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The present study explores if EEG spectral parameters can discriminate between healthy
elderly controls (HC), Alzheimer’s disease (AD) and vascular dementia (VaD) using. We
considered EEG data recorded during normal clinical routine with 114 healthy controls
(HC), 114 AD, and 114 VaD patients. The spectral features extracted from the EEG
were the absolute delta power, decay from lower to higher frequencies, amplitude,
center and dispersion of the alpha power and baseline power of the entire frequency
spectrum. For discrimination, we submitted these EEG features to regularized linear
discriminant analysis algorithm with a 10-fold cross-validation. To check the consistency
of the results obtained by our classifiers, we applied bootstrap statistics. Four binary
classifiers were used to discriminate HC from AD, HC from VaD, AD from VaD, and HC
from dementia patients (AD or VaD). For each model, we measured the discrimination
performance using the area under curve (AUC) and the accuracy of the cross-validation
(cv-ACC). We applied this procedure using two different sets of predictors. The first
set considered all the features extracted from the 22 channels. For the second set of
features, we automatically rejected features poorly correlated with their labels. Fairly
good results were obtained when discriminating HC from dementia patients with AD
or VaD (AUC = 0.84). We also obtained AUC = 0.74 for discrimination of AD from HC,
AUC = 0.77 for discrimination of VaD from HC, and finally AUC = 0.61 for discrimination
of AD from VaD. Our models were able to separate HC from dementia patients, and also
and to discriminate AD from VaD above chance. Our results suggest that these features
may be relevant for the clinical assessment of patients with dementia.

Keywords: Alzheimer’s disease, vascular dementia, electroencephalogram, qEEG, quantitative analysis, spectral
features, group classification, LDA

Abbreviations: AD, Alzheimer’s disease; AUC, area under curve; CSF, cerebrospinal fluid; CT, computerized tomography;
CV, cross-validation; cv-ACC, accuracy of the cross-validation; DSM-IV-TR, diagnostic and statistical manual of mental
disorders-text revised; EEG, electroencephalogram; FFT, fast Fourier transform; FPR, false positive rate; HC, healthy controls;
ICD, international classification of disease; LDA, linear discriminant analysis; MRI, magnetic resonance imaging; PC LDA,
principal component linear discriminant analysis; PC LR, principal component logistic regression; PET, positron emission
tomography; PLS, least square linear discriminant analysis; PLS LR, partial least square logistic regression; PSD, power
spectral density; qEEG, quantitative electroencephalogram; RLDA, regularized linear discriminant analysis; ROC, receiver
operator characteristic; SEM, standard error mean; SVM, support vector machines; TPR, true positive rate; VaD, vascular
dementia.
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INTRODUCTION

Alzheimer’s disease is the most common form of dementia among
the elderly population (Jeong, 2004; Kandimalla et al., 2011,
2013, 2014). The second most common form of dementia is VaD
(Roman, 2002), affecting approximately 20% of all dementia cases
worldwide (Dubois and Hebert, 2001). Presently, there are no
specific in vivo tests for VaD and AD.

The clinical assessment of dementia is grounded in guidelines
from the World Health Organization’s ICD and the American
Psychiatric Association’s DSM-IV-TR. These guidelines have
been criticized for their lack of specificity (Reilly et al., 2010;
McKhann et al., 2011). If fact, many intruments are available to
screen dementia, such as CSF measures, CT, MRI examinations,
EEG, ultrasound, PET, as well as combination of neurological
and psychological tests and laboratory blood analysis. However,
many of these examinations are expensive, partially invasive
or demand large resources. Furthermore, at early stages these
dementias present several symptomatic similarities, creating
diagnostic uncertainty (Gearing et al., 1995; Massoud et al., 1999).
Consequently, finding alternative methods to detect dementia
and classify subtypes is a relevant research topic.

