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Abstract 

 

 

Early, automated recognition of symptoms is the optimal goal of any health monitoring system.  

In bipolar disorder, early detection of impending mood episodes would be of great value, 

reducing costs, leading to improved treatment and lowering consequential risks to the patient. 

As a first step in creating such a system, we explore the viability of using machine learning for 

accurate detection of specific physiological states exclusively from data collected by a wearable 

actigraph device. 

    

We deal with noisy time series data posing challenges with extreme class imbalance and low 

positive sample counts. An unsupervised method of anomaly detection (Hierarchical Temporal 

Memory) followed by a selection of supervised learning methods is applied to the data to find 

the best performing combination for detection of attacks (positives). Optimal methods for 

dealing with class imbalance are selected. Furthermore, various preprocessing techniques 

combined with feature extraction are applied to improve classifier performance.  

  

Due to the unforeseen absence of adequate sensor data from bipolar studies, a dataset from a 

migraine-study involving bipolar patients has been adapted for the experiments.  

 

Some promising results have been obtained from hundreds of experiment runs. Much more data 

is needed to provide reliable conclusions, however the combination of methods used should 

provide a very good starting point for further attempts in this area.  
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1 Introduction 

 

 

In this chapter, we briefly present the general underlying motivating factors in context of the 

healthcare system, the healthcare staff and the patients, for the work described in this document.  

We touch on some insights into how combination of various sensor technologies and machine 

learning analysis methods add value to the traditional methods of patient monitoring and patient 

health care. 

 

In section 1.4 under, we present the research questions and goals for this master thesis, followed 

by known major limitations. Finally, an overview over the remaining chapters is given in 

section 1.6. 

 

1.1 Motivation 

 

The typical modern lifestyle brings with it increased stress levels, which, when allowed to exert 

effect on the human psyche over an extended period, might lead to a whole range of problematic 

physical and psychological symptoms. Mental disorders can partly be ascribed to this, though 

other factors like genetics have also been shown to have influence.  Accurate diagnosis and 

effective treatment of mental disorders, no matter the underlying cause, is of critical importance 

to the individuals affected but also to their families, relatives and the society in general. The 

social, economic and physical consequences of non-treatment and/or insufficient treatment can 

be dramatic and even fatal. With this in mind, as well as the general increase in population 

average lifespan and the increasing healthcare costs following as a natural consequence, the 

need to monitor patient’s health situation in an ecologically valid environment has become of 

ever greater value [1, 2]. 

  

A heavily weighing factor on healthcare cost is linked to the resources needed to cater for the 

observation and treatment of patients with chronic, persistent or recurring types of ailments. In 

such cases, regular consultations are typically recommended but highly trained staff and their 

time represents an expensive resource. Most regular consultations could be omitted if the 

clinician/therapist had the possibility of monitoring the patient’s state without having to attend 

physically at scheduled times, doing routine, low-value tasks and medical check-ups [3]. 

Furthermore, there are other limitations: patient’s own recollections are more often than not 

unreliable due to personal perceptual bias and inaccurate reporting [1], feelings of 

disengagement and potential delayed intervention from health professionals due to late 

detection of symptoms [4].  Early symptom detection is important for treatment.  Patients 

suffering from specific mental disorders, such as bipolar disorder, unipolar disorder and 

schizophrenia that are considered incurable lifelong conditions carry a risk of critical relapses 
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or phase transitions [5] which should ideally be recognized as early as possible - preferably well 

ahead of time so that adequate actions can be undertaken.  

 

Monitoring systems have been proposed to improve the accessibility and level of patient 

interaction, while still greatly depending on the cooperation of the subjects [4], however 

exclusive dependence on manual self-reporting still poses a disadvantage. To remedy that, 

accurate, independent, non-invasive monitoring methods provide a potential solution. A wide 

ranging and diverse spectrum of sensor technologies are being developed which present new 

possibilities for use in medical applications, potentially improving the daily dealings of both 

patients and health professionals. Rapid improvements of wireless technology have led to the 

development of comprehensive patient monitoring systems like wireless body area network 

(WBAN) and body sensor network (BSN), both proposed for effective monitoring of various 

types of physiological activities [6].   

 

Proposed wearable health monitoring systems (WHMS) consisting of one or more miniaturized 

sensors, wearable or even implantable are capable of measuring parameters such as heart rate, 

blood pressure, temperature, oxygen saturation, respiration rate, galvanic skin-conductivity, 

motor activity, etc. Actigraphy has traditionally been used in studies of sleep patterns, as motor 

activity patterns have shown strong correlation with a variety of sleep-related disorders [7],[8]. 

The actigraph as well as its main subcomponent, the accelerometer, belongs to the group of 

relatively well-established, robust, simple low-cost wearable motor activity sensors also found 

in most smartphones today.  

 

Currently, it is the combination of wearable sensor technologies with machine learning (ML) 

techniques that show the most promising results for improved healthcare (as can be seen in the 

background literature section). Both the simpler, already existing devices as well as the more 

sophisticated wireless monitoring systems [2, 6] that have been proposed in out of institution 

health monitoring settings, all share a common underlying need for effective running analysis 

of the produced sensor data. Countless studies exist on the use and adaptation of sensor data for 

inferencing, decision support1 and diagnosis. We believe that it is the correct and effective 

interpretation of this data that can play a major role in ensuring prompt reaction in case of 

medical emergency as well as eliminating the lengthy process before a clinical decision is 

undertaken. 

 

  

                                                
1 Medical Decision support is an area belonging to the field of Health Informatics, that mainly deals 
with computer-aided systems for the improvement of the quality of healthcare at various stages in the 
treatment process by providing easy & quick contextual information at the right time to the practitioner 
that might need it. 
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1.2 Bipolar Disorder 

 

By one definition, bipolar disorder (BP) is “a brain disorder that causes unusual shifts in 

mood, energy, activity levels, and the ability to carry out day-to-day tasks” (NIMH, Bipolar 

Disorder) [9].  

 

BP is a chronic mood disorder characterized by alternating phases of elation (mania or the 

milder, hypomania) and depression (also called mood episodes). The manic states may cause 

over exaggerated self-confidence and even recklessness, while depressive states have the 

opposite effect. Both ends of the scale are problematic. Hypomania is a milder form of mania, 

an individual may feel good, be highly productive, and generally function well. Untreated, 

however hypomania may develop into severe mania or depression [9]. Euthymia is the term 

used for the neutral or normal state comparable to healthy individuals. A simplified diagram 

depicting the various states is shown in Fig. 1-1.  

 

 

 

Fig. 1-1 A symbolic representation of the states in bipolar disorder. Detecting potential early changes prior to a 
critical state would be the ideal. Note: some states do not occur in certain types of bipolar disorder, see Table 1-1: 
Types of Bipolar Disorder. Based on resource from (The National Institute of Mental Health, 2017) [9]. for details. 
(image source: http://neurowiki2013.wikidot.com)  

 

Importantly, mood changes are known to be accompanied by extreme shifts in energy, activity 

and behaviour [10].  Bipolar disorder is associated with devastating consequences, personal, 

social, and financial, but does not stop there: risk of suicide attempts increases dramatically 

while actual suicides occur in about 20% of cases [11].  In BP, the transitions between phases 

are typically few over a relatively long timeframe. Incidents can vary from 2-4 a year to more 

frequent, even weekly episodes, known as rapid-cycling. Several subtypes of BP have been 

described where the details of these characteristics vary as shown in Table 1-1.  
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Bipolar I  Individuals experience both depressive and manic episodes of 

varying lengths. 

Bipolar II  Less severe manic (hypomania) episodes than BP I; depressive 

episodes as in BP I. 

Cyclothymia  Milder, also chronic form of BP: episodes of hypomania and 

depression last for at least two years. 

Mixed episodes  Mania and depression occur simultaneously. Individuals 

experience symptoms of both simultaneously. 

Rapid-cycling bipolar  Patients experience at least four or more episodes within one 

year. 
Table 1-1: Types of Bipolar Disorder. Based on resource from (The National Institute of Mental Health, 2017) [9]. 

 

Notably, at least one study found statistically significant changes in behaviour of patients up to 

60 days prior to mania episodes [12] using self-reporting methods. Furthermore, relationship 

between moods and activity levels are known to exist and specifically bipolar order patients 

have been reported to have significantly lower activity levels than healthy individuals [10].  

These findings could have important implications for potential early detection and prediction 

of critical mood episodes. 

 

Prediction is a term frequently used in this work, one meaning being the widely-accepted term 

used for the output value of a machine learning algorithm, given some valid input.  

 

However, the notion of prediction of an event should be more precisely defined as “the detection 

and recognition of relevant variance in the measured variables, that has been shown to precede 

the specific event within acceptable degree of significance”.  In other words, we are not stating 

that we can see the future but that future events have already started a process at some 

(physiological) sublevel, currently not reflecting in physical pain and the changes introduced 

by this process can be detected. We assume this general idea to be relevant to the process of 

state transitions in bipolar disorder patients. 

 

 

 

1.3 Problem description 

 

Early detection and prediction of states in patients suffering from bipolar disorder and other 

mental disorders is a key factor for success in the treatment of such disorders. Currently, a 

patient is monitored through regular contact and conversation with the therapeutic staff or 

through self-reporting. This can become both expensive and time consuming but could be 

improved by improving the monitoring methods. An improved system would be able to monitor 
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the patients’ physiological states by means of wearable sensors and communicate health critical 

information.  

 

The INTROMAT project (INtroducing personalized TReatment Of Mental health problems 

using Adaptive Technology), officially launched autumn 2016, is appointed by The Norwegian 

Research Council as one of three projects chosen in their IKTPLUSS Lighthouse call. The goal 

is to improve public mental health with innovative ICT solutions [13]. As a part of 

INTROMAT, a study will be undertaken ecologically monitoring bipolar patients over long 

periods, collecting sensor and voice data, including activity data from wearable actigraph 

devices. The collected data will be transcribed with timestamped labels of observed states of 

the patients. Exact details are not known to us at the time of writing.  

 

One objective is to devise an effective, low-cost, reliable and unobtrusive early warning system 

capable of monitoring and prediction of impending critical mood episodes, such as mania or 

depression. To achieve this, the sensor data must be analysed and processed in a continuous 

fashion, extracting relevant information and providing decision support functionality.  

 

 

  

1.4 Goals and Research Questions 

 

 

In this thesis, we set the following goals and research questions: 

 

 

Q1: Is it feasible to detect and identify actigraph patterns related to migraine attacks by using 

existing supervised machine learning techniques? 

 

Q2: Is it feasible to detect actigraph patterns related to migraine attacks by using HTM 

anomaly detection based on historic activity data? 

 

G1: Find the optimal combination of preprocessing method, learning algorithm, model 

parameters and features that may be used in a future monitoring application. 

