to a DDR capture block. In this
block, data is captured by DFFs on both edges of DCO. The outputs are connected to
two separate serial in, parallel out, shift-registers: one for rising-edge data, and one for
falling-edge data.

Data is subsequently shifted through the two shift registers. The entire word should be
shifted in by the time data from a new word is present on the input. This is signaled by
the rising edge of FCO. Content stored in the two shift-registers is latched into a 14-bit,
frame capturing register that is triggered by FCO. The now deserialized data which
is stored in this register must match the serial input data. This can be achieved by
connecting the outputs from both shift registers in an interleaved manner, as pictured in
the figure. The data on the outputs of this register can be used for further processing.

Clocks should be distributed to the register elements with minimum delay between
clock edges. Routing through the fabric is not necessarily uniform, so the length of the
wires between DFFs can differ. This can result in a skew between the clock edges on
subsequent flip-flops, and timing margins could be worsened. For this reason, global or
local clock nets should be used. Usage of such is indicated by the green wires in figure
4.2.

Shift_r(0)
Shift_f(0)
Shift_r(1)

Shift_r(6)
Shift_f(6)

D Q 14

Frame captureShift_r

Shift_f

FCO

D

D Q

Q

DCO

Data_frl

Data_rData_in

Clock

DDR_capture

Data_in 7

7

[Not supported by viewer]

Figure 4.2: Readout circuit

CHAPTER 4. DIGITAL DESIGN 27

4.1.4.1 DDR-MSIO

MSIOs can be configured to perform DDR capture by instantiating a DDR-macro in
the VHDL design [18]. Figure 4.3 shows the schematic of the macro1. Rising-edge data
is captured directly by the top-right flip-flop. Falling-edge data appears on data input D
while CLK is high, as shown in figure 4.1. Since the latch is transparent when the clock
is high, the state of D is stored on the output of the latch once the clock goes low. Data
is then transferred to the output QF on the following rising-edge of DCO.

Figure 4.3: DDR_IN macro[39]

Timing when using DDR_IN in place of DDR_capture in figure 4.2 is shown in figure 4.4.
When FCO is asserted, all bits must be captured. The blue lines represent data captured
on the rising edge, while the orange lines represent data captured on the falling edge. As
the diagram shows, it is not possible to latch all of the data bits into the frame register
when FCO is asserted. The reason for this is that the first capture edge of DCO, as shown
in figure 4.1, is a rising edge. This creates a skew between the two capture paths, where
the data captured on falling edge trails behind the data captured on rising edge by
one clock cycle. When FCO is asserted, rising-edge data is present on the outputs of
shift_r and data_r. Because of the skew, the last captured falling-edge data will not
be present on data_frl. Data_f is not reachable. The data latched into the frame
capture register is for this reason not valid.

It is however possible to use MISOs configured for DDR if the phase of DCO is shifted by
180° before it is connected to the clock inputs in figure 4.2. This removes the skew that
caused the non-valid readout. Timing in this case is shown in figure 4.5. The phase
shift can be achieved with an inverter or a PLL.

Using an inverter to shift the phase is possible. It will however add delay to DCO,
which results in a change in the timing relationship between it, FCO and the data. The
significance of this increases with increased frequency, as illustrated in figure 4.6. This
is true assuming the delay contribution from the inverter is independent of the clock
frequency. As the target frequency of DCO is 70 MHz in this project, the added delay
might not be critical.

1In the timing diagrams, signals in the DDR macro: D = Data_in, Q on the latch = Data_f, QR =
Data_r, QF = Data_frl

28 4.1. AD9257 READOUT LOGIC

D C B A 9 8 7 6 5 4 3 2 1 0 D C

D B 9 7 5 3 1

C A 8 6 4 2 0

C A 8 6 4 2 0

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD

2468ACU468ACUU68ACUUU8ACUUUUACUUUUUCUUUUUUUUUUUUU

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD D13579B

UUUUUUUU CUUUUUU ACUUUUU 8ACUUUU 68ACUUU 468ACUU 2468ACU 02468AC

DUBC9A78663412

C

D

B

DCO

FCO

Data_in

Data_r

Data_f

Data_frl

Shift_r

Shift_frl

Shift_r[5:0]&Data_r

Shift_f[5:0]&Data_frl

Frame

D B 9 7 5 3 1 D

Figure 4.4: DDR capture using DDR_IN macro timing.
The blue lines represent data captured on rising edge. Falling edge is represented by
orange lines. Green fill marks that all bits are captured before FCO is asserted. Red fill
marks the opposite.

02468AC

D C B A 9 8 7 6 5 4 3 2 1 0 D C

D C

C A 8 6 4 2 0

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 1357..

0246..2468ACU468ACUU68ACUUU8ACUUUUACUUUUUCUUUUUU

UUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD D135..

CUUUUUU ACUUUUU 8ACUUUU 68ACUUU 468ACUU 2468ACU C024..

DCBA9876543210

C

B

DCO_180

FCO

Data_in

Data_r

Data_f

Data_frl

Shift_r

Shift_frl

Shift_r[5:0]&Data_r

Shift_f[5:0]&Data_frl

Frame

D B 9 7 5 3 1 D

B A 9 8 7 6 5 4 3 2 1 0 D C B

Figure 4.5: DDR capture when DCO is skewed 180 degrees timing.
The orange lines represent data captured on rising edge. Falling edge is represented by
blue lines. Green fill marks that all bits are captured before FCO is asserted.

CHAPTER 4. DIGITAL DESIGN 29

DCO_delayed

FCO

Data_in

DCO_ ideal

Acceptable Possible error

Figure 4.6: Significance of skew on DCO in relations with FCO and data.

By using a PLL, both a phase shift and/or a delay can be added to DCO. The advantage
of a PLL is that it corrects the output if a change is detected between the output and
the conditions that were set. Thus, the PLL can be configured so that DCO is inverted
without any change in the relationship between DCO, FCO and the data. Using PLLs
would however require two FPGAs as none of the alternative FPGAs mentioned in
section 3.2 have more than 8 PLLs. The final alternative is to use input delay elements.
These are configurable through I/O-constraining. The delay can be set to D+6.3 ns
where D is the intrinsic delay in the I/O [18]. For the target frequency of DCO, the
delay needed to invert the signal would be:

1
2 × fDCO

which is about 7.1 ns. Hence, this option depends on D.

4.1.4.2 DDR-fabric

Figure 4.7 shows an alternative way of performing DDR capturing without inverting
DCO. Rather than configuring the MSIOs to do the capturing, they are used as ordinary
inputs. Two DFFs are implemented in place of the DDR_capture block in figure 4.2.
The timing is shown in figure 4.8. This works by combining the shifted data with the
latest data on the DDR capture block outputs. An inverter is used on the DFF that
captures falling-edge data. This will worsen the timing margins between data_f and
shift_f. The timing margin is already tight as the two DFFs are triggered by opposite
clock edges. Unlike the previously discussed design with an inverter in section 4.1.4.1,
this is the only path that is affected by the additional delay.

Another alternative is to create the circuit shown in figure 4.9. Compared to the
DDR-macro, the latch is replaced by a falling-edge DFF. As the timing shows in figure
4.10, this implementation will work by combining the shift registers with all sequential
outputs. This also uses an inverted version of DCO on only one DFF. It does not have
any advantages timing-wise compared to the circuit in figure 4.7. In fact it has a slight
disadvantage as it uses one additional DFF per capture block.

30 4.1. AD9257 READOUT LOGIC

D Q

D Q

Data_in
capture r

capture f

Clock

Data_r

Data_f

DDR_Capture

Figure 4.7: Alternative DDR capture logic

D C B A 9 8 7 6 5 4 3 2 1 0 D C

D B 9 7 5 3 1

C A 8 6 4 2 0

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD

02468AC2468ACU468ACUU68ACUUU8ACUUUUACUUUUUCUUUUUU

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD D13579B

DCBA9876543210

C

D

B

DCO

FCO

Data_in

Data_r

Data_f

Shift_r

Shift_f

Shift_r[5:0]&Data_r

Shift_f[5:0]&Data_f

Frame

CUUUUUU CCUUUUU ACUUUUU AACUUUU 8ACUUUU 88ACUUU 68ACUUU 668ACUU 468ACUU 4468ACU 2468ACU 22468AC 002468A C02486A02468AC

Figure 4.8: Alternative capture timing-
The blue lines represent data captured on rising edge. The falling edge data is represented
by orange lines. Green fill marks that all bits are captured before FCO is asserted.

D

DD Q Q

Q

Clock

Data_in Data_r

Data_f Data_frl

DDR_capture

Figure 4.9: Macro circuit implemented in fabric

CHAPTER 4. DIGITAL DESIGN 31

DCBA9876543210

D C B A 9 8 7 6 5 4 3 2 1 0 D C

D B 9 7 5 3 1

C A 8 6 4 2 0

C A 8 6 4 2 0

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD

2468ACU468ACUU68ACUUU8ACUUUUACUUUUUCUUUUUUUUUUUUU

DUUUUUU BDUUUUU 9BDUUUU 79BDUUU 579BDUU 3579BDU 13579BD D13579B

CUUUUUU

C

D

B

DCO

FCO

Data_in

Data_r

Data_f

Data_frl

Shift_r

Shift_frl

Shift_r[5:0]&Data_r

Shift_f[4:0]&Data_f&Data_frl

Frame

CCUUUUU ACUUUUU AACUUUU 8ACUUUU 88ACUUU 68ACUUU 668ACUU 468ACUU 4468ACU 2468ACU 22468AC 002468A02468AC

Figure 4.10: DDR_macro circuit implemented in fabric timing.
The blue lines represent data captured on rising edge. The falling edge is represented
by orange lines. Green fill marks that all bits are captured before FCO is asserted.

4.1.5 Preliminary conclusion

Using SERDESIF2 or PLLs require multiple FPGAs. This is of course an option,
but it would increase the footprint of the PCB which should be as small as possible.
Therefore, the other methods are considered to be better alternatives. The designs
using DDR-MSIOs in combination with an inverted DCO, and the DDR-fabric using two
flip-flops are considered to be the best of the custom methods. Their timing is depicted
in figures 4.5 and 4.8 in the previous section.

Critical timing paths in figure 4.5 are on the bit capture in the DDR_blocks, and the
last captured bit before the frame is capured. Due to the skew on DCO from the inverter,
this is worsened. In the DDR_block, hold time violation is of concern for data_r, and
also the latch data_f. This is caused by the delayed capture of their inputs. On the
last bit before FCO is asserted, the delayed capture on data_frl may cause a setup
time violation on the frame capture register. This can be mitigated by delaying FCO by
e.g TDCO/2. The delay can be added either by buffers or input delay, as mentioned in
section 4.1.4.1.

The design using two DFFs in fabric has its critical path on data_f. This can cause
a hold time violation in the falling-edge-capture DFF, and a setup violation in the
frame capture register. The latter can be mitigated by delaying FCO by e.g TDCO/8 by
the same means mentioned in the previous paragraph. Since the target frequency is
relatively low, and by applying proper timing constrains, both designs will probably
work.

It should be mentioned that the skew from the inverter is one of many variables that
affect timing margins. Process variations will introduce random skews. Environmental
changes in temperature can cause a drift where the skew changes over time. High-
frequency environmental variations can cause jitter on clock edges. All these variables
must be accounted for. It is therefore important to verify that timing requirements are
met. Microsemi provides a timing analysis tool that analyses timing with four-corner
analysis, where process, voltage, and temperature are the variables. [10, 40]

2Due to certain restrictions, it is not certain if this can be configured to work against AD9257.

32 4.1. AD9257 READOUT LOGIC

4.1.6 Realized readout design

The custom made DDR-fabric, two-DFF design was used in all systems that will be
explained in later chapters. This section describes the structural design of the readout
logic.

4.1.6.1 Fabric DDR-capture and deserializer

The top-level structure of the readout logic for one AD9257 can be seen in figure 4.11.
In addition to the serial data and clock inputs, and the deserialized data outputs, a
synchronous active low reset that can clear all the internal registers is included. For
multiple ADCs, this structure can be instantiated multiple times in a top level file. The
internal structure is shown in figure 4.12. It is comprised of three structures which are
explained below.

reset_n

DCO

FCO

adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5

adc_ch6

adc_ch7

14

14

14

14

14

14

14

14

ch0_buffer
ch1_buffer

ch2_buffer

ch3_buffer

ch4_buffer

ch5_buffer

ch6_buffer

ch7_buffer

AD9257_readout.vhd

Figure 4.11: Readout logic top

reset_n

DCO

FCO

adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5

adc_ch6

adc_ch7

AD9257_readout.vhd

14

14

14

14

14

14

14

14

ch0_buffer
ch1_buffer

ch2_buffer

ch3_buffer

ch4_buffer

ch5_buffer

ch6_buffer

ch7_buffer
7

x8

p_shift_falling

ch_shift_reg_f
x8

g_capt_gen

7

p_shift_rising

ch_shift_reg_r
x8

input_capture

i_ch_capt

Shift registers

x8

g_frame_capt_gen

frame_capture

i_frame_capt

Figure 4.12: Readout logic internal

Input_capture
Input_capture is instantiated for all channels inside a generate statement. Each

CHAPTER 4. DIGITAL DESIGN 33

instance contains the DDR capture logic in figure 4.7. If it is decided to change the
method of DDR-capture at a later stage, it is only necessary to replace this instance.

P_shift_rising/falling
P_shift_rising and p_shift falling create shift registers for all channels by using
for-loops. These processes are located in the top level.

Frame_capture.
Frame_capture is instantiated for all channels inside a generate statement. Each
instance latches readout data from each channel into 14-bit parallel registers on the
rising edge of FCO.

The combined register transfer level (RTL) structure is shown for one channel in
figure 4.13.

D Q

D Q

D Q

D Q D Q

Data DCOFCO capture r

capture f

shift reg r [6:0]

shift reg f [6:0]

D Q

Frame reg (0)

D Q

Frame reg (1)

12

Frame reg [13:2] 14

Figure 4.13: Logic for input capture, shifting and frame capture

4.2 AD9257 control logic

AD9257 has accessible registers which control certain settings. Having the possibility to
change settings of the ADC can be useful. As an example: writing to register address
0x0D lets the user set test patterns on the ADC output. In this case, the analog front
end is internally disconnected from the outputs. It is also possible to change the phase
of DCO. If e.g. environmental variations cause the phase to change during operation,
control logic that corrects this by adjusting the phase could be implemented. The
register control section is accessed by a three wire SPI interface, where data in and data
out are combined onto a single, bidirectional pin.[24] In the following sections, different
methods of implementing an SPI master is discussed. Table 4.2 lists the methods that
were considered.

4.2.1 SPI slave considerations

The general transfer protocol is divided into two phases: instruction phase and data
phase. The instruction phase consists of transferring 16 bits from master to slave. The

34 4.2. AD9257 CONTROL LOGIC

Table 4.2: Methods of implementing an SPI master

Control method Implementation
Custom fabric master Soft

Microsemi CoreSPI Soft

Microsemi MSS SPI Hard

instruction contains data telling the slave whether the data phase is a master read- or
write-operation, how many bytes of data to transfer, and the memory address. Once
the instruction has been decoded, the data phase is executed.
Data can be transferred to the ADC in different ways. A transfer is initiated by setting
the chip select bar (CSB) signal low. This tells the state machine in AD9257 to process
the signals on the serial clock pin (SCLK), and on the serial data I/O (SDIO). The
slave captures data on the rising edge of SCLK, while it puts data on the bidirectional
pin SDIO on the falling edge of SCLK. SCLK has a minimum period of 40 ns [24]. I.e.
the maximum frequency is 25MHz. If multiple SPI slaves are used, as is the case in
this project, CSB must be stalled at logic 1 when there is no active transfer.
Two of the instruction bits decide the number of data bytes to transfer in the data phase.
The options are one, two or three bytes, or streaming. The latter option transfers bytes
continuously until CSB is asserted. For all but streaming, CSB can be set to 1 between
each transferred byte, or remain low for the entire transfer. This also applies for the
instruction phase. Between bytes, the register address is incremented automatically.
The latter applies to all modes. Figure 4.14 shows the timing of different transfer
modes.[41]

4.2.2 SPI master specifications

Changing settings or resetting AD9257 is not functionality where speed is critical. At
this stage in the design process, this system will be used to characterize the controllability
of AD9257. The minimum requirements of the SPI master is as follows:

• Transfer signals to and from the SPI slave at a rate of no more than 25 MHz.

• Load data onto SDIO on SCLK falling edge.

• Register data from SDIO on SCLK rising edge.

• Transfer of data between master and slave must support the minimum:

– Transfer one byte of data in the data phase.
– Transfer instruction and data one byte at the time, stalling CSB at logic ’1’

between each transferred byte.

4.2.3 Custom SPI master in fabric

Figure 4.15 shows the internal structure of an SPI master that can be implemented in
the FPGA fabric.

CHAPTER 4. DIGITAL DESIGN 35

Figure 4.14: AD9257 SPI interface timing diagrams[41]

clk

wr_data

rd_wr_en

busy

rd_data

csb_n

reset_n

FSM
p_sclk_generation

sclk

sclk_falling

sclk_rising

clk_div

sclk

40

fabric_spi_master

40-bit shift register sdio

Control signals
Read data

n

Bidir

direction

dout

din

shift counter n control signals

Figure 4.15: Fabric SPI master. Note that bidir must be an IO as high impendance
can not be implemented in the fabric

36 4.2. AD9257 CONTROL LOGIC

Data input wr_data is loaded with up to 40 bits. This is equivalent to one instruction
and three data bytes. Clk_div sets a factor that decides the frequency of SCLK, which is
generated in p_sclk_generation. When these have received valid data, rd_wr_en can
be asserted for at least one period of the system clock to enable a transfer. It must then
be deasserted. A 40-bit shift register shifts data in from the din input when reading
from the slave, or shifts data onto dout when writing data to the slave. A counter
is used to keep track of the shifting process. When a transfer is in progress, busy is
asserted to notify the master control system.

s_idle

rd_wr_en = '0'

csb_n = '0'

s_setup

s_read shift_reg_cnt > word_cnt

s_write
instruct_phase = '0' and rd_wr = '1'

Shift_reg_cnt = word_cnt

Shift_reg_cnt = word_cnt

instruct_phase = '1'
or
instruct_phase = '0' and rd_wr = '0'
or
shift_reg_cnt > word_cnt

Figure 4.16: Fabric SPI master FSM

A finite state machine (FSM) is used to control all operations. It is implemented in one
process which is sensitive to a system clock. The state diagram is shown in figure 4.16.
The FSM is initially in the s_idle state. In this state, no transfer is active. When
rd_wr_en is asserted, the state is changed to s_setup. In this state, data is loaded into
the shift register, SCLK generation is enabled, CSB_n is de-asserted and busy is asserted.
Certain instruction bits are loaded into internal registers to be used in following states.
An instruction signal is also asserted as the first operation is writing the instruction to
the slave. The next state is then directly changed to s_write.

After the instruction is shifted to the slave, the instruction signal is deasserted, and data
is written to the slave if this was instructed. If a read from the slave was instructed,
the state is changed to s_read. Here, data is shifted into the shift-register until the
instructed number of bytes have been received. Shifting and next-state are controlled
by a counter. Once the transfer is complete, the state is changed back to s_idle where
registers are set to default values. Busy is deasserted, telling the controller that the
transfer is complete.

The main advantage of creating a custom SPI master is that the interface from the
controller is custom. It doesn’t have to conform to any bus standards, as for example
advanced peripheral bus (APB), where a 40-bit data bus might not be an option.

CHAPTER 4. DIGITAL DESIGN 37

Another advantage is that it is not technology dependent, so it can be used on different
types of FPGAs. On the other hand, the functionality that controls the actions of the
master must be implemented in the fabric since a CPU uses standard bus interfaces. A
software controller could be less complex to implement in some cases, but at the time
of writing, this is only a speculation.

4.2.4 CoreSPI

CoreSPI is an intellectual property (IP) that is provided by Microsemi. This is a
soft IP which is implemented in the fabric of the FPGA. It is supported by different
Microsemi devices, including the ones listed in table 3.1. Figure 4.17 shows the top level
structure. The core can be configured to fit various applications by setting generics to
predefined values. Examples of these settings are setting it to act as slave or master,
the SPI transfer protocol, bit size of the words that are transferred, FIFO depths and
the frequency of SCLK. The FIFO memories buffer data that is written and read. This
core has a 4-wire SPI interface, where data in and out have separate ports. The core
has interrupt signals which signal certain events, such as if received data is ready to be
read by the controller. Internal registers can be accessed via an APB interface. [42]

Figure 4.17: CoreSPI top level[42]

Setting the transfer protocol to Motorola mode 0, pictured in figure 4.18, will satisfy the
specifications in section 4.2.2. To transfer the instruction and up to two bytes without
stalling CSB between bytes, the FIFO depths can be configured to 1, and word size to
32 bits. If stalling CSB is desired, the fifo depth can be set to 3, 4 or 5, and word size
to 8 bits.

All transfer related actions, e.g setting write data and enabling a transfer are set by
changing content in internal registers via the APB interface. The controller that handles
this can be software, executed by a CPU or a custom APB master in the fabric. This is
more flexible compared to the custom master discussed in the previous section. It can
also be assumed that the core is properly verified by Microsemi. On the other hand,
this core requires an APB interface. Also, initiating a transfer requires five3 operations.
With the custom master, this can be achieved in two operations.

3This number is based on what was required in a testbench. It is possible that less operations are
required.

38 4.2. AD9257 CONTROL LOGIC

Figure 4.18: Multiple bytes transfer with SPI protocol Motorola, mode 0[42]

Table 4.3: MSS SPI write and read

SPI write

MSS_SPI_transfer_block(// Transfer 3 bytes
&g_mss_spi0, // SPI to be instantiated
tx_buffer1, // Data to send
sizeof(tx_buffer1), // nr of bytes of type * array_index
0, // indicates no reading
0 // indicates no reading

);

SPI read

MSS_SPI_transfer_block(// Transfer 2 bytes, read 1 byte
&g_mss_spi0, // SPI to be instantiated
tx_buffer2, // Data to send
sizeof(tx_buffer2), // nr of bytes of type*array_index
&rx_buffer, // Receive buffer
sizeof(rx_buffer) // Size of receive buffer (should be 1)

);

4.2.5 MSS SPI peripheral

This option is only available on SF2, as the others do not have an MSS. This is a
hard-implemented SPI core. It can be accessed by the Cortex-M3 CPU through an
MSS bus matrix. The functionality and configurations mentioned for coreSPI in the
previous section 4.2.4 are similar to this core. E.g. Motorola mode-0 can be selected, the
width of words that are transferred, and the number of bytes to transfer is configurable.
Transfer-related settings are also set via an APB interface. This core also has a 4-wire
SPI interface. These pins can be set to dedicated I/Os or connected to the fabric where
it can interface with custom logic, or routed to I/Os. [43]

Microsemi provides firmware for this core. Using it is relativly straight forward. The
functionality of the drivers are well documented in the driver file, as well as in a document
that is supplied with the firmware. To use the core, the supplied firmware must be
included as headers in the application software. The frequency of SCLK, master or
slave mode etc. must be initialized and configured before it is used. This is equivalent
to the configuration set by generics in section 4.2.4. Different functions for transfer
are predefined. One example that meet the specifications in section 4.2.2 is to use the
function shown in table 4.3. [43]

Tx_buffer1 is an array where the instruction and data is stored, while rx_buffer

CHAPTER 4. DIGITAL DESIGN 39

is where read data is stored. When writing, the function makes the SPI core write
the number of bytes stored in tx_buffer1. When reading, the instruction stored in
tx_buffer2 is written to the slave. The following received data is then stored in
rx_buffer. [44].

Using the method described in this chapter is the least complex way, as all that needs
to be done is the creation of application software. It does however require the FPGA
to be SF2. If this should be the case, it is a good alternative. Inclusion of a CPU also
requires an embedded RAM to run the software, and an embedded ROM to store the
software incase the system must be reset. The included parts will probably increase the
power consumption as it runs at all times.

