

Graphical Computing Solution for

Industrial Plant Engineering

Marcelo Lima

Master’s thesis in Software Engineering at

Department of Informatics,

University of Bergen

Department of Computing, Mathematics and Physics,

Bergen University College

June 2017

ABSTRACT

When preparing an engineering operation on an industrial plant, reliable

and updated models of the plant must be available for correct decisions and

planning. However, especially in the case of offshore oil and gas installations, it

can hazardous and expensive to send an engineering party to assess and update

the model of the plant. To reduce the cost and risk of modelling the plant, there

are methods for quickly generating a 3D representation, such as LiDAR and

stereoscopic reconstruction. However, these methods generate large files with

no inherit cohesion. To address this, we propose to find a solution to efficiently

transform point clouds from stereoscopic reconstruction into small mesh files

that can be streamed or shared across teams. With that in mind, different

techniques for treating point clouds and generating meshes were tested

independently to measure their performance and effectiveness on an artifact-

rich data set, such as the ones this work is aimed for. Afterwards, the techniques

were combined into pipelines and compared with each other in terms of

efficiency, file size output, and quality. With all results in place, the best

solution from the ones tested was identified and validated with large real-world

data sets.

ACKNOWLEDGEM ENTS

I would like to thank my supervisors Harald Soleim and Atle Geitung

for their support and help to this work. Their guidance and discussions

throughout the whole process was immeasurable and this thesis would not have

come to be without them. Also, I would like to thank the support from APIteq,

especially the help given by Tor-Erik Rong and Per Erik Berger. They were

invaluable in providing the data for this work as well helping to bring the

objectives to a real-world scenario and problem solving.

Marcelo Lima

CONTENTS

1 Introduction .. 5

1.1 Motivation ... 5

1.2 Goals.. 6

1.3 Research questions ... 7

2 Background ... 8

2.1 Point Clouds .. 8

2.1.1 Point cloud treatment ... 8

2.1.2 Reconstruction from point clouds 9

2.2 LAS format .. 10

2.3 Weighted Local Optimal Projection 11

2.4 Moving Least Squares Smoothing .. 12

2.5 Marching Cubes ... 14

2.5.1 Lewiner’s approach .. 15

2.6 Poisson Surface Reconstruction .. 17

2.7 OpenCL ... 18

2.7.1 Graphical Processing Unit ... 18

2.7.2 Validation ... 19

3 Solution... 22

4 Journey ... 23

4.1 Framework ... 23

4.2 Point cloud treatment .. 24

4.2.1 WLOP ... 24

4.2.2 MLS Smoothing... 29

4.2.3 Naïve point cloud simplification 33

4.3 Mesh generation ... 34

4.3.1 Marching cubes ... 34

4.3.2 Poisson Surface Reconstruction 44

5 Results .. 46

5.1 Point Cloud Treatment .. 46

5.1.1 WLOP ... 46

5.1.2 MLS Smoothing... 51

5.1.3 Naïve approach ... 57

5.2 Mesh Generation .. 58

5.2.1 Marching Cubes .. 58

5.2.2 Poisson Surface Reconstruction 64

5.3 Pipelines .. 69

5.3.1 Marching Cubes .. 70

5.3.2 Poisson .. 78

5.4 Pipelines Comparison ... 86

6 Conclusion .. 89

6.1 File Size ... 89

6.2 Efficiency ... 89

6.3 Fidelity .. 90

6.4 Pipeline Identification .. 90

6.5 Solution ... 91

7 Validation ... 92

8 Further work ... 97

8.1 Color Information .. 97

8.2 Parallelization .. 98

8.3 Graphical User Interface .. 98

9 References ... 99

LIST OF FIGURES

A point cloud with several artifacts ... 9

Non-uniform point cloud ... 11

Repulsion and attraction components applied to point cloud 11

Converged point cloud .. 11

MLS smoothing first step .. 12

MLS smoothing second step .. 13

Examples of Gauss functions with different parameters 14

Cube marching classification ... 15

Face added per the lookup table ... 15

Divergence operator examples ... 17

Binary Sierpiński triangle .. 20

Average time to generate sets of different size 21

Subset of point cloud representing a railing section 25

Original point cloud without color .. 26

WLOP 2% over 35 iterations on radius of five 27

WLOP 10% over two iterations on a radius of 0.05........................... 27

WLOP 10% over 35 iterations with a radius of 0.05 28

WLOP 10% over 10 iterations with a radius of one........................... 28

MLS with 0.01 search radius and 0.0001 for Gauss parameter 31

MLS with 0.1 search radius and 0.0001 for Gauss parameter 31

Railing detail from original point cloud ... 32

Railing detail after MLS smoothing... 32

Railing after naïve simplification ... 34

Bi-dimensional grid representing point densities 37

Grid with connecting edges ... 37

Edges with created vertices ... 38

Vertices positions set by interpolation ... 39

Resulting vertices .. 39

Edge numbering for marching cubes ... 41

Resulting shape ... 42

Marching cubes output for 1283 ... 43

Marching cubes output for 2563 ... 43

Poisson reconstruction with octree depth of 8 45

Poisson reconstruction with octree depth of 10 45

Detail of railing output from WLOP ... 47

Heat map for WLOP with 2% reduction over 35 iterations on radius of

five .. 48

Heat map for WLOP with 10% reduction over 10 iterations on radius

of one .. 49

Heat map for WLOP with 10% reduction over 35 iterations on radius

of 0.05 ... 50

Computation time for WLOP ... 51

Protrusions from sidewalls from MLS .. 52

Flaring on railing from MLS ... 52

Heat map for MLS with a search radius of 0.01 53

Heat map for MLS with a search radius of 0.1 54

Heat map for MLS with a search radius of 0.5 55

MLS smoothing with a radius of 0.5 .. 56

Computation time for MLS ... 57

Heat map for MC with a grid of 1283 .. 59

Heat map for MC with a grid of 2563 .. 60

Comparison of sidewalls: MC 1283 ... 61

Comparison of sidewalls: MC 2563 ... 61

Heat map for MC with a grid of 5123 .. 62

Computation time for marching cubes .. 63

Heat map for Poisson with octree depth 8 ... 65

Heat map for Poisson with octree depth 9 ... 66

Poisson 9 with higher threshold .. 67

Heat map for Poisson with octree depth 10 68

Computation time for Poisson reconstruction 69

WLOP and Marching Cubes ... 71

MLS and Marching Cubes ... 73

Naïve and Marching Cubes ... 75

Crude and Marching Cubes ... 77

WLOP and Poisson ... 79

MLS and Poisson .. 81

Naïve and Poisson ... 83

Crude and Poisson .. 85

Computation time for the pipelines ... 86

File size for the pipelines ... 87

Distance for the pipelines .. 88

Cable spool point cloud ... 93

Cable spool mesh .. 93

Cable spool distances .. 94

Support vessel deck point cloud .. 95

Support vessel deck mesh .. 95

Support vessel deck distances .. 96

Comparison between per face and per vertex coloring 98

LIST OF TABLES

Marching cubes ambiguity example ... 16

Average time to generate set S .. 21

Average time to generate set P ... 21

Loading time for LAS.. 23

LIST OF CODE SNIPPETS

Code 1: Custom point cloud simplification .. 33

Code 2: Kernel for creating cuverille grid .. 35

GLOSSARY

CAD Computer Aided Design

CGAL Computational Geometry Algorithms Library

CLI Command Line Interface

Embarrassingly

Parallel

A class of problems that can be easily broken

into parallel tasks

Isosurface A surface that represents points of constant

value

Gaussian A bell-curve mainly used in statistics to describe

a normal distribution

GPGPU General Purpose Graphical Processing Unit

GUI Graphical User Interface

LAS LASer File Format

LiDAR Light Detection and Ranging

LOP Locally Optimal Projection

M C Marching Cubes

M LS Moving Least Square

Octree A tree with its internal nodes containing eight

children that can be used for data modeling

PLY Polygon File Format

WLOP Weighted Locally Optimal Projection

Introduction | 5

1 INTRODUCTION

1.1 M OTIVATION

In order to improve reliability, efficiency, accuracy, and effectiveness of

engineering planning, decision making, and ultimately execution, the precise

modeling and representation of data pertinent to the project is of utmost

importance. This is especially true with industrial plants, such as the oil and

gas refineries and production facilities, which have a high degree of complexity

and present elevated consequences associated with deficiently planned and

executed engineering projects.

The generation of these models, therefore, reside at the root upon which

major engineering project are built, defining its final quality and success. In an

ideal scenario and with the advent of computer-aided designs (CADs), the

whole stream can be represented digitally, from the initial planning,

construction, servicing, and upgrades, keeping a dependable record of the

current state of the project to the level of detail required for any future work.

Yet, in reality, this is often not the case, with changes to the plant not being

recorded, be it minor alterations, ad-hoc solutions, missing documents, or

deformations and damages from use and environment. On the extreme side of

the spectrum, there are also many instances of older plants having their original

plans represented as blue prints and no management of changes to the facility.

To assess the issue of unreliable models, engineers must rely on on-site

surveys to gather an updated version of the necessary data, which can then be

transmuted into a format compatible with the tools used in the project, such

as CAD models. However, this solution has some mentionable drawbacks: it is

possibly a time-consuming option, it can involve several personnel, it can have

a high cost – particularly on offshore projects –, and it is prone to variance in

the quality of the data and final product. The latter can be further expanded

and attributed to the human component of the process, where different

technical abilities, mistakes, and pressure to keep schedule might exacerbate

the variance in quality

Currently, industries have the option of using automatically generated

models of their industrial plants as a faster and lower-risk alternative to on-site

surveying. Methods such as Light Detection and Ranging (LiDAR) and Stereo

6 | Introduction

Imaging can be used to produce point clouds, which represent three dimensional

objects or scenes by means of infinitesimal points expressing the surface of the

modeled subject.

Despite the lowered costs, turnaround, and operational risk, this

surveying method has drawbacks of its own: the model generated is highly

abstracted and, especially in topologically complex environments, susceptible

to many artifacts, such as noise, missing data, and outlying points. This means

that part of the cost saved during the automated surveying is actually

transposed to the transmutation phase of the process, requiring skilled engineers

to convert carefully the point cloud into a usable model.

1.2 GOALS

The goal of this work is to compare techniques and strategies to generate

a model of an industrial plant from point cloud data that is concise and small

enough to be shared and streamed across teams while preserving the necessary

information to assist engineering, design, planning, and operations.

Moreover, the scope deals with a particular type of point clouds:

stereoscopically generated point clouds of large industrial plants. The data set

used in this work comes from APIteq, a company in Bergen, Norway, specialized

in visualization for the oil and gas industry. Their portfolio includes 360° Visual

Assessment Management, a tool for visualizing oil and gas plants in a 360°

format, and are now investing in the tridimensional visualization using the

reconstruction of stereoscopic images taken from a plant. In that sense, the

point clouds with which this work will be dealing are of varying density

throughout the data, high artifact count, such as noise and “holes”, very large

binary size, and topologically complex.

Finally, concerning the complexity of the point clouds that are in focus,

lower computational times are therefore a major metric, and exploration into

high performance computing languages, data models and algorithms, and

exploration into parallelization and harnessing heterogeneous computational

environments, are part of this work.

