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ABSTRACT 

When preparing an engineering operation on an industrial plant, reliable 

and updated models of the plant must be available for correct decisions and 

planning. However, especially in the case of offshore oil and gas installations, it 

can hazardous and expensive to send an engineering party to assess and update 

the model of the plant. To reduce the cost and risk of modelling the plant, there 

are methods for quickly generating a 3D representation, such as LiDAR and 

stereoscopic reconstruction. However, these methods generate large files with 

no inherit cohesion. To address this, we propose to find a solution to efficiently 

transform point clouds from stereoscopic reconstruction into small mesh files 

that can be streamed or shared across teams. With that in mind, different 

techniques for treating point clouds and generating meshes were tested 

independently to measure their performance and effectiveness on an artifact-

rich data set, such as the ones this work is aimed for. Afterwards, the techniques 

were combined into pipelines and compared with each other in terms of 

efficiency, file size output, and quality. With all results in place, the best 

solution from the ones tested was identified and validated with large real-world 

data sets. 
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1 INTRODUCTION  

1.1 M OTIVATION  

In order to improve reliability, efficiency, accuracy, and effectiveness of 

engineering planning, decision making, and ultimately execution, the precise 

modeling and representation of data pertinent to the project is of utmost 

importance. This is especially true with industrial plants, such as the oil and 

gas refineries and production facilities, which have a high degree of complexity 

and present elevated consequences associated with deficiently planned and 

executed engineering projects. 

The generation of these models, therefore, reside at the root upon which 

major engineering project are built, defining its final quality and success. In an 

ideal scenario and with the advent of computer-aided designs (CADs), the 

whole stream can be represented digitally, from the initial planning, 

construction, servicing, and upgrades, keeping a dependable record of the 

current state of the project to the level of detail required for any future work. 

Yet, in reality, this is often not the case, with changes to the plant not being 

recorded, be it minor alterations, ad-hoc solutions, missing documents, or 

deformations and damages from use and environment. On the extreme side of 

the spectrum, there are also many instances of older plants having their original 

plans represented as blue prints and no management of changes to the facility. 

To assess the issue of unreliable models, engineers must rely on on-site 

surveys to gather an updated version of the necessary data, which can then be 

transmuted into a format compatible with the tools used in the project, such 

as CAD models. However, this solution has some mentionable drawbacks: it is 

possibly a time-consuming option, it can involve several personnel, it can have 

a high cost – particularly on offshore projects –, and it is prone to variance in 

the quality of the data and final product. The latter can be further expanded 

and attributed to the human component of the process, where different 

technical abilities, mistakes, and pressure to keep schedule might exacerbate 

the variance in quality  

Currently, industries have the option of using automatically generated 

models of their industrial plants as a faster and lower-risk alternative to on-site 

surveying. Methods such as Light Detection and Ranging (LiDAR) and Stereo 
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Imaging can be used to produce point clouds, which represent three dimensional 

objects or scenes by means of infinitesimal points expressing the surface of the 

modeled subject. 

Despite the lowered costs, turnaround, and operational risk, this 

surveying method has drawbacks of its own: the model generated is highly 

abstracted and, especially in topologically complex environments, susceptible 

to many artifacts, such as noise, missing data, and outlying points. This means 

that part of the cost saved during the automated surveying is actually 

transposed to the transmutation phase of the process, requiring skilled engineers 

to convert carefully the point cloud into a usable model. 

1.2 GOALS 

The goal of this work is to compare techniques and strategies to generate 

a model of an industrial plant from point cloud data that is concise and small 

enough to be shared and streamed across teams while preserving the necessary 

information to assist engineering, design, planning, and operations. 

Moreover, the scope deals with a particular type of point clouds: 

stereoscopically generated point clouds of large industrial plants. The data set 

used in this work comes from APIteq, a company in Bergen, Norway, specialized 

in visualization for the oil and gas industry. Their portfolio includes 360° Visual 

Assessment Management, a tool for visualizing oil and gas plants in a 360° 

format, and are now investing in the tridimensional visualization using the 

reconstruction of stereoscopic images taken from a plant. In that sense, the 

point clouds with which this work will be dealing are of varying density 

throughout the data, high artifact count, such as noise and “holes”, very large 

binary size, and topologically complex. 

Finally, concerning the complexity of the point clouds that are in focus, 

lower computational times are therefore a major metric, and exploration into 

high performance computing languages, data models and algorithms, and 

exploration into parallelization and harnessing heterogeneous computational 

environments, are part of this work. 
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1.3  RESEARCH QUESTIONS 

This work aims to answer if it is possible to compress the data with 

little engineering information loss in an efficient manner. That is, can an 

industrial point cloud generated by stereoscopic reconstruction, with all their 

inherent properties, be distilled without sacrificing much fidelity in terms of 

information needed to assess an engineering decision, such as dimension and 

topology, while being completed in a quick and lightweight fashion? 
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2 BACKGROUND  

2.1 POINT CLOUDS 

Point cloud is a representational method consisting of individual points 

in some coordinate system. The points are infinitesimal and carry no 

information of size or length; nevertheless, they can represent any property 

associated with that particular position in space, such as color, normal vector, 

global positioning system (GPS) coordinates. This format is often used to 

represent surfaces in three-dimensional space, such as terrains from aerial 

scanning or objects and environments from Light Detection and Ranging 

(LiDAR) scanning.  

2.1.1 Point cloud treatment 

Point clouds possess several properties and each can vary greatly. The 

density of the point cloud relates to how many points a given volume in space 

has; thus, in the absence of noise, a denser a point cloud will have a higher 

fidelity. Noise in a point cloud relates to the presence of outlying points, that 

is, points that do not belong to any surfaces of the modeled subject; e.g., a 

noisily modeled Euclidean plane will be misrepresented as a volumetric shape. 

Besides noise, another artifact that can be present in point clouds relates to the 

aforementioned density, in which the number of points representing a surface 

is lower than the Nyquist frequency that samples such surface, therefore 

rendering a lossy model. The size of the point clouds directly relates to the 

shear amount of points in a given collection; thus, larger datasets require 

heavier computing power. The last property relevant to this thesis is the 

topology of the modeled subject, which relates to the set of properties preserved 

when an object is deformed; for instance, an ellipsoid is topologically equivalent 

to a sphere, since it can be obtained by deforming the latter. 

Figure 1 shows the detail of the data set being used in this thesis serving 

as an example of a noisy point cloud. In this example, outlying points and 

severe variation in density can be observed. 
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Figure 1: A point cloud with several artifacts 

 

 

2.1.2  Reconstruction from point clouds 

Due to its nature, there is no cohesion between the points as they are 

what the name suggests, merely a cloud of points. That means that they are 

very adequate to represent sample points – a discreet representation model, in 

which each point corresponds to a sampled value from a LiDAR scan, for 

instance – as opposed to continuous information, such as a parametric 

representation would. This is of utmost importance to this study, since the 

continuous representation of an industrial plant is key for precision and, 

depending on the representational model adopted, a decisive factor on the final 

file size. 

In other words, if a parametric representation is used, that is, a 

representation that can describe the information through parametric functions, 

and therefore having infinite resolution, need not worry about the precision 

level. On the other hand, a discreet representation will only supply half of the 

resolution of its own sampling, meaning that, for high-precision applications, 

the number of samples can increase drastically and, by consequence, the file 

size. 
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The recovery of the original sampled object is a subject of intense study 

and techniques vary vastly. In its simpler form, a point cloud might represent 

a two-dimensional curve with enough sample points so that a linear 

interpolation might render sufficiently precise results. This is rarely the case; 

as it was discussed before, point clouds frequently possess artifacts and the 

modeled object is often more topologically complex. 

Aiming towards industrial plant reconstruction, Pang et al [1] proposed 

a reconstruction solution that separates the process in three sub-problems: pipe 

modeling, plane classification, and object recognition. The work acknowledges 

that industrial plants share certain characteristics such as an abundance of 

pipes and large planes and leverage these to generate a CAD model of the 

original plant. On his dissertation, Rabanni [2] explored different techniques to 

avoid human intervention on the reconstruction of industrial installations from 

point clouds. The process involved point cloud segmentation, object recognition, 

and model fitting, and also relied on the intrinsic characteristics of industrial 

plants to focus the effort. With the expansion of the field of surface 

reconstruction in mind, Berger et al [3] released a state-of-the-art report on 

surface reconstruction in which different techniques are categorized per 

parameters, requirements, and robustness. Moreover, this work highlights 

similarities between the techniques and was an influential guide on the decisions 

taken during this thesis. 

2.2 LAS  FORM AT 

The LASer file format is a means to represent point cloud data in a 

standard fashion ratified by the American Society for Photogrammetry and 

Remote Sensing (ASPRS). The current latest version by the time of writing is 

1.4, approved on November 14, 2011 [4]. Though primarily aimed at providing 

a public format for point clouds that would overcome the barriers of proprietary 

formats, the specification is actually capable of representing any 3-dimensional 

tuplet. 

The format is able to carry additional information about a point besides 

its position, such as color, GPS time, and LiDAR specific information. However, 

the scope of this work focuses mainly on a point’s location and color. 
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2.3  W EIGHTED LOCAL OPTIM AL PROJECTION  

In order to address the artifacts of point clouds, Lipman et al proposed 

the locally optimal projection algorithm [5] to approximate the underlying 

surface, thus reducing outlying points and noise. It also strongly improves point 

density uniformity by defining repulsion and attraction parameters to each 

point, consequently keeping the projected point set at a regular spacing. These 

parameters can be thought of as springs connecting each point that becomes 

overstretched if they are too far apart and, similarly, become compressed if they 

are too close together. With each iteration, the points tend to converge to a 

uniform distribution. To illustrate the concept, a simple non-uniform point 

cloud of five points can be used with the points clustering around two regions. 