4.2.6 Preliminary conclusion

The choice of the method to control AD9257 strongly depends on which FPGA is chosen.
It also depends on what needs to be configured, and how often the configuration memory
must be checked or altered. The previously discussed methods offer different advantages.
Thus, at this stage in the design process, no conclusion can be made.

4.2.7 Realized SPI master

All methods were realized to a certain level. The custom master was designed at an early
stage in the design process4. The MSS SPI is used in all physical test and verification
systems due to, amongst other reasons, the ease of implementation. This is explained
further in chapter 5. Microsemi has not made a full behavioral model of the MSS SPI
[43]. Therefore, coreSPI was used for computer-aided testing and verification. As the
main functionality that need to be tested is that the chosen SPI transfer protocol is
correct, this was considered to be an acceptable solution.

4Due to practicalities, the other methods were used in later design stages. Modifications, an proper
testing must be done if this should be the final choice.

CHAPTER 5

Test and verification systems

This chapter describes the different systems that were designed for testing and verifying
the digital designs described in chapter 4, as well as the actual AD9257. Verification
was of great focus in this thesis. Therefore, everything that was realized was tested at all
stages of the design process. To better understand the presented structures of the VHDL
designs, and design flow of the systems that were implemented on the SF2-dev-board,
“A.2: VHDL design”, “A.3: Design flow”, and “A.4: Verification” in Appendix A:
Method should be read prior to this chapter.

5.1 Introduction

In order to test the digital designs in the previous chapter against an actual version of
AD9257, the system illustrated in figure 5.1 was set up. A testboard containing the ADC
was made to connect to an SF2-dev-board. Figure 5.2 shows the development board. A
top level file containing the digital designs was made to program the FPGA. Also included
in the top level, were the MSS and MSS peripherals necessary to establish connection
to a host computer. Software was made so that the entire system could be controlled
in a terminal window on the computer. The software functionality includes test and
verification procedures, access to the memory of AD9257, and a visual representation of
the readout data.

Testboard

Top-level

SF2

SF2-dev-board

AD9257

Host computer

Figure 5.1: Final test-and-verification system

40

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 41

Figure 5.2: SmartFusion2 developement kit board

In order to create a error-free SoC, test-and verification systems were made from the
start of the design phase. This allowed evaluation of the SoC in all design stages until
the final SoC was ready. The testbenches were structured in a way that made it possible
to use the same test and verification sequences for all systems. Table 5.1 lists the
systems that were made.

Table 5.1: Verification systems

Test and verification systems
Development testbench

FPGA-internal SoC & model

FPGA-loopback SoC & model

AD9257-testboard Soc & testboard

The development testbench was made in order to test and verify the digital designs
from the start of the design process. FPGA-internal SoC was made to test the digital
designs on the SF2, and to develop the software. FPGA-loopback SoC is a similar
system. AD9257-testboard SoC is the system that is made to interface with an AD9257
testboard. Before any of the SoCs were implemented on SF2, they were tested and
verified in a computer-aided testbench. After they were implemented, they were tested
and verified in a physical, software testbench. In order to test in an environment that
was as close as possible to the real-life application, a VHDL model of AD9257 was

42 5.2. DEVELOPMENT TESTBENCH

developed, and used in the test and verification systems.

The general difference between the computer-aided and the physical testbenches in this
thesis is shown in figure 5.3. In the computer-aided systems, a VHDL test sequencer in
a process acts as the controller that performs all the tests. As mentioned in section 4.2.7,
coreSPI is used in computer-aided testing as the MSS SPI does not have a behavioral
model. This system is used to verify pre-synthesis-, post-synthesis- and post-layout-HDL.
In the physical test systems, a test sequencer written in C, together with the SF2 MSS,
work as the controller. Here, the MSS SPI peripheral is used instead of coreSPI.

In addition to the readout- and control- logic, testboard-related functionality was added
in all systems. The remaining parts in this chapter present this functionality, and more
details about each of the systems that were designed. The testing that was performed,
and the results of these tests are presented in chapter 6.1. The following sections in the
chapter should be read in the order they are listed.

process

Top level file

Readout
MSS

Top level file

Computer-aided test and verification Physical test and verification

coreSPI
Model

VHDL Test sequence

C Test sequence

Readout
Model

Figure 5.3: Structural difference between computer-aided- and physical- testbenches

5.2 Development testbench

A testbench framework was set up at the very beginning of the design stage. This was
used to gradually test and verify as functionality were added throughout the design
phase. Figure 5.4 shows the final testbench structure. All tests are implemented and
performed sequentially in the test sequencer. The general test method is to enable a
test from the test sequencer, awaiting the response from the devices under test, and
then comparing the response with the expected result. The tests that were performed
is explained in chapter 6.

The dashed boxes represent packages. These are used to increase readability by infor-
mation hiding, and to include functionality. Universal VHDL verification methodology
(UVVM) utility library is an open source test-bench-verification infrastructure that is
developed by Bitvis1. The library contains functionality that eases the creation of a
structured testbench. Examples are verbosity-controlled logging, setting and handling
alerts for test cases, and random generators. After a test sequence is complete, the log
can be compared directly to the verification plan.

A bus-functional model (BFM) models the interface of a bus between a controller and
the device being controlled. A BFM for APB3-bus was made between the test sequencer

1www.bitvis.no

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 43

AD9257_readout_wrap_pkg

Test sequencer

spi_mem_rdout

apb_spi_if

apb_rdout_if

UVVM util

AD9257_read_cont_pkg

AD9257_readout_wrap

coreSPI

AD9257_read_cont_tb

clk_gen

apb_pll_if PLL_10MHz

io_top_model

APB_BFM

Figure 5.4: Testbench framework top

(a) Write (b) Read

Figure 5.5: APB3 timing diagrams[45]

and every device under test. Figure 5.5 shows the signals and timing of this bus. A pre-
made BFM made by Bitvis was modified to act in accordance with the APB3 standard.
APB3 was chosen because this bus was used between the CPU and its slaves in the
FPGA-implemented systems discussed in sections 5.3, 5.4 and 5.5. A more accurate
method would be to create a BFM where all slave interfaces connect to one data bus
through a bus handler. This was however not prioritized. Instead, a bus handler was
made for shared APB3-buses in the top level AD9257_read_cont_tb. The remaining
packages contain custom procedures and constants. Examples are spi_write() which
is used when writing data via coreSPI, and memory map addresses. The following
sub-sections present the different components in figure 5.4.

5.2.1 HDL model of AD9257

A VHDL model of AD9257 was designed for test and verification purposes. The
advantage of doing this is that the entire testbench will be a model of the real-life
application. The model was made synthesizable so that it could be used in both
computer-aided testing and physical testing on an FPGA, prior to testing against an
actual AD9257.

44 5.2. DEVELOPMENT TESTBENCH

5.2.1.1 Specifications

Making a complete model of AD9257 would be very time consuming. As it is the SPI-
and readout-functionality that needs to be verified at this stage, only the SPI slave,
memory, and digital back-end is needed. Since it is possible to set the output data from
AD9257 by writing to certain memory addresses via the SPI interface, this functionality
was also included. The advantage of this is that the stimulus to the readout logic can
be changed, and since it is a direct response to the use of the SPI interface, a change in
output data can be used to verify the SPI-master. The minimum specifications that
were set for the model are:

• It must contain the number of data and clock outputs equivalent to one AD9257.

• The clock and data relationship on the outputs should be exactly like the timing
in figure 4.1.

– As the target sample frequency is 10 MHz, the serial data outputs must have
a frequency of 70 MHz.

• It must contain an SPI slave with the following functionality:

– Receive one byte of data following the transfer of the instruction.
– Receive instruction and data one byte at the time, while CSB is stalled at

logic ’1’ between each transferred byte.

• It must contain a memory with memory addresses as specified in the datasheet
[24] which can be accessed through the SPI interface.

• It must at least be possible to set user-defined output patterns.

• All parts of the model must be synthesizable.

5.2.1.2 Model top-level structure

Figure 5.6 on the next page shows the structural top level of the model. Spi_mem_rdout
is the synthesizable part of the model, while io_top_model models some of I/Os of the
ADC. The reason for structuring it this way will be made clear in the following sub-
chapters. All internal logic can be reset by an active-low signal. Clk and dcoX2_0_deg
come from the same 140 MHz clock source. These are used to trigger the synchronous
circuits. Note that DCO and FCO is not generated inside the model, as was specified.
They were for practical reasons generated by the clock conditioning circuitry (CCC)
that also generates the system clock in the physical test-and-verification systems. To
create a more accurate model, they should have been generated by having a separate
CCC in spi_mem_rdout. This was however not prioritized.

5.2.1.3 Model internal structure

Spi_mem_rdout contains all the functionality of the model. The internal structure
is shown in figure 5.7. AD9257_spi_model contains the SPI slave. This connects to
AD9257_memory, which has the same memory map as the actual AD9257 [24]. It also

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 45

spi_mem_rdout

io_top_model

sclk
csb_n
dout
din
out_en

adc_ch0
adc_ch1
adc_ch2
adc_ch3
adc_ch4
adc_ch5
adc_ch6
adc_ch7

sclk_mast
csb_n_mast
dout_mast
din_mast
out_en_mast

sclk_slave
csb_n_slave
dout_slave
din_slave
out_en_slave

adc_ch0_in
adc_ch1_in
adc_ch2_in
adc_ch3_in
adc_ch4_in
adc_ch5_in
adc_ch6_in
adc_ch7_in

dco_90_deg_in
fco_in

adc_ch0_out
adc_ch1_out
adc_ch2_out
adc_ch3_out
adc_ch4_out
adc_ch5_out
adc_ch6_out
adc_ch7_out
dco_90_deg_out
fco_out

clk
reset_n
dcoX2_0_deg
fco

Figure 5.6: ADC model top

spi_mem_rdout

adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5
adc_ch6

adc_ch7

AD9257_rdout_model

AD9257_spi_model

AD9257_memory

din

dout

mem_in

mem_out
rd_wr

mem_addr

test_pattern2

dcoX2_0_deg

sclk

csb_n

clk

reset_n

fco

out_enout_en

p_config

test_pattern1

user_patt_en

Figure 5.7: spi_mem_rdout

connects to p_config. This process chooses output patterns based on the content
that was written to the memory. These patterns and a trigger signal are connected
to AD9257_rdout_model where the patterns are loaded onto the ADC outputs. The
following sections provide more detailed informaion about the different modules.

AD9257 SPI slave

The internal structure of AD9257_spi_model is similar to the structure for the
SPI-master discussed in section 4.2.3. A shift register is used to shift data in and out,
and an FSM acts as a controller. As this is an SPI-slave, it receives SCLK and CSB.
The FSM is sensitive to the system clock which runs at a higher frequency than SCLK.
Enable pulses are generated on the rising and falling edge of SCLK to ensure that the
data is transferred at the correct rate. The state transition diagram is shown in figure
5.8, and is explained below.

s_idle
The FSM is idle when no transfer is initiated from the master. All signals of importance
are set to their default values in this state. If CSB is de-asserted, it means that a transfer
is about to occur. This changes the state to s_instruct.

46 5.2. DEVELOPMENT TESTBENCH

s_idle

csb_n = '1'

csb_n = '0'

s_instruct

shift_cnt < 16 or csb_n = '1'

shift_cnt = 16

s_control

rd_wr_cont = '1'

rd_wr_cont = '0'

shift_cnt = 8

shift_cnt = 8

s_write shift_cnt < 8

shift_cnt < 8

s_read

shift_cnt = 8

Figure 5.8: AD9257 SPI model state machine

s_instruct
In this state, a two-byte instruction is shifted in from the data input. Shifting is
performed each time the pulse made on the rising edge of SCLK is asserted. A counter
controls the next-state action. It remains in this state until the entire instruction has
been received. Once this is complete, the state changes to s_control.

s_control
Here the instruction is decoded. The actions and next-state are based on whether
a master read or write are instructed. If it is to write to the slave, it goes directly
to s_read. In this case the state will be changed back to s_control once the read
is complete. The content that is received from the master is stored in the received
memory-address location before the state is changed to s_idle.

If the master instructed to read from the slave, memory data from the address contained
in the instruction is loaded into the shift-register. MSB of the data is put directly on
the output so that the master can sample data on the next rising edge of sclk. Since the
data I/Os goes to a bi-directional I/O, an output-enable signal is asserted. The state is
then changed to s_write.

s_write
As long as the FSM is in this state, data is shifted out when the pulse made on the falling
edge of SCLK is asserted. A counter controls the next-state action. An output-enable
signal is generated, and can be used to control the direction of data flow in a bidirectional
I/O. Once complete, the state is changed to s_idle.

s_read
As long as the FSM is in this state, data is shifted in when the pulse made on the rising
edge of SCLK is asserted. A counter controls next-state action. Once complete, the state
is changed to s_control.

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 47

AD9257 internal memory

This component models the internal registers of AD9257. Accessible registers are de-
fined in the datasheet [24]. It has input ports to receive an address, a read/write enable
signal, input data, active-low reset, and the system clock. It also has one memory-data
output.

If the master reads from the memory, the read/write signal will stay low. Data from the
memory address is placed directly on the output. If the master writes to the memory,
the read/write signal will pulse for one period of the system clock. This ensures that
no memory locations are overwritten unless it is instructed. Data is then stored in the
memory address at the rising edge of the system clock.

p_config

When the master writes to certain addresses, the output data from the model
is changed. The functionality that handles this is made in p_config. Based on received
address and data, either predefined or user-defined patterns are set. The predefined
patterns are similar to the real predefined patterns stored in AD9257. The process of
setting user defined patterns is made to be equal as for the actual ADC. Thus, two 14-bit
patterns can be made from content that is stored in dedicated memory addresses. The
user can choose to only set one pattern as output data, or both patterns as back-to-back
outputs. [41]

AD9257 output

The internal structure of AD9257_rdout_model is illustrated in figure 5.9. The
user patterns are loaded into a shift register where the output of the last flip-flop is fed
back to the input of the first flip-flop. This makes the pattern repeat itself continuously.
If test_pattern1 and/or test_pattern2 is changed, the previously loaded 14-bits are
shifted out before the new patterns are loaded. This is controlled by a counter. The
two input test patterns can be equal or not. If they are equal, only test_pattern1
is loaded into the register. If they are unequal, the patterns are loaded back-to-back,
starting with test_pattern1. User_patt_en is the signal that controls this. The clock
of which the shift register is sensitive to must be 2×DCOfor this model to work. By using
this frequency, all the bits can be shifted out on the rising edge of the clock. It must
also have the same phase as FCO. If this is the case, the timing in figure 4.1 is achieved.
If reset_n is asserted, all DFFs are set to ’0’. Functionality that makes sure that new
data is not put on the outputs before the next rising edge of FCO is implemented, but
not shown. In this way, the data is synced to FCO regardless of when the module is
reset.

5.2.1.4 I/O model

The I/O interface between AD9257 and an FPGA was modeled as a separate component.
The internal structure is shown in figure 5.10. The model only contains the I/O port
types and pull circuitry of the SPI interface. Modeling the differential I/Os of the ADC

48 5.2. DEVELOPMENT TESTBENCH

combinational
logic

D Q

test_pattern1

test_pattern2

load

data

user_patt_en

(0)

D Q

load

data

(1)

D Q

load

data

[2:13]
adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5

adc_ch6

adc_ch714

14

clk

+ D Q
'1'

AD9257_rdout_model

(0) (1) [2:13]

reset_n

FCO

Figure 5.9: Readout model RTL

io_top_model

adc_ch0_out
adc_ch1_out
adc_ch2_out
adc_ch3_out
adc_ch4_out
adc_ch5_out
adc_ch6_out
adc_ch7_out
dco_90_deg_out
fco_out

in_out_config

in_out_config

bidirectional
in_out_config

in_out_config
bidirectional

in_out_config

in_out_config

bidirectional, pull-down

pull-down

pull-up

sclk_slave

csb_n_slave

din_slave

dout_slave

out_en_slave

sclk_mast

csb_n_mast

dout_mast

din_mast

out_en_mast

adc_ch0_in
adc_ch1_in
adc_ch2_in
adc_ch3_in
adc_ch4_in
adc_ch5_in
adc_ch6_in
adc_ch7_in
dco_90_deg_in
fco_in

Figure 5.10: io_top_model

outputs were not included. The signals were despite this routed through the module
in case this would be done at a later stage. This module was made separate from
spi_mem_rdout because it is not possible to implement this functionality when all of
the logic is connected internally in the FPGA. This is the case for the system that is
presented in section 5.3.

SCLK and SDIO have internal pull-down resistors, while CSB has an internal pull-up
resistor. In_out_config is a component that was made to model pull-up- or pull-down-
behaviour. The type of pull is set by generics when the component is instantiated.
SDIO is a bi-directional signal, while the others are unidirectional. The component
bidirectional was made to act as a bidirectional port. An output-enable signal decides
if data that is sourced to the component is put on the bi-directional line. The data
output of the component is always connected to the line. To control the direction of
data transfer, the output-enable signal from the SPI-slave, and an inverted version of
said signal is used.

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 49

5.2.2 Clock generation

For practical reasons, the system clock, DCO, and FCO were generated by a CCC in the
test systems that used the model internally on SF2. This was modeled by creating a
behavioral model of a CCC. This was used in all computer aided testbenches. Ideally,
this component should have been replaced with the HDL of the generated CCC, but
this was not prioritized.

5.2.3 Readout wrapper

As presented in section 4.1.6, the component AD9257_readout captures and deserializes
data from AD9257. So that the test sequencer can access the deserialized data, a bus
wrapper was made where the readout logic is instantiated. The top level structure of the
readout wrapper is shown in figure 5.11. The ports are composed of readout-logic ports,
APB3-bus ports, AD9257-testboard control signals and a debug signal. The purpose of
the control signals is made clear in section 5.6 where the circuits on the testboard are
explained. Figure 5.12 shows the internal structure. The signal flow is explained for
one channel in the following text. It is however valid for all channels as they are equal.

clk

reset_n

dco_90_deg

fco

adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5

adc_ch6

adc_ch7

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blinkAPB3

AD9257_readout_wrap

Figure 5.11: Readout wrapper top

P_sync synchronizes the readout data to the system clock before it is used any further.
This is done by passing it through two cascaded system-clock-triggered DFFs. This
reduces the probability of metastability when the signals cross clock domains. [10]

The synchronized readout data is fed to error-detecting circuitry p_read_check. If a
change in readout data is expected, the new data is latched into a specific register.
A register that signals the arrival of new valid data is then asserted. If readout data
changes unexpectedly, it is latched into a specific error-data register. A register that
signals the erroneous readout is also asserted. If readout data is latched into either
register, they remain unchanged until new_data_clear or irr_clear are asserted.
This ensures that the first instance of correct - or erroneous- data can be checked. In
order for this to work, the circuitry must be notified before new data is expected. This
is done by asserting new_data_clear before a new output pattern is set in the model.
It is also possible to bypass this functionality, by asserting manual_read. In this case,
the latest received readout daa is latched into the data registers.

50 5.2. DEVELOPMENT TESTBENCH

14

14
14

14

14

14

14

AD9257_readout_wrap

clk

reset_n

AD9257_readout

p_bus_rwp_synchdco_90_deg

fco

adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5

adc_ch6

adc_ch7

ch0_buffer_reg

ch1_buffer_reg

ch2_buffer_reg
ch3_buffer_reg

ch4_buffer_reg

ch5_buffer_reg

ch6_buffer_reg

ch7_buffer_reg

14

14

14

14

14

14

14

14

14

14ch0_buffer_reg(2)

ch1_buffer_reg(2)

ch2_buffer_reg(2)
ch3_buffer_reg(2)

ch4_buffer_reg(2)

ch5_buffer_reg(2)

ch6_buffer_reg(2)

ch7_buffer_reg(2)

g_ch_compare_check

x8p_read_check

ch_rdout_data(i)

ch_error_reg(i)

14

irr_reg(i)

new_data_clear

irr_clear

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink
control_reg(i)

AD9257_readout_wrap_pkg

manual_read

APB3

Figure 5.12: Readout wrapper internal

Everything mentioned above is accessed through the bus handler p_bus_rw. All of
the channel-specific readout-data registers are assigned to specific addresses, while
all channels share common control-signal registers. The control registers are made
so that the APB3-master, i.e. the test sequencer and CPU can detect readout-and
erroneous data by polling. The testboard control signals, and the debug signal blink
are also controlled by writing to specific addresses. All addresses are defined in the
package AD9257_readout_wrap_pkg. The bus handler complies with the APB3 transfer
protocols depicted in figure 5.5.

5.2.4 Dynamic PLL

This component was included to generate an adjustable sampling clock that can be
used by AD9257 on the testboard. The schematic of the testboard clock circuitry is
presented in section 5.6.2.8. A PLL is located in a clock conditioning circuitry (CCC).
The output frequency can be adjusted by changing the values in its internal registers.
The registers are accessed via an APB3 interface. Figure 5.13 shows the top-level
structure of the component. In addition to the APB3 ports, it has a reference clock
input, an asynchronous active-low reset, and a powerdown input. Outputs consist of the
clock, and a lock signal that is asserted when the output frequency is stable. The input
reference clock, and default output clock are chosen when the component is generated
in Libero SoC. The CCC generated for this purpose uses an RC-oscillator internal to
SF2 as a reference clock, and has a default output frequency of 10 MHz.

Figure 5.14 shows the internal structure of the CCC. The output frequency is decided
by a range of factors inside the CCC. These are changed when the content in their
corresponding registers is altered. Examples of these factors are RFDIV and FBDIV. They
decide the reference clock and feedback division factor, respectively. There are also
restrictions on the minimum frequency into the PLL, as well as the maximum frequency
out of the PLL. The output of the PLL can go through the GPD block seen in the
figure, or it can bypass it. The GPD can also be used to reduce the frequency. [46]

There is no obvious way to know which factors to change, and how to route the clock
through the CCC. When the component is generated in Libero SoC, a document that

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 51

paddr

pclk

penable

pll_arst_n

pll_powerdown_n

preset_n

psel

pwdata

pwrite

rcosc_25_50MHz

gl0

lock

prdata

PLL_10MHz

6

8

8

Figure 5.13: Dynamic CCC top

Figure 5.14: Dynamic CCC internal[46]

shows the content in each register is included in the folders. By generating multiple
components, and comparing these, commonalities were found. Table 5.2 lists these
registers and their values with respect to the output frequency. These values can be
loaded into the CCC when any of the frequencies will be used. For other than the listed
frequencies, a new component must be generated to get the proper register content.

5.3 FPGA-internal SoC

The system explained in this section was designed in order to test the readout logic on
an FPGA before testing with an actual AD9257. This was possible since the model was
made synthesizable. The system was also used during development of the software that
is presented in section 5.7.

Figure 5.15 illustrates the implemented SoC. It contains a CPU, a RAM and the buses
that are needed to execute the software. The SPI peripheral discussed in section 4.2.5
is used as the SPI master. A hard universal asynchronous receiver/transmitter (UART)

52 5.3. FPGA-INTERNAL SOC

Table 5.2: CCC register-values in hex for different frequencies

Names\freq [MHz] 10 12 17 20 30 40 50 200
FCCC_RFDIV_CR 0x04 0x18 0x18 0x04 0x04 0x04 0x01 0x01
FCCC_FBDIV_CR0 0x01 0x0b 0x10 0x01 0x02 0x03 0x01 0x07

FCCC_NGMUX0_CR0 0x08 0x08 0x08 0x07 0x07 0x07 0x07 0x07
FCCC_GPMUX0_CR 0x47 0x47 0x47 0x58 0x58 0x58 0x58 0x58

FCCC_GPD0_CR 0x02 0x02 0x02 0x01 0x01 0x01 0x01 0x01
FCCC_PLL_CR7 0x05 0x05 0x04 0x05 0x05 0x04 0x04 0x02

FCCC_PLL_CR10 0x05 0x02 0x02 0x05 0x05 0x05 0x07 0x07
FCCC_GPD0_SYNC_CR 0x03 0x03 0x03 0x02 0x02 0x02 0x02 0x02

CortexM3

eSRAM

FPGA Fabric

SPI master

Microcontrol Subsystem (MSS)

UART
UART-USB

adc_ch0

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5
adc_ch6

adc_ch7

spi_mem_rdout

FIC

APB3

CCC

AD9257_readout_wrap

CLK
FCO
DCO

PLL_10MHz

Clock out

blinking_led

blink out

Testboard
control signals

I/O

Jumpers

LED

LEDS

KEY

SPI
interface

I/O

I/O

Figure 5.15: Illustration of SoC for FPGA internal

is included in the MSS. In this system it enables the creation of a user interface. It
connects to an UART-USB converter external to SF2 on the dev-board. This is further
connected to a mini-USB port.[47] This makes it possible to interact with the system
from a host computer.