Introduction | 7

1.3 RESEARCH QUESTIONS

This work aims to answer if it is possible to compress the data with

little engineering information loss in an efficient manner. That is, can an

industrial point cloud generated by stereoscopic reconstruction, with all their

inherent properties, be distilled without sacrificing much fidelity in terms of

information needed to assess an engineering decision, such as dimension and

topology, while being completed in a quick and lightweight fashion?

8 | Background

2 BACKGROUND

2.1 POINT CLOUDS

Point cloud is a representational method consisting of individual points

in some coordinate system. The points are infinitesimal and carry no

information of size or length; nevertheless, they can represent any property

associated with that particular position in space, such as color, normal vector,

global positioning system (GPS) coordinates. This format is often used to

represent surfaces in three-dimensional space, such as terrains from aerial

scanning or objects and environments from Light Detection and Ranging

(LiDAR) scanning.

2.1.1 Point cloud treatment

Point clouds possess several properties and each can vary greatly. The

density of the point cloud relates to how many points a given volume in space

has; thus, in the absence of noise, a denser a point cloud will have a higher

fidelity. Noise in a point cloud relates to the presence of outlying points, that

is, points that do not belong to any surfaces of the modeled subject; e.g., a

noisily modeled Euclidean plane will be misrepresented as a volumetric shape.

Besides noise, another artifact that can be present in point clouds relates to the

aforementioned density, in which the number of points representing a surface

is lower than the Nyquist frequency that samples such surface, therefore

rendering a lossy model. The size of the point clouds directly relates to the

shear amount of points in a given collection; thus, larger datasets require

heavier computing power. The last property relevant to this thesis is the

topology of the modeled subject, which relates to the set of properties preserved

when an object is deformed; for instance, an ellipsoid is topologically equivalent

to a sphere, since it can be obtained by deforming the latter.

Figure 1 shows the detail of the data set being used in this thesis serving

as an example of a noisy point cloud. In this example, outlying points and

severe variation in density can be observed.

Background | 9

Figure 1: A point cloud with several artifacts

2.1.2 Reconstruction from point clouds

Due to its nature, there is no cohesion between the points as they are

what the name suggests, merely a cloud of points. That means that they are

very adequate to represent sample points – a discreet representation model, in

which each point corresponds to a sampled value from a LiDAR scan, for

instance – as opposed to continuous information, such as a parametric

representation would. This is of utmost importance to this study, since the

continuous representation of an industrial plant is key for precision and,

depending on the representational model adopted, a decisive factor on the final

file size.

In other words, if a parametric representation is used, that is, a

representation that can describe the information through parametric functions,

and therefore having infinite resolution, need not worry about the precision

level. On the other hand, a discreet representation will only supply half of the

resolution of its own sampling, meaning that, for high-precision applications,

the number of samples can increase drastically and, by consequence, the file

size.

10 | Background

The recovery of the original sampled object is a subject of intense study

and techniques vary vastly. In its simpler form, a point cloud might represent

a two-dimensional curve with enough sample points so that a linear

interpolation might render sufficiently precise results. This is rarely the case;

as it was discussed before, point clouds frequently possess artifacts and the

modeled object is often more topologically complex.

Aiming towards industrial plant reconstruction, Pang et al [1] proposed

a reconstruction solution that separates the process in three sub-problems: pipe

modeling, plane classification, and object recognition. The work acknowledges

that industrial plants share certain characteristics such as an abundance of

pipes and large planes and leverage these to generate a CAD model of the

original plant. On his dissertation, Rabanni [2] explored different techniques to

avoid human intervention on the reconstruction of industrial installations from

point clouds. The process involved point cloud segmentation, object recognition,

and model fitting, and also relied on the intrinsic characteristics of industrial

plants to focus the effort. With the expansion of the field of surface

reconstruction in mind, Berger et al [3] released a state-of-the-art report on

surface reconstruction in which different techniques are categorized per

parameters, requirements, and robustness. Moreover, this work highlights

similarities between the techniques and was an influential guide on the decisions

taken during this thesis.

2.2 LAS FORM AT

The LASer file format is a means to represent point cloud data in a

standard fashion ratified by the American Society for Photogrammetry and

Remote Sensing (ASPRS). The current latest version by the time of writing is

1.4, approved on November 14, 2011 [4]. Though primarily aimed at providing

a public format for point clouds that would overcome the barriers of proprietary

formats, the specification is actually capable of representing any 3-dimensional

tuplet.

The format is able to carry additional information about a point besides

its position, such as color, GPS time, and LiDAR specific information. However,

the scope of this work focuses mainly on a point’s location and color.

Background | 11

2.3 W EIGHTED LOCAL OPTIM AL PROJECTION

In order to address the artifacts of point clouds, Lipman et al proposed

the locally optimal projection algorithm [5] to approximate the underlying

surface, thus reducing outlying points and noise. It also strongly improves point

density uniformity by defining repulsion and attraction parameters to each

point, consequently keeping the projected point set at a regular spacing. These

parameters can be thought of as springs connecting each point that becomes

overstretched if they are too far apart and, similarly, become compressed if they

are too close together. With each iteration, the points tend to converge to a

uniform distribution. To illustrate the concept, a simple non-uniform point

cloud of five points can be used with the points clustering around two regions.

Figure 2: Non-uniform point cloud

If the parameters of repulsion and attraction are considered, there will

be tension and compression forces being applied to the points.

Figure 3: Repulsion and attraction components applied to point cloud

Upon convergence to a state closer to equilibrium, the points are more

uniformly distributed.

Figure 4: Converged point cloud

12 | Background

Noticing a lack of clear-cut convergence on the algorithm, Huang et al

proposed a modified version called weighted locally optimal projection [6], which

introduces locally adaptive density weights that directly affect the repulsion

and attraction of the points within a given region.

2.4 M OVING LEAST SQUARES SM OOTHING

An alternative method for reducing artifacts such as outliers and noise

is to use Moving Least Square projection [7] [8] [9] to generate a smooth point

set projected into an implicit surface defined by the original data set. This

method works by fitting a bi-quadratic polynomial, i.e. a quadratic polynomial

with two variables, and projecting a given point onto it. It comprises of two

steps.

First, to project a point 𝑟 , a reference plane 𝐻 is calculated using

weighted least squares optimization, where the weights are based on the vicinity

of 𝑟 by using an always-positive smooth decreasing function. That means that

a Gaussian function can be used as the weighing function. In that sense, the

weights are based on the distance between 𝑞 and the neighbor 𝑝𝑖. This step is

trying to minimize the distances of 𝑝𝑖 to 𝐻, as in:

∑〈𝑛, 𝑝𝑖 − 𝑟 − 𝑡𝑛〉2
𝑁

𝑖=1

𝜃(‖𝑝𝑖 − 𝑟 − 𝑡𝑛‖)

Where 𝑛 is the normal, 𝜃 is the weighing function, and 𝑞 = 𝑟 + 𝑡𝑛. See

Figure 5.

Figure 5: MLS smoothing first step

Background | 13

Second, with 𝐻 defined, we can consider 𝑞𝑖 to be the projection of 𝑝𝑖

onto 𝐻, and 𝑓𝑖 to be the orthogonal height of 𝑝𝑖 to 𝐻 as in 𝑓𝑖 = 𝑛 ∙ (𝑝𝑖 − 𝑞). We

can then minimize 𝑓𝑖 in relation to a curve 𝑔, as in:

∑(𝑔(𝑥𝑖, 𝑦𝑖) − 𝑓𝑖)
2

𝑁

𝑖=1

𝜃(‖𝑝𝑖 − 𝑞‖)

Where (𝑥𝑖 , 𝑦𝑖) is 𝑞𝑖 in terms of 𝐻 coordinates. See Figure 6.

Figure 6: M LS smoothing second step

It is worth noting that the Gaussian is a bell curve centered on 𝜇 that

tapers off according to 𝜎 with an amplitude given by 𝑎. The function is defined

as:

𝑓(𝑥) = 𝑎 𝑒
−(𝑥−𝜇)2

2𝜎2

In this function, 𝜇 is usually referred as the mean and 𝜎 as the standard

deviation. Figure 7* shows different shapes for the Gauss function according to

the parameters presented here.

*
 This figure was not created by the author of this thesis. It was taken from

Wikipedia [29] and is of public domain

14 | Background

Figure 7: Examples of Gauss functions with different parameters

2.5 M ARCHING CUBES

With the growing presence of point clouds in modern industry and

research, there is a great interest in converting this format into other domains,

such as surface meshes, for several applications from medical imaging, geological

reconstruction [10] to sculpture scanning [11]. Marching cubes [12] is an

algorithm that extracts an isosurface, that is, a surface that represents a single

value, and generates meshes by sampling a scalar field 𝑓:ℝ3 → ℝ . This

technique is specially fitted for regular scalar fields structured as a

tridimensional grid, though other representations have been used for marching

cubes, such as octrees [13].

Given a grid, this method works by iterating over each cell and

classifying it according to each of its corners in terms of its value, i.e. if it is

above or below the isovalue 𝛼. That means that each cube can be classified as

one of 256 possible values, or a byte: two values per vertex, and eight vertices

per cell (28 = 256). If 𝛼 = 0, for instance, Figure 8 shows a cube where vertices

1, 3, 4, and 8 are positive, and the remaining vertices are negative. This would

translate to 10110001, where low bits mean negative vertices and high bits

mean positive vertices. With the classification in hand, marching cubes uses a

lookup table to create a surface inside the cell, illustrated in Figure 9. The

isosurface will therefore separate positive from negative vertex values, in our

example.

Background | 15

Figure 8: Cube marching classification

Figure 9: Face added per the lookup table

2.5.1 Lewiner’s approach

This simplistic approach might generate ambiguities, leading to cracks

and inconsistencies, and therefore various enhancements and techniques have

been introduced. Table 1 below presents an example of such an ambiguity in a

2D domain. Both the solutions are correct but only one will maintain

topological consistency. A particular improvement proposed by Lewiner [14]

guarantees a topologically correct result and uses a more elaborate lookup table

to solve ambiguities. His work proposed that, after performing the classical

classification, the entries should be compared per face against a case table that

would specify which test should be performed on the particular face of the cube.

The results of the tests would then be mapped against one of 730 entries of the

lookup table for face creation. To guarantee the correct topology, not only

adjacent cubes are matched according to the tests performed, but also the

internal ambiguities are resolved.

16 | Background

Table 1: Marching cubes ambiguity example

Situation Explanation

Original case. Considering 𝛼 = 0 ,

vertices in red are positive and black

vertices are negative.

Connected case. The isoline can

separate the square leaving the two

positive vertices inside the same

surface.

Disconnected case. The isoline can

separate the square leaving the two

negative vertices in different surfaces.

Background | 17

2.6 POISSON SURFACE RECONSTRUCTION

Similar to Marching Cubes, Poisson Surface Reconstruction [15] [16] is

a method for generating meshes from point clouds; however, it models the

problem as a spatial Poisson problem to find the indicator function and then

extract the isosurface.