Figure 2: Non-uniform point cloud 

 

If the parameters of repulsion and attraction are considered, there will 

be tension and compression forces being applied to the points. 

Figure 3: Repulsion and attraction components applied to point cloud  

 

Upon convergence to a state closer to equilibrium, the points are more 

uniformly distributed. 

Figure 4: Converged point cloud 
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Noticing a lack of clear-cut convergence on the algorithm, Huang et al 

proposed a modified version called weighted locally optimal projection [6], which 

introduces locally adaptive density weights that directly affect the repulsion 

and attraction of the points within a given region.  

2.4  M OVING LEAST SQUARES SM OOTHING 

An alternative method for reducing artifacts such as outliers and noise 

is to use Moving Least Square projection [7] [8] [9] to generate a smooth point 

set projected into an implicit surface defined by the original data set. This 

method works by fitting a bi-quadratic polynomial, i.e. a quadratic polynomial 

with two variables, and projecting a given point onto it. It comprises of two 

steps. 

First, to project a point 𝑟 , a reference plane 𝐻  is calculated using 

weighted least squares optimization, where the weights are based on the vicinity 

of 𝑟 by using an always-positive smooth decreasing function. That means that 

a Gaussian function can be used as the weighing function. In that sense, the 

weights are based on the distance between 𝑞 and the neighbor 𝑝𝑖. This step is 

trying to minimize the distances of 𝑝𝑖 to 𝐻, as in: 

∑〈𝑛, 𝑝𝑖 − 𝑟 − 𝑡𝑛〉2
𝑁

𝑖=1

𝜃(‖𝑝𝑖 − 𝑟 − 𝑡𝑛‖) 

Where 𝑛 is the normal, 𝜃 is the weighing function, and 𝑞 = 𝑟 + 𝑡𝑛. See 

Figure 5. 

Figure 5: MLS smoothing first step 
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Second, with 𝐻 defined, we can consider 𝑞𝑖 to be the projection of 𝑝𝑖 

onto 𝐻, and 𝑓𝑖 to be the orthogonal height of 𝑝𝑖 to 𝐻 as in 𝑓𝑖 = 𝑛 ∙ (𝑝𝑖 − 𝑞). We 

can then minimize 𝑓𝑖 in relation to a curve 𝑔, as in: 

∑(𝑔(𝑥𝑖, 𝑦𝑖) − 𝑓𝑖)
2

𝑁

𝑖=1

𝜃(‖𝑝𝑖 − 𝑞‖) 

Where (𝑥𝑖 , 𝑦𝑖) is 𝑞𝑖 in terms of 𝐻 coordinates. See Figure 6. 

Figure 6: M LS smoothing second step 

 

 

It is worth noting that the Gaussian is a bell curve centered on 𝜇 that 

tapers off according to 𝜎 with an amplitude given by 𝑎. The function is defined 

as: 

𝑓(𝑥) = 𝑎 𝑒
−(𝑥−𝜇)2

2𝜎2  

In this function, 𝜇 is usually referred as the mean and 𝜎 as the standard 

deviation. Figure 7* shows different shapes for the Gauss function according to 

the parameters presented here. 

                                        
*
 This figure was not created by the author of this thesis. It was taken from 

Wikipedia [29] and is of public domain 
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Figure 7: Examples of Gauss functions with different parameters  

 

2.5 M ARCHING CUBES 

With the growing presence of point clouds in modern industry and 

research, there is a great interest in converting this format into other domains, 

such as surface meshes, for several applications from medical imaging, geological 

reconstruction [10] to sculpture scanning [11]. Marching cubes [12] is an 

algorithm that extracts an isosurface, that is, a surface that represents a single 

value, and generates meshes by sampling a scalar field 𝑓:ℝ3 → ℝ . This 

technique is specially fitted for regular scalar fields structured as a 

tridimensional grid, though other representations have been used for marching 

cubes, such as octrees [13]. 

Given a grid, this method works by iterating over each cell and 

classifying it according to each of its corners in terms of its value, i.e. if it is 

above or below the isovalue 𝛼. That means that each cube can be classified as 

one of 256 possible values, or a byte: two values per vertex, and eight vertices 

per cell (28 = 256). If 𝛼 = 0, for instance, Figure 8 shows a cube where vertices 

1, 3, 4, and 8 are positive, and the remaining vertices are negative. This would 

translate to 10110001, where low bits mean negative vertices and high bits 

mean positive vertices. With the classification in hand, marching cubes uses a 

lookup table to create a surface inside the cell, illustrated in Figure 9. The 

isosurface will therefore separate positive from negative vertex values, in our 

example. 
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Figure 8: Cube marching classification  

 

Figure 9: Face added per the lookup table 

 

2.5.1 Lewiner’s approach 

This simplistic approach might generate ambiguities, leading to cracks 

and inconsistencies, and therefore various enhancements and techniques have 

been introduced. Table 1 below presents an example of such an ambiguity in a 

2D domain. Both the solutions are correct but only one will maintain 

topological consistency. A particular improvement proposed by Lewiner [14] 

guarantees a topologically correct result and uses a more elaborate lookup table 

to solve ambiguities. His work proposed that, after performing the classical 

classification, the entries should be compared per face against a case table that 

would specify which test should be performed on the particular face of the cube. 

The results of the tests would then be mapped against one of 730 entries of the 

lookup table for face creation. To guarantee the correct topology, not only 

adjacent cubes are matched according to the tests performed, but also the 

internal ambiguities are resolved. 

  



16 | Background 

 

 

Table 1: Marching cubes ambiguity example 

Situation Explanation 

 

Original case. Considering 𝛼 = 0 , 

vertices in red are positive and black 

vertices are negative. 

 

Connected case. The isoline can 

separate the square leaving the two 

positive vertices inside the same 

surface. 

 

Disconnected case. The isoline can 

separate the square leaving the two 

negative vertices in different surfaces. 
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2.6 POISSON SURFACE RECONSTRUCTION  

Similar to Marching Cubes, Poisson Surface Reconstruction [15] [16] is 

a method for generating meshes from point clouds; however, it models the 

problem as a spatial Poisson problem to find the indicator function and then 

extract the isosurface. 

An indicator function is a function that, for every point inside the 

model, its value is 1, and for all other points, the value is 0. Therefore, its 

gradient is zero everywhere, except for the surface, where it is equivalent to the 

inverse of the normal of the surface. With that in mind, the authors of this 

method suggested that, by using the normals from a sampled model, they could 

calculate the indicator function by inverting the operation and trying to match 

an indicator function that best matches the normal vector field. 

In other words, if we consider �⃗�  to be the vector field that defines the 

surface normal and 𝒳 to be the indicator function, we can model the problem 

as 𝑚𝑖𝑛𝒳‖∇𝒳 − �⃗� ‖. Moreover, if using the divergence operator, they can be 

equaled, as in ∇ ∙ ∇𝒳 = ∇ ∙ �⃗� . 

The divergence operator, denoted by ∇ ∙, measures the flow out of a 

surface surrounding a given point, analogous to the curl function that measures 

the rotation of the vector field surrounding a point. For instance, Figure 10, 

shows three cases of a vector field surrounding point 𝑃. In the first case, the 

divergence of the field is positive, as there is a positive outflow from the point. 

The second case also has a positive divergence, however of a smaller magnitude. 

Finally, the third case has a value of zero, since all the inflow and outflow 

cancel each other. 

 

Figure 10: Divergence operator examples 
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With that in mind, the problem can then be modelled as a Poisson’s 

equation such that the Laplacian of 𝒳, which is defined for the Euclidian space 

as the divergence of a gradient (∇ ∙ ∇, or simply ∆), can be equaled to the above 

statement and arriving at ∆𝒳 = ∇ ∙ ∇𝒳 = ∇ ∙ �⃗� . 

This method is very robust to noise and is able to keep high frequencies 

from the surface, that is, sharp corners or rapid variations on the surface 

normal, as demonstrated in [15], however it relies on having normals sampled 

with the point cloud, which is not the case for the stereoscopically generated 

data set used for this work. Nonetheless, they can be computed beforehand with 

the penalty of introducing one extra step. 

2.7 OPENCL 

OpenCL is an industry standard framework for programming 

heterogeneous systems, i.e., computing systems that involve multiple 

architectures within the same context. A ubiquitous example is the modern 

home computer and cellular phones, which usually have a general-purpose CPU 

and a dedicated GPU. OpenCL allows a program to be written in a single 

language and have it loaded into the compliant processors and executed with 

guarantee of the standard’s definitions. Such definitions include minimum 

accuracy requirements, data type sizes, atomicity, among others; therefore, the 

developer can focus on the algorithm as opposed to architectural peculiarities, 

and trust that it will execute as expected on different architectures. Moreover, 

the framework defines how drivers should load the program, queue their 

execution, and handle memory. 

A valuable advantage of OpenCL is being able to treat a GPU as a 

general-purpose processor, since, if it complies with the standard, it can be 

executed just like an OpenCL programmer would expect any other processor to 

execute. Considering this, the architectural properties of the GPU are still 

present, but they can be tapped into without necessarily aiming for graphical 

computation. 

2.7.1 Graphical Processing Unit 

The graphical processing unit, or GPU, is a specialized hardware 

conceived with the purpose of handling image generation and rendering. One 

common trait is the highly parallel architecture in which they are designed. 

More precisely, they leverage a data parallel model – consequence of handling 

pixels in an image – which consists of a single task being performed concurrently 
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across separate parts of the data. This characteristic of the GPU fomented the 

exploitation of the hardware for other computations besides image processing, 

also known as general-purpose computation on graphical processing units 

(GPGPU). Though general-purpose, these applications usually are aimed at 

embarrassingly parallel problem solving, meaning solutions that require a large 

number of independent computations. 