A CCC is used to generate a system clock, DCO, and FCO. The dynamic PLL PLL_10MHz
that was explained in section 5.2.4 is also implemented. Its outputs are connected
to jumpers on the SF2-dev-board. A debug component, blinking_led2 was added
and connected to a LED. This can be activated through a key on the board, or by
writing to a specific address in AD9257_readout_wrap. All testboard control signals are
also connected to LEDs. The CPU connects to AD9257_readout_wrap and PLL_10MHz
through a fabric interface controller. This was configured to create an APB3-bus master
in the fabric, as this is the bus interface in the two modules.

2This component was provided by Kjetil Ullaland (kjetil.ullaland@uib.no)

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 53

The following sub-sections present the system that was made for testing in Modelsim,
and the system that was implemented on the SF2-dev-board. As explained in section
5.1, the difference between the two systems is that the system for Modelsim does not
use the MSS. Internally, all signals connect in the same way. How to set up the project
and control it from a computer is explained in Appendix C: Project setup.

5.3.1 Computer-aided-verification system

Figure 5.16 shows the structure of the testbench. Io_top_tb is the top level where all
functionality except the MSS is instantiated. This structure was used when testing the
system pre-synthesis, post-synthesis and post-layout. The latter two were created in
Libero SoC with io_top_tb as the top level.

AD9257_readout_wrap_pkg

coreSPI
Test sequencer

io_top_tb

apb_spi_if

apb_rdout_if

UVVM util

AD9257_read_cont_pkg

readout_model_internal_tb

clk_gen

apb_pll_if

UVVM util

Figure 5.16: testbench structure for FPGA internal

Figure 5.17 shows the top level interfaces of io_top_tb. The system clock and an active
low reset are connected to all sequential elements. Blink_in is a port for debugging.
Asserting this generates a toggling signal on blink_out. DCO and FCO are used in the
readout logic, and are generated in clk_gen along with the system clock. Note that the
APB3-bus signals for apb_rdout_if and apb_pll_if are drawn as a single bus. This
is because most of the signals from the APB3 master are shared between the fabric
slaves. The exceptions are the data-read- and slave-select- signals.

Figure 5.18 shows the internal structure of io_top_tb. Spi_mem_rdout, which is the
synthesizable part of the model, is connected directly to the readout logic through
AD9257_readout_wrap. The clocks are distributed to the components on global nets.
Hence the green wires. The gray components are Microsemi cores. Rosc_25_50mhz is
the internal clock oscillator that was chosen as the reference clock to PLL_10MHz when
it was configured. All I/O signals are routed through I/O-buffers. The clock output
of PLL_10MHz is converted to a differential signal. The reason for this is explained
in section 5.6.2.8. Compared to the illustration of the system in figure 5.15, the only
difference is that the MSS is removed from this top level. The results from the tests
performed on this system are presented in chapter 6.

54 5.3. FPGA-INTERNAL SOC

reset_n

blink_in

power_on_reset_n

dco

fco

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink_out

clk_out_p

clk_out_n

lock

clk_sys

io_top_tb

APB

SPI

Figure 5.17: io_top_tb top level

reset_n

blink_in

power_on_reset_n

dco

fco

adc_sync

LT2_oe

mux_clk_sel

clk_en

blink_out

clk_out_p
clk_out_n

lock

clk_sys

io_top_tb

PLL_10MHz

rcosc_25_50mhz

clkout

spi_mem_rdout

pll_arst_n
pll_powerdown_n

 APB3

rcosc_25_50MHz

gl0

lock

blinking_led

blink

AD9257_readout_wrap

outbuf_diff

inbuf

outbuf

inbuf

outbuf

outbuf

outbuf

outbuf

outbuf

clk
dcoX2_0_deg
fco

SPI

reset_n

out_en

adc_ch0
adc_ch1
adc_ch2
adc_ch3
adc_ch4
adc_ch5
adc_ch6
adc_ch7

'1'

clk
arst_n

cr3

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink

adc_pdwn

SPI-bus

APB3-bus

adc_ch0
adc_ch1
adc_ch2
adc_ch3
adc_ch4
adc_ch5
adc_ch6
adc_ch7

dco_90_deg
fco

clk
reset_n

 APB3

Figure 5.18: io_top_tb pre-synthesis

5.3.2 FPGA-internal SoC structure and design process

This section presents the structure of the system that was implemented for physical
verification on the SF2-dev-board. Figure 5.19 shows the top-level interfaces to io_top,
while figure 5.20 shows the internal structure with the MSS included. Compared to
figure 5.18, all but the APB3-, SPI-, and UART-signals are the same.

The inputs consist of reset-signals reset_n and devrst_n, debug-signal blink_in, and
UART-receive mmuart_0_rxd_f2m. Devrst_n is an active-low reset-signal that is active
for some time when the board is powered on. Reset_n and blink_in are connected
to keys. Mmuart_0_rxd_f2m is used to receive USB-data from the host computer. The
outputs consist of the circuit board control signals, AD9257 sample-clock, debug signal
blink_out, and UART transmit mmuart_0_txd_m2f. The Control - and debug- signals
are connected to LEDs, and the differential sample-clock signal is connected to a jumper
pair. Mmuart_0_txd_m2f is used to transmit the on-chip data via USB to the host

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 55

reset_n

blink_in

devrst_n

mmuart_0_rxd_f2m

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink_out

clk_out_p

clk_out_n

io_top

mmuart_0_txd_m2f

Figure 5.19: Soc top level

reset_n

blink_in

power_on_reset_n

dco

fco

adc_sync

LT2_oe

mux_clk_sel

clk_en

blink_out

clk_out_p
clk_out_n

lock

clk_sys

io_top

PLL_10MHz

rcosc_25_50mhz

spi_mem_rdout

pll_arst_n
pll_powerdown_n

 APB3

rcosc_25_50MHz

gl0

lock

blinking_led

blink

AD9257_readout_wrap

outbuf_diff

inbuf

outbuf

inbuf

outbuf

outbuf

outbuf

outbuf

outbuf

clk
dcoX2_0_deg
fco

SPI

reset_n

out_en

adc_ch0
adc_ch1
adc_ch2
adc_ch3
adc_ch4
adc_ch5
adc_ch6
adc_ch7

'1'

clk
arst_n

cr3

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink

adc_pdwn

SPI-bus

APB3-bus

adc_ch0
adc_ch1
adc_ch2
adc_ch3
adc_ch4
adc_ch5
adc_ch6
adc_ch7

dco_90_deg
fco

clk
reset_n

 APB3

MSS

inbuf

outbuf

uart_rx

uart_tx

Figure 5.20: Illustration of io_top for testing on FPGA.
Gray boxes are Microsemi IP’s. Note that some signals from the MSS are not included.

computer.

Figure 5.21 shows the MSS top-level while figure 5.22 illustrates its internal structure.
The CPU, hard MSS peripherals and FIC explained in the beginning of section 5.3
are instantiated inside MSS_comp_gen_sb_MSS_0. As the FIC was configured to use an
APB3-bus, CoreAPB3 was generated. FABOSC_0 and CCC_0 generates the system clock,
DCO, and FCO. SYSRESET and CoreResetP were added by the system configurator to
generate reset signals during power-up.

The MSS was generated by using the systembuilder option in Libero. After the
component had been generated, it was converted to a smartdesign where more settings
are accessible. These terms are explained in “B.2: Software” in Appendix B: Tools.
Following this, DCO and FCO were added as generated clocks from the CCC. This was
considered more practical than using a separate CCC instance in the model. In the
early design phase, an issue regarding communication with AD9257_readout_wrap in
the application software was fixed by changing the APB3-slave. Its memory slot was

56 5.3. FPGA-INTERNAL SOC

Figure 5.21: MSS top level

FABOSC_0

CCC_0

CoreAPB3

MSS_comp_gen_sb_MSS_0

CoreResetP
SYSRESET

n

n

n

n

n

MSS_comp_gen_sb

SPI
UART

APB3

sys_clk
DCO
FCO

RESET

RC_OSC

Reset

Figure 5.22: MSS internal components

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 57

changed so that it matched the fabric memory address region designated to the FIC.
This was not examined further and is therefore not explained in greater detail.
Clock- and I/O- constraints were added prior to synthesis and place-and-route. Timing
analysis was then performed. Hold-time violations were reported in the data path
between the model output and the readout logic. Figure 5.23 shows the CCC config-
uration in Libero. The frequencies and times presented after the multiplexer are as
intended, where the output GL1 is used as DCO and GL2 is used as FCO. The times at the
outputs causes a deviation from the intended times. This was corrected by applying a
minimum-delay constraint in the signal path until no hold-time violation was reported.
After this, a programming file for SF2 was created.

Figure 5.23: CCC configurator

5.4 FPGA-loopback SoC

This system was designed to test if the digital designs works as intended when the
signals are sent out of SF2, through jumpers on the SF2-dev-board, and back into SF2.
This is the only significant difference compared to the internal system in section 5.3.
Figure 5.24 illustrates the SoC. Due to a limited number of jumpers, only one data
channel, in addition to the capture clocks, was looped back.
The following sub-sections present the system that was designed for computer-aided
testing, and the system that was implemented on the SF2 for physical testing. The
difference between the two systems is explained in 5.1. The process of setting up the
system in Modelsim, and how it is implemented and tested on the SF2-dev-board is
described in Appendix C: Project setup.

5.4.1 Computer-aided verification

Figure 5.25 shows the structure of the testbench. Io_top_tb is the top level where all
functionality except the MSS is instantiated. This structure was used when testing the

58 5.4. FPGA-LOOPBACK SOC

CortexM3

eSRAM

FPGA Fabric

SPI master

Microcontrol Subsystem (MSS)

UART
UART-USB

adc_ch0

spi_mem_rdout

FIC

APB3

CCC

AD9257_readout_wrap

CLK
FCO
DCO

PLL_10MHz

Clock out

blinking_led

blink out

Testboard
control signals

I/O

Jumpers

LED

LEDS

KEY

SPI
interface

'0'

'0'

'0'

'0'

'0'

'0'

'0'

I/O

I/O

Jumpers

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5
adc_ch6

adc_ch7

Figure 5.24: Illustration of SoC for FPGA loopback

system pre-synthesis, post-synthesis, and post-layout. The latter two were created in
Libero SoC with io_top_tb as the top level. Figure 5.25 shows the testbench structure.
Compared to the FPGA-internal system that was presented in section 5.3.1, the only
differences are that the outputs from the model, the capture clocks, and the SPI-bus
go through I/Os. The rest of this section only mentions the differences in this system
compared to the system in section 5.3.1. Therefore, it should be read prior to this
section.

Figure 5.26 shows the top-level structure. The internal structure is similar to the internal
structure of the internally connected system in figure 5.18. The exceptions are the
routing, and the addition of I/O-buffers. Figure 5.10 illustrates how the SPI interface
is connected. In this system, I/O-buffers from Microsemi are used instead of the I/O
models. Thus, the SPI master signals connect to outputs, which are given the name
SPI master out. These can be looped back to SPI slave in, which connects to the
model spi_mem_rdout through input buffers.

As previously mentioned, only one data channel is connected between the model and
the readout logic. The other outputs from the model were left floating, while the
corresponding inputs in the readout logic were set to a fixed value. Data-output channel
0, and the capture clocks, are converted to differential outputs. The readout logic data
input is converted back to a single-ended signal before it is connected. The capture-clock
inputs are put on global nets before they are connected to the readout logic. The results
of the tests for this system are presented in chapter 6.

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 59

AD9257_readout_wrap_pkg

coreSPI
Test sequencer

io_top_tb

apb_spi_if

apb_rdout_if

UVVM util

AD9257_read_cont_pkg

readout_model_loopback_tb

clk_gen

apb_pll_if

UVVM util

Figure 5.25: testbench structure for FPGA loopback

reset_n

blink_in

power_on_reset_n

dco

fco

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink_out

clk_out_p

clk_out_n

lock

clk_sys

io_top_tb

p_dco_in

n_dco_in

p_fco_in

n_fco_in

p_adc_ch0_in

n_adc_ch0_in

p_dco_out

n_dco_out

p_fco_out

n_fco_out

p_adc_ch0_out

n_adc_ch0_out

APB3

SPI master in

SPI master out

SPI slave in

Figure 5.26: io_top_tb top level

60 5.5. AD9257-TESTBOARD SOC

5.4.2 Implemented FPGA-loopback SoC

The only difference between the top level in this system compared to the implemented
system for FPGA-internal in figure 5.20, is that the signals between the MSS SPI and
readout logic, and the model goes through I/Os. Clock constraints and I/O constraints
were added before the programming file for the SF2 was created. Timing analysis was
performed after place-and route where no errors were reported.

5.5 AD9257-testboard SoC

This system connects to the AD9257 testboard that was made. Figure 5.27 illustrates
the SoC. The signals between SF2 and the board goes through certain I/Os that
are connected to jumpers on the SF2-dev-board. These are located to the left of
the FPGA in figure 5.2. All data channels and both clock outputs are connected to
AD9257_readout through AD9257_readout_wrap. Testboard control signals and the
SPI-bus are also connected to the testboard through jumpers. The details about the
testboard is presented in section 5.6.

As for sections 5.3 and 5.4, the following sub-sections present the systems that were
made for verification and implementation. Appendix C: Project setup explains how to
use the systems.

CortexM3

eSRAM

FPGA Fabric

SPI master

Microcontrol Subsystem (MSS)

UART
UART-USB

spi_mem_rdout

FIC

APB3

CCC

AD9257_readout_wrap

CLK

PLL_10MHz

Clock out

blinking_led

blink out

Testboard
control signals

I/O

Jumpers

LED

Jumpers

KEY

SPI
interface

I/O

Jumpers

adc_ch1

adc_ch2

adc_ch3

adc_ch4

adc_ch5
adc_ch6

adc_ch7

FCO

DCO

I/O

Jumpers

Sys. clk

Figure 5.27: Illustration of SoC for testboard

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 61

5.5.1 Computer-aided verification

Figure 5.16 shows the structure of the testbench. Io_top_tb is the top level where
all functionality except the MSS is instantiated. This structure was used when testing
the system pre-synthesis, post-synthesis and post-layout. The latter two were created
in Libero SoC with io_top_tb as the top level. Figure 5.28 shows the testbench
setup for computer-aided testing of this system. Unlike the previously explained
systems, the model is not an instance in io_top_tb. As it is not used in the SoC
that is implemented, the model is added as an instance in the testbench top level
readout_testboard_tb through io_top_model. In this way, the testbench structure
remains the same. Io_top_model is connected through Microsemi I/O buffers so that
it is possible to synthesize the model as well.

io_model

AD9257_readout_wrap_pkg

coreSPI
Test sequencer

io_top_tb

apb_spi_if

apb_rdout_if

UVVM util

AD9257_read_cont_pkg

readout_testboard_tb

clk_gen

apb_pll_if

UVVM util

Figure 5.28: Testbench structure for testing against circuit board

Figure 5.29 shows the top-level interface of io_top_tb. The internal structure is similar
to the internal structure of the internally connected system in figure 5.18. The exceptions
are, as mentioned, that the model spi_mem_rdout is removed, and that the data inputs
and capture clocks come from differential inputs. The results of the tests that were
performed on this system are presented in chapter 6.

5.5.2 Implemented AD9257-testboard SoC

The only difference between the top level in this system compared to the system in
figure 5.29, is that the MSS is added as an instance in the top level. Thus, the bus-ports
APB3 and SPI master in are removed and instead connected internally to the MSS. An
UART interface is also added. A new MSS component was generated for this system.
The only difference between this and the MSS in the other systems is that the CCC
clocks DCO and FCO are removed. Clock constraints and I/O constraints were added
before the programming file for the SF2 was created. Timing analysis was performed
after the design had been placed and routed. No errors were reported.

62 5.6. AD9257 TESTBOARD

reset_n

blink_in

power_on_reset_n

dco

fco

adc_sync

adc_pdwn

LT2_oe

mux_clk_sel

clk_en

blink_out

clk_out_p

clk_out_n

lock

clk_sys

io_top_tb

p_dco_in

n_dco_in

p_fco_in

n_fco_in

p_adc_ch0_in

n_adc_ch0_in

p_adc_ch7_in

n_adc_ch7_in

APB3

SPI master in

SPI master out

Figure 5.29: io_top_tb top level

5.6 AD9257 testboard

Analog devices provide an evaluation board for AD9257. This board is made to connect
to a data acquisition board. By connecting this board to a computer, the ADC can be
evaluated using software provided by Analog devices. [48] It was however decided that
instead of using this configuration, a circuit board containing the ADC should be made.
This decision was made because the evaluation board’s connectors does not fit the
connectors on the SF2-dev-board. It was also of interest to test all the analog-front-end
SED-methods that is mentioned in section 3.4, especially the fully-differential opamp.

5.6.1 Practical considerations

5.6.1.1 Digital back-end

AD9257 has eight data outputs and two clock outputs common to all the channels. The
output-stage buffers are made to comply with the ANSI-644 LVDS standard. Traces
longer than 61 cm can result in timing errors. The output traces on the circuit board
should be close together and should have equal lengths.[24]

The SF2-dev-board is pictured in figure 5.2. To receive LVDS-signals on SF2, a matching
pair of inputs must be used. These are denoted by n and p, i.e. one negative, and one
positive terminal. The FMC-connector at the top of the figure was first intended to be
used. Unfortunately, none of the connections from the connector to the pins of SF2 is
usable for LVDS. The connections are mainly to MSIOs and DDRIOs on the FPGA.
The issue with the pins that connect to MSIOs is that they are connected through a 2.5
V to 3.3 V voltage-level translator. The LVDS signal has a common mode voltage of
about 1.2 V, and swing between 1.4 V and 1.1 V [23]. DDRIO is a MSIO optimized for
DDR-memories [18]. They do not support LVDS [18]. They do support HSTL which is
a differential standard, and it is possible to convert LVDS to HSTL by terminating the

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 63

Figure 5.30: Positive and negative IO pairs on jumpers

inputs in a certain manner [49]. HSTL is however not possible to use since the bank
voltage where the DDRIOs are located only enables the use of LVCMOS25 [47].

All other connectors on the SF2-dev-board were also found to be unusable. The only
possible way to connect the needed amount of pairs to the FPGA was through the
on-board jumpers. Figure 5.30 shows the jumpers, where the negative and positive
I/O-pairs are marked. The intended use of the jumpers is to switch FPGA ports between
the voltage-level translators leading to the FMC-connector, or to on-board components
such as SPI-memory, and UART-to-USB converters.

Using the jumpers is generally not a good idea for several reasons. As figure 5.30 shows,
the I/O pairs are not always routed to adjacent jumpers. This is an issue as it is difficult
to match the length of the traces. The differential signals between the testboard and
the dev-board are rather far apart. This increases the chance of uneven distribution of
externally coupled noise. The source- and characteristic- impedance of the signal paths
should be matched to reduce reflections. The impedance in the jumpers are unknown,
and might be slightly different between jumper pins. This complicates the matching.
Another board was also considered. At this stage in the design process, it was not
desirable to use other FPGAs than the SF2. Emcraft systems provides the development
kit M2S-FG484 SOM Starter Kit. This is displayed in figure 5.313. The connections on
this board are however similar to the jumpers on the SF2-dev-board. Despite the issues,
it was decided to continue with this board.

5.6.1.2 Analog front-end

Since eight channels are available on AD9257, it was decided to include all the different
methods for SED-conversion that was mentioned in 3.4. The primary analog signal
source is a signal generator. Signal generators are often terminated internally with a

3Picture was taken from http://www.emcraft.com/products/255#starter-kit

64 5.6. AD9257 TESTBOARD

Figure 5.31: M2S-FG484 SOM Starter Kit from Emcraft systems.

50Ω resistor. The trace impedance should match this. A termination resistor at the
receiving end should also be included to have the possibility of terminating near the
receiving end. It should be possible to both AC- and DC-couple the paths between the
signal generator and the receiver as this it is interesting to test both cases for some of
the SED-converters.

5.6.1.3 Single-ended signals

MSIOs in banks powered by a 3.3V supply voltage. This is not a problem for signals
that use the LVDS standard, but it poses an issue on any single-ended signal between
SF2 and AD9257 because the inputs of AD9257 have an absolute maximum of 2 V [24].
The SPI interface uses single wires. To mitigate this, some form of voltage-level shifting
must be done. A ground connections must also be made between the boards so that
the single-ended signals have a current return path.

5.6.1.4 Power supply decoupling

AD9257 and the other active devices that were included on the board should have
decoupling capacitors on power supply inputs. The number of capacitors, and their
values, are based on what is recommended in the component’s datasheet.

5.6.2 Design of the AD9257 testboard

A block diagram of the realized circuit board is shown in figure 5.32. All channels
of the AD9257 are used. All single-ended-to-differential conversion methods, except
the transformer, are implemented twice on the board so that both AC-coupled and
DC-coupled versions can be tested at the same time. The transformer will intrinsically

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 65

Clock

SF2-dev-board

Test board

Signal sources

Tb

OPc

OP1

Jumpers

OPg

B_a1
Channel A

Channel B

Channel C

Channel D

Channel E

Channel F

Channel G

Channel H

IDE1180 / sig. gen

IDE1180 / sig. gen

IDE1180 / sig. gen

IDE1180 / sig. gen

Sig. gen

Sig. gen

Sig. gen

Sig. gen

AD9257

43
44

47
46

49
50

53
52

60
61

64
63

2
3

6
5

SF2

34
33

32
31

30
29

28
27

22
21

20
19

18
17

16
15

J194
J197

J183
J188

J172
J174

J159
J158

J118
J121

J111
J115

J143
J145

J154
J146

J134
J131

J139
J141

24
23

26
25

J202
J210
J213
J214
J187

38404158

J195
J201
J196
J200

1

2
6
7

3 4

3

10
11

9 101
B_a2

5

3

1

2

B_h1
1

B_h2
5

3

1

2

1
4
6

3
1
7

3
1
7

OP21 3

57

VCM_buf

2

6

14
15

10
11

D+A

D-A

D+B

D-B

D+C

D-C

D+D

D-D

D+E

D-E

D+F

D-F

D+G

D-G

D+H

D-H

DCO+

DCO-

FCO+

FCO-

J209
J184

39

LT2

4
5
6
7
14
15

LT1 3
5

13
12
11
10

4

AGND

GND

Channel A

Channel B

Channel C

Channel D

Channel E

Channel F

Channel G

Channel H

LVDS
MUX

LVDS
buf
4 3

5

Channel 0

Sample clk

Mux sel0
Clk enable

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

DCO

FCO

SDIO
DIR

OE_EN

SCLK
CSB
PDWN
SYNC

Power supplies

Figure 5.32: AD9257 testboard block diagram

block DC, so two implementations were not necessary. The extra circuit was replaced by
a jumper configuration where different voltages can be applied. The ADC data channels
and capture clocks connect to the SF2 through the jumpers on the dev-board. An
adjustable sample clock is sent differentially to an LVDS mux. A control signal from the
FPGA chooses whether this clock or an on-board 10 MHz clock is fed to the clock inputs
of AD9257. The SPI signals and AD9257 control signals are sent through voltage-level
shifting circuitry before they are connected to AD9257. The direction of data flow on
SDIO through LT1 is decided by DIR, which is controlled by an output-enable signal
that is generated by the MSS SPI peripheral.