An indicator function is a function that, for every point inside the

model, its value is 1, and for all other points, the value is 0. Therefore, its

gradient is zero everywhere, except for the surface, where it is equivalent to the

inverse of the normal of the surface. With that in mind, the authors of this

method suggested that, by using the normals from a sampled model, they could

calculate the indicator function by inverting the operation and trying to match

an indicator function that best matches the normal vector field.

In other words, if we consider �⃗� to be the vector field that defines the

surface normal and 𝒳 to be the indicator function, we can model the problem

as 𝑚𝑖𝑛𝒳‖∇𝒳 − �⃗� ‖. Moreover, if using the divergence operator, they can be

equaled, as in ∇ ∙ ∇𝒳 = ∇ ∙ �⃗� .

The divergence operator, denoted by ∇ ∙, measures the flow out of a

surface surrounding a given point, analogous to the curl function that measures

the rotation of the vector field surrounding a point. For instance, Figure 10,

shows three cases of a vector field surrounding point 𝑃. In the first case, the

divergence of the field is positive, as there is a positive outflow from the point.

The second case also has a positive divergence, however of a smaller magnitude.

Finally, the third case has a value of zero, since all the inflow and outflow

cancel each other.

Figure 10: Divergence operator examples

18 | Background

With that in mind, the problem can then be modelled as a Poisson’s

equation such that the Laplacian of 𝒳, which is defined for the Euclidian space

as the divergence of a gradient (∇ ∙ ∇, or simply ∆), can be equaled to the above

statement and arriving at ∆𝒳 = ∇ ∙ ∇𝒳 = ∇ ∙ �⃗� .

This method is very robust to noise and is able to keep high frequencies

from the surface, that is, sharp corners or rapid variations on the surface

normal, as demonstrated in [15], however it relies on having normals sampled

with the point cloud, which is not the case for the stereoscopically generated

data set used for this work. Nonetheless, they can be computed beforehand with

the penalty of introducing one extra step.

2.7 OPENCL

OpenCL is an industry standard framework for programming

heterogeneous systems, i.e., computing systems that involve multiple

architectures within the same context. A ubiquitous example is the modern

home computer and cellular phones, which usually have a general-purpose CPU

and a dedicated GPU. OpenCL allows a program to be written in a single

language and have it loaded into the compliant processors and executed with

guarantee of the standard’s definitions. Such definitions include minimum

accuracy requirements, data type sizes, atomicity, among others; therefore, the

developer can focus on the algorithm as opposed to architectural peculiarities,

and trust that it will execute as expected on different architectures. Moreover,

the framework defines how drivers should load the program, queue their

execution, and handle memory.

A valuable advantage of OpenCL is being able to treat a GPU as a

general-purpose processor, since, if it complies with the standard, it can be

executed just like an OpenCL programmer would expect any other processor to

execute. Considering this, the architectural properties of the GPU are still

present, but they can be tapped into without necessarily aiming for graphical

computation.

2.7.1 Graphical Processing Unit

The graphical processing unit, or GPU, is a specialized hardware

conceived with the purpose of handling image generation and rendering. One

common trait is the highly parallel architecture in which they are designed.

More precisely, they leverage a data parallel model – consequence of handling

pixels in an image – which consists of a single task being performed concurrently

Background | 19

across separate parts of the data. This characteristic of the GPU fomented the

exploitation of the hardware for other computations besides image processing,

also known as general-purpose computation on graphical processing units

(GPGPU). Though general-purpose, these applications usually are aimed at

embarrassingly parallel problem solving, meaning solutions that require a large

number of independent computations.

2.7.2 Validation

The motivation behind using this platform for performing the intense

bulk of the computation relies on the aforementioned parallelism and ability to

harness GPU processing characteristics, which are aligned with the properties

of the problem-space being studied, i.e. an embarrassingly parallel workload

involving many floating-point calculations.

To validate the strategy, a simple computation was performed using

three different computing models: serially on the CPU, in parallel on the CPU,

and in parallel on the GPU. The computation was designed to be

embarrassingly parallel; thus, it calculated a Sierpiński triangle [17] by defining

the set 𝑆, with indices denoted by 𝐼 as:

𝑆 = {∑ 2𝑛 (⌊
𝑖

2𝑛⌋𝑚𝑜𝑑 2) (⌊
𝑖

2𝑛+256⌋𝑚𝑜𝑑 2)

𝑏

𝑛=0

}

𝑖∈𝐼

This equation is a modification of the original work by the Polish

mathematician that operates in a binary architecture, repeating and

compounding itself every 8 bits – represented by the division by 2256, and

saturating at 𝑏 bits – represented by the sum of the individual b bits. To

illustrate the expected result, a visualization of 𝑆 with |𝑆| = 16384 and 𝑏 = 6

follows:

20 | Background

Figure 11: Binary Sierpiński triangle

Furthermore, a second step was added to generate a set 𝑃 which would

increase the cycle count per element computation by appending the following

calculation to the value of 𝑆:

𝑃 = {𝑠𝑖
𝑠𝑒𝑒𝑑}𝑖∈𝐼

The set would then be generated 𝑥 times, so that the average time

required to populate 𝑆 could be calculated.

With the above algorithm in hand, the test was performed on a 2.4GHz

Intel Xeon CPU with 8GB of RAM and 8 logical processors, and with a 1GHz

NVidia GeForce GTX 680 GPU with 6GB of RAM. The pertinent variables to

run the test were defined as |𝑆| = 2(167), 𝑎 = 64, and 𝑥 = 25. The results are

a good representation of the nature of parallel computing on GPUs, where the

average time to generate the sets are as follows:

Background | 21

Table 2: Average time to generate set S

Method Average time (ms)

Serial on CPU 687.11

Parallel on CPU 196.90

Parallel on GPU with OpenCL 305.53

Table 3: Average time to generate set P

Method Average time (ms)

Serial on CPU 6,729.72

Parallel on CPU 1,938.32

Parallel on GPU with OpenCL 353.09

Figure 12: Average time to generate sets of different size

The results clearly show a consistent slower performance for the serial

model in both sets; as well as the overhead involved in setting up and offloading

processing to the GPU, reflected as a higher performance with CPU parallelized

model when the cycle count per element computation does not compensate for

the overhead. With that in mind, as long as the parallelized instruction block

is complex enough, the overhead time will dissipate in relation to the overall

time required to compute the whole instruction set. In the presented test case,

the simple addition of an exponentiation was enough to overcome the

underlying overhead.

22 | Solution

3 SOLUTION

Industrial plants share several geometrical similarities, such as the

abundance of cylinders, boxes, and tori [18]. This can be expected to arise from

the railings, piping, tanks, straight walls and ceilings, and valves, often present

in industrial plants. As such, an automatic specialized algorithm could be

anticipated [1]. However, the variance in the nature of the point clouds

undermines a fully automated solution, and propositions that do not require

human input often rely on a dense and artifact free point cloud [1] [2] [19].

Therefore, a compromise between automation and manual configuration would

render the most general and useful solution.

Several open source software packages, such as MeshLab [20] and

CloudCompare [21], provide a human supervised suite of tools, with pre-built

algorithms for point cloud and mesh processing. However, MeshLab falls short

in compatibility with LAS format, requiring a conversion prior to loading the

data set. Furthermore, larger files, such as the ones this thesis focuses on, often

result in crashes or require vast amounts of time in current common computers

to perform most of the processing algorithms. CloudCompare, on the other

hand, handles point clouds more efficiently, being built specifically for this

matter; however, it too has an execution time which is larger than what this

thesis is aiming to achieve, and does not present good robustness with regards

to noisy point clouds. Both solutions, being built for general use, also fall short

in ease-of-use when configuring the parameters for the processing algorithms.

Consequently, a series of attempts with different parameters are needed to hone

in the desired result, with the inconvenient fact that each try takes several

minutes to compute.

As such, the proposed solution for the scope of this work is a lightweight

software that can receive point clouds as LAS files and output a mesh

representation of the data set, without presenting the shortfalls found on freely

available open source packages. That is, the software should be able to handle

large files without crashing or requiring too many resources – in terms of

memory or time –, and perform well on common modern computers. It also

means that it should be robust to noisy point clouds, outputting a reliable

representation of the original dataset. Finally, the solution should be easy to

configure and should output a small file size.

Journey | 23

4 JOURNEY

In order to achieve the desired results, this work was divided in three

parts: the construction of a framework to handle point clouds and meshes, the

comparison of different forms of point cloud treatment algorithms, and finally

the generation of the mesh representation.

4.1 FRAM EWORK

Considering the large size of LAS files, an efficient way to load them for

handling and processing, consuming the minimal amount of memory and time

as possible, is imperative. As such, C++ was the language of choice for its low-

level capabilities and small footprint, stemming from the “you don’t pay for

what you don’t use” philosophy behind the C++ community. Furthermore,

OpenCL – a C-based API – can be tapped into with just a single wrapper

header file, a characteristic that will be useful on the next stage of the process.

With that in mind, a struct for the data format was defined with no

data padding. This allowed for an in place reading directly from the binary file

into the software’s local memory by using the built-in reinterpret_cast

operation. More specifically, this method allows the memory from the LAS file

to be directly mapped to the working memory of the application, with no need

to interpret or parse its contents, as opposed to reading the file and generating

each data packet individually depending on its contents. By using a direct read,

the loading process was 38.7% faster than using a value conversion method as

per Table 4, which describes the average loading time of a 4.6GB point cloud

containing 181,372,708 points on an Intel Xeon 2.4GHz and 6GB of RAM.

Table 4: Loading time for LAS

Method Average time (s)

Value conversion reading 99.40

In place reading 71.67

However, because of the direct mapping of memory through

reinterpret_cast, the struct could not take advantage of inheritance to

represent the different format described by the 1.4 LAS specification, which

share a good portion of their fields. This is due to the fact that, when inheriting,

24 | Journey

the struct would require and extra field pointing to its base struct, and

directly mapping would fail to populate the field properly. That meant that

each different format was a separate struct and, consequently, all function calls

that handled the point cloud had to be templated to match the format that

was loaded.

This has advantages and drawbacks. The main advantage is that, by

not using inheritance, there is no virtual table lookups to resolve the hierarchy,

speeding up the execution and allowing for static compiler optimization.

However, because of the templated functions, the compilation time is greater

and the binary output is larger, since for each separate LAS format, a new

version of every templated function had to be generated at compile-time.

4.2 POINT CLOUD TREATM ENT

Once the framework was in place, different methods on how to treat the

point cloud in order to reduce its artifacts were compared.

4.2.1 WLOP

As a method to clean the point cloud, reduce its file size, and increase

the uniformity of the data set, while still maintaining a reliable point cloud

representation, the WLOP algorithm was first tried. The motivation behind the

use of this technique can be traced back to State of the Art publication by

Berger et al [3]. Given the nature of the point cloud, specifically the non-

uniformity of the sampling, along with the noise, and outliers, Berger classified

the LOP as a strong candidate for the treatment of the point cloud. With the

improvements proposed by Huang et al [6] over the original work [5], an

implementation from the CGAL library [22] was used to validate its

applicability in the working set. For that matter, a subsection of the

aforementioned point cloud was used to validate the method, shown in Figure

13, containing 8,728,342 points with a file size of 290MB.