2.7.2  Validation 

The motivation behind using this platform for performing the intense 

bulk of the computation relies on the aforementioned parallelism and ability to 

harness GPU processing characteristics, which are aligned with the properties 

of the problem-space being studied, i.e. an embarrassingly parallel workload 

involving many floating-point calculations. 

To validate the strategy, a simple computation was performed using 

three different computing models: serially on the CPU, in parallel on the CPU, 

and in parallel on the GPU. The computation was designed to be 

embarrassingly parallel; thus, it calculated a Sierpiński triangle [17] by defining 

the set 𝑆, with indices denoted by 𝐼 as: 

𝑆 = {∑ 2𝑛 (⌊
𝑖

2𝑛⌋𝑚𝑜𝑑 2) (⌊
𝑖

2𝑛+256⌋𝑚𝑜𝑑 2)

𝑏

𝑛=0

}

𝑖∈𝐼

 

This equation is a modification of the original work by the Polish 

mathematician that operates in a binary architecture, repeating and 

compounding itself every 8 bits – represented by the division by 2256, and 

saturating at 𝑏 bits – represented by the sum of the individual b bits. To 

illustrate the expected result, a visualization of 𝑆 with |𝑆| = 16384 and 𝑏 = 6 

follows: 
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Figure 11: Binary Sierpiński triangle 

 

Furthermore, a second step was added to generate a set 𝑃 which would 

increase the cycle count per element computation by appending the following 

calculation to the value of 𝑆: 

𝑃 = {𝑠𝑖
𝑠𝑒𝑒𝑑}𝑖∈𝐼 

The set would then be generated 𝑥 times, so that the average time 

required to populate 𝑆 could be calculated. 

With the above algorithm in hand, the test was performed on a 2.4GHz 

Intel Xeon CPU with 8GB of RAM and 8 logical processors, and with a 1GHz 

NVidia GeForce GTX 680 GPU with 6GB of RAM. The pertinent variables to 

run the test were defined as |𝑆| = 2(167), 𝑎 = 64, and 𝑥 = 25. The results are 

a good representation of the nature of parallel computing on GPUs, where the 

average time to generate the sets are as follows: 
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Table 2: Average time to generate set S 

Method Average time (ms) 

Serial on CPU 687.11 

Parallel on CPU 196.90 

Parallel on GPU with OpenCL 305.53 

 

Table 3: Average time to generate set P  

Method Average time (ms) 

Serial on CPU 6,729.72 

Parallel on CPU 1,938.32 

Parallel on GPU with OpenCL 353.09 

 

Figure 12: Average time to generate sets of different size  

 

 

The results clearly show a consistent slower performance for the serial 

model in both sets; as well as the overhead involved in setting up and offloading 

processing to the GPU, reflected as a higher performance with CPU parallelized 

model when the cycle count per element computation does not compensate for 

the overhead. With that in mind, as long as the parallelized instruction block 

is complex enough, the overhead time will dissipate in relation to the overall 

time required to compute the whole instruction set. In the presented test case, 

the simple addition of an exponentiation was enough to overcome the 

underlying overhead. 
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3  SOLUTION  

Industrial plants share several geometrical similarities, such as the 

abundance of cylinders, boxes, and tori [18]. This can be expected to arise from 

the railings, piping, tanks, straight walls and ceilings, and valves, often present 

in industrial plants. As such, an automatic specialized algorithm could be 

anticipated [1]. However, the variance in the nature of the point clouds 

undermines a fully automated solution, and propositions that do not require 

human input often rely on a dense and artifact free point cloud [1] [2] [19]. 

Therefore, a compromise between automation and manual configuration would 

render the most general and useful solution. 

Several open source software packages, such as MeshLab  [20] and 

CloudCompare [21], provide a human supervised suite of tools, with pre-built 

algorithms for point cloud and mesh processing. However, MeshLab falls short 

in compatibility with LAS format, requiring a conversion prior to loading the 

data set. Furthermore, larger files, such as the ones this thesis focuses on, often 

result in crashes or require vast amounts of time in current common computers 

to perform most of the processing algorithms. CloudCompare, on the other 

hand, handles point clouds more efficiently, being built specifically for this 

matter; however, it too has an execution time which is larger than what this 

thesis is aiming to achieve, and does not present good robustness with regards 

to noisy point clouds. Both solutions, being built for general use, also fall short 

in ease-of-use when configuring the parameters for the processing algorithms. 

Consequently, a series of attempts with different parameters are needed to hone 

in the desired result, with the inconvenient fact that each try takes several 

minutes to compute. 

As such, the proposed solution for the scope of this work is a lightweight 

software that can receive point clouds as LAS files and output a mesh 

representation of the data set, without presenting the shortfalls found on freely 

available open source packages. That is, the software should be able to handle 

large files without crashing or requiring too many resources – in terms of 

memory or time –, and perform well on common modern computers. It also 

means that it should be robust to noisy point clouds, outputting a reliable 

representation of the original dataset. Finally, the solution should be easy to 

configure and should output a small file size. 
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4 JOURNEY  

In order to achieve the desired results, this work was divided in three 

parts: the construction of a framework to handle point clouds and meshes, the 

comparison of different forms of point cloud treatment algorithms, and finally 

the generation of the mesh representation. 

4.1 FRAM EWORK  

Considering the large size of LAS files, an efficient way to load them for 

handling and processing, consuming the minimal amount of memory and time 

as possible, is imperative. As such, C++ was the language of choice for its low-

level capabilities and small footprint, stemming from the “you don’t pay for 

what you don’t use” philosophy behind the C++ community. Furthermore, 

OpenCL – a C-based API – can be tapped into with just a single wrapper 

header file, a characteristic that will be useful on the next stage of the process. 

With that in mind, a struct for the data format was defined with no 

data padding. This allowed for an in place reading directly from the binary file 

into the software’s local memory by using the built-in reinterpret_cast 

operation. More specifically, this method allows the memory from the LAS file 

to be directly mapped to the working memory of the application, with no need 

to interpret or parse its contents, as opposed to reading the file and generating 

each data packet individually depending on its contents. By using a direct read, 

the loading process was 38.7% faster than using a value conversion method as 

per Table 4, which describes the average loading time of a 4.6GB point cloud 

containing 181,372,708 points on an Intel Xeon 2.4GHz and 6GB of RAM. 

Table 4: Loading time for LAS 

Method Average time (s) 

Value conversion reading 99.40 

In place reading 71.67 

 

However, because of the direct mapping of memory through 

reinterpret_cast, the struct could not take advantage of inheritance to 

represent the different format described by the 1.4 LAS specification, which 

share a good portion of their fields. This is due to the fact that, when inheriting, 
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the struct would require and extra field pointing to its base struct, and 

directly mapping would fail to populate the field properly. That meant that 

each different format was a separate struct and, consequently, all function calls 

that handled the point cloud had to be templated to match the format that 

was loaded. 

This has advantages and drawbacks. The main advantage is that, by 

not using inheritance, there is no virtual table lookups to resolve the hierarchy, 

speeding up the execution and allowing for static compiler optimization. 

However, because of the templated functions, the compilation time is greater 

and the binary output is larger, since for each separate LAS format, a new 

version of every templated function had to be generated at compile-time. 

4.2 POINT CLOUD TREATM ENT 

Once the framework was in place, different methods on how to treat the 

point cloud in order to reduce its artifacts were compared. 

4.2.1 WLOP 

As a method to clean the point cloud, reduce its file size, and increase 

the uniformity of the data set, while still maintaining a reliable point cloud 

representation, the WLOP algorithm was first tried. The motivation behind the 

use of this technique can be traced back to State of the Art publication by 

Berger et al [3]. Given the nature of the point cloud, specifically the non-

uniformity of the sampling, along with the noise, and outliers, Berger classified 

the LOP as a strong candidate for the treatment of the point cloud. With the 

improvements proposed by Huang et al [6] over the original work [5], an 

implementation from the CGAL library [22] was used to validate its 

applicability in the working set. For that matter, a subsection of the 

aforementioned point cloud was used to validate the method, shown in Figure 

13, containing 8,728,342 points with a file size of 290MB. 
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Figure 13: Subset of point cloud representing a railing section  

 

 

WLOP has three main parameters: radius, iterations, and reduction. 

 Radius stablishes a radius of neighbors around a point. This 

parameter is very important as it results in irregular outputs if 

too small, or high impact on runtime if too large. The desired 

value usually means a radius that includes two neighboring radii. 

Moreover, this value can be automatically calculated by the 

algorithm by measuring the average spacing between points. 

 Iterations refers to how many iterations will be run as the points 

converge. If the value is too high, there will be extra 

computation that does not contribute in a significant manner to 

the uniformization of the set, whereas a low number might not 

be enough to reach the optimum distribution. 

 Reduction specifies the number of points that should be kept 

from the original set. It is expressed as a percentage of the 

original cardinality. 
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With that in mind, details on different tries and combinations can be 

noticed on the following figures. 

Figure 14 is the original point cloud with no color information for a 

better comparison. Figure 15 presents the results of WLOP reducing to 2% of 

the original size, over 35 iterations, on a radius of five. The output file was 

3.4MB, and the computation took 35 hours. Figure 16 presents the results of 

WLOP running an automatically detected radius (calculated to be 0.05), over 

2 iterations, and 10% reduction. The output was 17MB, and the computation 

took one minute and ten seconds. Similarly, Figure 17 shows a very similar 

result with the same configuration, except for executing 35 iterations. The 

computation took eleven minutes and two seconds to finish. Finally, Figure 18 

presents the most promising results that could be extracted. It is the result of 

reducing the point cloud to 10% of its original size over 10 iterations with a 

radius of one. 