The following sections present the different circuits that were implemented on the board.
All components used for SED-conversion on the testboard are listed in Appendix D:
AD9257 testboard extras.

66 5.6. AD9257 TESTBOARD

5.6.2.1 Impedance compensation circuitry

The impedance compensation circuit in figure 5.33 is part of all the SED-converter
circuits, and is therefore explained prior to the other circuits. It is implemented between
the ports of all SED-converter outputs and AD9257 to compensate for the switched-
capacitor inputs of AD9257, as mentioned in section 3.4. The circuit also allows for an
implementation of a low-pass filter.

From single-end
to differential circuits

To AD9257
analog inputs

Lx1

Lx2

Rx20

Rx21

Cx21

Cx20

Cx22

Rx22

*x is replaced by the channel letter

Figure 5.33: Compensation circuitry

5.6.2.2 Voltage buffer circuitry

AD9257 provides 0.9 V through output VCM. As mentioned in section 3.4, AD9257
requires this voltage on both inputs of each channel. VCM is buffered before it is
distributed on the board. This removes a potential issue that could occur if the circuits
draw more current than the output can deliver, which would cause a voltage drop. This
should not be a problem since the current that is sinked from this voltage source is low,
but it was implemented as a precautionary measure. Figure 5.34 shows the circuit. The
opamp that was used is located in a dual package. Only one of the opamps are used.The
unused opamp is terminated so that the voltage on every port is kept mid-supply.

Op2
+
-

+5V

3

2

8

4

1

Op2
+
-

+5V

5

6

8

4

7

C9

C10

-5V

-5V

VCM

From AD9257

VCM_buf

To single-ended to
differential circuits

Figure 5.34: VCM output from AD9257 is buffered as it drives eight different circuits

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 67

5.6.2.3 Jumper configuration

The jumper configuration circuit is connected to channel F in figure 5.32. Figure 5.35
shows the jumper implementation and its signals. If the circuit is not in use, VCM_buf can
be connected to channel F by setting the jumpers between pins Jf5-Jf8 and Jf1-Jf4.
By other jumper placements, the signal source, gnd, or VCM_buf can be connected to
one or both inputs. This circuit can be useful when AD9257 is characterized. E.g
the linearity of the transfer function can be determined by applying a slow moving
voltage-ramp to both inputs.

VCM_buf

VCM_buf

Vs

Rs
Jf2

Jf6

Jf4

Jf8

Jf1

Jf5

VinF+

VinF-

Figure 5.35: Jumper configuration

5.6.2.4 Balun configuration

A double balun circuit is connected to channel A and H in figure 5.32. Figure 5.36
shows the circuit schematics. It is one of two circuits which are recommended by Analog
devices to perform the SED-conversion for AD9257 [24, p. 19]. Ra6 and Ra7 were added
to have the possibility of attenuating the input signal, and to terminate the input.

VCM_buf

Ca5Ca4

Vs

Rs

Ra7

Ra6

Ra1

Ra2

Ra5

Ba1

Ba2

Ca3

Ca4Ca1
1

2 3

5

1

2 3

5

* Replace a with h for channel H component names

To AD9257
channel A and H

Compensation
circuitry

Figure 5.36: Double balun configuration

5.6.2.5 Transformer configuration

The circuit that uses a transformer is connected to channel B in figure 5.32. Figure
5.37 shows the schematics of the circuit that uses a transformer convert from SED.
This circuit is the other circuit that is recommended by Analog devices to perform
SED-conversion for AD9257 [24, p. 19]. Ra5 and Ra6 were added to have the possibility
of attenuating the input signal, and to terminate the input.

68 5.6. AD9257 TESTBOARD

VCM_buf

Cb2Cb1

Vs

Rs

Rb6

Rb5

Rb3

Compensation
circuitry

Tb

VinB+

VinB-

Rb4

1

3 6

2

4

Figure 5.37: Transformer configuration

5.6.2.6 Two opamp configuration

The active circuit that uses two opamps is connected to channel C and G in figure 5.32.
Many different configurations of two opamps can perform SED-conversion. The circuit
shown in figure 5.38 matches the delay contribution for both outputs. Hence the phase
relationship between both output signals should be close to the ideal 180 degrees. Rc3
through Rc6 should be of equal value. Because of this, 1 % resistors should be used so to
keep the values closely matched. The gain of the entire circuit is set by the relationship
Rc2/Rc1. [50] It should be noted that this circuit does not output a true differential
signal. That is, setting the circuit gain to unity will double Vp−p of the input signal.

5.6.2.7 Fully differential opamp configuration

Circuits with fully-differential opamps are connected to channel D and E in figure 5.32.
Figures 5.39 and 5.40 shows the implemented circuits that use an FDO. It is mentioned
in more detail in section 3.4. This opamp is connected to channels D and E with slightly
different designs. Channel D can be used for both AC-coupled and DC-coupled inputs,
as the non-signal input can be connected to gnd, or VCM through jumper JPD1. Channel
E should primarily be AC-coupled since an offset voltage can not be applied to the
input of the non-signal input. Capacitors were added on the outputs in case it at some
stage is interesting to apply the common-mode voltage here. In this case, Vocm on the
opamps can be set to gnd through jumpers JPD2 and JPE1.

5.6.2.8 Clock circuitry

Figure 5.41 shows the circuitry that sources the sampling clock to AD9257. It was
decided to use two separate clock sources: One fixed-frequency on-board clock, and
one adjustable-frequency clock which was generated in the FPGA. How this is done
is explained in section 5.2.4. The clock is sent as LVDS to the testboard where it is
connected to one input of a 2:1 LVDS multiplexer. The on-board clock is generated by
a crystal. This has a single-ended output, and is therefore converted to a differential
LVDS signal in an LVDS buffer before it connects to the inputs of the multiplexer. The
output is connected to the clock inputs of AD9257. Two control signal are sent from the

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 69

VCM_buf

Cc3Cc2

Vs

Rs

Rc7

Rc8

Rc9

Compensation
circuitry

VinC+

VinC-

Opc

+
-
5

6

7

Opc
+
-

+5V

3

2

8

4

1

-5V

Rc1Cc1

Rc2

Rc3

Rc4

Rc5

Rc6

Cc4 Cc5

Cc6 Cc7

* Replace g with c for channel G component names

Figure 5.38: Dual opamp configuration

VCM_buf

Cd4Cd3

Vs

Rs

Rd11

Rd8

Rd7

Compensation
circuitry

VinD+

VinD-

Op1

+

-

+5V

2

3

13

16

Rd1Cd1

Rd2

Rd4

Cd7 Cd8

Vocm
Rd3

Rd10Rd9

Cd2

1
2
3

1
2
3

JPD1

JPD2

15

14

4

Cd5

Cd6

Rd6

Rd5

Cd12

Cd10

1

Figure 5.39: Fully differential opamp configuration for channel D

70 5.6. AD9257 TESTBOARD

VCM_buf

Ce4C33

Vs

Rs

Re11

Re8

Re7

Compensation
circuitry

VinE+

VinE-

Op1

+

-

+5V

6

7

9

12

Re1Ce1

Re2

Re4

Cd9 Cd11

Vocm
Re3

Re10Re9

Ce2

1
2
3

JPE1

11

10

8

Ce5

Ce6

Re6

Re5

Cd13

Cd10

5

Figure 5.40: Fully differential opamp configuration for channel E

FPGA. One signal enables/disables the on-board clock, and the other chooses which
clock is sourced to AD9257.

Rsel

3.3V

1 E/D

Gnd

Vdc

Output2

4

3

1

0

1

0 Clk+

Clk-

Sel1

En1

Sel0

En0

In0+

in0-

In1+

in1-

Vcc

LVDS_Buf

Out0+

Out0-

Out1+

Out1-

Rk1 Rk2

Rk3

Rk5
Ck5

Ck4Ck2

Ck3Ck1

5

1

2

4

3

5

2

16

3

4

6

7

1

15

10

11

13

14

8

Rk4
Ck6

From FPGA

Mux_sel

clk_en

Clk+

Clk-

To Ad9257

LVDS MUX

Clock

Figure 5.41: Clock circuitry

5.6.2.9 Voltage level translation

As mentioned in section 5.6.1.3, the voltage of the single-ended signals from SF2 do
not match the input voltage on AD9257. To mitigate this, the circuit in 5.42 is used
to shift the voltage levels on the SPI signals. PDWN and SYNC were mentioned section
3.3.1, and require the same treatment. LT1 and LT2 are voltage-level converters. They
convert an input from one voltage domain to an output in a different voltage domain.
All unidirectional signals are connected through LT2 which is configured so that it only
convert inputs from the FPGA 3.3 V domain to the AD9257 1.8 V domain. It has
one control signal: OE. When this is high, all outputs are high-impedance. It must be
set low for normal operation. SDIO is connected through LT1. This level shifter must
be bidirectional. Control signal DIR chooses the direction of transfer. This signal is

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 71

1.8V

3 A

LT1

Dir

VccA

5

1

4

6

B

VccB

1

LT2

1Dir

VccA
2

3

16VccB

2Dir

1OE~

2OE~

1A1

1A2

2A1

2A2

1B1

1B2

2B1

2B2

15

14

4

5

6

7

13

12

11

10

CL11

3.3V

CL12

CL13

CL14

RL11RL14RL12RL13

SDIO

Oe_en

OE

SCLK

CSB

PDWN

SYNC

From FPGA

RL9

CL9

RL10

CL10

RL4

CL4

RL3

CL3

RL2

CL2

RL1

CL1

GndA GndB

GndA GndB

RL8

CL8

RL7

CL7

RL6

CL6CL5

SDIO

SCLK

CSB

PDWN

SYNC

To AD9257

RL5

Figure 5.42: Voltage level translation circuitry

generated in the MSS SPI, and is the same signal that is used on the bidirectional
buffers for din, dout, and SDIO in SF2.

The inputs of AD9257 have internal pull-down or pull-up resistors. LT1 and LT2 drives
or sink the output. This should not pose any problems. The resistors and capacitors in
the schematic are pull-up/down-, compensation-, and decoupling- components. These
are included based on recommendations in the datasheets.

5.6.3 PCB layout

The design and layout of the testboard PCB as well as the design of the power supply
were performed by senior engineers4 at the department of physics and technology. The
resulting board has 4 layers. All signal paths are located at the top or bottom layer.
The middle layers are ground and power planes. The schematics for the top and bottom
layer are included in Appendix D: AD9257 testboard extras.

5.6.4 1st board configuration

The first configuration of the board did not utilize all input channels. Only components
for channel D, E, and F in figure 5.32 are assembled on the board. The unused channel
inputs of AD9257 are tied to the buffered AD9257 VCM output. The assembly was
performed by a senior engineer5 at the department of physics and technology. All
testboard component values are listed in Appendix D: AD9257 testboard extras. Figure
5.43 shows the board after the components were assembled.

4Layout by Bilal Hasan Qureshi (bilal.qureshi@uib.no). Supervised by Shiming Yang (shim-
ing.yang@uib.no)

5Components were assembled by Per Heradstveit

72 5.6. AD9257 TESTBOARD

(a) Testboard top side

(b) Testboard bottom side

Figure 5.43: Post-assembly testboard

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 73

The component values in the FDO circuitry were calculated the way it is recommended in
the datasheet of the FDO [35]. The circuit was simulated in LTspice with the calculated
values before implementation. A thorough analysis was however not performed. A spice
model6 of the opamp was used in the simulation. Figure Simulation of FDO in LTspice
shows the result of simulating with AC-coupled front-end. A transient analysis was
performed with a 2.4 VAMP , 1 MHz source. The gain of the FDO is set so that the
differential output voltage was approximately -1≤ Vdiff ≤+1.

(a) Circuit for AC-coupled simulation

(b) Transient analysis

Figure 5.44: Simulation of FDO in LTspice

5.7 Embedded software

Software was written in order to utilize and access the hardware components in the
SoCs that are presented in sections 5.3, 5.4 and 5.5. The UART enables connection
to a host computer, where the content sent from the SoC can be read by a terminal
that connects to the UART through USB, and vise versa. The software was designed in
a way that provides a user interface in the terminal. Menu choices are entered from
the keyboard on the computer. These menu choices enable control of the hardware
components in the SoC, such as data transfer by the MSS SPI, or reading the captured
data in the readout logic. All the software functionality that was made is explained in
the remaining section.

Figure 5.45 shows the high-level hierarchy of the software. Microsemi provides embedded
software for SF2 MSS peripherals. Custom drivers had to be made for the interfaces
to AD9257_readout_wrap and PLL_10MHz. They make it possible to write too, or read

6THS4522IPW. Downloaded from www.farnell.com

74 5.7. EMBEDDED SOFTWARE

Application software

Drivers

HAL

HW wrapper

MSS peripherals

Fabric peripherals

Figure 5.45: Software hierarchy

from the hardware registers. Table 5.3 lists the drivers that were created for the two
modules. The drivers are simply a pointer to the base address of the peripheral, where
a specific register offset is added. Offsets for the PLL are predefined [46], while the
offsets for the readout wrapper are defined in AD9257_readout_wrap_pkg.vhd.

Multiple functions were made for this project. These are listed in table 5.4. Note that
the function parameters are excluded. All functions are defined in one file. The main
menu functions contain big-picture functionality. An example is test_board_control().
This function has underlying functionality where amongst others control signals can be
toggled, and the frequency of the dynamic PLL can be altered.

Support functions were made to increase readability of the code main menu functions,
and for frequently used functionality. Examples are To_hex() and to_asci(). These
are used to convert integers to ASCII, and vice versa. This was necessary because
characters received from the host computer were ASCII-encoded. Some functionality
required the integer value as they represented hex-numbers. Similarly, integer values
such as the readout data had to be converted to ASCII to display the correct values
in the terminal. Another example is set_output pattern(). When this function is
called, data output in AD9257 is set via the SPI interface. The function polls the
readout-data-control register in AD9257_readout_wrap. When the register signals that
new data has been captured, it reads the readout-data-registers for the channels that
reported new data. The data is then compared against the pattern that was set as
output data in AD9257, and prints the results to the host computer.

To apply a hierarchy to the design, all functionality is defined in the file func_and_const.h.
The top level file main.c is a short menu where the functionality of each menu choice is
briefly explained. Table 5.5 shows the two highest levels of the software functionality.
Note that the names in the software differ slightly from the names in the table.

SPI functionality enables the user to read and write to every address defined for AD9257
[24]. When reading, the content is displayed in the terminal window. When writing, the
content is read back, and displayed after the new content has been written. Readout
wrapper register access enables manual access to all the registers AD9257_readout_wrap.
E.g. readout data can be read, or test board control signals can be toggled.

Readout functionality has an underlying menu. Read all channels reads the latest content

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 75

Table 5.3: Drivers
_xx() is a placeholder for the readout-channel numbers.
_yy() is a placeholder for rd and wr.

File name Functions

AD9257_readout_wrap_func.h

Read
channel_yy()
error_data_yy()
irr_reg()
id()
control_reg()

Write
clear_irr()
sync_enable()
blink()
manual_read()
new_readout_en()
pdwn_enable()
LT2_oe()
mux_clk_sel()
clk_en()
sw_reset()

dynamic_pll_func.h

PLL register rd/wr
FCCC_RFMUX_CR_xx()
FCCC_RFDIV_CR_xx()
FCCC_FBMUX_CR_xx()
FCCC_FBDIV_CR0_xx()
FCCC_FBDIV_CR1_xx()
FCCC_NGMUX0_CR0_xx()
FCCC_NGMUX0_CR1_xx()
FCCC_GPMUX0_CR_xx()
FCCC_GPD0_CR_xx()
FCCC_PLL_CR0_xx()
FCCC_PLL_CR1_xx()
FCCC_PLL_CR2_xx()
FCCC_PLL_CR3_xx()
FCCC_PLL_CR4_xx()
FCCC_PLL_CR5_xx()
FCCC_PLL_CR6_xx()
FCCC_GPDS_SYNC_CR_xx()
FCCC_PLL_CR7_xx()
FCCC_PLL_CR8_xx()
FCCC_PLL_CR9_xx()
FCCC_PLL_CR10_xx()
FCCC_GPD0_SYNC_CR_xx()
FCCC_PDLY_CR_xx()

76 5.7. EMBEDDED SOFTWARE

Table 5.4: Application software

File name Functions

func_and_const.h

Main menu functions
AD9257_SPI_memory_rd_wr()
Wrapper_register_access()
AD9257_readout_func()
test_board_control()
test_sequencer()

Support functions
to_hex()
to_asci()
nibble_to_asci()
readout_to_uart()
set_output_pattern()
set_user_patt()
pseudo_rand_test()
poll_irr_reg()
spi_write()
spi_read()
compare_data()

Table 5.5: Software functionality

main.c func_and_const.h

SPI functionality 1 Read or write to addresses defined
in AD9257 datasheet

Readout wrapper register access 1 Read or write to addresses defined
in AD9257_readout_wrap_pkg.vhd

Readout functionality
1 Read all channels
2 Set ADC output pattern and confirm readout
3 Monitor readout data

Test-board control

1 Check status of control signals
2 Toggle control signals
3 Run board start-up procedure
4 Run board shut-down procedure
5 Send clock from PLL to AD9257

Test sequencer 1 Run test similar to test in Modelsim

CHAPTER 5. TEST AND VERIFICATION SYSTEMS 77

in the readout registers. Set ADC output pattern and confirm readout enables the user
to set the output patterns in the model/AD9257. The user can set the patterns that
are built into the model, or set user-defined patterns. The user-defined patterns can
be entered manually via the terminal, or generated by a pseudo-random generator. In
both cases, two patterns are made and stored in the model/AD9257. When they are
equal, they remain as output data. When unequal, the output data is set to all-zeroes
after one transfer. When a pseudo-random generator is chosen, the user must enter a
number of patterns to generate. The function will then generate the specified number of
patterns, set them as output data, and test the correctness of the readout logic. When
the number is reached, the number of errors is printed.

For the mentioned readout patterns, a test is performed to verify the readout data.
Once, the output pattern is set, control_reg in AD9257_readout_wrap is polled for a
certain amount of time. If no new data is detected, an error message is printed. If one
or more channels report new data, the content of all channels is read and compared
against the output pattern that was set. Channel-specific messages are then printed,
telling the user if the readout data is correct or not.

Once the menu choice Set ADC output pattern and confirm readout has been entered,
an error counter will track the number of errors until the user exits to the main menu.
Thus, multiple patterns can be tested, while keeping track of the total amount of errors.
If a single pattern is previously set while in the function, the error register explained in
section 5.2.3 is polled. If readout data changes unexpectedly, an error message will be
printed, as well as added to the error counter. As mentioned before, this functionality
would not work if the input data changes back-to-back more than once. This is the
reason why the pattern is set to all-zeroes after one iteration of unequal patterns. As
long as the user remains in this function, all readouts, correct or incorrect, can be logged
by storing the terminal session.

The final choice in Readout functionality, monitor readout data provides “real-time”
monitoring of the readout data. Reading all the channels before new data has arrived
is not possible in this system, so the data shown is not always the first specimen of
new data. This is however tolerable, since this is not the purpose of the function. The
purpose is to be able to see the data on each channel continuously. When the analog
inputs of the ADC are used, checking if the sampled data corresponds with the applied
voltage without having to manually read the output registers over and over again is
practical. The user can choose to print all channels on one line, or in a list. The latter
has to choices: read and print as fast as possible, or print in a readable manner.

Test-board control contains options for control and status of the circuit board. The
control signals used on the circuit board can be toggled and checked manually. A
start-up and shut-down procedure is also included, where all of the control signals are
set to correct states. Furthermore, this is also where the clock frequency of the CCC
that generate the AD9257 testboard sample clock is changed. The user can enter the
register values presented in section 5.2.4 in the terminal window.

The final menu choice is the test sequencer. This was made so that a test similar to
the tests used in the computer-aided test systems could be executed on the FPGA-
implemented systems. The tests in this test sequencer are explained in chapter 6. This
option should not be used on the actual AD9257, as certain bits in its internal memory
should not be overwritten.

CHAPTER 6

Tests and results

This chapter describes the tests that were performed on all of the different systems
described in chapter 5. The results from the testing and verification that was done in
this thesis are also presented. Chapter 4 and chapter 5 should be read before this chapter
in order to understand the functionality that is tested, and the structures of the test and
verification systems.

6.1 Tests

Computer-aided testing was done in Modelsim. The VHDL testbenches contain a test
sequencer where all tests are performed sequentially. Once the testing is complete,
a log of the tests and the results is made. If any tests fail, it is reported in the log.
Physical testing is done by enabling the tests described in 5.7 from the terminal on a
host computer. By logging the terminal session, the tests and results can be stored.

A verification plan was made for the readout logic and SPI master in an early stage
of the thesis. This is described in Appendix A: Method: “A.4: Verification”. As the
project progressed, other components were added to the system. Thus, they are not
included in the original verification plan. The following sections describe the tests that
were made to verify the readout logic, SPI-master, dynamic PLL and testboard control
signals.

6.1.1 Computer-aided test sequence

The test sequence implemented in VHDL for the computer-aided test systems mostly
comply the verification plan that is described in appendix A.4: Verification. In addition,
tests were implemented for the dynamic PLL and testboard control signals. The test
sequencer can be divided into different main sections. By selecting the highest level of
verbosity control, the generated log after a test equals the sections below. Lower levels
result in a more detailed log, which is helpful during debugging. A description of the
tests is given in the following sub-sections.

78

CHAPTER 6. TESTS AND RESULTS 79

6.1.1.1 ABP3 defaults

Here, the default values on the APB3-bus inputs to AD9257_readout_wrap, coreSPI
and PLL_10MHz are checked. All inputs should initially be set to all-zeroes. Any errors
result in error messages.

6.1.1.2 Dynamic CCC

For this component, it was necessary to test that the output frequencies changed, and
was held at the intended frequency after a change was initiated. The tests for the
dynamic CCC starts by checking that the default register values in PLL_10MHz are the
same as the values that are listed in the configuration file. Next, the output clock of the
CCC is changed to 12 MHz, 30 MHz and then back to its default frequency 10 MHz.
After the register content for a specific frequency has been written, the sequencer waits
until the lock signal is asserted. Once this is true, the sequencer can continue with the
next frequency.

Errors in the default value test results in messages that notes the deviation. Clock
frequencies must be checked manually in the waveguide. UVVM utility library contains
functionality where pulse trains can be checked, but this was not implemented. It should
also be noted that if the division factors in the CCC are improperly set, a built-in
feature in the behavioral model of the PLL prints a message in the Modelsim console
window.

6.1.1.3 Testboard control signals

It was necessary to test that the control signals were asserted by writing to their specific
addresses in AD9257_readout_wrap. All control signals are part of a multiple-bit control
register. The default value of this register is checked, before the signals are asserted,
checked, deasserted and checked again. The signals are asserted for 4 periods of the
system clock before they are deasserted again. Any errors result in error messages.

6.1.1.4 AD9257_readout_wrap control signals

These signals are also a part of the control register that was mentioned in 6.1.1.3. These
signals are used to control the error-detection circuitry in AD9257_readout_wrap. This
was mentioned in section 5.2.3. These signals are only asserted for one period of the
system clock, and are only accessible through the APB3 bus. Their correctness must
therefore be manually checked in the waveguide.

