
University of Bergen

Department of Informatics

Algorithms

Faster enumeration of minimal
connected dominating sets in split

graphs

Student:
Ida Bredal Skjørten

Supervisor:
Professor Pinar Heggernes

Master Thesis

June 2017

Acknowledgements

First of all I like to thank my supervisor Pinar Heggernes. Throughout the
work with this thesis she has been a great help, motivation and inspiration.

I would also like to thank my fellow master students and the whole
algorithms group for motivating me. Last, but not least I would like to

thank my family, especially my mom, for their help and support.

Contents

1 Introduction 1

1.1 Notation and Definitions . 2

1.2 Minimal dominating and connected dominating sets 2

1.3 Enumeration . 5

1.4 The classes of P and NP . 6

1.5 The abstract of this thesis . 8

2 Split graphs and lower bounds 11

2.1 Graph classes . 11

2.2 Split graphs . 13

2.3 Lower bound . 14

3 The algorithm and the upper bounds 23

3.1 Branching algorithms . 23

3.2 The enumeration algorithm 25

3.3 The upper bound . 29

4 Implementation details 31

4.1 Generation of random split graphs 31

iii

iv CONTENTS

4.2 Linear time generation of random split graphs 34

4.3 Generation of all split graphs of a given size 36

4.4 Implementation of the enumeration algorithm 38

4.5 Testing the correctness of the algorithm 39

4.6 Isomorphism testing . 41

5 Analyzing the gap between upper and lower bounds 47

5.1 The sizes of the clique and the independent set 47

5.2 Testing the algorithm . 50

5.3 The rules of the algorithm . 54

5.4 Proposal for new rules in the algorithm 56

5.5 Improving rule 9 . 66

6 Conclusion 75

6.1 Summary . 75

6.2 Co-bipartite graphs . 76

6.3 Further work . 77

References 81

Chapter 1

Introduction

Graphs are mathematical objects that can be used to model many real
world problems. An example is a roadmap, where the nodes in the graph
represent cities and the edges of the graph represent roads. An interesting
and important task is to find certain objects or node subsets with a specified
property in a graph, and in this thesis our main focus will be on finding
dominating sets in graphs.

An everyday example of a dominating set problem can be that we are asked
to place hospitals in a city. Every district of the city has to either have
its own hospital or have a direct road to a district with a hospital. This
problem can be modeled as a graph where the nodes of the graph represent
districts in the city and the edges of the graph represent roads between the
districts. A valid solution to this problem can be to place a hospital in every
district. However, it is expensive to build and operate hospitals, so maybe it
would be more economically feasible if we are asked to build as few hospitals
as possible. This corresponds to finding a minimum dominating set in the
graph.

Suppose that we are not just seeking to find one minimum dominating set
in a graph. Instead we are interested in how many dominating sets we can
find in a graph so that if we remove any node from a solution, this solution
would no longer be a dominating set. This corresponds exactly to finding
the number of minimal dominating sets in a graph.

Important questions in both algorithms and combinatorics concern how
many objects of a certain type there can there be in a graph. It is ex-
actly this type of question this thesis will study. In many applications the
best known way to find a minimum object of a certain type can be to list
all the minimal objects and then pick the smallest one among these mini-

1

2 CHAPTER 1. INTRODUCTION

mal objects. Thus, knowing the number of such objects and being able to
list them in reasonable time might help us get faster algorithms for hard
problems.

1.1 Notation and Definitions

In this section we will define some of the terms that are used in this thesis,
and explain the notation that we will use.

In this thesis we will look at simple undirected graphs, and we will use
G = (V,E) to denote such a graph, where V is the set of nodes in G, and
E is the set of edges in G. When the node set or edge set of a graph is
not specified will use V (G) to denote the nodes of a graph G, and E(G) to
denote the edges of a graph G. Two nodes in a graph are considered to be
neighbors if there is an edge between them. We will use NG(x) to denote
the neighbors of a node x in the graph G. A node is adjacent to all of its
neighbors. A graph G induced by a subgraph S is denoted as the induced
subgraph G[S], and is defined as the graph consisting of all the nodes in S
and it contains all the edges in G that connect a pair of nodes in S.

A clique is a set C of nodes such that every node in C is adjacent to all
other nodes in C.

An independent set I is a set of nodes such that none of the nodes in I are
adjacent to any of the other nodes in I.

1.2 Minimal dominating and connected dominat-
ing sets

A dominating set of a graph G is a subset D of the nodes in G such that
every node of G is either in D or has a neighbor in D. In Figure 1.1 the
nodes marked as red in G1, G2, and G3 form dominating sets, because every
node in these graphs is either red, or is adjacent to a red node.

We say that a node u is dominated by a node v in a dominating set D, if
u and v are connected by an edge, and v ∈ D. In a dominating set D all
d ∈ D are dominated by themselves. For a dominating set D we define a
private node of some node d ∈ D to be a node x that is dominated only by
d. It is important to note that a node can be its own private node.

1.2. DOMINATING SETS 3

G1 G2 G3

Figure 1.1: Graphs where the red nodes in G1 form a dominating set, the
red nodes in G2 form a minimal dominating set, and the red nodes in G3

form a minimal connected dominating set.

A dominating set D is minimal if no proper subset of D is a dominating
set. That is, D is minimal if every node of D has a private node in G. In
Figure 1.1 the nodes marked as red in G2 form a minimal dominating set,
because every red node in G2 has a private node. The nodes marked as red
in G1 and G3 do not form minimal dominating sets, because some of the
red nodes in G1 and G3 do not have any private nodes. In other words the
nodes marked as red in G1 and G3 do not form minimal dominating sets
because in both of these graphs some of the red nodes can be removed from
the dominating set (in G3 the upper red node is not needed to dominate
the graph, and in G1 either of the bottom right or the middle right is not
needed to dominate the graph), by changing color to light blue, and the set
consisting of the nodes that are red would still from a dominating set.

A connected dominating set (cds) of a graph G is a dominating set D, where
G[D] is connected.

A minimal connected dominating set (mcds)1 of a graph G is a connected
dominating set D such that no subset of D is a connected dominating set.
In Figure 1.1 the red nodes in G3 form a minimal connected dominating
set. Because no subset of the red nodes is a connected dominating set, the
red nodes form a dominating set and they are connected. The red nodes in
G1 and G2 do not form minimal connected dominating sets, because the set
consisting of the red nodes in G1 is not connected or minimal, and the set
consisting of the red nodes in G2 is not connected.

A practical example comes from ad-hoc wireless networks [17]. The nodes of
the graph represent cellphones or wireless units. There is an edge between
two wireless units if they are close to each other in euclidian distance. The
goal is to create a set of wireless units that work as providers to this network,

1We use the same abbreviation mcds also for the plural form; minimal connected
dominating sets.

4 CHAPTER 1. INTRODUCTION

so that all communication in the network go through the providers. We want
the set of providers to be as small as possible, but at the same time we need
all the providers to be close to each other. If all communication have to go
though the providers we know that every wireless unit has to be close to a
provider. One measure of the size of a solution can be that we say that a
solution is as small as possible if the solution is invalid if any of the providers
are removed from the solution. The valid solutions to this routing problem
are exactly the mcds of the graph, where the wireless units in a mcds of the
graph form a set of providers.

The following lemma shows that checking whether a connected dominating
set is minimal can be easily done.

Lemma 1.1. Let D be a connected dominating set. Then D is minimal if
and only if ∀d ∈ D, D \ {d} is not a connected dominating set.

Proof. For the first direction it follows from the definition that if D is min-
imal then D \ {d} is not a cds ∀d ∈ D. For the other direction, assume for
contradiction that D is a cds, but not minimal and that ∀d ∈ D, D \ {d}
is not a cds, meaning that we cannot remove a single node, and still have
a connected dominating set. Under the assumption that D is not minimal
there must exist a S ⊂ D such that D \ S is a cds, and ∀s ∈ S, D \ {s}
is not a cds. There are two possible reasons for why we cannot remove a
node, either it is needed to connect the cds, or it has a private node in the
graph (it is needed to dominate the graph). If ∃s ∈ S that has a private
node z ∈ G, then z will not have a neighbor in D \ S so D \ S cannot be a
dominating set. Therefore, none of the nodes in S can have a private node,
but then every node in S is necessary to connect D. If that is the case then
∀s ∈ S, D \{s} is not connected, but D and D \S is connected. This means
that at least one of the nodes in S is needed to connect X ⊆ S to D, but if
that is the case then there would ∃x ∈ X so that D \ {x} is a cds, but this
is a contradiction to our assumption so D \ S cannot be a cds.

G4 G5

Figure 1.2: Graph where the red nodes in both G4 and G5 form a minimal
dominating set, but only the red node in G4 is a minimum dominating set.

1.3. ENUMERATION 5

A minimum dominating set in a graph is a dominating set with the smallest
cardinality. A natural assumption might be to assume that every minimal
dominating set is also a minimum dominating set, but this is not always
the case. In Figure 1.2 we can see that the red nodes in both G4 and G5

form minimal connected dominating sets. The red node in G4 has three
private nodes, and each of the red nodes in G5 has itself as a private node.
Clearly the red nodes in G5 do not form a minimum dominating set, since
this dominating set consists of 2 nodes, whereas the red node in G4 forms a
dominating set of size 1.

1.3 Enumeration

Various types of problems can be defined related to a node set satisfying
some property in a graph. Let us consider connected dominating set as an
example. We can ask whether the graph has a connected dominating set of
size at most a given integer. This is an example of a decision problem. We
can also try to find a connected dominating set of smallest size. This is an
example of an optimization problem. Finally, since the smallest connected
dominating set must be among the minimal connected dominating sets we
can ask to list all distinct minimal connected dominating sets in a graph.
This is an example of an enumeration problem.

An enumeration algorithm is an algorithm that lists all objects of a certain
type in a given input graph. Enumeration algorithms can be used to solve
optimization problems by simply listing or enumerating all the solutions and
picking the best one. For many problems there exist algorithms that solve
the problem faster than an enumeration algorithm, but for some problems
the current best known solution to an optimization problem is by an enumer-
ation algorithm. For example, for the problem of finding a minimum subset
feedback vertex set on chordal graphs, the best known algorithm enumer-
ates all minimal subset feedback vertex sets and picks the smallest one [12].
Enumeration algorithms can also be used to solve decision problems. We
can do this by checking the size of each minimal set that the enumeration
algorithm lists, and check if any of these are smaller than the threshold given
as input to the decision problem.

Extremal graph theory is a field that contains problems that ask for the
maximum or minimum number of objects in a graph [16]. A common way
to approach these problem is to try to bound this number with algorithmic
methods.

An upper bound is simply a bound that shows that there cannot be any more

6 CHAPTER 1. INTRODUCTION

objects than the given bound. An upper bound that we are able to prove can
be higher than the actual maximum number of objects that we are looking
for. Upper bounds are very often obtained by branching algorithms, and
cannot be less than the number of enumerated objects, and hence bounds
their number. We will address branching algorithms in Chapter 3.

A lower bound is the maximum number of objects that we can verify by
examples. It is the largest number of objets in any graph for which we can
prove an exact maximum number.

In general, our aim is to narrow or close the gap between the upper and
lower bounds. If the lower and upper bounds are equal we have a tight or
closed bound, and we know exactly the maximum number of the specified
object that can occur in any graph. If we do not have a closed bound we
know that either the upper bound is too high, and we need to find a faster
algorithm that lists or enumerates these objects in a given graph, or the
lower bound is too low, and we need to find a graph example that contains
more of these objects then the current lower bound.

1.4 The classes of P and NP

Let us formally define the decision version of finding minimum dominating
sets and minimum cds:

Dominating set
Input: A graph G, and an integer k
Task: Determine whether G has a dominating set of size ≤ k

connected dominating set
Input: A graph G, and an integer k
Task: Determine whether G has a connected dominating set of size ≤ k

dominating set and connected dominating set are two of the classical
NP-complete problems. In theoretical computer science there has been a lot
of focus on NP-complete problems. We will now give a brief introduction
to the classes P, NP, and NP-complete problems. This is a prerequisite to
understand the complexity of the dominating set problem. We will also
encounter these classes of problems when we discuss the graph isomorphism
problem in Chapter 4.

For a lot of problems, like sorting a list of numbers, there exits algorithms
that solve the problems in polynomial time in the size of the input. All
such problems, where we have algorithms that solve the problem in poly-

1.4. THE CLASSES OF P AND NP 7

nomial time, are in the class called P. There are many problems for which
we have not been able to find a polynomial time algorithm that solves the
problem. Some of these problems, however, are well-behaved in the sense
that if somebody provides a suggestion of a solution, an algorithm can check
in polynomial time whether it is indeed a solution or not. These problems
belong to the class called NP.

The fact that no one has been able to find polynomial time algorithms for
these problems does not mean that there does not exist such algorithms for
these problems. In fact no one has been able to prove that there does not
exist any polynomial time algorithms for the problems in NP. This means
that we do not know if the problems in NP are in fact members of P, which
would imply that P=NP. What we do know is that P⊆NP. The problem of
whether P=NP or P⊂NP is one of the major open questions in theoretical
computer science. However, it is widely believed that P 6=NP, and therefore
there is a lot of focus on finding fast exponential algorithms for the problems
in NP.

The class of NP-complete problems consists of the hardest problems in NP.
All problems in NP can be reduced in polynomial time to each of the NP-
complete problems. This means that if someone finds a polynomial time
algorithm to any of the NP-complete problems, we would have a polynomial
time algorithm for all problems in NP, which would imply that P=NP. For
the problems in NP which are not known to be NP-complete, finding a
polynomial time algorithm for any of these problems would not imply that
P=NP, but only that the specific problem is in P.

dominating set and connected dominating set are not only NP-
complete for general graphs, but for a range of different graph classes like
split graphs [4, 9].

As we mentioned in the previous section, for some, but not all, NP-complete
problems enumeration of all feasible solutions and checking their sizes is the
only way we know that solves them. Whether one can avoid enumeration
for the solution of all NP-complete problems is an important open question.

For connected dominating set on general graphs we know that an enu-
meration algorithm of minimal sets is not the fastest way to solve the op-
timization version of the problem. On general graphs, the best enumera-
tion algorithm that lists minimal cds known is the trivial one that runs in
time O∗(2n) [11]. Fomin, Grandoni and Kratsch gave an algorithm that
solves connected dominating set on general graphs with running time
O(1.9407n) [7]. The current fastest algorithm for solving this problem on
general graphs is due to Abu-Khzam, Mouawad, and Liedloff [2] and has run-

8 CHAPTER 1. INTRODUCTION

ning time O(1.8619n). Even though enumeration of minimal objects is not
the fastest way to solve connected dominating set on general graphs, it
might be the case for some specific graph classes.

In fact, Fomin, Kratsch and Woeginger [9] gave an algorithm with best
running time for dominating set and connected dominating set on
split graphs, which was O(1.41422n) [9]. They also showed that for both
dominating set and connected dominating set in split graphs, the
solution can be found among the sets of mcds. In 2015, Golovach, Heggernes
and Kratsch [11] gave an O(1.3803n)-time algorithm for enumerating the
mcds in split graphs. Thereby, they decreased the best running time on both
dominating set and connected dominating set in split graphs. To
the best of our knowledge, a faster algorithm for connected dominating
set in split graphs that avoids enumeration has not been discovered. This
constitutes another example of a hard problem for which a fastest solution is
obtained by enumerating all solutions by a clever algorithm and then picking
the best solution.

1.5 The abstract of this thesis

This above O(1.3803n)-time algorithm for enumerating mcds in split graphs
exhibits several of the issues we have discussed so far. The algorithm by
Golovach et al. [11] gives the best known upper bound on the maximum
number of mcds in split graphs. They also give the best known lower bound
example on the maximum number of mcds in split graphs, which has 1.3195n

mcds, so there is an albeit small gap between the lower and the upper bound.

In this thesis we implement and test the mentioned enumeration algorithm,
and with these tests we find a new lower bound example with 1.3195n mcds.
On the theoretical side, we improve the running time of the enumeration
algorithm to O(1.3674n), thereby proving that the maximum number of
mcds in split graphs is at most 1.3674n. Consequently, we narrow the gap
between the known upper and lower bound on the maximum number of
mcds in split graphs.

We now give a brief overview of this thesis:

In Chapter 2 we define split graphs, and study lower bounds. We study the
graph that gives the best known lower bound, and we try to search for a
new or better lower bound by generating all split graphs of size up to 11
nodes. We report on a new lower bound example that we found, with the
same number of mcds as the best lower bound example, and we present this

1.5. THE ABSTRACT OF THIS THESIS 9

graph and its mcds.

In Chapter 3 we analyze the algorithm by Golovach et al. [11] for enumer-
ating mcds that gives the best known upper bound. We correct a couple of
small errors in this algorithm, and we analyze the running time of this new
and amended algorithm.

In Chapter 4 we go through the details of how we implemented the enu-
meration algorithm and our graph generation algorithms. We also discuss
some of the obstacles that we encountered such as how to generate only
non-isomorphic split graphs.

Chapter 5 contains the main contributions of this thesis. We start by pre-
senting some of our test results, which lead to understanding where the real
upper bound might lie. Then we analyze the branching rules with the high-
est running time in the enumeration algorithm by Golovach et al. [11], and
see what type of structures a graph requires to use these rules. Using the
insight from these examples and our tests, we improve the running time on
all of these worst case rules in the algorithm.

In Chapter 6 we summarize the work and results of this thesis. We discuss
how the results of this thesis can be applied to co-bipartite graphs. We
also give our thoughts and remarks on further work with the subject of this
thesis.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Split graphs and lower
bounds

Before we start to examine the details of the enumeration algorithm by
Golovach et al. [11], we will look at split graphs and the lower bound on the
maximum number of mcds in split graphs. We will do this by studying some
specific graph examples. We will also present the graph that gives the best
known lower bound on the maximum number of mcds in split graphs, and we
will give a brief discussion on this lower bound. As the main contribution of
this chapter, we will present a new lower bound example that we discovered
with the same lower bound as the current best known graph example. Before
we give a formal definition of split graphs, we will begin by providing a brief
discussion on why it might be useful to look at upper and lower bounds
on a specific graph class like split graphs instead of just looking at general
graphs.