Journey | 25

Figure 13: Subset of point cloud representing a railing section

WLOP has three main parameters: radius, iterations, and reduction.

 Radius stablishes a radius of neighbors around a point. This

parameter is very important as it results in irregular outputs if

too small, or high impact on runtime if too large. The desired

value usually means a radius that includes two neighboring radii.

Moreover, this value can be automatically calculated by the

algorithm by measuring the average spacing between points.

 Iterations refers to how many iterations will be run as the points

converge. If the value is too high, there will be extra

computation that does not contribute in a significant manner to

the uniformization of the set, whereas a low number might not

be enough to reach the optimum distribution.

 Reduction specifies the number of points that should be kept

from the original set. It is expressed as a percentage of the

original cardinality.

26 | Journey

With that in mind, details on different tries and combinations can be

noticed on the following figures.

Figure 14 is the original point cloud with no color information for a

better comparison. Figure 15 presents the results of WLOP reducing to 2% of

the original size, over 35 iterations, on a radius of five. The output file was

3.4MB, and the computation took 35 hours. Figure 16 presents the results of

WLOP running an automatically detected radius (calculated to be 0.05), over

2 iterations, and 10% reduction. The output was 17MB, and the computation

took one minute and ten seconds. Similarly, Figure 17 shows a very similar

result with the same configuration, except for executing 35 iterations. The

computation took eleven minutes and two seconds to finish. Finally, Figure 18

presents the most promising results that could be extracted. It is the result of

reducing the point cloud to 10% of its original size over 10 iterations with a

radius of one.

Figure 14: Original point cloud without color

Journey | 27

Figure 15: WLOP 2% over 35 iterations on radius of five

Figure 16: WLOP 10% over two iterations on a radius of 0.05

28 | Journey

Figure 17: WLOP 10% over 35 iterations with a radius of 0.05

Figure 18: WLOP 10% over 10 iterations with a radius of one

Journey | 29

It is worth noting how the radius is the largest contributor to how well

the algorithm will perform, both in time as in output set. For instance, Figure

17 has over three times more iterations than Figure 16 with no significant gains.

On the other hand, a big increase in the radius severely hampered the quality

of the output, as observed in Figure 15 on page 27 with strings for railing and

holes on the sidewalls. This is due to the radius being much larger than the

diameter of the railing, compressing all points with the region into a single

string.

4.2.2 M LS Smoothing

The second point cloud treatment to be tested was the moving least

squares smoothing [7] [8] [9] [23], which can be used to do higher polynomial

interpolation of the surrounding points. This method is meant to aid in the

treatment of outliers, noise, and holes, as discussed in 2.4. The motivation

behind using this method was its strength against outliers and noise,

characteristics that are abundant in our data sets. Furthermore, it has been

implemented into open source software, making it easier and faster to test,

validate, and compare.

Its main parameters, among others, are the Gaussian standard

deviation, which is discussed by Tekumalla et al [9] on section 4, and the search

radius, which defines the local zone of influence. However, both parameters are

related; as you increase the search radius, the standard deviation should also

increase to account for the larger set of points. Therefore, they boil down to

one main parameter: the search radius.

By using Cloud Compare’s [21] implementation of the algorithm, the

railing model was subjected to the MLS smoothing using different parameters.

Using the same railing model of 8,728,342 points as before, the first setting used

a search radius of 0.01 and 0.0001 for the Gaussian parameter, and completed

in ~110 seconds with the output illustrated by Figure 19 below. As expected,

increasing the deviation by one order of magnitude without increasing the

search radius produced a very similar result with comparable compute time of

~105 seconds. In fact, the results are so similar that they are indistinguishable

when presented as figures in this document; therefore, it was omitted.

However, in order to effectively extract the underlying surface function,

a larger search radius is needed. Figure 20 shows the output of a search radius

increased by one order of magnitude and 0.0001 for the Gauss parameter. This

computation took significantly more time and lasted for 149 minutes. Similarly,

30 | Journey

using the same increased search radius, but also increasing the Gauss parameter

for standard deviation by one order of magnitude produced the same results as

before: similar outputs, similar computing times.

It is interesting to note that the weighting of the moving squares has

little effect in our data set. As mentioned by Takumalla, this parameter has

more of an impact on high frequency changes to the surface curvature. However,

our data set suffers greatly from holes, which cannot be compensated for by

applying a broader weighting function.

Using a larger search radius, on the other hand, gave use noticeable

changes, as can be noticed by Figure 21 and Figure 22. The larger vicinity was

even able to close the railing and restore a cylindrical surface shape.

Lastly, is worth mentioning that this method does not reduce the file

size by itself. It could however be coupled with a down sampling algorithm to

achieve this result.

Journey | 31

Figure 19: MLS with 0.01 search radius and 0.0001 for Gauss parameter

Figure 20: M LS with 0.1 search radius and 0.0001 for Gauss parameter

32 | Journey

Figure 21: Railing detail from original point cloud

Figure 22: Railing detail after MLS smoothing

Journey | 33

4.2.3 Naïve point cloud simplification

In order to simplify the point cloud without performing uniformization

of the data, a naïve method was tested at this point. The main drive behind

this approach is to reduce the file size so that it can be easily handled, while

still working with a point cloud representation of the model. The process

consists of shuffling the point cloud data set 𝑆 and picking 𝐾 elements, where

𝐾 ≤ |𝑆|. This will randomly select a subset of the original data while preserving

all information regarding the selected points. Note that this method does not

perform any attempts to correct noise, outliers, or gaps in the point cloud. A

C++ snippet can be seen in Code 1.Figure 23, where the file was reduced from

290MB to 79.4MB while maintaining all channels from the original file, such as

color, number of returns, or any other present initially.

Code 1: Custom point cloud simplification

The algorithm picks a fraction of the points randomly and creates a new point cloud

with the selected subset

1 template<int N>
2 void simplify(const LASFile<N> & lasFile, const double factor) {
3
4 // Create a new file
5 LASFile<N> newFile(lasFile.filePath));
6
7 // Calculate the new size
8 uint64_t newSize = static_cast<uint64_t>(
9 lasFile.pointDataCount() * factor / 100.0);
10
11 // Gather the indices and shuffle them
12 std::vector<uint64_t> indices;
13 indices.reserve(lasFile.pointDataCount());
14 for (uint64_t i = 0; i < lasFile.pointDataCount(); i++) {
15 indices.push_back(i);
16 }
17 std::random_shuffle(indices.begin(), indices.end());
18
19 // Pick the first K indices
20 indices.resize(newSize);
21 newFile.pointData.reserve(newSize);
22
23 // Push the selected points
24 for (auto & index : indices) {
25 newFile.pointData.push_back(lasFile.pointData[index]);
26 }
27
28 newFile.save();

29 }

34 | Journey

Figure 23: Railing after naïve simplification

4.3 M ESH GENERATION

With different techniques of point cloud treatment in hand; different

mesh generation algorithms were tested with the output files. The goal is to

identify the best pipeline now that all the pieces are in place. For that matter,

different meshing algorithms were tested.

4.3.1 M arching cubes

The marching cubes algorithm [12] [13] [14] [24] was chosen for its

simplicity and ubiquity. The motivation behind choosing an algorithm for its

simplicity lies on the fact that this would be a stepping-stone into the scope of

transforming the representation, therefore, a tried and tested simple approach

would be quick to implement and verify.

As an actual implementation of the marching cubes algorithm, Lewiner

et al [14] proposed an efficient implementation using an extended look-up table.

Furthermore, the source code for CPU execution was made available by the

authors, making it quicker to test and verify. However, the algorithm assumes

Journey | 35

the data is a scalar map, that is, a three-dimensional grid of cubes, with values

associated to each cell. From this scalar map, an isosurface can be extracted,

that is, a surface where all points have the same value. Therefore, the first step

is to generate such a grid.

4.3.1.1 Grid generation

The strategy applied for the grid generation was to create a density

scalar map of the point cloud. In other words, the point cloud would be divided

into a regular grid of three-dimensional cells, and the number of points that

were contained inside a given cell would give its density value. The reason for

such generation approach was the simplicity of the concept and the ability to

perform the generation in a highly parallel fashion. This strategy later also

proved to be robust to outliers and noise.

By performing the creation of the grid in the graphics card, the process

can leverage the high parallelization capabilities and take advantage of atomic

operations to increment the density of a cube as points in the point cloud are

visited. Code 2 shows how each individual point is visited and its location

calculated. Because of the parallel nature of this computation, atomic_inc is

called to increment the density of the respective cube in a lock-free fashion.

Code 2: Kernel for creating cuverille grid

The algorithm places a data point into a cell according to its spatial location

1 kernel
2 __attribute__((vec_type_hint(float3)))
3 void createGrid(const global uint3 * points,

i. global volatile uint * output) {
4 float3 point = convert_float3(points[get_global_id(0)]);
5
6 ushort3 grid = convert_ushort3((point - CONST_OFFSET) /

CONST_STEP);
7
8 if (grid.x == CONST_SIZE_X) grid.x--;
9 if (grid.y == CONST_SIZE_Y) grid.y--;
10 if (grid.z == CONST_SIZE_Z) grid.z--;
11
12 atomic_inc(&output[grid.z
13 + grid.y * CONST_SIZE_Z
14 + grid.x * CONST_SIZE_Y * CONST_SIZE_Z]);

15 }

For this code to be reliable, however, the global memory output should

be placed in the same device that the code is running since the standard does

36 | Journey

not guarantee atomic operations across multiple devices as per Appendix A of

the specification [25].

Furthermore, care should be taken when loading the memory as to avoid

allocating more than the allowable amount given by

CL_DEVICE_MAX_MEM_ALLOC_SIZE, defined in the specification as either a fourth

of the total global memory or 134KB; whichever is larger. Depending on

vendors, if this limit is not respected, the code will fail, which is the case for

AMD cards. However, other vendors allow this value to be violated without

failing in detriment of performance, such as for Nvidia cards. In the case of this

work, the point cloud can be loaded in chunks that do not surpass the limit

until the whole dataset is processed.

4.3.1.2 Vertices generation

Once the scalar field is generated, the algorithm then creates all the

possible vertices that might be used while generating the triangles. This phase

allows for further steps to reference pre-existing vertices, thus avoiding

duplicated vertices, redundant vertex placement calculation, and minimizing

output file size. The latter is due to the representation format for the mesh,

where triangles are defined not by three vertices, but by three indices to a list

of vertices. This technique is commonplace in modern graphics and available in

different mesh representation formats, such as OBJ [26] and PLY [27]. In the

case of OpenGL, such functionality is used when calling glDrawElements.

This step is achieved by taking the generated grid and connecting

adjacent voxels with edges. Then, for each edge, if the connected voxels are on

opposite sides of the threshold, a vertex will be created. Finally, the placement

of the vertex along the edge is given by the linear interpolation of the two

values.

To illustrate the process, a bi-dimensional example will be used, to avoid

cluttering and facilitate the explanation. Given a 4 by 4 grid, seen on Figure

24, where each pixel represents the density of points contained within that

region, edges connecting the pixels will be created as on Figure 25. Note that

the edges are not actually allocated in memory, only vertices are created in this

phase. The use of edges is to better illustrate the process.