EEG Based Dementia Diagnosis
Electroencephalogram is a widely available and non-invasive
instrument (Rossini et al., 2007). The clinical assessment of an
EEG is based on the visual expert interpretation of patient’s
electrophisiological activity in a spatio-temporal scale. Classical
EEG biomarkers such as relative power and dominant activity
rythms in conventional frequency bands and at specific brain
regions were shown to be valuable measures to screen dementia
(Dierks et al., 1995; Signorino et al., 1996; Jelic et al., 1998).
Additionally, the literature has shown that spectral analysis of
EEG may provide alternative markers to distinguish AD or VaD
patients (Signorino et al., 1996; Besthorn et al., 1997; Bonanni
et al., 2008). The spectra of VaD patients show increased power
in delta and theta frequencies and decreased power in alpha and
beta frequencies (Tsuno et al., 2004; Lou et al., 2011; van Straaten
et al., 2012). This phenomenon has also been described by other
studies and is associated with general cognitive decline (Dierks
et al., 1995; Kwak, 2006; Babiloni et al., 2011b; Fraga et al., 2013).
AD and VaD patients are commonly described as having reduced
frequency of the posterior dominant rhythm compared with
healthy subjects (Babiloni et al., 2004; Gawel et al., 2009). When
comparing AD with VaD patients, the literature reports two core
electrophysiological differences between these two groups: AD
patients have lower posterior alpha power when compared with
VaD; the lower frequencies power appears to be higher in VaD
compared to AD (Signorino et al., 1995, 1996; Babiloni et al.,
2004, 2011a).

Extracting Features from EEG Signals
There are many EEG features that one could potentially
use for discrimination purposes. FFT and power spectral
density (PSD) are two of the most widely used transforms
that allow to extract potential markers such as frequency,
power, coherence across the delta, theta, alpha, or beta bands

(Dierks et al., 1991; Kwak, 2006; Fraga et al., 2013). However, the
analysis of multi-channel EEG data results in high-dimensional
data vectors including spatiotemporal information creating a
high computational requirement for solving discrimination
problems. Another important aspect is the contamination of EEG
with muscular or ocular artifacts such as eye movement and
eye blinks (Hillyard and Galambos, 1970; Nunez and Srinivasan,
2006). Artifacts are ubiquitous during the EEG recording and
contribute to the non-stationarity of EEG signals (Guger et al.,
2000; Shenoy et al., 2006). Non-stationarity of the EEG (von
Bunau et al., 2009) constitutes one of the major challenges
for data analysis and machine learning classification methods
(Kaplan et al., 2005)

Classification Algorithms
Many different classification algorithms are available. In
dementia, it has been shown that it is possible to discriminate
patients with different levels of cognitive decline through the
use of linear and non-linear classification algorithms (Cichocki
et al., 2005; Lopez et al., 2009; Elgendi et al., 2011; Gallego-Jutgla
et al., 2012; Gutman et al., 2013). Lehmann et al. (2007) tested
several algorithms commonly used for identifying AD patients.
Specifically, they employed PC LDA, PLS LDA, PC LR, PLS
LR, bagging, random forests, SVM, and others, to identify
dementia patients. This study concluded that such techniques
may indeed provide remarkable performances (accuracies of
70–90%) for clinical diagnosis. However, they emphasized that
the classification models should not be trained with small sample
size when compared to their feature dimensionality, as this may
result in overfitting the model. This problem is often referred
in the literature as the curse of dimensionality (Bishop, 1995).
In addition, the feature extraction and discrimination methods
vary from study to study, making assessment of reproducibility
difficult. One classification method that has been widely used in
aging studies, specifically to identify AD is LDA (Dierks et al.,
1995; Kwak, 2006; Fraga et al., 2013).