2.1 Graph classes

A graph class is a subclass of general graphs containing only the graphs that
have a specified property. Most graph classes contain an infinite number
of graphs. Some graph classes have forbidden or required structures. An
example of a graph class that has a forbidden structure is the class of trees.
The class of trees consists exactly of those graphs that are connected and
that do not contain any cycles.

As we briefly discussed in Chapter 1, when we are looking for the maximum
number of various objects in graphs, there might be a gap between what we

11

12 CHAPTER 2. SPLIT GRAPHS AND LOWER BOUNDS

are able to prove as an upper bound and the example that we are able to
find as a lower bound. It is important to note that in reality there is never a
gap between the upper and lower bounds, there is one bound, which is the
maximum number of a specified object that any graph can have. To try to
find this correct maximum number of the specified object that a graph can
have, we try to bound this number from above and below, which corresponds
to the upper and lower bounds. The goal is to get equal upper and lower
bounds, because then we know that we have found the correct maximum
number of the specified object that any graph can have. If there is a gap
between the upper and lower bounds that we are able to find, we know that
the correct maximum number of the specified object a graph can have is
somewhere between these bounds. So the smaller the gap is between the
upper and lower bounds, the closer we are to knowing the correct maximum
number of objects that any graph can have.

For some problems it can be difficult to close or tighten the gap between
the upper and lower bound that we are able to provide for general graphs.
In some cases we can obtain a smaller gap between the upper and the lower
bounds, or even close the gap completely, by looking at a graph class, and
try to exploit some of its structure. Another reason why it can be useful to
only concentrate on a specific graph class can be that some applications of
a problem might only concern that specific graph class. Even if we have a
tight bound for a problem on general graphs, this bound might be high. In
some cases we can get a better bound on the same problem if we restrict it
to a specified graph class.

For the maximum number of mcds in general graphs, the upper bound is
given by 2n, and the lower bound is given by 3(n−2)/3 ∼ 1.4423n in [11].
The upper bound is the trivial bound, thus no algorithm has been able to
enumerate these sets in less time. As we will see later in this thesis there is
a smaller upper bound of 1.3803n on the maximum number of these sets in
split graphs, but also a smaller lower bound of 4n/5 ∼ 1.3195n. The reason
why we get a smaller lower bound on the maximum number of mcds in split
graphs than in general graphs is because the graph example that gives the
lower bound for general graphs is not a split graph. Thus, it cannot be
used to give a lower bound on the maximum number of mcds in the class of
split graphs. As we will see, the upper bound for the class of split graphs is
achieved by a non-trivial enumeration algorithm.

2.2. SPLIT GRAPHS 13

Graph Class Lower Bound Upper Bound

general 15n/6 1.7159n

chordal 3n/3 1.6181n

split 3n/3 1.4656n

proper interval 3n/3 1.4656n

cograph 15n/6 15n/6

trivially perfect 3n/3 3n/3

Table 2.1: Lower and upper bounds on the maximum number of minimal
dominating sets. Note that 15n/5 ≈ 1.5704n and 3n/3 ≈ 1.4422n.

In Table 2.1 we can see some results by Couturier, Heggernes, van ’t Hof and
Kratch [5]. These results are bounds on the maximum number of minimal
dominating sets, and not on mcds which we are working with in this thesis,
but they serve well as an illustration. As we can see the bounds for general
graphs is not tight, but they have been able to find a tight bound for both
the class of cographs and trivially perfect graphs. Furthermore the upper
bound for trivially perfect graphs is less than the lower bound on general
graphs. This means that the maximum number of minimal dominating sets
in general graphs is higher than in trivially perfect graphs. Some of the
gaps in Table 2.1 have been closed or narrowed since the publication of
these results. For example, the best known upper bound for chordal graphs
is now 1.5214n [1], for split graphs 3n/3 [6], and for proper interval, in fact
even interval graphs, is 3n/3 [10].

2.2 Split graphs

A split graph G is a graph where the nodes can be partitioned into a clique
C and an independent set I, such that every node in G is either in I or in C.
Any number of edges between C and I can be present in G. In Figure 2.1
we see two examples of split graphs.

Figure 2.1: Examples of split graphs, where the red nodes represent the
clique, and the gray nodes represent the independent set.

14 CHAPTER 2. SPLIT GRAPHS AND LOWER BOUNDS

In the rest of this thesis when we are working with split graphs we will
denote the set of all nodes in the clique by C, and the set of all nodes in the
independent set by I.

First let us have a look at how mcds in split graphs look like.

Lemma 2.1. Let G be a split graph, if G has a mcds D containing a node
from I then |D| = 1.

Proof. Assume for contradiction that there is a mcds D that contains a node
i ∈ I and |D| > 1. For D to be connected, one of i’s neighbors has to be
in D, let us call this node c. Since i ∈ I, it is only adjacent to nodes in C.
This implies that c ∈ C, which again implies that c is adjacent to every node
in C, and some number of nodes in I. It follows that NG(i) ⊆ NG(c), so i
cannot have a private node in G, and therefore the set D is not minimal.
This is a contradiction to our assumption that there was a mcds D with
|D| > 1 that contained a node from I.

Corollary 2.1. Let G be a split graph with a mcds D such that |D| ≥ 2.
Then D ⊆ C.

Note that if a graph contains such a mcds D with |D| = 1 containing only
a single node i ∈ I, then G must be complete. The reason for this is that
D needs to dominate the entire graph. Which means that i needs to be
adjacent to every node in the graph. Since there are no edges between
nodes in I, I can only contain i, and i needs to be adjacent to the whole
clique. Which means that in the cases where G is not complete, all mcds
are subsets of C.

2.3 Lower bound

The lower bound on the maximum number of specified objects in any graph
is obtained from the graph that contains the highest known number of the
sought for object. The lower bound gives us the highest number of the
specified object that we can prove that any graph contains, and it is given
as a function of the number of nodes in the graph. It can be used to show
that the running time of an algorithm that enumerates these objects would
have to spend at least this amount of time. The graphs that make up the
lower bounds can often have a special structure. This structure is usually
several copies of identical subgraphs. The graph that makes up the lower
bound needs to have the property that it can be expanded infinitely so that

2.3. LOWER BOUND 15

we can have a function for the maximum number of objects that grows as
the number of nodes in the graph grows.

In the rest of the figures of split graphs in this thesis we will not draw any
of the edges between pairs of nodes in the clique.

For split graphs a graph example giving the lower bound might be given by
a graph with structure similar to the one in Figure 2.2. This graph consists
of several copies of the same subgraph. For ease of explanation we will
call each such subgraph a component. This should not be confused with
a connected component. It is important to note that there are no edges
between the independent set in one component and the nodes of another
component. Inside a component the edges might be different than those we
draw as an illustration. If we have k nodes in each such component then
we have n/k identical components, where n is the number of nodes in the
graph, assuming that k divides n. If each such component has p mcds, then
for a given component each of its p mcds can be combined with any of the p
mcds in each of the other components, to create a mcds for the whole graph.
So we have p · p · ... · p︸ ︷︷ ︸

n/k

= pn/k mcds in the graph.

independent set:

clique:

1 2 n/k

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k

Figure 2.2: A graph having pn/k minimal connected dominating sets.

We are now going to look at different such graphs with different numbers of
nodes in each component in the graph, to analyze how such graphs might
be used to find the best lower bound. In each graph we only consider the
nodes in the clique as potential members of the mcds.

Note that if we look at each component by itself, in some of these graphs it
might look like the node in the independent set could be a mcds, but this is
not feasible for our purpose. We need to combine the partial solution of each
component to obtain a mcds for the whole graph. This combined solution
would be of size greater than 1, so by Corollary 2.1 all members of the mcds
need to be from the clique.

16 CHAPTER 2. SPLIT GRAPHS AND LOWER BOUNDS

independent set:

clique:

Figure 2.3: A graph having 1n/2 = 1 mcds.

In Figure 2.3 we have 2 nodes in each component, thus k = 2. We have 1
mcds in each component, consisting of the node from the clique, so p = 1.
Which gives us 1n/2 = 1 mcds, no matter how many nodes we have in the
graph.

independent set:

clique:
a1 b1 a2 b2 a3 b3 am bm

Figure 2.4: A graph having 2n/3 = 1.2599n mcds.

In Figure 2.4 we have 3 nodes in each component, thus k = 3, and we have
2 mcds in each component, since we can choose ai or bi independently from
each component, so p = 2. This gives us 2n/3 = 1.2599n mcds.

independent set:

clique:

Figure 2.5: A graph having 3n/4 = 1.3161n mcds.

In Figure 2.5 we have 4 nodes in each component, thus k = 4, and we have
3 mcds in each component, so p = 3. This gives us 1.3161n mcds.

2.3. LOWER BOUND 17

independent set:

clique:

Figure 2.6: A graph having 4n/5 = 1.3195n mcds.

In Figure 2.6 we have 5 nodes in each component, thus k = 5, and we have
4 mcds in each component, so p = 4. This gives us 1.3195n mcds. This is
actually the current best known lower bound on the maximum number of
mcds in split graphs, first presented by [11]. This graph consists of several
copies of the graph in Figure 2.7, which we will denote as L1 in the rest of
this thesis.

independent set:

clique:

Figure 2.7: The graph L1, that makes up the lower bound of 1.3195n on the
maximum number of mcds in split graph.

independent set:

clique:

Figure 2.8: A graph having 5n/6 = 1.3077n mcds.

In Figure 2.8 we have six nodes in each component, thus k = 6, and we have
five mcds in each component, so p = 5. This gives us 1.3077n mcds.

Keeping the same structure in the graph and increasing the number of nodes
in each component to more than 5 will just decrease the function of the
number of mcds in the graph further, so this will not give a better lower
bound. However this does not mean that 1.3195n is the correct lower bound,
a different structure of the graph might still give a higher number of mcds.

18 CHAPTER 2. SPLIT GRAPHS AND LOWER BOUNDS

In order to see if there exists other or better lower bound examples, we
could investigate the possibility of finding relatively small split graphs with
a relatively large number of mcds which we could combine to an arbitrarily
large split graph by taking copies joined at the clique. For this we need a
split graph on n nodes to have at least 1.3195n mcds consisting of nodes
in its clique. We have computed this value for 1 ≤ n ≤ 11, and the corre-
sponding numbers are given in the second column of Table 2.2. This means
for example that a split graph on 9 nodes must have at least 13 mcds if we
want to use it as a component to generate infinite lower bound examples.

Nodes in
the graph

Smallest number of mcds in the clique
needed to break the lower bound

Maximum number of
mcds found in the clique

2 > 1.31952 ∼ 1.741 : 2 1

3 > 1.31953 ∼ 2.297 : 3 2

4 > 1.31954 ∼ 3.031 : 4 3

5 > 1.31955 = 4.000 : 4 4

6 > 1.31956 ∼ 5.278 : 6 5

7 > 1.31957 ∼ 6.964 : 7 6

8 > 1.31958 ∼ 9.189 : 10 9

9 > 1.31959 ∼ 12.125 : 13 12

10 > 1.319510 = 16.000 : 16 16

11 > 1.319511 ∼ 21.111 : 22 21

Table 2.2: Table of the smallest number of mcds needed in the clique part of
a split graph to get a higher lower bound, and the maximum number mcds
found for all graphs of size n.

In search of components to generate lower bound examples, we generated
all split graphs of size up to 11 nodes, and for each graph we counted the
number of mcds that were a subset of the clique part of the graph. We
computed the maximum number of mcds for a graph size by taking the
maximum over all graphs of this size. The results we got can be seen in
column 3 of Table 2.2. As we see in this table, we found no graph of size
less than or equal to 11 that can help us build examples to get a better
lower bound. For n = 5, and n = 10 we hit the lower bound exactly, which
is not surprising, since we found the lower bound example of 1.3195n from
Figure 2.6, which is a graph that can be expanded in size to any multiple of
5.

More surprisingly, among the graphs of size 10 that hit the lower bound
exactly we were very happy to discover a new graph that we present, which
serves as a new lower bound example. This graph is displayed in Figure 2.9.
In the rest of this thesis we will denote the graph shown in Figure 2.9 as L2.

2.3. LOWER BOUND 19

independent set:

clique:

i1 i2 i3

c1 c2 c3 c4 c5 c6 c7

Figure 2.9: New lower bound example that gives the same lower bound as
L1. We denote this graph as L2. This graph has 10 nodes and it has 16
mcds.

L2 is one of the two graphs we have been able to find that matches the
current lower bound. This graph is of size 10, and has 16 mcds. In this
graph every node in the clique has exactly 2 neighbors in the independent
set. In other words every node in the clique is adjacent to |I| − 1 nodes in
the independent set. The other graph that gives the lower bound is the one
we discussed earlier, L1.

The mcds of L2 are all of size 2, and they consist of all possible pairs of nodes
in the clique that do not have the same neighbor set. For instance nodes c1
and c2 have exactly the same set of neighbors, so {c1, c2} is not a mcds of
L2. Nodes c1 and c4 do not have the same set of neighbors so {c1, c4} is a
mcds of L2. All of the 16 mcds of this graph are shown in Table 2.3.

{c1, c4} {c1, c5}
{c1, c6} {c1, c7}
{c2, c4} {c2, c5}
{c2, c6} {c2, c7}
{c3, c4} {c3, c5}
{c3, c6} {c3, c7}
{c4, c6} {c4, c7}
{c5, c6} {c5, c7}

Table 2.3: Table of all the mcds of the graph L2.

As mentioned, for a graph to make up a lower bound it needs to have the
property that it can be expanded infinitely and still have the same function
of mcds in comparison to the number of nodes in the graph. If we expand

20 CHAPTER 2. SPLIT GRAPHS AND LOWER BOUNDS

L2 to be a graph of any size n by adding x copies of this graph, we would
get the graph shown in Figure 2.10. There are k = 10 nodes in each such
component, so we get a graph of size n = x · k. Each copy of L2 has p = 16
mcds. For a given component each of its p mcds can be combined with any
of the p mcds in each of the other components, to create a mcds for the
whole graph. So we get a total of px = pn/k = 16n/10 ∼ 1.3195n mcds.

independent set:

clique:

Figure 2.10: New lower bound example that gives the same lower bound as
the previous graph example, that is, 16n/10 ∼ 1.3195n mcds.

One strategy to search for a graph with a higher number of mcds is to try
to expand the graph that gives the current lower bound. Then check if it
is possible to expand it in such a way that we get a higher number of mcds
than the current lower bound. One way to expand L2 is to keep the number
of nodes in the independent set constant at 3. We can also keep the number
of neighbors each node in the clique has in the independent set constant at
2. In L2 the nodes in the independent set have roughly the same degree, so
when we expand the graph we can also try to keep this property. In this
general graph the clique would have c = n − 3 nodes, and the independent
set would have i = 3 nodes. Each node in the independent set would have
roughly 2c

3 neighbors. Let us denote this expanded graph as Lexp1 .

The number of mcds in Lexp1 can be written as a function, so instead of
drawing Lexp1 in all possible sizes to look for a new lower bound, we can
plot this function and compare it to the current lower bound function. As
mentioned the mcds of L2 are all possible sets of two nodes from the clique
{cx, cy}, where cx and cy do not have the exact same set of neighbors, this
property also holds for Lexp1 . If we denote the nodes in the independent set
of the generalized graph by i1, i2, i3, there are three possible set of neighbors
in the independent set a node in the clique can have. These possible neighbor
sets are {i1, i2}, {i1, i3} and {i2, i3}.

If there are c nodes in the clique there are c
3 nodes from the clique that have

one specific set of neighbors {ix, iy}. For each node x in the clique there are
2c
3 nodes in the clique that have a different set of neighbors than that of x,

so every node in the clique is a part of 2c
3 mcds. Thus there are 2c2

3 mcds,
but every mcds in the graph is counted twice, once for each of the nodes in
it, so we have to divide the whole function by 2 to get the correct number

2.3. LOWER BOUND 21

2 4 6 8 10 12 14 16

0

20

40

60

n

m
cd
s

Figure 2.11: Plot where the blue function is the lower bound on mcds in
split graphs, and the red function is the number of mcds in Lexp1 .

of mcds, hence there are c2

3 unique mcds in the graph Lexp1 .

In Figure 2.11 we can see the plots of the two functions. The blue plot is
the current lower bound, f(n) = 1.3195n, and the red plot is the number

of mcds in Lexp1 , given by the function f(n) = c2

3 = (n−3)2
3 . As we can see

in Figure 2.11 the two functions intersect at approximately n = 10, and in
all other cases the blue function exceeds the red function. This means that
the current lower bound and Lexp1 have the same number of mcds when
n = 10, and otherwise the current lower bound has more mcds than Lexp1 .
So expanding L2 to Lexp1 will not give a new lower bound.

The fact that we did not obtain a new lower bound does not mean that
there does not exist any graph with a higher number of mcds, but if such
a graph exits then each of the identical components used to generate this
graph would have to be of size greater than 11. The problem with finding
a graph with a higher lower bound, if it exists, is that it takes a lot of time
and memory to generate and test all graphs from size 12 and onwards. As
we will see in Chapter 4, during our tests and analyses of the current lower
bound examples, we became convinced that the upper bound of 1.3803n is
too high. Thus we channelled our efforts into reducing the upper bound
rather than making our implementation more efficient to be able to look for
larger lower bound examples. In fact, as we will come back to in the last
chapter, we belive that there are no better lower bound examples.