 

G2: Perform a comparison of selected machine learning algorithms performance based on a 

range of metrics specific to an imbalanced data problem. 
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1.5 Limitations 

 

The original plan for this project was based on data from a large scale (N≈100) bipolar patient 

study which was planned to run parallel to it. The study would extend over several months up 

to a year and would use wearable actigraph watches worn by bipolar disorder patients to log 

their activity through the whole period. One of the objectives was to study potential 

relationships between the various phases of bipolar disorder and activity patterns. Events of 

interest would be labelled in the data and the original goal was to do a preliminary machine 

learning analysis of this data. However, neither the study nor the data has materialized in time, 

and consequently a decision had to be taken to use an alternative dataset that fulfilled the 

minimal basic requirements for the planned machine learning analysis while somehow also 

being related to the domain.  None of the available data supplied covered transitions between 

states, labelled or otherwise.  

 

For this reason, alternative datasets of bipolar disorder patients with manually recorded 

migraine attacks were used for the experiments.  The underlying assumption is that the potential 

bipolar state transition events that may be recorded in the planned experiments though not 

directly related migraine attacks, would be handled using similar machine learning techniques.  

 

 

1.6 Overview 

 

The rest of this thesis presents the work done on actigraph sensor readings using a variety of 

ML analysis methods in the context of detection, classification and possibly prediction of 

adverse events as depicted by an actigraph. A selection of supervised and unsupervised methods 

is applied. Hierarchical Temporal Memory (HTM) is an exciting new approach to artificial 

intelligence (AI) and temporal pattern recognition which could be applied to tasks of real-time 

analysis and monitoring of data streams [14].  For supervised learning, we choose among well-

established classification algorithms based on decision trees, boosting and ensembles as well as 

Support Vector Machines (SVM), K-Nearest Neighbour (KNN), Artificial Neural Networks 

(ANN) and others. Furthermore, we present methods of dealing with the challenges posed by 

strongly imbalanced datasets.   

 

In the next chapter, (chapter 2), we inspect the migraine attacks dataset. We explore aspects 

which have bearing on the outcome of the experiments.  

 

In the Background chapter (chapter 3), we introduce machine learning and background 

literature deemed as relevant to this work. We briefly introduce ML algorithms, feature 

extraction and selection process, evaluation methods and metrics.  An introduction to the class 

imbalance problem and ways of dealing with it is also presented. The related studies and 

literature section aims to present various relevant research papers reviewed in the context of 
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this work. We look at actigraph studies specifically linked with bipolar disorder or migraine, 

followed by studies describing methods and notable results from using statistical machine 

learning in combination with actigraphy. 

 

The Methods chapter (chapter 4) describes the general structure of the experiments, common 

steps, preprocessing and details of feature extraction performed specifically for this task.  

 

Chapter 5, Experiments and Results, presents the experiments and their respective results. The 

chapter is further divided into the supervised and unsupervised sections. It is here that we 

provide the details and any specific requirements for the individual experiments closely 

followed by the result summaries and diagrams.   

 

We discuss the results obtained in chapter 6, Discussion. Here, we summarize the findings of 

the experiments and their implications, how they impact the goals and research questions we 

have set in the previous chapters. This is also the section where we touch on the problems 

encountered as well as potential future improvements that can be made.  Finally, a Conclusion 

summary is presented in chapter 7.  
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2 Data exploration 

 

 

In this section, we describe and explore the migraine datasets supplied for use in our 

experiments. 

 

The requirements for acceptance of this data for use in our experiments were that the recordings 

are properly annotated with accurate timestamped labels for the migraine attack event, that 

monitoring was continuous and that it lasted over a maximally extended period. The first 

requirement is necessary for supervised learning, the two remaining ones are important for the 

HTM algorithm. Even though potential bipolar phase transitions are absented from this data, 

the migraine data contains its own type of transitions related to the activity patterns before the 

attack vs the period during and after the attack (see below). Our assumption is that if we can 

detect or even predict a migraine attack then the techniques used will possibly be similar to 

detecting early signs of coming mood episodes in bipolar disorder patients in the same type of 

sensor data.  

 

The migraine dataset comes from an earlier, small pilot study involving bipolar patients but 

with focus on migraine attacks. As mentioned, the study [87] attempted to find relationships 

between the periods 2 hours prior to, 2 hours during and 2 hours after the attack subsided. 

Several significant differences were found between the two first periods: mean activity, 

variance, sample entropy and skewness. The migraine data ranges over a period of 14 days per 

individual. It was collected by a wearable actigraph worn by the patients continuously day and 

night. The epoch or intervals are of 1 minute, and the reported value is the aggregate sum of the 

recorded activity during this period. In total, 29 migraine attacks are available from 4 patients, 

all suffering from bipolar disorder (depression state). Additionally, the patients were reported 

as receiving medication (mood stabilizers). 

 

Migraine attack dataset overview 

 0 1 2 3 4 

count 22147.0 25910.0 31485.0 23244.0 24536.0 

mean 151.44 221.35 202.62 146.95 293.43 

std 273.99 347.34 357.37 294.59 408.76 

min 0.0 0.0 0.0 0.0 0.0 

25% 0.0 0.0 0.0 0.0 0.0 

50% 13.0 36.0 0.0 9.0 131.0 

75% 190.0 332.0 283.0 172.0 421.0 

max 3622.0 4859.0 5931.0 3526.0 5750.0 
Table 2-1 Overview of basic statistics of migraine datasets used in the experiments. (statitics shown: count of data 
points, mean, standard deviation, minimum, 3 quantiles and maximum value).  Column id 0-3 shows four migraine 
patients. Column id.4 is one of the controls (with no migraine attacks) that was used in the original pilot study by 
Fasmer et.al.[70]  
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The basic statistics for the actual datasets are summarized in Table 2-1. The control included in 

the table (column id.4) is a healthy individual (not diagnosed with bipolar disorder) with no 

history of migraine attacks. Note: the data was unprocessed at this stage, some datasets were 

additionally modified at a later stage. 

 

Autocorrelation (ACF) also known as temporal correlation [88], contains information 

measures of how well a time series correlates with itself over time. More specifically it is the 

linear dependence of a variable with itself at two points in time [89]. We are interested in finding 

out to what degree a sequence of values is dependent on some previous values and over what 

the time lag. A time series with high autocorrelation over a time period could be expected to be 

easier to model than one with low correlation. Crucially, time series with values not exceeding 

a certain confidence interval boundary (computed by the ACF-function) are considered random 

noise and consequently, the best method to predict a random signal is to predict its mean. Fig. 

2-1 presents sample ACF plots from the migraine data. We observe insignificant 

autocorrelation, which may be interpreted that consecutive timestamps show little to no 

interdependency.   

 

 

  

  
Fig. 2-1: Auto-correlation plots, Top row: lag=30, at 11.00-11.30am on two consecutive days when activity in the 
underlying signal is relatively high. Bottom left: lag=60, 11.00-12.00am different day. Bottom right: about 10hrs of 
activity from 11.00am to 21.00pm.  Blue area depicts the confidence boundary, results inside basically mean 
noise, i.e. no significant correlation at this lag (depicted by the x-axis). 

 

In general, on closer inspection and preliminary decomposition (not shown) of the time series 

sequences in the data we find a non-stationary, noisy signal with no clear, distinctive trend. The 

only seasonality is visible in context of day-night cycles, when activity levels are increased 
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during the days and decreased during the nights. Next, we take a closer look at the actual attack 

time sequences. 

 

 

 
Fig. 2-2: Migraine attack episodes for one patient covering 240 minutes covering 4 separate episodes. Red line 
depicts time point of each attack, splitting the sequence into 2 segments: before and during. 

 

The visual inspection of the migraine attack episodes, within a margin window of 120 minutes 

before and after the timestamp is show in Fig. 2-2.  This is an example showing all migraine 

attacks from the same patient reported over a total period of the two weeks. The red line denotes 

where the event has been recorded. Notice the visibly apparent low correlation in the 4 episodes. 

Even for a human classifying these 4 sequences (or parts of them) into one common category 

would be a challenge. The actual correlation matrix for these sequences has been calculated for 

the 2*120min instances described above and is shown in Fig. 2-3. Results generally lie in the 

range: -0.4 ≤ x ≤ 0.4, which indicates that the correlation (as well as inverse correlation) is low 

to very low. This adds support to the original impression from visual inspection that these 

sequences have few, readily distinguishable common traits.  
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Correlation matrix heatmap: Migraine (120+120min) attack windows 

  

  
Fig. 2-3: Heatmap matrix of correlations between all the migraine attack instances for each of the four patients. 
The sequences included here are all 2*120min sequences centred around the starting time of attack as reported 
by the patient. NB: notice the scaling is adapted for each individual dataset based on the maximum correlation 
found not including self-correlation. (The diagonal shows the sequences’ correlation with itself, i.e. value of 1.0.) 

 

Even more variation can be observed in similar comparisons across different individuals. This 

suggests that models might need to be trained on a per individual (patient) basis to obtain useful 

accuracy. We decided to explore this discovery further to learn if pattern matching based on 

correlation or distance measure similarities could be effective in context of feature extraction 

for the planned anomaly detection and classification experiments.  
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2.1 Sequence similarity 

 

Multiple similarity measures (euclidean, cosine and Dynamic Time Warping (DTW)) were 

considered in further analysis. Often, time series data mining requires effective similarity 

comparisons, and there is increasing evidence that the classic DTW distance is the best measure 

in most cases [90]. Euclidean distance and its variants (such as manhattan or minkowski 

distance) present several drawbacks, that make their use inappropriate in certain applications:  

time series must be of the same length, poor handling of noise and outliers and high sensitivity 

to specific signal transformations such as time-warping, amplitude scaling, shifting [91].  For 

the following experiments, the library “fastDTW” is required. FastDTW is an approximation 

algorithm for dynamic time warping, which has been shown to be one of the most accurate 

implementations of this type. Dynamic time warping is reportedly frequently used in speech 

recognition to determine if two sampled waveforms represent the same phrase [92]. We 

attempted to find out if sequence matching using DTW is a viable option in light of the 

correlation results described previously.  

 

We performed a comparison of target sequences, using a search implementing the fastDTW 

library. A query sequence window makes up 15 mins before +105 mins after attack start (120 

mins total). For each of the target queries selected, the distances to all remaining target 

sequences were calculated (Table 2-2).   

 

 

2005-03-08 21:49:00  0,00 17980,00 14569,00 11496,00 17677,00 26379,00  23333.0 

2005-03-12 18:15:00  17980,00 0,00 21793,00 16680,00 22356,00 24816,00  20496.0 

2005-03-15 07:45:00  14569,00 21793,00 0,00 9024,00 10652,00 19302,00  12117.0 

2005-03-17 22:45:00  11496,00 16680,00 9024,00 0,00 15786,00 23188,00  16012.0 

2005-03-18 06:29:00  17677,00 22356,00 10652,00 15786,00 0,00 17495,00  13671.0 

2005-03-19 12:00:00  26379,00 24816,00 19302,00 23188,00 17495,00 0,00  18954.0 

2005-03-21 10:15:00  23333,00 20496,00 12117,00 16012,00 13671,00 18954,00  0.0 

Table 2-2: Distance matrix relating the absolute DTW-distances (as calculated by fastDTW) between target 
labelled, 120-minute sequences (i.e. attacks) from “aasane18” migraine data containing 7 attacks. The index 
column shows the start timestamp. 