Figure 14: Original point cloud without color  
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Figure 15: WLOP 2% over 35 iterations on radius of five  

 

Figure 16: WLOP 10% over two iterations on a radius of 0.05 

 



28 | Journey 

 

Figure 17: WLOP 10% over 35 iterations with a radius of 0.05 

 

Figure 18: WLOP 10% over 10 iterations with a radius of one 
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It is worth noting how the radius is the largest contributor to how well 

the algorithm will perform, both in time as in output set. For instance, Figure 

17 has over three times more iterations than Figure 16 with no significant gains. 

On the other hand, a big increase in the radius severely hampered the quality 

of the output, as observed in Figure 15 on page 27 with strings for railing and 

holes on the sidewalls. This is due to the radius being much larger than the 

diameter of the railing, compressing all points with the region into a single 

string. 

4.2.2  M LS Smoothing 

The second point cloud treatment to be tested was the moving least 

squares smoothing [7] [8] [9] [23], which can be used to do higher polynomial 

interpolation of the surrounding points. This method is meant to aid in the 

treatment of outliers, noise, and holes, as discussed in 2.4. The motivation 

behind using this method was its strength against outliers and noise, 

characteristics that are abundant in our data sets. Furthermore, it has been 

implemented into open source software, making it easier and faster to test, 

validate, and compare. 

Its main parameters, among others, are the Gaussian standard 

deviation, which is discussed by Tekumalla et al [9] on section 4, and the search 

radius, which defines the local zone of influence. However, both parameters are 

related; as you increase the search radius, the standard deviation should also 

increase to account for the larger set of points. Therefore, they boil down to 

one main parameter: the search radius. 

By using Cloud Compare’s [21] implementation of the algorithm, the 

railing model was subjected to the MLS smoothing using different parameters. 

Using the same railing model of 8,728,342 points as before, the first setting used 

a search radius of 0.01 and 0.0001 for the Gaussian parameter, and completed 

in ~110 seconds with the output illustrated by Figure 19 below. As expected, 

increasing the deviation by one order of magnitude without increasing the 

search radius produced a very similar result with comparable compute time of 

~105 seconds. In fact, the results are so similar that they are indistinguishable 

when presented as figures in this document; therefore, it was omitted. 

However, in order to effectively extract the underlying surface function, 

a larger search radius is needed. Figure 20 shows the output of a search radius 

increased by one order of magnitude and 0.0001 for the Gauss parameter. This 

computation took significantly more time and lasted for 149 minutes. Similarly, 
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using the same increased search radius, but also increasing the Gauss parameter 

for standard deviation by one order of magnitude produced the same results as 

before: similar outputs, similar computing times. 

It is interesting to note that the weighting of the moving squares has 

little effect in our data set. As mentioned by Takumalla, this parameter has 

more of an impact on high frequency changes to the surface curvature. However, 

our data set suffers greatly from holes, which cannot be compensated for by 

applying a broader weighting function. 

Using a larger search radius, on the other hand, gave use noticeable 

changes, as can be noticed by Figure 21 and Figure 22. The larger vicinity was 

even able to close the railing and restore a cylindrical surface shape. 

Lastly, is worth mentioning that this method does not reduce the file 

size by itself. It could however be coupled with a down sampling algorithm to 

achieve this result. 
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Figure 19: MLS with 0.01 search radius and 0.0001 for Gauss parameter  

 

 

Figure 20: M LS with 0.1 search radius and 0.0001 for Gauss parameter  
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Figure 21: Railing detail from original point cloud 

 

 

Figure 22: Railing detail after MLS smoothing 
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4.2.3  Naïve point cloud simplification 

In order to simplify the point cloud without performing uniformization 

of the data, a naïve method was tested at this point. The main drive behind 

this approach is to reduce the file size so that it can be easily handled, while 

still working with a point cloud representation of the model. The process 

consists of shuffling the point cloud data set 𝑆 and picking 𝐾 elements, where 

𝐾 ≤ |𝑆|. This will randomly select a subset of the original data while preserving 

all information regarding the selected points. Note that this method does not 

perform any attempts to correct noise, outliers, or gaps in the point cloud. A 

C++ snippet can be seen in Code 1.Figure 23, where the file was reduced from 

290MB to 79.4MB while maintaining all channels from the original file, such as 

color, number of returns, or any other present initially. 

Code 1: Custom point cloud simplification  

The algorithm picks a fraction of the points randomly and creates a new point cloud 

with the selected subset 

1 template<int N> 
2 void simplify(const LASFile<N> & lasFile, const double factor) { 
3  
4 // Create a new file 
5 LASFile<N> newFile(lasFile.filePath)); 
6  
7 // Calculate the new size 
8 uint64_t newSize = static_cast<uint64_t>( 
9   lasFile.pointDataCount() * factor / 100.0); 
10  
11 // Gather the indices and shuffle them 
12 std::vector<uint64_t> indices; 
13 indices.reserve(lasFile.pointDataCount()); 
14 for (uint64_t i = 0; i < lasFile.pointDataCount(); i++) { 
15   indices.push_back(i); 
16 } 
17 std::random_shuffle(indices.begin(), indices.end()); 
18  
19 // Pick the first K indices 
20 indices.resize(newSize); 
21 newFile.pointData.reserve(newSize); 
22  
23 // Push the selected points 
24 for (auto & index : indices) { 
25   newFile.pointData.push_back(lasFile.pointData[index]); 
26 } 
27  
28 newFile.save(); 

29 } 
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Figure 23: Railing after naïve simplification 

 

 

4.3  M ESH GENERATION  

With different techniques of point cloud treatment in hand; different 

mesh generation algorithms were tested with the output files. The goal is to 

identify the best pipeline now that all the pieces are in place. For that matter, 

different meshing algorithms were tested. 

4.3.1 M arching cubes 

The marching cubes algorithm [12] [13] [14] [24] was chosen for its 

simplicity and ubiquity. The motivation behind choosing an algorithm for its 

simplicity lies on the fact that this would be a stepping-stone into the scope of 

transforming the representation, therefore, a tried and tested simple approach 

would be quick to implement and verify. 

As an actual implementation of the marching cubes algorithm, Lewiner 

et al [14] proposed an efficient implementation using an extended look-up table. 

Furthermore, the source code for CPU execution was made available by the 

authors, making it quicker to test and verify. However, the algorithm assumes 
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the data is a scalar map, that is, a three-dimensional grid of cubes, with values 

associated to each cell. From this scalar map, an isosurface can be extracted, 

that is, a surface where all points have the same value. Therefore, the first step 

is to generate such a grid. 

4.3.1.1 Grid generation 

The strategy applied for the grid generation was to create a density 

scalar map of the point cloud. In other words, the point cloud would be divided 

into a regular grid of three-dimensional cells, and the number of points that 

were contained inside a given cell would give its density value. The reason for 

such generation approach was the simplicity of the concept and the ability to 

perform the generation in a highly parallel fashion. This strategy later also 

proved to be robust to outliers and noise. 

By performing the creation of the grid in the graphics card, the process 

can leverage the high parallelization capabilities and take advantage of atomic 

operations to increment the density of a cube as points in the point cloud are 

visited. Code 2 shows how each individual point is visited and its location 

calculated. Because of the parallel nature of this computation, atomic_inc is 

called to increment the density of the respective cube in a lock-free fashion. 

Code 2: Kernel for creating cuverille grid 

The algorithm places a data point into a cell according to its spatial location  

1 kernel 
2 __attribute__((vec_type_hint(float3))) 
3 void createGrid(const global uint3 * points, 

i. global volatile uint * output) { 
4 float3 point = convert_float3(points[get_global_id(0)]); 
5  
6 ushort3 grid = convert_ushort3((point - CONST_OFFSET) / 

CONST_STEP); 
7  
8 if (grid.x == CONST_SIZE_X) grid.x--; 
9 if (grid.y == CONST_SIZE_Y) grid.y--; 
10 if (grid.z == CONST_SIZE_Z) grid.z--; 
11  
12 atomic_inc(&output[grid.z 
13   + grid.y * CONST_SIZE_Z 
14   + grid.x * CONST_SIZE_Y * CONST_SIZE_Z]); 

15 } 

 

For this code to be reliable, however, the global memory output should 

be placed in the same device that the code is running since the standard does 
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not guarantee atomic operations across multiple devices as per Appendix A of 

the specification [25]. 

Furthermore, care should be taken when loading the memory as to avoid 

allocating more than the allowable amount given by 

CL_DEVICE_MAX_MEM_ALLOC_SIZE, defined in the specification as either a fourth 

of the total global memory or 134KB; whichever is larger. Depending on 

vendors, if this limit is not respected, the code will fail, which is the case for 

AMD cards. However, other vendors allow this value to be violated without 

failing in detriment of performance, such as for Nvidia cards. In the case of this 

work, the point cloud can be loaded in chunks that do not surpass the limit 

until the whole dataset is processed. 

4.3.1.2 Vertices generation 

Once the scalar field is generated, the algorithm then creates all the 

possible vertices that might be used while generating the triangles. This phase 

allows for further steps to reference pre-existing vertices, thus avoiding 

duplicated vertices, redundant vertex placement calculation, and minimizing 

output file size. The latter is due to the representation format for the mesh, 

where triangles are defined not by three vertices, but by three indices to a list 

of vertices. This technique is commonplace in modern graphics and available in 

different mesh representation formats, such as OBJ [26] and PLY [27]. In the 

case of OpenGL, such functionality is used when calling glDrawElements. 

This step is achieved by taking the generated grid and connecting 

adjacent voxels with edges. Then, for each edge, if the connected voxels are on 

opposite sides of the threshold, a vertex will be created. Finally, the placement 

of the vertex along the edge is given by the linear interpolation of the two 

values. 

To illustrate the process, a bi-dimensional example will be used, to avoid 

cluttering and facilitate the explanation. Given a 4 by 4 grid, seen on Figure 

24, where each pixel represents the density of points contained within that 

region, edges connecting the pixels will be created as on Figure 25. Note that 

the edges are not actually allocated in memory, only vertices are created in this 

phase. The use of edges is to better illustrate the process. 
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Figure 24: Bi-dimensional grid representing point densities  

 

Figure 25: Grid with connecting edges 
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With the virtual edges in place, vertices will be created for each edge 

that connects pixels whose values are on either side of the threshold. Taking 50 

as an example for a threshold, Figure 26 shows which vertices would be created 

in this example. 

