
University of Bergen

Department of Informatics

Algorithms

New Lower Bounds on the
Maximum Number of Minimal

Connected Vertex Covers

Student:
Ida Ryland

Supervisor:
Professor Pinar Heggernes

Master Thesis

June 2017

Acknowledgements

First of all, I would like to thank my supervisor Pinar Heggernes for all the
time, motivation and guidance I have received while working on this thesis.
She has been a great help and inspiration to me. In addition, I would like

to thank the whole Algorithms research group and my fellow master
students who motivated me to work harder. Last but not least, I would like

to thank my family, especially my brother, for all the help and support.

Contents

1 Introduction 1

1.1 Notation . 2

1.2 Vertex covers and connected vertex covers in graphs 2

1.3 Enumeration algorithms using branching 7

2 Enumeration of minimal connected vertex covers 9

2.1 The algorithm and how we implemented it 9

2.2 Generating graphs . 13

2.3 Testing correctness with a trivial algorithm 17

2.4 Implementation of Algorithm 2.1 17

2.5 An improvement of the practical running time 19

3 New lower bounds 23

3.1 New examples of the existing lower bound 23

3.2 A better lower bound . 28

3.3 An even better lower bound 34

4 Further test results 41

5 Conclusion 49

iii

iv CONTENTS

5.1 Summary . 49

5.2 Further work . 51

Chapter 1

Introduction

Graphs are important mathematical structures that are used to model many
real-life problems. They can, for instance, be used to model relations be-
tween objects in a network. An example of this is the friendship structure
on a social media, where the vertices in the graph represent people, or pro-
files, and edges represent friendships between people. Graphs can also be
used to model a highway system between major cities where there is an edge
between the vertices representing cities for each interstate highway between
them. Such graphs can also have directed edges with a weight on each edge
representing toll prices or the length of the highway. In this thesis we will
only look at undirected graphs in which edges have no orientation.

An important field of study in graph theory is the study of vertex covers.
A vertex cover in a graph is a set of vertices that cover all the edges. In
other words, each edge in the graph has at least one endpoint in the vertex
cover. Vertex covers have numerous real-life applications. Imagine you are
in charge of the police department in a small town where pickpockets are a
growing problem. To catch all the pickpockets you have to make sure that
there is always a police officer in the neighborhood. Imagine that the edges
of the graph represent the streets of the town, and the vertices represent
crossroads. Your task is to place police officers on crossroads in a way such
that each road is under supervision of at least one police officer, ensuring
that you will be able to catch all pickpockets. The crossroads where police
officers are placed correspond to the vertex cover of the graph.

For the problem above, imagine that you also have a strict budget. To save
money, you want to use as few police officers as possible, without letting
any pickpockets get away. We want to find the vertex cover of the graph of
smallest size, i.e., a minimum vertex cover. We seek to find the best possible

1

2 CHAPTER 1. INTRODUCTION

solution among all feasible solutions. Finding a minimum vertex cover is a
classical graph problem, and is an example of an NP-hard problem.

In this thesis we are not interested in the solution of finding small vertex
covers. Instead we are interested in listing all vertex covers of a certain type
and deciding the maximum number of them. Before we can explain these
concepts further, we need some notation.

1.1 Notation

We denote a graph by G = (V,E), where V is the set of vertices and E is
the set of edges in G. The neighborhood of a vertex u is the set of vertices
that is adjacent to u and is denoted NG(u). The closed neighborhood of u
is N [u] = NG(u) ∪ {u}. A vertex, u ∈ G, is a cut vertex if the removal of u
separates the graph into several connected components. For a graph G and
a subset U ⊆ G we denote G[U] to be the subgraph of G induced by U . We
write G \ U to denote G[V (G) \ U] and G− u if U = {u}. A set U ⊆ V (G)
is connected if G[U] is a connected graph. A set of vertices U ⊆ V (G) is
a vertex cover if ∀(u, v) ∈ E(G) either u ∈ U or v ∈ U . A vertex cover is
connected if U is a connected set. A (connected) vertex cover U is minimal
if no proper subset of U is a (connected) vertex cover. A set of vertices is
an independent set if there is no edges between any pair of these vertices.
A set is independent if and only if its complement is a vertex cover.

1.2 Vertex covers and connected vertex covers in
graphs

A vertex cover of a graph is a subset of vertices such that each edge of the
graph is incident to at least one vertex in the vertex cover. More formally,
in a graph G = (V,E), a set of vertices U ⊆ V (G) is a vertex cover if U
contains at least one endpoint of every edge. A vertex in U is said to cover
all edges incident to it. The graph G \ U contains no edges, and hence
V (G) \ U is an independent set. The illustration in Figure 1.1 shows two
different vertex covers of a graph.

A minimum vertex cover is a vertex cover of smallest possible size in a
graph. A minimal vertex cover is a vertex cover U , with the property that
no proper subset of U is a vertex cover. Note that a minimal vertex cover is
not necessarily minimum. But a minimum can always be found among all
minimal vertex covers of a graph. In Figure 1.1 the graph to the left is an

1.2. VC AND CVC IN GRAPHS 3

Figure 1.1: The red vertices indicate a minimal (to the left) and a minimum
(to the right) vertex cover of a given graph.

example of a minimal vertex cover in a graph that is not minimum.

In the decision version of the vertex cover problem, we are given an instance
(G, k), and the objective is to check whether G has a vertex cover of size
at most k. This problem is NP-complete, i.e., there is no polynomial time
solution to this problem unless P = NP. But since the problem is in NP, a
suggested solution to the vertex cover problem can be verified in polynomial
time. The naive approach for solving the problem of finding a vertex cover
of size at most k is to try all possible subsets of the graph and check whether
it is a vertex cover. This is a time consuming operation, as the number of
subsets is 2n for a graph with n vertices and hence constructing all sets has
a running time of O(2n). Since we know that a possible solution to the
problem has to be of size at most k, it is sufficient to only try all possible
subsets of size at most k in the graph, and check whether it is a vertex cover.
The number of such subsets of a graph G = (V,E) is O(|V |k), hence the
naive approach has running time O(|V |k). Since k is expected to be smaller
than |V |, this approach has a better running time than O(2n). However,
there exist much better algorithms to solve this problem. The problem is
known to be fixed parameter tractable (FPT), and it can be solved in time
O(1.2738k + (k|V |)) [4]. Note that this running time is exponential only
in k, which can be expected to be much smaller than |V |. Hence such an
algorithm is efficient for small k, regardless of the size of the graph input.

Extremal graph theory is a wide area that studies extreme values of graph
parameters for graphs which often has certain properties. Extremal prob-
lems are at the very heart of graph theory [2, 1]. Finding the maximal
number of objects in a graph given some restrictions has also very impor-
tant algorithmic applications. For example, the running time of a naive
approach will immediately decrease if we find a better upper bound. For
many important hard problems we do not have better algorithms than the
naive approach. Many exponential time algorithms start from a set of such
objects for generating other results [6]. In this thesis we are interested in the
maximum number of minimal vertex covers a graph can have, and listing all
such sets. For this purpose, let us first note the connection between vertex

4 CHAPTER 1. INTRODUCTION

covers and independent sets.

An independent set in a graph is a set of vertices such that for any pair of
vertices in the set there is no edge connecting the two. A maximal indepen-
dent set is an independent set that is not a subset of any other independent
set. In other words, there is no vertex outside the independent set that may
join it because it is maximum with respect to the independent set property.
As we will prove in the next observation, a set is independent if and only if
its complement is a vertex cover. Thus, if I is a maximal independent set,
then the set V \ I is a minimal vertex cover.

Observation 1.1. A set I ⊆ V is a maximal independent set of G = (V,E)
if and only if V \ I is a minimal vertex cover of G.

Proof. Assume I is a maximal independent set. Then for every e ∈ E(G),
e has at least one endpoint not in I, thus V \ I is a vertex cover. Suppose
that V \ I is not a minimal vertex cover. Then there exists a vertex u in
V \ I such that V \ (I ∪ {u}) also is a vertex cover. This means that u can
not have any neighbors in I, since then there would be at least one edge not
covered. Hence, all neighbors of u are in V \ I. But then I ∪ {u} is also an
independent set, which contradicts the maximality of I.

Assume S is a minimal vertex cover such that every e ∈ E(G) has at least
one endpoint in S. There are no edges between vertices outside of S and
the set V \ S is an independent set. Suppose that V \ S is not a maximal
independent set. This means that there is a vertex u such that (V \S)∪{u}
is also an independent set. But then S \ {u} is also a vertex cover. This
contradicts the minimality of S, hence the set V \ S must be a maximal
independent set.

Earlier work by Miller and Muller [10] , and by Moon and Moser [11] stated
that the maximum number of maximal independent sets a graph on n ver-
tices can have is 3n/3. This bound is tight as a disjoint union of n/3 triangles
has exactly 3n/3 maximal independent sets. Any maximal independent set
in this graph is formed by choosing one vertex from each triangle. There are
three vertices to choose from in each triangle, and the number of triangles
is n/3. Since the choice of a vertex in each triangle is independent from
the other triangles, the number of maximal independent sets in the graph
is 3n/3. Following from Observation 1.1, the maximum number of minimal
vertex covers a graph on n vertices can have is equal to the maximum num-
ber of maximal independent sets. Thus it follows that the bound on the
maximum number of minimal vertex covers in graphs is the same as the
bound on the maximum number of maximal independent sets in graphs.

1.2. VC AND CVC IN GRAPHS 5

We give the example graph that has 3n/3 minimal vertex covers in Figure
1.2.

Figure 1.2: A graph having 3n/3 minimal vertex covers.

This is one of the most classical and well known examples of enumerating
objects in graphs. Within a polynomial factor of the upper bound proved
by Moon and Moser, this can easily extend to an algorithm that enumerates
all minimal vertex covers in graphs. An example of this is the algorithm by
Tsukiyama [13]. Better bounds than 3n/3 have been proved for special graph
classes. One example of this is enumerating maximal independent sets in
triangle-free graphs. The tight bound of 2n/2 is proved with combinatorial
arguments by Hujtera and Tuza [8] and algorithmically by Byskov [3].

A connected vertex cover is a vertex cover U such that the subgraph induced
by U is connected. From a practical view, we can imagine in our example
with police officers, that each officer should be able to see another officer
at all times for security reasons. The same observations about minimal and
minimum vertex covers also hold for connected vertex covers. A minimum
connected vertex cover is the connected vertex cover of smallest possible size.
A minimal connected vertex cover is a connected vertex cover U such that no
proper subset of U is a connected vertex cover. In the illustration in Figure
1.3 the red vertices in the graph to the left is an example of a minimal
connected vertex cover which is not minimum. All minimum connected
vertex covers must be in the set of all minimal connected vertex covers of a
graph.

Figure 1.3: Minimal and minimum connected vertex covers of a graph.