LDA
The purpose of the LDA classification is to assign observations
to the corresponding class based on a set of measurements
or predictors by finding an optimal linear transformation that
maximizes the class separability (Fisher, 1936). Technically, LDA
achieves optimal solutions when predictors or the feature vector
is multivariate normally distributed in each group class and when
the different group classes have similar covariance (Fisher, 1936).
However, due to the non-stationary of EEG signals (Shenoy et al.,
2006), this is rarely the case in practice, and models can easily be
overfitted, and their predictability overestimated. This is typically
the case when EEG data is derived from multi-channels carrying
noise captured from adjacent channels, especially if channels
are close enough to each other. Whereas this problem could be
solved by applying spatial filters that maximize the variance of
EEG signals of one class while minimizing the variance from
the other class (Ramoser et al., 2000; Blankertz et al., 2008),
at the same time, this may result on overfitting the model
by changing predictor variances (Reuderink and Poel, 2008;
Huang et al., 2010). In addition, large amount of predictors and
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relatively small sample sizes dramatically induce misclassification
errors contributing to overfitting the model. To circumvent
this, many classifiers implement feature reduction based on
screening and excluding the features that carry the less amount
of information regarding the prediction problem. However,
this procedure sometimes eliminates significant features from
the data affecting the performance of the classification models
(Dauwels et al., 2010). Many of these questions have been
addressed in a recent review (Haufe et al., 2014) determining the
importance of implementing complementary analysis methods to
avoid the bias typically found in generalized linear models (GLM)
implementations.

Regularization with Cross-Validation
The regularization technique is based on replacing the within-
group sample covariance by a weighted average of the whole
sample covariance using a shrinking intensity parameter (λ).
Technically, this parameter increases larger eigenvalues of the
covariance matrix while decreasing smaller ones, therefore
creating a pooled-covariance matrix that is corrected for the
bias when estimating sample-based eigenvalues. The optimal
shrinkage parameter is determined by CV (Friedman, 1989; Ye
et al., 2006). CV is a technique to estimate the classification
error rate by splitting the original sample data into training,
CV, and test datasets (Bishop, 2006). The prediction model
is calibrated using the training sets, and model parameters
are optimized by the CV sets, while the test sets are used
primarily for empirical error estimation. An effective approach
to address both the sensitivity and dimensionality problems
is using regularized LDA (RLDA) with CV denoted in the
literature as CV-RLDA. This approach has been used in several
studies with high dimensional and non-stationary problems
(Goulermas et al., 2005; Maggi et al., 2006; Huang et al.,
2008) achieving very high accuracy levels. It has been shown
that the choice of the regularization value or technique
has great impact on the overall discrimination performance
(Lotte and Guan, 2011).

Aim of this Study
The literature contains a number of EEG studies revealing several
biomarkers that are relevant in dementia group differentiation.
However, the methodologies of pre-processing and extracting
EEG markers are not identical and sample sizes are typically
small. In order to understand dementia at a wider level, we believe
that the methodologies to extract EEG biomarkers should be
unified across studies. Hence, in our former work, we proposed a
feature extraction method that reveals six core EEG parameters at
channel-level from any standard clinical EEGs (Neto et al., 2015).
We have also shown significant differences between AD, VaD,
and HC for several of those parameters at specific channels, in
accordance with the present literature.

The aim of the present study was to evaluate the relevance
of six EEG parameters on differentiating groups of patients with
dementia. To assess this, we designed four discrimination models
using LDA to distinguish HC from AD, HC from VaD, AD from
VaD and HC from both AD and VaD. Moreover, we tested the
performance of our four models using two different settings of

parameters and measured the class separability performance of
our models, which we refer to in the methods section.

MATERIALS AND METHODS

We applied LDA to generate four binary LDA classifiers
on previously extracted EEG features (Neto et al., 2015).
In particular, we used six electrophysiological markers that
characterize the EEG spectrum and tested them in group
discrimination between AD, VaD, and HC using CV-RLDA. In
line with other studies, (Besserve et al., 2007; Zhdanov et al.,
2007; Shenoy et al., 2008; Velu and de Sa, 2013), the present study
used CV-RLDA methodology for group discrimination using six
EEG spectral features. We explored differentiation performances
between AD and VaD patients by repeatedly rejecting features
with low correlation with their corresponding labels.