22 CHAPTER 2. SPLIT GRAPHS AND LOWER BOUNDS

Chapter 3

The algorithm and the upper
bounds

In this chapter we will go through the details of the enumeration algorithm
that gives the best known upper bound on the maximum number of min-
imal connected dominating sets in split graphs. Since this is a branching
algorithm, we provide details on branching algorithms in general before we
present the algorithm that gives the upper bound.

3.1 Branching algorithms

A branching algorithm is a recursive algorithm. Branching is a well estab-
lished method within enumeration and exact exponential time algorithms.
The book by Fomin and Kratsch [8] gives a good explanation of branching.
Here we give a brief introduction. Branching algorithms often consist of re-
duction rules and branching rules. The reduction rules are used to simplify
the problem, or to terminate the algorithm. The branching rules are used to
create several new problems of smaller size, and these are solved recursively.
The computational pattern of a branching algorithm is called a search tree.
If we consider each recursive call as a node in the tree, then the recursive
calls made from the branching in a call will be its children. The root of this
tree will be the input to the original problem.

An example of a branching algorithm is that we are looking for node subsets
of an input graph with a certain property. We can keep a list of undecided
nodes, and a list of nodes that are in the current solution. The undecided
nodes would normally start out as the set of all nodes in the graph, and the

23

24 CHAPTER 3. THE ALGORITHM AND THE UPPER BOUNDS

set of nodes in the current solution would start out empty. In each recursive
call we select a node from the set of undecided nodes, and try two different
possibilities. Either the selected node is in the solution, or it is not in the
solution. In both cases it is removed from the set of undecided nodes, and
the two recursive calls are made. This simple branching algorithm explained
above would end up checking every possible subset of the nodes in the graph.
Typically the recursion would have a base case, so that if the set of undecided
nodes is empty we would test if the set of nodes in the current solution has
the property that we are seeking. In this example the problem size would
be the set of undecided nodes, which is decreased by 1 in each recursive call.

The running time of such branching algorithms is often exponential. Usually
the time spent at each node in the search tree is polynomial in the input,
so the important factor of the running time is the number of nodes in the
search tree. It is important to note that the number of nodes in the search
tree is not more than 2 times the number of leaves in the tree. So to bound
the number of nodes, or the running time of the algorithm, it is sufficient
to bound the number of leaves in the tree. In fact the number of leaves
corresponds exactly to the number of objects produced by the algorithm.
Some of them might be discarded, but each object we want to enumerate
corresponds to a leaf of the tree.

To get an upper bound on the number of nodes in the tree we need to look
at the branching rules, since these rules determine the number of recursive
calls made, and the size of the subproblems that are solved. If a branching
rule b makes m recursive calls r1, r2, ..., rm, and the problem size in these
calls are decreased by c1, c2, ..., cm respectively, then the branching vector
of this branching rule is b = (c1, c2, ..., cm). If we define T (n) to be the
maximum number of leaves found in an input graph of size n, we can say
that it is bounded by:

T (n) ≤ T (n− c1) + T (n− c2) + ...+ T (n− cm)

The solution to this type of linear recurrence can be found by solving the
equation xn − xn−c1 − xn−c2 − ... − xn−cm = 0. The branching number of
this branching rule is the unique positive real root of this equation. If the
branching number of rule b is α, then the running time spent on a function
that only contains branching rule b would be O∗(αn), where the O∗-notation
suppresses polynomial factors.

In the example given previously there is only one branching rule, it makes
two recursive calls, and in both of these recursive calls the problem size is
decreased by 1. So the branching vector for this branching rule would be
b = (1, 1). The running time of the algorithm can be found by solving the

3.2. THE ENUMERATION ALGORITHM 25

equation xn − xn−1 − xn−1 = 0. The unique real root to this equation is 2,
so α = 2, which gives a running time of O∗(2n).

3.2 The enumeration algorithm

The algorithm that we will present for enumerating mcds in split graphs
is from the paper by Golovach et al. [11]. This algorithm gives an upper
bound of 1.3803n on the maximum number of mcds in split graphs, which
is the current best known upper bound on this problem. We will not go
through the full proof of correctness for the algorithm in this thesis, as in
this type of branching algorithms the proof and the implementation often
go hand-in-hand. We will explain some of the steps in the algorithm to
illustrate this.

The algorithm given by Golovach et al. [11] is displayed in Algorithm 3.1.
Before we look at some of the steps in this algorithm we will start out by
explaining the input and notations used in this algorithm.

Let G be an input split graph with C as its clique and I as its independent
set. The algorithm takes three parameters K, S and X as input. Here K
is a subset of C, S is a subset of I, and X is the current partial solution,
which is a subset of C \K. In particular the set X dominates the set I \ S.
The goal of the algorithm is to generate all mcds of G that contain X.
Initially the algorithm is called with K = C, S = I, K = ∅ and in this way
it generates all mcds of G. In the algorithm we use the notation dS(x) to
denote |NG(x)∩S|, and dK(x) to denote |NG(x)∩K|. The algorithm works
on the subgraph of G induced by K and S. We call this subgraph H.

Algorithm 3.1 Algorithm for enumerating mcds in split graphs

1: function enumcds(K,S,X):
2: if X is a minimal connected dominating set of G then . 1
3: return X and stop
4: end if
5: if X is a connected dominating set of G but not minimal then . 2
6: stop
7: end if
8: if there is an x ∈ K such that dS(x) = 0 then . 3
9: enumcds(K \ {x}, S,X)

10: end if

26 CHAPTER 3. THE ALGORITHM AND THE UPPER BOUNDS

11: if there is a y ∈ S such that dK(y) = 1 and x is the unique neighbor
of y in H then . 4

12: enumcds(K \ {x}, S \ {y}, X ∪ {x})
13: end if
14: if there is an x ∈ K such that dS(x) = 1 and y is the unique neighbor

of x in S. Let NH(y) = {x, x2, ..., xt} for t ≥ 2. then . 5
15: if t == 2 then . 5.1
16: enumcds(K \ {x, x2}, S \ {y}, X ∪ {x})
17: enumcds(K \ {x, x2}, S \ {y}, X ∪ {x2})
18: end if
19: if t > 2 then . 5.2
20: enumcds(K \ {x, x2, x3, ..., xt}, S \ {y}, X ∪ {x})
21: enumcds(K \ {x}, S,X)
22: end if
23: end if
24: if there is an x ∈ K such that dS(x) ≥ 3. Let NH(x) ∩ S =
{y1, y2, ..., yt} and t ≥ 3 then . 6

25: enumcds(K \ {x}, S \ {y1, y2, ...yt}, X ∪ {x})
26: enumcds(K \ {x}, S,X)
27: end if
28: if there is a y ∈ S such that dK(y) = 2 then let NH(y) = {x1, x2}

and for all i = 1, 2 let wi be the unique neighbor of xi in S different
from y. then . 7

29: enumcds(K \ {x1}, S \ {y, w1}, X ∪ {x1})
30: enumcds(K \ {x1, x2}, S \ {y, w2}, X ∪ {x2})
31: end if
32: if If there is a y ∈ S such that dK(y) = 3 then let NH(y) =
{x1, x2, x3} and for all i = 1, 2, 3 let wi be the unique neighbor of xi
in S different from y; then . 8

33: enumcds(K \ {x1}, S \ {y, w1}, X ∪ {x1})
34: enumcds(K \ {x1, x2}, S \ {y, w2}, X ∪ {x2})
35: enumcds(K \ {x1, x2, x3}, S \ {y, w3}, X ∪ {x3})
36: end if
37: if there is a y ∈ S such that dK(y) = 4 then let NH(y) =
{x1, x2, x3, x4} and for all i = 1, 2, 3, 4 let wi be the unique neighbor
of xi in S different from y; then . 9

38: enumcds(K \ {x1}, S \ {y, w1}, X ∪ {x1})
39: enumcds(K \ {x1, x2}, S \ {y, w2}, X ∪ {x2})
40: enumcds(K \ {x1, x2, x3}, S \ {y, w3}, X ∪ {x3})
41: enumcds(K \ {x1, x2, x3, x4}, S \ {y, w4}, X ∪ {x4})
42: end if
43: if there is an x ∈ K with neighbors y and y′ in S then dK(y) ≥ 5

and dK(y′) ≥ 5 then . 10
44: enumcds(K \NH(y), S \ {y, y′}, X ∪ {x})
45: enumcds(K \NH(y′), S \ {y, y′}, X ∪ {x})
46: enumcds(K \ {x}, S,X)
47: end if
48: end function

3.2. THE ENUMERATION ALGORITHM 27

Let us explain a few of the first steps of the algorithm to establish its cor-
rectness. The if-tests are labeled from 1 to 10 in Algorithm 3.1.

The first two if-tests are simply to decide whether the algorithm should stop.
When the algorithm stops we are at a leaf of the search tree. The current
set X is either output or discarded.

Note that the algorithm should also stop if K or S is empty. However, the
way the algorithm proceeds, we know that X is a connected dominating set
if this happens, so the first two tests take care of this case.

The third if-test is a reduction rule, so it does not branch. It checks if there
is a node x ∈ K that does not have any neighbors in S. This means that
x cannot dominate any node in S. In this case we know that we can safely
remove x from K, since x cannot be apart of any mcds. Thus we have a
new call, with x removed from K, and with the same S and X as the input.

The fourth if-test is also a reduction rule. In fact we found an error in
the original formulation of this rule from the paper [11], which is the one
displayed in the algorithm. We will return to this error later. This if-test
checks if there is a node y ∈ S with only one unique neighbor x in the set
K. In this case we know that x needs to be in all solutions, because it is
the only node we can add to the current solution X to dominate y. Thus
we have a new call, with x removed from K, x added to X, and y removed
from S.

The fifth if-test is a branching rule. It checks if there is a node x ∈ K with
only one neighbor y in S. We know that y has at least two neighbors in
K, otherwise the fourth if-test would have been applied. We know that we
can either use x to dominate y, or y can be dominated by another one of its
neighbors in K. If y is dominated by x, then none of the other neighbors
of y can be in the same mcds, since that set would then not be minimal. If
y is not dominated by x we can discard x from the solution, since x cannot
be used to dominate any other node than y. The algorithm does this by
branching in two different subproblems.

In 5.1 we found a similar error as in the fourth if-test that we will get back
to later. This test is executed when y only has two neighbors in K, we call
these x and x2. We know that one of these are needed to dominate y. We
do two different recursions, in both the recursions we remove both x and x2
from K, and we remove y from S, and add either x or x2 to X.

In 5.2 if y has more than two neighbors we also make two recursive calls. We
know that either we use x to dominate y or we use another node to dominate
y, and x can de discarded. If we use x to dominate y we can remove all of

28 CHAPTER 3. THE ALGORITHM AND THE UPPER BOUNDS

y’s neighbors in K from K, remove y from S and add x to X. If we do not
use x to dominate y we can remove x from K and keep S and X as is.

When we implemented this algorithm we found an error that we edited. This
error is in the fourth if-test in the algorithm. This part of the algorithm says
that if there is a node y ∈ S that only has one neighbor in K and we denote
this neighbor by x, then we can remove x from K, and add x to X and
remove y from S. However if x has more neighbors in S, then these should
also be removed. We changed this so that instead of just saying that y is now
dominated by x and removing it from S, we also remove all other neighbors
of x in S. The way that this step was formulated previously was incorrect
and could in some cases fail to enumerate all of the mcds in a graph. Let
us illustrate this by an example and go through each step of the algorithm
with this graph.

1 2 3

4

5

6

Figure 3.1: A split graph where the blue nodes form the independent set,
and the red nodes form the clique.

Figure 3.1 is a split graph where the blue nodes form the independent set,
and the red nodes form the clique of the graph. Thus C = {4, 5, 6} and
I = {1, 2, 3}. Let us run the algorithm on this graph, with the initial input
K = C = {4, 5, 6}, S = I = {1, 2, 3} and X = ∅. None of the steps 1-3 is
applicable, since X is not a mcds or a cds, and none of the nodes in K have
zero neighbors in S. Step 4 is applicable; there are two nodes in S that has
one neighbor in K. Node 1 is in S and its only neighbor in K is node 4, and
node 3 is in S and its only neighbor in K is node 6. Let us assume that we
discover node 1 first. The algorithm would only make one recursive call in
this case. The recursive call made would be to add 4 to X, remove 4 from
K, and remove 1 from S.

We now continue to run the algorithm on the resulting subproblem which
is K = {5, 6}, S = {2, 3} and X = {4}. Again step 1-3 is not applicable

3.3. THE UPPER BOUND 29

by the same arguments as before, but step 4 is applicable. There are two
nodes in S and both of these have exactly one neighbor in K. So if the
algorithm chooses node 2 as the node from S with exactly one neighbor in
K, the algorithm would again make one recursive call, where 5 is removed
from K and added to X, and 2 is removed from S.

If we continue to run the algorithm on the resulting subproblem which is
K = {6}, S = {3} and X = {4, 5} step 1-3 would again not be applicable,
but step 4 would be applicable. There is only one node in S, and this node
only has one neighbor in K, so the recursive call made would be to remove
6 from K and add it to X, and remove 3 from S.

The final input to the recursive algorithm would be K = ∅, S = ∅ and
X = {4, 5, 6}. The set X is a cds, but not a minimal one, since {4, 6} which
is a subset of X is also a cds. So the algorithm would go into the second
if-test and stop, and it would not have found any mcds.

There was also a similar error in rule 5.1 in the algorithm. Where a node
x2 is added to the solution, so x2 is also removed from the set of undecided
nodes in the clique, K. At this point in the algorithm we do not know how
many neighbors x2 has. We know that x2 has at least one neighbor, y, in the
independent set. The way that the algorithm is displayed in Algorithm 3.1,
y is dominated by x2 when we add x2 to the solution, but it does not say
that any of the other potential neighbors of x2 is dominated by x2 when it
is added to the solution. We changed this part of the algorithm so that we
also say that all of the nodes in the independent set that is a neighbor of x2
is dominated by x2, and thereby removed from S, when x2 is added to the
current partial solution.

3.3 The upper bound

Let us briefly explain the running time of the algorithm. For this we need
to check the branching vector of each rule. Note that we do not need to
check the reduction rules, as these are all polynomial, so we will only look
at the branching rules. In the algorithm we presented previously, all the
if-tests are labeled with a number, and we will use these numbers to denote
the branching rules of the algorithm.

In 5.1 we make two recursive calls, and in each of these the size of the
problem is decreased by 3. So the branching vector for this rule is (3, 3).
The running time can be found by solving the equation xn−xn−3−xn−3 = 0.
The unique real root of this equation is α = 3

√
2 ≈ 1.2600, so this branching

30 CHAPTER 3. THE ALGORITHM AND THE UPPER BOUNDS

rule gives a running time of: O(1.2600n).

In 5.2 we make two recursive calls, the size of the problems in these calls is
decreased by 1 and 4. The branching vector for this rule is (1, 4). By the
same arguments as given in 5.1 this gives a running time of: O(1.3803n).

In 6 we make two recursive calls, the size of the problems in these calls is
decreased by 4 and 1. The branching vector for this rule is (4, 1). By the
same arguments as given in 5.1 this gives a running time of: O(1.3803n).

In 7 we make two recursive calls, the size of the problems in these calls is
decreased by 3 and 4. The branching vector for this rule is (3, 4). By the
same arguments as given in 5.1 this gives a running time of: O(1.2208n).

In 8 we make three recursive calls, the size of the problems in these calls is
decreased by 3, 4 and 5. The branching vector for this rule is (3, 4, 5). By
the same arguments as given in 5.1 this gives a running time of: O(1.3248n).

In 9 we make four recursive calls, the size of the problems in these calls is de-
creased by 3, 4, 5 and 6. The branching vector for this rule is (3, 4, 5, 6). By
the same arguments as given in 5.1 this gives a running time of: O(1.3803n).

In 10 we make three recursive calls, the size of the problems in these calls is
decreased by 7, 7 and 1. The branching vector for this rule is (7, 7, 1). By
the same arguments as given in 5.1 this gives a running time of: O(1.3422n).

When we have several branching vectors in an algorithm we use the one
with the worst outcome to compute the running time. In our case this is
O(1.3803n) which corresponds to rule 9, 6 and 5.2. This is also an upper
bound on the maximum number of mcds found by the algorithm. The
number of mcds corresponds to the number of leaves in the search tree.
This can be shown by using the fact that when a mcds is found, or when
a cds is discarded, the algorithms stops, which means that we are in a leaf
of the search tree. This implies that we cannot find more mcds than the
number of leaves in the search tree.

This completes the description of the algorithm as we implemented it. How-
ever, in Chapter 5, we will come back to upper bound discussions, and
suggest some improvements on some of the branching rules.

Chapter 4

Implementation details

In this chapter we will go through the implementation details. We will
describe how we generated random split graphs, and how we generated all
split graphs of a certain size. We will go into details on how we implemented
the algorithm for enumerating mcds in split graphs described in Chapter
3.2. We will also describe how we tested the correctness of the algorithm
and discuss the issue of generating non-isomorphic split graphs. We begin
by explaining how we generated a random split graph of a given size.

4.1 Generation of random split graphs

We want to generate random split graphs to be able to test Algorithm 3.1
presented in Chapter 3.2 on large graphs. By doing this we can check how
the running time of the algorithm compares to the number of mcds found
by the algorithm, and try to determine if the algorithm discards a lot of
mcds and therefore uses an unnecessary amount of time. We also use this
generation algorithm to test different properties of split graphs, such as
what percentage of nodes in the clique and independent set give the highest
number of mcds. The algorithm for generating a random split graph is
shown in Algorithm 4.1 and explained in the next paragraphs.

When we implemented the method to generate a random split graph we
found it useful to take as input the size of the graph to be generated. We
did this by taking three integers as input, the number of nodes in the clique,
the number of nodes in the independent set and the number of edges in the
graph.