As we saw above, enumeration of minimal vertex covers are well studied.
However, the problem of enumerating minimal connected vertex covers has

6 CHAPTER 1. INTRODUCTION

not been given the same attention. A recent paper by Golovach, Heggernes
and Kratsch [7] studies exactly this problem. The authors give an algorithm
for enumerating all minimal connected vertex covers in time O(1.8668n).
This also provides an upper bound of 1.8668n on the number of minimal
connected vertex covers a graph can have. They also provide a lower bound,
which is a graph that has 3(n−1)/3 ∼ 1.4422n minimal connected vertex
covers. This graph is shown in Figure 1.4 with a universal vertex joining
(n − 1)/3 triangles. This leaves a gap between the lower bound of 1.4422n

and the upper bound of 1.8668n minimal connected vertex covers in general
graphs.

u

x1

z1y1

x2

y2 z2 zkyk

xk

Figure 1.4: A graph having 3(n−1)/3 minimal connected vertex covers: u has
to belong to every connected vertex cover, and exactly two vertices have to
be selected from each triangle.

In general, a lower bound on the number of objects in a graph is given by
an example graph having exactly that many objects. For the number of
minimal connected vertex covers, we have seen that the lower and upper
bounds are quite far apart. The main purpose of this thesis is to try to
narrow this gap. We know that the real upper and lower bounds must be
the same, although we do not know these. So either our upper bound is
too high, or there are example of graphs with more than 1.4422n minimal
connected vertex covers. Most probably, both of these statements are true,
and the bounds meet somewhere in between.

By implementing the algorithm by Golovach et al. [7] and running many
tests, we hope to find better lower bound examples, and perhaps to bring
down the running time of the algorithm as well.

1.3. ENUMERATION ALGORITHMS USING BRANCHING 7

1.3 Enumeration algorithms using branching

In theoretical computer science, we have decision problems which are prob-
lems that can be posed as yes-no questions on the input, and optimization
problems where the goal is to find the best possible solution from all feasible
solutions to a problem. In addition, we have extremal problems where we
seek to find how many different configurations of a certain type can occur
in a graph, satisfying some properties. Closely related to this, are enumera-
tion problems. While optimization algorithms seek to find the best solution
given some constraints, the goal of enumeration algorithms is to enumerate
all solutions to a given problem.

Branching is a simple and powerful algorithmic technique, and can be used
to enumerate objects. Most branching algorithms run through all possible
solutions and thus have exponential running time. The method builds on
the idea of backtracking, and tries to build all feasible solutions by mak-
ing decisions along the way, such as deciding whether a vertex should be
included in the solution or not. Such an algorithm, say Alg(G,S), branches
into several subproblems, i.e., recursive calls, Alg(G \ U1, S ∪ Y1), Alg(G \
U2, S∪Y2), ... , Alg(G\Ul, S∪Yl) that are solved one by one. It is important
that Ui is non-empty so that the problem shrinks at every step. At each
recursive call, we generate solutions that are supersets of S. In the begin-
ning we usually call the algorithm with Alg(G, ∅) so that all solutions are
generated. Every time the algorithm branches, it generates new and smaller
subproblems. Vertices that already have been branched on are not part of
new instances. The execution of a branching algorithm can be viewed as a
search tree traversed by the algorithm until a solution is discovered in one
of its leaves. Each recursive call is a node in the search tree. The algorithm
stops when G is empty, or when S is a solution to the problem. These are the
leaves of the search tree. For a given problem, all solutions will be contained
in one of the leaves in the search tree. Some subproblems are discarded, and
will also be leaves in the search tree. Therefore, the number of leaves in the
search tree will often be larger than the number of solutions the algorithm
outputs. We measure the size of an subproblem by the number of vertices
in the graph. Branching algorithms can be used to find and list all possible
solutions to a problem. The solutions are obtained in the leaves of the search
tree.

For an enumeration algorithm, the number of solutions that are generated
go hand in hand with the running time of the algorithm, which is related
to the number of nodes in the search tree. Since the total number of nodes
in a tree, where every tree node branches, is at most twice the number of
leaves, the number of leaves in the search tree gives both an upper bound on

8 CHAPTER 1. INTRODUCTION

the number of solutions that our enumeration problem can have, and it also
gives the running time of the algorithm itself. Search trees are analyzed by
measuring the decrease of the instance in each branching step. We create l
new subproblems at each step, where the size of the instance in the subprob-
lems is decreased by (c1, c2, ..., cl), where c1 = |U1|, c2 = |U2|, ... , cl = |Ul|.
This is called the branching vector. Given this, we can create the character-
istic equation xn = xc1 +xc2 + ...+xcl . The unique positive real root to this
equation gives us the upper bound on the running time of the algorithm. If
α is the root, then the running time is αn · poly(n).

Recall that it might happen that some of the leaves in the search tree is not a
solution to the problem, but rather a discarded set. As a consequence of this,
the proved upper bound might be significantly higher than the maximum
number of solutions that a graph can contain. Thus we search for examples
of graphs on which we can find a large number of solutions. Such a graph
with the proven number of solutions is called a lower bound example, and
the proved number a lower bound.

Enumeration algorithms can be used to solve minimization problems, by
listing all possible solutions and pick the smallest one. Although for some
hard problems this is the fastest we know, usually we have a faster algorithm
avoiding enumeration. In particular, as we have seen, the maximum number
of minimal vertex covers a graph can have is known to be 3n/3 ∼ 1.4422n.
This result can easily extend to an algorithm that enumerates all minimal
vertex covers in a graph within a polynomial factor of the bound. But the
fastest algorithm to find a minimum vertex cover runs in time O(1.1889n)
[12]. We see a similar situation also for connected vertex covers: The result
that we will study in this thesis shows that there are at most O(1.8668n)
minimal connected vertex covers in a graph. However, finding a minimum
connected vertex cover can be done in time O(1.7088n) [5].

Chapter 2

Enumeration of minimal
connected vertex covers

In this chapter we give the details of the algorithm by Golovach et al. [7]
for enumerating minimal connected vertex covers in a graph. We will also
give the details of our implementation of the algorithm, how we generated
graphs, and discuss how we chose to test its correctness. We did some small
changes to the algorithm to improve its practical running time. We will give
the details of this improvement in the last section.

2.1 The algorithm and how we implemented it

Let G be the graph whose minimal connected vertex covers we want to
enumerate. The algorithm given in the paper by Golovach et al. [7] for
enumerating all minimal connected vertex covers of a graph takes as input
a set S of selected vertices and a set F of free vertices, where S, F ⊆ V , and
G = (V,E). The goal is to generate all minimal connected vertex covers of G
that are supersets of S. The algorithm branches on a subset of free vertices
and either selects some of them to be included in the minimal connected
vertex cover, or forbids some of them to be selected by discarding them.
Initially we call the algorithm with the empty set as the selected vertices
and the whole vertex set V as the free vertices. In this way, all vertices of
G are initially free to be selected, and all minimal connected vertex covers
will be generated.

We will now describe the algorithm displayed in Algorithm 2.1 step by step.
In the first step the algorithm checks whether S is a minimal connected

9

10 CHAPTER 2. ENUMERATION OF MCVC

Algorithm 2.1 Algorithm for enumerating minimal connected vertex covers

1: procedure Alg(S, F)

2: if S is a minimal connected vertex cover of G then

3: return S

4: end if

5: if F = ∅ then
6: return

7: end if

8: if There are two adjacent free vertices u, v ∈ F then

9: Alg(S ∪ {u}, F \ {u})
10: Alg(S ∪NG(u), F \NG[u])

11: end if

12: if F is an independent set then

13: let s be the number of components of G[S]

14: for every non-empty set X ⊆ F of size at most s− 1 do

15: if S ∪X is a minimal connected vertex cover then

16: return S ∪X
17: end if

18: end for

19: end if

20: end procedure

vertex cover of G. If so, return S and stop. This is the first rule and the
base case of the algorithm. If the algorithm returns S at this step, we are at
a leaf in our search tree. If S is not a minimal connected vertex cover, the
algorithm continues to the second rule. The second rule of the algorithm
checks whether F is an empty set. If F is in fact an empty set then stop.
When F is empty, we have processed all free vertices in G, and we are at a
leaf in the search tree. Note that we will not obtain a solution to our problem
in this leaf and at this point the algorithm will discard S since there are no
more free vertices to select. The third step, which is the only branching
rule of the algorithm, branches as follows: If there exist two adjacent free
vertices u and v in F :

• select u and remove it from F , i.e set S′ = S ∪ {u} and F ′ = F \ {u},
and recursively call the algorithm with input S′ and F ′.

• discard u and select all its neighbors, i.e set S′ = S ∪ NG(u) and
F ′ = F \NG[u], and recursively call the algorithm with input S′ and
F ′.

2.1. THE ALGORITHM 11

Let us explain why these two branching rules are correct. If we have two
adjacent free vertices in F , S can not be a vertex cover since it does not
cover all edges of G. At least one endpoint of every edge in G must belong
to any vertex cover. This means that either u must be added to S, or all of
the neighbors of u must be added to S. The first branching rule selects u by
adding it to the set S and removing it from F . In this branch, the size of the
problem shrinks by one. The second branching rule discards u by removing
it from F . We know that there is at least one edge between u and another
vertex in F that needs to be covered for S to be a vertex cover. This vertex
is v. The algorithm therefore selects all neighbors of u by adding them to S
and removing them from F . The branching rules in step 3 have a branching
vector (1, 2), since we remove one vertex, u, in the first branch, and at least
two in the second branch, u and v.

When there are no more adjacent free vertices and F becomes an indepen-
dent set, the algorithm continues in a different way. To analyze the running
time, we first analyze the number of nodes in the search tree when F is
an independent set. This is exactly the same number as if the algorithm
would stop when F is an independent set. If the algorithm would be over at
this point, then the number of leaves would be given by the (1, 2) branching
vector, which gives the branching number α ≈ 1.61803.

The last step of the algorithm checks whether F is an independent set. We
know that S can not be a minimal connected vertex cover, or else it would
have been returned in the first step of the algorithm. This means that we
have to select some more vertices from F . Since F is independent, we know
that all of the edges in G is covered and S is a vertex cover of G. Thus
we have to select some of the vertices of F to ensure connectivity of the
minimal connected vertex cover that S is a subset of. Let U be a minimal
connected vertex cover of G where U = S ∪X and X ⊆ F . Each vertex in
X is a cut vertex of G[U] since the set S is not connected. Since G[S] has s
connected components, we have to include at most s− 1 vertices from X to
ensure the connectivity of G[U], hence |X| ≤ s− 1. Each node in the search
tree where F is an independent set has a set of children that are leaves. In
the paper it is computed that the total number of children is O(1.86676n),
where n = |F |.

The running time of the algorithm relies on polynomial time computations
at every node in the tree. So we must show that all steps for an instance
can be done in polynomial time. To verify that a set is a vertex cover can
be done in polynomial time, since the vertex cover problem is shown to be
NP-complete. Checking connectivity is done in linear time using breadth
first search or depth first search. The only complicated step is checking
minimality. We will now show that this can be done in polynomial time.

12 CHAPTER 2. ENUMERATION OF MCVC

When checking whether S is a minimal connected vertex cover, the naive
way to do this is to generate the power set of S, and for all subsets test
whether they are connected vertex covers. This is a time consuming opera-
tion as the number of subsets of S is 2|S|. We prove in Lemma 2.1 that if S
is a connected vertex cover, it is sufficient to check only |S| subsets of S.