 

For our example, we selected one query sequence (id: 2005-03-08 21:49:00) and found the 

average distance to other targets. Then, the query sequence was used in a search through all the 

data (stride = 25, window size = 120) and for every such segment, the DTW-distance to our 

query was calculated. 
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DTW-distance comparison 

  
Fig. 2-4: Left column: example of good fit (5th best score, Listing 2) for query (top). Right column: example of bad 
fit (5th worst score) for query (top). Scores are according to fastDTW as described in DTW-experiment, 10915.0 
and 50594.0 respectively.  

 

The number of sequences where distance was less than our previously calculated average of 

(target) distances was reported to be 363. This is the number of other sequences in the dataset 

which when compared with any of the sequences in the table would on average have a better 

(lower) DTW-distance score.  Finally, we took the minimum distance from the target table 

(excluding distance to self, which is 0) and get a count of how many matches had a better  

(i.e. lower) score than the lowest in the table. In this example, we found such 15 sequences.   

 

 

distances.sort_values().head(15) 

Out[61]:  

2005-03-08 22:05:00     5170.0 

2005-03-08 21:40:00     5186.0 

2005-03-15 15:45:00    10505.0 

2005-03-15 15:20:00    10790.0 

2005-03-19 22:40:00    10915.0 

2005-03-13 22:55:00    10955.0 

2005-03-17 22:20:00    11093.0 

2005-03-14 23:30:00    11116.0 

2005-03-11 00:30:00    11199.0 

2005-03-21 12:35:00    11288.0 

2005-03-20 22:50:00    11422.0 

2005-03-13 16:40:00    11442.0 

2005-03-20 23:15:00    11452.0 

2005-03-20 18:40:00    11469.0 

2005-03-09 18:05:00    11487.0 

dtype: float64 

Listing 1: Lowest 15 distances to sequence query (’2005-03-08 21:49:00’) in Table 2-2. Notice 
the 2 top entries (red) are adjacent and overlapping with the query. This is as expected. Entry #5 
is plotted for comparison in Fig. 2-4.  
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The distance scores sorted in ascending order are shown in Listing 1. Apart from the 2 topmost 

entries, which are partly overlapping the query we have 13 sequences that would be more likely 

to be classified in the same class as the query than any of the actual target sequences from Table 

2-2 given that DTW was used as distance measure. DTW is a much more accurate distance 

metric for comparison of sequences than pure Euclidean distance [91]. The conclusion from 

this experiment is that we should not expect great results from classification algorithms that use 

mentioned distance measures directly on sequences in the migraine data.  

 

 

We explored the supplied migraine attacks dataset. It is a non-stationary, noisy time series 

showing no specific trend with the exception of the general day-night circadian cycle. The 

sequences of interest (migraine attacks) are very few and are weakly correlated. We found that 

even flexible distance measures like DTW as well as correlation-type of the similarity measures, 

cannot alone explain the class membership (i.e. attack or no attack) of these sequences. We also 

observed that the migraine dataset has two major challenges: the extreme class imbalance (in 

context of classification) and a very small positive sample count.  
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3 Background 

 

 

This chapter is divided into two main sections.  The first deals with background literature and 

related studies. It describes relevant aspects of working with sensor data especially in context 

of bipolar disorder and migraine. Results and methods of interest to this work are highlighted 

and the section ends with a short summary.  The second section deals with necessary 

background on machine learning methods that were applied. This includes the complete 

selection of algorithms, evaluation methods and metrics that were part of our experiments.   

 

 

 

 

3.1 Literature & Related studies 

 

A large number of studies involving monitoring of mental disorders have been undertaken. 

From among these, the bipolar disorder and migraine related studies were specifically filtered 

out as the main area of interest. A comparably large amount of studies involving analysis of 

human activity through actigraph and accelerometer data in a variety of contexts has also been 

published.  For this work, the emphasis was on the intersection of these two groups, i.e. where 

activity monitoring was studied in the context of furthering the understanding of mental 

disorders and related medical issues. Additionally, general studies of human activities of daily 

life (ADLs) were also included as methods and ideas therein were deemed relevant for this 

work.  

 

We have no knowledge of existing studies that have attempted to solve the same (migraine 

attack & bipolar transitions) problem using machine learning, based solely on actigraph 

readings. 

 

 

3.1.1 Actigraphy 

 

Actigraphy has since late 1990’s increasingly been used in circadian rhythm and quality of sleep 

studies, steadily taking over from polysomnography (PSG), which has historically been “the 

gold standard” of sleep assessment. Actigraphy is a useful diagnostic tool for the sleep medicine 

practitioner, allowing for assessment of sleep over extended periods  in the natural sleep 

environment [8]. 
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Furthermore, it appears to provide a valid estimate of TST 

(Total Sleep Time), sleep percentage and WASO (Wake after 

sleep onset) [67].  An actigraph is an electronic, wearable 

device that normally consists of a piezoelectric accelerometer 

with a low-pass filter (for exclusion of noise resulting from 

vibrations), a start/stop timer function, onboard memory for 

storage and hardware interface such as USB or Wi-fi for 

communication with computing devices. Traditionally, it is 

used for measuring general motor activity in order to evaluate 

the rest-activity cycle in study of sleep related disorders. In a 

basic feasibility study of actigraph utility value in neurological 

patient populations research, [7], supports the claim that 

actigraphy has gained favour as a research tool in evaluation 

of circadian rhythm disorders, multiple sclerosis (MS), headache and strokes.  The study 

enforces the idea that actigraphy usage has potential in other related fields such as epilepsy and 

gives weight to the idea that actigraphy in combination with other tools is advantageous to more 

accurate results. 

 

While it is actigraph readings that are focused on in this work, it has been suggested that 

combinations of different sensor types, often referred to as sensor fusion in literature, 

favourably enhance and partly validate the quality and amount of information gained from any 

single sensor [68].   

 

 

3.1.2 Migraine & Bipolar Disorder 

 

In the period of 2010-2015, a series of studies by Fasmer et.al. [69–72]on the relationship 

between healthy controls and patients diagnosed with neurological disorders such as 

schizophrenia and bipolar disorder, using measured activity patterns has been published. 

Among these, “Objectively-measured motor activity patterns before, during and after attacks of 

migraine” [70], is a pilot study attempting to find relationships between periods of migraine 

attacks in patients, receiving treatment for unrelated mental disorders. Here, a selected group 

of patients and a healthy control group were asked to record the times of migraine attacks they 

were subject to over a period of 2 weeks. Both groups were equipped with an actigraph watch. 

The study resulted in a relatively small number of subjects which reported their migraine attacks 

of which four were deemed to have produced labels consistent enough to be good for further 

analysis. The four subjects among them had experienced in total 28 migraine attacks. Several 

significant relationships were pointed out in the periods before, during and after the attacks. 

However, as a pilot study it based its findings on a small population. The sensor data from these 
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subjects, totalling over 25000 data points per person (using 1-minute epochs) was to become 

the basis for a large part of the material analysed in this work2.  

 

Attempts have been made to find relationships between miscellaneous physiological variables 

and migraine. For example,[73]  in their migraine-related study, make an attempt to find 

connections to blood pressure measurements. A group of 62 normotensive migraine patients 

with and without aura take part with little success. In this case, no activity measurements are 

involved.  Even though other sensor technologies are used, we find it interesting to observe the 

analysis methods used and to obtain potentially useful domain insights. 

 

In another study, an ensemble of sensors, actually a wireless body sensor network (WBSN), 

comprised from four signals: heart rate (HR), electrodermal activity (EDA), skin temperature 

(TEMP) and peripheral capillary oxygen saturation (SpO2) was used in an attempt to predict 

migraine attacks, [74]. The results showed TPR (True Positive Rate) of just below 70% with 

PPV (Positive Predictive Value) of 100%, with a predictive horizon of up to 50 minutes prior 

to a migraine event. These findings support amongst other things the idea that ML models must 

be trained as per individual case, in accordance with the fact that behaviour of the autonomous 

system depends on the individual patient. Secondly, the study confirms the assumption that 

detectable variations precede the actual beginning of pain in the hemodynamic variables (i.e. 

features) of sensor measurements.  

 

This supports the viability of our prediction assumption. Any similar relationships connecting 

early patterns and/or statistics in physiological variables to later symptoms are especially 

interesting to us in the context of feature extraction for the purpose of prediction of these 

symptoms.  It is for this reason that a wide range of areas have been examined for our 

background research. 

 

A study by Bruni, O. et.al. [75] was an attempt to discover and evaluate the relationships 

between sleep and migraine using objective actigraphy measurements over a considerable 

period of time. Previous studies were mainly based on parental ratings and subjective self-

reporting.  Quality of sleep in children with migraine was evaluated during the periods between 

and during attacks and patterns of sleep preceding, accompanying and following migraine 

attacks. Eighteen common migraine (without aura3) patients were compared with a control 

group of similar, healthy children. Actigraphy recordings of sleep parameters were taken over 

a period of two weeks with self-reporting diaries for event labelling and description of details 

of headaches. Over 57 attacks were recorded in total over the given period. The study went on 

to conclude that there was an observable reduction in measured nocturnal motor activity the 

night preceding a migraine attack, which can be seen to support the hypothesis of lower cortical 

activation. Decrease in cortical activation has in earlier migraine causality studies been 

                                                
2 We state the reason on several occasions: Due to the unexpected absence of adequate sensor data 
from bipolar studies (on time), a dataset from a migraine-study involving bipolar patients has been 
adapted for the experiments. 
3 Warnings of coming migraine: visual symptoms such as flashing lights, zigzag lines, blind spots in 
vision, also distortions, shapes. In some cases, tingling, pins-and-needles sensations in arms or leg. 
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accredited to typical premonitory symptoms (both subjective and neurophysiological), such as 

growing irritability, depression, withdrawal, tension, and tiredness.  

 

 

3.1.3 Sensor data analysis 

 

Traditionally, statistical methods and statistical modelling have been widely used in BP-related 

research. Even so, there is uncertainty in the underlying processes observed in time series data 

produced from such studies [76]. In a study of  dynamics of  mood regulation in patients with 

bipolar disorder the author suggests that nonlinear measures could be applicable in the study of 

mood disorders [77]. A different approach to study of actigraphy data, using statistical 

functional analysis is presented by [78] as applied “to assess the impact of apnoea-hypopnea 

index (apnoea) and body mass index (BMI) on circadian activity patterns measured using 

actigraphy”. This method shows potential to improve the quality of analyses of circadian 

activity rhythms from actigraphy data extending its use domain from “general sleep 

assessment”. Refined non-linear analysis methods are more applicable for biological time 

series, as its characterized by noise and non-stationarity [12].  Machine learning is a powerful 

alternative to traditional statistical modelling as it handles linearity and non-linearity equally 

well. We will apply both supervised classification and unsupervised outlier detection machine 

learning techniques in this work. In our classification experiments however, we will be 

concentrating on feature extraction from predefined segments of the data sequence.   