6.1.1.5 SPI master

As mentioned in 4.2.7, SPI protocol Motorola mode 0 had to be tested to assure that
this would work against AD9257. CoreSPI was configured to meet the specifications that
were set for the SPI master. Testing here starts by checking readable register-defaults in
the coreSPI component. Content is then written to read/write-registers and read back
for confirmation. Next, every address defined in the datasheet of AD9257 is written

80 6.1. TESTS

and read. Selected addresses are tested with random data, and corner cases all-zeroes
and all-ones. The number of random data iterations is specified by changing a generic
in the top of the testbench. For all other addresses, one write and read is done. The
data that is written to each of these is different. According to the verification plan in
appendix A.4: Verification, every address should have been tested with random data
and corner cases, but it was chosen to deviate from this requirement. Any errors result
in error messages. Any error would imply a problem with either the transfer protocol,
the configuration of the SPI master, or with the model of AD9257.

6.1.1.6 Readout built-in patterns

This part contains the first tests of the readout logic, which is the main functionality that
needs to be tested. Here, all of the readout patterns that are stored in the model are set
as output patterns. Amongst the patterns are all-zeroes, all-ones and alternating-ones
and -zeroes. The output patterns are changed by writing to a specific address via
coreSPI. The written data is immediately read back to confirm correct SPI transfer. The
readout-data registers for each channel is then read via the APB3-bus, and compared
to the pattern that was set. Note that between each new pattern, the error-detecting
circuitry in AD9257_readout_wrap must be notified. As explained in section 5.2.3, if
this is not done, the readout data will latch into error-data registers.

A loop that resets the model and readout logic multiple times at different points in
the readout cycle is also included here. This was included to test how the system
responded. The number of iterations is specified by changing a generic in the testbench.
A channel-specific error message is generated if readout data deviates from the test
pattern that was set.

6.1.1.7 Unequal user-defined fixed pattern

Here, two unequal patterns are stored in the model memory via coreSPI. Following this,
coreSPI is used to set these patterns as back-to-back, user-defined output data from the
model. Once the patterns have been set as output data, the sequencer will wait until at
least one channel have received new data. This is done by polling the new-data control
register. The channel specific readout-data registers are then read via the APB3-bus
and compared against the first pattern

Since the second pattern was read by the readout logic before the error-detecting circuitry
was notified, this pattern is latched into the channel specific error-data registers. Thus,
the second pattern can be checked by reading these registers via the APB3-bus and
comparing against the second pattern. However, before data is read, the error-data
control register is polled until it signals error data for at least one channel. This also
checks that the error detecting circuitry works as it should. A channel-specific error
message is generated if readout data deviates from the pattern that was set.

6.1.1.8 Equal user-defined fixed pattern

In this test, equal patterns are stored in the model memory via coreSPI. Following this,
coreSPI is used to set one pattern as output data from the model. Once this is done,

CHAPTER 6. TESTS AND RESULTS 81

the sequencer will wait until at least one channel has received new data. This is done
by polling the new-data control register. The channel specific readout-data registers
are then read via the APB3-bus, and compared against the pattern. A channel-specific
error message is generated if readout data deviates from the pattern that was set.

6.1.1.9 Equal random user-defined patterns

The method of setting output data, and checking the readout data is equal to what is
described in section 6.1.1.8. The difference is that the patterns are pseudo-randomly
generated before they are stored in the model memory. This is all confined in a loop. A
generic in the top of the testbench the number of iterations of this test. In this loop,
the error-data control register is polled after each iteration to see if data is latched into
the error-data register. A commented section can be uncommented to test if this polling
works as intended, i.e. if data changes unexpectedly in a channel, an error message
should be generated.

6.1.1.10 Unequal random user-defined patterns

This test is the combination of what is described in sections 6.1.1.7 and 6.1.1.9. That is,
unequal, pseudo-random patterns are set as output patterns in the model. A generic
controls the number of iterations.

6.1.2 Physical test sequence

6.1.2.1 AD9257 model

The test sequence implemented in software complies with verification plan in appendix
7.1. Opposed to the test sequence explained in 6.1.1 on page 78, this was not updated to
include the functionality that was added at a later stage. Checking of default bus-input
values and default register values were also excluded. The focus here was to check
readout and SPI master functionality. Thus, the tests using random data, built-in
patterns, and equal and unequal user-defined patters the same. In this sequencer,
all memory addresses defined for AD9257 was written too with corner case data and
pseudo-random data,

Functionality that creates log was made. This was inspired by the log that is generated
with the functionality in Bitvis UVVM library in the computer-aided tests. Verbosity
control is not included. Thus, what is tested, and correct and incorrect results are
printed in the terminal while the test is running. The total number of errors for SPI
and likewise for readout is also printed once the test is complete.

Though not included in the test sequencer, the circuit board control signals can be
verified manually by altering and checking their state as explained in . They are also
connected to LEDs on the SF2-dev-board for visual inspection. The output frequency
of the dynamic CCC PLL_10MHz is connected to external jumpers, and must be verified
by measuring with an oscilloscope.

82 6.2. RESULTS

6.1.2.2 AD9257 testboard

As mentioned in section 5.7, the software test sequencer should not be used against the
actual AD9257 on the testboard. Instead, the menu choice for readout functionality
where all readout errors are tracked and logged can be used. At this stage in the design
process, the control signals and output clock are in actual use. Thus, the correctness of
these signals must have been verified at a previous stage. However, they can still be
verified as explained in the previous sub-section 6.1.2.1.

6.2 Results

The following sections present the results from the testing that was done in this thesis.
Appendix C.2: Simulating in Modelsim explains how the different tests are started
in Modelsim, and what must be done to setup and test the different systems on the
SF2-dev-board.

6.2.1 Custom SPI-master

The custom SPI-master that was discussed in 4.2.3 was made at an early design stage,
and was quickly replaced by the other SPI-master methods. It was however tested in
a testbench where Bitvis UVVM utility library was used as the framework. The test
performed were to shift 24, 32 and 40 bits to a simple SPI-slave. After data was written
to the slave, it was read back, and compared against the written data. No errors were
reported at the end of the test. However, some alterations must be done before this
will work against the model of AD9257. This master transfers all bits without stalling
between bytes, and a model of a bidirectional I/O which connects to SPI ports din,
dout and sdio is implemented in the component. If it at some point becomes interesting
to use a custom SPI, this component would be a good starting point.

6.2.2 Readout methods

Some of the readout methods that were discussed in section 4.1 were tested in addition
to DDR-fabric, which was used in all other systems. The additional methods are
DDR-MSIO where the data and clock signals are directly connected, and DDR-MSIO
where DCO is inverted by an inverter. A separate testbench system was not made
for this. Instead, it was instantiated in the readout wrapper and compiled when it
was simulated in Modelsim. This is not an advisable verification method, but creating
a separate testbench was not prioritized. The results, however, confirmed that the
DDR-MSIO with an inverted DCO works, while the DDR-MSIO where DCO is used
directly failed on each readout.

6.2.3 Development testbench

The development testbench confirmed that the digital designs, and system setup, behaved
as intended. Hence, no errors were reported. All testing that is done for the readout
logic, and for the SPI master is thus verified. Also, all the tests that required manual

CHAPTER 6. TESTS AND RESULTS 83

Figure 6.1: Testbench summary after test

verification in the Modelsim waveguide were deemed to work as intended. This concerns
the clock frequencies of the dynamic PLL, and the control signals. Some tests did
however return unexpected results. Figure 6.1 shows the summary in the log from the
last performed test in this system. Note that the number of iterations has a limit. The
frequency of DCO, causes a period where the number is irrational. Even with maximum
time resolution in Modelsim, the edges will be skewed compared to FCO and the data.
Thus, the readout will fail if the simulation runs long enough.

The TB_warning concerns Bitvis logging of time stamps, and can be neglected. The
reported Note concerns reading default register data in PLL_10MHz, and in coreSPI.
Note was set as the alert level for failed tests that was deemed to be of no concern. The
following sub-sections discuss the reason behind the reported Notes. These notes occur
in all the computer based test-systems that were made. Some other issues were present
in coreSPI. These are also mentioned below.

6.2.3.1 Dynamic CCC

The reported notes were caused by two reasons. The first reason is that the PLL only
uses the eight least significant bits of the data bus. The APB3-interface to the instance
was 32-bits. A selection from the log shows the first reported note. All bits that were
not driven was set to high impedance ’Z’ in the bus handler. The second reason is
caused by the illegal values represented by ’X’. Some bits that should be ’0’ have this
value. Otherwise, the 8 bits would have been correct. This can happen if a signal is not
given an initial value, or if it is driven simultaneously by two sources. PLL_10MHz was
reset before any tests were made, and the read-bus was not driven by any other sources.
No further investigation was done, as the default output frequency of the component is
correct, and as all configuration changes worked.

84 6.2. RESULTS

*** NOTE #1 ***
UVVM: 251.785773 ns APB BFM
UVVM: apb_check(A:x"04", x"0B") => Failed. slv Was x’ZZZZZZXB
(b"ZZZZZZZZZZZZZZZZZZZZZZZZXXX01011")’. Expected x’B’
UVVM: Checking default FCCC_RFMUX_CR (RFMUX configuration register)
value

6.2.3.2 SPI master

The reported notes were caused by wrong default values in the registers compared to the
values in the coreSPI manual. Some values were simply different, some were undefined,
while some were in an illegal state. The core did however work for its purpose of
confirming that SPI protocol Motorola mode 0 works as intended. Some other problems
with the core was found. A command register with the purpose of resetting the TX-
and RX- FIFOs does not seem to work. Writing to it had no effect. This caused a
problem since the FIFOs needed to be cleared after each transfer. This was mitigated
by asserting the reset signal of the core between each transfer. This did not change
the configuration of the core. No further analysis of the problem was made, so it is
possible that something was misunderstood. This must however be done if this core
should become the SPI master of choice. It should also be mentioned that Microsemi
has made a new version of the core, but this was not tested.

6.2.4 FPGA-internal SoC

As previously shown in section 5.3, testbenches were made where pre-synthesis-, post-
synthesis-, and post-layout- VHDL were tested. Furthermore, when the SoC was
implemented on the SF2-dev-board, testing was continued with the software test
sequencer, and by capturing different patterns over time, while error events were
monitored. Table 6.1 lists the results. The systems marked valid reported no errors for
the tests presented in sections 6.1.1 and 6.1.2.1. As shown, the post-synthesis system
did not work. This is discussed in section 6.2.6.

Table 6.1: Results of FPGA-internal tests

Test system Result
Pre-synthesis Valid

Post-synthesis Not valid

Post-layout Valid

Soc Valid

6.2.5 FPGA-loopback SoC

Table 6.2 lists the results of the loopback systems. For this design, the post-synthesis
testing worked, while post-layout failed. This was also the case for the test explained in
section 6.2.6. Thus, this is discussed there. The tests performed in the SoC are marked

CHAPTER 6. TESTS AND RESULTS 85

Table 6.2: Results of FPGA-loopback tests

Test system Result
Pre-synthesis Valid

Post-synthesis Valid

Post-layout Not valid

Soc Semi-valid

semi-valid. The reason for this is that only the SPI-interface worked when it was tested.
A selection of the test-sequencer log is shown below. The readout data seemed to be
skewed compared to the output pattern from the model. The reason is believed to be
caused by the additional delays on the outputs of the CCC that generated DCO and FCO.
This was mentioned in section 5.3.2. At the time of testing, an attempt to correct this
was not prioritized.

Channel 0:
Readout data 0x02aa != test pattern 0x2aaa => ERROR!
Channel 0:
Readout data 0x0555 != test pattern 0x1555 => ERROR!

The main reason behind the implementation of this system on the SF2-dev-board to
verify that the output-enable signal from the MSS SPI only was asserted when data
was written to the slave. This was primarily questioned because this was not the case
for coreSPI. For this core, the signal was asserted when both writing and reading to
the slave. As this signal is used to control the direction of the bidirectional I/O, and
the voltage-level translator where SDIO passes through, it had to be verified. The test
sequencer was configured to test SPI with 99 pseudo random patterns in addition to
corner cases for each address. As shown in figure 6.2, no errors were reported. If
the signal had been asserted for both read and write, SDIO would have been driven
simultaneously by the master and the slave. A correct readout is unlikely if this was
the case. Therefore, it was concluded that the output-enable signal works as intended.

6.2.6 AD9257 testboard SoC & testboard

All test results for this system is shown in table 6.3.

Table 6.3: Results of AD9257 testboard SoC tests

Test system Result
Pre-synthesis Valid

Post-synthesis Valid

Post-layout Not valid

Soc Not properly verified

Testboard Currently not operational

86 6.2. RESULTS

(a) Setting number of pseudo-random iterations

(b) Test summary

Figure 6.2: Physical test sequecer for FPGA-loopback SoC

The pre-synthesis and post-synthesis testing for AD9257 testboard SoC reported no
errors. The post-layout system, however, did not work. This was also the case for the
FPGA loopback design, while in the FPGA internal design, it did not work for the
post-synthesis system. Some effort was put into finding the cause behind this, but it
was not discovered. The problem for each failed system was that certain signals did
not behave as they should. The only difference between the different testbenches for
each design stage was that the instance io_top_tb was replaced with the files that were
generated in Libero SoC. Thus, it should not be caused by incorrect signal connections.
It is believed that the way the top levels were created, and how they were added to Libero
SoC before it was synthesized and placed and routed, caused the problem. The signals
that should have been connected to the MSS, were instead added as unconstrained
ports. It is a chance that the ports were neglected by the tools because of this. Since
pre-synthesis testing was verified, which was the case for the FPGA-internal SoC, it is
likely that it will work as intended when it is implemented.

Before the testboard was connected to the dev-board, measurements were performed to
check if the board was operational. For the results mentioned, all DC-voltages were
measured with a multimeter. AC-signals were measured with an oscilloscope. The
voltage supplies pictured in figure 7.5, dropped voltage over the resistors that are in
series with the outputs. To mitigate this, they were replaced by 0 Ω resistors. The

CHAPTER 6. TESTS AND RESULTS 87

Figure 6.3: Testboard (top) connected to SF2-dev-board (bottom) where the SoC is
implemented on the FPGA.

VCM_buf voltage was then measured on the jumpers in figure 5.35. This was confirmed
to be about 0.9 V, which is the correct value. As this voltage is delivered by the ADC
through a buffer, it confirmed that these devices receive power. Next, the common-mode
voltage on one of the differential outputs from AD9257 was measured to be about 1.3
V. This is correct in regards to the voltage listed in the datasheet [24].

Next, the testboard was connected to the SF2-dev board where the SoC was implemented.
The setup is displayed in figure 6.3. A Gnd connection was made by connecting the
channel F SMA connector to a SMA connector on the dev-board. The first test was
to read the device ID from the internal memory in AD9257 via the SPI-interface. No
data was returned. Next, the control signals that enable the on-board clock, and switch
between the clock inputs on the LVDS multiplexer, were measured on the testboard.
Both were confirmed to operate as intended. I.e, when they were toggled from the user
interface, the voltages switched to correct values. This also confirmed that the gnd
connection was valid.

The last test that was performed was a measurement of the input clock to AD9257. Only
one of the signals of the differential pair was measured. The signal looked random, and
not like a clock signal. However, if the control signal to the clock was set to disable the
clock, the signal disappeared. This means that the signal that was measured originated
from the on-board-clock, and was put on the output of the LVDS multiplexer. This
also means that the signal propagated through the LVDS buffer.

When the clock was measured, the readout monitoring functionality was enabled in the
user interface. While measuring, the readout data changed sporadically. This indicates
that the ADC transferred fixed data when it was not disturbed. When only one signal
of the differential clock was measured, the phase relationship of the differential signals
might have been changed due to the probe impedance. This can explain why the output
data changed. When no measurements were performed, the readout data were at a
fixed value. This did not change even when the wires between the boards were touched.
Unfortunately, the initial data output before the measurements was not checked. There
was not enough time to perform any more measurements. A test plan has however been
devised for further measurments on the testboard. This is located in D.1: Testboard
test plan.

CHAPTER 7

Discussion & conclusion

In this thesis, an overview of all the functionality in the DEEP measurement system was
made as it had not been done prior to this thesis. It will be valuable for the future work
in the DEEP project as it visualizes the system, and as it discusses the measurement
flow from start to finish. After a thorough search for an applicable ADC, AD9257-EP
is presented as a potential candidate. Possible ADC control- and readout- interfaces
between it and the FPGA-candidates were discussed in relationship to the measurement
system. The chosen methods will depend on the FPGA that will be used in this project.
All interfaces of interest were at some level realized and tested. Hence, the work done
in this thesis has provided solutions that are independent of the final choice of FPGA.

The ADC in question is a high-reliability device, but it is not qualified for space.
Therefore, it must be upscreened to higher reliability requirements before any conclusion
can be made. If it is proven to work, it is a great alternative due to the high number of
channels, serial outputs, and low power consumption. In order to qualify the ADC, an
evaluation system composed of an FPGA SoC, and a testboard that contains the ADC
in question were designed and realized. The system is controlled and monitored from a
user interface on a host computer. Functionality of the system includes controlling and
configuring the ADC, monitoring the readout data, board component-control, generation
of an adjustable sample-clock, and automatic verification of readout data. The testboard
also contains circuitry that allows testing of various single-end-to-differential-conversion
methods. This system can be used to verify that the interfaces that have been designed
work against the actual ADC. It can be used to characterize the ADC by applying
different analog input signals. This also includes characterizing the different methods of
SED-conversion. It can be used to monitor the ADC while it undergoes environmental
stress-testing, such as radiation testing, and temperature testing. As the current system
runs on a SmartFusion2 development board, it can also be used during environmental
testing of the FPGA.

Proper verification before implementation was of great focus in this thesis. Computer-
aided- and physical- test-and-verification-systems were designed and used from the
start of the design phase. A synthesizable model of the ADC was designed so that the
test environment was close to the real-life application in all verification stages. The
structure of the testbench is a model of the SoC that is implemented on the FPGA,
as a test sequencer in combination with BFMs act as the software-CPU system that is

88

CHAPTER 7. DISCUSSION & CONCLUSION 89

implemented. All computer-aided testbenches are simulated in Modelsim by running
scripts. Thus, verification before implementation is fully automated. A log containing
the results of the test is generated once the test is finished. Evaluating the designs, and
potential future changes are because of this a simple process. Programming files for the
hardware that must be implemented on the SF2-dev-board are also provided along with
detailed descriptions on how the designs can be implemented and tested. The information
that is printed in the user interface when testing in the physical testbenches is presented
in a similar manner as the computer-aided logs for easy comparison. A verification plan
was made at the start of the design phase. The combined testing confirmes that the
readout- and control- interfaces, as well as the other included functionality in the SoC
work as intended.

Testing for either post-synthesis and post-layout failed for all systems. The method
chosen for testing by removing the MSS interferes with the system. When the post-
VHDLs were made, the wires from the MSS had to be interpreted as FPGA I/Os
instead of internal signals. Thus, the design was not equal to the implemented design.
For post-synthesis, this should not have a great impact, as the purpose of this test is
to confirm that the VHDL-functional code is converted to vendor-specific cells while
retaining the same functionality. For post-layout, however, this means that the physical
structure on the FPGA changes. Thus, testing this with timing information would
not give accurate results. For this reason, this step was not performed for any of the
designs. In hindsight, the designs should have been implemented after the pre-synthesis
verification. If they had not worked, post-synthesis and post-layout simulation could
have been performed.

The testbenches have some small issues that should be mitigated. Because DCO and the
system clock have their period represented by an irrational number, their relationship
with each other, and FCO will change over time. One way could be to generate a CCC
component like the one that was used in the designs and implement this in the testbench.
Another option is to implement skew-correction functionality in the clock generation
model that was designed. The pseudo-random generator used in the software random
tests seems to be limited. During SPI testing in the FPGA-loopback project, many of
the same patterns appeared when the log was evaluated. It should also be revised if the
test patterns that have been used provide a sufficient fault coverage.

There was not enough time to properly test the final system. Some initial measurements
show that the first version of the board has the potential of being fully operational. It
powers on, a sample clock is present, and certain control signals from the SoC were
confirmed. The ADC also generated output data when the sample clock was measured.
The ADC did not return data when the internal memory of the ADC was read. Thus,
the control interface and its belonging testboard circuitry must be checked. A test plan
for further testing is made, and is included in D.1: Testboard test plan. If the final
system is operational, it can be used to perform further testing of the AD9257-EP.

If the ADC is proven to not be suitable for the environment, a new ADC must be found.
In any case, the discussions regarding the Microsemi FPGA technology for readout and
control still remain valid. Also, the designs, design structure, and the test methodology
provide a basis that can be used further in the project. The VHDL designs are properly
documented, both by comments in the VHDL files, and by the structural schematics
that are presented in this thesis. Thus, the existing designs can be modified to work
with other ADCs. The testbenches can also easily be modified to fit new designs.

90 Appendices

7.1 Future work

Before any decision can be made about AD9257-EP, it must be upscreened. Testing
how it operates in a radiation environment, i.e. testing how sensitive it is to SEE, and
the radiation dose it can handle must be performed. SEE is important to test since
it can alter the configuration memory of the ADC. The total dose will determine if
it can operate throughout the duration of the project. If SEE is an issue, it must be
determined if rewriting the configuration memory often can result in reliable operation.
Using the SPI ports can, however, degrade the converter performance [24]. Therefore it
must be determined if this is acceptable.
The qualification data from when it was evaluated by the vendor must be evaluated
so that the additional testing that must be done can be determined. E.g. it must be
determined if the temperature cycling testing is sufficient in regards to the temperature
cycling it will experience in the LEO environment. It must be determined if the plastic
package can be used, since e.g. outgassing might be a problem if there are optical
systems on the satellite. Mitigation techniques for plastic packages in a vacuum must
be investigated. It should also be looked into if the chip can be delivered without the
plastic package so that it can, if possible, be packed in a ceramic or metal package.
Vibration testing must be done to determine if the leadless package style handles the
vibrations during launch.
If it is deemed to be reliable enough, testing of the readout and control interfaces should
continue. Which FPGA that will be used should be determined, so that a firm decision
can be made on how the SPI-master will be implemented. If the inclusion of MSS brings
other advantages, it is considered as the best alternative. Once the CSA-and-shaper
has been determined, if SED-conversion is required, the method of achieving this must
be firmly decided. Most likely, the deciding factors will be if the noise that the active
devices contributes is acceptable, and if the low frequency response of the passive devices
is acceptable. If the testboard is functional, it can be used to characterize the different
methods.
Should the AD9257-EP be determined to not be reliable enough for this project, an
alternative must be found. It is possible that other non-space devices than the ones that
were evaluated in this thesis exist or were made available in the midst of this thesis. If
not, space qualified devices must be looked at. If no alternatives are found, the method
of digitizing the sensor data must be reevaluated. Should however another ADC be
found, it will be necessary to modify the VHDL interfaces to fit the new ADC.
As for the other parts of the measurement system, the circuit board components must
be specified. The functionality that will be implemented on the FPGA, must also be
determined. It must be determined if it is possible to implement everything that was
presented in section 2.3 with the number of available programmable blocks and DSPs
in the FPGA that is chosen. As triple majority voting probably must be used for SEU
mitigation, this will, depending on the method of implementing it, reduce the number of
available blocks by a factor of three. Error detecting and correcting codes, and possibly
scrubbing, must also be used for the memories. Another aspect of what to implement,
is that it is crucial that the system works at all times. The complexity of the system
should be kept to a minimum, as more things can go wrong, and as it is more difficult
to properly verify complex systems. Also, the active area on the FPGA should be kept
to a minimum, since it reduces the probability of interacting with the radiation.

Appendix A: Method

A.1: Finding an applicable ADC

An extensive search was conducted to find an applicable ADC. Table 7.1 lists the
manufacturers and distributors visited during the search. The approach used to find the
components was to first visit the distributor pages, and using their parametric search
engines. The selection of ADCs is vast, so applying filters to narrow the search was
necessary. For the most part, only components that met the military temperature criteria
were considered. Some devices with automotive temperature were also considered.

The web pages of the listed manufacturers were also visited. When visiting these web
pages, it was firstly determined if the manufacturer produced ADCs beyond commercial
applications. If this was the case, parametric searches, if possible, were used. In addition,
product pages that contain information about devices which could meet specifications
were looked at. Some manufacturers also have special guides for their high-reliability
devices. These were also looked at. All devices that showed promise were listed in
a table so that the best alternative could be found by comparison. ADCs that were
considered as alternatives are listed in tables 7.2 and 7.3.