Lemma 2.1. Let S be a connected vertex cover, then S is a minimal con-
nected vertex cover if ∀u ∈ S, S \ {u} is not a connected vertex cover.

Proof. Let S be a connected vertex cover such that ∀u ∈ S, S \ {u} is not
a connected vertex cover. Assume for contradiction that S is not minimal.
Then there must exist a set S′, with |S′| ≥ 2, such that S \S′ is a connected
vertex cover. This is illustrated in Figure 2.1. Since S′ is not a part of the
connected vertex cover S \ S′, all edges in S′ have to be covered by S \ S′.
Thus, there can not be edges between vertices in S′, and S′ is therefore an
independent set. Let H be the graph G\S. Then no vertices in S′ can have
an edge to a vertex in H, because edges between S′ and H would not be
covered when S′ is removed.

Since both S \ S′ and S are connected vertex covers, and S′ has no neigh-
bors outside of S, all vertices of S′ are necessary for connectivity of G[S].
However, since S′ is an independent set, every vertex of S′ has a neighbor
in S \ S′, otherwise S would not be connected. Since (S \ S′) ∪ {u} is a
vertex cover but not a minimal connected vertex cover, u is a cut-vertex of
G[S \ S′ ∪ {u}]. But then G[S \ S′] is also disconnected which gives us the
desired contradiction.

 S
 S’

G

Figure 2.1: The red edges indicates edges that contradicts the assumption
that S is a connected vertex cover.

2.2. GENERATING GRAPHS 13

2.2 Generating graphs

To test our implementation of Algorithm 2.1 we first generated graphs. We
implemented an algorithm that generates all graphs up to a given size to
test whether there exist graphs with a higher number of minimal connected
vertex covers than the lower bound given in the paper by Golovach et al.
[7]. We were able to generate all graphs on 7 vertices before running out of
memory. We also implemented a second algorithm that generates connected
graphs of a given size with edges distributed randomly between the vertices.
This way we were able to test our implimentation of Algorithm 2.1 on larger
graphs.

We will first describe the algorithm for generating connected graphs with
edges distributed randomly between vertices. The algorithm is illustrated
in Algorithm 2.2 and takes both the number of vertices, n, and the number
of edges, e, as input. The algorithm makes sure that the graph does not
contain any self-loops or multiple edges. By setting the number of edges
close to the number of vertices in the graph we end up with a sparse graph,
and by setting it close to the maximum number of edges, n·(n−1)

2 where n is
the number of vertices in the graph, we get a dense graph. The algorithm
generates a graph with edges distributed randomly between the vertices. A
graph with more than one component does not have any minimal connected
vertex covers, and we had to ensure connectivity for the graphs we generated.
Therefore, we made sure that the graps were connected before testing our
implementation of Algorithm 2.1.

The first step of Algorithm 2.2 for generating graphs is to create n vertices
in a list. For each of the n vertices it selects a vertex v and tries to create
an edge between them. We say that an edge, (u, v), is valid if u 6= v or
the edge is not already in the list of edges. If the chosen (u, v) edge is not
valid, we continue to select a random vertex v until the (u, v) edge is a valid
edge, and add it as an edge in the graph. When all n vertices are processed,
we are left with a connected graph G. The remaining e− n edges of G are
distributed as follows. Select two random vertices u and v. While u and v
are the same vertex, or there already exists an edge between u and v, select
two new random vertices u and v, and when the (u, v) edge is valid, add it
as an edge in the graph.

We generated graphs with up to 60 vertices and 900 edges. These are not
dense graphs, but based on our test results we observed that when increasing
the number of edges, the number of minimal connected vertex covers and
the number of discarded sets converged towards the number of vertices in
the graph. This will be discussed more in the next chapter.

14 CHAPTER 2. ENUMERATION OF MCVC

Algorithm 2.2 Algorithm for generating connected graphs

1: procedure Alg(n, e)

2: Create n vertices as an adjacency list A

3: for every vertex u from 0...n− 1 do

4: v = random vertex between 0...n− 1

5: while u equals v or there exists an (u, v) edge do

6: v = random vertex between 0...n− 1

7: end while

8: Add (u, v) edge to A

9: e = e− 1

10: end for

11: for i from 0 to e do

12: u, v = random vertices between 0...n− 1

13: while u equals v or there exists an (u, v) edge do

14: u, v = random vertices between 0...n− 1

15: end while

16: Add (u, v) edge to A

17: end for

18: return A

19: end procedure

As mentioned, the goal of this thesis is to try to narrow the gap between
the lower and the upper bound on the number of minimal connected vertex
covers in graphs. To find graphs with a higher number of minimal connected
vertex covers than the existing lower bound of 1.4422n, we generated all
graphs up to 7 vertices and ran our implementation of Algorithm 2.1 on
these graphs. Algorithm 2.3 generates all graphs up to a given number of
vertices. The algorithm takes as input n, the number of vertices of the
largest graphs to generate, and a list E of all possible pairs of the n vertices.
Thus, to run the algorithm we first have to find all subsets of the n vertices
of size 2. The algorithm outputs a set Gall of all graphs with at most n
vertices. The first step of the algorithm is to add the empty set to Gall. It
proceeds by iterating over all possible pair of vertices. For each (u, v) pair,
create an edge between them and include the (u, v) edge in all previously
generated graphs, and add them to Gall. When the algorithm terminates,
we will have generated all graphs with at most n vertices.

The set of graphs returned by Algorithm 2.3 grows exponentially as n in-
creases. There are (n−1)n

2 possible edges in a graph of n vertices that does

not contain any self-loops or multiple edges. A set with (n−1)n
2 members has

2.2. GENERATING GRAPHS 15

Algorithm 2.3 Algorithm for generating all graphs up to size n

1: procedure Alg(n, E)

2: create a set Gall

3: add the empty set to Gall,

4: for all (u, v) edges in E do

5: create a new list of subsets, G′all
6: for subset S in Gall do

7: add S to G′all
8: create a new subset S′ = S

9: S′ = S′ ∪ (u, v)

10: add S′ to G′all
11: end for

12: set Gall = G′all
13: end for

14: return Gall

15: end procedure

2
(n−1)n

2 subsets. The algorithm generates all possible subsets of the edges

in E, and so there are 2
(n−1)n

2 graphs in the set Gall, which the algorithm

outputs. Therefore, the algorithm enumerates all graphs in time O(2
(n−1)n

2).

The first three iterations of Algorithm 2.3 when n = 3 are illustrated in
Figure 2.2. We chose to leave out the very first step of the algorithm when
adding the empty set to the list of all graphs returned by the algorithm.
Since the graphs containing just one single edge are isomorphic, the minimal
connected vertex covers of the graphs will also be isomorphic, thus Algorithm
2.1 will output the same number of minimal connected vertex covers for all
of the graphs. The same observation holds for the graphs that only have
two edges. If we could avoid generating isomorphic graphs then the running
time of the algorithm would decrease and we would not run out of memory
when trying to generate all graphs up to size 8. Since the number of non-
isomorphic graphs are smaller than the number of isomorphic graphs, we
would be able to generate graphs larger than 7 vertices.

When we tested graphs up to 7 vertices, we discovered two graphs that we
could use to create new example graphs. These example graphs have the
same number of minimal connected vertex covers as the existing lower bound
of 3(n−1)/3 ∼ 1.4422n. We will give the details of the new example graphs
in the next chapter. This observation strengthened our assumption that the
existing lower bound is too low, and gave us the motivation to run tests on
larger graphs.

16 CHAPTER 2. ENUMERATION OF MCVC

1.

2.

3.

a b

a b

a b

a

c

a b

c

a

c

a b

c

c

b a b

c

a b

c

a b

c

Figure 2.2: All graphs of size at most 3.

There exist tools that generate non-isomorphic graphs up to n vertices when
n is small. One of them is called geng, and is part of a package called gtools,
that is distributed by McKay and Piperno [9]. After testing all graphs up
to 7 vertices by using Algorithm 2.3, we were curious if generating larger
graphs would result in discovering graphs that could be used to prove a
better lower bound. Therefore, we used geng to generate all graphs up to
size 11. Geng is implemented in the programming language C, and outputs
the graphs in a compressed format called graph6. To be able to use this
data, we used a second tool from gtools to interpret the format, and output
the graphs in a format we could read into our Java application.

According to tests run by McKay and Piperno [9], it would take 285 hours to
generate all graphs up to 12 vertices, and we decided to stop at graphs of 11
vertices. In fact, as we will describe in the next chapter, with graphs of 10
vertices, we managed to construct an example graph with a higher number
of minimal connected vertex covers than the lower bound of 1.4422n proved
in the paper by Golovach et al. [7]. This graph gave a theoretical basis
for finding an example graph with 18 vertices, which has an even higher
number of minimal connected vertex covers than the new example graph
we constructed based on the graph with 10 vertices. Again, based on this
graph, we theoretically proved that there exists a graph on 44 vertices that
can be used to construct an example graph with an even higher lower bound.
This is proved both by constructing the graph itself and by testing it with
our implementation of Algorithm 2.1 in the next chapter.

2.3. TESTING CORRECTNESS WITH A TRIVIAL ALGORITHM 17

2.3 Testing correctness with a trivial algorithm

Before testing our implementation of Algorithm 2.1 for enumerating minimal
connected vertex covers, we had to be sure that our implementation was in
fact correct. It could happen that although the algorithm in general is
correct, some details are missing or are incorrect. It could also happen that
during the implementation, some mistakes can occur. Such a mistake might
not be easy to detect by just looking at the output. This would require
manually checking that all generated sets are correct. It would be even
more difficult to find out whether some sets are missing.

To overcome these issues, we implemented a very trivial, and of course slow,
algorithm to generate all vertex subsets of a graph and test whether each of
them is a minimal connected vertex cover.

The trivial way to enumerate all minimal connected vertex covers of a graph
G is by constructing all possible subsets of G, and checking whether each
of these is a minimal connected vertex cover. This algorithm has a running
time of O(2n · poly(n)) as the number of subsets for a graph on n vertices
is 2n. To test the correctness of our implementation of Algorithm 2.1 we
implemented the trivial algorithm, and compared the output with the output
of our implementation of Algorithm 2.1. With a running time of O(2n ·
poly(n)), we were only able to test graphs up to a certain size. For graphs
larger than 20 vertices, the trivial algorithm became too slow. Although,
we tested our algorithm enough to be sure of its correctness.

2.4 Implementation of Algorithm 2.1

We chose to implement Algorithm 2.1 in Java. The graphs generated by
Algorithm 2.2 varied from being very dense to very sparse, depending on
how many edges we chose to include in the graph compared to the number
of vertices. Therefore we chose to represent the graphs by adjacency-lists as
opposed to adjacency-matrices. The sets S and F which the algorithm takes
as input are represented as ArrayLists, where initially we call the algorithm
with F being the whole vertex set of the input graph G, and S being an
empty set. As opposed to arrays, when creating an ArrayList it is optional to
specify its size, and ArrayLists can grow and shrink their size dynamically.
This is beneficial for us, since we are adding vertices to S, and removing
vertices from F . For each solution S generated by the implementation of
Algorithm 2.1, we test whether it in fact is a minimal connected vertex cover.
To do so we have to access the graph fast, and so we chose to represent G

18 CHAPTER 2. ENUMERATION OF MCVC

as a constant field. This way G will be immutable, and can not be changed.
We also have to access G when checking whether F is an independent set.