 

An important distinction to make when using machine learning or indeed any method of 

accelerometer data analysis, is that of the environment where the data is or has been collected. 

Most studies (as observed by the author of this work) tend to use data collected in laboratory 

(controlled) setting, while it can be safely stated that the intended use of the resulting methods 

usually is targeted at free-living environments, i.e. where subjects are monitored under free-

living conditions at home and work. The ecological validity of these methods can be thus 

improved [79]. In this study classifiers are trained to predict five activities: sitting, standing, 

bicycling, transport in a vehicle and walking/running. The results based off a controlled dataset 

and the free-living dataset were compared, demonstrating significantly better scores of the first 

over the latter with 89% vs. 71% accuracy score. The main conclusion from the study is that if 

the intentional target of usage is outside the laboratory-setting, then “it is important to train 

classifiers on free-living data.” 

 

Often, the environment setting cannot be easily controlled, but it is worth keeping in mind that 

any experiment results should be seen in context. A study Karam et.al.[11] suggests that the 

states of hypomania and depression in bipolar disorder are discernible from euthymic states by 

means of speech classification over a cellular phone. The classifiers were trained on both 

structured (carefully prepared clinical interactions) and unstructured cell phone recordings. 

Their findings were found to be more accurate with the structured (and labelled) data - the study 

being somewhat complicated by personal privacy issues concerning recordings of conversations 



21 
 

over cell phones. In summary, the system is able to detect hypomania through the unstructured 

collected in proximity of the structured interaction of a given day. The result scores (Area Under 

the Curve AUC) are in the mid-sixties, which may not seem impressive, but this is a very 

promising research in progress. Nonetheless this is a further step in support of the idea that 

underlying neurophysiological states can potentially be classified by identifying time series 

features from speech as predictor variables.  The challenges encountered here have similarities 

to studies of actigraphy data: high variance, noise and individual differences, to name a few.     

 

In a feasibility study of actigraph parameters relationship to relapses in bipolar disorder [5], the 

authors conclude that circadian rhythms inter-daily stability is a relatively useful  indicator of 

prodromal symptoms in bipolar disorder transitions. This study spans over a period of 150 

months in eight patients, with 17 transitions (relapses) recorded. It is mainly interesting because 

of the scale (over time) of the measurements collection. As for the accuracy, the reported 

sensitivity/specificity scores were 65% and 68% respectively, but only 3 patients produced 

readings of over 12 months and even in these missing data was a problem.  Even though this 

study can hardly be considered significant, it nevertheless adds some support to the idea of 

prediction. 

 

 

 

3.1.4 Classification 

 

The traditional use of the actigraph primarily for determination of sleep-wake cycles and quality 

of sleep has been challenged on occasions. Recognition and measurements of activities outside 

of the sleep domain have gained favour. One such study has used actigraphy in combination 

with state of the art machine learning algorithms to analyse activity signals in an attempt to 

classify the most important activities of daily life (ADL).  Human activities such as eating, 

hygiene, cooking, watching a movie and sleeping were assigned separate classes [80]. A major 

effort was put into the feature extraction process, including curve fitting for each activity class, 

smoothing, statistical features and time of day information. The sequence of events was also 

taken into account, improving the accuracy of the predictions. Finally, a comparative study of 

the four machine learning algorithms is made based on the same set of extracted features [80]. 

The results were very encouraging with the winner algorithms (“Logitboost”) giving accuracy 

results of just above 90%. An important lesson learned from this study is the utilization of 

timestamp information in the feature extraction process, something we assume could be 

significant in detecting patterns over time. 

   

In a classification task one of the main factors towards obtaining accurate and useful results is 

the feature extraction and selection process [43]. We have found several studies supporting the 

idea that this area is critical for improving classification algorithm performance. The 

improvement in classification accuracy of transport mode exclusively through the use of 

smartphone accelerometers has been attempted in a study by Hemminki et.al.[81].  Although 
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applied to a different domain, the technicalities of advanced feature extraction presented could 

prove relevant in further work on improving performance in classification of accelerometer 

data.  

 

In “Classification and Feature Analysis of Actigraphy Signals” [43], they compared a selection 

of 63 different features that were found to be used in analysis of actigraphy signals. Then, two 

feature selection techniques were applied to rank and compare their effectiveness and 

subsequently used with two distance-based clustering algorithm classifiers to classify activities 

of daily life (ADL) signals. The study concluded with accuracy ratings of around 95% for a 

subset of just 5 features or less, at the same time stating that the statistical features (such as 

mean, nth-percentile, quartiles) were repeatedly among the best performers. Considering the low 

cost of implementing simple statistical features and their reported effectiveness makes them 

doubly attractive for use in classification experiments. 

 

In working with the migraine dataset, we were soon faced with another challenging problem, 

namely that of class imbalance in context of classification algorithms.  Class imbalance entails 

that one or more classes in a dataset are strongly overrepresented in relation to the others. As 

an example, in critical applications, such as in medical cancer diagnosis misclassifying 

cancerous cells as non-cancerous may lead to very serious consequences. Most algorithms will 

currently lean to the advantage of the majority class, with some SVMs performing slightly better 

than most.  [25, 62].  There is however evidence that through specific weighting and boosting 

techniques, there is room for some improvement. This is demonstrated in a study by Chen et.al. 

[32], where basic Random Forest classifier is tested and evaluated with weighting and balance 

(based on down sampling of majority class) modifications. The results obtained show a clear 

advantage for the modified RF implementations and the authors conclude that both Weighted 

Random Forest and Balanced Random Forest have performance superior to most of the existing 

techniques that we studied.  

 

In general the normally proposed solutions to the class imbalance problem seem to converge 

on four main areas: the preprocessing stage over-and-under sampling techniques, introduction 

and tweaking of weights in the algorithm, tweaking the decision boundaries using performance 

metrics and use of ensemble methods. [82]. According to [62], boosting techniques are powerful 

ensemble learning algorithms that improve the performance of weak classifiers. Furthermore, 

data preprocessing provides a better solution than other methods as it allows for the addition of 

new information and/or deleting of redundant information. In conclusion, the study suggests 

that applying multiple techniques gives better overall results in class imbalance problem. 

 

 

3.1.5 Anomaly Detection 

 

As mentioned in the introduction, Hierarchical Temporal Memory (HTM) and in particular, its 

anomaly detection potential will be given some room in our experiments. The assumption is 
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that adverse events (such as a bipolar phases or migraine attacks) influence the physiological 

state, and therefore also activity patterns. Abnormal patterns can then potentially be detected as 

outliers, i.e. anomalies, given enough historical “normal” data. 

 

Statistical methods, such as relative entropy were used for comparison of historic distributions 

against current, adequately windowed distribution with some success in anomaly detection task 

for a big data centre [83]. The results were compared to more traditional threshold methods in 

measurement of metrics such as CPU and memory utilization. Even though the underlying 

signal complexity is of a completely different nature, we find many parallels between the 

approach used here and in measurements from biological sources. 

 

Anomaly detection is an alternative (in the precise sense of the word!) method to supervised 

human behavioural change detection techniques. In a related study, “a reliable method to detect 

disorders and diseases in healthcare applications” [84] is proposed, employing an automatic 

“abnormality detection” method based on physical activity measurements. This method in a 

similar fashion to HTM is based on changes in physical activity relative to the historical data 

[59]. No assumptions about the underlying data distribution are made. Behavioural changes are 

evaluated in real time with high precision and recall scores (100% and 92%, respectively), 

notably on a small population (N = 3), but ranging over a time period of 3 months per subject. 

It is worth noting that abnormal behaviour can be considered a subjective notion and dependent 

on some agreed threshold for what is considered (by each individual) to be normal. The fact 

that this study builds on statistical past to classify the current from activity data was of main 

interest here. 

 

 

3.1.6 Analysis tools 

 

The analysis of time series sensor data poses some challenges, beginning at preprocessing stage 

through the training/analysis and ending in evaluation and presentation of results. The 

preprocessing stage is often considered the most time consuming and critical as the rest of the 

process is dependent on adequately prepared input [42].  Several tools and programming 

languages were considered for the task. Some research into the general domain of Data Science 

has revealed a whole range of possible choices.  The three most popular, complete software 

packages are RapidMiner, R (with RStudio) and Weka. R is a programming language 

traditionally used for mathematical, scientific & statistical computing and visualization with a 

massive number of libraries. RapidMiner and Weka are more user-friendly, GUI-based with 

varying choice of features and drawbacks. These three tools are compared in [85].  More 

flexible programming tools have recently gained popularity in the data science community: 

Python with several machine learning and statistics libraries, such as Scikit-Learn, Keras and 

quite recently, Tensorflow by Google, the latter two predominantly used for working with deep 

learning neural networks. In the case of Numenta’s HTM, Python is required to use the official 
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API.  R and Python have the advantage of flexibility and crucially, massive support of libraries 

and support forums so these were mostly used for creating experiments. 

 

 

 

 

From this section, we gained knowledge of methods used in previous studies involving 

actigraphy as well as other sensor types. We found ideas for implementation of potentially 

useful features relating to migraine and bipolar disorder. Furthermore, we found studies with 

some success in early detection of symptoms, specifically of migraine. This supports our 

assumption that there exist patterns giving early warnings, though not necessarily through 

exclusive use of the actigraph. We saw non-linear machine learning methods suggested as 

having potential in analysis of actigraph data, gained specific information on most effective 

statistical features and methods for tackling imbalanced data.  Finally, we have touched on 

anomaly detection methods and reviewed software tools that are currently used for machine 

learning data analysis. 
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3.2 Machine Learning 

 

 

Machine learning in the most general of meanings is a set of tools and methods with the aim of 

modelling and understanding data. Machine learning algorithms can learn how to perform 

important tasks by generalizing from examples. This is often feasible where manual 

programming is not. As more data becomes available, more ambitious problems can be tackled 

[15].  Machine learning algorithms have the ability to extract information and infer structure 

from collections of measurements, data streams such as sound/video signal and human 

language. In recent years, machine learning has increasingly shown its usefulness in a wide 

range of areas [16]. Machine learning is the force behind the Big Data paradigm [17]. The terms, 

“Data Mining” and more recently, “Data Science” are increasingly used to describe the process 

of applying machine learning methods for all kinds of data analysis. Such interrelation of ML 

and statistics lead to the overlaps of frequent terms as shown in Table 3-1Table 3-1: An unofficial 

summary of interrelated terms used in data science community and literature. (based on 

source:  https://www.analyticsvidhya.com):, below.  