Finally, Figure 27 shows the vertices in their actual positions taking 

into account the values of the connected pixels and interpolating them to find 

where the threshold would lie. Figure 28 shows the final result. 

Figure 26: Edges with created vertices 
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Figure 27: Vertices positions set by interpolation  

 

 

Figure 28: Resulting vertices 
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To illustrate the importance of this step in terms of memory 

consumption, let us take a bi-dimensional grid with 𝑉2𝐷 pixels, where: 

𝑉2𝐷 = 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡 

This grid will generate 𝐸2𝐷 edges, where, if we consider: 

𝐴 = 𝑊𝑖𝑑𝑡ℎ − 1 

𝐵 = 𝐻𝑒𝑖𝑔ℎ𝑡 − 1 

We are using these values as base because we are connecting the grid 

with edges, as seen on Figure 25 above, and therefore reducing the dimensions 

by one. We then have: 

𝐸2𝐷(𝐴, 𝐵) = 2(𝐴𝐵) + 𝐴 + 𝐵 

This can also be intuitively noticed since, for each cell on Figure 25, two 

edges are created, the bottom and left ones, giving 2(𝐴𝐵). This however leaves 

the top and right side of the grid open. Therefore, for the rightmost column, 𝐵 

edges have to be added to close the right side; and for the topmost row, 𝐴 edges 

have to be added to close the top side of the grid. Hence 2(𝐴𝐵) + 𝐴 + 𝐵. 

Similarly, in the tridimensional case, the potential number of vertices 

created is given by: 

𝑉3𝐷 = 𝑊𝑖𝑑𝑡ℎ × 𝐻𝑒𝑖𝑔ℎ𝑡 × 𝐷𝑒𝑝𝑡ℎ 

𝐴 = 𝑊𝑖𝑑𝑡ℎ − 1 
𝐵 = 𝐻𝑒𝑖𝑔ℎ𝑡 − 1 

𝐶 = 𝐷𝑒𝑝𝑡ℎ − 1 
𝐸3𝐷(𝐴, 𝐵, 𝐶) = 𝐸2𝐷(𝐴, 𝐵) + 3𝐴𝐵𝐶 + 2𝐴𝐶 + 2𝐵𝐶 + 𝐶 

𝐸3𝐷(𝐴, 𝐵, 𝐶) = 3𝐴𝐵𝐶 + 2𝐴𝐵 + 2𝐴𝐶 + 2𝐵𝐶 + 𝐴 + 𝐵 + 𝐶 

Therefore, it is easy to notice that, in the worst case, the number of 

vertices created will be in the order of three times the number of voxels, using 

this generation phase. If vertices were to be created independently, this number 

could be in the order of 12 times the number of voxels. 

This memory consumption also starts to degrade the performance of the 

GPU, since memory has to be moved in and out of the GPU only to perform 

trivial operations, such as comparison and interpolation. 

4.3.1.3 Classification 

Once the vertices are generated, they are put aside and the algorithm 

then classifies each cell, where a cell is given by eight voxels representing the 
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eight vertices of the cell. This process is straightforward and is exactly as 

described in section 2.5. 

4.3.1.4 Triangle generation 

The classification of the cell can then be used to get the rules for 

generating triangles inside the cell. However, there are ambiguity cases that 

need to be resolved in order to maintain the correct topology. 

If no ambiguities were to be resolved, a lookup table containing 256 

entries would dictate, according to the classification, which triangles to create 

by referencing which vertex indices. For instance, case 18 would cause the 

algorithm to lookup the 18
th
 entry in the lookup table, which in turn would 

return the numbers {0, 1, 9, 8, 4, 7}. This means that two triangles would be 

generated by connecting the vertices lying on edges {0, 1, 9} and {8, 4, 7}. As 

reference, the edge numbers are labeled as in Figure 29. 

Figure 29: Edge numbering for marching cubes  

 

However, Lewiner [14] has proposed an implementation that uses 

ambiguity resolution, where certain cases would trigger tests to resolve which 

triangle should be created. It does not only resolve face ambiguities, but also 

solves internal ambiguities, and therefore is able to guarantee topological 

correctness. 
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To do so, the 256-entry lookup table maps which subcase and 

configuration to consider, and hence, which additional operations should be 

performed, including possible tests to further classify the case before generating 

the triangle. This lookup table is defined in a 2000-line header file. 

For the example presented in section 4.3.1.2, this phase would generate 

the shape in blue seen on Figure 30. 

Figure 30: Resulting shape 

 

4.3.1.5 Output 

Figure 31 shows the output of the marching cubes with a grid of 

128×128×128 cells. From the original file size of 290MB, the marching cubes 

mesh had a file size of 4.2MB in 0.15 seconds. 

Figure 32 show the same file marched in a 256×256×256 grid. The 

output file size was 20.3MB and was generated in 1.8 seconds. 
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Figure 31: Marching cubes output for 1283 

 

 

Figure 32: Marching cubes output for 2563 
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4.3.2  Poisson Surface Reconstruction 

The other surface reconstruction method tested was the Poisson surface 

reconstruction [15] [16]. This method renders results that are accurate and able 

to be resilient to imperfect data, outliers, and high frequencies in the surface. 

In addition, there is an available open source version implemented as part of 

Cloud Compare [21], making it easy to test and validate for this work. 

However, as mentioned in section 2.6, this technique relies on normal 

information from the point cloud to extract the surface, and this information is 

not present in the data sets for the scope if this work. With that in mind, an 

additional step for normal calculation had to be taken beforehand. Fortunately, 

this step is also available as part of Cloud Compare. 

The main parameter for the Poisson is the octree depth. This parameter 

changes how the discretization is performed, i.e. how deep the tree should be 

to represent the dataset. Since most of the model’s volume will contain empty 

space, most of the precision is need around the surface and octree would be an 

efficient model to represent that. It is worth noting, though, that the size of the 

dataset grows exponentially with the depth of the tree, that is, the dataset will 

contain 8𝑛 points, where 𝑛 is the depth of the tree. 

Figure 33 shows the output of the Poisson reconstructed surface with 

an octree depth of 8. The computation time was a total of 9.7 minutes, of which 

8.75 minutes were spent calculating the normals, and 55 seconds were 

computing the Poisson surface. This particular output had a size of 9.5 MB. 

Similarly, Figure 34 shows the same model, but with an octree depth of 

10. The computation took 11.7 minutes broken down into 8.8 for normal 

computation and 2.9 minutes for surface extraction. The output file size was 

185MB. 
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Figure 33: Poisson reconstruction with octree depth of 8  

 

Figure 34: Poisson reconstruction with octree depth of 10  
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5 RESULTS 

In order to hone into the best pipeline to achieve the goals of this thesis 

based on the techniques assessed, the different algorithms that were 

implemented and the tests performed were analyzed to find such pipeline. As 

such, the results of the test will be independently analyzed and discussed. Later, 

the different methods will be combined with each other producing eight 

different pipelines that will then be analyzed and discussed. 

For each case, a comparison of the output was performed against the 

original point cloud, and a heat map was generated according to the distance 

between the two sets. In the case of meshes being compared, 3 million points 

were uniformly placed on the surface in order to perform the comparison. 

Furthermore, the scales are normalized to each case, so to not saturate the heat 

map. However, a detailed view of the histogram with the distribution is 

presented alongside the image to allow for an absolute comparison between the 

cases. 

5.1 POINT CLOUD TREATM ENT 

5.1.1 WLOP 

Overall, the results obtained from running WLOP were less than 

satisfactory, despite the promising compatibility proposed by Berger et al [3]. 

The most promising output – shown in Figure 18 on page 28 –, with a very well 

balanced radius size, failed to create uniform flat surfaces while still maintaining 

the shape of the railings, as seen in Figure 35. The main reasons for the dismissal 

of this strategy are the loss of color information and the tendency to collapse 

the railing into a string of points. The latter is a consequence of the radius of 

influence which, in order to be effective, should be large enough to encompass 

outliers in addition to the actual surface; however, as the radius grows, it 

becomes larger than the diameter of the railing, thus collapsing it. Moreover, 

though color can be restored based on the original file, significant improvement 

was not achieved with this method to justify the effort or its use. 
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Figure 35: Detail of railing output from WLOP 

 

 

5.1.1.1 Radius of 5 

It is clear that when the radius is too large the points were compressed, 

rendering the railing unrecognizable. This is reflected as the largest absolute 

distances compared to the other cases with an average of 0.19, as seen in the 

heat map on Figure 36. Finally, as seen on Figure 39, the computation time 

turned out unfeasible for this project, taking multiple hours for a single 

iteration. 
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Figure 36: Heat map for WLOP with 2% reduction over 35 iterations on radius of 

five 

 

 

 

5.1.1.2 Radius of 1 

The best results using WLOP came from using a radius of one. However, 

the number of iterations was reduced to 10 to decrease computation time, after 

it was noticed that there was no detectable impact on the quality of the output. 

This configuration also showed high fidelity to the original model with an 

average distance of 0.006. It also proved able to successfully manage both high 

curvature, such as the railings, and flat surface, such as the floor. 
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Figure 37: Heat map for WLOP with 10% reduction over 10 iterations on radius 

of one 

 

 

 

5.1.1.3 Radius of 0.05 

In a more conservative approach and using a smaller radius of 0.05 – 

that would allow for keeping the integrity of areas with high curvatures, like 

the railing – and using 35 iterations, the output failed to properly resolve the 

lower curvature regions, such as the floor. This can be noted in the high distance 

region on the sidewall seen on the left side of Figure 38. Compared to section 
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5.1.1.1, it performed much better, reducing the computation time by several 

orders of magnitude and having an average distance about ten times smaller. 