31

32 CHAPTER 4. IMPLEMENTATION DETAILS

Algorithm 4.1 Algorithm to generate a random split graph

1: function generateSplit(i, c, e): . Part 1
2: if e > (c2 − c)/2 + i ∗ c or e < (c2 − c)/2 + i then
3: return null
4: end if
5:

6: n = c + i
7: G = new graph of size n
8: clique = first c nodes in G
9: independent = last i nodes in G

10:

11: for each pair of nodes (cx,cy) in clique do
12: add an edge between cx and cy in G
13: end for
14: decrease e by c ∗ (c− 1)/2
15: . Part 2
16: for each node ind in independent do
17: cli = random node from clique
18: add an edge between cli and ind in G
19: end for
20: decrease e by i
21:

22: while e > 0 do
23: ni = random node from independent
24: nc = random node from clique
25: while there is an edge between ni and nc in G do
26: nc = random node from clique
27: ni = random node from independent
28: end while
29: add an edge between ni and nc in G
30: decrease e by 1
31: end while
32: return G
33: end function

4.1. GENERATION OF RANDOM SPLIT GRAPHS 33

To simplify the calculation of the running time of this algorithm we split it
into two parts. These two parts are marked in Algorithm 4.1. Part 1 consists
of creating the graph and the edges between the nodes in the clique. Note
that we do not actually need to add the edges between the nodes in the
clique, as long as we know which nodes belong to the clique. The algorithm
given by Golovach et al. [11] that we use to enumerate mcds in split graphs
takes the set of nodes in the clique as input, so to run this algorithm the
addition of edges between the nodes in the clique is redundant. We still chose
to keep this in our implementation to generate actual split graphs, but this
part can easily be removed. As mentioned, the input to our method consists
of three integers c, i and e, which correspond to the number of nodes in the
clique, the number of nodes in the independent set and the number of edges
in the graph, respectively.

We started by checking if the input corresponds to a split graph. If e <
c2−c
2 + i the method returns null, since there does not exist any connected

split graph satisfying the constraints given by the input. This is because
every node in the clique needs to have an edge to all other nodes in the
clique, which corresponds to c2−c

2 edges. For the graph to be connected
every node in the independent set needs to have an edge to at least one
node in the clique which corresponds to i edges. If e > c2−c

2 + ic we also
return null. This is because there can be at most ic edges between the
independent set and the clique, in addition to the c2−c

2 edges in the clique,
and there are no other edges in a split graph.

Then we created a graph G with the correct number of nodes, that is c+ i.
After that we added all the c2−c

2 edges between the nodes in the clique to
the graph, since these edges have to be in the graph to make it a split graph
satisfying the constraints given by the input.

Part 2 of the algorithm consists of adding the edges that are between one
node in the independent set and one node in the clique. We want the graph
to be connected, since we are looking for mcds. So for each node in the
independent set we add one edge to a random node in the clique. After this,
we have added c2−c

2 + i edges to the graph, which is the smallest number of
edges we can have in a connected split graph with c nodes in the clique, and
i nodes in the independent set.

Then we need to add the e − c2−c
2 − i extra edges to satisfy the constraint

given by the number of edges in the input. Each of these extra edges needs
to be between one node from the independent set and one node in the clique.
To do this we made a loop that runs while we still needed to add more edges.
Inside the loop we picked two random nodes, one node nc from the clique
and one node ni from the independent set. If ni and nc were not already

34 CHAPTER 4. IMPLEMENTATION DETAILS

neighbors by the previously added edges, we could simply add this edge.
However, to take care of this possibility, we added another loop that runs
while G contains an edge between nc and ni. We picked new random nodes
nc and ni until we found a pair that are not adjacent.

In Part 1 of Algorithm 4.1 the graph is created, and the edges between
every pair of nodes in the clique are added. In Part 2 for each node in the
independent set we add one edge to a random node in the clique, to make
the graph connected. The rest of the edges are added to the graph, each of
these is between one random node from the independent set and one random
node from the clique.

Since in Part 1 we have exactly as many steps as there are edges in the
clique, we have readily the following:

Lemma 4.1. The running time of Part 1 of Algorithm 4.1 is linear in the
size of the generated split graph.

Calculating the running time of Part 2 of Algorithm 4.1 is not straightfor-
ward since in practice the same pair of random nodes can be picked out any
number of times inside the while-loop. It follows that the running time of
this part of the algorithm where we add the random edges between nodes in
the independent set and nodes in the clique can get pretty high. For our use
of the generation algorithm the running time of the generation had minor
impact on the total calculation time. This is because we run an exponential
time algorithm on all the graphs that we generate. However this algorithm
might actually be the most ”random” way of adding edges to a graph, since
every edge has the same probability of being added to the graph in each
iteration. As we will see in the next section we could have made Part 2 of
the algorithm run in linear time. Since Part 1 of the algorithm runs in lin-
ear time by Lemma 4.1, this improvement would make the whole generation
algorithm run in linear time.

4.2 Linear time generation of random split graphs

The way that we generate split graphs is not necessarily linear in the size
of the generated graph. In other applications, it might be useful to have a
faster generation of random split graphs. We will briefly discuss how we can
obtain a linear time algorithm that generates a random split graph.

Most of the steps in Algorithm 4.1 run in linear time. Part 2 of the algorithm
however does not run in linear time if we randomly pick the same edges to

4.2. LINEAR TIME GENERATION OF RANDOM SPLIT GRAPHS 35

add in the graph several times. This is the part of the algorithm where we
add the edges between nodes in the clique and nodes in the independent set.
To get a linear time algorithm that generates a random split graph, this is
the only part we need to change.

Algorithm 4.2 Linear time generation of random split graphs

1: edges = list containing the number of neighbors in the clique for each
node in the independent set.

2: list = list of all nodes in the clique.
3: for each node in the independent set do
4: num = size of list
5: for i = 0...edges[node] do
6: neighbor = random number between 0 and num
7: add edge between node and list[neighbor]
8: swap(list[num], list[neighbor])
9: decrease num by 1

10: end for
11: end for

If we have a random way to decide the number of neighbors in the clique
that each node in the independent set should have or vice versa we could use
Algorithm 4.2, which runs in time linear in the size of the generated graph.
The number of neighbors in the clique that each node in the independent set
can have, has to be somewhere between 1 and min(c, e− (c2− c)/2− i+ 1),
where i is the number of nodes in the independent set, e is the number of
edges in the graph, and c is the number of nodes in the clique.

Algorithm 4.3 Random generation of the number of edges for each node
in the independent set

1: edges = list containing all 1s of size equal to the number of nodes in the
independent set.

2: list = list containing all nodes in the independent set
3: for i = 0...e− (c2 − c)/2− i do
4: node = random node from list
5: increase edges[node] by 1
6: if edges[node] == c then
7: remove node from list
8: end if
9: end for

10: return edges

One way to randomly assign the number of neighbors in the clique for each
node in the independent set is given in Algorithm 4.3. Here, for each edge, we
decide a random node from the independent set that it should be assigned
to. Note that c is the maximum number of neighbors any node in the

36 CHAPTER 4. IMPLEMENTATION DETAILS

independent set can have since there cannot be any edges between the nodes
in the independent set. Thus each node in the independent set can at
most have an edge to every node in the clique. If one of the nodes in the
independent set is assigned to c edges, we remove it from the list of nodes
in the independent set that can be assigned new edges.

Algorithm 4.2 runs in linear time with respect to the number of edges. This
can be shown by the fact that what this algorithm does is, that for each
node i in the independent set, and for each edge that i is a part of, it adds
this edge to the graph. Algorithm 4.3 also runs in linear time in the number
of edges. This can be shown by the fact that all this algorithm does is to
assign each edge that is added to the graph to a node in the independent
set.

4.3 Generation of all split graphs of a given size

In addition to the random generation of split graphs, we wanted to create a
method that generates all split graphs of a given size to be able to check if
any new lower bound examples existed, or if there existed any graphs with
a higher number of mcds than the lower bound. It is actually by generating
all graphs of size up to 11 that we found the new lower bound example,
L2, that we discussed in Chapter 2. Since we did not find a new lower
bound example in any of these graphs, we know that if there exists a better
lower bound, the graph that makes up the components of this lower bound
example would have to be of size at least 12.

When we implemented our method to generate all split graphs of a given
size we took the size of the graphs to be generated as input, and returned
the set of all the possible split graphs that have the given size. The first
thing we did was to make a loop that decides the sizes of the clique and the
independent set. We started with all split graphs of size n with 1 node in
the clique, and the rest of the n − 1 nodes in the independent set. After
that we generated all split graphs of size n with 2 nodes in the clique and
the rest of the n− 2 nodes in the independent set and so on.

Once we had the number of nodes in the independent set, and the number
of nodes in the clique, some properties of the graph were given. All split
graphs with c nodes in the clique have to contain c2−c

2 edges between the
nodes in the clique, and they cannot contain an edge between any pair of
nodes in the independent set. We created a list of possible edges that could
be in the graph between one node from the independent set and one node
from the clique. This list is of size ci where c is the number of nodes in the

4.3. GENERATION OF ALL SPLIT GRAPHS OF A GIVEN SIZE 37

clique and i is the number of nodes in the independent set.

We made a ”base graph” for a split graph with a given number of nodes in
the clique and independent set that contained all the nodes and all the edges
between the nodes in the clique, since they have to be in all split graphs
with the given properties. Note that again the edges between the nodes in
the clique are redundant, since we know which nodes that are in the clique,
so we could have skipped the part where we add these edges. We then ran
a branching algorithm with the ”base graph” and with the list of possible
edges as input. This algorithm is shown in Algorithm 4.4.

If we run this algorithm with the inputs described above we obtain the set
of all possible split graphs with the given size. Since we are searching for
mcds, we only want graphs that are connected. After running this algorithm
we removed the graphs that were not connected from the set of graps we
generated, by using a simple depth first search to check for connectivity.

Algorithm 4.4 Algorithm that creates all graphs given a list of possible
edges

1: function createAllSplitGraphs(G, listOfEdges):
2: graphs = new set
3: if listOfEdges is empty then
4: add G to graphs
5: return graphs and stop
6: end if
7: e = any edge from listOfEdges
8: add createAllSplitGraphs(G∪{e}, listOfEdges\{e}) to graphs
9: add createAllSplitGraphs(G, listOfEdges \ {e}) to graphs

10: return graphs
11: end function

The algorithm given in Algorithm 4.4 branches in two different branches in
each step, and in both branches the problem size is decreased by 1. The
problem size is the size of the list of possible edges, which is of size ci. So
the algorithm runs in time O(2ci). Since both c and i are bounded by n
the running time is equal to O(2n

2
). The running time of this algorithm

corresponds to the number of graphs generated by the algorithm. This
number is quite large, so with this initial method, we managed to generate
all graphs of size up to 8, but when we tried to generate all graphs of size 9
we ran out of memory. In Section 4.6 we explain how we worked to be able
to generate all connected split graphs with up to 11 nodes.

38 CHAPTER 4. IMPLEMENTATION DETAILS

4.4 Implementation of the enumeration algorithm

We used Java to implement the main algorithm. We used adjacency lists
to represent the graphs. How to implement most of the steps in the enu-
meration algorithm presented in Chapter 3 is pretty self-explanatory, so we
will only go through a few of them. The steps of checking if a given subset
of the nodes in a graph is a mcds, or a cds but not a minimal one, is not
obvious, so we will focus on these steps. We will also give code examples
on how we implemented these steps. We chose to change the formulation of
the first two steps of the algorithm presented in Chapter 3.2 slightly. We
did not change the way the algorithm works, we just combined the first two
if-tests into one nested if-test as shown in Algorithm 4.5.

Algorithm 4.5 New formulation of the first two steps of the algorithm for
enumerating mcds in split graphs

1: function enumcds(K,S,X):
2: if X is a connected dominating set of G then
3: if X is minimal then
4: return X and stop
5: end if
6: stop
7: end if
8: .
9: .

10: .
11: .
12: end function

The first thing we do is to check if the set X is a cds of G. We do this
by checking if X dominates G. Note that we do not need to check for
connectedness since we only consider subsets from the clique, so all of the
subsets that we consider are connected. If X dominates G, then we know
that X is a cds of G. If X is a cds of G we tested if X is minimal, if it is
minimal we know that X is a mcds, and we return X and stop. If X is not
minimal we stop without returning X since we know that X is not a mcds
of G.

As mentioned, we need to check if X dominates G. To do this we iterate
though all the nodes in the independent set. For each node i in the indepen-
dent set we iterate through its neighbors in G, and check that at least one
of these is in X. We do not have to look at the nodes in the clique since we
know that the nodes in the clique are dominated as long as |X| ≥ 1. Our
implementation of this is shown in Algorithm 4.6.

4.5. TESTING THE CORRECTNESS OF THE ALGORITHM 39

Algorithm 4.6 Algorithm to check if a subset X of the clique part of a
split graph G dominates I, the independent set of G.

1: function isDominating(G, X, I):
2: for Integer i in I do
3: if X does not contain any of i’s neighbors in G then
4: return false
5: end if
6: end for
7: return true
8: end function

To check if the set X is minimal we iterate through the nodes in X. For each
node x ∈ X we try to remove x from the set X and see if the set X \ {x}
is a cds of G. If the set X \ {x} is a cds of G for some x ∈ X, then we
know that X cannot be a mcds of G by Lemma 1.1, so we return false. The
way that we chose to implement this is shown in Algorithm 4.7. It uses the
metod isDominating is given by Algorithm 4.6.

Algorithm 4.7 Algorithm to check if a subset X of a graph G is minimal

1: function isMinimal(G, X):
2: for node in X do
3: remove node from X
4: if isDominating(G,X) then
5: return false
6: end if
7: add node to X
8: end for
9: return true

10: end function

4.5 Testing the correctness of the algorithm

When an algorithm is to be implemented, there are several ways errors can
be inserted. There might be errors in the algorithm itself or there might be
unintentional errors inserted during the implementation. Some algorithms
are very detailed whereas other are more high level. Although all algorithms
are accompanied with a correctness proof, there might be errors in the base
cases or in the the stop criteria of the algorithm.

To test the correctness of the algorithm and its implementation we imple-
mented in addition a trivial algorithm for enumerating mcds in a given
graph. This trivial algorithm runs in time O∗(2n), and it is shown in Al-

40 CHAPTER 4. IMPLEMENTATION DETAILS

gorithm 4.8. This algorithm uses the methods createAllSubsets and
isMcds, which are shown in Algorithm 4.9 and Algorithm 4.10 respectively.
Algorithm 4.10 uses the metohds isDominating, and isMinimal shown in
Algorithm 4.6 and Algorithm 4.7 respectively. Algorithm 4.8 creates all sub-
sets of the nodes in the clique of the input graph, and tests whether or not
each of these subsets is a mcds. We do not need to check the subsets that
contain nodes from the independent set, as we are only interested in mcds
consisting of nodes from the clique. We do not need to test for connectedness
since we only look at subsets of the nodes in the clique, and we know that
these are connected. When we tested the algorithm we ran both the trivial
algorithm and the algorithm by Golovach et al. [11] which we presented in
Chapter 3.2 on the same graphs, and tested if we found the same number
of mcds.

Algorithm 4.8 Trivial algorithm for enumerating mcds in a given split
graph

1: function enumCDS(graph, clique):
2: powerset = createAllSubets(clique)
3: MCDS = new Set
4: for subset in powerset do
5: if isMcds(graph, subset) then
6: add subset to MCDS
7: end if
8: end for
9: return MCDS

10: end function

Algorithm 4.9 Algorithm to create all subsets of a list

1: function createAllSubsets(nodes):
2: powerset = new Set
3: if nodes is empty then
4: return powerset
5: end if
6: head = first element in nodes
7: tail = list of elements 1..n− 1 from nodes
8: for set in createAllSubets(tail) do
9: subset = copy of set

10: add head to subset
11: add subset to powerset
12: add set to powerset
13: end for
14: return powerset
15: end function

4.6. ISOMORPHISM TESTING 41

Algorithm 4.10 Checks whether a given subset of the nodes in a graph is
a mcds
1: function isMcds(graph, subgraph):
2: if subgraph is empty then
3: return false
4: else if isDominating(graph, subgraph) and isMinimal(graph,
subgraph) then

5: return true
6: end if
7: return false
8: end function

It was actually by doing this test that we discovered the errors in the algo-
rithm that we discussed in Chapter 3.2. When we ran these tests we noticed
that in some cases the trivial algorithm could produce a higher number of
mcds than the algorithm presented in Chapter 3.2. Since every algorithm
that enumerates mcds in a given graph should produce exactly the same
set of mcds when run on the same input graph, we knew that something
was wrong. After investigating the algorithm discussed in Chapter 3, and
looking at graphs where this algorithm and the trivial algorithm found a
different number of mcds, we discovered where in the algorithm the errors
where located.

This test is so slow, because of the running time of the trivial algorithm, that
we were only able to run them on graphs with at most 22 nodes. However,
running both the test and the main algorithm on all examples up to 8
nodes gave us sufficient indication that our final implementation of the main
algorithm is correct.

4.6 Isomorphism testing

The way that we generated all split graphs of a given size described pre-
viously, results in many isomorphic graphs. Ideally, it would be desirable
to generate only non-isomorphic split graphs. Our initial thought was that
there might be a simple and fast way to generate all non-isomorphic split
graphs of a given size. We wanted to find an algorithm like this so that we
did not have to generate all possible split graphs of a given size, and then
remove all isomorphic graphs afterwards. We did not manage to come up
with an algorithm that solves this problem. It turns out that it might not be
a simple problem to solve. Royle has studied the number of non-isomorphic
split graphs, and he proved that there is a one-to-one correspondence be-

42 CHAPTER 4. IMPLEMENTATION DETAILS

tween split graphs on n nodes and minimal covers of a set on n nodes [14].
Hearne and Wagner have given a formula for the number of all minimal
covers of a set on n nodes [13], but this does not imply an algorithm or a
method for listing distinct set covers.