 

 

Machine Learning Statistics 

Network, graphs, classifier Model 

Weights Parameters 

Learning Fitting 

Generalization Test set performance 

Supervised learning Regression / classification 

Unsupervised learning  Density estimation / clustering 

  
Table 3-1: An unofficial summary of interrelated terms used in data science community and literature. (based on 
source:  https://www.analyticsvidhya.com):  
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3.2.1 Classification Algorithms 

 

 

We begin with a simple description of supervised learning or classification.  In data science, a 

feature is a term used to describe an attribute of a member of a set. Such a set can consist of 

one or more structurally similar subsets, usually referred to as “classes”.  The class membership 

of each individual member in the set is decided by the value of the attribute.  Naturally, set 

members may potentially carry multiple attributes.  In supervised learning, a vector of attribute 

values in a training set is paired with a target class label4, indicating its class membership. This 

complete vector of attributes is known as an instance or training example. Training a classifier 

involves feeding training examples to the algorithm so that it can create rules to assign 

membership from the individual attribute values. The algorithm attempts to find a fitting 

function from input to the respective targets, thereby creating decision boundaries between the 

classes.  Provided a new, unseen example, the trained classifier will infer from the model it has 

built, what the target label for this example should be. The label output obtained from the 

classifier is also known as a prediction.  

 

These characteristics are common to all supervised learning (classification) algorithms. Below, 

we present short descriptions of the individual algorithms that will be used. 

 

 

 

3.2.1.1 Gaussian Naïve Bayes 

 

Naive Bayes (as in Bayes theorem) is a simple probabilistic classifier based on the ‘naïve’ 

assumption that the values of the individual features are independent of the other features on a 

pair-by-pair basis. This assumption is most often violated in real life problems, but it has been 

shown that even in these situations the algorithm performs surprisingly well [18]. Simple as it 

is, Naive Bayes has in the past managed to outperform even highly sophisticated classification 

algorithms. It belongs to the parametric machine learning methods [19]. NB is simple, models 

are relatively easy to build, require less training data, are fast, efficient and so useful for very 

large data sets. Additionally, the algorithm produces results as probability distributions [20].  

Both, binary and multiclass classification tasks are handled well by this classification algorithm. 

“GaussianNB” as implemented in the Scikit Learn-library, implements the Gaussian Naive 

Bayes algorithm for classification where the likelihood of the features is assumed to follow a 

Gaussian (i.e. normal) distribution. “GaussianNB” requires only that the mean and standard 

deviation estimates are extracted from the data [20]. This implementation requires virtually no 

hyperparameters and is one of the simplest used in the experiments. 

 

                                                
4 The short version «target label» is used throughout this document. 
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3.2.1.2 Logistic Regression 

 

Logistic Regression (LR), though in some ways similar to linear regression, is in fact a binary 

classification method and not a regression model. As a parametric generalized linear model, it 

is simple and has good performance. The binary response variable is related to any number of 

explanatory variables which when combined, form the basis of probability calculations that 

predict the target class, i.e. in this case the categorical response variable. Also, known as 

maximum-entropy classification method or logit regression, named after the decision function 

used in the classifier. The logit function is the natural log of the probabilities that the target 

variable takes one of the two values [21]. Multinomial logistic regression, also called SoftMax 

regression is a form generalization of LR which deals with cases of multiple target classes. A 

well-behaved classification algorithm, LR is generally considered a good baseline choice when 

given features are linear and the problem is potentially linearly separable. 

 

 

3.2.1.3 Support Vector Machines 

 

Support Vector Machines (SVM) is a set of supervised learning methods used mainly for 

classification, regression and outlier detection. SVM are non-probabilistic, linear methods that 

find the optimal decision boundary using just a few bounding members or training points of 

each class. It is from these few, critical points, called “support vectors”, that the algorithm gets 

its name. SVM is considered to be accurate, guaranteed to reach the global optimum, generalize 

well with adequately chosen parameters. The main advantage of SVMs comes from the fact 

that through using the so-called kernel trick they are perfectly capable of being effective non-

linear classifiers [22]. A kernel is basically a function which quantifies the similarity of two 

observations [23]. The method effectively creates produce nonlinear boundaries by constructing 

a linear boundary in this potentially infinite-sized transformed version of the feature space [24].  

 

 

 

  

Fig. 3-1: Left: Simple diagram showing how transformation of feature space effects in non-linear classifier. Right: 
Representation of the margin boundary.  (image source: https://amitranga.files.wordpress.com) 
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The boundaries created this way are the hyperplanes (lines, in the simplest of cases) that 

maximize the distance between the two classes, also called margins (see Fig. 3-1). SVMs are 

effective working with high dimensional spaces, they are memory efficient, very versatile 

because of the choice of various kernel functions that can be utilized for the decision function 

[22]. Among the disadvantages of SVMs is that number of features exceeding the number of 

samples might lead to poor results and the inability to provide probability estimates. Most 

importantly, SVM classifiers have been reported to underperform on problems involving 

heavily imbalanced data [25]. 

 

 

3.2.1.4 KNN 

 

Nearest Neighbour is a simple, flexible, non-linear classification algorithm and a typical 

example of an instance based learning method. Although simple, KNN (prefix K relates to the 

one major parameter required, described below) has been successfully applied in a large number 

of classification problems, including EKG patterns, handwritten digits and satellite imagery 

[24]. Instance based learning methods are sometimes called “lazy” because processing of data 

is delayed until new instance arrives due for classification. The K-Nearest Neighbour algorithm 

is based on an assumption that data instances can be represented as points in n-dimensional 

space and the distances between points can be measured [26]. For instance-based learning in 

general, no explicit model building is done on training data; the process of learning consists of 

storage of the training instances until the time when a new instance is due to be classified. At 

this point the stored instances are searched for potential matches (nearest neighbours) to the 

new one, utilizing a distance metric such as Euclidean distance  as a similarity measure [27]. 

The k-parameter (also called the radius) in the k-nearest neighbour represents a distance 

threshold as pertaining to the number of nearest neighbours that will be considered during a 

search. Providing increasingly higher values for k, increases the bias (reducing the variance) of 

the decision as it considers more information but at the same time increases the processing time 

while the model complexity, paradoxically, decreases.  

 

 

3.2.1.5 Multilayer Perceptron 

 

Multilayer Perceptron (MLP) is a feedforward5 artificial neural network (ANN) variant that is 

perhaps the most used today. While a single perceptron is limited in its scope as it can only 

learn linearly separable functions, a network of perceptrons with suitably adapted activation 

function can become a very effective non-linear classifier.  The step function of the traditional 

perceptrons is non-differentiable (“not smooth enough for optimization”), so as an alternative 

the sigmoid or logistic function has been introduced [24]. A multilayer perceptron model, as 

                                                
5 A feedforward neural network in which connections between the units do not form a cycle.  
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shown in Fig. 3-2, is composed of at least one hidden layer of neurons (as the name implies), 

generally increasing the predictive power (and complexity) with each added layer.  

 

In MLP the backpropagation6 algorithm with gradient descent is used to train the weights of 

the fully connected network [26]. The hierarchical, multi-layered structure of a neural network 

is the source of its ability to create mappings of complex, non-linear problems. Another 

advantage lies in the fact that features are derived directly from the training data that best 

represent the relation of the input vector to the target variable. A powerful general approach for 

classification (and regression) problems, neural networks have been shown to compete well 

with the best learning methods [24]. They are relatively robust to errors in the training data, 

because they are not learning exact rules, but minimize a cost function instead.  Training times 

are generally much higher than for most other machine learning models, but on the other hand, 

an already trained classifier has constant O(1) execution time. 

 

  

3.2.1.6 Stochastic Gradient Descent 

 

Stochastic Gradient Descent (SGD) is a simplification of the popular gradient descent  

optimization algorithm [28], maybe the most frequent way to optimize neural networks. 

Fundamentally, dradient descent is an algorithm that minimizes a loss function. A gradient is 

computed on a loss function by using differentiation, specifically calculation of partial 

derivatives of the function parameters. Basic gradient descent is known to get stuck on local 

minima in searching for the optimal solution. There are several variants, mainly differing on 

the amount of data required to compute the gradients. The trade-off is between accuracy and 

the time it takes to perform parameter updates. Stochastic gradient descent is an improvement 

of the original algorithm, that is both faster on large datasets and greatly enhances its 

effectiveness in finding the global cost minimum [29].    

                                                
6 A common method of training neural networks used in conjunction with some optimization method 
(such as gradient descent). 

Fig. 3-2 The simplest MLP network with 1 fully-connected hidden 
layer. (image source: http://www.texample.net) 
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3.2.1.7 Ensemble Methods 

 

Ensemble methods is a general name for multiple models or combinations of models combined 

to produce predictions that have the goal of improving performance and generalizability over a 

single model [30]. There are two main types of ensemble methods: boosting and averaging. In 

the first category, we find Gradient Tree Boosting and AdaBoost. Here the basic idea is to create 

a number of estimators in a sequential fashion, with the aim of improving on the predecessor. 

This way, several weak classifiers can produce a powerful single ensemble. The second 

category creates multiple estimators in an independent fashion with the goal to combine the 

resulting predictions and averaging them to obtain the final one. This has the effect of reducing 

the variance and increases overall robustness. Forests of randomized decision trees (see section 

3.2.1.8), majority voting and bagging methods belong to the second category. 

  

3.2.1.7.1 Voting Classifier 

 

Combining several unrelated machine learning classifiers to get a single, optionally weighted 

result is the main idea behind the Voting classifier. This follows the general idea of bagging 

ensemble methods, but is not constrained to any single type of estimator. The individual 

estimators’ predictions can be weighted in order to balance out the final prediction which in the 

case of a majority vote will be the one representing the majority of obtained results. 

 

3.2.1.7.2 AdaBoost 

 

One of the first proposed practical boosting ensembles and still among the best and most used 

and discussed is AdaBoost [31]. A critically important base assumption of AdaBoost is that the 

collection of weak classifiers produces varying above average (i.e. not random) predictions in 

each iteration. These weak classifiers are assigned weights, which are adaptively adjusted at the 

end of each iteration. The adjustment is relative to the target labels, effectively decreasing the 

weights for correct classifications and increasing for incorrect ones. The measurement of an 

algorithms confidence in predictions is called the margin and is in this case based on the 

majority vote model implied by the weights adjustment. AdaBoost ability to enlarge the margin 

and enhance its generalization capability is one part of its success. Several studies utilizing 

decision trees, neural networks or support vector machines as components report good overall 

generalization performance. One of the most attractive advantages of AdaBoost is its resistance 

to overfitting through implicit regularization, although it certainly is still possible to overfit 

[31]. AdaBoost can be used for both classification and regression tasks. 
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3.2.1.8 Decision Trees & Forests 

 

Decision tree learning methods are one of the most common non-linear classification methods. 