Sample
A total of 342 patients were selected for this study, based on the
clinical ICD diagnoses. The first group (n = 114) was registered
as probable AD patients, with ICD codes ICD-10, F00.x or G30.x.
The second group (n = 114) was patients with probable VaD
(n = 114) with ICD-10 F01.X. The HC group (n = 114) was
selected from non-hospitalized individuals, free of any central
nervous-system disease or any other brain disease. We controlled
for clinical historic record of all subjects and excluded patients
whose diagnose had been changed or removed. Only the most
recent EEG from each patient was included. All samples were age-
gender balanced with age of 72.9 ± 10.5 years and 48% females.
We used these datasets to extract spectral features and test their
significance for group discrimination. For further details, the
reader is referred to Neto et al. (2015).

Pre-processing
All EEG datasets were acquired using 22 channels positioned
in 10–20 system placements (Fp1, Fpz, Fp2, F7, F3, Fz, F4,
F8, T3/T7, C3, Cz, C4, T4/T8, T5/P7, P3, Pz, P4, T6/P8, O1,
O2, M1, M2), acquired at 128 Hz (n = 86), 256 (n = 246),
and 500 Hz (n = 10) using NicoletOneTM EEG system. Input
impedances were set to Z > 100M�. Hardware single pole
high-pass (0.16 Hz ± 10%) and low-pass (500 Hz ± 10%)
filters were applied with individually to each channel before
pre-amplification. EEGs were stored under raw format in the
database. All the pre-processing and data analysis was done
accordingly to our previous work (Neto et al., 2015), using
Mathworks R© Matlab environment. EEG raw files were imported
to the EEGLab v.10.1.1.0b toolbox (Delorme and Makeig,
2004) using an in-house data-reader. Data were resampled to
256 Hz. From the standard clinical EEG recording protocol
that lasts for 20 min and includes eye open/closed conditions,
hyperventilation and provocations with photic stimulation, we
restricted the input data for analysis to the first 9 min,
which contained only the alternating eyes open/closed resting
conditions. A 1536-points high-band filter was applied at cut
off frequency of 0.5 and a low-pass filter to cut off of 50 Hz
using a standard least square linear-phase FIR filter design.
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EEGs were segmented into non-overlapping epochs of 1 s that
were evaluated for possible rejection using automatic amplitude,
power, and statistical thresholding. The remaining segments
were subjected to an individual independent component analysis
(ICA) using the Infomax algorithm with 15 components in
order to identify and remove residual contributions from eye
movements. The continuous data were reconstructed from the
non-artifact components and then segmented into 2 s epochs
with 1 s overlap, which is equivalent to the Welch’s procedure
(Welch, 1938) with a rectangular windows and 50% segment
overlap. Subsequently, the data were transformed into the
frequency domain using FFT. Since the frequency spectrum
selected for the pre-processing was from 0.5 to 50 Hz, we
obtained 100 frequency data points for the 22 channels and a
variable number of epochs for each dataset subjected for analysis.
The spatial standard deviation (sSTD) index of each epoch
was calculated across the 22 channels in the frequency domain
according to Lehmann and Skrandies (1980) and z-scored.
Finally, in order to standardize the amount of data across
subjects, we determined the minimum number of existing epochs
across subjects that would maximize the inclusion of patients in
this study. We considered a total of 334 epochs from each subject
(∼5 m 30 s), representing the artifact-free data for 22 channels
(sampled at 256 Hz). We then represented each segment by its
equivalent frequency domain data and further used them on the
feature extraction method.