At this point, since our issue with generating graphs of size 9 or more is
memory, we have two options. We can either implement isomorphism test to
remove all isomorphic graphs and thereby decrease the size of the set of split
graphs. Otherwise we can test the graphs during the generation method, so
that we do not have to save all the graphs in memory at the same time. We
wanted our generation algorithm to be useful independently of our work,
thus we decided to implement isomorphism tests. This isomorphism test
removes all isomorphic graphs, so that we do not have to run the algorithm
that enumerates mcds on several graphs that can be considered identical.
We also avoid running out of memory when trying to generate all graphs
of size 9 or more. After we added the isomorphism test we were able to
generate all graphs of size up to 10, and this is how we found the new lower
bound example, L2, that we discussed in Chapter 2. We will now briefly
discuss the problem of testing graph isomorphism, and how we chose to
implement the isomorphism test.

The problem of deciding whether two given unlabeled graphs are isomorphic
is called Graph isomorphism. graph isomorphism on general graphs is
in the class of NP, and it is not known whether this problem is a NP-
complete problem, or if it belongs to the class of P. This means that we do
not have any polynomial time algorithm that solves the problem, and we
do not know if one exists. Uehara, Toda and Nagoya [15] have proven that
graph isomorphism is as hard on split graphs as it is on general graphs.

We chose to implement a trivial isomorphism test to remove isomorphic
graphs. By doing this we did not run out of memory as fast since we were
able to reduce the size of the set of split graphs with a given size signifi-
cantly. However, it took a lot more time to generate all graphs of a given
size with the isomorphism test because we had to check for isomorphism
between every pair of graphs that we generated. In Table 4.1 we give the
number of graphs generated of all sizes up to 10 nodes with and without
the isomorphism test. Royle gives a table of the number of non-isomorphic
split graphs of small sizes in [14], and the numbers in his paper matches the
numbers of non-isomorphic split graphs that we generated.

4.6. ISOMORPHISM TESTING 43

Nodes in the graph Split graphs Non-isomorphic split graphs

2 2 2

3 5 4

4 18 9

5 93 21

6 682 56

7 7 045 164

8 102 050 557

9 2 069 165 2 223

10 58 716 762 10 766

Table 4.1: Table of the number of split graphs generated of a given size with
and without the isomorphism test.

As mentioned the isomorphism test that we implemented is trivial, and
therefore it is not the fastest way to test for isomorphism. It takes as input
two graphs. The algorithm tries to relabel the nodes in the first graph in
every possible way, and then compares each of these relabeled graphs to the
second graph. If any of these relabeled versions of the first graph is identical
to the second graph then the two graphs are isomorphic. If none of the
relabeled versions of the first graphs are identical to the second graph then
the two graphs are not isomorphic.

This trivial isomorphism test was too slow, so we decided to add a few small
improvements to decrease the running time. However we did not run out
out memory when we tried to generate all graphs of size 9. We will now
briefly describe the improvements that we added. The first improvement
that we added was to check if the two graphs had an equal number of edges.
If they did not have the same number of edges, they cannot be isomorphic,
so if that was the case we did not have to check all possible relabelling of
the nodes.

The second improvement that we added was to count the number of nodes
with a specified degree from 0 to n− 1, and check that the two graphs had
the same number of nodes with each degree. If they did not have the same
number of nodes with each degree from 0 to n − 1 then they cannot be
isomorphic, so again if this is the case then we did not have to check all
possible relabelings of the nodes. The third and final improvement that we
added, was that before we tried to relabel a node x to a node y in the first
graph, we checked that the node with label y in the second graph had the
same number of neighbors as the node labeled x in the first graph. This
improvement decreased the number of relabeled graphs significantly.

With these improvements added to our isomorphism test we were able to

44 CHAPTER 4. IMPLEMENTATION DETAILS

generate all graphs of size up to 10 in just a couple of hours. We also tried
to generate all graphs of size 11. We let this algorithm run for a couple of
days, but it did not terminate. This isomorphism test allowed us to generate
all graphs of up to size 10, and enumerate all the mcds in these graphs.

There have been some new developments in the graph isomorphism problem
recently. Babai has found a quasi-polynomial time algorithm that solves
the graph isomorphism problem [3]. A quasi-polynomial time algorithm is
slower than a polynomial time algorithm, but faster than an exponential
time algorithm. So this does not solve the problem of whether or not the
graph isomorphism problem is in P or is NP-complete, but it gives the best
known running time for the graph isomorphism problem.

Even with our isomorphism test we were not able to generate all split graphs
with 11 or more nodes. Therefore, we renounced the generality of our gener-
ation algorithm. Our main purpose in this work is not to be able to generate
a set of all split graphs of a given size, but to check for new potential lower
bound examples in these graphs. When we changed our approach we were
actually able to check for a new lower bound in all graphs of size up to 11
nodes. What we did is that we generated all graphs of size 11 nodes without
the isomorphism test. Instead of keeping all of these graphs in a set we
just ran the enumeration algorithm for mcds on a graph immediately after
it was generated. If it contained a higher number of mcds than the current
lower bound we saved the graph, and otherwise we discarded it. Since we
did not keep all of the graphs in memory at the same time we could run
this algorithm on graphs of up to size 11 nodes and not run out of memory,
even though we did not check for isomorphism. However when we tried this
approach with 12 nodes in the graph and let it run for a couple of days,
it did not finish. Unfortunately none of the graphs of size up to 11 nodes
contained a higher number of mcds than the current lower bound.

If we would have written a faster isomorphism test we might have been
able to generate all graphs of size 12 or more. We could also have used a
graph generation algorithm to generate all non-isomorphic graphs, and pick
only the graphs that are split graphs from this set. There exists several
such libraries that generate all non-isomorphic graphs of a given size. These
graph libraries typically have a faster isomorphism test than the one we
implemented, so we would have been able to test more graphs.

The reason why we chose not to go further in this direction is twofold. First
of all since the lower and upper bounds on the maximum number of mcds in
split graphs are so close, 1.3195n and 1.3803n respectively, we did not think
that there was a high probability of finding a new lower bound example.
Secondly, as we will see in the next chapter our test results convinced us

4.6. ISOMORPHISM TESTING 45

that the upper bound was too high. Because of the natural time limitations
on a master thesis we had to make a choice. Since we were convinced that
the upper bound was too high we chose to put our efforts into improving
the upper bound on the maximum number of mcds in split graphs. As we
will se in the next chapter taking this approach paid off.

46 CHAPTER 4. IMPLEMENTATION DETAILS

Chapter 5

Analyzing the gap between
upper and lower bounds

This chapter presents the main contributions of this thesis, namely a signifi-
cantly better upper bound on the maximum number of mcds in split graphs.
We start by reporting on the results we got from experimenting with the
enumeration algorithm given by Golovach et al. [11]. First we analyze what
percentage of nodes in the clique and in the independent set that gives the
highest number of mcds. We suspected that the upper bound might be too
high, so to get some confirmation of this we run the algorithm on a lot
of different graphs, including the lower bound examples. This gave us an
indication that the upper bound might be to high.

Based on the intuition we got from these tests, we study the three rules of
the enumeration algorithm given by Golovach et al. [11] that give the high-
est running time, and thereby the upper bound of 1.3803n on the maximum
number of mcds in split graphs. We adjust all of these rules with the highest
running time, to obtain better branching vectors, and consequently corre-
spondingly lower running times for these rules. Our efforts indeed result in
a new and better upper bound of 1.3674n on the maximum number of mcds
in split graphs.

5.1 The sizes of the clique and the independent
set

We were curious about how the percentage of nodes in the independent set
affects the number of mcds found in the graph. Gathering information about

47

48 CHAPTER 5. ANALYZING THE GAP

this could make it easier to know what type of split graphs to search for a
possible new lower bound example in. We did this by generating graphs of
constant size, and varying number of nodes in the independent set.

First we fixed the number of nodes in the graphs to n = 70. Then we
generated 100 graphs with 5 nodes in the independent set, 100 graphs with 10
nodes in the independent set and so on, up until 65 nodes in the independent
set. We calculated the average number of mcds found for each different size
of the independent set. This plot is displayed in Figure 5.1.

As we can see in Figure 5.1 the highest number of mcds is found when almost
30 percent of the nodes are in the independent set.

Figure 5.1: A plot of the number of mcds found in graphs of size 70 nodes
with varying size of the independent set.

We also did the same with n = 60, and n = 50, these plots can be seen in
Figure 5.2 and Figure 5.3 respectively.

As we can see in these plots, out of all the graphs that we generated, re-
gardless of the number of nodes in these graphs, the highest number of mcds
was obtained when the independent set contained almost 30 percent of the
nodes and the clique contained slightly more than 70 percent of the nodes.

5.1. THE SIZES OF THE CLIQUE AND THE INDEPENDENT SET 49

Figure 5.2: A plot of the number of mcds found in graphs of size 60 nodes
with varying size of the independent set.

Figure 5.3: A plot of the number of mcds found in graphs of size 50 nodes
with varying size of the independent set.

50 CHAPTER 5. ANALYZING THE GAP

This can be useful is we want to search for a new lower bound, because
we know that there is a higher probability of finding a graph with a high
number of mcds among the graphs which have approximately 30 percent of
their nodes in the independent set. This coincides with our current lower
bound examples. The first lower bound example, L1, contains 5 nodes,
where 1 of the nodes is in the independent set, or 20 percent of its nodes
are in the independent set. Our second lower bound example, L2, contains
10 nodes, 3 of which are in the independent set, so 30 percent of its nodes
are in the independent set.

5.2 Testing the algorithm

We will now look at some of the results we got from experimenting with
the algorithm for enumerating mcds in split graphs given by Golovach et
al. [11]. The first thing we did was to generate 100 graphs, with a constant
number of nodes, number of edges and size of the clique and independent
set. The number of nodes in all these graphs is 60, the number of edges
is 940, and the size of the independent set is 20, so that the rest of the 40
nodes are in the clique.

Number of mcds found in the graph Time (seconds)

105 603 32.572

156 053 29.616

110 015 16.347

179 518 33.434

174 882 26.651

138 714 25.072

139 948 21.709

126 557 19.796

Table 5.1: Table containing the number of mcds found by the algorithm,
and the running time of the algorithm for a selection of graphs that we
generated. All of the graphs in this table have 60 nodes, with 20 nodes in
the independent set and 40 nodes in the clique and 940 edges.

In Table 5.1 we present information about a selection of the graphs that we
generated. In some of the graphs shown in the table the running time and
the number of mcds found do not seem to match that well. For instance if
we compare the first two graphs in Table 5.1 we can see that the algorithm
used more time on the first graph, but it found more mcds in the second
graph. We can see the same thing if we compare the first graph and the
third graph in the table. The algorithm used a lot more time on the first

5.2. TESTING THE ALGORITHM 51

graph, but it found more mcds in the third graph.

Our initial thought was that the algorithm sometimes discards a lot of leaves
in the search tree, which causes the running time to be unnecessarily large
in the cases where this happened. Table 5.2 contains information about the
same graphs as Table 5.1, but it also contains the number of leaves that
were discarded by the algorithm in each of these graphs. The sum of the
number of mcds found by the algorithm and the number of leaves that were
rejected by the algorithm correspond exactly to the number of leaves in the
search tree produced by running the algorithm. Let us again look at the
first three graphs, but compare the number of leaves with the running time
of the algorithm. The number of leaves seems to match the running time
better, so that for a graph a higher number of leaves found by the algorithm
would give a higher running time of the algorithm.

In Table 5.2 we can see that the number of rejected leaves seem to be larger
than the number of mcds found by the algorithm. This implies that the
algorithm discards most of the leaves in the search tree. This might seem
like an indication of the fact that the algorithm is not optimal when it comes
to running time. It can seem like the algorithm spends most of its time on
leaves that get rejected, and we might expect an optimal algorithm to spend
most of its time on subsets that are mcds of the graph.

Number of mcds Number of rejected leaves Time (seconds)

105 603 604 576 32.572

156 053 471 476 29.616

110 015 163 902 16.347

179 518 508 413 33.434

174 882 343 449 26.651

138 714 288 899 25.072

139 948 317 647 21.709

126 557 292 771 19.796

Table 5.2: Table containing the number of mcds found by the algorithm,
the number of leaves that were rejected by the algorithm and the running
time of the algorithm for a selection of graphs that we generated. All of the
graphs in this table have 60 nodes, with 20 nodes in the independent set
and 40 nodes in the clique and 940 edges.

To examine further we can take a look at all of the hundred graphs that
we generated, we counted the number of mcds found by the algorithm and
the number of leaves that were discarded by the algorithm. As we can see
in Figure 5.4 the running time matches the number of leaves pretty well,
which corresponds to mcds plus the number of subsets that were rejected at

52 CHAPTER 5. ANALYZING THE GAP

the base case of the algorithm. This makes sense since the running time is
computed by counting the number of leaves in the search tree.

Figure 5.4: A plot comparing the running time and the number of mcds
plus the number of subsets that were rejected at the base case found by the
algorithm.

If the running time matches the number of leaves pretty well, but does not
match the number of mcds, it means that the algorithm discards a lot of
leaves. This implies that the algorithm finds a lot of cds that are not min-
imal. If this is the case then the algorithm might need some improvements
to be optimal when it comes to running time, or we might even need to
design a new algorithm that does not spend as much time on leaves that are
discarded by the algorithm to get a better running time.

Figure 5.5 compares the running time of the algorithm with the number
of mcds found by the algorithm. As we can see in Figure 5.5 the number
of mcds found by the algorithm matches the running time of the algorithm
pretty well, but as we can see in Figure 5.4 the running time of the algorithm
matches the number of leaves better. This might be an indicator of the fact
that the algorithm discards a lot of leaves, which causes the running time
of the algorithm to be unnecessarily large in the cases where this happens.

5.2. TESTING THE ALGORITHM 53

Figure 5.5: A plot comparing the number of mcds found by the algorithm,
and the running time of the algorithm.

The problem with analyzing results like these is that it can be hard to inter-
pret something about them. In the graphs that we generated the algorithm
discards most of the leaves, and therefore uses most of its time on sets that
are not mcds. Even though this might seem like an indicator that the algo-
rithm is not optimal, we cannot draw that conclusion. In fact, any optimal
algorithm can discard almost all of the sets it looks at, unless it is run on a
graph with a high number of mcds. So the algorithm can still be optimal.
We know that when an optimal algorithm runs on a graph containing the
highest possible number of mcds it should not discard any leaves. Since we
do not know if the upper bound is too high or the lower bound is too low
we do not know the highest number of mcds a split graph can contain. The
highest number of mcds that we have been able to find in any split graph is
given by our two lower bound examples. So we decided to run the algorithm
on these graphs, and the expanded version of these graphs and look at the
results.

When we ran the algorithm on the lower bound examples and the expanded
versions of the lower bound examples, the algorithm did not discard any set,
so the running time, and the number of leaves in the search tree produced
by running the algorithm in these cases was only dependent on the number
mcds found by the algorithm. This is by itself an interesting fact, that the
algorithm does not discard any of the leaves when run on the lower bound
examples, even though the upper and lower bounds are not equal. The fact
that the algorithm did not discard any set when we ran it on the lower
bound examples made us belive that the upper bound might be too high.

54 CHAPTER 5. ANALYZING THE GAP

Thus, we now take a close look at the rules with the highest running time.

5.3 The rules of the algorithm

In the previous two sections, we concentrated on analysis of lower bound
examples. Let us now attack the gap from above, and analyze the situations
which correspond to the cases of the algorithm giving the upper bound. As
mentioned there are three branching rules that dominate the running time of
the algorithm for enumerating mcds in split graphs, which gives the current
upper bound. We now look at these branching rules with the worst running
time and discover the structures in some of the graphs that would use these
branching rules. The rules that give the worst running time in the branching
algorithm are rules 5.2, 6 and 9.

Figure 5.6 is the graph we get when we try to draw the situations handled
by rule 5.2 of the algorithm. It consists of a node x from the clique, with
only one neighbor y from the independent set, where y has n neighbors in
the clique, and n is at least 3. Every node in the clique except x can have
any number of neighbors in the independent set. As we can see Figure 5.6
looks a lot like our first lower bound example, L1. When n = 4 and all of
the nodes x2, x3, x4 only have one neighbor in the independent set, we get
exactly L1.

independent set:

clique:

y

x x2 x3 xn

Figure 5.6: Branching rule 5.2.

Figure 5.7 is the graph we get when we draw what happens in rule 6 of the
algorithm. It consists of a node x from the clique, with n neighbors in the
independent set, y1, y2, ..., yn, where n ≥ 3. All of the nodes y1, y2, ..., yn
have at least 2 neighbors in the clique. In our lower bound examples the
nodes in the clique all have degree 1 in the first and all have degree 2 in the

5.3. THE RULES OF THE ALGORITHM 55

second. So none of the lower bound examples that we know of would use
this branching rule. We have not been able to find a lower bound example
that looks like this graph, but there might exist one.

independent set:

clique:

y1 y2 y3 yn

x

Figure 5.7: Branching rule 6.

Figure 5.8 is the graph we get when we draw rule 9 of the algorithm. It
consists of a node y from the independent set with exactly 4 neighbors in
the clique, x1, x2, x3, x4. All of the nodes in the clique, including x1, x2, x3, x4
have exactly two neighbors in the independent set. This graph looks quite
similar to our second lower bound example, L2. If for example node w1 and
w2 are merged into one node, and w3 and w4 are also merged into one node,
then we get exactly L2.

independent set:

clique:

yw1 w2 w3 w4

x1 x2 x3 x4

Figure 5.8: Branching rule 9.