Figure 38: Heat map for WLOP with 10% reduction over 35 iterations on radius 

of 0.05 

 

 

 

5.1.1.4 Computation time 

The WLOP method is very computer intensive and grows exponentially 

with relation to the radius. Figure 39 shows the computation times for a single 

iteration and same reduction factor, but on different radii, including the ones 
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presented in the above results (presented in blue). The results were taken from 

an Intel Core i7 2.2GHz, with 12GB of RAM and four cores. 

Figure 39: Computation time for WLOP 

 

 

5.1.2  M LS Smoothing 

This approach rendered the most successful results, preserved colors, 

and was able to smooth the surface to a degree, as seen on Figure 22 page 32. 

In addition, it did not need any pre computation – such as calculating normals, 

since the algorithm does not rely on them as explained by Tekumalla et al [9] 

– prior to being executed, which might save computing time; however, it did 

require hours to complete in a subset of the point cloud. This method also was 

not able to handle the severe imperfections of our data set to its full extent, as 

it can be noticed on the protrusions from the side walls and the flaring on the 

railing, visible on Figure 40 and Figure 41, respectively. Finally, there was no 

reduction on the file size, which could potentially simplify the next step in the 

pipeline. 

Notice that even though this algorithm also uses the search radius as 

its main parameter, it has no relation to the radius used by WLOP. Thus, the 

values used for the search radius are different from the ones used in section 

5.1.1 for its WLOP radius. 
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Figure 40: Protrusions from sidewalls from M LS 

 

Figure 41: Flaring on railing from M LS 
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5.1.2.1 Radius of 0.01 

When the search radius is not large enough, the algorithm did not 

present any smoothing results, as seen on Figure 42. This could be due to the 

radius not including enough points to reliably represent the intrinsic surface; 

therefore, the interpolation was based on non-representative points from a 

localized region. As such, there is very little difference between the projected 

points and the original point cloud and this is reflected in the small distances 

shown in this result. 

Figure 42: Heat map for MLS with a search radius of 0.01 
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5.1.2.2 Radius of 0.1 

By using a larger search radius, the smoothing procedure was able to 

extract the surface function with greater success, due to the radius being able 

to encompass enough of the surface and fit a better matched curved, as mention 

in section 2.4 and illustrated on Figure 22 page 32. In addition, this heat map 

is comparable to the best WLOP result seen on Figure 37 page 48, in terms of 

absolute distances and heat clusters; however, this smoothing method took 

considerably less time to compute than WLOP with the addition of preserving 

colors. 

Figure 43: Heat map for MLS with a search radius of 0.1 
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5.1.2.3 Radius of 0.5 

With a larger radius, the computation time grew exponentially, as noted 

on Figure 46, but granting poorer results with severe deformations. The larger 

radius was not able to cope with higher frequencies in the surface function, 

meaning that it was unable to handle sharp edges. This is clearly visible in 

Figure 45, where the intersection between the horizontal railings meet the 

vertical supporting poles, creating a region of deformation. 

Figure 44: Heat map for MLS with a search radius of 0.5 
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Figure 45: MLS smoothing with a radius of 0.5 

 

 

5.1.2.4 Computation time 

The MLS smoothing is very sensitive to the search radius, growing 

exponentially with the radius size. This means that, for the desirable results 

from section 5.1.2.2, there is a 2h30 computation time associated with it. 

Depending on the robustness of the meshing algorithm down the pipeline, this 

might be unnecessary waste of resources. Figure 46 shows the computation 

times for the outputs presented on this section. The results were taken from an 

Intel Core i7 2.2GHz, with 12GB of RAM and four cores. 



 

Results | 57 

 

Figure 46: Computation time for M LS 

 

 

5.1.3  Naïve approach 

The results were satisfactory, preserving color and still representing the 

model with sufficient points. However, this simplistic approach would only 

make sense if further improvements were to be performed in a point cloud 

representation format, that is, if a transmutation into a different representation, 

such as a density scalar map, were to be applied, the computational time might 

not be justifiable. Therefore, while new techniques were explored, this method 

could be applied if such computation would benefit the overall simplification 

pipeline, as for MLS smoothing. 

Furthermore, since the naïve approach does not modify the positions of 

the points in any way, there is no reason to study its fidelity to the original 

model, as it was done to the previous methods. 

Lastly, the computation time is linear with the size of the original file, 

meaning that, different reduction factors will run in always about the same 

time if the input file is the same; therefore, there is no need to study its 

computation time since, for the test file being used, the run time was always 

~1.5 seconds. 
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5.2 M ESH GENERATION  

5.2.1 M arching Cubes 

The marching cubes implementation turned out to be exceptionally fast 

and able to generate small files. It proved to be reliable to outliers as a 

consequence of the gridification process; as explained in section 4.3.1.1, if the 

density of outliers is not high enough, it will not be reflected in the grid, 

essentially phasing out the outliers when fitting the isosurface. However, it 

produced unnecessary triangles for the same reason, i.e. since the grid size is 

fixed, there will always be multiple triangles generated for a surface that crosses 

multiple cells. 

The algorithm was very efficient in terms of memory and time, running 

in the realm of under five seconds, and consuming about the same amount of 

memory as the input file. 

5.2.1.1 Grid 1283 

Using a coarse grid, the algorithm ran in a fraction of a second, as seen 

on Figure 52 and generating an output file of 4.2MB – 72 times smaller than 

the original point cloud. It is interesting to note the pattern of green and blue 

on the floor in Figure 47; this is the consequence of a grid-based algorithm, 

where the floor is not perfectly horizontal and therefore is slowly creeping from 

one grid plane to the next. This is the main cause for loss in fidelity for this 

implementation of marching cubes. 

This configuration obtained the best results by being the fastest, 

generating the smallest output, and being effective against artifacts. By using 

larger cells, the average density was higher, meaning that sporadic outliers had 

less of an impact and were phased away. In addition, the larger cells were able 

to encompass regions of noise and with that interpolate the value for the surface 

fitting within a single cell. If the noisy region were to cross several cells, the 

threshold from section 4.3.1.2 could be crossed multiple times in adjacent cells, 

generating multiple faces. 
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Figure 47: Heat map for MC with a grid of 128 3 

 

 

5.2.1.2 Grid 2563 

By using a 256×256×256 grid, higher frequencies were captured, and 

with that, more of the artifacts came with the mesh. The processing time was 

still under two seconds, shown in Figure 52, and the output file size 20.3MB. 

Though both values are quite good and acceptable, the quality of the mesh 

degraded. A comparison of the noise can be seen on Figure 49 and Figure 50, 

where the sidewall on the 2563 version contains severe corrugations, and the 

railing support corrodes away at the top. 
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Figure 48: Heat map for MC with a grid of 2563 
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Figure 49: Comparison of sidewalls: MC 1283 

 

Figure 50: Comparison of sidewalls: MC 2563 
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5.2.1.3 Grid 5123 

A finer grain grid was then tested, with 512×512×512 cells. The 

computation time was still under ten seconds, but the file size already reached 

79MB. Once there are too many cells in the grid, the gain from the meshing 

process becomes hazed. Consider an extreme case: it is possible to have an 

arrangement such that, for each point in the point cloud, a whole triangle would 

have to be generated to represent it, thus three new points would emerge, as 

the three vertices from a triangle. This would actually increase the output file 

size and defeat the purpose of this thesis. 

Furthermore, this amount of cells enabled much of the noise to come 

through, as the cells were not large enough to smooth out the variance of the 

noise, as can be seen on Figure 51. As such, the distance from the original model 

is quite small, with an average of 0.007; but that only reflects the persistence 

of undesired qualities. 

Figure 51: Heat map for MC with a grid of 5123 
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5.2.1.4 Computation time 

Marching cubes proved to be exceptionally fast, growing linearly with 

the number of cells in the grid. Even using over 134 million cells, the algorithm 

executed in under ten seconds. Figure 52 shows the computation times in 

milliseconds for the outputs using different grid sizes, including the ones 

presented on this section (shown in blue). The results were taken from an Intel 

Core i7 2.2GHz, with 12GB of RAM and four cores. 

Figure 52: Computation time for marching cubes 
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5.2.2  Poisson Surface Reconstruction 

The Poisson reconstruction showed very good results, able to fit reliable 

surfaces on the artifact-rich data sets. Smaller octree depth levels showed great 

distortions, but higher values were able to model the surfaces appropriately, 

though with a tendency to reverse normals of the generated faces. 

However, this method is much slower than the marching cubes. Not 

only it requires normals for each point in the point cloud, it also takes vastly 

more time in the surface generation phase. The data set this work is aimed at 

does not contain normals, therefore the time required to compute them should 

be considered as part of the nature of this algorithm. 

5.2.2.1 Level 8 

By using an octree of depth 8 for the Poisson reconstruction, the results 

were poor and distorted. Some heavy artifacts emerged as flaring from the rails, 

which can be easily noticed by their high distance values on the heat map on 

Figure 53. In fact, their distance skewed the whole heat map normalization, 

making most of the figure be blueish, however the histogram shows that the 

average distance is in reality 0.016. 

The process itself was quite fast, taking only 55 seconds to generate the 

surface. However, 525 seconds were required beforehand in order to compute 

the necessary normals for this algorithm. The output file was small, measuring 

9.5MB. 

Overall, the distortions are too great to make this method viable for the 

purpose of this project. 
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Figure 53: Heat map for Poisson with octree depth 8 

 

 

 

5.2.2.2 Level 9 

By adding an extra level to the octree, most of the distortions 

disappeared, but not completely. The surface also had a much higher fidelity, 

with an average distance of 0.007, but the flaring is still present. In fact, the 

flaring can be removed by selecting a different density threshold, but in 

detriment of have holes in the model, as seen on Figure 55; there is not enough 



66 | Results 

 

levels to discriminate the density. This effect is even more accentuated in 

shallower octrees. 