Journey | 37

Figure 24: Bi-dimensional grid representing point densities

Figure 25: Grid with connecting edges

38 | Journey

With the virtual edges in place, vertices will be created for each edge

that connects pixels whose values are on either side of the threshold. Taking 50

as an example for a threshold, Figure 26 shows which vertices would be created

in this example.

Finally, Figure 27 shows the vertices in their actual positions taking

into account the values of the connected pixels and interpolating them to find

where the threshold would lie. Figure 28 shows the final result.

Figure 26: Edges with created vertices

Journey | 39

Figure 27: Vertices positions set by interpolation

Figure 28: Resulting vertices

40 | Journey

To illustrate the importance of this step in terms of memory

consumption, let us take a bi-dimensional grid with 𝑉2𝐷 pixels, where:

𝑉2𝐷 = 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡

This grid will generate 𝐸2𝐷 edges, where, if we consider:

𝐴 = 𝑊𝑖𝑑𝑡ℎ − 1

𝐵 = 𝐻𝑒𝑖𝑔ℎ𝑡 − 1

We are using these values as base because we are connecting the grid

with edges, as seen on Figure 25 above, and therefore reducing the dimensions

by one. We then have:

𝐸2𝐷(𝐴, 𝐵) = 2(𝐴𝐵) + 𝐴 + 𝐵

This can also be intuitively noticed since, for each cell on Figure 25, two

edges are created, the bottom and left ones, giving 2(𝐴𝐵). This however leaves

the top and right side of the grid open. Therefore, for the rightmost column, 𝐵

edges have to be added to close the right side; and for the topmost row, 𝐴 edges

have to be added to close the top side of the grid. Hence 2(𝐴𝐵) + 𝐴 + 𝐵.

Similarly, in the tridimensional case, the potential number of vertices

created is given by:

𝑉3𝐷 = 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡 × 𝐷𝑒𝑝𝑡ℎ

𝐴 = 𝑊𝑖𝑑𝑡ℎ − 1
𝐵 = 𝐻𝑒𝑖𝑔ℎ𝑡 − 1

𝐶 = 𝐷𝑒𝑝𝑡ℎ − 1
𝐸3𝐷(𝐴, 𝐵, 𝐶) = 𝐸2𝐷(𝐴, 𝐵) + 3𝐴𝐵𝐶 + 2𝐴𝐶 + 2𝐵𝐶 + 𝐶

𝐸3𝐷(𝐴, 𝐵, 𝐶) = 3𝐴𝐵𝐶 + 2𝐴𝐵 + 2𝐴𝐶 + 2𝐵𝐶 + 𝐴 + 𝐵 + 𝐶

Therefore, it is easy to notice that, in the worst case, the number of

vertices created will be in the order of three times the number of voxels, using

this generation phase. If vertices were to be created independently, this number

could be in the order of 12 times the number of voxels.

This memory consumption also starts to degrade the performance of the

GPU, since memory has to be moved in and out of the GPU only to perform

trivial operations, such as comparison and interpolation.

4.3.1.3 Classification

Once the vertices are generated, they are put aside and the algorithm

then classifies each cell, where a cell is given by eight voxels representing the

Journey | 41

eight vertices of the cell. This process is straightforward and is exactly as

described in section 2.5.

4.3.1.4 Triangle generation

The classification of the cell can then be used to get the rules for

generating triangles inside the cell. However, there are ambiguity cases that

need to be resolved in order to maintain the correct topology.

If no ambiguities were to be resolved, a lookup table containing 256

entries would dictate, according to the classification, which triangles to create

by referencing which vertex indices. For instance, case 18 would cause the

algorithm to lookup the 18
th
 entry in the lookup table, which in turn would

return the numbers {0, 1, 9, 8, 4, 7}. This means that two triangles would be

generated by connecting the vertices lying on edges {0, 1, 9} and {8, 4, 7}. As

reference, the edge numbers are labeled as in Figure 29.

Figure 29: Edge numbering for marching cubes

However, Lewiner [14] has proposed an implementation that uses

ambiguity resolution, where certain cases would trigger tests to resolve which

triangle should be created. It does not only resolve face ambiguities, but also

solves internal ambiguities, and therefore is able to guarantee topological

correctness.

42 | Journey

To do so, the 256-entry lookup table maps which subcase and

configuration to consider, and hence, which additional operations should be

performed, including possible tests to further classify the case before generating

the triangle. This lookup table is defined in a 2000-line header file.

For the example presented in section 4.3.1.2, this phase would generate

the shape in blue seen on Figure 30.

Figure 30: Resulting shape

4.3.1.5 Output

Figure 31 shows the output of the marching cubes with a grid of

128×128×128 cells. From the original file size of 290MB, the marching cubes

mesh had a file size of 4.2MB in 0.15 seconds.

Figure 32 show the same file marched in a 256×256×256 grid. The

output file size was 20.3MB and was generated in 1.8 seconds.

Journey | 43

Figure 31: Marching cubes output for 1283

Figure 32: Marching cubes output for 2563

44 | Journey

4.3.2 Poisson Surface Reconstruction

The other surface reconstruction method tested was the Poisson surface

reconstruction [15] [16]. This method renders results that are accurate and able

to be resilient to imperfect data, outliers, and high frequencies in the surface.

In addition, there is an available open source version implemented as part of

Cloud Compare [21], making it easy to test and validate for this work.

However, as mentioned in section 2.6, this technique relies on normal

information from the point cloud to extract the surface, and this information is

not present in the data sets for the scope if this work. With that in mind, an

additional step for normal calculation had to be taken beforehand. Fortunately,

this step is also available as part of Cloud Compare.

The main parameter for the Poisson is the octree depth. This parameter

changes how the discretization is performed, i.e. how deep the tree should be

to represent the dataset. Since most of the model’s volume will contain empty

space, most of the precision is need around the surface and octree would be an

efficient model to represent that. It is worth noting, though, that the size of the

dataset grows exponentially with the depth of the tree, that is, the dataset will

contain 8𝑛 points, where 𝑛 is the depth of the tree.

Figure 33 shows the output of the Poisson reconstructed surface with

an octree depth of 8. The computation time was a total of 9.7 minutes, of which

8.75 minutes were spent calculating the normals, and 55 seconds were

computing the Poisson surface. This particular output had a size of 9.5 MB.

Similarly, Figure 34 shows the same model, but with an octree depth of

10. The computation took 11.7 minutes broken down into 8.8 for normal

computation and 2.9 minutes for surface extraction. The output file size was

185MB.

Journey | 45

Figure 33: Poisson reconstruction with octree depth of 8

Figure 34: Poisson reconstruction with octree depth of 10

46 | Results

5 RESULTS

In order to hone into the best pipeline to achieve the goals of this thesis

based on the techniques assessed, the different algorithms that were

implemented and the tests performed were analyzed to find such pipeline. As

such, the results of the test will be independently analyzed and discussed. Later,

the different methods will be combined with each other producing eight

different pipelines that will then be analyzed and discussed.

For each case, a comparison of the output was performed against the

original point cloud, and a heat map was generated according to the distance

between the two sets. In the case of meshes being compared, 3 million points

were uniformly placed on the surface in order to perform the comparison.

Furthermore, the scales are normalized to each case, so to not saturate the heat

map. However, a detailed view of the histogram with the distribution is

presented alongside the image to allow for an absolute comparison between the

cases.

5.1 POINT CLOUD TREATM ENT

5.1.1 WLOP

Overall, the results obtained from running WLOP were less than

satisfactory, despite the promising compatibility proposed by Berger et al [3].

The most promising output – shown in Figure 18 on page 28 –, with a very well

balanced radius size, failed to create uniform flat surfaces while still maintaining

the shape of the railings, as seen in Figure 35. The main reasons for the dismissal

of this strategy are the loss of color information and the tendency to collapse

the railing into a string of points. The latter is a consequence of the radius of

influence which, in order to be effective, should be large enough to encompass

outliers in addition to the actual surface; however, as the radius grows, it

becomes larger than the diameter of the railing, thus collapsing it. Moreover,

though color can be restored based on the original file, significant improvement

was not achieved with this method to justify the effort or its use.

Results | 47

Figure 35: Detail of railing output from WLOP

5.1.1.1 Radius of 5

It is clear that when the radius is too large the points were compressed,

rendering the railing unrecognizable. This is reflected as the largest absolute

distances compared to the other cases with an average of 0.19, as seen in the

heat map on Figure 36. Finally, as seen on Figure 39, the computation time

turned out unfeasible for this project, taking multiple hours for a single

iteration.

48 | Results

Figure 36: Heat map for WLOP with 2% reduction over 35 iterations on radius of

five

5.1.1.2 Radius of 1

The best results using WLOP came from using a radius of one. However,

the number of iterations was reduced to 10 to decrease computation time, after

it was noticed that there was no detectable impact on the quality of the output.

This configuration also showed high fidelity to the original model with an

average distance of 0.006. It also proved able to successfully manage both high

curvature, such as the railings, and flat surface, such as the floor.

Results | 49

Figure 37: Heat map for WLOP with 10% reduction over 10 iterations on radius

of one

5.1.1.3 Radius of 0.05

In a more conservative approach and using a smaller radius of 0.05 –

that would allow for keeping the integrity of areas with high curvatures, like

the railing – and using 35 iterations, the output failed to properly resolve the

lower curvature regions, such as the floor. This can be noted in the high distance

region on the sidewall seen on the left side of Figure 38. Compared to section

50 | Results

5.1.1.1, it performed much better, reducing the computation time by several

orders of magnitude and having an average distance about ten times smaller.

Figure 38: Heat map for WLOP with 10% reduction over 35 iterations on radius

of 0.05

5.1.1.4 Computation time

The WLOP method is very computer intensive and grows exponentially

with relation to the radius. Figure 39 shows the computation times for a single

iteration and same reduction factor, but on different radii, including the ones

Results | 51

presented in the above results (presented in blue). The results were taken from

an Intel Core i7 2.2GHz, with 12GB of RAM and four cores.

Figure 39: Computation time for WLOP

5.1.2 M LS Smoothing

This approach rendered the most successful results, preserved colors,

and was able to smooth the surface to a degree, as seen on Figure 22 page 32.

In addition, it did not need any pre computation – such as calculating normals,

since the algorithm does not rely on them as explained by Tekumalla et al [9]

– prior to being executed, which might save computing time; however, it did

require hours to complete in a subset of the point cloud. This method also was

not able to handle the severe imperfections of our data set to its full extent, as

it can be noticed on the protrusions from the side walls and the flaring on the

railing, visible on Figure 40 and Figure 41, respectively. Finally, there was no

reduction on the file size, which could potentially simplify the next step in the

pipeline.

Notice that even though this algorithm also uses the search radius as

its main parameter, it has no relation to the radius used by WLOP. Thus, the

values used for the search radius are different from the ones used in section

5.1.1 for its WLOP radius.