Their popularity can partly be accredited to their intuitive representation of the decision-making 

process. Each internal node in a decision tree is labelled with an input feature or an attribute 

and represents a test resulting in a branch based on a certain threshold value for this particular 

attribute. Both the actual branch attribute as well as the critical split value are determined using 

an optimization procedure, though this may differ between various implementation types. The 

individual branches represent the outcome and lead to child nodes with subsequent tests, or in 

the case of a leaf node, a target class label. The hierarchical structure implies that the root node 

and the root nodes of each subtree will contain the most significant attribute test based on 

information gain (usually: entropy) calculation. While single trees are useful for demonstration 

purposes, it is ensembles of trees i.e. tree forests, that that are currently considered more 

effective [32]. Forests of trees have many advantages over single trees (in line with other 

ensemble methods described in pervious section), most importantly, lower error margin and 

better generalization. As with other non-parametric machine learning methods, decision trees 

in general require more training data and are more prone to overfitting than their parametric 

counterparts. 

  

3.2.1.8.1 Random Forest 

 

Developed by Leo Breiman in 2001, Random Forest is an ensemble of unpruned trees used for 

both classification and regression. The idea is to build as forest of decision trees or weak 

classifiers from bootstrap samples of the data. This method involves random feature selection 

for the purpose of building the individual trees and the final classification result is calculated 

from aggregating, (or averaging, in case of regression problems) over the members. Random 

forest has shown massively improved performance over traditional single tree classifiers [32, 

33] such as C4.5 and J48, i.e. single decision trees. Because of the random, independent 

sampling used for building the individual trees, the generalization of forests decreases as the 

number of trees increases.7 

 

 

3.2.1.8.2 Extremely Randomized Trees 

 

In Extremely Randomized Trees (ET) algorithm, as in Random Forest, a random subset of 

attributes is used but the decision for splitting a node is based on purely random thresholds, not 

necessarily the one with the best discriminative power. Additionally, ET uses the complete 

learning sample as opposed to the default bootstrapping method employed in other tree-based 

                                                
 7 The Scikit-learn library implementation of Random Forest combines classifiers by averaging 

their probabilistic prediction, instead of letting each classifier vote for a single class [20]. 
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ensemble methods like RF. The bias-variance trade-off is shifted here towards reduced variance 

at the cost of higher bias error. The advantages of extremely randomized trees algorithm are 

great accuracy and attractive performance speed. ET has already been noted for its effectiveness 

in problems of high dimensionality, such as  time-series and image classification [34], the first 

mentioned quite relevant in this work.  

 

 

 

3.2.2 Hierarchical Temporal Memory 

 

Unsupervised learning entails that the machine learning task is supplied with a set of instances, 

but the target labels are non-existent, or otherwise not given as reference. Traditionally this is 

the domain of clustering algorithms which form groups (or clusters) from the unstructured data, 

effectively “discovering” target classes.  Outlier detection is another, more specific form of 

unsupervised learning, as the name states focused on finding the extremities or outliers in the 

data.  Anomaly detection is an alternative term for outlier detection. Extremely rare events, 

patterns and values are general examples of outliers, but the specific meaning is domain 

dependent, e.g. credit card fraud detection from millions of transactions. Generally, when the 

goal is to discover few positives among a massive number of negatives, one should consider 

this category of algorithms.  The Hierarchical Temporal Memory (HTM) algorithm belongs in 

this group. 

 

About six months before starting on this project, we came across information on a project by a 

US company, Numenta. Numenta is a company doing research on Artificial Intelligence (AI). 

Their approach is based on building a model that attempts to simulate the way the neocortex of 

the human brain as closely as possible. One of the results of Numenta’s research is the 

Hierarchical Temporal Memory algorithm, which was claimed to be among the best performing 

in context of temporal sequence and pattern detection [35].  The Hierarchical Temporal 

Memory (HTM) earlier known as Cortical Learning Algorithm (CLA), is a machine learning 

algorithm taking a very different approach to the “traditional” methods of machine learning and 

artificial intelligence. 
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Fig. 3-3 Comparison of neuron models in ANN vs HTM.  (A) The neuron model used in most artificial neural 

networks has few synapses and no dendrites. (B) A biological neocortical pyramidal neuron has dendrites (inset 
zoom) covered with thousands of synapses. The co-activation of a subset of synapses will cause a form of an 

electrical signal called an NMDA spike [36] and depolarization at the soma (highlighted spherical part). There are 
three sources of input to the cell. The feedforward inputs (green) which form synapses proximal to the soma, 

directly lead to action potentials. (C) An HTM model neuron models dendrites and NMDA spikes with an array of 
coincident detectors each with a set of synapses (only a few of each are shown) [37].  

 

HTM is an attempt to use the human brain as the de-facto model for the way it recognizes, 

detects and predicts patterns. This biological model implies deeper understanding and 

emulating parts of the human cerebral cortex: the part of the brain known to be responsible for 

functioning of memory, attention, perception, awareness, thought, language, and 

consciousness.  However, one could argue that neural networks already adopted this idea long 

before. This is only partly true as the idea of the perceptron was indeed based on neurons in the 

brain, but it was very simplified, omitting a lot of details (see Fig. 3-3) not well understood at 

the time. HTM builds models much more closely based on the structures found in the cortex 

[37]. 

 

Although it can be applied to both classification and regression type of problems, we will focus 

on its ability for outlier detection or otherwise known as anomaly detection. An anomaly 

detection algorithm is tasked with the detection of abnormal events, sensor values, operational 

states or any combinations of these. Automatic anomaly detection is preferable in areas where 

it is not feasible for a human expert to explicitly write rules for alarm initiation or where rules 

can be derived from the (normal) data distributions. The algorithm can effectively learn and 

build a model of normality, given enough historical data.  When encountering new instances, 

they can be classified (as abnormal) based on this information. 
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3.2.2.1 Sparse Dynamic Representation (SDR) 

 

HTM uses a specific underlying data-structure called Sparse dynamic representations (SDR). 

SDRs differ from standard binary representations such as ASCII, as the meaning is encoded 

directly into the representation. SDRs are based on large arrays of bits, where the majority are 

zeroes, the rest being ones. “Sparsity” is the measure of the ratio of on bits to off bits and is 

around 2% in case of HTM. Every bit is assigned with some meaning, an overlapping of two 

SDRs with on bits means they are semantically similar [38]. SDR has several important 

characteristics including their high capacity, low mismatch probability, very low probability for 

false positives, high tolerance to errors with noisy data, union operations of SDRs, robustness 

of unions in the presence of noise [39]. This is exactly the kind of characteristics required for 

successful detection of anomalies in a sensor data stream.  

 

 

3.2.2.2 Encoding 

 

To be useful for processing, the data stream needs to be encoded into a SDR which the HTM 

algorithm internally requires. If the data can be converted into an SDR then it can be used by 

any application based on HTM [38]. Depending on the data and its intended use the encoder 

can be very simple or very complex. Either way the output SDR have underlying semantic 

meaning, for example: for a scalar encoder ranged from 0 to 100, where the values are of 

importance, the digit 5 and 6 have much more in common than 5 and 7, and would have nothing 

at all in common with 50. Again, this heavily depends on what it is the data actually represents 

and the meaning we wish to assign to it. 

 

The basic encoding scheme for encoding a range of numerical values (Scalar encoder) has at 

least four parameters: min value, max value, number of buckets, total active bits. The number 

of buckets should be chosen depending on the expected inherent noise for this metric. Prediction 

quality (accuracy) depends on this parameter: a noisy signal suggests a smaller number of 

buckets, giving the HTM more stable input at the cost of less precise predictions. A very clean 

signal, given a large number of buckets would cause HTM to be able to make more precise 

predictions [38]. 

 

Appropriate encoding technique is of great importance for applications as the number of 

classification variables increases. Using date encoding makes it possible for us to supply context 

to patterns over time (temporal patterns), as we demonstrate in section 5.1. In this way, the date 

encoder assist in automatic discrimination of time periods, days, weeks, weekends, months, etc 

and correlate these with potential periodic patterns. 
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The Delta encoder encodes the change in value between two consecutive data points rather than 

the individual values of the data points. This is helpful in recognizing patterns in data 

independent of individual magnitude, for example relative temperature change patterns or 

finding patterns in rising or retreating stock market indices. Other types of encoders include 

Categorical, Geolocation and Random Distributed encoders. Depending on the problem 

domain, it might be advantageous to create a new or modify an existing encoder.   

 

 

3.2.2.3 Spatial Pooling & Temporal Pooling 

 

Spatial pooler groups together similar inputs, i.e. SDRs with overlapping bits [40]. Two inputs 

are semantically similar if they have a specified number of overlapping bits in their 

representation. Attributes like threshold can be adjusted accordingly although, there has been 

done extensive testing and for most purposes the pre-set values give satisfactory performance. 

 

Temporal Pooler (TP) learns sequences or transitions between SDRs [40] in a sequential 

manner, i.e. over a period of timesteps. The temporal pooler output predicts unions of SDRs. 

What this implies can be explained with a simple character sequence example: after being 

trained on a sequence “ABACAD”, the TP when it encounters an “A” at the next step in its 

input, it would predict the union of “BCD” to be a possible next value. This would set them 

corresponding bits in what is called the predictive state. TP is a component of high-order 

memory, as prediction of following SDRs is based on the history of SDRs already encountered 

before. To illustrate with a modification to the previous example: with historic inputs of 

“ABCD” and “XBCY”, when the sequence “ABC” is encountered, then a “D” will be predicted 

instead of union of “Y” and “D”.   

 

Finally, the outputs from the temporal pooler are processed by the CLA-classifier (more 

recently, revamped as the SDR-classifier). The classifiers task is creating a single prediction 

from the current encoded SDR state of the TP. The classifier operates on tables of probabilities 

of the occurrence of each SDR, basically choosing the one with the highest frequency for a 

given context, at the same time decoding the output to match the original input type.  
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3.2.3 Feature engineering 

 

 

A feature is a property, sometimes called an attribute of individual instances in a training set. 

Wikipedia gives one definition as: “In machine learning and pattern recognition, a feature is 

an individual measurable property of a phenomenon being observed…”. [41] 

 

The explanatory variables in a simple linear regression problem can be considered as features. 

While in many cases, features can be derived directly from the explanatory variables i.e. 

attributes of a structured dataset, in other cases that data might be raw sensor data such as that 

obtained from an actigraph. In this case features have to explicitly extracted from a time series 

and that is part of a process of feature engineering. Feature engineering (also called feature 

construction), while not a formally defined term is nonetheless a critically important part of the 

preprocessing set of operations involving extraction, creation and selection of features for 

machine learning applications [42]. Optimally a set of features should be maximally 

independent, informative and discriminative in order to improve the performance of applied 

classification algorithms.  