Figure 54: Heat map for Poisson with octree depth 9  
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Figure 55: Poisson 9 with higher threshold  

 

 

5.2.2.3 Level 10 

Using a deeper octree of ten levels, the algorithm managed to fit a better 

surface onto the model. The flaring is no longer present and the surface is very 

close to the original model, reflecting the high fidelity that was achieved. 

Similar to other octree levels, the normals had to be precomputed, 

increasing the computing time: 528 seconds for normals calculation and 174 

seconds for the mesh generation. However, the file size is significantly larger, 

nearing the original point cloud at 185MB. Overall, the results were 

satisfactory, the best Poisson output, in fact; but the output file was larger 

than desired and the computation time long. 
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Figure 56: Heat map for Poisson with octree depth 10 

 

 

 

5.2.2.4 Computation time 

The computation time, interestingly enough was fairly constant across 

the different parameters. The reason for this is the fact that about 90% of the 

time is spent calculating normals, shown in blue, which is not affected by the 

octree depth. However, considering just the meshing part, shown in orange, the 
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algorithm was orders of magnitude slower than marching cubes; still, the data 

set that this thesis is aimed at does not contain normals, therefore its 

calculation time has to be considered. The results were taken from an Intel 

Core i7 2.2GHz, with 12GB of RAM and four cores. 

Figure 57: Computation time for Poisson reconstruction  

 

 

5.3  P IPELINES 

With the different techniques tested and analyzed, their best outputs 

were matched with each other in order to create point-cloud-to-mesh pipelines. 

A total of eight pipelines were evaluated: 

1. WLOP + MC 

2. MLS + MC  

3. Naïve + MC  

4. Crude + MC 

5. WLOP + Poisson 

6. MLS + Poisson 

7. Naïve + Poisson 

8. Crude + Poisson 

The parameter chosen for the methods are as follows: 
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 MLS: Radius of 0.1 

 Naïve: 25% reduction 

 Marching Cubes: 128
3
 cells 

 Poisson: 10 levels depth 

“Crude” here stands for the unprocessed point cloud, with no treatment 

applied to it before being fed into the meshing algorithm. Since the crude 

versions were analyzed in the previous sections, their results will be presented 

here only briefly so that all pipelines have an equal footing for comparison. 

5.3.1 M arching Cubes 

Marching cubes proved to be very fast and efficient. With the 

computation time varying around 0.15 seconds, the overall time shown in 

Figure 66 is heavily weighted by the point cloud treatment phase. There is also 

the significantly smaller file sizes generated that average 3.9MB as seen on 

Figure 67 on page 87, which is a direct consequence of the grid size. 

The method however does not output colors as it is implemented by the 

time of this assessment and this can be considered as loss of engineering 

information. With that in mind, when color support is added to the algorithm, 

the file sizes will grow to reflect the storing of color information, that is, 24 bits 

per vertex. That means that, in average, the files will grow 1.9MB on average 

once colors are implemented, for the point cloud being used in this test. 

5.3.1.1 WLOP 

When combining with WLOP, the output was subpar with several holes 

present in the model. In addition, the computation time was the highest of all 

the pipelines involving marching cubes, as seen on Figure 66 on page 86. 

However, the results presented the lowest average distance from the original 

model with a standard deviation comparable to the other marching cubes 

pipelines. 

Due to the holes and the vast time required to finish this pipeline, this 

combination was not deemed acceptable for our parameters set in our 

objectives, i.e. the necessity for a fast and efficient algorithm and a fidelity to 

the original model, discussed in section 1.2. 
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Figure 58: WLOP and Marching Cubes 

 

 



72 | Results 

 

 

5.3.1.2 MLS 

The MLS showed considerably better results. The holes present in the 

WLOP pipelines are gone and the model exhibits a smooth quality to its 

surface, as can be noticed by comparing Figure 58 above and Figure 59 below. 

Moreover, the railings retained their cylindrical shape, which was not the case 

for the WLOP. The main downside for this combination is the computation 

time, though lower than WLOP, it is still in the order of hours, as seen on 

Figure 66 on page 86. 

Since the file sizes for the marching cubes pipelines are all very similar, 

the main conditions for acceptance is the efficiency of the algorithm and the 

quality of the output, as stated in the objectives. As such, the MLS + MC 

pipeline does present good results, the best for marching cubes pipelines, in 

fact. However, the computing time is a hindrance, meaning that the other 

pipelines must present significantly worse output quality to justify the 

computing time of almost three hours, seen on Figure 66 on page 86. 
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Figure 59: MLS and Marching Cubes 
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5.3.1.3 Naïve 

The naïve method proved to be the worse marching cubes pipeline. 

There is not much in its favor expect for the quick processing time, though the 

time required is still greater than running the crude point cloud. 

It is interesting to note that, even though the points were removed 

across all regions randomly, the noise turned out to be accentuated in the 

pipeline when comparing to the crude input. This is especially visible on the 

sidewall, where the protuberances are heightened in the naïve method when 

compared to the crude method. In fact, this combination presented the largest 

distances of all the marching cubes pipelines, averaging at 0.034, as seen on 

Figure 60. 



 

Results | 75 

 

Figure 60: Naïve and Marching Cubes 
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5.3.1.4 Crude 

The crude method as by far the fastest method, compared across all 

pipelines, including the Poisson ones, requiring 151 milliseconds to complete, 

noticed on Figure 66 on page 86. The distances are comparable to all the other 

marching cubes pipelines and it generated the second smallest average distance 

to the original model. 

Though the MLS point cloud treatment coupled with marching cubes 

generated a smoother surface, the results are very similar to each other due to 

the gridification process. All shapes are retained from the original model, and 

engineers can perform measurements just as well. Consequently, the three hours 

required to handle this small data set does not justify the use of MLS. This is, 

therefore, the best pipeline using marching cubes. 
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Figure 61: Crude and Marching Cubes 
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5.3.2  Poisson 

Poisson generated very smooth surfaces with short computing time. 

However, it requires that the point clouds contain normals associated with the 

points. This is not the case for the stereoscopically generated data sets that this 

work is aimed at. Therefore, there is an overhead of computing normals, which 

take a significant longer time to conclude. 

In this section, most of the pipelines presented were able to remove the 

outlying cluster on the lower left side of the model, reflecting the resilience to 

outliers that this method promises [15]. It was also able to generate single 

surfaces on the floor, which is not the case for the marching cubes. However, 

this method had a tendency of generating inverted normals on the final mesh. 

This happens because a surface can only have one direction to its normal, and 

a single plane, such as the manner which Poisson represents the floors and 

sidewalls also must choose a single direction for its normals. This way a ceiling 

might have its normal facing up, or a floor might have its normal facing down. 

This is especially visible on Figure 62, where there is no color information and 

the normal directions can be identified by the shading of green. 

Furthermore, this method generated much larger file sizes, several 

orders of magnitude larger than the Marching Cubes pipelines, as seen on 

Figure 67 on page 87. 

5.3.2.1 WLOP 

Similarly to the marching cubes pipeline, when using WLOP the results 

were mediocre: there are severe deformations and holes, with major segments 

of the railing missing and flattened. This poor result, nonetheless, took the 
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longest time to calculate and generate, as seen on Figure 66. In addition, due 

to the loss of color information from the WLOP treatment, it fails to output 

colors in the result. However, it generated to smallest file size of any Poisson 

pipeline. Finally, it presented the second highest average distance from the 

original model, measuring at 0.007. 

Figure 62: WLOP and Poisson 
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5.3.2.2 MLS 

MLS, in contrast to WLOP, performed worse when combined with 

Poisson. There are severe depressions on the floor, clearly visible on the heat 

map on Figure 63, which were not present when combined with MC. 

Furthermore, this is the only Poisson pipeline that heavily retained the outliers 

on the lower left side of the figure. The method also presented the lowest fidelity 

to the original model with the distance averaging 0.008. 

All these factors, coupled with long computing time of almost three 

hours, rendered this pipeline not a good option for the final pipeline. 
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Figure 63: MLS and Poisson 
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5.3.2.3 Naïve 

The naïve method performed much better than the WLOP and MLS, 

when coupled with Poisson. The distances were considerably smaller compared 

to the original model, averaging 0.005, as shown on Figure 64, and the 

computation time was orders of magnitude faster, as Figure 66 demonstrates. 

Though the smoothness is not as high as the MLS version, with the dimpled 

sidewall being the telltale, the overall shape of the model is noticeably better. 

There are no depressions on the floor and the color is retained. 

However, similarly to the naïve method with MC, the results were 

actually worse than the crude pipeline. The file size was the largest of all 

Poisson pipelines and the output presented more artifacts. It is interesting to 

note that the naïve method did simplify the pipeline, by reducing the 

complexity of calculating the normals, and reducing the pipeline computing 

time significantly, as seen on Figure 66 on page 86. 
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Figure 64: Naïve and Poisson 
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5.3.2.4 Crude 

In the case of the Poisson pipelines, the crude output again presented 

the best results. Despite of exhibiting corrugated and dimpled sidewalls and 

railing posts, visible on Figure 65, this pipeline generated the smallest distances, 

averaging at 0.004. It also preserved colors and was able to remove the outlying 

cluster to the left of the sidewall. 

However, it was not the fastest method, though. The naïve 

simplification helped to reduce the normals computation time, thus reflecting 

in a faster pipeline. Moreover, the output file size was nearly twice as that of 

the WLOP pipeline, taking up 132 MB and being the second largest output file. 
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Figure 65: Crude and Poisson 
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5.4 P IPELINES COM PARISON  

When comparing times, it is clear the impact that the preprocessing of 

the point cloud has. So much so that it shadows the pipelines that do not 

require intensive computation on the point cloud, which can be noticed on 

Figure 66. It is interesting to note that the naïve method did have a positive 

impact when coupled with Poisson, reducing the computing time three fold. 