Table 7.1: Manufacturers and distributors

Analog devices Exar
Texas instruments IDT

Honeywell Nuvoton
Intersil NXP
E2V ON Semiconductor

Linear technology Silicon labs
Microchip STMicroelectronics

Maxim integrated Cirrus logic
Advanced linear devices digikey.com

AMS mouser.com
CEL parts.io

91

92 Appendices
Table

7.2:
A
lternative

A
D
C
s,enhanced

products

(a)
E
nhanced

products

N
am

e
A
D
9
2
5
7
-E
P

A
D
9
2
5
3
-E
P

A
D
S
6
4
4
5
-E
P

A
D
S
6
4
4
4
-E
P

A
D
9
2
6
6

A
D
S
5
4
6
3
-E
P

A
D
S
4
2
4
5
-E
P

R
atin

g
E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

O
p
eratin

g
tem

p
[C

]
-55

to
125

-55
to

125
-55

to
125

-55
to

125
-55

to
125

-55
to

125
-55

to
125

B
it

reso
lu
tio

n
14

14
14

14
16

12
14

E
ff
ectiv

e
B
it,

E
N
O
B

m
in:11.5

typ:~12
m
in:11.5

typ:~12
10,95

11,3
12,30

10,50
11,50

C
o
n
v
.
rate

M
S
P
S
[m

ax
/
m
in
]

65/10
125/10

125/5
105/5

65/3
500/20

125/80

In
p
u
t
b
an

d
w
id
th
[M

H
z]

650
650

500
500

700
2200

2V
:400

1V
:600

S
u
p
p
ly

[V
]

1,8
1,8

3,3
3,3

1,8
5/3,3

1,8

T
o
tal

P
ow

er[m
W

]
55/ch

@
65M

sps.
T
ot:547

110/ch
@
125

T
ot:480

1800
1500

122m
W

2575
277

@
m
ax.

digital
pow

er:179

In
p
u
t
V
o
ltag

e
ran

g
e

2
2

D
iff
:
2

D
iff
:2

2
D
iff
:2,2

Single:1,1
2V

C
h
an

n
els

8
separate

4
separate

4
separate

4
separate

1
1

2
separate

In
p
u
t
In
terface

D
iff

D
iff

D
iff

D
iff

D
iff

D
iff
.

D
iff

O
u
tp
u
t
In
terface

serial
LV

D
S

serial
LV

D
S

Serial
LV

D
S

Serial
LV

D
S

interleaved
parallel

P
arallel

LV
D
S

LV
D
S
-
P
arallel,

P
arallel

P
ack

ag
e

L
F
C
SP

L
F
C
SP

Q
F
N

Q
F
N

L
F
C
SP

T
Q
F
P

Q
F
N

(b)
E
nhanced

products
cont.

N
am

e
T
H
S
1
2
0
6
-E
P

A
D
S
5
5
0
0
-E
P

T
H
S
1
4
0
8
-E
P

A
D
9
6
4
8
-E
P

A
D
S
5
4
4
4
-E
P

A
D
S
5
4
4
0
-E
P

R
atin

g
E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

E
P
/A

Q
E
C

O
p
eratin

g
tem

p
[C

]
-55

to
125

-55
to

125
-55

to
125

-55
to

125
-55

to
125

-55
to

125

B
it

reso
lu
tio

n
12

14
14

14
13

13

E
ff
ectiv

e
B
it,

E
N
O
B

10,17
11,30

11,20
11,80

11,2
11,4

C
o
n
v
ersio

n
rate

M
S
P
S
[m

ax
/
m
in
]

6/channel
80/10

w
.o

D
L
L

8/3
125/10

250/10
210/10

A
n
alo

g
In
p
u
t
b
an

d
w
id
th
[M

H
z]

D
iff
:96

Single:54
750

140
650

800
800

S
u
p
p
ly

[V
]

5
3,3

4
1,8

5
5

T
o
tal

P
ow

er[m
W

]
216

875
360

300
2370

2350

In
p
u
t
V
o
ltag

e
ran

g
e[V

_
p
-p
]

diff
:2

single:3,5
2,3

3
2

2,2
2,2

C
h
an

n
els

1
@
6M

sps
1

1
2

1
1

In
p
u
t
In
terface

single_
end

or
diff

erential
D
iff

recom
:
D
iff
.

D
iff

D
iff

D
iff

O
u
tp
u
t
In
terface

P
arallel

P
arallel

P
arallel

interleaved
and

serial?
*

parallel
lvds

parallel
lvds

P
ack

ag
e

T
SSO

P
H
T
Q
F
P

P
Q
F
P

L
F
C
SP

H
T
Q
F
P

H
T
Q
F
P

Appendices 93

Ta
bl
e
7.
3:

A
lte

rn
at
iv
e
A
D
C
s,

m
ili
ta
ry

an
d
au

to
m
ot
iv
e

N
am

e
A
D
8
7
2
A

A
D
8
7
1

A
D
1
0
2
4
2

L
T
C
2
3
1
1

L
T
C
2
3
1
5
-1
2

A
D
7
3
5
6

R
at
in
g

M
IL
-8
83
B

M
IL
-8
83
B

M
IL
-8
83
B

in
du

st
ri
al

&
au

to
m
ot
iv
e

au
to
m
ot
iv
e

O
p
er
at
in
g
te
m
p
[C

]
-5
5
to

12
5

-5
5
to

12
5

-5
5
to

12
5

-4
0
to

12
5

-4
0
to

12
5

-4
0
to

12
5

B
it

re
so
lu
ti
o
n

12
12

12
14

12
12

E
ff
ec
ti
v
e
B
it
,
E
N
O
B

N
/A

N
/A

N
/A

N
/A

11
,7

N
/A

C
o
n
v
er
si
o
n
ra
te

M
S
P
S
[m

ax
/
m
in
]

10
/

5/
40
/5

5
5

5

A
n
al
o
g
In
p
u
t
b
an

d
w
id
th
[M

H
z]

35
15

60
10

0
13
0/
5

11
0

S
u
p
p
ly

[V
]

V
dd

:5
V

V
ss
:-
5V

V
dd

:5
V

V
ss
:-
5V

V
dd

:5
V

V
ss
:-
5V

5/
3

2,
7-
5,
25

2,
5

T
o
ta
l
P
ow

er
[m

W
]

10
30

13
00

20
00

60
/4
0

10
0

60

In
p
u
t
V
o
lt
ag
e
ra
n
g
e

+
-1
V

+
-1
V

+
-2

8V
2/
4

V
C
M

±
V
R
E
F
/2

C
h
an

n
el
s

1
1

2
1

1
2

In
p
u
t
In
te
rf
ac
e

D
iff

an
d
si
ng

le
D
iff

an
d
si
ng

le
Si
ng

le
en
d

D
iff

Si
ng

le
en
d

D
iff

O
u
tp
u
t
In
te
rf
ac
e

pa
ra
lle

l
pa

ra
lle

l
pa

ra
lle

l
Se
ri
al

cm
os
/l
vd

s
Se
ri
al

SP
I

se
ri
al

SP
I
et
c.
.

P
ac
k
ag
e

C
L
C
C

C
L
C
C

C
L
C
C

M
SO

P
T
SO

T
T
SS

O
P

94 Appendices

A.2: VHDL design

The content in this section is based on content from [51] and [10].
VHDL is a programming language that is made to describe digital logic. Certain parts
of the language can be used to implement digital logic on an FPGA. Other parts cannot
be realized, but is useful when models of digital electronics must be made. It also
enables testing and verification of logical designs on a computer before the design is
implemented. This is done by enclosing the designs that must be tested in a testbench,
where stimulus to the designs-under-test is created. Thus, by combining all parts of the
language, reliable digital systems can be made.

Methodology

Designing in a structural manner is vital in order to create a reliable system. A system is
composed of three domains: functional, structural and geometric. Each domain describes
different aspects of the system, but together they define all aspects. Gajski-Kuhn Y
chart, depicted in figure 7.1 can be used to visualize this concept.

Figure 7.1: Gajski-Kuhn Y[51]

The chart is composed of the three domains. It also shows different abstraction levels
of the design. The functional domain describes the functionality of the system. The
structural domain describes the structure chosen to achieve the behavior at the same
abstraction level. The geometric, or physical domain describes the physical placement of
the structure. Once all domains are defined in one abstraction level, it can be repeated
at a lower abstraction level.

Considerations for FPGA design

Structure of an entity
An entity in VHDL is composed of an entity declaration, and an architecture body of

Appendices 95

the entity. This can be looked at as a box with input and output ports. The entity
declaration specifies the ports, or interfaces to the box. The architecture body describes
the internal functionality of the body, which connects to the ports of the entity.

There are many ways to create a component. The most basic component has an
architecture with one process, describing one sequential or combinational function. An
architecture consisting of one or more processes is called a behavioral architecture.
Including to much code in one file, or creating different functionality in one file makes
the design difficult to interpret. Hierarchy is a method of preventing issues like this.
Hierarchy is applied by dividing the system into separate modules. These modules can
be connected together by instantiating them in a higher hierarchy file. That is, instead
of having an architecture with many processes, it is composed of substantiations to
other entities. Connections between the entities are created by connecting signals in the
top level. An architecture composed of one or more instances of other entities is called
a structural architecture. It is also possible to create an architecture that is a mixture
of behavioral and structural. I.e, the architecture is composed of both processes and
instances of other entities. In the cases where multiple instances or processes are used,
they can be interconnected by creating signals.

Logic design method
Circuits can be designed at different abstraction levels in VHDL. A circuit can be
described in a behavioral manner. In this case, the functionality of the system is
described using statements similar to statements used in software languages. Examples
are if-else and loop statements. The lowest level of logic description in VHDL is at
gate level. I.e one can create a logic system by interconnecting the combinational
and sequential circuits necessary for a specific function. Both methods can be used
to represent the same logic functionality. When writing RTL, the user specifies the
architecture of the system. This can be time consuming, but the logic can be exactly as
specified. When writing behavioral, the tool creates the system based on the behavioral
description. This requires less work, as the architecture is chosen by the tool. If the
interpretation of the behavior is correct, or if the best possible logic architecture is
chosen, will depend on the quality of the tool.

In either case, the design must be verified, for both functional requirements and timing
requirements. Utilizing the concept of regularity increases the reliability, and design
time of the system. This is the concept of using the same component everywhere the
functionality of a certain component is needed. This saves time compared to creating
many different components when the end functionality is the same. It also saves time
since the component only has to be verified once. In order to use the concept of
regularity, important characteristics of entities must be clearly defined. As examples,
the port names should be understandable, constraints for the module must be available
and so on. This is the concept of modularity. That is, a module must be designed in a
way that makes it possible to use it as it was intended, every time.

A.3: Design flow

“B.2: Software” in Appendix B: Tools should be read before this section is read as this
chapter describes the software tools that were used during development. The design flow
used in this thesis is pictured in figure 7.2. This is the design flow in Libero Soc v11.7,

96 Appendices

which was used during development systems that were implemented on SmartFusion2.
This is a general design flow for FPGA design. The design flow chosen for this thesis
mostly follow this flow. Specifications of how the VHDL designs were implemented in
this thesis is described in the following paragraphs.

Figure 7.2: Libero Soc v11.7 design flow [52]

Before a design was created, requirements of the design were specified. If IPs supplied
from Microsemi were used, the components were generated separately in Libero Soc.
The generated VHDL of the components were then connected together with custom
made logic by instantiating all modules in a top level file. Any text editor can be used
for this. In this thesis, Notepad++ was the preferred editor. The reason behind this
approach is that it is not necessary to connect custom logic to IPs in the design canvas
if the project is remade. A better way would be to create scripts that execute all the
stages, but this was not prioritized in this thesis. Version control is obtained by using
GIT. Before designs were implemented on SF2, functional verification was performed. It
was chosen to create the testbenches, and perform the verification outside of the Libero
SoC design flow. Details concerning verification are located in “A.4: Verification”.

Architectural structures in this thesis are mostly behavioural or mixed. As for the logic
design method, behavioural descriptions of synthesizable code are utilized unless it fails
to meet design requirements. If an RTL description is not to complex for a component,
this will be utilized. Designs that were made in this thesis also follow coding guidelines
at the department of physics and technology, which is where this thesis was assigned. It
should also be noted that in this text, component, entity, instance, module and system

Appendices 97

are used to describe either a part of a design, or the entire design, interchangeably.

If a design will not be synthesized, non-synthesizeable VHDL is utilized. E.g, the type
time can be used. Regarding the domains in figure 7.1, structures are made for designs
to the level the design was visualized. The structures will be named with the functional
description, i.e the name of the VHDL-file or files. The physical domain will be handled
by a place-and-route tool unless design requirements are not met. The concepts of
hierarchy, regularity etc. will be utilized to structure the designs in an understandable
way. Also, all sequential elements in the designs are resettable through an active-low
reset signal. Note that the reset signals are not included in the RTL-structrures that
were made.

A.4: Verification

Functional verification plan

In order to obtain enough confidence about the correctness of the system, the following
testing must be performed:

AD9257 readout logic

• Check that readout can be performed at a rate of 70 MHz.

• Check that deserialization can be performed at 10 MHz.

• Check readout data for all channels.

– Data read out must be of different composition. Patterns that must be
checked are:

∗ All zeroes.
∗ All ones.
∗ Alternating ones.
∗ Random patterns.

AD9257 register access via SPI

• Write to all memory addresses specified in the datasheet.

– Data written must be of different compositions. Patterns that must be
written are:

∗ All zeroes.
∗ All ones.
∗ Alternating ones.
∗ Random patterns.

• Read from all memory addresses specified in the datasheet.

98 Appendices

Method of test and verification

To test in an application-like environment, a model of the ADC that is chosen must be
developed. The tests in the section above, in combination with the model, are to be
performed in all levels of the design phase:

• Computer-aided verification using Modelsim for:

– Pre-synthesis firmware.
– Post-synthesis cells.
– Post-layout cells.
– Post-layout cells, with timing information.

• Verification of design implemented on an FPGA:

– Internal connection of model and readout logic.
– Loopback connection of model and readout logic, and model and SPI master

where signals from the model are sent out of the FPGA, and connected
directly to FPGA inputs connected to the readout logic.

• Verification against an actual AD9257 on a testboard.

Making a structured testbench can be very time consuming. Instead of building the
testbench from scratch, Bitvis utility library has been used. The library provides useful
functionality for making a good testbench. Some of the features are:

• Logging and alert.

• Procedures and functions with string handling, and log- and alert- integration.

• Scope and verbosity control.

• Provided BFM models of different interfaces.

• Provided SBI BFM can be modified to fit a user-defined BFM.

Example projects with scripts can be downloaded1 and used as a basis for the testbench
in this project. When verifying with Modelsim, it is required to use the Bitvis UVVM
utility library as the framework. This gives the possibility of generating a log of the
tests that have have been performed, as well as the results of the test. This log must
show that all the steps in the verification plan have been executed. When testing the
design implemented on an FPGA, a test, user-interface must be made. As when testing
with Modelsim, a log should be generated here as well, so that it can be checked against
the verification plan.

1 www.Bitvis.no

Appendix B: Tools

This appendix lists the tools that were used to create and implement the digital systems
in this thesis.

B.1: Hardware

• SF2-DEV-KIT-PP [47]

– SmartFusion2 Development Board with M2S050T-FGG896. Shown in figure
5.2.

– FlashPro4 JTAG programmer/debugger for the development board

• All work was done on a personal computer

B.2: Software

• Libero Soc v11.7 and supporting software. All software is explained in the following
section

• Putty v0.67 as a terminal for serial communication between computer and devel-
opment board.

• LTspice v4.23I for analog circuit simulation

Microsemi software was downloaded from Microsemi website with a free gold license.
The software that was included and used, and brief descriptions are given below.

Libero Soc v11.7

Libero SoC is a design suite for Microsemi SoC FPGAs [52]. All steps from a circuit
specification is made, to a functional system is implemented on an FPGA can be
performed in this program. The functionality and programs that are included in the
design flow are explained in the following paragraphs.

Creating a design
Creating a design with the MSS can be done with the Smartbuilder. This is a GUI setup

99

100 Appendices

of the MSS, clocks, security, MSS peripherals, and more. In a few clicks, a component
where the MSS and peripherals are connected. A global clock network, and reset network
is automatically added. All components can also be connected together by choosing
SmartDesign. Here, everything must be chosen and connected manually. However,
more settings are available, such as PLL phase-and-delay settings. It is possible to first
generate a system with the Smartbuilder, then convert to Smartdesign to access the
additional settings. After the component is generated, it can be connected to custom
logic in a design canvas. The final choice is to generate components separately, manually
connect instances in a top level HDL-file, and add the files before synthesis. If the MSS
is not used, this is the option to use.
Verification with Modelsim ME 10.4c
Modelsim from Mentor Graphics is the program that is used to verify that the logic
functionality works as it was intended. Sequential and concurrent hardware is simulated.
The propagation of signals can be viewed in a waveguide. A testbench can be generated
from the system top level file in Libero SoC. The user can use this file to set the
desired input stimulus to the design. Verification can be performed for pre-synthesis,
post-synthesis and post-layout in the design flow. Scripts for compiling and simulation
are generated automatically. Modelsim can also be used as a stand-alone program if the
user wishes to perform outside of the Libero Soc design flow.
Constraining
Applying timing constraints is an important part of the design process. Without
information about timing requirements, synthesis and place-and-route tools cannot
implement the design in a reliable way. All clocks used for sequential operations must
be specified. This is also utilized by static timing analysis tools to determine if signals
propagate between sequential elements without violating setup- or hold-requirements.
I/O-constraints must be added so that signals in and out of the FPGA are connected to
the correct I/Os. Type of port, drive strength, pull-circuitry and other I/O characteristics
are also defined here. Placement constraining can be done to specify where on the chip
the logic will be implemented. Constraining tools are implemented in Libero SoC.
Synthesis with Synplify Pro J-2015.03M-SP1-2
Synthesis is the process of transforming technology-independent HDL firmware to
technology-specific logic cells. Synthesis is performed by Synplify Pro from Synopsis.
The program can also be used as a stand-alone program, or used within the design flow
in Libero SoC. This program offers many helpful functions, such as optimization of the
design, RTL-, technology- and FSM- structural views, and timing analysis. It is also
possible to perform automatic TMR implementation. For the sake of this project, it
was only used for synthesis and structural views within the design flow.
Place and routing
The place-and-route tool defines where the logic cells are placed on the chip, as well as
the routing between cells. The requirements of the procedure can be timing or power
driven. This tool is implemented in Libero SoC.
Static timing verification
This is performed after place-and-route to verify that the design meets timing require-
ments. This is done by testing if path delays violate setup- and hold- requirements
on sequential elements. A violation must be mitigated by applying constraints, or by
changing the directory. E.,g inserting a DFF in the paths where the propagation delay
of the combinational logic causes setup-violation, or inserting delay in paths where

Appendices 101

hold-time violations are reported. The program SmartTime is implemented in Libero
SoC, and can be used to perform 4-corner analysis where temperature, voltage and
process variation are the variables [40].

Verify power
This tool calculates both dynamic and static power consumption of the system. This is
implemented in Libero SoC, and was not used in this thesis.

Implementing design on SF2 with FlashPro v11.7.1.11
Programming of the SF2 is done after timing has been verified. A bitstream of configu-
ration data must first be generated. Programming is done by using FlashPro software,
and a Flashpro4 JTAG programmer which is connected between a computer and the
board. Programming can be done directly in the design flow, or by using FlashPro as a
stand-alone program. In the latter case, a STAPL file must be generated. This can be
done in Libero by exporting the bitstream.

Software development and debugging with SoftConsole v4.0
Software development and debugging is done in the program SoftConsole.

Appendix C: Project setup

C.1: Project directory structure

The top structure of the project directory is shown in figure 7.3. The folder AD9257_rd_cont
contains all files that are made in this project except for the custom SPI-master which is
contained in the folder Custom_SPI_master. UVVM_v1_4_0 contains Bitvis UVVM
utility library and BFMs used in computer-aided testing and verification.
Figure 7.4 shows the sub-structures in the folder AD9257_rd_cont. The folders are struc-
tured according to the SoCs that were made, and explained in chapter 5. Thus the files
for the project FPGA-internal are contained in the folders readout_model_internal_x,
etc. The development-testbench files are contained in the model_x folders.
All of the files for the readout system described in section 4.1.6 are located in src\Readout.
The other folders in src are the top-level files for the different systems. Tb contains all
testbench related files. The files of the model, and other testbench files are located in
common_tb_files. Here, folders for the SoCs contain the testbench file, the top-level file
for computer-aided testing, pre-synthesis, post-synthesis and post layout files. Scripts
contains scripts to run all testbenches in Modelsim. This is explained in a following
section. Constraints contains timing and I/O constraints. Microsemi_cores contains all
the IP’s that were generated and used. Most cores are common for the systems, except
for the MSS_x folders. Software contains all custom made software, and Microsemi
firmware that was used in the project. This is located in the common_files folder. The
other folders in software contains SF2 programming files for all SoCs.

C.2: Simulating in Modelsim

It is recommended to use the same project directory structure described inC.1: Project
directory structure. In this thesis, the folder ADC_readout_control was put in C:\. To
simulate the designs: open Modelsim, and change the directory to the script folder of
the testbench of interest, and run compile_and_sim_all.do. This will compile and
simulate all the necessary files. When the simulation is finished, a log file containing
the tests performed are generated in the script folder. There are certain settings
that can be set in testbench files. E.g, for the development testbench, this is the file
tb\model_tb\AD9257_read_cont_tb. The settings are:

• A generic can be changed to set the number of pseudo random patterns that are
written/read via SPI. Setting this to 0 gives 1 iteration.

102

Appendices 103

Figure 7.3: Project directory structure

(a) Constraints (b) Microsemi IP (c) Scripts

(d) SW and programming files (e) Custom source files (f) Testbench and model files

Figure 7.4: Project directory sub-structure

104 Appendices

• A generic can be changed to set the number of skewed-reset iterations. Setting
this to 0 gives 1 iteration.

• A generic can be changed to set the number of pseudo random patterns that are
generated, set as output patterns in the model, captured and tested. Setting this
to 0 gives 1 iteration.

• Logging abstraction levels can be changed by uncommenting or commenting
verbosity control statements. Default is to only log the headers.

C.3: Configuration of SF2-DEV-KIT-PP

The configuration described in this sub section is the configuration used during this
thesis. Before using the board, all jumpers were set to default positions as described in
[47].

1. Set jumper across pins 2-3 on connector J129. Set jumper across pins 2-3 on
connector J133. This connects the MSS UART RX and TX pins to the on-board
FT4232 USB controller.

2. Connect a USB mini-B cable from the computer to the mini USB mini-B connector
on the board. This plug connects to the FT4232 USB controller (FTDI interface).

3. Connect the JTAG Flashpro4 programmer from the host computer to the FP4
header on the board. This is necessary to program and debug the design.

4. Connect a power cord and toggle the power switch.

5. Program the SF2 as described in the following sections.

C.4: Running pre-made programming files on SmartFu-
sion2

1. Perform the steps described in “C.3: Configuration of SF2-DEV-KIT-PP”.

2. Open Flash-pro program.

3. Create a new project. The directory does not matter.

4. Add programming file.

(a) Browse to ..\Software and select the pre-made .stp file in the folder for the
Soc of interest.

5. Press program.

6. When complete, close the program.

7. On the computer, use a terminal program. Putty was used in this thesis. Putty
settings:

Appendices 105

(a) Chose a COM port. Which one is correct must be checked at a later stage.

(b) Set speed/baud rate to 57600.

(c) Set data bit to 8.

(d) Set stop bit to 1.

(e) Select none parity and flow control.

(f) To enable logging, go to logging tab and chose “All session output”. choose a
directory to save the .log file. Also chose “Always overwrite it” under “what
to do if the file already exists.