 

3.2.3.1 Feature Extraction 

 

There is vast literature on various feature extraction and feature selection methods, the subject 

is vast and beyond the scope of this work to describe in full detail. We will however include 

some important general takeaways. In this work, we divide types of features into three 

somewhat overlapping subcategories: 

 

Domain-specific features, where relevant knowledge about the problem task is used to identify 

potential points of interest in the data. A slightly oversimplified example of a domain feature 

would be the classification task of dogs and cats, where the critical piece of domain information 

made available to us would be the fact that cat eye pupils contract into a vertical line when 

exposed to strong light. In this case, this is the top discriminative feature that probably would 

give a 100% accurate classification result with the simplest of classifiers. On the other hand, 

information like weight, height and life span would be adequate but not specific to the domain. 

 

Statistical features require no special knowledge of the domain, but still provide useful 

characteristics in the form of quantitative data based on properties such as mean, standard 

deviation, median, maximum and minimum [43]. Depending on the aim of the analysis a time 

series can be further decomposed and further information extracted through transformation 

methods like Fast Fourier Transforms (FFT) w.r.t. the frequency domain [44]. Statistical 

variables can be readily calculated making them popular and computationally cheap to use.  

 

A different but fully dependent approach involves adding polynomial features.  Polynomial 

features represent all possible interaction between 2 existing features and the square of the 
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original features. Polynomial features [45] improve linear methods accuracy on non-linearly 

separable problems (Fig. 3-4). In practice, we derive these additional features indirectly, by 

using the statistical feature values calculated on the time series segments. 

 

 

 

  

Visually derived features are usually based on early exploratory analysis, where some visibly 

“uncommon8” patterns in the data have been spotted. Depending on the problem task such 

observations could be potentially useful for determination of additional features (such as the 

one in section 4.3.3.3) or maybe subject to filtering out. 

 

Feature extraction in practice has some creative aspects to it. It provides freedom to brainstorm 

new ways of obtaining potentially useful features, but in general it might involve a lot of manual 

work, testing and validation as well as use of statistical tools and automating tasks. 

Additionally, combining existing and/or derived features is a viable method to further cover 

aspects that might not be obvious at first inspection. For example, the addition of polynomial 

combinations and/or logical conjunctions of existing features can improve the ability of a linear 

classifier to model nonlinear problems [46].  

 

 

3.2.3.2 Feature Selection 

 

It has been shown that while increasing the number of features in general has a positive effect 

on classification accuracy, a high number of features can also have a detrimental effect on the 

accuracy performance of a classifier. The key idea is feature relevance. Somewhat contrary to 

the idea of creating new features, feature selection is concerned with the aim of reducing the 

number of features made available to the classification algorithm. The motivation behind this 

comes from the fact that increasing the size of feature vectors, proportionally increases the 

amount of processing to be executed by the ML algorithms subsequently applied to the data. 

There are other important considerations to keep in mind as the number of features grows, such 

                                                
8 There might be a certain overlap with the domain feature category here to be able to make the 
objective decision of what in fact is unusual pattern for a given dataset. 

Fig. 3-4: Example showing how adding (polynomial) features may 
make data linearly separable. Source: [45] 
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as the ability to measure their individual importance or discriminating power in the 

classification task [47].  

 

Unlike other dimensionality reduction techniques such as Principal Component Analysis (PCA) 

or compression techniques from information theory, feature selection does not change the 

underlying structure of the data. As the name implies, features are selected out based on some 

measurement of importance depending on the specific feature selection algorithm used. Filter 

methods, as they are more generally called are based on correlation and mutual information 

calculations. Main advantage of filtering techniques is scalability, low complexity, performance 

speed and the fact that they are independent of the classification algorithm. On the more critical 

side, filter methods tend to ignore feature dependencies. The Correlation-based Feature 

Selection (CFS) algorithm is an example of an improved filter, with respect to speed that also 

takes into account the intercorrelation among individual features [48]. Alternatively, unwanted 

features can be eliminated by some iterative or recursive evaluation process, such as can be 

found in Recursive Feature Elimination (RFE). This second category also called the “wrapper” 

methods use greedy and heuristic search methods to produce the final selection relative to the 

classification model. These methods are however considered highly expensive computationally 

[47].  

  

Finally, we have the embedded methods of feature selection, which are fundamentally selecting 

the set of features implicitly when building a model. This makes the selection specific to the 

chosen learning algorithm but is less computationally expensive than the wrapper method. 

Decision tree based algorithms and weighted Naïve Bayes are good examples [47].  

 

Feature selection methods applied in our experiments are based on implementations from the 

feature selection libraries of Scikit-learn [20]. 
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3.2.4 Evaluation & Metrics 

 

 

Model evaluation is a crucial part of model development. For any given prediction model the 

goal is to build a model that predicts the target value for unseen data instances with the highest 

possible accuracy. We need a way of evaluating model performance, typically by quantifying 

it with some measure of model error. This same measure should be used to train the model to 

obtain good performance. One of the great pitfalls in model creation is to base the evaluation 

of model performance on the very same data that it has been trained on. [49]. Using incorrect 

error measures and evaluation methods can lead to generation and selection of overoptimistic 

and overfitted models, i.e. incorrect models. 

In general, the two main types of error are Bias error: overly generalized model, underfits the 

data and Variance error: overfits the data, the measure of sq. deviation over the mean. There is 

a trade-off between them and a good model minimizes both [50]. Specifically, we want a model 

that is valid, it measures what it was intended to measure and generalizes well to unseen data.  

 

 

3.2.4.1 Model Validation  

 

There are two main accepted methods of evaluation of machine learning models: the hold-out 

method and cross-validation. In both cases a separate test set of unseen data is used in the 

process of evaluating model performance.  

 

While training a model, whichever metric is chosen the objective is to minimize the training 

error (or maximize some accuracy score). Using this result for final evaluation, i.e. training and 

testing on the same dataset is easy, requires few resources, but results in overfitting. 

 

The Hold-Out method, also called a train/test-split, requires that a part of the original data is 

held-out from the training process (a test set) and that the final evaluation score is only 

calculated from the model performance on that test set. This method is also relatively fast and 

simple, and it ensures that the model has tested on unseen data. The disadvantage here is that a 

part of the data is removed from the training set to the model. Furthermore, there is risk of 

relatively high variance of the predictions. 

 



40 
 

 
Fig. 3-5 10-fold cross validation. The designated training set is further divided up into K folds (K=10), each of 
these will now function as a hold-out test set in K iterations. Finally, the scores obtained from the model on 
individual iterations are summed and averaged into the final score. (image source: https://sebastianraschka.com) 

 

Cross validation [24][26] is a further extension of the hold-out method. Cross validation is 

widely accepted as the state-of-the art method for ensuring model reliability and improved 

generalisation ability. In k-fold cross validation (Fig. 3-5), k is the number of partitions that the 

training set will be split into. The same k is also the number of iterations that the classifier will 

execute, each resulting in an evaluation score. The k scores are then averaged to obtain the final 

(training) score. For each iteration one of the (k-1)/k of the data is used for training the classifier, 

while the remaining partition of size 1/k is used for validation of the model from that iteration. 

With each iteration, the next, yet unused partition is set aside for validation test, and a new 

model is trained from the remaining partitions as described above.  The final score is then 

averaged over the number of iterations, k. The advantages of k-cross validation are reduced 

variance because of the averaging effect, but the process is slow having high resource 

requirement, as the classifier has to be trained and multiple (k) times over the total size of the 

training data. 

 

 

 

3.2.4.2 Metrics 

 

A good model measures what it was intended to measure and generalizes well to unseen data. 

In this section, we will introduce the set evaluation metrics that will be used in the experiments. 

The main motivation for choosing relatively many different metrics is to encourage comparative 

experiments and provide an extended spectrum of potentially complementary information. 

According to previous analysis by [51] it can be shown that most of the metrics commonly used 

in machine learning for evaluating classifiers, fundamentally measure different things, this 

being especially true for multiclass and imbalanced class problems. 
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3.2.4.2.1 Confusion Matrix 

 

A confusion matrix presents a complete and very intuitive overview of the classifiers 

performance. The matrix is of dimension C * C, where C is the number of target classes in the 

problem.  

 

The ground truth is matched against the predictions from the model, effectively showing 

information on how accurate the predictions are for each class and the distribution of 

misclassified instances for each class. The confusion matrix is the basis for most evaluation 

metrics that are frequently used in machine learning, one exception is the probability 

distributions that can be obtained from most algorithms, something we will come back to in 

section on ROC curves (section 3.2.4.2.5). In a binary (two class) example (Fig. 3-6), four 

individual basic counts are obtained from the basis of the matrix: True Positives, False 

Positives, True Negatives and False Negatives (TP, FP, TN, FN, respectively). From these we 

can derive most of the metrics described below. 

 

 

 

 

 

Fig. 3-6: An illustrative depiction of the (binary) confusion matrix and a selection of the measures that may be derived 
directly from it. 
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3.2.4.2.2 Accuracy 

 

The most frequently used and cited evaluation metric, classification accuracy is the percentage 

of correctly classified examples out of the total number of examples. Accuracy (ACC) is a 

perfectly good metric if the class distribution is well balanced, i.e. in the case of a binary 

classification problem, a 50/50 separation. The problem becomes apparent in cases where one 

class dominates the other, for example in a dataset of 900:100 (class 0:class 1) binary class 

distribution, classifying all instances as negative results in 90% accuracy score, while not a 

single example of class 1 has been correctly predicted.  

 

 

3.2.4.2.3 Precision and Recall 

 

Precision is the ratio of correctly predicted labels out of the total predicted positive labels, i.e. 

the probability of a positive prediction really being positive, i.e. P(predicted = observed). 

Recall (also called True Positive Rate, TPR or Hit-Rate, Sensitivity) is the ratio of correctly 

predicted positives to the total number of positive labels (ground truth) in the data or 

alternatively, the probability of a positive ground truth, really being predicted as positive. 

 

 

3.2.4.2.4 F-measure 

  

F-measure, or F1-score, also known as the balanced F-measure, is a single scalar value metric 

summary for the combination of Precision and Recall. It is used in evaluation of accuracy of 

classification performance in binary problems. F1 is defined as the harmonic mean of precision 

and recall, equally weighs precision and recall as shown in eq. 2.1:1.  As it is based on recall 

and precision, the F-score only considers the positive predictions. F1-score is generally 

considered a much more balanced evaluation metric when class imbalance is an issue [52].  A 

high F-measure score is a good indicator of a good performing classifiers w.r.t. to minority 

classes.   

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  √
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                   (3.2.1) 
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3.2.4.2.5 Receiver Operating Characteristic (ROC) 

 

A Receiver Operating Characteristics (ROC) graph is an increasingly popular visualization 

technique for evaluation and selection of classifiers based on their measured performance. 