The fact that two of the worst rules, 5.2 and 9, seem to concern graphs
that give our current lower bound made us think that there is room for
improvement on these rules. In fact, studying all worst time rules carefully,

56 CHAPTER 5. ANALYZING THE GAP

we could see that improvements are possible on all of them. We present
these findings in the next sections.

5.4 Proposal for new rules in the algorithm

As mentioned, rules 5.1, 6 and 9 in the enumeration algorithm given by
Golovach et al. [11] determine the running time of the algorithm. If we
are able to decrease the running time of these rules, or somehow remove all
of these rules, then we would end up with an algorithm that has a lower
running time, which would provide us with a better upper bound.

We start by looking at rule 5 of Algorithm 3.1, shown here in Algorithm 5.1.
It is the test in rule 5.2 that gives the upper bound of the algorithm.

Algorithm 5.1 Rule five of the enumeration algorithm given in Algo-
rithm 3.1
1: if there is an x ∈ K such that dS(x) = 1 and y is the unique neighbor

of x in S. Let NH(y) = {x, x2, ..., xt} for t ≥ 2. then . 5
2: if t == 2 then . 5.1
3: enumcds(K \ {x, x2}, S \ {y}, X ∪ {x})
4: enumcds(K \ {x, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
5: end if
6: if t > 2 then . 5.2
7: enumcds(K \ {x, x2, x3, ..., xt}, S \ {y}, X ∪ {x})
8: enumcds(K \ {x}, S,X)
9: end if

10: end if

Let us examine how we can change this rule to obtain a lower branching
vector for this rule. In rule 5 we check if there is a node in the clique with
exactly one neighbor y, in the independent set. Let t be equal to the degree
of y. If t = 2 we use rule 5.1, else if t ≥ 3 we use rule 5.2. One way to change
this rule is to change rule 5.2 to only be executed if t = 3, and then add a
rule 5.3 that is executed if t ≥ 4. We will also need to change the content
of the new rule 5.2, and write the content of rule 5.3. Algorithm 5.2 shows
one possible way to reformulate rule 5, as discussed above.

Let us argue for the correctness of the new rule 5 shown in Algorithm 5.2.
First we can check that all cases are handled. At this point in the algorithm
we know that all nodes y in the independent set have dK(y) ≥ 2 since
otherwise rule 4 would have been applied. Rule 5.1 handles the cases where
dK(y) = 2, 5.2 handles all cases where dK(y) = 3 and 5.3 handles all cases
where dK(y) > 3. So we handle all possible degrees that y can have.

5.4. PROPOSAL FOR NEW RULES IN THE ALGORITHM 57

Algorithm 5.2 New version of rule 5 of the enumeration algorithm

1: if If there is an x ∈ K such that dS(x) = 1 and y is the unique neighbor
of x in S. Let NH(y) = {x, x2, ..., xt} for t ≥ 2. then . 5

2: if t == 2 then . 5.1
3: enumcds(K \ {x, x2}, S \ {y}, X ∪ {x})
4: enumcds(K \ {x, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
5: end if
6: if t == 3 then . 5.2
7: if dS(x2) = dS(x3) = 1 then . 5.2.1
8: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x})
9: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x1})

10: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x2})
11: end if
12: if dS(x2) = 1 and dS(x3) ≥ 2 then . 5.2.2
13: enumcds(K \ {x, x2, x3}, S \ {NH(x3)}, X ∪ {x3})
14: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x2})
15: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x})
16: end if
17: if dS(x2) ≥ 2 and dS(x3) ≥ 2 then . 5.2.3
18: enumcds(K \ {x, x3}, S \ {NH(x3)}, X ∪ {x3})
19: enumcds(K \ {x, x2, x3}, S \ {NH(x2)}, X ∪ {x2})
20: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x})
21: end if
22: end if
23: if t > 3 then . 5.3
24: enumcds(K \ {x, x2, x3, ..., xt}, S \ {y}, X ∪ {x})
25: enumcds(K \ {x}, S,X)
26: end if
27: end if

We also need to check that we handle all cases inside 5.2, since this rule
is split into three different cases. We know that dS(x) = 1, but we need
to handle every possible combination of degrees for x2 and x3. In 5.2.1 we
handle the cases where dS(x2) = dS(x3) = 1. In 5.2.2 we handle the cases
where one of x2 and x3 has degree 1 in S, and the other has degree ≥ 2 in S,
and we let x3 be the one with degree ≥ 2 in S. In 5.2.3 we handle all cases
where dS(x2) ≥ 2 and dS(x3) ≥ 2. So inside rule 5.2 we handle all possible
degrees of x2 and x3.

Let us start by checking the correctness of rule 5.2.1. If this rule is used
we have NH(y) = {x, x2, x3}, and dS(x) = 1, and for i = 2, 3 we have
dS(xi) = 1. Since x, x1 and x2 in this case dominates the exact same set of
nodes we know that none of them can be in the same solution. So if x is
added to the solution, we can discard x2 and x3. The same applies for x2
and x3.

58 CHAPTER 5. ANALYZING THE GAP

In rule 5.2.2 we know that NH(y) = {x, x2, x3} and dS(x) = 1, dS(x2) = 1,
and dS(x3) ≥ 2. Again none of x, x1 or x2 can be in the same solution since
x and x2 dominate the exact same set of nodes, which is a subset of the
nodes that x3 dominates. So if one of x, x2 or x3, is added to the solution,
the others can be discarded.

In rule 5.2.3 we know that NH(y) = {x, x2, x3} and dS(x) = 1, and for
i = 2, 3 we have dS(xi) ≥ 2. Note that in this case x2 and x3 can actually
be in the same solution, since they might dominate a different set of nodes.
This is handled by the fact that when we add x3 to the solution, we do not
discard x2.

Let us now analyze the running time of the new rule 5 by looking at the
branching vectors in each of its steps.

5.1: (3,3), which gives a running time of O(1.2600n).
5.2.1: (4,4,4), which gives a running time of O(1.3161n).
5.2.2: (5,4,4), which gives a running time of O(1.2907n).
5.2.3: (4,5,4), which gives a running time of O(1.2907n).
5.3: (5,1), which gives a running time of O(1.3248n).

As we can see, all of the steps in the new formulation of rule 5 have a lower
running time than the old rule 5, which has a running time of O(1.3803n).
The step in the new rule 5 with the highest running time is step 5.3, with
a running time of O(1.3248n), so if we replace rule 5 in the main algorithm
with the new rule 5, we decrease the running time of rule 5 from O(1.3803n)
to O(1.3248n), and this rule no longer gives the highest running time of the
algorithm. Note that the new running time of rule 5 is still higher than the
lower bound, which is 1.3195n, but the gap is significantly smaller.

Algorithm 5.3 Rule 6 of the enumeration algorithm given in Algorithm 3.1

1: if there is an x ∈ K such that dS(x) ≥ 3. Let NH(x)∩S = {y1, y2, ..., yt}
and t ≥ 3 then . 6

2: enumcds(K \ {x}, S \ {y1, y2, ...yt}, X ∪ {x})
3: enumcds(K \ {x}, S,X)
4: end if

We will now take a closer look at rule 6. It is displayed in Algorithm 5.3. This
rule is one of the three rules that dictate the upper bound of Algorithm 3.1.
We were able to change rule 5 to get a better running time, so with these
changes added to the algorithm it is only rule 6 and rule 9 that determine
the upper bound of Algorithm 3.1. As we can see in Algorithm 5.3, rule 6 is
used if there is a node in the clique with a degree higher than 2. One way
to change this rule is displayed in Algorithm 5.4.

5.4. PROPOSAL FOR NEW RULES IN THE ALGORITHM 59

Algorithm 5.4 New version of rule 6 of the enumeration algorithm

1: if there is an x ∈ K such that dS(x) ≥ 4. Let NH(x)∩S = {y1, y2, ..., yt}
and t ≥ 3 then . 6

2: enumcds(K \ {x}, S \ {y1, y2, ...yt}, X ∪ {x})
3: enumcds(K \ {x}, S,X)
4: end if

Let us look at the branching vector of the new formulation of rule 6:

6: (5,1), which gives a running time of O(1.3248n).

As we can see this new rule 6 has a lower running time than the old rule 6.
So if we can make this change to rule 6 we have decreased the running time
of this rule. Note that when we changed rule 5 we did not change which
cases it handled. In our new formulation of rule 6 we actually also change
which cases it handles. Instead of using this rule when there is a node in
the clique with degree more than two, the new rule 6 is used if there is a
node in the clique with degree more than three. This implies that we also
need to rewrite all rules after rule 6 to not only handle the cases when a
node in the clique has 2 neighbors in S, but also when a node in the clique
has 3 neighbors in S. Thus if we are going to replace the old rule 6 with
the new rule 6, we have to analyze and possibly change all of the rules in
Algorithm 3.1 that are after rule 6.

The rules that are after rule 6 in Algorithm 3.1 are rules 7, 8, 9 and 10.
Note that what we need to do is to make sure that we handle every case
where the nodes in K have degree 2 or 3 in S, instead of just degree 2 in S
as these rules currently do. We know that for each node c ∈ K, dS(c) = 2
or dS(c) = 3, since otherwise rule 3, 5 or 6 would have been applied.

Algorithm 5.5 Rule 7 of the enumeration algorithm given in Algorithm 3.1

1: if there is a y ∈ S such that dK(y) = 2 then let NH(y) = {x1, x2} and
for all i = 1, 2 let wi be the unique neighbor of xi in S different from y.
then . 7

2: enumcds(K \ {x1}, S \ {y, w1}, X ∪ {x1})
3: enumcds(K \ {x1, x2}, S \ {y, w2}, X ∪ {x2})
4: end if

Rule 7 in Algorithm 3.1 is displayed in Algorithm 5.5. We can see that if
we change this rule to allow nodes in the clique to have degree two or three
instead of just degree two, the branching vector of this rule would be the
same as in the current rule 7. This is due to the fact that the worst case is
when all nodes in the clique have degree 2. This new rule 7 is displayed in
Algorithm 5.6.

60 CHAPTER 5. ANALYZING THE GAP

Algorithm 5.6 New version of rule 7 of the enumeration algorithm

1: if there is a y ∈ S such that dK(y) = 2 then let NH(y) = {x1, x2}.
then . 7

2: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
3: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
4: end if

The branching vector of this new rule 7 is:

7: (3,4), which gives a running time of O(1.2208n).

Algorithm 5.7 Rule 8 and rule 9 of the enumeration algorithm given in
Algorithm 3.1

1: if If there is a y ∈ S such that dK(y) = 3 then let NH(y) = {x1, x2, x3}
and for all i = 1, 2, 3 let wi be the unique neighbor of xi in S different
from y; then . 8

2: enumcds(K \ {x1}, S \ {y, w1}, X ∪ {x1})
3: enumcds(K \ {x1, x2}, S \ {y, w2}, X ∪ {x2})
4: enumcds(K \ {x1, x2, x3}, S \ {y, w3}, X ∪ {x3})
5: end if
6: if there is a y ∈ S such that dK(y) = 4 then let NH(y) = {x1, x2, x3, x4}

and for all i = 1, 2, 3, 4 let wi be the unique neighbor of xi in S different
from y; then . 9

7: enumcds(K \ {x1}, S \ {y, w1}, X ∪ {x1})
8: enumcds(K \ {x1, x2}, S \ {y, w2}, X ∪ {x2})
9: enumcds(K \ {x1, x2, x3}, S \ {y, w3}, X ∪ {x3})

10: enumcds(K \ {x1, x2, x3, x4}, S \ {y, w4}, X ∪ {x4})
11: end if

The same applies for rule 8 and rule 9. We can change these rules to handle
the cases when the nodes in the clique have degree two or three without
changing the branching vectors of these rules, and thereby keep the same
running time in these rules. This is because we again obtain the highest
running time when the nodes in the clique have 2 neighbors in S. The
current versions of these rules are displayed in Algorithm 5.7, and the new
version of these two rules are displayed in Algorithm 5.8.

The branching vectors of these two new rules are given by:

8: (3,4,5), which gives a running time of O(1.3248n).
9: (3,4,5,6), which gives a running time of O(1.3803n).

5.4. PROPOSAL FOR NEW RULES IN THE ALGORITHM 61

Algorithm 5.8 New version of rule 8 and rule 9 of the enumeration algo-
rithm
1: if If there is a y ∈ S such that dK(y) = 3 then let NH(y) = {x1, x2, x3}.

then . 8
2: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
3: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
4: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})
5: end if
6: if there is a y ∈ S such that dK(y) = 4 then let NH(y) = {x1, x2, x3, x4}.

then . 9
7: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
8: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
9: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})

10: enumcds(K \ {x1, x2, x3, x4}, S \ {NH(x4) ∩ S}, X ∪ {x4})
11: end if

Algorithm 5.9 Rule 10 of the enumeration algorithm given in Algorithm 3.1

1: if there is an x ∈ K with neighbors y and y′ in S then dK(y) ≥ 5 and
dK(y′) ≥ 5 then . 10

2: enumcds(K \NH(y), S \ {y, y′}, X ∪ {x})
3: enumcds(K \NH(y′), S \ {y, y′}, X ∪ {x})
4: enumcds(K \ {x}, S,X)
5: end if

Rule 10 however, is only applicable when the node in the clique has degree 2.
We can try to create a similar rule to handle the same cases if the node in the
clique has degree 3. Rule 10 of Algorithm 3.1 is displayed in Algorithm 5.9.

The branching vector of this rule is:

10: (7,7,1), which gives a running time of O(1.3422n).

Algorithm 5.10 A new rule similar to rule 10 in Algorithm 3.1, except it
handles the cases where a node in the clique has three neighbors in S instead
of two neighbors in S

1: if there is an x ∈ K with neighbors y1, y2 and y3 in S then dK(y1) ≥ 5,
dK(y2) ≥ 5 and dK(y3) ≥ 5 then . 11

2: enumcds(K \NH(y1), S \ {y1, y2, y3}, X ∪ {x})
3: enumcds(K \NH(y2), S \ {y1, y2, y3}, X ∪ {x})
4: enumcds(K \NH(y3), S \ {y1, y2, y3}, X ∪ {x})
5: enumcds(K \ {x}, S,X)
6: end if

If we try to make a similar rule for a node in the clique with three neighbors
in S, we would get the rule displayed in Algorithm 5.10.

62 CHAPTER 5. ANALYZING THE GAP

This rule has a branching vector of:

11: (8,8,8,1), which gives a running time of O(1.3560n).

The running time of this rule is quite high, even though it is not as high as
the running time we get from rule 9. At this point in the algorithm we know
that all nodes in the clique have three neighbors in S, since otherwise rule
5, 6, 7, 8, 9, or 10 would have been applied. We also know that all nodes in
S have degree ≥ 5. We can try to change this rule to get a better running
time by doing something similar to what we did in rule 7, 8 and 9. We can
change rule 10 and rule 11 to the algorithm displayed in Algorithm 5.11.

These rules have branching vectors of:

10: (7,7,1), which gives a running time of O(1.3422n).
11: (4,5,6,7,8), which gives a running time of O(1.3248n).
12: (9,9,9,1), which gives a running time of O(1.3219n).

Algorithm 5.11 New version of rule 10 in the enumeration algorithm, and
new rules labeled 11 and 12 to handle the cases where a node in the clique
has 3 neighbors in S

1: if there is an x ∈ K such that dS(x) = 2, with neighbors y and y′ in S
then dK(y) ≥ 5 and dK(y′) ≥ 5 then . 10

2: enumcds(K \NH(y), S \ {y, y′}, X ∪ {x})
3: enumcds(K \NH(y′), S \ {y, y′}, X ∪ {x})
4: enumcds(K \ {x}, S,X)
5: end if
6: if there is a y ∈ S such that dK(y) = 5 then let NH(y) =
{x1, x2, x3, x4, x5}. then . 11

7: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
8: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
9: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})

10: enumcds(K \ {x1, x2, x3, x4}, S \ {NH(x4) ∩ S}, X ∪ {x4})
11: enumcds(K \ {x1, x2, x3, x4, x5}, S \ {NH(x5) ∩ S}, X ∪ {x5})
12: end if
13: if there is an x ∈ K such that dS(x) = 3, with neighbors y1, y2, y3 in S

then for i = 1, 2, 3 dK(yi) ≥ 6 then . 12
14: enumcds(K \NH(y1), S \ {y1, y2, y3}, X ∪ {x})
15: enumcds(K \NH(y2), S \ {y1, y2, y3}, X ∪ {x})
16: enumcds(K \NH(y3), S \ {y1, y2, y3}, X ∪ {x})
17: enumcds(K \ {x}, S,X)
18: end if

5.4. PROPOSAL FOR NEW RULES IN THE ALGORITHM 63

We will now give a short explanation of the correctness of the new steps
added to Algorithm 5.11.

In rule 11 we know that all x ∈ K have dS(x) = 3, since otherwise rule 3, 5,
6, 7, 8, 9 or 10 would have been applied and all y ∈ S have dK(y) ≥ 5 since
otherwise rule 4, 7, 8 or 9 would have been applied. To dominate y we have
to check all possible solutions containing any combination of the nodes in
NH(y). We do this by first adding x1 to the solution without discarding any
of the nodes in NH(y), in this way all combinations containing the node x1
are checked. Therefore when we add x2 to the solution we can discard the
node x1 from K, since we have already handled every possible solution that
contains x1, and so on.

In rule 12 we know that all x ∈ K have dS(x) = 3 since otherwise rule 3, 5,
6, 7, 8, 9 or 10 would have been applied, and all y ∈ S have dK(y) ≥ 6 since
otherwise rule 5 or 4, 7, 8, 9, 10 or 11 would have been applied. We have to
handle all cases where x is in the solution, and all cases where x is not in
the solution. We know that if x is in the solution, x has to be the only node
that dominates one of its neighbors. For each of the nodes y in NH(x) ∩ S
we discard NH(y), and use x to dominate y. Otherwise we discard x from
the solution.