5032

673

161 30 0.4
0

1000

2000

3000

4000

5000

6000

5 2 1 0.5 0.05

Ti
m

e
(m

in
u

te
s)

Radius size

52 | Results

Figure 40: Protrusions from sidewalls from M LS

Figure 41: Flaring on railing from M LS

Results | 53

5.1.2.1 Radius of 0.01

When the search radius is not large enough, the algorithm did not

present any smoothing results, as seen on Figure 42. This could be due to the

radius not including enough points to reliably represent the intrinsic surface;

therefore, the interpolation was based on non-representative points from a

localized region. As such, there is very little difference between the projected

points and the original point cloud and this is reflected in the small distances

shown in this result.

Figure 42: Heat map for MLS with a search radius of 0.01

54 | Results

5.1.2.2 Radius of 0.1

By using a larger search radius, the smoothing procedure was able to

extract the surface function with greater success, due to the radius being able

to encompass enough of the surface and fit a better matched curved, as mention

in section 2.4 and illustrated on Figure 22 page 32. In addition, this heat map

is comparable to the best WLOP result seen on Figure 37 page 48, in terms of

absolute distances and heat clusters; however, this smoothing method took

considerably less time to compute than WLOP with the addition of preserving

colors.

Figure 43: Heat map for MLS with a search radius of 0.1

Results | 55

5.1.2.3 Radius of 0.5

With a larger radius, the computation time grew exponentially, as noted

on Figure 46, but granting poorer results with severe deformations. The larger

radius was not able to cope with higher frequencies in the surface function,

meaning that it was unable to handle sharp edges. This is clearly visible in

Figure 45, where the intersection between the horizontal railings meet the

vertical supporting poles, creating a region of deformation.

Figure 44: Heat map for MLS with a search radius of 0.5

56 | Results

Figure 45: MLS smoothing with a radius of 0.5

5.1.2.4 Computation time

The MLS smoothing is very sensitive to the search radius, growing

exponentially with the radius size. This means that, for the desirable results

from section 5.1.2.2, there is a 2h30 computation time associated with it.

Depending on the robustness of the meshing algorithm down the pipeline, this

might be unnecessary waste of resources. Figure 46 shows the computation

times for the outputs presented on this section. The results were taken from an

Intel Core i7 2.2GHz, with 12GB of RAM and four cores.

Results | 57

Figure 46: Computation time for M LS

5.1.3 Naïve approach

The results were satisfactory, preserving color and still representing the

model with sufficient points. However, this simplistic approach would only

make sense if further improvements were to be performed in a point cloud

representation format, that is, if a transmutation into a different representation,

such as a density scalar map, were to be applied, the computational time might

not be justifiable. Therefore, while new techniques were explored, this method

could be applied if such computation would benefit the overall simplification

pipeline, as for MLS smoothing.

Furthermore, since the naïve approach does not modify the positions of

the points in any way, there is no reason to study its fidelity to the original

model, as it was done to the previous methods.

Lastly, the computation time is linear with the size of the original file,

meaning that, different reduction factors will run in always about the same

time if the input file is the same; therefore, there is no need to study its

computation time since, for the test file being used, the run time was always

~1.5 seconds.

5951

146

1.8

1

10

100

1000

10000

0.5 0.1 0.01

Ti
m

e
(m

in
u

te
s)

Radius size

58 | Results

5.2 M ESH GENERATION

5.2.1 M arching Cubes

The marching cubes implementation turned out to be exceptionally fast

and able to generate small files. It proved to be reliable to outliers as a

consequence of the gridification process; as explained in section 4.3.1.1, if the

density of outliers is not high enough, it will not be reflected in the grid,

essentially phasing out the outliers when fitting the isosurface. However, it

produced unnecessary triangles for the same reason, i.e. since the grid size is

fixed, there will always be multiple triangles generated for a surface that crosses

multiple cells.

The algorithm was very efficient in terms of memory and time, running

in the realm of under five seconds, and consuming about the same amount of

memory as the input file.

5.2.1.1 Grid 1283

Using a coarse grid, the algorithm ran in a fraction of a second, as seen

on Figure 52 and generating an output file of 4.2MB – 72 times smaller than

the original point cloud. It is interesting to note the pattern of green and blue

on the floor in Figure 47; this is the consequence of a grid-based algorithm,

where the floor is not perfectly horizontal and therefore is slowly creeping from

one grid plane to the next. This is the main cause for loss in fidelity for this

implementation of marching cubes.

This configuration obtained the best results by being the fastest,

generating the smallest output, and being effective against artifacts. By using

larger cells, the average density was higher, meaning that sporadic outliers had

less of an impact and were phased away. In addition, the larger cells were able

to encompass regions of noise and with that interpolate the value for the surface

fitting within a single cell. If the noisy region were to cross several cells, the

threshold from section 4.3.1.2 could be crossed multiple times in adjacent cells,

generating multiple faces.

Results | 59

Figure 47: Heat map for MC with a grid of 128 3

5.2.1.2 Grid 2563

By using a 256×256×256 grid, higher frequencies were captured, and

with that, more of the artifacts came with the mesh. The processing time was

still under two seconds, shown in Figure 52, and the output file size 20.3MB.

Though both values are quite good and acceptable, the quality of the mesh

degraded. A comparison of the noise can be seen on Figure 49 and Figure 50,

where the sidewall on the 2563 version contains severe corrugations, and the

railing support corrodes away at the top.

60 | Results

Figure 48: Heat map for MC with a grid of 2563

Results | 61

Figure 49: Comparison of sidewalls: MC 1283

Figure 50: Comparison of sidewalls: MC 2563

62 | Results

5.2.1.3 Grid 5123

A finer grain grid was then tested, with 512×512×512 cells. The

computation time was still under ten seconds, but the file size already reached

79MB. Once there are too many cells in the grid, the gain from the meshing

process becomes hazed. Consider an extreme case: it is possible to have an

arrangement such that, for each point in the point cloud, a whole triangle would

have to be generated to represent it, thus three new points would emerge, as

the three vertices from a triangle. This would actually increase the output file

size and defeat the purpose of this thesis.

Furthermore, this amount of cells enabled much of the noise to come

through, as the cells were not large enough to smooth out the variance of the

noise, as can be seen on Figure 51. As such, the distance from the original model

is quite small, with an average of 0.007; but that only reflects the persistence

of undesired qualities.

Figure 51: Heat map for MC with a grid of 5123

Results | 63

5.2.1.4 Computation time

Marching cubes proved to be exceptionally fast, growing linearly with

the number of cells in the grid. Even using over 134 million cells, the algorithm

executed in under ten seconds. Figure 52 shows the computation times in

milliseconds for the outputs using different grid sizes, including the ones

presented on this section (shown in blue). The results were taken from an Intel

Core i7 2.2GHz, with 12GB of RAM and four cores.

Figure 52: Computation time for marching cubes

8940

3866

1212

512
152

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

512 384 256 192 128

Ti
m

e
(m

ill
is

ec
o

n
d

s)

Grid size

64 | Results

5.2.2 Poisson Surface Reconstruction

The Poisson reconstruction showed very good results, able to fit reliable

surfaces on the artifact-rich data sets. Smaller octree depth levels showed great

distortions, but higher values were able to model the surfaces appropriately,

though with a tendency to reverse normals of the generated faces.

However, this method is much slower than the marching cubes. Not

only it requires normals for each point in the point cloud, it also takes vastly

more time in the surface generation phase. The data set this work is aimed at

does not contain normals, therefore the time required to compute them should

be considered as part of the nature of this algorithm.

5.2.2.1 Level 8

By using an octree of depth 8 for the Poisson reconstruction, the results

were poor and distorted. Some heavy artifacts emerged as flaring from the rails,

which can be easily noticed by their high distance values on the heat map on

Figure 53. In fact, their distance skewed the whole heat map normalization,

making most of the figure be blueish, however the histogram shows that the

average distance is in reality 0.016.

The process itself was quite fast, taking only 55 seconds to generate the

surface. However, 525 seconds were required beforehand in order to compute

the necessary normals for this algorithm. The output file was small, measuring

9.5MB.

Overall, the distortions are too great to make this method viable for the

purpose of this project.

Results | 65

Figure 53: Heat map for Poisson with octree depth 8

5.2.2.2 Level 9

By adding an extra level to the octree, most of the distortions

disappeared, but not completely. The surface also had a much higher fidelity,

with an average distance of 0.007, but the flaring is still present. In fact, the

flaring can be removed by selecting a different density threshold, but in

detriment of have holes in the model, as seen on Figure 55; there is not enough

66 | Results

levels to discriminate the density. This effect is even more accentuated in

shallower octrees.

Figure 54: Heat map for Poisson with octree depth 9

Results | 67

Figure 55: Poisson 9 with higher threshold

5.2.2.3 Level 10

Using a deeper octree of ten levels, the algorithm managed to fit a better

surface onto the model. The flaring is no longer present and the surface is very

close to the original model, reflecting the high fidelity that was achieved.

Similar to other octree levels, the normals had to be precomputed,

increasing the computing time: 528 seconds for normals calculation and 174

seconds for the mesh generation. However, the file size is significantly larger,

nearing the original point cloud at 185MB. Overall, the results were

satisfactory, the best Poisson output, in fact; but the output file was larger

than desired and the computation time long.

68 | Results

Figure 56: Heat map for Poisson with octree depth 10

5.2.2.4 Computation time

The computation time, interestingly enough was fairly constant across

the different parameters. The reason for this is the fact that about 90% of the

time is spent calculating normals, shown in blue, which is not affected by the

octree depth. However, considering just the meshing part, shown in orange, the

Results | 69

algorithm was orders of magnitude slower than marching cubes; still, the data

set that this thesis is aimed at does not contain normals, therefore its

calculation time has to be considered. The results were taken from an Intel

Core i7 2.2GHz, with 12GB of RAM and four cores.

Figure 57: Computation time for Poisson reconstruction

5.3 P IPELINES

With the different techniques tested and analyzed, their best outputs

were matched with each other in order to create point-cloud-to-mesh pipelines.

A total of eight pipelines were evaluated:

1. WLOP + MC

2. MLS + MC

3. Naïve + MC

4. Crude + MC

5. WLOP + Poisson

6. MLS + Poisson

7. Naïve + Poisson

8. Crude + Poisson

The parameter chosen for the methods are as follows:

 WLOP: Radius of 1

528 531 525

174
72 55

0

100

200

300

400

500

600

700

800

10 9 8

Ti
m

e
(s

ec
o

n
d

s)

Octree depth

70 | Results

 MLS: Radius of 0.1

 Naïve: 25% reduction

 Marching Cubes: 128
3
 cells

 Poisson: 10 levels depth

“Crude” here stands for the unprocessed point cloud, with no treatment

applied to it before being fed into the meshing algorithm. Since the crude

versions were analyzed in the previous sections, their results will be presented

here only briefly so that all pipelines have an equal footing for comparison.

5.3.1 M arching Cubes

Marching cubes proved to be very fast and efficient. With the

computation time varying around 0.15 seconds, the overall time shown in

Figure 66 is heavily weighted by the point cloud treatment phase. There is also

the significantly smaller file sizes generated that average 3.9MB as seen on

Figure 67 on page 87, which is a direct consequence of the grid size.