8. Create a folder called SoftConsole somewhere in the project directory. E.g
ADC_readout_control\SoftConsole.

9. Open the program SoftConsole.

(a) Choose this folder made in the previous step to be the workspace.

i. Note! This workspace can be used for all SoCs.

10. Create a new project by following the steps from 1.7.3 to 1.8 in TU0546 [53].

(a) Additional notes:

i. Import the files from ..\software\common_files. It is not necessary to
add any new files.

ii. newlib-nano was not enabled during this thesis.
iii. In step 1.7.4, write M2S050T instead of M2S090.
iv. If the “play” symbol is showing after debug was enabled, press it to start

the program.

11. Run program.

(a) If text appear in the putty terminal window, follow the instructions.

(b) If no text appear.

i. Press some key other than 1 or 2. If no text appears, restart putty with
same setting except that another COM must be chosen. Re-do this step
until text appears in the terminal.

ii. If text saying wrong input appear in terminal, press 1 if model is used,
or 2 if testboard is used. Difference is whether the test sequencer menu
choice is an option.

12. Reprogram software.

(a) If change is made in software, and software must be reprogrammed:

i. Terminate debugging session by pressing the red “stop” symbol.
ii. Right click “Debug” next to “C/C++” in the top right corner, and close

the tab.
iii. To program, chose Run -> Debug configuration -> Debug.

106 Appendices

C.5: Generating programming files in Libero

These steps are shown graphically in TU0546 [53].

1. Open Libero and choose “new project”. Enter a project name and some directory.

2. Choose device M2S050T-FG896.

3. Set Default I/O technology to LVCMOS 1.5V. Set PLL supply voltage to 3.3V
and power on reset delay to 100ms.

4. Choose “none” under design templates.

5. Press next under “add HDL source files”.

6. under “add constraints”, link the files for the Soc of interest in ..\constraints.

7. Press finish. If prompted for what type of constraint flow to use, choose “use
enhanced constraint flow”.

8. Select window “Design hierarchy”.

9. Press “File -> Link files ->” to link the files for the SoC of interest. E.g. for
FPGA-internal:

(a) “-> Create link folders” ..\src\readout.
(b) “-> Create link ” to the top level file to SoC of interest in ..\src.
(c) “-> Create link folders” \microsemi_cores\CoreAPB3\4.1.100\rtl\vhdl\core.

i. right click the “work” library in the “design hierarchy” and add a VHDL
library COREAPB3_LIB.

ii. Mark the files from the APB-folder, right-click, and move to the new
library.

(d) “-> Create link folders” \microsemi_cores\CoreResetP\7.1.100\rtl\vhdl\core.
(e) “-> Create link folders” \microsemi_cores\OSC.

i. Remove duplicate with ending _pre.
(f) “-> Create link folders” \microsemi_cores\MSS_internal_n_lb.

i. Remove duplicate with ending _pre.
ii. This one is also used in FPGA-loopback.

(g) “-> Create link folders” \microsemi_cores\PLL_10MHz.
(h) “-> Create link” \tb\PLL_10MHz\common_tb_files and mark files:

i. AD9257_memory.vhd.
ii. AD9257_rdout_model.vhd.
iii. AD9257_spi_model.vhd.
iv. blinking_led.vhd.
v. spi_mem_rdout.vhd.

10. Switch to the “Design flow” window.

Appendices 107

11. Press “manage constraints”.

(a) Under “I/O attributes, assign io_top.pdc to place and route”.
(b) Under “timing”assign:

i. io_top_derived_constraints.sdc to all.
ii. timing.sdc to all.
iii. timing_min_delay to all but synthesis.

12. Click “generate bitstream”. This will execute all the necessary steps until this
step in the design flow.

(a) Timing and power can be verified after this under “Verify post layout imple-
mentations” in the Design flow window.

13. The design can now be programmed onto an FPGA in the following manner:

(a) Before programming, configure the board as described in “C.3: Configuration
of SF2-DEV-KIT-PP”.

(b) Click “Run program action”. This programs the FPGA automatically. Follow-
ing this, perform the steps from 7. in “C.4: Running pre-made programming
files on SmartFusion2”.

(c) Another method is to click “Export bitstream”. Select “STAPL” and press
ok. This generates a programming file in the project directory. Then the
steps in “C.4: Running pre-made programming files on SmartFusion2” can
be performed.

14. To configure and use the software, follow the steps in 7.1.

C.6: Generating SoC testbench top levels in Libero

Perform same steps as in “C.5: Generating programming files in Libero” except for:

1. Use top level file for the project of interest in ..\tb instead of top level in ..\src.

2. Do not generate programming file or program SF2.

3. post-synthesis file is generated in project directory ..\synthesis.

4. To generate post-layout file, press “generate back annotated files” in the “design
flow” window.

(a) File is generated in ..\designer\io_top_tb in the project directory.

C.7: Generating MSS used in SoCs

1. Open Libero and choose “new project”. Enter a project name and directory.

2. Choose device M2S050T-FG896.

108 Appendices

3. Set Default I/O technology to LVCMOS 1.5V. Set PLL supply voltage to 3.3V
and power on reset delay to 100ms.

4. Choose “Systembuilder” under design templates.

5. No source or constraint files are added. Press next.

6. Press finish. If prompted for what type of constraint flow to use, choose “use
enhanced constraint flow”.

7. Enter a name for the system, e.g. MSS_comp. Now the systembuilder interface is
opened.

8. Under “device features”, press next.

9. Under “peripherals”, choose:

(a) MSS peripherals.
i. MM_UART_0. Press the settings icon. Change “connect to” from IO

to fabric.
ii. MSS_SPI_0. Press the settings icon. Change “connect to” from IO to

fabric.
(b) Drag “Fabric AMBA slave” from “Fabric slave cores” to “MSS_FIC_0 -

MSS master subsystem” under subsystems. Press the settings icon. Change
“interface type to APB3” and press OK.

(c) Press next button.

10. Under “clocks”:

(a) change the system clock to “on-chip 25/50MHz RC oscillator ”.
(b) Set M3_CLK to 140MHz.
(c) Click the “fabric CCC” Tab.

i. Note! Do not add the clocks below if this is the core to the MSS in the
testboard SoC.

ii. Enable FAB_CCC_GL1. Set to 70MHz.
iii. Enable FAB_CCC_GL2 Set to 10MHz.

11. Press the next button until “Memory map”. Press “Finish”.

12. The MSS is displayed in the design canvas.

13. Choose “Design hierarchy” in the design flow window.

14. Expand the MSS design. Right click the IP, and choose “convert to SmartDesign”.

15. Click the settings icon on the “CoreAPB3”.

(a) Set APB master data bus width to 32-bit.
(b) Under “Enabled APB slave slots”, choose slot 3 and slot 5.
(c) Press OK.

Appendices 109

(d) Right click the port “S3” on the output from CoreAPB3, and chose “Promote
to top level”. Perform same step for “S5”.

16. Double-click the settings icon on xxx_MSS_0.

(a) Double-click on FIC_0.
(b) Under “FPGA fabric address regions (MSS master view)”, select “Fabric

region 0 (0x300000000 - 0x3FFFFFFF)” and “Fabric region 0 (0x500000000
- 0x5FFFFFFF)”.

(c) Press OK.

17. In the current tab, save (ctrl + s). Press the generate button. Close the tab when
finished.

18. Double-click the CCC_0 to open the Fabric CCC configurator.

(a) Skip this step if it is the MSS to the testboard SoC.
(b) Make sure GL0, GL1 and GL2 are selected, and that the frequencies are the

same as in step 11.
(c) go to “advanced” tab. For GL1, set “PLL phase 180”. The actual phase, is

written in blue, and should be 90 deg.
(d) Press ok to exit the window. Save the current tab. Press generate in the top

left corner. Close the tab when finished.

19. Right click the xxx_sb_0 and chose “update instance with latest components”.
Save, and generate. The file is now generated and saved in the project directory.

C.8: Generating other Microsemi components used in SoCs

Similar to what is written above in “C.7: Generating MSS used in SoCs”. Choose
SmartDesign instead of systembuilder. Drag component of interest, e.g PLL from the
catalog window onto the design canvas. Here it can be configured. Press generate in
top left corner when finished. Component is then generated and stored in the project
directory.

Appendix D: AD9257 testboard extras

D.1: Testboard test plan

Future testing should start by figuring out the issues with the testboard-SoC system,
which is explained in section 6.2.6. The clock output from the LVDS multiplexer must
be measured again with a differential probe and confirmed to be 10 MHz. If this is
not the case, the signal should be measured back to the source. Next, the reason why
no data was read via the SPI interface must be found. This could be caused by the
voltage-level-shifting circuitry, by the wires between the boards, or if the ADC does
not operate properly. Thus, it should be checked again that the wires are correctly
connected. Then, it must be confirmed that data is sent from the SF2 to the level
shifters on the test board. It should also be checked that the timing relationships of
the SPI signals are correct. It should then be confirmed that the signals appears at the
output of the level shifters, and next on the inputs of AD9257.

If the issues in the above paragraph are solved, reading from the memory of AD9257
should be done next. One address contains an ID specific to AD9257. This can be read
to verify that the SPI functionality and interface are working correctly. Refer to the
software functionality that was made for accessing the memory of AD9257 in section 5.7.
The next step should be to set output patterns from the ADC, and start verifying if the
readout logic is working correctly. If readout works, or partly works, the wires between
the boards should be made as short as possible. If none of the mentioned testing works,
signals should be measured with an oscilloscope. Microsemi also provides a tool that
enables monitoring of internal signal propagation inside the SF2. To debug the readout
functionality, a source could be connected to one of the channels that is assembled
on the board. The software implemented monitor functionality can be chosen in the
terminal. Setting some voltage on one input of the AD9257 should then produce an
output pattern from the ADC. If nothing appears in the terminal window, the outputs
from the ADC should be measured with an oscilloscope.

If the setup works, the testing explained in chapter 6 for testing against the AD9257
testboard must be done. If the readout data is skewed, it is most likely caused by path
delay between the ADC and FPGA. The data paths should be measured together with
DCO and FCO. If the timing between the paths deviate from the ideal output timing
diagram in figure 4.1, input delays should be added in the I/O-editor in Libero SoC to
correct the deviations. Alternatively, input timing constrains can be added on the inputs
and outputs of the FPGA in the SDC timing file, or through the timing-constraint editor
in Libero SoC. The only timing constraints that has been added is for the internal clock

110

Appendices 111

on the FPGA, and for the received clocks DCO and FCO. If the readout is incorrect,
and if the skew is not fixed, the wires between the boards, and connections on the
connector, should be checked. If the readout seems to work, a proper test with different
patterns over time should be done to check that the system works as it should. Once
the readout logic and control interface are deemed as functional, further work regarding
evaluation of AD9257 can commence.

D.2: Schematics and component overview

112 Appendices

Figure
7.5:

A
D
9257

circuit
board

Appendices 113

Fi
gu

re
7.
6:

Po
w
er

su
pp

lie
s
on

te
st
bo

ar
d

114 Appendices

Figure 7.7: Testboard PCB front side

Appendices 115

Figure 7.8: Testboard PCB backside

116 Appendices

Table 7.4: ICs on testboard & channel D in 1st board configuration

Name Device Voltage [V]

ADC AD9257 1.8

LT1 SN74AVC1T45 1.8, 3.3

LT2 SN74AVC4T245 1.8, 3.3

Op2, Opc, Opg THS4012 ±5

Clock QX3 Series 3.3

LVDS buffer DS90LV011A 3.3

LVDS mux MAX9152 3.3

Ba1,Ba2,Bh1,Bh2 ETC1-1-13

Tb ADT1-1WT

P1 ADP1706ARDZ-3.3-R7 5, 3.3

P2, P3, P4 ADP1706ARDZ-1.8-R7 5, 1.8

P5 THM 10-2421WI 28, 5

SRF SRF0905-471Y

(a) ICs on testboard

Name Exact value E96 Assembly

Rd1 1244 1240 yes

Rd2 1000 1000 yes

Rd3 1244 1240 yes

Rd4 1000 1000 yes

Rd5 open

Rd6 open

Rd7 200 200 yes

Rd8 52 52.3 yes

Rd9 25 24,9 yes

Rd10 open

RD11 0 short

Cd1 0 short

Cd2 0 short

Cd3 0.1uF yes

Cd4 0.1uF yes

Cd5 0 short

Cd6 0 short

Cd7 0.1uF yes

Cd8 0.1uF yes

Cd9 0.1uF yes

Cd10 0.1uF yes

CD11 0.1uF yes

CD12 0,22uF yes

CD13 0,22uF yes

JPD1 jumper 1-2 short

JPD2 jumper 1-2 short

Ld1 0 short

Ld2 0 short

Rd20 100 100 yes

Rd21 100 100 yes

Rd22 open

Cd20 open

Cd21 open

Cd22 open

OP1 yes

(b) Channel D

Appendices 117

Table 7.5: 1st board configuration.

(a) Voltage level shift circuitry

Name Exact value E96 Assembly

RL1 open

RL2 open

RL3 open

RL4 open

RL5 open

RL6 open

RL7 open

RL8 open

RL9 open

RL10 open

RL11 30k YES

RL12 30k YES

RL13 30k YES

RL14 30k YES

CL1 open

CL2 open

CL3 open

CL4 open

CL5 open

CL6 open

CL7 open

CL8 open

CL9 open

CL10 open

CL11 0.1uF yes

CL12 0.1uF yes

CL13 0.1uF yes

CL14 0.1uF yes

LT1 YES

LT2 YES

(b) Power supply

Name Exact value E96 Assembly

RP1 39 39 yes

RP2 39 39 yes

RP3 39 39 yes

RP4 39 39 yes

CP1 4.7uF yes

CP2 4.7uF yes

CP3 10nF yes

CP4 4.7uF yes

CP5 4.7uF yes

CP6 10nF yes

CP7 4.7uF yes

CP8 4.7uF yes

CP9 10nF yes

CP10 4.7uF yes

CP11 4.7uF yes

CP12 10nF yes

CP13 4.7uF 50V yes

CP14 4.7uF 50V yes

CP15 22uF 50V yes

CP16 1000pF 2000V yes

CP17 1000pF 2000V yes

CP18 22uF 50V yes

CP19 22uF 50V yes

SRF yes

P1 yes

P2 yes

P3 yes

P4 yes

P5 yes

118 Appendices

Table 7.6: 1st board configuration cont.

(a) AD9257

Name Exact value E96 Assembly

R1 10kΩ, 1% 10k yes

C1 1,0uF yes

C2 0,1uF yes

C3 0,1uF yes

CAV1 0,1uF yes

CAV4 0,1uF yes

CAV7 0,1uF yes

CAV8 0,1uF yes

CAV11 0,1uF yes

CAV12 0,1uF yes

CAV37 0,1uF yes

CAV42 0,1uF yes

CAV45 0,1uF yes

CAV48 0,1uF yes

CAV51 0,1uF yes

CAV59 0,1uF yes

CAV62 0,1uF yes

CAV14 0,1uF yes

CAV35 0,1uF yes

AD9257 yes

(b) Channel A & Channel H

Name Exact value E96 Assembly

Ra1 open

Ra2 open

RA3 200 200 yes

RA4 open

Ra5 open

Ca1 open

Ca2 open

Ca3 open

Ca4 0.1uF yes

Ca5 0.1uF yes

La1 0 short

La2 0 short

Ra20 0 short

Ra21 0 short

Ra22 open

Ca20 open

Ca21 open

Ca22 open

BA1 open

BA2 open

Appendices 119

Table 7.7: 1st board configuration cont.

(a) Channel C & Channel G

Name Exact value E96 Assembly

Rc1 open

Rc2 open

Rc3 open

Rc4 open

Rc5 open

Rc6 open

RC7 open

RC8 open

Rc9 200 200 yes

Cc1 open

Cc2 0.1uF yes

Cc3 0.1uF yes

CC4 open

CC5 open

CC6 open

Cc7 open

Lc1 0 short

Lc2 0 short

Rc20 0 short

Rc21 0 short

Rc22 open

Cc20 open

Cc21 open

Cc22 open

OPC open

(b) Channel E

Name Exact value E96 Assembly

Re1 1244 1240 yes

Re2 1000 1000 yes

Re3 1244 1240 yes

Re4 1000 1000 yes

RE5 open

RE6 open

Re7 200 200 yes

Re8 52 52.3 yes

Re9 25 24,9 yes

Re10 open

Re11 0 short

Ce1 1uF yes

Ce2 1uF yes

Ce3 0.1uF yes

Ce4 0.1uF yes

Ce5 0 short

Ce6 0 short

JPE1 jumper 1-2 short

Le1 0 short

Le2 0 short

Re20 100 100 yes

Re21 100 100 yes

Re22 open

Ce20 open

Ce21 open

Ce22 open

120 Appendices

Table 7.8: 1st board configuration cont.

(a) Channel B & Channel F

Name Exact value E96 Assembly

RB1 open

RB2 open

Rb3 open

Rb4 200 200 yes

Cb1 0.1uF yes

Cb2 0.1uF yes

Lb1 0 short

Lb2 0 short

Rb20 0 short

Rb21 0 short

Rb22 open

Cb20 open

Cb21 open

Cb22 open

Tb1 open

Channel F

Name Exact value E96 Assembly

JF1 - JF8 yes

(b) Buffer & Clock circuitry

Vcm Buf

Name Exact value E96 Assembly

C9 0.1uF yes

C10 0.1uF yes

OP2 YES

Clock

Name Exact value E96 Assembly

RK1 open

RK2 open

RK3 100 yes

RK4 100 yes

RK5 100 yes

CK1 0.1uF yes

CK2 0.1uF yes

CK3 0.1uF YES

CK4 1nF YES

CK5 0.1uF YES

CK6 0.1uF YES

QX333 YES

DS90 YES

MAX9152 YES

Appendices 121

Ta
bl
e
7.
9:

C
on

ne
ct
io
ns

be
tw

ee
n
bo

ar
d
co
m
po

ne
nt
s
an

d
SF

2
th
ro
ug

h
ju
m
pe

rs
on

de
v-
bo

ar
d

A
D
9
2
5
7

S
m
ar
tF
u
si
o
n
2

P
in

n
r.

N
am

e
D
ir
ec
ti
o
n

J
u
m
p
er

ju
m
p
er

p
ai
r
n
u
m
b
er

P
in

n
r.

N
am

e
in

[4
]

15
D
-H

O
ut
pu

t
J1

15
6N

A
A
29

M
SI
O
8N

B
3/
C
A
N
_
T
X
_
E
N
_
N
/G

P
IO

_
4_

A
/U

SB
_
D
A
T
A
2_

A

16
D
+
H

O
ut
pu

t
J1

11
6P

V
24

M
SI
O
8P

B
3/
C
A
N
_
R
X
/G

P
IO

_
3_

A
/U

SB
_
D
A
T
A
1_

A

17
D
-G

O
ut
pu

t
J1

21
13
N

W
28

M
SI
O
13
N
B
3/
SP

I_
0_

SS
0/
G
P
IO

_
7_

A
/U

SB
_
N
X
T
_
A

18
D
+
G

O
ut
pu

t
J1

18
13
P

W
27

M
SI
O
13
P
B
3/
SP

I_
0_

SD
O
/G

P
IO

_
6_

A
/U

SB
_
ST

P
_
A

19
D
-F

O
ut
pu

t
J1

31
12
N

T
27

M
SI
O
21
N
B
3/
G
P
IO

_
28
_
A

20
D
+
F

O
ut
pu

t
J1

34
12
P

T
26

M
SI
O
21
P
B
3/
G
P
IO

_
27
_
A

21
D
-E

O
ut
pu

t
J1

41
11
N

N
26

M
SI
O
31
N
B
2/
G
P
IO

_
30
_
A

22
D
+
E

O
ut
pu

t
J1

39
11
P

P
24

M
SI
O
31
P
B
2/
G
P
IO

_
29
_
A

23
D
C
O
-

O
ut
pu

t
J1

45
10
N

M
26

M
SI
O
36
N
B
2/
G
P
IO

_
8_

B

24
D
C
O
+

O
ut
pu

t
J1

43
10
P

N
24

M
SI
O
36
P
B
2/
G
P
IO

_
7_

B

25
F
C
O
-

O
ut
pu

t
J1

46
3N

L
29

M
SI
O
33
N
B
2/
G
P
IO

_
2_

B

26
F
C
O
+

O
ut
pu

t
J1

54
3P

L
30

M
SI
O
33
P
B
2/
G
P
IO

_
1_

B

27
D
-D

O
ut
pu

t
J1

58
9N

K
29

M
SI
O
37
N
B
2/
G
P
IO

_
10
_
B

28
D
+
D

O
ut
pu

t
J1

59
9P

K
30

M
SI
O
37
P
B
2/
G
P
IO

_
9_

B

29
D
-C

O
ut
pu

t
J1

74
1N

K
24

M
SI
O
48
N
B
1/
I2
C
_
0_

SC
L
/G

P
IO

_
31
_
B
/U

SB
_
D
A
T
A
1_

C

30
D
+
C

O
ut
pu

t
J1

72
1P

K
23

M
SI
O
48
P
B
1/
I2
C
_
0_

SD
A
/G

P
IO

_
30
_
B
/U

SB
_
D
A
T
A
0_

C

31
D
-B

O
ut
pu

t
J1

88
17
N

H
30

M
SI
O
41
N
B
1/
M
M
U
A
R
T
_
1_

T
X
D
/G

P
IO

_
24
_
B
/U

SB
_
D
A
T
A
2_

C

32
D
+
B

O
ut
pu

t
J1

83
17
P

J3
0

M
SI
O
41
P
B
1/
G
B
10
/V

C
C
C
_
SE

0_
C
L
K
I/
U
SB

_
X
C
L
K
_
C

33
D
-A

O
ut
pu

t
J1

97
20
N

G
29

M
SI
O
42
N
B
1/
M
M
U
A
R
T
_
1_

R
X
D
/G

P
IO

_
26
_
B
/U

SB
_
D
A
T
A
3_

C

34
D
+
A

O
ut
pu

t
J1

94
20
P

H
29

M
SI
O
42
P
B
1/
G
B
14
/V

C
C
C
_
SE

1_
C
L
K
I/
M
M
U
A
R
T
_
1_

C
L
K
/G

P
IO

_
25
_
B
/U

SB
_
D
A
T
A
4_

C

0
A
G
N
D

-
-

P
14
N
,P
16
N
,P
22
N

G
N
D

N
/A

122 Appendices

Table
7.10:

C
onnections

betw
een

board
com

ponents
and

SF2
through

jum
pers

on
dev-board

cont.

A
D
9
2
5
7

S
m
artF

u
sio

n
2

P
in

n
r.

N
am

e
D
irecti

J
u
m
p
er

ju
m
p
er

p
air

n
u
m
b
er

P
in

n
r.