The results were taken from an Intel Core i7 2.2GHz, with 12GB of RAM and 

four cores. 

Figure 66: Computation time for the pipelines 
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As noticed on Figure 67, it is clear that the output file sizes are in 

favor of the marching cubes pipelines. In cases such as Naïve + Poisson, the 

output file is over half the size of the original file, thus degrading Poisson 

pipelines’ stance towards the objective of having small file sizes without 

engineering information loss. 

Figure 67: File size for the pipelines 
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Figure 68: Distance for the pipelines 
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6 CONCLUSION  

In this work, different techniques for point cloud treatment and surface 

generation were tested separately on a point cloud to assess their individual 

strengths and weaknesses against a data set rich in artifacts such as noise, holes, 

and outliers. The point cloud was provided by APIteq, a company that 

specializes in oil and gas offshore installation visualization, and was generated 

based on stereoscopic images of an offshore installation, more specifically a 

support vessel’s main deck. After all techniques were tested independently, they 

were combined into pipelines and again the results were assessed. 

In this section, the results obtained from combining the different 

techniques will be assessed in terms of the objectives described in section 1.2. 

That is, mainly, we are trying to find a quick and efficient algorithm that can 

reduce the file size of the point cloud without losing information that might 

help in taking engineering decisions, such as dimensions, colors, and topology. 

In this section, the best solution, from the ones tested, to answer the question 

posed in section 1.3 will be identified from the set analyzed in the previous 

sections. 

6.1 FILE SIZE 

Assessing the file size reduction first, the results gathered from the 

comparisons were very enlightening and clear distinctions can be easily 

observed. There was a large discrepancy in file size output from using Poisson 

or MC, as seen on Figure 67 on page 87, with MC outputs averaging 3.2% the 

average size of Poisson. With file size output being a major driver for this 

project, MC performed considerably better, regardless of the pipeline used. 

6.2 EFFICIENCY  

Analyzing the efficiency, another clear distinction on the results can be 

seen on the computing time. Figure 66 on page 86 shows two divisions: whether 

a point cloud treatment is used in the pipeline or not, and whether MC or 

Poisson is used as the meshing algorithm. That is, when WLOP or MLS is used 

prior to the mesh generation, there is a 40 fold increase in the average 

computing time, regardless of meshing algorithm. The average time for pipelines 
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running WLOP or MLS was 9429.5 seconds, while the Naïve and Crude 

pipelines averaged 236.2 seconds. Furthermore, Poisson was consistently slower 

than MC, mainly due to the normals calculation, and that is visible on Figure 

66 on page 86. However, to better grasp the time difference and comparing both 

methods without considering the point cloud treatment, it is easy to note that 

the average computing time for Poisson is much larger than that of MC, as 

seen when comparing Figure 52 and Figure 57, on page 63 and 69, respectively. 

The time scale for Poisson was in the order of seconds, as opposed to the 

milliseconds scale for MC. 

Therefore, crude point cloud combined with MC performed more 

satisfactory than any other pipeline. This conclusion further enhances the MC 

position as the meshing algorithm of choice, as well as it detriments pipelines 

containing WLOP or MLS as constituents for a final solution. 

6.3  FIDELITY  

To assess how much information was lost, Figure 68 on page 88 shows 

that Poisson kept truer to the original data set with consistently lower 

distances. Furthermore, by analyzing section 5.3.2, it is also noticeable that the 

standard deviation of the distances is much tighter than the ones exhibited by 

MC on section 5.3.1. 

It is interesting to note that Poisson models the floors and sidewalls as 

a single plane, which is clean and representative, however loses thickness 

information of the steel plates. Because of this single plane nature, the normals 

also get inverted in some cases. This can be noticed as a slight difference in 

color on the WLOP + Poisson pipeline, which does not retain color, and 

therefore outputs the normals encoded in the surface color, as seen on Figure 

62 on page 79. 

6.4 P IPELINE IDENTIFICATION  

With all assessments considered, the best pipeline from the ones 

analyzed can be identified. Both the file size and efficiency assessments point 

to the MC meshing algorithm as the best fit to the objectives of this thesis. 

However, the efficiency assessment further restricts the pipeline by 

demonstrating how much longer a pipeline containing WLOP or MLS takes to 

execute. That means that either the Naïve or Crude approaches would be a 

good combination, but the Naïve approach did not perform any better in terms 
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of computing time, therefore rendering the Crude + MC the best solution from 

the ones analyzed. 

Furthermore, despite of the lower distances with Poisson, MC still 

presents an honest representation of the original model, without normals 

inversion, preserving the thickness of planes, and not exhibiting the flaring 

characteristics noticed on Poisson reconstructions. However, MC, as it stands, 

does not preserve color information. This is can be easily considered and added 

to future versions of the algorithm. 

6.5 SOLUTION  

Finally, to answer the question posed in section 1.3, we can affirm that 

it is indeed possible to reduce a stereoscopically reconstructed point cloud of an 

industrial plant in an efficient manner, with minimal engineering information 

loss. We were able to reduce the original point cloud from 290MB to 4.2MB in 

0.15 seconds, retaining all the measurements and topology of the model with 

minimal variation. 

However, color information was lost as it stands. Nevertheless, as 

proposed in section 8, this can simply be remediated, thus improving 

significantly the outcome. 

Furthermore, section 7 will expand this conclusion and validate the 

pipeline against real-world point clouds. 
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7 VALIDATION  

To validate the solution proposed in this work, the selected pipeline was 

applied to a larger point cloud and, finally, to the complete data set 

representing the full working deck of a support vessel. This is made to reflect a 

real-world scenario, as these point clouds are full products delivered by APIteq, 

the company mentioned in section 1.2 that provided the data sets for this work. 

First, a 1.7GB point cloud representing a cable spool was passed 

through the pipeline. Figure 69 shows the original point cloud and the railing 

used to test and compare can be seen on the right-hand since of the image. 

Figure 70 shows the resulting mesh from the pipeline; a 192×192×192 grid 

generated the 18.6MB surface in 0.55 seconds. The grid was slightly larger to 

reflect the larger volume that the spool comprised. Figure 71 shows the 

calculated distances from the original point cloud with an average distance of 

0.052. 
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Figure 69: Cable spool point cloud 

 

Figure 70: Cable spool mesh 
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Figure 71: Cable spool distances 

 

 

Finally, a 4.6GB point cloud representing the complete support vessel 

was passed through the pipeline. Figure 72 shows the original point and Figure 

73 shows the resulting mesh from the pipeline. For this point cloud, a 

256×512×256 grid was used, resulting in an 80.9MB file. Notice the non-

uniform and larger dimensions of the grid used to reflect the elongated shape 

of the vessel’s deck and larger volume. This more complex shape and file took 

indeed longer to be processed, taking 2.44 seconds to finalize. Figure 74 shows 

the calculated distances from the original point cloud with an average distance 

of 0.081. 
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Figure 72: Support vessel deck point cloud 

 

Figure 73: Support vessel deck mesh 
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Figure 74: Support vessel deck distances 
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8 FURTHER WORK  

From the techniques analyzed in this thesis, we were able to identify 

the best solution to answer the questions proposed in section 1.3. However, it 

fell short on some aspects, which will be discussed in this section. 

8.1 COLOR INFORM ATION  

Considering the importance of color information to the final result and 

how it could potentially affect engineering decisions, the main goal for the 

future is to integrate this into the MC algorithm. Considering that the meshes 

are represented in PLY format, color information can be added to the output 

file easily in terms of encoding, since it is described in the specification. As such, 

according to the specification, color can optionally be associated with each 

vertex of the mesh. 

To retain the color information, the process has to be modified from the 

gridifcation phase, described in section 4.3.1.1, and the vertex generation phase, 

described in section 4.3.1.2. That means that, when calculating the density of 

a cell, the average color of all the points within the cell would also be computed 

and stored in that cell. Once the vertex generation phase begins, the color 

associated with it would then be the interpolated values of the grid cells 

according to its location. 

By encoding the color information with the vertices instead of the faces, 

the rendering software is able to interpolate the color of the faces and therefore 

obtain a smoother coloring and a more reliable mesh. When the color is encoded 

in the face, the whole face will contain the same color, giving raise to sharp 

edges in the coloring. Figure 75 shows a comparison of the two methods; on the 

left the colors were encoded with the face, and on the right they were encoded 

with the vertices. 
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Figure 75: Comparison between per face and per vertex coloring 

  
 

8.2 PARALLELIZATION  

To further increase the speed and efficiency of the algorithm, it would 

be desirable to port all the phases of MC into OpenCL. So far, only the 

gridification was implemented in OpenCL, with a snippet seen in Code 2 on 

page 35, but according to section 2.7, there is much to gain with a complete 

pipeline executed in the GPGPU. 

The main challenge with the porting is memory management. The 

movement to and from the GPGPU memory is costly and there is usually much 

less memory to work with than the main CPU. This coupled with the addition 

of color information can quickly consume all the available memory and force 

loading and offloading of sections of the data set. Hence the importance of 

proper memory management to effectively harness the power of the GPGPU. 

8.3  GRAPHICAL USER INTERFACE 

Finally, a GUI (graphical user interface) would increase the ease of use 

of the software immensely. So far, the only interface is CLI (command-line 

interface) and it is prone to mistyping and misconfiguration. A GUI would 

provide the user with all the options and parameters together with a more 

intuitive way of loading files. 

Given that the software is written in C++, QT [28] would be a good 

solution. Not only providing GUI widgets, it also provides load and save dialogs 

as well as a wrapper for OpenGL, allowing for the user to visualize the output, 

and choosing to change a parameter before saving 
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