When checking whether S is a vertex cover, we iterate through all vertices
of G, and for each vertex u we check whether u ∈ S or all of its neighbors
v, v ∈ S. If this holds for all vertices of G we check whether S is connected
by running a depth first search. This procedure is given in Algorithm 2.4.

Algorithm 2.4 Algorithm for testing whether a set is a connected vertex
cover
1: procedure Alg(S, G)

2: // Check whether S is a vertex cover

3: for each vertex u in G do

4: for each v in NG(u) do

5: if u /∈ S and v /∈ S then

6: return False

7: end if

8: end for

9: end for

10: //Check that S is a connected set

11: let St be a stack

12: St.push(S[0]) // push the first vertex of S to the stack

13: while St is not empty do

14: u = St.pop()

15: for each v ∈ NG(u) do

16: if v ∈ S and is not labeled as discovered then

17: label v as discovered

18: St.push(v)

19: end if

20: end for

21: end while

22: if there exists a vertex in S which is not labeled as discovered then

23: return False

24: end if

25: return True

26: end procedure

In Lemma 2.1 in Section 2.1 we proved that when checking minimality of a
connected vertex cover it is sufficient to only check n subsets of a graph on
n vertices. Checking minimality of a connected vertex cover S is done by

2.5. AN IMPROVEMENT OF THE PRACTICAL RUNNING TIME 19

verifying that it is not possible to remove any vertex u from S, and S \ {u}
being a connected vertex cover. This would result in S having a proper
subset that is a connected vertex cover, and therefore S can not be minimal.
We give the algorithm for checking minimality in Algorithm 2.5.

Algorithm 2.5 Algorithm for testing minimality of a connected vertex cover

1: procedure Alg(S, G)

2: for each u ∈ S do

3: S′ = S \ {u}
4: if S′ is a connected vertex cover then

5: return False

6: end if

7: end for

8: return True

9: end procedure

2.5 An improvement of the practical running time

We did some small adjustments to our implementation of Algorithm 2.1
to make it run faster. Instead of testing whether the set S is a minimal
connected vertex cover, we first check whether S is a connected vertex cover.
The problem with the original formulation in the algorithm is that if S is
not a minimal connected vertex cover, the algorithm continues to work on
S. However, if S is a connected vertex cover but not minimal then it can
be immediately discarded at this point. If S is a connected vertex cover,
we also have to check whether S is minimal. If S is minimal, we return
S and stop, else we discard S and stop. This small adjustment is given in
Algorithm 2.6. By implementing this adjustment, we prevent the algorithm
from working on connected vertex covers that never will be minimal, and as
we will see, the practical running time of the algorithm decreased.

How much time do we save by immediately discarding a connected vertex
cover S after checking whether it is minimal? If a set is a connected vertex
cover, but not minimal, the algorithm will not branch on S because the set
F has to be an independent set and can not have any adjacent free vertices.
Thus, the algorithm will eventually discard S and the size of our search tree
will stay unchanged, but we still save some polynomial factor of time by
implementing this small adjustment.

Let’s say that S is a connected vertex cover, but not minimal. Then there

20 CHAPTER 2. ENUMERATION OF MCVC

can not be any adjacent free vertices in F since the edge between them would
not be covered and this contradicts that S is a vertex cover. This means
that the if-statement on line 8 in Algorithm 2.1 is false, and the algorithm
does not branch on S. Since S is a vertex cover, F must be an independent
set, otherwise there are edges in F not covered by S. This means that the if-
statement on line 12 in Algorithm 2.1 is true. Recall that in Algorithm 2.1,
we let s be the number of connected component in the induced subgraph
G[S]. Since S is a connected vertex cover, the number of components of
G[S] is equal to one. The algorithm proceeds by constructing all non-empty
subsets of S of size at most s− 1. Since s = 1, s− 1 is equal to zero and the
algorithm will not construct any non-empty subsets of S. Thus at this point
the algorithm eventually discards S. By discarding the connected vertex
cover S immediately after we know it is not minimal, we are clearly saving
some time. With this small improvement of the algorithm we prevent the
algorithm to execute the following when S is a connected vertex cover but
not minimal:

• Searching for non-adjacent free vertices in F

• Checking whether F is an independent set

• Counting the number of components in G[S]

Let us analyze the time spent by executing these three steps. Searching
for adjacent vertices in F can easily be done in time O(|F |2). We can in
the same way check whether F is an independent set, by iterating through
pair of vertices in F and making sure that there does not exist an edge
between any such pairs. Counting the number of components in G[S] is
done by running a depth first search on the subgraph G[S], which has a
linear running time in the size of the graph. As proved above, all of these
operations are done in a total of O(n2), i.e., we save such a factor of the
running time by immediately discarding S.

Algorithm 2.6 Improvement of Algorithm 2.1

1: procedure Alg(S, F)

2: if S is a connected vertex cover of G then

3: if S is minimal then

4: return S

5: end if

6: Stop

7: end if

2.5. AN IMPROVEMENT OF THE RUNNING TIME 21

In the plot given in Figure 2.3 we can see the average number of minimal con-
nected vertex covers and the average running time for our implementation
of Algorithm 2.1. The red curve is the running time before we implemented
the small adjustment we mentioned above, and the brown curve is the run-
ning time of our implementation after we included the adjustment. Both of
the implementations are tested on the exact same graphs, and therefore the
number of minimal connected vertex covers is equal for both of the test runs.
The tuples on the x-axis of the plot represent the number of vertices and
edges respectively in the graphs we tested. We generated 10 graphs of each
size, i.e., each fixed number of vertices and edges, using Algorithm 2.2 for
generating random connected graphs, and returned the average number of
minimal connected vertex cover and the average running time. The running
times in the plot are scaled up by a factor of 2000.

(2
0,

50
)

(2
0,

10
0)

(2
0,

15
0)

(3
0,

50
)

(3
0,

10
0)

(3
0,

10
0)

(3
0,

15
0)

(3
0,

20
0)

(3
0,

25
0)

(4
0,

10
0)

(4
0,

15
0)

(4
0,

20
0)

(4
0,

25
0)

(4
0,

30
0)

(5
0,

30
0)

(5
0,

35
0)

(5
0,

40
0)

(5
0,

45
0)

(5
0,

50
0)

(6
0,

70
0)

(6
0,

80
0)

0.5

1

1.5

2

·104

(|V |, |E|)
Minimal connected vertex covers

Running time without improvements
Running time with improvements

Figure 2.3: Average number of minimal connected vertex covers and run-
ning time of our implementation of Algorithm 2.1 with and without the
improvemenet.

22 CHAPTER 2. ENUMERATION OF MCVC

The plot in Figure 2.3 leaves a gap between the two practical running
times. In fact, we can see a significant drop in the practical running time
of Algorithm 2.1 after implementing the improvements. We especially see
an improvement of the practical running time on sparse graphs, as these
graphs have a higher number of minimal connected vertex covers than denser
graphs, as we will see in Observation 4.1 in Chapter 4. The three maximal
points of the plot represents the number of minimal connected vertex covers
and the running time of our implementation of Algorithm 2.1 on three sparse
graphs. The first one a graph with |V | = 40 and |E| = 100, the second one
a graph with |V | = 50 and |E| = 300 and the last one a graph with |V | = 60
and |E| = 700.

Chapter 3

New lower bounds

In this chapter we present interesting new discoveries we made regarding the
lower bound on the maximum number of minimal connected vertex covers
that a graph can have. We started out with testing all graphs up to a certain
size using our implementations. With practical tests we found a graph on 10
vertices with 34 minimal connected vertex covers, which we used to generate
new lower bound examples with 1.4747n minimal connected vertex covers.
Even more importantly, inspired by this example, we constructed new graphs
with an even higher number of minimal connected vertex covers, and on
these manually constructed examples we were able to prove a lower bound
of first 1.5034n and then 1.51978n minimal connected vertex covers.

3.1 New examples of the existing lower bound

The paper by Golovach et al. [7] provides a lower bound on the maximum
number of minimal connected vertex covers of a graph. They give as an
example a graph that has 3(n−1)/3 ∼ 1.4422n minimal connected vertex cov-
ers. This graph is given in Figure 1.4. We did not know of any better lower
bounds for the maximum number of minimal connected vertex covers on
graphs in general up until we started our work. In fact, the graph given in
the paper is until now the only lower bound example that has been known.
The example graph G from the paper by Golovach et al. [7] consists of
k = (n − 1)/3 disjoint triangles, {x1, y1, z1}, {x2, y2, z2}..., {xk, yk, zk}. The
triangles are connected by an additional vertex u that is adjacent to every
vertex in G. Every minimal connected vertex cover of G must contain u for
connectivity, and exactly two vertices from each triangle. Since we have 3
ways of picking 2 vertices out of 3, each triangle has 3 minimal connected

23

24 CHAPTER 3. NEW LOWER BOUNDS

vertex covers. As the 2 vertices from each triangle are picked independently
of the other triangles, G has exactly 3(n−1)/3 minimal connected vertex cov-
ers. We start by showing that there exist graphs that manage to achieve
this lower bound, that are not isomorphic to the graph given in Figure 1.4.

When we generated all graphs up to 7 vertices by using Algorithm 2.3 we
discovered two graphs on 7 vertices with 10 minimal connected vertex covers
that we were able to construct new lower bound examples from. The two
graphs given in Figure 3.1 are examples of graphs that have 10 minimal
connected vertex covers each. These are listed in Table 3.1.

In general, if we want to find a new lower bound example in the same way
as the graph in Figure 1.4 is constructed, we would have to find another
graph on 3 vertices with 3 minimal connected vertex covers, or a graph on 6
vertices with 9 connected vertex covers, so that we could have many disjoint
copies of this graph and add a new vertex for connectivity to obtain the
same bound 3(n−1)/3 = 9(n−1)/6 ∼ 1.4422n.

Let’s say that a graph G has a vertex v such that v belongs to every minimal
connected vertex cover of G. Then we could make a new graph G′ by taking
k copies of G, and glueing these copies at vertex v. In other words, G′ has
only one copy of v, but it has k copies of all the other vertices. Vertex v
is adjacent to all copies of its neighbors, and the rest of the adjacencies in
the copies of G are exactly like they are originally in G. Observe that in G′,
v must be in every minimal connected vertex cover to ensure connectivity.
Every copy of G has exactly p minimal connected vertex covers that contain
v. Thus in total, G′ has pk minimal connected vertex covers. If G has t
vertices and n is the size of G′, then k = (n−1)

(t−1) , and our bound is p(n−1)/(t−1).

3.1. NEW EXAMPLES OF THE EXISTING LOWER BOUND 25

(a)

(b)

a1

a2

a5a4 a6

a3

a7

b1

b2 b3 b4

b6

b5 b7

Figure 3.1: Examples of graphs on 7 vertices having 10 minimal connected
vertex covers each.