We have now successfully changed both rule 5 and rule 6, which previously
were two of the three rules in Algorithm 3.1 that gave the highest running
times. The only rule that has the highest running time of O(1.3803n) in
Algorithm 3.1 after these new changes have been added is rule 9. If we are
able to change this rule to get a better running time we will decrease the
running time of the whole algorithm, and thereby decrease the upper bound
on the maximum number of mcds in split graphs.

Before we go on to analyze rule 9 in detail, we give the new version of
the algorithm with the proposed changes so far. This new version of the
algorithm is displayed in Algorithm 5.12. Rule 9 is analyzed in a section on
its own, because its improvement requires going into many more different
cases.

64 CHAPTER 5. ANALYZING THE GAP

Algorithm 5.12 Algorithm for enumerating mcds in split graphs

1: function enumcds(K,S,X):
2: if X is a minimal connected dominating set of G then . 1
3: return X and stop
4: end if
5: if X is a connected dominating set of G but not minimal then . 2
6: stop
7: end if
8: if there is an x ∈ K such that dS(x) = 0 then . 3
9: enumcds(K \ {x}, S,X)

10: end if
11: if there is a y ∈ S such that dK(y) = 1 and x is the unique neighbor

of y in H then . 4
12: enumcds(K \ {x}, S \ {NH(x) ∩ S}, X ∪ {x})
13: end if
14: if If there is an x ∈ K such that dS(x) = 1 and y is the unique

neighbor of x in S. Let NH(y) = {x, x2, ..., xt} for t ≥ 2. then . 5
15: if t == 2 then . 5.1
16: enumcds(K \ {x, x2}, S \ {y}, X ∪ {x})
17: enumcds(K \ {x, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
18: end if
19: if t == 3 then . 5.2
20: if dS(x2) = dS(x3) = 1 then . 5.2.1
21: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x})
22: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x1})
23: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x2})
24: end if
25: if dS(x2) = 1 and dS(x3) ≥ 2 then . 5.2.2
26: enumcds(K \ {x, x2, x3}, S \ {NH(x3)}, X ∪ {x3})
27: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x2})
28: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x})
29: end if
30: if dS(x2) ≥ 2 and dS(x3) ≥ 2 then . 5.2.3
31: enumcds(K \ {x, x3}, S \ {NH(x3)}, X ∪ {x3})
32: enumcds(K \ {x, x2, x3}, S \ {NH(x2)}, X ∪ {x2})
33: enumcds(K \ {x, x2, x3}, S \ {y}, X ∪ {x})
34: end if
35: end if
36: if t > 3 then . 5.3
37: enumcds(K \ {x, x2, x3, ..., xt}, S \ {y}, X ∪ {x})
38: enumcds(K \ {x}, S,X)
39: end if
40: end if

5.4. PROPOSAL FOR NEW RULES IN THE ALGORITHM 65

41: if there is an x ∈ K such that dS(x) ≥ 4. Let NH(x) ∩ S =
{y1, y2, ..., yt} and t ≥ 3 then . 6

42: enumcds(K \ {x}, S \ {y1, y2, ...yt}, X ∪ {x})
43: enumcds(K \ {x}, S,X)
44: end if
45: if there is a y ∈ S such that dK(y) = 2 then let NH(y) = {x1, x2}.

then . 7
46: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
47: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
48: end if
49: if If there is a y ∈ S such that dK(y) = 3 then let NH(y) =
{x1, x2, x3}. then . 8

50: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
51: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
52: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})
53: end if
54: if there is a y ∈ S such that dK(y) = 4 then let NH(y) =
{x1, x2, x3, x4}. then . 9

55: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
56: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
57: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})
58: enumcds(K \ {x1, x2, x3, x4}, S \ {NH(x4) ∩ S}, X ∪ {x4})
59: end if
60: if there is an x ∈ K such that dS(x) = 2, with neighbors y and y′ in

S then dK(y) ≥ 5 and dK(y′) ≥ 5 then . 10
61: enumcds(K \NH(y), S \ {y, y′}, X ∪ {x})
62: enumcds(K \NH(y′), S \ {y, y′}, X ∪ {x})
63: enumcds(K \ {x}, S,X)
64: end if
65: if there is a y ∈ S such that dK(y) = 5 then let NH(y) =
{x1, x2, x3, x4, x5}. then . 11

66: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
67: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
68: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})
69: enumcds(K \ {x1, x2, x3, x4}, S \ {NH(x4) ∩ S}, X ∪ {x4})
70: enumcds(K \ {x1, x2, x3, x4, x5}, S \ {NH(x5) ∩ S}, X ∪ {x5})
71: end if
72: if there is an x ∈ K such that dS(x) = 3, with neighbors y1, y2, y3

in S then for i = 1, 2, 3 dK(yi) ≥ 6 then . 12
73: enumcds(K \NH(y1), S \ {y1, y2, y3}, X ∪ {x})
74: enumcds(K \NH(y2), S \ {y1, y2, y3}, X ∪ {x})
75: enumcds(K \NH(y3), S \ {y1, y2, y3}, X ∪ {x})
76: enumcds(K \ {x}, S,X)
77: end if
78: end function

66 CHAPTER 5. ANALYZING THE GAP

5.5 Improving rule 9

In this section we will propose changes to rule 9 of the algorithm to obtain a
better running time for this rule. The rules that we create also replace rule
10 of the algorithm. As mentioned, this would decrease the running time of
the algorithm for enumerating mcds in split graphs, and thereby decrease
the upper bound on the maximum number of mcds in split graphs. Out
of all the rules in Algorithm 5.12 the rules with the highest running time,
except from rule 9 and 10, is rule 5.3, 6, 8 and 11 with a running time of
O(1.3248n). The rules that we will create are very specific, and not very
implementation friendly, but they are meant more as a proof of the fact that
the upper bound is too high, than to be rules used in our main algorithm.

From here on, for each node c in the clique we will use NS(c) to denote
NH(c) ∩ S, as a simplification.

Let us take a closer look at rule 9 of Algorithm 5.12, it is displayed in
Algorithm 5.13.

Algorithm 5.13 Rule 9 of the enumeration Algorithm 5.12

1: if there is a y ∈ S such that dK(y) = 4 then let NH(y) = {x1, x2, x3, x4}.
then . 9

2: enumcds(K \ {x1}, S \ {NH(x1) ∩ S}, X ∪ {x1})
3: enumcds(K \ {x1, x2}, S \ {NH(x2) ∩ S}, X ∪ {x2})
4: enumcds(K \ {x1, x2, x3}, S \ {NH(x3) ∩ S}, X ∪ {x3})
5: enumcds(K \ {x1, x2, x3, x4}, S \ {NH(x4) ∩ S}, X ∪ {x4})
6: end if

As mentioned rule 9 has a branching vector of:

9: (3,4,5,6), which gives a running time of O(1.3803n).

If any of the nodes among y’s neighbors have degree 3, let this node be x1,
and the rest of y’s neighbors be x2, x3, x4. If rule 9 is used in this case, we get
a branching vector of: (4,4,5,6), which gives a running time of O(1.3472n).

So, as long as at least one of x1, .., x4 have degree 3, the running time of
rule 9 is O(1.3472n). If all of x1, ..., x4 have degree 2, the running time
of rule 9 is O(1.3803n). This implies that to decrease the running time of
the algorithm, we might need to create some new rules, since the running
time of the current rule 9 is too high when all the nodes in NH(y) have two
neighbors in S. Let us keep this rule 9, but only execute it when at least one
node in NH(y) has three neighbors in S. This new version of rule 9 can be

5.5. IMPROVING RULE 9 67

seen in Algorithm 5.14. As mentioned it has a branching vector of (4,4,5,6),
which gives a running time of O(1.3472n).

Algorithm 5.14 New rule 9, the first of the new rules to replace rule 9 and
rule 10 of Algorithm 5.12

1: if there is a y ∈ S such that dK(y) = 4, and if there exist an x1 ∈ NH(y),
with dS(x1) = 3. Let NH(y) = {x1, x2, x3, x4}. then . 9.1

2: enumcds(K \ {x1}, S \ {NS(x1)}, X ∪ {x1})
3: enumcds(K \ {x1, x2}, S \ {NS(x2)}, X ∪ {x2})
4: enumcds(K \ {x1, x2, x3}, S \ {NS(x3)}, X ∪ {x3})
5: enumcds(K \ {x1, x2, x3, x4}, S \ {NS(x4)}, X ∪ {x4})
6: end if

To solve the cases where all nodes in NH(y) have two neighbors in S we
need to explore a different approach. Instead of looking for a node y ∈ S,
with dK(y) = 4, we look for an x ∈ K with dS(x) = 2. These new rules that
we will try to create will handle all cases where there is a node in the clique
with degree 2, so it will partially replace rule 9 and completely replace rule
10.

We check if there exists a node x in the clique with two neighbors in the
independent set. If such a node x exists, let NS(x) = {y1, y2}. We know
that dK(y1) ≥ 4 and dK(y2) ≥ 4 otherwise rule 8, 7 or 4 would have been
applied. Let us start out by looking at the case where at least one of y1 and
y2 has degree ≥ 5. If this is the case then x can be needed to dominate y1,
or x can be needed to dominate y2, otherwise we can discard x.

This branching rule is displayed in Algorithm 5.15. This rule has a branching
vector of (7,6,1), which gives a running time of O(1.3653n). This running
time is quite high, but it is better than the current upper bound, so let’s
keep it for now. We can revisit this rule, and try to change it if we are able
to get a better running time when dK(y1) = dK(y2) = 4.

Algorithm 5.15 The second of the new rules to replace rule 9 and 10 of
Algorithm 5.12

1: if there is an x ∈ K such that dS(x) = 2 then let NH(x) = {y1, y2}. If
dK(y1) ≥ 5 and dK(y2) ≥ 4. then . 9.2

2: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x})
3: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x})
4: enumcds(K \ {x}, S,X)
5: end if

Note that when dK(y1) = dK(y2) = 4 we cannot use a rule similar to

68 CHAPTER 5. ANALYZING THE GAP

Algorithm 5.15, since this would give us a branching vector of (6,6,1) and a
corresponding running time of O(1.3881n), which is higher than the upper
bound.

Now we have handled all of the cases where at least one of y1 and y2 has
degree more than 4. At this point we know that when dK(y1) = dK(y2) = 4
all of the nodes in NH(y1)∪NH(y2) have two neighbors in S, since otherwise
rule 5, 6, 7, 8, or the new rule 9 would have been applied. Note that the
new rule 9 displayed in Algorithm 5.14 handles all cases where a node in S
with degree 4 has a neighbor in K with three neighbors in S. We need to
consider all cases where both y1 and y2 have degree equal to 4, and all nodes
in NH(y1) ∪NH(y2) have two neighbors in S.

To solve these cases with a lower running time we approach them in a
slightly different way. We will do the same as we did in Algorithm 5.15,
that is enumerate all solutions where x is needed to dominate y1, and where
x is needed to dominate y2, and the cases where x is not in the solution.
Instead of just making one recursive call with x removed from K when x is
not in the solution, we can instead look at which ways both y1 and y2 can
be dominated when x is not in the solution.

Let us start out by looking at the cases where NH(y1)∩NH(y2) = {x}, that
is, the cases where x is the only node in K that is a neighbor of both y1
and y2. Since both y1 and y2 have degree 4 they can have up to 4 common
neighbors, and we will look at all of the cases where they have 1, 2, 3 and
4 mutual neighbors. However, as mentioned we will start by looking at the
cases where they only have one neighbor, x, in common. Remember that all
of the nodes in NH(y1) ∪NH(y2) have 2 neighbors in S at this point in the
algorithm.

Let us denote NH(y1) by {x, c1, c2, c3} and NH(y2) by {x, k1, k2, k3}. Since x
is the only node in K that can dominate both y1 and y2, we know that if we
do not use x to dominate y1 or y2, then we have to use at least two nodes to
dominate y1 and y2. Specifically we have to use at least one node from y1’s
neighborhood and at least one node from y2’s neighborhood. We have to
check all such combinations with at least one node from y1’s neighborhood
and at least one node from y2’s neighborhood.

The way we chose to do this is to start by handling all combinations where
x is in the solution. Then we handle all combinations where both c1 and k1
are in the solution. When we use these two nodes we do not discard any
other nodes from NH(y1)∪NH(y2), except for x, and in that way we handle
all solutions that contain c1 and k1. Next we handle all combinations where
c1 and k2 are in the solution. At this point we have already handled all

5.5. IMPROVING RULE 9 69

cases where c1 and k1 are in the solution, and since c1 is in this solution we
can discard k1 from this solution, and so on. One algorithm that solves the
cases we just described is Algorithm 5.16.

Algorithm 5.16 The third of the new rules to replace rule 9 and 10 of
Algorithm 5.12

1: if there is an x ∈ K such that dS(x) = 2 then let NH(x) = {y1, y2}.
If dK(y1) = dK(y2) = 4, and NH(y1) ∩ NH(y2) = {x}. Let us denote
NH(y1) by {x, c1, c2, c3}, and NH(y2) by {x, k1, k2, k3} then . 9.3

2: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x})
3: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x})
4: enumcds(K \ {x, c1, k1}, S \ {NS(c1) ∪NS(k1)}, X ∪ {c1, k1})
5: enumcds(K \ {x, c1, k1, k2}, S \ {NS(c1) ∪NS(k2)}, X ∪ {c1, k2})
6: enumcds(K \ {x, c1, k1, k2, k3}, S \ {NS(c1)∪NS(k3)}, X ∪ {c1, k3})
7: enumcds(K \ {x, c1, c2, k1}, S \ {NS(c2) ∪NS(k1)}, X ∪ {c2, k1})
8: enumcds(K \ {x, c1, c2, k1, k2}, S \ {NS(c2) ∪NS(k2)}, X ∪ {c2, k2})
9: enumcds(K\{x, c1, c2, k1, k2, k3}, S\{NS(c2)∪NS(k3)}, X∪{c2, k3})

10: enumcds(K \ {x, c1, c2, c3, k1}, S \ {NS(c3) ∪NS(k1)}, X ∪ {c3, k1})
11: enumcds(K\{x, c1, c2, c3, k1, k2}, S\{NS(c3)∪NS(k2)}, X∪{c3, k2})
12: enumcds(K \ {x, c1, c2, c3, k1, k2, k3}, S \ {NS(c3) ∪ NS(k3)}, X ∪
{c3, k3})

13: end if

Let us analyze its running time and check if it is lower than the current
upper bound. If for all ci and all ki, |NS(ci) ∪ NS(kj)| ≥ 4, we will get a
branching vector of (6,6,7,8,9,8,9,10,9,10,11), and a corresponding running
time of O(1.3451n).

The problem is that we do not know if NS(ci) ∪NS(kj)| ≥ 4 for all ci and
all kj . We know that ci has y1 in its set of neighbors for i = 1, 2, 3, and
kj has y2 in its set of neighbors for j = 1, 2, 3. Since both ci and kj have
degree ≥ 2 we know that |NS(ci) ∪ NS(kj)| ≥ 3, but if there exists one
i = 1, 2, 3 and one j = 1, 2, 3 where ci and kj have a neighbor in common,
then |NS(ci) ∪NS(kj)| = 3. Since we know that both y1 and y2 have to be
in NS(ci) ∪NS(kj). If all pairs of kj and ci have |NS(ci) ∪NS(kj)| = 3, the
running time we would get by using Algorithm 5.16 is too high.

Luckily there is another way to solve the cases where for at least one ci and
one kj , |NS(ci)∪NS(kj)| = 3. Let i = 1 and j = 1, be one of the pairs with
|NS(ci) ∪NS(kj)| = 3, and let us denote NS(ci) ∪NS(kj) by {y1, y2, y3}. If
this is the case then we know that c1 dominates y1 and y3, and k1 dominates
y2 and y3. If we use these nodes, k1 and c1, to dominate y1 and y2 we know
that we can discard all other nodes in NH(y1) ∪ NH(y2), because if any of
these nodes are added to the solution, the solution cannot be minimal. We

70 CHAPTER 5. ANALYZING THE GAP

can use Algorithm 5.17 to solve the cases just described.

Algorithm 5.17 The fourth of the new rules to replace rule 9 and 10 of
Algorithm 5.12

1: if there is an x ∈ K such that dS(x) = 2 then let NH(x) = {y1, y2}.
If dK(y1) = dK(y2) = 4, and NH(y1) ∩ NH(y2) = {x}. Let us denote
NH(y1) by {x, c1, c2, c3}, and NH(y2) by {x, k1, k2, k3} then . 9.4

2: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x})
3: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x})
4: enumcds(K \ {x, c1, c2, c3, k1, k2, k3}, S \ {NS(c1) ∪ NS(k1)}, X ∪
{c1, k1})

5: enumcds(K \ {x, c1, k1, k2}, S \ {NS(c1) ∪NS(k2)}, X ∪ {c1, k2})
6: enumcds(K \ {x, c1, k1, k2, k3}, S \ {NS(c1)∪NS(k3)}, X ∪ {c1, k3})
7: enumcds(K \ {x, c1, c2, k1}, S \ {NS(c2) ∪NS(k1)}, X ∪ {c2, k1})
8: enumcds(K \ {x, c1, c2, k1, k2}, S \ {NS(c2) ∪NS(k2)}, X ∪ {c2, k2})
9: enumcds(K\{x, c1, c2, k1, k2, k3}, S\{NS(c2)∪NS(k3)}, X∪{c2, k3})

10: enumcds(K \ {x, c1, c2, c3, k1}, S \ {NS(c3) ∪NS(k1)}, X ∪ {c3, k1})
11: enumcds(K\{x, c1, c2, c3, k1, k2}, S\{NS(c3)∪NS(k2)}, X∪{c3, k2})
12: enumcds(K \ {x, c1, c2, c3, k1, k2, k3}, S \ {NS(c3) ∪ NS(k3)}, X ∪
{c3, k3})

13: end if

Let us analyze the running time of Algorithm 5.17. In the worst case scenario
all pairs of ci and kj for j = 1, 2, 3 and i = 1, 2, 3 can have |NS(ci)∪NS(kj)| =
3. In that case we will get a branching vector of (6,6,10,7,8,7,8,9,8,9,10) and
a corresponding running time of O(1.3642n).