Feature Extraction and Feature Selection
We used a fit-curve model (Neto et al., 2015) which enables us
to represent the spectra with six parameters ranging from 0.5
to 30 Hz (S, k, A, c, w, and b). For each spectrum, S represents
low frequency power (delta), k indicates the 1/f decay from
lower to higher frequencies where larger values of k denote a
faster drop-off in power. Parameters A, c, and w relate to the
amplitude, center and dispersion of the alpha power, respectively.
Parameter b represents a global offset or baseline power of the
entire frequency spectrum. We then applied the curve-fit model
to the average spectral curve of each channel. Each final dataset
was therefore represented by a total 132 parameters, which
correspond to the six extracted spectral features from twenty-two
channels.

Discrimination Analysis
To test the potential of such features in group discrimination, we
tested two different feature sets to generate four binary classifiers
which discriminated the classes HC versus AD (Model 1), HC
versus VaD (Model 2), AD versus VaD (Model 3), and HC versus
all dementia patients AD or VaD (Model 4) as illustrated in
Figure 1. These were all implemented by using 10-fold cv-RLDA.
The two different set of features are referred as Complete set of
Features and Reduced set of Features. The Complete Set of Features
comprised all available parameters that were extracted from our
fit-curve feature extraction procedure for the 22 channels of each
dataset resulting on a total of 132 model predictors. The Reduced
set of features is a sub-set of all 132 features. However, we
decided to remove features that were poorly correlated with their
labels. To determine this, before training the linear classifiers, we

FIGURE 1 | Workflow diagram of how each group classifier was set up
using cv-RLDA. Spectral features extracted from the EEG of 114 HC, 114
probable AD, and 114 vaD patients were set up as predictors to train and test
20 cv-RLDA models. Values of accuracy (ACC), TPR, and FPR were
determined from each fold of CV. Performance values of receiver operating
characteristic (ROC) were determined from ratio of TPR and FPR values, and
ACC, respectively, averaged over 10-fold. The final values of performance
reported for each classifier regard the average of ROC and cv-ACC values
obtained from 20 cv-RLDA models.

computed the correlation of each feature with the target variable,
we tested the correlation of each feature with their correspondent
labels. We only considered data points in the respective training
data set of each particular CV fold. The output of this test is a
vector with correlation values (r) and their correspondent p-value
(p). The exclusion criteria was to reject features with significantly
low correlation index at | r| < 0.15 and p < 0.01 (two tailed
t-test). The procedure of excluding features is highly dependent
to which datasets are in use when generating each model. Since,
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we used different sets of data to train each model, we also
obtained different values of correlation and p-values. Hence, a
variable number of features were rejected. The average numbers
of used Reduced Set of Features were 74, 68, 18, and 76 for Model
1, Model 2, Model 3, and Model 4, respectively.

cv-RLDA Classifier Models
In order to use the extracted spectral features as predictors on
our LDA models, we verified the fundamental assumptions of
the LDA (Worth and Cronin, 2003). All predictors met the
criteria of being scalar and positive. To transform the predictor
matrix into an approximately normal distribution, we applied
a log-transformation using box-cox transformation (Box and
Cox, 1964) and measured the average, standard deviation and
covariance values for the predictors on each group, which
we reported as supplementary material showing the normal
probability distribution of the predictors before and after the
normalization process (Supplementary Table S1; Supplementary
Figures S2–S5).

The predictor matrix for each model was constituted by
228 rows that referred to the subjects from each test and a
variable number of columns, (132 or 29) that corresponded to
the total predictors used in the Total or Reduced Set of Features,
respectively.

To evaluate the linear classification model, we used 10-fold
CV. We divided our 228 samples into 10 randomized subsets
and determined a fold size of 22. For each fold of the CV, we
considered nine subsets for the training and one subset for the
testing phases. Therefore, 198 and 22 different datasets were
considered on each fold as the training and testing sample,
respectively. To set the regularization threshold constant of
the regularized LDA model, we used the analytical shrinkage
estimator (Ledoit and Wolf, 2004). We alternatively tried nested
CV, but found the analytical estimator to yield slightly better
results. The permutation order of the training sample may have
an impact on the result of the k-fold CV (Triba et al., 2015).
Therefore, to further validate the robustness of our model, we
used bootstrap and generated each model 20 times, each one with
the same procedure as described previously, but with a different
random selection of data points.