When generating all graphs up to 7 vertices we did not find any graphs
containing a vertex v as described above. However, each of the graphs in
Figure 3.1 has 7 vertices and 10 minimal connected vertex covers, and a
vertex v that is included in 9 of them. Our idea is to use this vertex v
to create an infinite family of graphs with the same number of minimal
connected vertex covers as the example graph given in Figure 1.4 with ∼
1.4422n minimal connected vertex covers.

We list all minimal connected vertex covers of the graphs in Figure 3.1 in
Table 3.1. Observe that in graph (a), the vertices a1 and a7 belong to al-
most every minimal connected vertex cover. This is the same for vertex b2
in graph (b). In fact, these vertices are a part of nine out of ten minimal

26 CHAPTER 3. NEW LOWER BOUNDS

Graph (a) Graph (b)

{a1, a2, a3, a4, a5, a6} {b1, b2, b3, b5, b7}
{a1, a2, a3, a4, a7} {b1, b2, b3, b6, b7}
{a1, a2, a3, a5, a7} {b1, b2, b4, b5, b6}
{a1, a2, a3, a6, a7} {b1, b2, b4, b6, b7}
{a1, a2, a4, a6, a7} {b1, b2, b5, b6, b7}
{a1, a2, a5, a6, a7} {b1, b3, b4, b5, b6, b7}
{a1, a3, a4, a5, a7} {b2, b3, b4, b5, b6}
{a1, a3, a5, a6, a7} {b2, b3, b4, b5, b7}
{a1, a4, a5, a6, a7} {b2, b3, b4, b6, b7}
{a2, a3, a4, a5, a6, a7} {b2, b4, b5, b6, b7}

Table 3.1: List of all minimal connected vertex covers of the graphs in Figure
3.1.

connected vertex covers. Using this information, we provide a new lower
bound example, which is a graph that has 9(n−1)/6 = 3(n−1)/3 minimal con-
nected vertex covers. We give the new example graph, G′, in Figure 3.2. G′

consists of k disjoint copies of the vertices {a2, a3, a4, a5, a6, a7} from graph
(a) in Figure 3.1, together with a vertex a1 which is adjacent to all copies
of a2, a3 and a4 in G′.

a1

a21

a51a41 a61

a31

a71

a22

a52a42 a62

a32

a72

a2k

a5ka4k a6k

a3k

a7k

Figure 3.2: A new example graph, G′, having 3(n−1)/3 minimal connected
vertex covers.

Let us explain why we got this bound. The idea is similar to what we
explained when G has a vertex that belongs to every minimal connected
vertex cover. In our example, there is no such vertex. But still, we have
a vertex that belongs to enough minimal connected vertex covers, and we

3.1. NEW EXAMPLES OF THE EXISTING LOWER BOUND 27

can use the same idea. In particular, if a vertex v belongs to p minimal
connected vertex covers of G we can use the same idea to create G′ exactly
as described before. In this way we will get p(n−1)/(t−1) minimal connected
vertex covers in total, although we might lose some of the minimal connected
vertex covers of each copy of G.

In our example vertex a1 belongs to 9 out of 10 minimal connected vertex
covers, so we can use the same approach to prove our bound. For connectiv-
ity, a1 has to belong to every minimal connected vertex cover of G′. Since
a1 belongs to 9 out of 10 minimal connected vertex covers in G, we have
9 independent choices for each copy of Graph (a). Observe that the 10th
minimal connected vertex cover of Graph (a) can not be used in this pro-
cess. In fact, it is enough that only one copy uses a1 in a minimal connected
vertex cover and we could hope that we could have 10 possibilities in the
remaining copies. However, as soon as a1 is in a minimal connected vertex
cover of G′, the 10′th minimal connected vertex cover of Graph (a) is not a
minimal connected vertex cover anymore.

In particular, if vertex a1 belongs to a minimal connected vertex cover in
one of the copies in G′, the set {a2, a3, a4, a5, a6, a7} can not belong to any
minimal connected vertex cover S of G′. This is because if we remove vertex
a7, we end up with a set that in fact is a minimal connected vertex cover
of G′, and the minimality of the set S does not hold. Nor can the 10th
minimal connected vertex cover of Graph (a) be included in any of the
minimal connected vertex covers of G′ where a1 is not included, as this set
will not be a connected set. We have now proved that each copy of Graph
(a) has 9 minimal connected vertex covers including a1, and by multiplying
the number of minimal connected vertex covers in each copy by the number
of copies, we see that G′ has pk = 9(n−1)/6 minimal connected vertex covers.
This is equal to the lower bound provided in the paper by Golovach et al.
[7]; 3(n−1)/3 ∼ 1.4422n.

28 CHAPTER 3. NEW LOWER BOUNDS

b11

b2

b31

b41

b61b51

b71

b12

b32

b42

b62b52

b72

b1k

b3k

b4k

b6kb5k

b7k

Figure 3.3: Another new example graph having 3(n−1)/3 minimal connected
vertex covers.

We can use the same idea to construct a new lower bound example using
Graph (b) in Figure 3.1. We give this graph in Figure 3.3. In this example,
the graph is glued at vertex b2, and each copy of Graph (b) has 9 independent
choices of minimal connected vertex cover, similar to graph G′ in Figure 3.2.

In this section we were able to give two new example graphs of the lower
bound of 3(n−1)/3 minimal connected vertex covers on general graphs. Still,
we have yet not proved that there exist graphs with a higher number of
minimal connected vertex covers than the example graph given in the paper
by Golovach et al. [7]. If a higher lower bound example exists, then it needs
components that are larger than 7 vertices, as we up to this point tested all
graphs of at most 7 vertices.

3.2 A better lower bound

The discoveries we made in the previous section made us curious if there
could exist larger graphs that prove a higher lower bound on the number of
minimal connected vertex covers in graphs in general. After using the graph
generating tool from the package gtools distributed by McKay and Piperno
[9] we were able to generate all graphs up to size 11. Among these graphs,
we found a graph with 10 vertices and 34 minimal connected vertex covers
that we could generalize to give a new and better lower bound of 1.4747n.

3.2. A BETTER LOWER BOUND 29

These graphs gave a basis to construct even better lower bound examples. In
particular we were able to modify and expand these graphs to prove a lower
bound of 1.5034n. Later in this chapter we will see that this new example
graph of a better lower bound is a very sparse graph. This is not that
surprising, as the graphs that prove the previously best known lower bound
of 1.4422n minimal connected vertex covers are also very sparse graphs. This
section is devoted to presenting these lower bound examples. In the next
section we will see that we can develop these results even further, to prove
a lower bound of 1.51978n.

a

b c d e

f g h i

j

Figure 3.4: A graph on 10 vertices having 34 minimal connected vertex
covers.

As already mentioned, first we discovered the graph in Figure 3.4. This is a
very sparse graph. It consists of several 4-cycles glued together in the two
vertices a and j. The graph has 10 vertices and 34 minimal connected vertex
covers, and these are listed in Table 3.2.

30 CHAPTER 3. NEW LOWER BOUNDS

{a, b, c, d, e, f, g, h, i} {a, b, d, g, h, i, j}
{a, b, c, d, e, f, j} {a, b, e, f, g, h, j}
{a, b, c, d, e, g, j} {a, b, e, g, h, i, j}
{a, b, c, d, e, h, j} {a, b, f, g, h, i, j}
{a, b, c, d, e, i, j} {a, c, d, e, f, g, j}
{a, b, c, d, f, i, j} {a, c, d, e, f, h, j}
{a, b, c, d, g, i, j} {a, c, d, e, f, i, j}
{a, b, c, d, h, i, j} {a, c, d, f, g, i, j}
{a, b, c, e, f, h, j} {a, c, d, f, h, i, j}
{a, b, c, e, g, h, j} {a, c, e, f, g, h, j}
{a, b, c, e, h, i, j} {a, c, e, f, h, i, j}
{a, b, c, f, h, i, j} {a, c, f, g, h, i, j}
{a, b, c, g, h, i, j} {a, d, e, f, g, i, j}
{a, b, d, e, f, g, j} {a, d, e, f, g, h, j}
{a, b, d, e, g, h, j} {a, d, f, g, h, i, j}
{a, b, d, e, g, i, j} {a, e, f, g, h, i, j}
{a, b, d, f, g, i, j} {b, c, d, e, f, g, h, i, j}

Table 3.2: List of all minimal connected vertex covers of the graph in Figure
3.4.

Observe from Table 3.2 that both vertex a and vertex j each belongs to 33
out of 34 minimal connected vertex covers of this graph. Let us denote the
graph of Figure 3.4 by G∗. By following the same procedure as described in
the previous section, we can create a new graph G′ by making k copies of
G∗, and glueing each copy at vertex a. Each copy of G∗ in G′ has 33 minimal
connected vertex covers, and G′ has 33(n−1)/9 ∼ 1.4747n minimal connected
vertex covers in total. This gives us a higher bound than the lower bound
provided in the paper by Golovach et al. [7]; 3(n−1)/3 ∼ 1.4422n.

In fact, we can generalize G∗ to define a class of graphs to see if we can
achieve even better lower bounds. Let us call G(x) the graph given in Figure
3.5. G(x) is obtained in a similar way as G∗. There are two high degree
vertices in G(x): a and b, with x neighbors each. N(a) = {a1, a2, ..., ax} and
N(b) = {b1, b2, ..., bx}. In addition to the edges between a and its neighbors,
and b and its neighbors, there are exactly x edges between N(a) and N(b);
these edges are (a1, b1), (a2, b2), ..., (ax, bx). Observe that G∗ is in fact G(4).
We will show that the number of minimal connected vertex covers in G(x)
is x · 2(x−1) + 2.

3.2. A BETTER LOWER BOUND 31

a

a1 a2 a3 a4 a5 ax

b1 b2 b3 b4 b5 bx

b

Figure 3.5: Graph G(x) with an even higher number of minimal connected
vertex covers.

Lemma 3.1. G(x) has x · 2(x−1) + 2 minimal connected vertex covers

Proof. Note that there are no minimal connected vertex covers which ex-
clude both a and b, since such a set can not be connected. Since we are
looking for connected vertex covers, if both a and b are in a vertex cover
then they have to be connected by a path a1b1, or a2b2, or ... or axbx. We
have x possibilities for this. For each of these possibilities there are x − 1
remaining edges that needs to be covered. Each edge can be covered by
either of its endpoints. Thus we have 2(x−1) ways to cover these edges. This
gives in total x · 2(x−1) minimal connected vertex covers in which both a
and b appear. If a is not in a minimal connected vertex cover then all other
vertices must be in, for connectivity and to cover all edges incident to N(a).
The same is true for when b is not in a minimal connected vertex cover.
Thus we have in total x · 2(x−1) + 2 minimal connected vertex covers.

We can check that the number of minimal connected vertex covers of G(4)
is indeed 4 · 23 + 2 = 34.

Now, we want to see if we can achieve a better lower bound by glueing G(x)
at vertex a, as we did with G(4). Let us call G′(x) the graph which we
obtain by taking a number of copies of G(x) from Figure 3.5 and glueing
each copy at vertex a.