N
am

e
in

[4
]

S
N
7
4
A
V
C
4
T
2
4
5

S
m
artF

u
sio

n
2

4
1A

1
Input

J202
15N

K
25

M
SIO

44N
B
1/M

M
U
A
R
T
_
0_

D
SR

/G
P
IO

_
20_

B
SC

L
K

5
1A

2
Input

J210
16P

L
23

M
SIO

47P
B
1/M

M
U
A
R
T
_
0_

R
X
D
/G

P
IO

_
28_

B
/U

SB
_
ST

P
_
C

C
SB

6
2A

1
Input

J213
21N

V
26

M
SIO

11N
B
3/C

C
C
_
N
E
1_

C
L
K
I0/I2C

_
1_

SC
L
/G

P
IO

_
1_

A
/U

SB
_
D
A
T
A
4_

A
P
D
W
N

7
2A

2
Input

J214
14P

N
23

M
SIO

39P
B
1/C

C
C
_
N
E
0_

C
L
K
I1/M

M
U
A
R
T
_
1_

C
T
S/G

P
IO

_
13_

B
SY

N
C

14,
15

1O
E
,
2O

E
Input

J187
8N

J28
M
SIO

38N
B
1/M

M
U
A
R
T
_
1_

D
T
R
/G

P
IO

_
12_

B
O
E

S
N
7
4
A
V
C
1
T
4
5

S
m
artF

u
sio

n
2

3
A

InO
ut

J209
22P

M
24

M
SIO

43P
B
1/M

M
U
A
R
T
_
0_

R
T
S/G

P
IO

_
17_

B
/U

SB
_
D
A
T
A
5_

C
SD

IO

5
D
IR

input
J184

8P
J29

M
SIO

38P
B
1/M

M
U
A
R
T
_
1_

R
T
S/G

P
IO

_
11_

B

M
A
X
9
1
5
2

S
m
artF

u
sio

n
2

6
In1+

Input
J196

19P
G
30

M
SIO

45P
B
1/M

M
U
A
R
T
_
0_

R
I/G

P
IO

_
21_

B

7
in1-

Input
J200

19N
F
30

M
SIO

45N
B
1/M

M
U
A
R
T
_
0_

D
C
D
/G

P
IO

_
22_

B

2
sel0

Input
J201

18P
M
25

M
SIO

40P
B
1/C

C
C
_
N
E
1_

C
L
K
I1/M

M
U
A
R
T
_
1_

R
I/G

P
IO

_
15_

B

Q
X
3
S
eries

S
m
artF

u
sio

n
2

1
E
nable

Input
J195

18N
H
28

M
SIO

40N
B
1/M

M
U
A
R
T
_
1_

D
C
D
/G

P
IO

_
16_

B

Acronyms

AC Alternating current
ADC Analog to digital converter
APB Advanced peripheral bus
ASCII American Standard Code for Information Interchange
ASIC Application specific integrated circuit
BFM Bus functional model
CMOS Complementary metal–oxide–semiconductor
CCC Clock conditioning circuitry
CPU Central processing unit
CSA Charge sensitive amplifier
CSB Chip select bar
DC Direct current
DCO Data capture clock
DDR Double data rate
DSP Digital signal processor
DFF D-flip-flop
EP Enhanced product
ENOB effective number of bits
eV electron volt
FDO Fully-differential operational amplifier
FIC Fabric interface controller
FIFO First-in-first-out
FPGA Field programmable gate array
FSM Finite state machine
HSTL High-speed transceiver logic
IC Integrated circuit
IG2 IGLOO2
I/O Input/output
IP Intellectual property
LFCSP Lead Frame Chip Scale Package

123

124 Bibliography

LSB least significant bit
LUT Lookup table
LVDS low-voltage differential signaling
LVCMOS low-voltage-CMOS
MSIO Multi-standard I/O
MSS Microcontroller subsystem
Opamp Operational amplifier
PLL Phase-locked-loop
PCB Printed circuit board
RAM Random access memory
ROM Read only memory
RTL Register transfer level
SCLK Serial clock pin
SDIO Serial data input/output pin
SED Single-ended-to-differential
SEE Single-event effects
SEU Single event upset
SERDESIF Serializer/deserializer interface
SINAD Signal to noise and distortion
SF2 SmartFusion2
SNR Signal to noise ration
SOI Silicon on insulator
SPI Serial peripheral interface
SRAM Static RAM
SF2 SmartFusion2
TMR Tripple-majority voting
UART universal asynchronous receiver/transmitter
USB Universal Serial Bus
UVVM Universal VHDL verification methodology
VHDL VHSIC hardware description language
VHSIC Very high speed integrated circuit

Bibliography

[1] L.-K. G. Ødegaard, Energetic particle precipitation into the middle atmosphere
: optimization and applications of the NOAA POES MEPED data. Bergen:
University of Bergen, 2016.

[2] H. N. Tyssøy, J. Stadnes, F. Søraas, K. Ullaland, and D. Röhrich, “Distribution of
energetic electron and proton (DEEP) instrument conceptual design report,” Tech.
Rep., 2016.

[3] C. T. Russel, “The configuration of the magnetosphere, in E.R. Dyer (ed.), Critical
problems of magnetospheric physics,” Washington, D.C, p. 15, 1972.

[4] R. M. Thorne, “The importance of energetic particle precipitation on the
chemical composition of the middle atmosphere,” Pure and Applied Geophysics
PAGEOPH, vol. 118, no. 1, pp. 128–151, mar 1980. [Online]. Available:
http://link.springer.com/10.1007/BF01586448

[5] C. Martin, “Van Allen radiation belt,” 2006. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:Van_Allen_radiation_belt.svg

[6] S. N. Ahmed, Physics and Engineering of Radiation Detection. Burlington: Elsevier
Science, 2007.

[7] C. Herman and T. E. Johnson, Introduction to health physics. New York: McGraw-
Hill Medical, 2009.

[8] F. aviation administration, “The Space Environment,” 2017, ch. 4.1.2, p. 26.
[Online]. Available: https://www.faa.gov/about/office_org/headquarters_offices/
avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/
media/III.4.1.2_The_Space_Environment.pdf

[9] M. M. Finckenor and K. K. de Groh, “Space Environmental Effects,” NASA, Tech.
Rep., 2015. [Online]. Available: https://www.nasa.gov/sites/default/files/files/
NP-2015-03-015-JSC_Space_Environment-ISS-Mini-Book-2015-508.pdf

[10] N. H. Weste and D. M. Harris, Integrated circuit design, 4th ed. Boston, Nass:
Pearson, 2011.

[11] J. L. Barth, “Space and Atmospheric Environments: from Low Earth Orbits to
Deep Space,” p. 19, 2003. [Online]. Available: https://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/20030053331.pdf

125

http://link.springer.com/10.1007/BF01586448
https://commons.wikimedia.org/wiki/File:Van_Allen_radiation_belt.svg
https://commons.wikimedia.org/wiki/File:Van_Allen_radiation_belt.svg
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/III.4.1.2_The_Space_Environment.pdf
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/III.4.1.2_The_Space_Environment.pdf
https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/tutorial/media/III.4.1.2_The_Space_Environment.pdf
https://www.nasa.gov/sites/default/files/files/NP-2015-03-015-JSC_Space_Environment-ISS-Mini-Book-2015-508.pdf
https://www.nasa.gov/sites/default/files/files/NP-2015-03-015-JSC_Space_Environment-ISS-Mini-Book-2015-508.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030053331.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030053331.pdf

126 Bibliography

[12] S. Duzellier, “Radiation effects on electronic devices in space,” Aerospace
Science and Technology, vol. 9, no. 1, pp. 93–99, jan 2005. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S1270963804001129

[13] Microsemi, “Understanding Single Event Effects (SEEs) in FPGAs,” Tech. Rep.,
2011. [Online]. Available: http://www.actel.com/documents/SEE_WP.pdf

[14] H. Spieler, Semiconductor detector systems. Oxford: Oxford University Press,
2005.

[15] J. P. Bentley, Principles of measurement systems. Harlow: Pearson education
limited, 2005.

[16] Atmel, “AVR127: Understanding ADC Parameters,” Atmel, Tech. Rep., 2016.
[Online]. Available: https://goo.gl/hs7U3C

[17] W. Kester, “MT-003 TUTORIAL Understand SINAD, ENOB, SNR, THD, THD
+ N, and SFDR so You Don’t Get Lost in the Noise Floor,” Analog Devices
Inc, Tech. Rep., 2009. [Online]. Available: http://www.analog.com/media/en/
training-seminars/tutorials/MT-003.pdf

[18] Microsemi, “UG0445 User Guide SmartFusion2 SoC FPGA and
IGLOO2 FPGA Fabric,” Microsemi, Tech. Rep., 2017. [On-
line]. Available: https://www.microsemi.com/document-portal/doc_download/
132008-ug0445-smartfusion2-soc-fpga-and-igloo2-fpga-fabric-user-guide

[19] G. Tambave and A. Velure, “Qualification of the ALICE SAMPA ASIC with a
High-Speed Continuous DAQ System,” p. 6, 2017.

[20] Microsemi, “Single Event Effects - A Comparison of Configuration Upsets and
Data Upsets,” no. November, 2015. [Online]. Available: https://goo.gl/j2G6uX

[21] S. Habinc, “Suitability of reprogrammable FPGAs in space applications,”
Gaisler Research for ESA, Tech. Rep., 2002. [Online]. Available: http:
//microelectronics.esa.int/techno/fpga_002_01-0-4.pdf

[22] Microsemi, “SmartFusion2 SoC FPGA Family.” [Online]. Available: https:
//www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2

[23] Analog Devices, “AD9257-EP (Rev. A),” Analog Devices, Tech. Rep.
[Online]. Available: http://www.analog.com/media/en/technical-documentation/
data-sheets/AD9257-EP.pdf

[24] Analog Devices, “AD9257 (Rev. A),” Analog Devices, Tech. Rep., 2013.
[Online]. Available: http://www.analog.com/media/en/technical-documentation/
data-sheets/AD9257.pdf

[25] Analog Devices Inc, “AEROSPACE AND DEFENSE,” p. 8, 2015. [On-
line]. Available: http://www.analog.com/media/en/news-marketing-collateral/
solutions-bulletins-brochures/Aerospace-and-Defense-brochure.pdf

[26] Analog Devices Inc, “HIGH RELIABILITY COMPO-
NENTS AND SOLUTIONS,” p. 4, 2016. [Online].
Available: http://www.analog.com/media/en/news-marketing-collateral/
solutions-bulletins-brochures/High-Reliability-Components-and-Solutions.pdf

http://linkinghub.elsevier.com/retrieve/pii/S1270963804001129
http://www.actel.com/documents/SEE_WP.pdf
https://goo.gl/hs7U3C
http://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf
https://www.microsemi.com/document-portal/doc_download/132008-ug0445-smartfusion2-soc-fpga-and-igloo2-fpga-fabric-user-guide
https://www.microsemi.com/document-portal/doc_download/132008-ug0445-smartfusion2-soc-fpga-and-igloo2-fpga-fabric-user-guide
https://goo.gl/j2G6uX
http://microelectronics.esa.int/techno/fpga_002_01-0-4.pdf
http://microelectronics.esa.int/techno/fpga_002_01-0-4.pdf
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9257-EP.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9257-EP.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9257.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9257.pdf
http://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/Aerospace-and-Defense-brochure.pdf
http://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/Aerospace-and-Defense-brochure.pdf
http://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/High-Reliability-Components-and-Solutions.pdf
http://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/High-Reliability-Components-and-Solutions.pdf

Bibliography 127

[27] R. Ghaffarian, “Accelerated Thermal and Mechanical Testing of CSP
Assemblies,” 2001. [Online]. Available: https://nepp.nasa.gov/DocUploads/
AFEF0D54-E6B6-49E3-AB978C0630AA6198/reza.pdf

[28] C. Leonard, “Challenges for Electronic Circuits in Space Ap-
plications The Harsh Environmental Conditions of a Space-
craft and the Hazards Posed to the Electronics,” 2017. [On-
line]. Available: http://www.analog.com/media/en/technical-documentation/
technical-articles/Challenges-for-Electronic-Circuits-in-Space-Applications.pdf

[29] G. Griffin, “A Design and Manufacturing Guide for the Lead Frame
Chip Scale Package (LFCSP),” Analog Devices Inc, Tech. Rep., 2006.
[Online]. Available: http://www.analog.com/media/en/technical-documentation/
application-notes/AN-772.pdf

[30] G. L. Rose, N. Virmani, and J. S. Kadesch, “Plastic Encapsulated
Microcircuit (PEM) Guidelines for Screening and Qualification for Space
Applications,” p. 36, 1997. [Online]. Available: https://nepp.nasa.gov/DocUploads/
F2ED9134-5D10-48AE-A953EAC31069A797/pemqual.pdf

[31] R. Reeder, “Transformer-Coupled Front-End for Wideband A/D
Converters,” Analog Devices, Tech. Rep., 2005. [Online]. Avail-
able: http://www.analog.com/media/en/analog-dialogue/volume-39/number-2/
articles/transformer-coupled-front-end-a-d-converters.pdf

[32] R. Reeder and R. Ramachandran, “Wideband A/D Converter Front-
End Design Considerations. When to Use a Double Transformer
Configuration,” Analog Devices, Tech. Rep., 2006. [Online]. Avail-
able: http://www.analog.com/media/en/analog-dialogue/volume-40/number-3/
articles/wideband-a-d-converter-front-end-design-considerations.pdf

[33] R. Reeder and J. Caserta, “Amplifier- or Transformer Drive for
the ADC?” Analog Devices, Tech. Rep., 2007. [Online]. Avail-
able: http://www.analog.com/media/en/analog-dialogue/volume-41/number-1/
articles/wideband-adc-design-considerations-2.pdf

[34] R. Reeder and Analog Devices, “Frequency Domain Response of
Switched-Capacitor ADCs , Rev A,” Tech. Rep., 2005. [Online]. Available:
http://www.analog.com/media/en/technical-documentation/application-notes/
587173998057911564087081655730496713845335290374441083AN_742_a.pdf

[35] Texas Instruments, “THS4524-EP: VERY LOW POWER, NEGATIVE RAIL
INPUT, RAIL-TO-RAIL OUTPUT, FULLY DIFFERENTIAL AMPLIFIER,”
p. 48, 2013. [Online]. Available: http://www.ti.com/lit/ds/symlink/ths4524-ep.pdf

[36] J. Ardizzoni and J. Pearson, “High Speed Differential ADC Driver Design Consid-
erations,” Tech. Rep., 2015.

[37] Microsemi, “UG0447 User Guide SmartFusion2 and IGLOO2 FPGA
High-Speed Serial Interfaces,” Microsemi, Tech. Rep., 2017. [On-
line]. Available: https://www.microsemi.com/document-portal/doc_view/
132011-ug0447-smartfusion2-and-igloo2-fpga-high-speed-serial-interfaces-user-guide

https://nepp.nasa.gov/DocUploads/AFEF0D54-E6B6-49E3-AB978C0630AA6198/reza.pdf
https://nepp.nasa.gov/DocUploads/AFEF0D54-E6B6-49E3-AB978C0630AA6198/reza.pdf
http://www.analog.com/media/en/technical-documentation/technical-articles/Challenges-for-Electronic-Circuits-in-Space-Applications.pdf
http://www.analog.com/media/en/technical-documentation/technical-articles/Challenges-for-Electronic-Circuits-in-Space-Applications.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/AN-772.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/AN-772.pdf
https://nepp.nasa.gov/DocUploads/F2ED9134-5D10-48AE-A953EAC31069A797/pemqual.pdf
https://nepp.nasa.gov/DocUploads/F2ED9134-5D10-48AE-A953EAC31069A797/pemqual.pdf
http://www.analog.com/media/en/analog-dialogue/volume-39/number-2/articles/transformer-coupled-front-end-a-d-converters.pdf
http://www.analog.com/media/en/analog-dialogue/volume-39/number-2/articles/transformer-coupled-front-end-a-d-converters.pdf
http://www.analog.com/media/en/analog-dialogue/volume-40/number-3/articles/wideband-a-d-converter-front-end-design-considerations.pdf
http://www.analog.com/media/en/analog-dialogue/volume-40/number-3/articles/wideband-a-d-converter-front-end-design-considerations.pdf
http://www.analog.com/media/en/analog-dialogue/volume-41/number-1/articles/wideband-adc-design-considerations-2.pdf
http://www.analog.com/media/en/analog-dialogue/volume-41/number-1/articles/wideband-adc-design-considerations-2.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/587173998057911564087081655730496713845335290374441083AN_742_a.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/587173998057911564087081655730496713845335290374441083AN_742_a.pdf
http://www.ti.com/lit/ds/symlink/ths4524-ep.pdf
https://www.microsemi.com/document-portal/doc_view/132011-ug0447-smartfusion2-and-igloo2-fpga-high-speed-serial-interfaces-user-guide
https://www.microsemi.com/document-portal/doc_view/132011-ug0447-smartfusion2-and-igloo2-fpga-high-speed-serial-interfaces-user-guide

128 Bibliography

[38] Vinod Paliakara and Shantanu Prabhudesai, “Understanding Serial LVDS Capture
in High-Speed ADCs Application Report,” Texas instruments, Tech. Rep., 2013.
[Online]. Available: http://www.ti.com/lit/an/sbaa205/sbaa205.pdf

[39] Microsemi, “DS0128 Datasheet IGLOO2 FPGA and Smart-
Fusion2 SoC FPGA,” Tech. Rep., 2016. [Online].
Available: https://www.microsemi.com/document-portal/doc_download/
132042-ds0128-igloo2-and-smartfusion2-datasheet

[40] Microsemi, “Advanced Static Timing Analysis Us-
ing SmartTime,” Microsemi, Tech. Rep., 2011. [On-
line]. Available: https://www.microsemi.com/document-portal/doc_view/
129843-ac379-advanced-static-timing-analysis-using-smarttime-app-note

[41] Analog Devices, “AN-877 APPLICATION NOTE Interfacing to High Speed ADCs
via SPI by the High Speed Converter Division,” Analog Devices, Tech. Rep., 2007.
[Online]. Available: http://www.analog.com/media/en/technical-documentation/
application-notes/AN-877.pdf?doc=AD9670

[42] Microsemi, “HB0089 Handbook CoreSPI v5.1,” Microsemi, Tech. Rep., 2016.

[43] Microsemi, “UG0331 User Guide SmartFusion2 Microcon-
troller Subsystem,” Microsemi, Tech. Rep., 2016. [Online].
Available: https://www.microsemi.com/document-portal/doc_download/
130918-ug0331-smartfusion2-microcontroller-subsystem-user-guide

[44] Microsemi, “SmartFusion2 MSS SPI Driver User’s Guide,” Tech. Rep., 2015.

[45] ARM, “AMBA 3 APB Protocol Specification v1.0,” ARM Limited, Tech. Rep.,
2004. [Online]. Available: http://web.eecs.umich.edu/\simprabal/teaching/
eecs373-f12/readings/ARM_AMBA3_APB.pdf

[46] Microsemi, “UG0449 User Guide SmartFusion2 and IGLOO2 Clocking Resources,”
Tech. Rep., 17. [Online]. Available: https://www.microsemi.com/document-portal/
doc_view/132012-ug0449-smartfusion2-and-igloo2-clocking-resources-user-guide

[47] Microsemi, “SmartFusion2 SoC FPGA Advanced Development Kit UG0557
User Guide Table of Contents,” Microsemi, Tech. Rep., 2013. [On-
line]. Available: https://www.microsemi.com/document-portal/doc_view/
130919-smartfusion2-development-kit-user-guide

[48] Analog Devices, “EVAL-AD9257 Evaluation Board.” [Online]. Available:
http://www.analog.com/en/design-center/evaluation-hardware-and-software/
evaluation-boards-kits/eval-ad9257.html#eb-documentation

[49] K. Mustafa and C. Sterzik, “AC-Coupling Between Differential LVPECL, LVDS,
HSTL, and CML,” Texas Instruments, Tech. Rep., 2007. [Online]. Available:
http://www.ti.com/lit/an/scaa059c/scaa059c.pdf

[50] B. Carter, “Buffer Op Amp to ADC Circuit Collection,” Texas Instruments, Tech.
Rep., 2002. [Online]. Available: http://www.ti.com/lit/an/sloa098/sloa098.pdf

[51] P. J. Ashenden, The Designer’s Guide to VHDL, 3rd ed. Elsevier Science, 2008.

http://www.ti.com/lit/an/sbaa205/sbaa205.pdf
https://www.microsemi.com/document-portal/doc_download/132042-ds0128-igloo2-and-smartfusion2-datasheet
https://www.microsemi.com/document-portal/doc_download/132042-ds0128-igloo2-and-smartfusion2-datasheet
https://www.microsemi.com/document-portal/doc_view/129843-ac379-advanced-static-timing-analysis-using-smarttime-app-note
https://www.microsemi.com/document-portal/doc_view/129843-ac379-advanced-static-timing-analysis-using-smarttime-app-note
http://www.analog.com/media/en/technical-documentation/application-notes/AN-877.pdf?doc=AD9670
http://www.analog.com/media/en/technical-documentation/application-notes/AN-877.pdf?doc=AD9670
https://www.microsemi.com/document-portal/doc_download/130918-ug0331-smartfusion2-microcontroller-subsystem-user-guide
https://www.microsemi.com/document-portal/doc_download/130918-ug0331-smartfusion2-microcontroller-subsystem-user-guide
http://web.eecs.umich.edu/$\sim $prabal/teaching/eecs373-f12/readings/ARM_AMBA3_APB.pdf
http://web.eecs.umich.edu/$\sim $prabal/teaching/eecs373-f12/readings/ARM_AMBA3_APB.pdf
https://www.microsemi.com/document-portal/doc_view/132012-ug0449-smartfusion2-and-igloo2-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_view/132012-ug0449-smartfusion2-and-igloo2-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_view/130919-smartfusion2-development-kit-user-guide
https://www.microsemi.com/document-portal/doc_view/130919-smartfusion2-development-kit-user-guide
http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad9257.html#eb-documentation
http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad9257.html#eb-documentation
http://www.ti.com/lit/an/scaa059c/scaa059c.pdf
http://www.ti.com/lit/an/sloa098/sloa098.pdf

Bibliography 129

[52] Microsemi, “Libero SoC for Enhanced Constraint Flow v11.7 User’s Guide,” Tech.
Rep., 2016. [Online]. Available: http://coredocs.s3.amazonaws.com/Libero/11_7_
0/Tool/libero_ecf_ug.pdf

[53] Microsemi, “SoftConsole v4.0 and Libero SoC v11.7 TU0546 Tutorial,” Tech.
Rep., 2016. [Online]. Available: https://www.microsemi.com/document-portal/
doc_view/133700-tu0546-softconsole-v4-0-and-libero-soc-v11-7-tutorial

http://coredocs.s3.amazonaws.com/Libero/11_7_0/Tool/libero_ecf_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/11_7_0/Tool/libero_ecf_ug.pdf
https://www.microsemi.com/document-portal/doc_view/133700-tu0546-softconsole-v4-0-and-libero-soc-v11-7-tutorial
https://www.microsemi.com/document-portal/doc_view/133700-tu0546-softconsole-v4-0-and-libero-soc-v11-7-tutorial

	Introduction
	DEEP background and motivation
	About this work
	Thesis outline
	Citations

	Background and related work
	Radiation
	Electronics in space
	Measurement system
	Radiation measurement
	Charge sensitive amplifier and pulse shaping
	Analog to digital conversion
	FPGA
	Data storage
	FPGA-implemented system
	Other functionality

	Component selection and considerations
	General consideration
	FPGA
	ADC
	AD9257-EP

	Analog front-end of AD9257

	Digital design
	AD9257 readout logic
	Readout source considerations
	Specifications
	Serializer/deserializer interface
	Custom logic
	Preliminary conclusion
	Realized readout design

	AD9257 control logic
	SPI slave considerations
	SPI master specifications
	Custom SPI master in fabric
	CoreSPI
	MSS SPI peripheral
	Preliminary conclusion
	Realized SPI master

	Test and verification systems
	Introduction
	Development testbench
	HDL model of AD9257
	Clock generation
	Readout wrapper
	Dynamic PLL

	FPGA-internal SoC
	Computer-aided-verification system
	FPGA-internal SoC structure and design process

	FPGA-loopback SoC
	Computer-aided verification
	Implemented FPGA-loopback SoC

	AD9257-testboard SoC
	Computer-aided verification
	Implemented AD9257-testboard SoC

	AD9257 testboard
	Practical considerations
	Design of the AD9257 testboard
	PCB layout
	1st board configuration

	Embedded software

	Tests and results
	Tests
	Computer-aided test sequence
	Physical test sequence

	Results
	Custom SPI-master
	Readout methods
	Development testbench
	FPGA-internal SoC
	FPGA-loopback SoC
	AD9257 testboard SoC & testboard

	Discussion & conclusion
	Future work

	A: Method
	B: Tools
	C: Project setup
	D: AD9257 testboard extras
	Acronyms