Performance Tests
To benchmark the performance of our final models, we estimated
the average of TPR and FPR from each group classifier. Using
these metrics, we determined the ROC curve to represent the
classification performance of each model (Figures 2 and 3). The
ROC displays the trade between the sensitivity and specificity
of classification from each model. The AUC for each group
classifier provided a measure of the discrimination power which
has been used as a gold standard diagnostic marker (Zhou
et al., 2011). In addition, we determined the accuracies of the
models measuring the CV accuracy. Each model’s cv-ACC was
estimated by averaging the accuracies obtained on each 10-fold
classification tests. To avoid bias from the order of datasets
used during the calibration stage, we iterated 20 times the
generation of each of the four models using bootstrap of the test
sample. For each iteration, a different permutation of the training

and testing datasets were chosen obtaining twenty different CV
accuracies (cv-ACC) and 20 different areas under curve (AUC)
for each model. The final performance results of each model were
determined by averaging the twenty cv-ACC and AUC results
obtained from each group classifier (Table 1).

RESULTS

We calculated the R2 measure for each fit, reflecting the fraction
of data variance captured by curve approximation. Additionally,
we computed the correlations between model parameters to
check for dependence between parameters, which can indicate
model redundancies or instabilities in the fitting procedure.
Histograms of the R2 values were presented in Supplementary
Figure S1 for each group, and show excellent model fits in
nearly all cases. The median goodness-of-fit was 0.91 and the
first and third quartiles were 0.92 and 0.98, respectively. We
performed a Kruskal–Wallis one-way ANOVA test and no group
differences were found in the R2 values between the groups
(p < 5.15e−11), meaning that the model performed equally
well fitting the datasets from each group. Only relatively weak
correlations (|r| ≤ 0.4) between the parameters were found, with
the exception of a high correlation between parameters k and
b (r = 0.75). This correlation was equally present within each
group: r = 0.80 for HC, r = 0.68 for AD, and r = 0.78 for VaD.

Figures 2 and 3 show an overlay of the receiver operating
characteristic (ROC) curves obtained for each group classifier
using the Complete Set of Features and Reduced Set of Features.

The FPR and TPR results obtained from each group classifier
were averaged across the 20 correspondent model’s results with
mean and corresponding SEM values (Figures 2 and 3). We
found no significant differences of classification (cv-ACC and
AUC) for the different permutations of subsets.

When using the Complete Set of Features, the first three RLDA
models, HC vs VaD, HC vs AD, and AD vs VaD, achieved poor
discrimination performance with AUC of 0.66, 0.66, and 0.62,
respectively. The fourth model attained fair discrimination for
HC from AD or VaD patients with AUC= 0.75. Figure 2 displays
an overlay of all four ROC curves with SEM values from each
classifier for the Complete Set of Features.

When using the Reduced Set of Features, the first two
models, HC vs VaD, HC vs AD, obtained fair discrimination
performances with AUC of 0.74 and 0.77, respectively. The third
model discriminated poorly AD vs VaD with AUC = 0.61. The
fourth model discriminated good HC from AD or VaD patients
with AUC = 0.83. Figure 3 displays an overlay of all four ROC
curves from each classifier for the Reduced Set of Features.

The corresponding cv-ACC values of each model and AUC
median, first and third quartiles are provided as Supplementary
Table S2.

DISCUSSION

Using features selected from routine EEG recordings and
averaged across time for every channel, our results show that
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FIGURE 2 | Overlay of ROC performance curves from each model using the Complete set of feature (S, k, A, c, w, and b). The shadow plot display the
SEM values for each curve. Healthy controls (HC); probable Alzheimer’s disease (AD); vascular dementia (VaD).