32 CHAPTER 3. NEW LOWER BOUNDS

Lemma 3.2. G′(x) has (x · 2x−1 + 1)
n−1
2x+1 minimal connected vertex covers.

Proof. Recall that when glueing copies of G(x) at vertex a, we lose one
minimal connected vertex cover, namely the one that does not contain a.
Thus each copy has x·2(x−1)+1 minimal connected vertex covers. Since each
copy ofG(x) has 2x+1 vertices outside of a, we have in total n = (2x+1)·k+1
vertices in G′(x), if we took k copies of G(x). Thus we have k = n−1

2x+1 copies

of G(x). This gives a total of (x · 2(x−1) + 1)
n−1
2x+1 minimal connected vertex

covers.

The number of minimal connected vertex covers in G′(x) keeps increasing

as x grows. However, the function (x · 2x−1 + 1)
1

2x+1 has a single integer
maximum when x = 8, as we can see in the plot of the function in Figure
3.6. The graph G′(8) consisting of copies of G(8) glued at vertex a gives

us the best bound of (8 · 27 + 1)
n−1
16+1 ∼ 1.5034n minimal connected vertex

covers. Thus, with G′(8) we have been able to substantially narrow the gap
between the lower and upper bounds on the number of minimal connected
vertex covers in graphs.

0 1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

1.4

1.5

x

Figure 3.6: Plot of function F (x) = (x · 2x−1 + 1)
1

2x+1 .

3.2. A BETTER LOWER BOUND 33

Corollary 3.1. There are graphs with n vertices and 1.5034n minimal con-
nected vertex covers.

Proof. G′(8) is an example of such an graph.

We have shown that by increasing the number of edges between NG(a)
and NG(j) we end up with an even better lower bound than the bound we
discovered with the graph G(4) in Figure 3.4. By setting x = 8, we managed
to provide a new example graph that has 1.5034n minimal connected vertex
covers. These discoveries made us curious if there are other ways we can
expand the graph G(x) to reach an even higher lower bound.

Let G(x, y) be the graph shown in Figure 3.7. In this graph there are x
vertices in the breadth, and y vertices in the depth. Observe that G(4)
is equivalent to G(4, 2). These graphs have a higher number of minimal
connected vertex covers than G(x), but at the same time they have a lot
more vertices. Each time we increase y by one, we add x new vertices to
the graph. We will show that because of the large number of vertices, this
graph will not help us prove a better lower bound than the graph G(x).

a0

a11 a21 a31 ax1

a12 a22 a32 ax2

a1y a2y a3y axy

an

Figure 3.7: Graph G(x, y).

34 CHAPTER 3. NEW LOWER BOUNDS

Lemma 3.3. G(x, y) has x · y(x−1) + 2 minimal connected vertex covers

Proof. As for G(x), there are one minimal connected vertex cover which a0
does not belong to, and one which an does not belong to. There are also
x ways to connect vertex a0 and an, for the connectivity of the minimal
connected vertex cover. For the remaining vertices we also have to ensure
connectivity for the minimal connected vertex covers in each path from a0 to
an. There are therefore y possible ways of choosing vertices on each path to
be a part of the minimal connected vertex cover. Since there are x− 1 such
paths left to cover, there are y(x−1) possibilities for the remaining vertices.
This leaves us with x · y(x−1) + 2 minimal connected vertex covers in the
graph in total.

Let’s say the graph G(x, y) has p minimal connected vertex covers. Then
the vertices a0 and an from Figure 3.7 belong to p − 1 minimal connected
vertex covers each. This means that we can construct a new graph G′(x, y)
by making k copies of the graph G(x, y) and glueing each copy at vertex a0.
Each copy of G(x, y) in G′(x, y) contains x · y+ 1 vertices, therefore G′(x, y)

has (x · y(x−1) + 1)
n−1
x·y+1 minimal connected vertex covers. The function has

a single integer maximum when x = 8 and y = 2. But G′(8, 2) is exactly
G′(8). This shows that we can not prove a better lower bound with the
graph G(x, y).

In this section we have shown that the graph G′(x) gives us a better lower
bound than the lower bound proved in the paper by Golovach et al. [7];
3(n−1)/3 ∼ 1.4422n. The graph G′(8) has 1.5034n minimal connected vertex
covers. It turns out that there are other interesting ways to construct a new
graph using the graph G(x) which gives us an even better lower bound than
1.5034n. We will see these in the next section.

3.3 An even better lower bound

We have seen that the graph G′(x, y) does not give us an example of a better
lower bound than the graph G′(x). The problem is that each copy of G(x, y)
contains too many vertices, and so the exponent in the function (x ·y(x−1) +

1)
n−1
x·y+1 gets too small compared to the expression x·y(x−1)+1. This is due to

the dividend in the expression n−1
x·y+1 . But there are other ways of expanding

the graph in the depth without introducing too many vertices compared
to the number of minimal connected vertex covers. The graph H(x) in
Figure 3.8 consists of four copies of the graph G(x) from Figure 3.5 glued
together in the four vertices U,D,L,R. In Figure 3.8 an example is shown

3.3. AN EVEN BETTER LOWER BOUND 35

with x = 4. In the graph H(x), the integer x reflects the number of edges
between the neighborhoods of the four vertices U,D,L,R. In particular,
each vertex U,D,L,R has 2x neighbors, and there are x disjoint paths of
length 3 between each pair (U,L), (U,R), (D,L), (D,R).

U

L R

D

Figure 3.8: Graph H(x) with a large number of minimal connected vertex
covers.

Lemma 3.4. Graph H(x) has 24x−1x3 + 22xx2 minimal connected vertex
covers.

Proof. Note that there is no minimal connected vertex cover which excludes
both vertex U and vertex D, since such a set can not be connected. The
same argument holds for excluding either vertex L or vertex R together with
any of the vertices U,L,R,D.

36 CHAPTER 3. NEW LOWER BOUNDS

We must count the number of minimal connected vertex covers where either
U or D is missing. If U is missing, then all vertices in N(U) and all vertices
adjacent to a vertex in N(U), except U itself, must belong to every minimal
connected vertex cover. There are x possible ways to connect L to D, and
x possible ways to connect R to D. These vertices have to be connected for
the connectivity of all minimal connected vertex covers. For the x− 1 edges
between N(L) and N(D) and the x−1 edges between N(R) and N(D) there
are 2x−1 · 2x−1 possible ways to cover all these edges. The same argument
holds when vertex D is missing. This gives us in total:

2(x · x · 2x−1 · 2x−1)

If all of U , D, L and R belong to a minimal connected vertex cover together,
then there are 2x ·x possible ways to connect vertex U and D. Let’s say that
L is a part of the path connecting U and D. Then we still have to ensure
that R is connected to the rest of the minimal connected vertex cover. There
are 2x possible ways of doing this, either choosing a path from U , or a path
from D. Let’s say that we chose to connect R with a path going from R
to U . Then there are 2x possible ways of covering all edges between NG(R)
and NG(D). For the remaining edges in the three other component of the
graph, there are 2(x−1) possible ways to cover all the edges. This gives us in
total:

2x · x · 2x · 2x−1 · 2x−1 · 2x−1 · 2x

The last case is when both U and D belong to the minimal connected vertex
cover, but either L or R is missing. There must exist a path from U to D
to ensure connectivity of the minimal connected vertex cover. There are
2x possible ways to choose a path from U to either L or R and once that
path is chosen, there are x possible ways to choose a path to D. Let’s say
that L is a part of this path. This means that R does not belong to any
minimal connected vertex cover, and so the vertices in N(R) and all vertices
adjacent to N(R), except R itself, must belong to every minimal connected
vertex cover. For the remaining x − 1 edges between N(U) and N(L) and
the x− 1 edges between N(D) and N(L) there are 2x−1 · 2x−1 possible ways
of covering all these edges. This gives us in total:

2x · x · 2x−1 · 2x−1

3.3. AN EVEN BETTER LOWER BOUND 37

Summing up all these expressions, the graph H(x) has:

2(x2 · 22x−2) + 4x3 · 24x−3 + 2x2 · 22x−2 = 24x−1x3 + 22xx2

minimal connected vertex covers.

Now, again we want to see if we can achieve a better lower bound by glueing
infinite many copies of H(x) at a vertex which belongs to a large number of
minimal connected vertex covers, as we did for the graphs in the previous
section. Let us call H ′(x) the graph which we obtain by taking a number of
copies of H(x) and glueing them at vertex U .

Lemma 3.5. H ′(x) has (4x−1x2(22x+1x + 3))n−1/8x+3 minimal connected
vertex covers.

Proof. Recall that when glueing copies of H(x) we lose a number of minimal
connected vertex covers. In Lemma 3.4 we proved that there are x2 · 2(x−1) ·
2(x−1) minimal connected vertex covers which U does not belong to. Thus
each copy of H(x) has x2 · 2(x−1) · 2(x−1) + 4x3 · 24x−3 + 2x2 · 22x−2 minimal
connected vertex covers. Since each copy of H(x) has 8x+3 vertices outside
of U , we have in total n = (8x + 1) · k + 1 vertices in H ′(x) if we took k
copies of H(x). Thus we have k = n−1

8x+3 copies of H(x). This gives a total
of

(x2 ·22x−2+4x3 ·24x−3+2x2 ·22x−2)n−1/8x+3 = (4x−1x2(22x+1x+3))n−1/8x+3

minimal connected vertex covers.

The function from Lemma 3.4 has a single integer maximum when x = 5,
which we can see from the plot in Figure 3.9. This gives us 1.51978 when
solving the function for x = 5. Thus the number of minimal connected
vertex covers in H ′(5) is equal to 1.51978n. This gives a better lower bound
than the lower bound proved in the previous section with the graph G′(x)
with 1.5034n minimal connected vertex covers.

Based on previously proved lemmas, we give the new lower bound of 1.51978n

as a theorem.

38 CHAPTER 3. NEW LOWER BOUNDS

0 1 2 3 4 5 6 7 8

0

0.5

1

1.5

x

Figure 3.9: Plot of function F (x) = (x2·22x−2+4x3·24x−3+2x2·22x−2)1/8x+3.

Theorem 3.1. There are graphs with n vertices and 1.51978n minimal con-
nected vertex covers.

Proof. H ′(5) is an example of such a graph.

As an illustration, the graph H ′(2) is given in Figure 3.10. Note that 2 is not
the optimal value for x, as the graph H ′(5) has a larger number of minimal
connected vertex covers.

We tested the graph G(x) from x = 1 to x = 10, and the graph G(x, y)
with various values for x and y with our implementation of Algorithm 2.1.
Our motivation for testing the graphs was to make sure that the algorithm
returned the same number of minimal connected vertex covers as the theo-
retical proved functions. Also, we wanted to make sure that we have found
the correct integer maximum for all of our functions and that there does not
exist graphs with a higher number of minimal connected vertex covers for
different values of x. The tests showed that the best value assigned to x for

maximizing the function (x · 2(x−1) + 1)
n−1
2x+1 is when x = 8. Also, the best

value for x and y in G(x, y) for maximizing the function (x · y(x−1) + 1)
1

x·y+1

is when x = 8 and y = 2. This graph is equivalent to the graph G(8), so
the graph G(x, y) can not prove a better lower bound. We also tested the
graph H(x) with x = 1 to x = 6, which proved that the best value for x for
maximizing the function (x2 · 22x−2 + 4x3 · 24x−3 + 2x2 · 22x−2)1/8x+3 is when

3.3. AN EVEN BETTER LOWER BOUND 39

U

Figure 3.10: Graph H ′(2).

x = 5. The number of minimal connected vertex covers returned by the
tests gave the same result as our theoretical computations and confirmed all
theoretical proofs.