Now we have handled all cases where NH(y1)∩NH(y2) = {x}, and we need
to handle the cases where y1 and y2 have 2, 3 or 4 common neighbors. Let
us start by looking at the case where NH(y1) ∩ NH(y2) = {x, x1}, that is
when y1 and y2 have 2 common neighbors.

We will try a similar strategy as the one we used when NH(y1) ∩NH(y2) =
{x}. We will handle all cases where x is needed to dominate y1, and where
x is needed to dominate y2, and the cases where x is not in the solution. We
will also do the same for x1. If none of x or x1 are in the solution, we will
again have to use at least two nodes to dominate y1 and y2, with at least
one from NH(y1) and at least one from NH(y2). Algorithm 5.18 solves these
cases.

In the worst case scenario all pairs of i = 1, 2 and j = 1, 2 will have |NS(ci)∪
NS(kj)| = 3. We will then get a branching vector of (6,6,6,6,7,8,8,9), and a
corresponding running time of O(1.3564n).

5.5. IMPROVING RULE 9 71

Algorithm 5.18 The fifth of the new rules to replace rule 9 and 10 of
Algorithm 5.12

1: if there is an x ∈ K such that dS(x) = 2 then let NH(x) = {y1, y2}. If
dK(y1) = dK(y2) = 4, and NH(y1) ∩ NH(y2) = {x, x1}. If dS(x1) = 2.
Let us denote NH(y1) by {x, x1, c1, c2}, and NH(y2) by {x, x1, k1, k2}.
then . 9.5

2: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x})
3: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x})
4: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x1})
5: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x1})
6: enumcds(K \ {x, x1, c1, k1}, S \ {NS(c1) ∪NS(k1)}, X ∪ {c1, k1})
7: enumcds(K \ {x, x1, c1, k1, k2}, S \ {NS(c1)∪NS(k2)}, X ∪ {c1, k2})
8: enumcds(K \ {x, x1, c1, c2, k1}, S \ {NS(c2)∪NS(k1)}, X ∪ {c2, k1})
9: enumcds(K\{x, x1, c1, c2, k1, k2}, S\{NS(c2)∪NS(k2)}, X∪{c2, k2})

10: end if

At this point we have handled all the cases where NH(y1) ∩NH(y2) = {x}
and the cases where NH(y1) ∩ NH(y2) = {x, x1}. We also have to handle
the cases where y1 and y2 has 3 or 4 common neighbors. Let us start by
looking at the cases where NH(y1) ∩NH(y2) = {x, x1, x2}, that is the cases
where y1 and y2 have 3 common neighbors.

As before we will handle all cases where x is needed to dominate y1, and
where x is needed to dominate y2, or where x is not in the solution. We
will do the same for x1 and x2. In the cases where none of x, x1 or x2 is in
the solution we will again have to use at least two nodes to dominate both
y1 and y2, with at least one node from NH(y1) and at least one node from
NH(y2).

Algorithm 5.19 The sixth of the new rules to replace rule 9 and 10 of
Algorithm 5.12

1: if there is an x ∈ K such that dS(x) = 2 then let NH(x) = {y1, y2}. If
dK(y1) = dK(y2) = 4, and NH(y1) ∩NH(y2) = {x, x1, x2}. If dS(x1) =
dS(x2) = 2. Let us denote NH(y1) by {x, x1, x2, c1}, and NH(y2) by
{x, x1, x2, k1}. then . 9.6

2: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x})
3: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x})
4: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x1})
5: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x1})
6: enumcds(K \ {NH(y1)}, S \ {y1, y2}, X ∪ {x2})
7: enumcds(K \ {NH(y2)}, S \ {y1, y2}, X ∪ {x2})
8: enumcds(K \ {x, x1, x2, c1, k1}, S \ {NS(c1)∪NS(k1)}, X ∪ {c1, k1})
9: end if

72 CHAPTER 5. ANALYZING THE GAP

Algorithm 5.19 handles all of these cases. In the worst case scenario i = 1
and j = 1 will have |NS(ci) ∪NS(kj)| = 3. We will get a branching vector
of (6,6,6,6,6,6,8) and a corresponding running time of O(1.3674n).

So far we have handled all cases where NH(y1) ∩NH(y2) = {x}, NH(y1) ∩
NH(y2) = {x, x1} and where NH(y1) ∩ NH(y2) = {x, x1, x2}. We will now
handle the last cases, these are when y1 and y2 have 4 neighbors in common.
Let us denote NH(y1) ∩NH(y2) by {x, x1, x2, x3}.

At this point all of y1’s neighbors are also neighbors of y2, and vice versa,
since dK(y1) = dK(y2) = 4, and |NH(y1)∩NH(y2)| = 4. We also know that
x, x1, x2 and x3 cannot be a part of the same mcds, since they dominate
the exact same set of neighbors, that is they all have {y1, y2} as their set of
neighbors in S. We will look at the cases where we use x to dominate both
y1 and y2, and we will also do the same for x1, x2 and x3.

Algorithm 5.20 handles all of these cases. We will get a branching vector of
(6,6,6,6), and a corresponding running time of O(1.2600n).

Algorithm 5.20 The seventh of the new rules to replace rule 9 and 10 of
Algorithm 5.12

1: if there is an x ∈ K such that dS(x) = 2 then let NH(x) = {y1, y2}.
If dK(y1) = dK(y2) = 4, and NH(y1) ∩ NH(y2) = {x, x1, x2, x3}, and
dS(x1) = dS(x2) = dS(x3) = 2. then . 9.7

2: enumcds(K \ {x, x1, x2, x3}, S \ {y1, y2}, X ∪ {x})
3: enumcds(K \ {x, x1, x2, x3}, S \ {y1, y2}, X ∪ {x1})
4: enumcds(K \ {x, x1, x2, x3}, S \ {y1, y2}, X ∪ {x2})
5: enumcds(K \ {x, x1, x2, x3}, S \ {y1, y2}, X ∪ {x3})
6: end if

In these new rules that can replace rule 9 and 10 of the algorithm the one
with the highest running time is the sixth rule, 9.6, which has a running
time of O(1.3674n). The highest running time amongst the other rules
is O(1.3248n), given by rule 5.3, 6, 8 and 11. We have thus proved the
following new and better upper bound for the maximum number of mcds in
split graphs.

Theorem 5.1. A split graph on n nodes has at most 1.3674n mcds and
these can be enumerated in time O(1.3674n).

Consequently, we immediately also obtain the following result:

Corollary 5.1. A minimum connected dominating set on an input split
graph on n nodes can be found in time O(1.3674n).

5.5. IMPROVING RULE 9 73

Due to the fact that a minimum dominating set of a split graph can always
be assumed to be connected [9], we also get the following corollary:

Corollary 5.2. A minimum dominating set on an input split graph on n
nodes can be found in time O(1.3674n).

74 CHAPTER 5. ANALYZING THE GAP

Chapter 6

Conclusion

The goal of the work leading to this thesis was to try to narrow the gap
between the upper and lower bounds on the maximum number of mcds in
split graphs. In principle, the main idea was to test many split graphs with
a practical implementation of the algorithm, and see if this lead to new
lower bound examples. Thus, we believed that the chances of narrowing the
gap would be by obtaining a higher lower bound. We did not find a graph
example that could give us a higher lower bound, but our implementation
and our test results convinced us that the upper bound was too high. We
therefore did a deeper theoretical analysis of the rules in the algorithm and
were actually able to prove a lower upper bound. We achieved our goal of
narrowing the gap, but surprisingly in a different way than we expected.
Instead of improving the lower bound by practical tests, we found a better
upper bound by theoretical analysis.

6.1 Summary

The main contributions of this thesis is Theorem 5.1. We proved that the
number of mcds in split graphs is at most 1.3674n, and the mcds of an input
split graph can be enumerated in time O(1.3674n). In Chapter 1 we gave an
essential introduction to the subject of this thesis. In Chapter 2 we explained
the concept of lower bounds. We presented the current lower bound example
and our new lower bound example. In Chapter 3 we discussed branching
algorithms and presented the branching algorithm that gave the best known
upper bound on mcds in split graphs. We showed the importance of actually
implementing an algorithm by the two errors we found in the algorithm for
enumerating mcds. Crucial errors can be neglected when an algorithm is

75

76 CHAPTER 6. CONCLUSION

not implemented, and these errors might influence the running time of the
algorithm or the number of objects found by the algorithm in an incorrect
way. In Chapter 4 we went through the implementation details. In Chapter
5 we present the main results and contributions of this thesis.

6.2 Co-bipartite graphs

A class of graphs very similar to split graphs is the class of co-bipartite
graphs. Indeed many of our findings can also be used for co-bipartite graphs.
Let us take a closer look at the graph class of co-bipartite graphs. We will
first define the graph class of co-bipartite graphs, and then we will show
how enumerating mcds in co-bipartite graphs is quite similar to enumerating
mcds in split graphs.

Definition 6.1. A co-bipartite graph G is a graph where the nodes can be
partitioned into two cliques.

Figure 6.1: Examples of co-bipartite graphs, where the red nodes represent
the first clique, and the gray nodes represent the second clique.

In Figure 6.1 we see some examples of co-bipartite graphs where for each of
the graphs the first clique in the graph consists of the red nodes, and the
second clique in the graph consists of the gray nodes. Any number of edges
can be present between the two cliques.

In a co-bipartite graph we know that all mcds have to be a set of nodes that
are in the same clique, or a set of exactly two nodes, with one node from
each of the two cliques in the graph. This implies that if we have a mcds
D of a co-partite graph, with |D| > 2, we know that all of the nodes in D
have to be members of the same clique. We summarize this in the following
lemma:

Lemma 6.1. For every co-bipartite graph G all mcds D of G with |D| > 2,
all nodes n ∈ D have to be from the same clique in G.

6.3. FURTHER WORK 77

When we look for mcds in co-bipartite graphs we first check all possible
subsets of exactly two nodes, with one node from each of the cliques, this
would be an O(n2) time algorithm. Then we have to check all the subsets of
the graph that only consists of nodes from one of the cliques. We can actually
use the algorithm described earlier for split graphs given by Golovach et al.
[11] to solve this. When we look for mcds that are subsets of one clique we
can view the other clique as the independent set in a split graph, since none
of these nodes can be a part of the mcds, but they have to be dominated by
the mcds. So if we run the algorithm given for split graphs two times, one
time for each of the cliques, we will find all mcds that only contain nodes
from one of the cliques.

The algorithm given for split graphs runs in time O(1.3803n), and we have
to run this algorithm twice. We also have to run the O(n2) time algorithm to
find all mcds consisting of one node from each clique. This results in a total
running time of O(n2 + 2 · 1.3803n). This is actually the best enumeration
algorithm known for mcds in co-bipartite graphs, and gives the current upper
bound on the maximum number of mcds in co-bipartite graphs and was given
by Golovach et al. [11].

Our new upper bound of 1.3674n on the maximum number of mcds in split
graphs also gives a new upper bound on the maximum number of mcds
in co-bipartite graphs. All mcds in a co-bipartite graph can be found by
running the algorithm by Golovach et al. [11] twice, in addition to running
an n2 time algorithm. The adjustments we made in the algorithm for split
graphs give us a better running time on enumerating mcds in co-bipartite
graphs, and give a new upper bound on the maximum number of mcds in
co-bipartite graphs.

Theorem 6.1. A co-bipartite graph on n nodes has at most n2 + 2 · 1.3674n

mcds and these can be enumerated in time O(n2 + 2 · 1.3674n).

Corollary 6.1. A minimum connected dominating set on an input co-
bipartite graph on n nodes can be found in time O(n2 + 2 · 1.3674n).

6.3 Further work

In this thesis we were able to prove a better upper bound of 1.3674n on the
maximum number of mcds in split graphs. Considering how small the gap
between the upper and lower bound on the maximum number of mcds in
split graphs, this is a significant improvement in the upper bound. However,
we think the upper bound can be decreased even further. In fact we think
that the lower bound of 1.3195n might actually be the correct maximum

78 CHAPTER 6. CONCLUSION

number of mcds that any split graph can have.

Even though we were not able to decrease the upper bound to match the
lower bound in this thesis, we think that it might be possible. This would re-
quire even more tedious analysis, and because of the natural time limitation
on a master project, we did not have time to go into even deeper analysis of
the rules in the algorithm. Even if it is not possible to improve the rules of
the algorithm to obtain a matching upper and lower bound of 1.3195n, we
definitively think that the upper bound can be decreased further down.

If it is not possible to obtain matching upper and lower bounds by theoretical
analysis of the rules in the algorithm, then there might exist a higher lower
bound example. If this is the case then we think that it might be reasonable
to search for such a new lower bound example among more specific graphs
than we did. As mentioned we generated and tested all split graphs of size
up to 11 nodes, and it will take significantly longer time to test all graphs
with a higher number of nodes, even with a faster generation method than
the one we used.

As mentioned, we tested a lot of split graphs of different sizes, and noticed
that there was a higher number of mcds in graphs containing approximately
30 percent of its nodes in the independent set. Thus, it can be reasonable
to search for a possible new lower bound example among such graphs. One
can also test properties such as the average degree of the nodes in the clique
and independent set, and other properties of split graphs to further restrict
the space to search for a new lower bound example in.

This discussion leaves us with two open questions which results in two dif-
ferent approaches to continue with the work from this thesis:

• Can the running time of the branching rules in the main algorithm of
this thesis be decreased further?

• Are there split graphs with more than 1.3195n mcds?

Other interesting questions around this topic could be:

• Is there an algorithm for (Connected) Dominating Set for split
graphs that is faster than O(1.3674n)?

• What is the maximum number of mcds in general graphs? Any im-
provement over the trivial bound of 2n would be very interesting.

6.3. FURTHER WORK 79

Although it was not in the scope of our work, the paper by Golovach et al.
[11] also studies upper and lower bounds on the maximum number of mcds
in other graph classes. For example for the class of chordal graphs, there is
again a gap between the lower bound which is 3(n−2)/3 ∼ 1.4423n and the
upper bound which is 1.7159n. Similar work to that we did in this thesis
can also be conducted for this graph class.

80 CHAPTER 6. CONCLUSION

References

[1] Faisal N. Abu-Khzam and Pinar Heggernes. Enumerating minimal
dominating sets in chordal graphs. Information Processing Letters,
116(12):739 – 743, 2016.

[2] Faisal N. Abu-Khzam, Amer E. Mouawad, and Mathieu Liedloff. An
exact algorithm for connected red–blue dominating set. Journal of
Discrete Algorithms, 9(3):252 – 262, 2011. Selected papers from the
7th International Conference on Algorithms and Complexity (CIAC
2010).

[3] László Babai. Graph isomorphism in quasipolynomial time. CoRR,
abs/1512.03547, 2015.

[4] Alan A. Bertossi. Dominating sets for split and bipartite graphs. In-
formation Processing Letters, 19(1):37 – 40, 1984.

[5] Jean-François Couturier, Pinar Heggernes, Pim van ’t Hof, and Dieter
Kratsch. Minimal dominating sets in graph classes: Combinatorial
bounds and enumeration. Theoretical Computer Science, 487:82 – 94,
2013.

[6] Jean-François Couturier, Romain Letourneur, and Mathieu Liedloff.
On the number of minimal dominating sets on some graph classes.
Theoretical Computer Science, 562:634 – 642, 2015.

[7] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Solving con-
nected dominating set faster than 2n. In S. Arun-Kumar and Naveen
Garg, editors, FSTTCS 2006: Foundations of Software Technology and
Theoretical Computer Science: 26th International Conference, Kolkata,
India, December 13-15., pages 152 – 163. Springer, 2006.

[8] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Springer-Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[9] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact
(exponential) algorithms for the dominating set problem. In Juraj

81

82 REFERENCES

Hromkovič, Manfred Nagl, and Bernhard Westfechtel, editors, Graph-
Theoretic Concepts in Computer Science: 30th International Work-
shop, WG 2004, Bad Honnef, Germany, June 21-23., pages 245 – 256.
Springer, 2005.

[10] Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Di-
eter Kratsch, and Yngve Villanger. Minimal dominating sets in interval
graphs and trees. Discrete Applied Mathematics, 216, Part 1:162 – 170,
2017.

[11] Petr A. Golovach, Pinar Heggernes, and Dieter Kratsch. Enumerating
minimal connected dominating sets in graphs of bounded chordality.
Theoretical Computer Science, 630:63 – 75, 2016.

[12] Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Reza Saei.
Subset feedback vertex sets in chordal graphs. Journal of Discrete
Algorithms, 26:7 – 15, 2014.

[13] T. Hearne and C. Wagner. Minimal covers of finite sets. Discrete Math.,
5(3):247 – 251, July 1973.

[14] Gordon F. Royle. Counting set covers and split graphs. Journal of
Integer Sequences [electronic], 3(2):Art. 00.2.6, 5 p, 2000.

[15] Ryuhei Uehara, Seinosuke Toda, and Takayuki Nagoya. Graph isomor-
phism completeness for chordal bipartite graphs and strongly chordal
graphs. Discrete Applied Mathematics, 145(3):479 – 482, 2005.

[16] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edi-
tion, September 2000.

[17] Jie Wu and Hailan Li. On calculating connected dominating set for
efficient routing in ad hoc wireless networks. In Proceedings of the 3rd
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, DIALM ’99, pages 7–14, New York,
NY, USA, 1999. ACM.