HC are separable from dementia patients. Furthermore, we
were also able to differentiate AD from VaD above chance.
Clinical practitioners may not always have the ability to
assess the predominant biomarker values of an EEG recording.
Quantitative EEG spectral analysis is an important tool that
allows extracting such features. We have demonstrated that
the tested features are reasonably robust biomarkers for the
discrimination of dementia groups.

The extracted features were normalized across groups and
with similar class covariance. Under these conditions, the LDA
should have optimal discrimination performance for the set of
predictors used. We extended our analysis by using a Reduced
Set of Features excluding predictors which accounted with small
or not statistically significant correlation for their corresponding
classes. By removing these predictors, we expected better
discrimination performance of our models as dimensionality was
reduced. The performance of our classifier models was Good or
Fair but not Excellent. Both results of performance (AUC) and
accuracy (cv-ACC) of all models were improved when the same
models were generated using the Reduced Set of Features.

Model 1: The discrimination between HC and AD, was
initially determined with AUC = 0.66. As expected when
generating the same classification model with the Reduced

set of features, the performance increased significantly to
AUC = 0.74 and the cv-ACC model was also improved from cv-
AUC = 0.62 to cv-AUC = 0.67, suggesting that these features
contain good discriminatory information. The core features
that have consistently been shown to describe AD patients
is the decrease in alpha power frequency at posterior brain
regions and a general power increase of delta and theta rhythms
when compared with HC (Huang et al., 2000; Babiloni et al.,
2004; Jeong, 2004; Prichep, 2005). Comparing to this model,
similar discrimination performances were achieved by other
studies, reporting accuracies ranging from 70 to 80% (Vecchio
et al., 2013). Although this discrimination power appears to be
reasonable in real clinical setting, these accuracies are not enough
to be clinically useful alone. Based on spectroscopy and additional
EEG variables, another study was able to discriminate AD from
HC with 88% sensitivity and 89% specificity (Rodriguez et al.,
1998). In fact, recent studies were able to demonstrate better
classification performances (0.87 < AUC < 0.94) (Anghinah
et al., 2011; Kanda et al., 2014; Buscema et al., 2015). However,
the subjects sample, conditions of the EEG recording (e.g., subject
awake, eyes open/closed, occurrence of external stimuli), the
recording protocol, data processing and used methods induce
complexity in the analysis and may compromise the conclusion
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FIGURE 3 | Overlay of ROC performance curves from each model using the Reduced set of feature (S, A, c, and w). The shadow plot display the SEM
values for each curve. Healthy controls (HC); probable Alzheimer’s disease (AD); vascular dementia (VaD).

TABLE 1 | Performance values for each final classifier model.

Complete set of
features

Reduced set of
features

Classifier performances cv-ACC AUC cv-ACC AUC

Model 1 (HC vs. AD) 0.62 0.66 0.67 0.74

Model 2 (HC vs. VaD) 0.65 0.68 0.72 0.77

Model 3 (AD vs. VaD) 0.59 0.62 0.57 0.61

Model 4 (HC vs. AD&VaD) 0.70 0.75 0.77 0.83

Average of the CV accuracy (cv-ACC) and AUC performed for each final classifier
using two different sets of features. The Complete Set of Features included a total
of 132 predictors and the Reduced Set of Features included variable number of
predictors based on automatic feature reduction. Values from [0.5–0.6]= Fail; [0.6–
0.7] = Poor; [0.7–0.8] = Fair; [0.8–0.9] = Good; [0.9–1.0] = Excellent.

of such studies (Dauwels et al., 2010). We believe that the
accessibility and low complexity of the tested features (S, k, A,
c, w, b), provided satisfactory information for the discrimination
process and may be further be validated as AD descriptors.