To conclude, in this section we managed to prove a new lower bound of
1.51978n on the number of minimal connected vertex cover in a graph. This
bound is substentially higher than the lower bound given in the paper by
Golovach et al. [7] on 3(n−1)/3 ∼ 1.4422n. However, it still leaves a gap
between the lower bound and the upper bound of 1.8668n minimal connected
vertex covers.

40 CHAPTER 3. NEW LOWER BOUNDS

Chapter 4

Further test results

In this chapter we will describe the test results we achieved when testing our
implementation of Algorithm 2.1 for enumerating minimal connected vertex
covers in graphs. As we saw in Chapter 3, the example graphs for proving a
new and better lower bound are sparse graphs and from the plot in Figure 2.3
we can see large variations in the number of minimal connected vertex covers
in sparse and dense graphs. We started by testing our implementation of
Algorithm 2.1 on graphs with a fixed number of vertices and varying number
of edges to see the connection between the number of minimal connected
vertex covers and the number of edges in a graph. For the rest of our tests
we used random graphs generated by Algorithm 2.2 due to the fact that we
were able to test graphs as large as 60 vertices this way.

As described in the introduction in Chapter 1, the goal of this thesis is to try
to narrow the gap between the lower and the upper bound on the number of
minimal connected vertex covers in graphs. In Chapter 3 we introduced an
example graph H ′(5) with 1.51978n minimal connected vertex covers. With
this result we have been able to raise the lower bound on the number of
minimal connected vertex covers a graph can have from 1.4422n to 1.51978n.
Still, it leaves a gap between the lower and upper bounds which is proved by
the enumeration algorithm that runs in time O(1.8668n) given in Algorithm
2.1 [7]. In reality, the bounds on the number of minimal connected vertex
covers in graphs in general is tight, but we do not know whether the proved
lower bound is too low, or the upper bound is too high. As we will show
later in this chapter, some of the test results can indicate that the upper
bound of 1.8668n is too high.

The plot in Figure 4.1 shows the average number of minimal connected
vertex covers, the average number of discarded sets and the average running

41

42 CHAPTER 4. FURTHER TEST RESULTS

time after testing graphs on 40 vertices. We decided to set the number of
edges from 100 to 750 with an interval of 50, and for each size we generated
10 different graphs and returned the average number of minimal connected
vertex covers, discarded sets and running time. The running time in the plot
is scaled up by a factor of 1, 000. For the graphs with less than 300 edges
the number of discarded sets are so high that we chose not to illustrate this
in our plot. In fact, the average number of discarded sets for graphs with
100 edges is as high as 146, 717.

100 150 200 250 300 350 400 450 500 550 600 650 700 750

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

edges

Minimal connected vertex covers
Discarded sets
Running time

Figure 4.1: Average number of minimal connected vertex covers, discarded
sets and running time of graphs on 40 vertices. The number of edges of the
graphs is given on the x-axis.

In chapter 3 we saw that the lower bound examples are very sparse graphs.
In fact, the example graph H ′(5) which proves the new lower bound of
1.51978n consists of many 4-cycles glued together and most of the vertices
in the graph are of degree 2. As we can see from the plot in Figure 4.1, the
number of minimal connected vertex covers decreases drastically as we in-
crease the number of edges. Denser graphs contain fewer minimal connected
vertex cover than sparse graphs. In fact, for complete graphs the number
of minimal connected vertex covers is equal to the number of vertices in the
graph.

43

Observation 4.1. For a complete graph with n vertices, there are n minimal
connected vertex covers, each of size |n− 1|

Proof. For a complete graph G with n vertices and a minimal connected
vertex cover U , any subset of size less than n−1 cannot be a vertex cover, as
it would not cover edges between vertices outside of U . Since G is a complete
graph there must be an edge between all pair of vertices, i.e., there must be
edges between the vertices outside of U . Therefore, the set outside of U can
only contain one vertex. Thus there are n minimal connected vertex covers
in G, one vertex cover per vertex excluded from U .

We tested graphs of size 40 with 100 to 750 edges without self loops or
multiple edges, and from the plot in Figure 4.1 we see that the number of
minimal connected vertex covers converges to n as we increase the number
of edges. A graph with 40 vertices and 750 edges is a very dense graph, close
to being a complete graph. This reflects in our test results where graphs
with 40 vertices and 750 edges have 38 minimal connected vertex covers in
average.

Although a complete graph on n vertices has n minimal connected vertex
covers, and we have seen that lower bound examples are very sparse, it is
interesting to see how quickly the curve representing the number of minimal
connected vertex covers from the plot in Figure 4.1 starts to converge to 40
as the number of edges are increasing.

The graphs we tested to get the results we see in Figure 4.1 were all con-
nected graphs. As we can see, the graph with 100 edges gives us the highest
number of minimal connected vertex covers. Imagine that we remove some
of the edges and end up with a graph on 39 edges, which is the lowest num-
ber of edges a graph on 40 vertices can have and still be connected. Then
the number of minimal connected vertex covers in the graph is exactly one.

Observation 4.2. A tree on n ≥ 3 vertices has exactly one minimal con-
nected vertex cover.

Proof. For any tree T , we will show that there is exactly one minimal con-
nected vertex cover S that contains all vertices, except the leaves in T . Let’s
say for contradiction that a leaf u is a part of a minimal connected vertex
cover S. Since T has at least two edges, there is at least one more vertex x
in S. Since there is exactly one unique path from u to x in T , the unique
parent v of u also has to be a part of S for connectivity. Since v is a part of

44 CHAPTER 4. FURTHER TEST RESULTS

S, and (u, v) is the only edge incident to u, S \ u is also a connected vertex
cover. This contradicts the minimality of S. Since this holds for every leaf
in the tree, all vertices except the leaves have to belong to every minimal
connected vertex cover and there is exactly one unique minimal connected
vertex cover.

Thus, a tree has only one minimal connected vertex cover, but as we can
see in the plot in Figure 4.1 the number of minimal connected vertex covers
is highest in the graphs with only 50 edges. This indicates that the number
of minimal connected vertex covers must increase drastically when we add
a few edges to a tree. In fact, we can observe that just adding one edge to
a tree can increase this number from 1 to n.

Observation 4.3. A cycle on n vertices has exactly n minimal connected
vertex covers.

Proof. For any minimal connected vertex cover S in a cycle, there is exactly
one vertex u which does not belong to S. Let’s say for contradiction that
there is another vertex v which does not belong to S. If v is a neighbor of
u, then the edge (u, v) would not be covered. If v is not a neighbor of u,
then there does not exist a path between the two neighbors of u in S, thus S
can not be connected. This contradicts our assumption that S is a minimal
connected vertex cover. Since there are n vertices in the cycle, and there is
exactly one minimal connected vertex cover per vertex we exclude, the cycle
has n minimal connected vertex covers.

With background from observations 4.1, 4.2 and 4.3 we see that the plot
in Figure 4.1 gives a realistic picture of the number of minimal connected
vertex covers in graphs when we increase the number of edges. However,
according to observations 4.2 and 4.3, we should see an increase in the
number of minimal connected vertex covers when we increase the number
of edges from n− 1 to n, whereas our curves in Figure 4.1 do not show this.
This is because the figure starts from 100 edges, whereas n is only 40. It
is interesting that already at 2.5n edges, the number of minimal connected
vertex covers has started to decrease. To examine even further when the
decrease starts, we also checked for edge numbers less than 100.

The plot in Figure 4.2 illustrates the average number of minimal connected
vertex covers, discarded sets and running time when we tested our imple-
mentation of Algorithm 2.1 with graphs of 40 vertices and less than 100
edges. The x-axis in the plot represents the number of edges in each of the
graphs. We tested 10 graphs of each size, and returned the average number

45

of minimal connected vertex covers, discarded sets and running time. As
we can see from the plot, the number of minimal connected vertex covers
grows drastically when we increase the number of edges in the graphs from
50 to 65. We can also see that the curve starts to decrease gradually when
the number of edges are increasing from 75.

50 60 70 80 90 100 110 120 130

0.5

1

1.5

2

2.5

·104

edges

Minimal connected vertex covers
Discarded sets
Running time

Figure 4.2: Average number of minimal connected vertex covers, discarded
sets and running time of sparse graphs with 40 vertices.

We discovered large variations on the number of minimal connected vertex
covers within each of the 10 tests we ran with graphs on a fixed size. We
found the largest variations when testing graphs with a small number of
edges, i.e., between 60 and 80 edges. However, it is clear that the number of
minimal connected vertex covers are increasing from graphs with 50 edges
to graphs with 75 edges, and that it is decreasing if the number of edges
grows larger than 75.

We can see the difference between the smallest and largest number of mini-
mal connected vertex covers within each of the 10 test runs for each graph
of a fixed size in the plot in Figure 4.3. The brown curve in the plot is the

46 CHAPTER 4. FURTHER TEST RESULTS

standard deviation of the number of minimal connected vertex covers in the
10 graphs of a fixed size. The standard deviation measures the amount of
variation of the number of minimal connected vertex covers. Where there
is a large gap between the smallest and the largest number of minimal con-
nected vertex covers in graphs, we see that the standard deviation is high,
and that it decreases as we increase the number of edges in the graphs.

50 60 70 80 90 100 110 120 130

1

2

3

4

5

6
·104

edges

Smallest number of minimal connected vertex covers
Largest number of minimal connected vertex covers

Standard deviation

Figure 4.3: Highest and smallest number of minimal connected vertex covers
in sparse graphs of 40 vertices and standard deviation of the number of
minimal connected vertex covers in the 10 graphs of fixed size.

In the plot in Figure 4.4 we see the sum of the average number of minimal
connected vertex covers and discarded sets, and the average running time
of our implementation of Algorithm 2.1 after running it 10 times on graphs
generated by the random algorithm for generating graphs given in Algorithm
2.3. Similar to the plot in Figure 4.1, we scaled the running time up with
a factor of 1000. For pedagogical reasons, we would like the running time
curve to be always above the number of sets in our plots, as all generation
is done within the running time. This is why we try to multiply it with an
appropriate number. However, this does not always result in a clear plot,

47

so the running time curve should be considered in a sense separately from
the other curves.

The tuples on the x-axis of the plot represent the number of vertices and
edges in the graphs we tested. We see that the number of minimal connected
vertex covers plus the number of discarded sets and the running time when
testing sparse graphs is remarkable higher than for dense graphs. Both
graph 9, 14 and 19 have a smaller number of edges compared to the number
of vertices than the other graphs, and from the plot we see that these graphs
have a large number of minimal connected vertex covers and discarded sets.