The method however does not output colors as it is implemented by the

time of this assessment and this can be considered as loss of engineering

information. With that in mind, when color support is added to the algorithm,

the file sizes will grow to reflect the storing of color information, that is, 24 bits

per vertex. That means that, in average, the files will grow 1.9MB on average

once colors are implemented, for the point cloud being used in this test.

5.3.1.1 WLOP

When combining with WLOP, the output was subpar with several holes

present in the model. In addition, the computation time was the highest of all

the pipelines involving marching cubes, as seen on Figure 66 on page 86.

However, the results presented the lowest average distance from the original

model with a standard deviation comparable to the other marching cubes

pipelines.

Due to the holes and the vast time required to finish this pipeline, this

combination was not deemed acceptable for our parameters set in our

objectives, i.e. the necessity for a fast and efficient algorithm and a fidelity to

the original model, discussed in section 1.2.

Results | 71

Figure 58: WLOP and Marching Cubes

72 | Results

5.3.1.2 MLS

The MLS showed considerably better results. The holes present in the

WLOP pipelines are gone and the model exhibits a smooth quality to its

surface, as can be noticed by comparing Figure 58 above and Figure 59 below.

Moreover, the railings retained their cylindrical shape, which was not the case

for the WLOP. The main downside for this combination is the computation

time, though lower than WLOP, it is still in the order of hours, as seen on

Figure 66 on page 86.

Since the file sizes for the marching cubes pipelines are all very similar,

the main conditions for acceptance is the efficiency of the algorithm and the

quality of the output, as stated in the objectives. As such, the MLS + MC

pipeline does present good results, the best for marching cubes pipelines, in

fact. However, the computing time is a hindrance, meaning that the other

pipelines must present significantly worse output quality to justify the

computing time of almost three hours, seen on Figure 66 on page 86.

Results | 73

Figure 59: MLS and Marching Cubes

74 | Results

5.3.1.3 Naïve

The naïve method proved to be the worse marching cubes pipeline.

There is not much in its favor expect for the quick processing time, though the

time required is still greater than running the crude point cloud.

It is interesting to note that, even though the points were removed

across all regions randomly, the noise turned out to be accentuated in the

pipeline when comparing to the crude input. This is especially visible on the

sidewall, where the protuberances are heightened in the naïve method when

compared to the crude method. In fact, this combination presented the largest

distances of all the marching cubes pipelines, averaging at 0.034, as seen on

Figure 60.

Results | 75

Figure 60: Naïve and Marching Cubes

76 | Results

5.3.1.4 Crude

The crude method as by far the fastest method, compared across all

pipelines, including the Poisson ones, requiring 151 milliseconds to complete,

noticed on Figure 66 on page 86. The distances are comparable to all the other

marching cubes pipelines and it generated the second smallest average distance

to the original model.

Though the MLS point cloud treatment coupled with marching cubes

generated a smoother surface, the results are very similar to each other due to

the gridification process. All shapes are retained from the original model, and

engineers can perform measurements just as well. Consequently, the three hours

required to handle this small data set does not justify the use of MLS. This is,

therefore, the best pipeline using marching cubes.

Results | 77

Figure 61: Crude and Marching Cubes

78 | Results

5.3.2 Poisson

Poisson generated very smooth surfaces with short computing time.

However, it requires that the point clouds contain normals associated with the

points. This is not the case for the stereoscopically generated data sets that this

work is aimed at. Therefore, there is an overhead of computing normals, which

take a significant longer time to conclude.

In this section, most of the pipelines presented were able to remove the

outlying cluster on the lower left side of the model, reflecting the resilience to

outliers that this method promises [15]. It was also able to generate single

surfaces on the floor, which is not the case for the marching cubes. However,

this method had a tendency of generating inverted normals on the final mesh.

This happens because a surface can only have one direction to its normal, and

a single plane, such as the manner which Poisson represents the floors and

sidewalls also must choose a single direction for its normals. This way a ceiling

might have its normal facing up, or a floor might have its normal facing down.

This is especially visible on Figure 62, where there is no color information and

the normal directions can be identified by the shading of green.

Furthermore, this method generated much larger file sizes, several

orders of magnitude larger than the Marching Cubes pipelines, as seen on

Figure 67 on page 87.

5.3.2.1 WLOP

Similarly to the marching cubes pipeline, when using WLOP the results

were mediocre: there are severe deformations and holes, with major segments

of the railing missing and flattened. This poor result, nonetheless, took the

Results | 79

longest time to calculate and generate, as seen on Figure 66. In addition, due

to the loss of color information from the WLOP treatment, it fails to output

colors in the result. However, it generated to smallest file size of any Poisson

pipeline. Finally, it presented the second highest average distance from the

original model, measuring at 0.007.

Figure 62: WLOP and Poisson

80 | Results

5.3.2.2 MLS

MLS, in contrast to WLOP, performed worse when combined with

Poisson. There are severe depressions on the floor, clearly visible on the heat

map on Figure 63, which were not present when combined with MC.

Furthermore, this is the only Poisson pipeline that heavily retained the outliers

on the lower left side of the figure. The method also presented the lowest fidelity

to the original model with the distance averaging 0.008.

All these factors, coupled with long computing time of almost three

hours, rendered this pipeline not a good option for the final pipeline.

Results | 81

Figure 63: MLS and Poisson

82 | Results

5.3.2.3 Naïve

The naïve method performed much better than the WLOP and MLS,

when coupled with Poisson. The distances were considerably smaller compared

to the original model, averaging 0.005, as shown on Figure 64, and the

computation time was orders of magnitude faster, as Figure 66 demonstrates.

Though the smoothness is not as high as the MLS version, with the dimpled

sidewall being the telltale, the overall shape of the model is noticeably better.

There are no depressions on the floor and the color is retained.

However, similarly to the naïve method with MC, the results were

actually worse than the crude pipeline. The file size was the largest of all

Poisson pipelines and the output presented more artifacts. It is interesting to

note that the naïve method did simplify the pipeline, by reducing the

complexity of calculating the normals, and reducing the pipeline computing

time significantly, as seen on Figure 66 on page 86.

Results | 83

Figure 64: Naïve and Poisson

84 | Results

5.3.2.4 Crude

In the case of the Poisson pipelines, the crude output again presented

the best results. Despite of exhibiting corrugated and dimpled sidewalls and

railing posts, visible on Figure 65, this pipeline generated the smallest distances,

averaging at 0.004. It also preserved colors and was able to remove the outlying

cluster to the left of the sidewall.

However, it was not the fastest method, though. The naïve

simplification helped to reduce the normals computation time, thus reflecting

in a faster pipeline. Moreover, the output file size was nearly twice as that of

the WLOP pipeline, taking up 132 MB and being the second largest output file.

Results | 85

Figure 65: Crude and Poisson

86 | Results

5.4 P IPELINES COM PARISON

When comparing times, it is clear the impact that the preprocessing of

the point cloud has. So much so that it shadows the pipelines that do not

require intensive computation on the point cloud, which can be noticed on

Figure 66. It is interesting to note that the naïve method did have a positive

impact when coupled with Poisson, reducing the computing time three fold.

The results were taken from an Intel Core i7 2.2GHz, with 12GB of RAM and

four cores.

Figure 66: Computation time for the pipelines

9660

8760

1.66 0.15

9734 9564

241
702

0

2000

4000

6000

8000

10000

12000

WLOP MLS Naïve Crude

Ti
m

e
(s

ec
o

n
d

s)

MC Poisson

Results | 87

As noticed on Figure 67, it is clear that the output file sizes are in

favor of the marching cubes pipelines. In cases such as Naïve + Poisson, the

output file is over half the size of the original file, thus degrading Poisson

pipelines’ stance towards the objective of having small file sizes without

engineering information loss.

Figure 67: File size for the pipelines

When analyzing the distances generated, Poisson pipelines are

considerably better and fitting the original model much closer than the

marching cubes. This is due to the precision of the 128
3
 grid used, which

generates smaller files, but fail to match the inherit surface properly.

2949 3960 4803 4213

74736

125132

163103

131949

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

WLOP MLS Naïve Crude

Si
ze

 (
K

B
)

MC Poisson

88 | Results

Figure 68: Distance for the pipelines

24086

28024

34065

27172

7062
8176

5430
3879

0

5000

10000

15000

20000

25000

30000

35000

40000

WLOP MLS Naïve Crude

D
is

ta
n

ce
s

(1
0

-5
)

MC Poisson

Conclusion | 89

6 CONCLUSION

In this work, different techniques for point cloud treatment and surface

generation were tested separately on a point cloud to assess their individual

strengths and weaknesses against a data set rich in artifacts such as noise, holes,

and outliers. The point cloud was provided by APIteq, a company that

specializes in oil and gas offshore installation visualization, and was generated

based on stereoscopic images of an offshore installation, more specifically a

support vessel’s main deck. After all techniques were tested independently, they

were combined into pipelines and again the results were assessed.

In this section, the results obtained from combining the different

techniques will be assessed in terms of the objectives described in section 1.2.

That is, mainly, we are trying to find a quick and efficient algorithm that can

reduce the file size of the point cloud without losing information that might

help in taking engineering decisions, such as dimensions, colors, and topology.

In this section, the best solution, from the ones tested, to answer the question

posed in section 1.3 will be identified from the set analyzed in the previous

sections.

6.1 FILE SIZE

Assessing the file size reduction first, the results gathered from the

comparisons were very enlightening and clear distinctions can be easily

observed. There was a large discrepancy in file size output from using Poisson

or MC, as seen on Figure 67 on page 87, with MC outputs averaging 3.2% the

average size of Poisson. With file size output being a major driver for this

project, MC performed considerably better, regardless of the pipeline used.

6.2 EFFICIENCY

Analyzing the efficiency, another clear distinction on the results can be

seen on the computing time. Figure 66 on page 86 shows two divisions: whether

a point cloud treatment is used in the pipeline or not, and whether MC or

Poisson is used as the meshing algorithm. That is, when WLOP or MLS is used

prior to the mesh generation, there is a 40 fold increase in the average

computing time, regardless of meshing algorithm. The average time for pipelines

90 | Conclusion

running WLOP or MLS was 9429.5 seconds, while the Naïve and Crude

pipelines averaged 236.2 seconds. Furthermore, Poisson was consistently slower

than MC, mainly due to the normals calculation, and that is visible on Figure

66 on page 86. However, to better grasp the time difference and comparing both

methods without considering the point cloud treatment, it is easy to note that

the average computing time for Poisson is much larger than that of MC, as

seen when comparing Figure 52 and Figure 57, on page 63 and 69, respectively.

The time scale for Poisson was in the order of seconds, as opposed to the

milliseconds scale for MC.

Therefore, crude point cloud combined with MC performed more

satisfactory than any other pipeline. This conclusion further enhances the MC

position as the meshing algorithm of choice, as well as it detriments pipelines

containing WLOP or MLS as constituents for a final solution.

6.3 FIDELITY

To assess how much information was lost, Figure 68 on page 88 shows

that Poisson kept truer to the original data set with consistently lower

distances. Furthermore, by analyzing section 5.3.2, it is also noticeable that the

standard deviation of the distances is much tighter than the ones exhibited by

MC on section 5.3.1.