Model 2: The discrimination model for HC versus VaD,
showed the same trend with slightly better results using the
reduced set of features, obtaining an improvement of AUC
from 0.68 to 0.77 and of cv-AUC from 0.65 to 0.72. Studies

reported that at specific brain regions, the correlation between the
underlying structural changes and the EEG power is the marker
that contributes most for the discrimination of VaD patients.
(Szelies et al., 1994; Gawel et al., 2009). Nevertheless, it has
repeatedly been demonstrated that VaD patients have increased
delta power, increased diffused theta power, and decreased alpha
rhythm (Signorino et al., 1995; Babiloni et al., 2004; Reed et al.,
2004; Moretti et al., 2012). In fact, Moretti et al. (2012) suggested
that theta/alpha ratio could be a reliable index for the estimation
of the individual extent of CV damage. This model did not
perform good or excellent. Hence the clinical utility of our
features for the classification of VaD patients is yet unsatisfactory
and should be complemented with other biomarkers such as
neuroimaging.

Model 3: the discrimination of AD vs VaD, obtained the
weakest classification results. In contradistinction to other
models, when we used the Reduced Set of Features, this
model performed poorly. Only poor performances values were
obtained using both set of features with AUC = 0.62 and
AUC = 0.61, respectively. The cv-ACC was also low with cv-
ACC = 0.59 and 0.57 for each set of predictors, respectively.
This is unexpected as one study reported performances of
sensitivity 0.64% and specificity of 77% for distinguishing
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VaD and AD (Walker et al., 2000). Additionally, it has been
shown that 97% of VaD patients yielded a spectrum with
dominant activity between 6.5 and 12 Hz and only 44% of AD
when compared with HC (Signorino et al., 1995). When using the
Complete Set of Features, our results showed poor performance
results and that was due to a high correlation between features
k and b (r = 0.75). This correlation was equally present within
groups: r = 0.80 for HC, r = 0.68 for AD, and r = 0.78 for
VaD. As mentioned above, this added redundancy and overfitted
the LDA model, hence achieving low performance values. On
the other hand, when we tested the Reduced Set of Features, the
model appeared under-fitted. Our tested (and highly correlated)
features k and b represent theta and beta bands which have been
reported as very relevant for discrimination between AD and VaD
(Babiloni et al., 2004). We speculate that in order to achieve better
discrimination between these types of dementia our model lacked
alternative features that characterize theta independently.

Model 4: The discrimination between HC and both groups
of dementia patients (AD&VaD) obtained generally good
discrimination performance for both conditions using the
Complete Set of Features and the Reduced Set of Features with
AUC = 0.75 and AUC = 0.83, respectively. The accuracy of the
model was also good, presenting values of cv-ACC = 0.70 and
cv-ACC = 0.77 for the Complete and Reduced Set of Features,
respectively. AD and VaD patients may suffer occasionally
from similar cognitive impairments that both result in neural
degradation. The literature showed that these two diseases have
many similarities at several electrophysiological markers such
as increased power at lower frequencies, decreased and slower
alpha or increase of theta power (Ernst Niedermeyer, 2010). Our
previous work has demonstrated spectrum similarities between
these groups of patients when compared with matched HC (Neto
et al., 2015). The performance of model 4 revealed that the tested
features characterized appropriately these spectrum differences.
Therefore our results suggest that such features may be relevant
for discrimination between dementia and healthy groups.

We obtained nearly the same performances measures for the
variant models generated with permuted order of the learning
and testing subsets and denoted no significant fluctuation on
the models performances (cv-ACC and AUC) for the different

permutations of subsets. The stable and low variations values
obtained for cv-ACC and AUC across the permutations and the
10-fold CV are indicators of high robustness of the models here
obtained.

CONCLUSION

The EEG features tested in this study for the discrimination
between patients with dementia (AD or VaD) and HC performed
generally well. The discrimination between AD and VaD showed
above chance performance. Discrimination between AD from HC
or VaD from HC was obtained with fair results.

Therefore, we conclude that the tested EEG features hold
relevant discriminatory information, and, in combination with
other markers and other known dementia diagnostic tools
such as neuroimaging, may constitute necessary and valuable
information to screen dementia in a clinical setting.
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