(2
0,

50
)

(2
0,

10
0)

(2
0,

15
0)

(3
0,

50
)

(3
0,

10
0)

(3
0,

10
0)

(3
0,

15
0)

(3
0,

20
0)

(3
0,

25
0)

(4
0,

10
0)

(4
0,

15
0)

(4
0,

20
0)

(4
0,

25
0)

(4
0,

30
0)

(5
0,

30
0)

(5
0,

35
0)

(5
0,

40
0)

(5
0,

45
0)

(5
0,

50
0)

(6
0,

70
0)

(6
0,

80
0)

0.5

1

1.5

2

·105

(|V |, |E|)

Minimal connected vertex covers and discarded sets
Running time

Figure 4.4: Average number of minimal connected vertex covers plus dis-
carded sets and running time on graphs.

The curve that represents the running time of our implementation of Al-
gorithm 2.1 follows the curve of the number of minimal connected vertex
covers and discarded sets almost perfectly. Still, as we can see from the plot
in Figure 4.1, the number of discarded sets is high. Based on this obser-

48 CHAPTER 4. FURTHER TEST RESULTS

vation it is natural to think that the algorithm is doing some unnecessary
work when evaluating sets that will never be minimal connected vertex cov-
ers, and that the upper bound on the number of minimal connected vertex
covers is too high. But on the contrary, it might be that there exist a graph
with more than 11 vertices and a number of minimal connected vertex cov-
ers equal to the existing upper bound of 1.8668n. If there were to exist such
a graph, the algorithm could not discard any sets and construct 1.8668n

minimal connected vertex covers.

To check this more carefully, we ran similar tests with our new lower bound
graph using our implementation of Algorithm 2.1. Because of the large
number of vertices, we were only able to test the graph H(5), and not the
graph H ′(5) with several copies of H(5) glued together in a vertex. Following
from Lemma 3.4, the number of minimal connected vertex covers in H(5)
is 24x−1x3 + 22xx2 = 65, 561, 600 when x = 5 and we got the same result
from our test. Surprisingly, the algorithm is discarding a large amount of
sets when enumerating minimal connected vertex covers in this graph. In
fact, a total of 46, 479, 146 sets are discarded. A reason for the algorithm
to discard this many sets might be that it does some unnecessary work and
that the upper bound is to high. On the contrary, it might be that there
exist graphs that prove a better lower bound and that the algorithm does
not discard as many, or even no sets with these graphs.

Chapter 5

Conclusion

The goal of this thesis has been to try to narrow the gap between the upper
and lower bounds on the maximum number of minimal connected vertex
covers in graphs. To try to increase the lower bound, our approach was
to run practical tests on graphs in search of a new example graph that
proves a higher lower bound. Not only did we find such a graph, but we
also theoretically constructed graphs to prove an even better lower bound.
We also analyzed the algorithm for enumerating minimal connected vertex
covers to try to prove that the algorithm does unnecessary work and that
the upper bound is probably too high. In this chapter we will first give a
summary of this thesis. Then we will discuss possible open questions.

5.1 Summary

In the first chapters we gave essential information on minimal vertex covers
and minimal connected vertex covers. We also gave information about pre-
vious work on deciding the maximum number of such sets in general graphs.
As we saw in Chapter 1, enumerating and listing all minimal connected ver-
tex covers of a graph have not been given the same attention as minimal
vertex covers. The paper ”Enumeration and Maximum Number of Mini-
mal Connected Certex Covers in Graphs” by Golovach et al. [7] gives an
algorithm for enumerating all minimal connected vertex covers in a graph
that runs in time O(1.8668n). In Chapter 2 we gave the details of this al-
gorithm and how we implemented it. We also gave the details about how
we chose to test its correctness and present some small changes we made
to give a better practical running time of the algorithm. The enumeration
algorithm also proves an upper bound of 1.8668n on the maximum number

49

50 CHAPTER 5. CONCLUSION

of minimal connected vertex covers that a graph can have. In spite of the
results we got from improving the practical running time of the algorithm
we were not able to prove any better upper bound than 1.8668n. The paper
also provides a lower bound, which is a graph that has 3(n−1)/3 ∼ 1.4422n

minimal connected vertex covers. This leaves a gap between the previously
best known upper and lower bounds.

In Chapter 3 we presented some new discoveries regarding the lower bound
on the maximum number of minimal connected vertex covers in a graph.
First we gave two new example graphs of the existing lower bound of 1.4422n.
These discoveries gave us motivation to try to generate larger graphs as we
suspected that the lower bound was too low. Based on practical tests we
discovered a graph G(x) with a large amount of minimal connected vertex
covers and from that graph we managed to construct the graph G′(x) and
theoretically prove that this graph gives a new and better lower bound of
1.5034n when x = 8. With this graph as a basis we constructed the graph
H(x) which has an even higher number of minimal connected vertex covers
and and which we used to construct the graph H ′(x) which proves an even
higher and better lower bound of 1.51978n minimal connected vertex covers.
With this new example graph we have been able to increase the lower bound
on the maximum number of minimal connected vertex covers from 1.4422n

to 1.51978n. Still, it leaves a gap between the lower bound and the upper
bound of 1.8668n.

In Chapter 4 we discussed the test results from running our implementation
of Algorithm 2.1 for enumerating minimal connected vertex covers in graphs.
Based on these results we saw that there is a large number of minimal
connected vertex covers in sparse graphs. This can imply that if there
were to exist graphs that proves a better lower bound than 1.51978n, then
these graphs will most likely be sparse graphs as well. Interestingly, when
sparse graphs have a large amount of minimal connected vertex covers the
algorithm also discards a large amount of sets. This can be an indication
that there might exist graphs that prove a better lower bound and on these
graphs the algorithm will not discard as many sets. It might also be that
the algorithm does unnecessary work, and that it is possible to enumerate
minimal connected vertex covers with a faster algorithm and obtain a better
upper bound. For this theory we also take into consideration that in our
opinion the algorithm itself is quite trivial. It branches on vertices outside
the minimal connected vertex cover S that is under construction, and include
either the vertex itself, or its neighborhood. This procedure continues until
the set is in fact a minimal connected vertex cover, or until the vertices
outside form an independent set. In the latter case, the algorithm tries to
construct a minimal connected vertex cover by adding a set of vertices to S,
where the set is of size at most the number of components in S. To lower

5.2. FURTHER WORK 51

the upper bound, it might be that the algorithm for enumerating minimal
connected vertex covers has to have more sophisticated steps.

5.2 Further work

In this thesis we have been able to raise the lower bound from 1.4422n to
1.51978n. Still, it leaves a gap to the upper bound of 1.8668n, and we think
there might exist even better lower bound examples. Thus two obvious
paths to pursue as further work are finding better lower bound examples
and improving the upper bound.

For the lower bound, as we have seen both in Chapter 3 and in Chapter 4,
sparse graphs have a large amount of minimal connected vertex covers. If
there were to exist graphs that prove an even higher lower bound, it might be
wise to search for such graphs among sparse graphs. We tested all graphs up
to 11 vertices, and even though the graph that we use as a basis to construct
a new lower bound example graph has 44 vertices, it might be that there
exist graphs with a number of vertices between 11 and 44 that can be used
to create new example graphs that proves an even higher lower bound. It
might also be that it is possible to expand the graph G(x) in other ways
than we have done in this thesis to find a graph with a larger number of
minimal connected vertex covers.

Very recently, we learned that the graph H(x) that we used as a basis to
construct a graph that proves a new and better lower bound on the number
of minimal connected vertex covers, can also be used to prove a better lower
bound on the number of minimal independent feedback vertex sets of a graph
[14]. A minimal independent feedback vertex set is a minimal independent
set of vertices whose removal results in an acyclic graph. In particular,
H(6) has 1812087554 minimal independent feedback vertex sets, and by
taking infinitely many disjoint copies of this graph we get a graph that has
1.5067n minimal independent feedback vertex sets. These discoveries will
be published in a master thesis in 2018. We find it very interesting that the
graph H(x) can been used as a basis to prove better lower bounds for two
different problems. Could it be that this graph can be used to prove better
lower bounds for other types of sets in graphs?

Although our opinion is that the lower bound on the number of minimal
connected vertex covers in graphs is too low, we also think that the upper
bound is too high, though we have not been able to prove this. As we saw in
Chapter 4, the algorithm discards many sets when enumerating all minimal
connected vertex covers in graphs. This might be an indication that the

52 CHAPTER 5. CONCLUSION

algorithm does unnecessary work, and that it is possible to construct an
algorithm with more sophisticated steps that proves a better upper bound.
For improving the upper bound, we think that an algorithm that goes into
a detailed analysis of the vertices depending on their degree is necessary.

Although it has not been the scope of this thesis, another path to follow for
further work is to study the maximum number of minimal connected vertex
covers in graphs that have a special structure. In such graphs much lower
bounds are possible to prove, in addition to tight bounds. For example,
for chordal graphs, which are graphs that do not have induced cycles longer
than 3, the upper and lower bounds match at 3n/3 minimal connected vertex
covers [7]. For graphs that do not have induced cycles longer than 5, the
upper bound is 1.6181n whereas the same lower bound stands. So in this
graph class, there is room for improving the upper or the lower bounds.

Bibliography

[1] B. Bollobás. Extremal Graph Theory. Dover Books on Mathematics.
Dover Publications, 2004.

[2] B. Bollobas. Modern Graph Theory. Graduate Texts in Mathematics.
Springer New York, 2013.

[3] J.M Byskov. Enumerating maximal independent sets with applications
to graph colouring. Operations Research Letters, 32(6):547–556, 2004.

[4] J. Chen, I.A. Kanj, and G. Xia. Improved Parameterized Upper Bounds
for Vertex Cover, pages 238–249. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[5] M. Cygan. Deterministic Parameterized Connected Vertex Cover, pages
95–106. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[6] F.V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts
in Theoretical Computer Science. An EATCS Series. Springer Berlin
Heidelberg, 2010.

[7] P.A. Golovach, P. Heggernes, and D. Kratsch. Enumeration and Max-
imum Number of Minimal Connected Vertex Covers in Graphs, pages
235–247. Springer International Publishing, Cham, 2016.

[8] M. Hujtera and Z. Tuza. The number of maximal independent sets in
triangle-free graphs. SIAM Journal on Discrete Mathematics, 6(2):284–
288, 1993.

[9] B.D. McKay and A. Piperno. Practical graph isomorphism, {II}. Jour-
nal of Symbolic Computation, 60(0):94 – 112, 2014.

[10] R.E. Miller and D.E. Muller. A problem of maximum consistent sub-
sets. IBM Research Report RC-240, J. T. Watson Research Center,New
York, USA, 1960.

[11] J.W. Moon and L. Moser. On cliques in graphs. Israel Journal of
Mathematics, 3:23–28, 1965.

53

54 BIBLIOGRAPHY

[12] J.M. Robson. Finding a maximum independent set in time o(2n/4).
Technical Report 1251-01, LaBRI, Université Bordeaux, 2001.

[13] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm
for generating all the maximal independent sets. SIAM Journal on
Computing, 6(3):505–517, 1977.

[14] T. Wingsternes. Personal communication, 2017.