It is interesting to note that Poisson models the floors and sidewalls as

a single plane, which is clean and representative, however loses thickness

information of the steel plates. Because of this single plane nature, the normals

also get inverted in some cases. This can be noticed as a slight difference in

color on the WLOP + Poisson pipeline, which does not retain color, and

therefore outputs the normals encoded in the surface color, as seen on Figure

62 on page 79.

6.4 P IPELINE IDENTIFICATION

With all assessments considered, the best pipeline from the ones

analyzed can be identified. Both the file size and efficiency assessments point

to the MC meshing algorithm as the best fit to the objectives of this thesis.

However, the efficiency assessment further restricts the pipeline by

demonstrating how much longer a pipeline containing WLOP or MLS takes to

execute. That means that either the Naïve or Crude approaches would be a

good combination, but the Naïve approach did not perform any better in terms

Conclusion | 91

of computing time, therefore rendering the Crude + MC the best solution from

the ones analyzed.

Furthermore, despite of the lower distances with Poisson, MC still

presents an honest representation of the original model, without normals

inversion, preserving the thickness of planes, and not exhibiting the flaring

characteristics noticed on Poisson reconstructions. However, MC, as it stands,

does not preserve color information. This is can be easily considered and added

to future versions of the algorithm.

6.5 SOLUTION

Finally, to answer the question posed in section 1.3, we can affirm that

it is indeed possible to reduce a stereoscopically reconstructed point cloud of an

industrial plant in an efficient manner, with minimal engineering information

loss. We were able to reduce the original point cloud from 290MB to 4.2MB in

0.15 seconds, retaining all the measurements and topology of the model with

minimal variation.

However, color information was lost as it stands. Nevertheless, as

proposed in section 8, this can simply be remediated, thus improving

significantly the outcome.

Furthermore, section 7 will expand this conclusion and validate the

pipeline against real-world point clouds.

92 | Validation

7 VALIDATION

To validate the solution proposed in this work, the selected pipeline was

applied to a larger point cloud and, finally, to the complete data set

representing the full working deck of a support vessel. This is made to reflect a

real-world scenario, as these point clouds are full products delivered by APIteq,

the company mentioned in section 1.2 that provided the data sets for this work.

First, a 1.7GB point cloud representing a cable spool was passed

through the pipeline. Figure 69 shows the original point cloud and the railing

used to test and compare can be seen on the right-hand since of the image.

Figure 70 shows the resulting mesh from the pipeline; a 192×192×192 grid

generated the 18.6MB surface in 0.55 seconds. The grid was slightly larger to

reflect the larger volume that the spool comprised. Figure 71 shows the

calculated distances from the original point cloud with an average distance of

0.052.

Validation | 93

Figure 69: Cable spool point cloud

Figure 70: Cable spool mesh

94 | Validation

Figure 71: Cable spool distances

Finally, a 4.6GB point cloud representing the complete support vessel

was passed through the pipeline. Figure 72 shows the original point and Figure

73 shows the resulting mesh from the pipeline. For this point cloud, a

256×512×256 grid was used, resulting in an 80.9MB file. Notice the non-

uniform and larger dimensions of the grid used to reflect the elongated shape

of the vessel’s deck and larger volume. This more complex shape and file took

indeed longer to be processed, taking 2.44 seconds to finalize. Figure 74 shows

the calculated distances from the original point cloud with an average distance

of 0.081.

Validation | 95

Figure 72: Support vessel deck point cloud

Figure 73: Support vessel deck mesh

96 | Validation

Figure 74: Support vessel deck distances

Further work | 97

8 FURTHER WORK

From the techniques analyzed in this thesis, we were able to identify

the best solution to answer the questions proposed in section 1.3. However, it

fell short on some aspects, which will be discussed in this section.

8.1 COLOR INFORM ATION

Considering the importance of color information to the final result and

how it could potentially affect engineering decisions, the main goal for the

future is to integrate this into the MC algorithm. Considering that the meshes

are represented in PLY format, color information can be added to the output

file easily in terms of encoding, since it is described in the specification. As such,

according to the specification, color can optionally be associated with each

vertex of the mesh.

To retain the color information, the process has to be modified from the

gridifcation phase, described in section 4.3.1.1, and the vertex generation phase,

described in section 4.3.1.2. That means that, when calculating the density of

a cell, the average color of all the points within the cell would also be computed

and stored in that cell. Once the vertex generation phase begins, the color

associated with it would then be the interpolated values of the grid cells

according to its location.

By encoding the color information with the vertices instead of the faces,

the rendering software is able to interpolate the color of the faces and therefore

obtain a smoother coloring and a more reliable mesh. When the color is encoded

in the face, the whole face will contain the same color, giving raise to sharp

edges in the coloring. Figure 75 shows a comparison of the two methods; on the

left the colors were encoded with the face, and on the right they were encoded

with the vertices.

98 | Further work

Figure 75: Comparison between per face and per vertex coloring

8.2 PARALLELIZATION

To further increase the speed and efficiency of the algorithm, it would

be desirable to port all the phases of MC into OpenCL. So far, only the

gridification was implemented in OpenCL, with a snippet seen in Code 2 on

page 35, but according to section 2.7, there is much to gain with a complete

pipeline executed in the GPGPU.

The main challenge with the porting is memory management. The

movement to and from the GPGPU memory is costly and there is usually much

less memory to work with than the main CPU. This coupled with the addition

of color information can quickly consume all the available memory and force

loading and offloading of sections of the data set. Hence the importance of

proper memory management to effectively harness the power of the GPGPU.

8.3 GRAPHICAL USER INTERFACE

Finally, a GUI (graphical user interface) would increase the ease of use

of the software immensely. So far, the only interface is CLI (command-line

interface) and it is prone to mistyping and misconfiguration. A GUI would

provide the user with all the options and parameters together with a more

intuitive way of loading files.

Given that the software is written in C++, QT [28] would be a good

solution. Not only providing GUI widgets, it also provides load and save dialogs

as well as a wrapper for OpenGL, allowing for the user to visualize the output,

and choosing to change a parameter before saving

References | 99

9 REFERENCES

[1] G. Pang, R. Qiu, J. Huang, S. You and U. Neumann,

"Automatic 3D industrial point cloud modeling and recognition,"

in IAPR International Conference on Machine Vision

Applications, Tokyo, 2015.

[2] T. Rabbani Shah, "Automatic reconstruction of industrial

installations: Using point clouds and images," Nederlandse

Commissie voor Geodesie, 2006.

[3] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, J. A.

Levine, A. Sharf and C. T. Silva, "State of the Art in Surface

Reconstruction from Point Clouds," Eurographics, 2014.

[4] T. A. S. f. P. &. R. Sensing, LAS Specification, Bethesda:

The American Society for Photogrammetry & Remote Sensing,

2013.

[5] Y. Lipman, D. Cohen-Or, D. Levin and H. Tal-Ezer,

"Parameterization-free Projection for Geometry Reconstruction,"

ACM Transactions on Graphics, vol. 26, no. 3, 2007.

[6] H. Huang, D. Li, H. Zhang, U. Ascher and D. Cohen-Or,

"Consolidation of Unorganized Point Clouds for Surface

Reconstruction," ACM Transactions on Graphics, vol. 28, no. 5,

2009.

[7] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin

and C. T. Silva, "Computing and Rendering Point Set Surfaces,"

IEEE TRANSACTIONS ON VISUALIZATION AND

COMPUTER GRAPHICS, vol. 9, no. 1, March 2003.

[8] D. Levin, "Mesh-independent Surface Interpolation,"

Geometric modeling for scientific visualization, pp. 37-49, 2004.

100 | References

[9] L. S. Tekumalla and E. Cohen, "Smoothing Space Curves

with the MLS Projection," in Proceedings of the 1999 symposium

on Interactive 3D graphics, 1999.

[10

]

G. Tavares, R. Santos, H. Lopes, T. Lewiner and A. Viera,

"Topological reconstruction of oil reservoirs from seismic surfaces,"

International Association for Mathematical Geology, September

2003.

[11

]

Jam, J. Davis, S. R. Marschener, M. Garr and M. Levoy,

"Filling Holes in Complex Surfaces using Volumetric Diffusion,"

3D Data Processing Visualization and Transmission, pp. 428-441,

19 June 2002.

[12] W. E. Lorensen and H. E. Cline, "Marching cubes: A high

resolution 3D surface construction algorithm," SIGGRAPH, pp.

163-169, 1987.

[13] S. Scott and J. Warren, "Dual marching cubes: Primal

contouring of dual grids," Computer Graphics and Applications,

pp. 70-76, 6 October 2004.

[14] T. Lewiner, H. Lopes, A. Vieira and G. Tavares, "Efficient

Implementation of Marching Cubes Cases with Topological

Guarantees," Journal of Graphics Tools, vol. 8, no. 2, pp. 1-15,

2003.

[15

]

M. Kazhdan, M. Bolitho and H. Hoppe, "Poisson Surface

Reconstruction," in Eurographics Symposium on Geometry

Processing, Cagliari, Sardinia, Italy, 2006.

[16

]

M. M. Kazhdan, "Reconstruction of solid models from

oriented point sets," Symposium on Geometry Processing, pp. 73-

82, 4 July 2005.

[17

]

W. Sierpinski, "Sur une courbe dont tout point est un point

de ramification," Comptes rendus hebdomadaires des séances de

l'Académie des Sciences, vol. 160, pp. 302-305, 1915.

References | 101

[18

]

T. Hammervoll, Efficient rendering of parametric CAD

data using geometry instancing, Bergen: Høgskolen I Bergen, 2016.

[19

]

R. Qiu, Q.-Y. Zhou and U. Neumann, "Pipe-run Extraction

and Reconstruction from Point Clouds," in European Conference

on Computer Vision, Zurich, 2014.

[20] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F.

Ganovelli and G. Ranzuglia, "MeshLab: an Open-Source Mesh

Processing Tool," Sixth Eurographics Italian Chapter Conference,

pp. 129-136, 2008.

[21] D. Girardeau-Montaut, "CloudCompare," [Online].

Available: http://cloudcompare.org/.

[22] C. E. Board, "CGAL," CGAL Editorial Board, November

2016. [Online]. Available: http://www.cgal.org/.

[23] P. Lancaster and K. Salkauskas, "Surface Generated by

Moving Least Squares Methods," Mathematics of Computation,

vol. 37, no. 155, pp. 141-158, 1981.

[24] E. Smistad, Real-Time Surface Extraction and

Visualization of Medical Images using OpenCL and GPUs, 2012,

pp. 141-152.

[25] K. O. W. Group, The OpenCL Specification, 2012.

[26] W. Technologies, Advanced Visualizer Manual, p.

Appendix B1.

[27] P. Bourke, Ply-polygon file format, 2009.

[28] Trolltech, Nokia and QT Project, "QT," [Online].

Available: https://www.qt.io/.

[29] Various, "Wikipedia - Normal Distribution," [Online].

Available: https://en.wikipedia.org/wiki/Normal_distribution.

[Accessed 15 May 2017].