While not a single valued metric, (a score can be derived from it), the ROC contains useful 

information related to the specific areas of concern. ROC graphs have originally been used in 

signal detection theory, and later adapted for medical decision making in diagnostic testing, 

gaining further popularity. Their increasing use in machine learning is partly due to the growing 

realization by the data science community that traditional accuracy measures are flawed when 

dealing with skewed class distributions, which frequently is the case in real world problems.  

The fact that ROC curves are insensitive to imbalances in class distribution is a very important 

property. If the proportion of negative vs positive class instances changes in the underlying 

dataset, the ROC will not change, due to the way it is calculated [53, 54]. A ROC graph is 

basically a 2D-graph that plots True Positive Rate (TPR, also called Sensitivity or Recall) vs 

the False Positive Rate (FPR, or 1-Specificity). In this manner, the ROC depicts the trade-off 

between benefit and cost, calculated by “sliding” the decision threshold.  

 

 

Fig. 3-7 ROC curve examples: The diagonal represents the random guess. A shows moderate improvement over 
a random model, while B and C are both much better than A. However, B and C, though different, have an equal 
AUC-score. In this case, the decision based on the trade-off between sensitivity (y-axis) and FPR (x-axis), must 
be made. 

 

The diagonal line across the graph (y = x) is the representation of a random classifier, while a 

line through the point at coordinates (0,1) represents a perfect classification performance. ROC 

curve is intrinsically used for depicting binary classifier information. 
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3.2.4.2.6 Area Under the Curve (AUC) 

 

Area Under the Curve (AUC) is nothing other than the area below the ROC curve at unit scale. 

This makes AUC an aggregated single score metric for performance measure derived from the 

ROC curve.  It is however, not a complete replacement for ROC and should not replace ROC 

analysis, where fine tuning w.r.t. the target domain of the model is required (see Fig. 3-7). To 

compare classifier performance by means other than manual inspection, and still draw on the 

advantages of using a ROC as validation metric, we need a single score value that can easily be 

compared. The AUC score range is between 0 and 1.0, as it is a part of the unit square area. A 

random dummy classifier produces a diagonal between (0,0) and (1,1) on the ROC graph and 

therefore produces a AUC score of 0.5. This implies that no accepted model should have a score 

of 0.5 or less. AUC score <0.5 can in fact be mirrored over the diagonal by inverting the 

predictions, negating the classifier. This might contain useful information that has been applied 

incorrectly [45].  The AUC in all its variants, have been shown to be less correlated with various 

other metrics, a fact supporting the use of the AUC as a genuinely different and compact 

measure [55]. 

 

 

3.2.4.2.7 Cohen’s Kappa 

 

The Cohen’s Kappa statistic, (and related Fleiss' kappa) is a method for calculating inter-rater 

reliability9 based on varying assumptions about the prior distributions that is generally seen as 

a more robust measurement alternative as compared to simple percentage agreement [56], i.e. 

accuracy. The score can range from −1 to +1, where 0 represents the level of rater agreement 

that can be expected from random chance, and 1 represents perfect agreement. A common scale 

for score interpretation has been suggested in [55], with scores ranging from K<0.20 (poor) to 

K>0.80 (very good), but it seems like as if no consensus has been reached. 

 

 

3.2.4.2.8 Matthews Correlation Coefficient 

 

Matthews Correlation Coefficient (MCC) or otherwise known as the ϕ-coefficient is used in 

machine learning for binary classification performance measurement. MCC takes into account 

all of the elements of the confusion matrix (TP, TN, FP, FN) and is regarded as a balanced 

measure applicable to skewed class distributions. It returns a correlation coefficient value 

between -1 and +1, where +1 denotes a perfect prediction, 0 an random prediction and -1 an 

inverse prediction. [57].  The MCC metric has obtained increasing interest by the machine 

learning community. This interest relates to the fact that it fundamentally summarizes the 

                                                
9 “In statistics, inter-rater reliability, inter-rater agreement refers to statistical measurements that 
determine how similar the data collected by different raters are, i.e. a measure of consensus. [56]  
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confusion matrix (eq. 2.1.2 below) into a single score value, when applied to the binary 

classification problem [58].  

 

MCC =  
TP ∗ TN − FP ∗ FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
                 (3.2. 2) 

 

It is now commonly accepted as a reference performance metric for imbalanced data in fields 

such as bioinformatics. In the same study, the case for MCC is further supported as being 

superior to simple accuracy measure in a skewed class distribution case [58]. In general, MCC 

is a good compromise of consistency, discriminating power and coherent behaviour under 

varying conditions. 

 

 

3.2.4.2.9 Anomaly Score 

 

The anomaly score is a HTM-specific scoring metric used exclusively in anomaly detection 

models [59]. There are two types of anomaly score named in this work: Anomaly likelihood, 

log anomaly likelihood and anomaly score, all of them are fundamentally based on the raw 

anomaly score. The raw metric is just the calculated inverted probability of a prediction 

producing the same value as the current observation. This is done on every timestep, effectively 

producing a score for every observation-prediction pair. Anomaly likelihood score is an 

alternative non-thresholding metric calculated in addition to the raw anomaly score. It is a 

probabilistic score that evaluates the current state to be anomalous based on a modelled 

distribution of historic raw anomaly scores from the model [59]. Log anomaly likelihood is just 

a log-normalized likelihood score. In practice likelihood values may frequently end in the 

interval [0.99, …, 1.0], so this translates them into more intuitive range where the typical 

threshold is set at 0.5. This is an (unofficial) adopted practice in the HTM community. 

 

 

3.2.4.2.10 Geometric mean 

 

The geometric mean (G-Mean) is mathematically a type of average, which unlike the arithmetic 

mean, indicates the central tendency value of a set of numbers by application of the product of 

individual values.  In machine learning, the geometric mean (Eq.3.2.3) is useful as a metric to 

measure the balance between classification performance over majority and minority classes.  

Low geometric mean is an indication of a poor accuracy in the classification of the positives, 

even if the negative cases have been correctly classified [52]. Geometric mean is generally 

considered a more adequate metric for imbalanced class problems compared to the standard 

accuracy measure and has therefore been included in our set of performance metrics. 
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𝐺𝑀𝑒𝑎𝑛 =  √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
3.2.3 G-mean is calculated using Sensitivity (Recall) and Specificity (True Negative Rate or TNR, see Fig. 3-6). 

 

 

3.2.4.2.11 Index of Balanced Accuracy 

 

Index of Balanced Accuracy (IBA) metric [61][60] is a weighted average between the 

specificity and the sensitivity (TPR or Recall), not only taking the overall classification 

accuracy into account but also attempts to promote the classifier with better results in respect 

to the positive class (the minority class). High values of IBA are obtained when the accuracies 

of both classes are high and balanced. IBA is related to the optimized precision measure, which 

in turn is biased towards the majority class [61]. IBA produces a standard accuracy measure 

(ACC) when a classifier performs equally well on both classes however, in cases where the 

classifier leans the advantage to the distribution of the majority class, the IBA will reflect this 

with a lower score compared to ACC.  
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3.2.5 Class Imbalance 

 

 

In the previous sections on algorithms and evaluation methods, we have repeatedly touched 

upon the subject of class imbalance in various forms. The reason for our focus on this area 

surfaced as the type of data to be used for the analysis became available and it became clear 

that extreme class imbalance was unavoidable.  Class imbalance in a classification task entails 

one of the classes being strongly underrepresented relative to the other class or classes in a 

multiclass setting. It turns out that this type of problem poses one of the biggest challenges in 

data mining [62]. Real world applications such as credit card fraud detection, medical 

diagnostics and network intrusion detection are typical imbalanced data problems [52]. 

 

Frequently in an imbalanced classification problem it is the minority class10 that poses the target 

of interest. However, due to the fact that classifiers tend to be biased towards the majority class, 

most common classification algorithms do not work well in these problems [52]. Additionally, 

as we have described in the previous section, some metrics are often compounding the problem. 

Several methods have been suggested for dealing with imbalanced data as pertains to both 

processing and classification performance evaluation. Applying appropriate evaluation metrics 

is important [52] we have intentionally included several imbalance-specific metrics in the 

previous section (3.2.4.2).  Consequently, we will in the following sections describe selected 

resampling methods for modelling of strongly skewed data. 

 

 

3.2.5.1 Cost-sensitive learning 

 

The term cost-sensitive learning entails that misclassification costs are considered during the 

model training or creation. This is effectively the case where the algorithm can be penalized for 

prioritizing one class over another, effectively changing the way most classification algorithms 

calculate the misclassification error cost. There are two subcategories; first, the algorithm has 

been explicitly designed to evaluate cost sensitive loss functions directly, alternatively there is 

the cost-sensitive meta learning category [63]. Sampling, weighting, thresholding and ensemble 

methods are all examples of the second category. There are various theories for setting the 

appropriate costs/weights and some success has been achieved, however a major drawback is 

the assumption that the cost is known or easily derived. In real world problems, this is rarely 

the case and when successful, may lead to overfitting. Several of these techniques are applied 

in our experiments, specifically weighting, under-sampling and over-sampling.  

 

 

 

 

                                                
10 By convention, the minority class in imbalanced (binary) tasks is defined as the positive class, while 
the majority class receives the negative label. 
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3.2.5.1.1 Under-sampling 

 

One solution to the imbalance encountered in strongly dominant majority dataset is to improve 

the ratio between classes by reducing the number of the majority instances [64]. The argument 

for doing so is that in an overwhelming majority of closely related instances, removing a portion 

of the least influential instances will not have significant detrimental effect on classifier 

effectiveness. This not only improves the class balance, but also has advantages for storage and 

training time, especially in large applications. Disadvantages of under-sampling centre around 

the fact that data instances are removed from the training set, which results in less accurate 

classifiers. There are various approaches to under-sampling; Random, Clustering based, 

Nearest Neighbour, etc. [60]. NN approach such as Tomek-links, examine the neighbourhood 

instance space, compare pairs of instances of opposite classes that are their own nearest 

neighbours and remove these. By eliminating the closest opposite-class neighbours, the 

minority class region in the instance space becomes more distinct [64].   

 

 

3.2.5.1.2 Over-sampling 

 

In over-sampling, the main idea is to influence the class imbalance by increasing the number of 

positive instances.  The most popular advanced over-sampling method is SMOTE (Synthetic 

Minority Oversampling TEchnique) [65]. SMOTE, in its many variants attempt to create new 

data instances from an existing set and differ from each other in the way that this is done. In 

general, specific similarity measures are used to define and create instances that would 

(theoretically) be classified as part of the positive (minority) class. This is also called the 

generative oversampling, as it generates new instances based on the learned distribution of 

existing data. Contrary to the under-sampling technique, over-sampling does not remove 

information from the data, no instances are ever removed from training the classifier. The 

drawback is that in the frequent case where imbalance goes hand in hand with inadequate 

number of minority samples, the learned distribution estimate is potentially inaccurate and 

variance artificially lowered [66]. 
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4 Methods 

 

 

This chapter describes the methods that were used in order to answer the research questions 

from section 1.4. In the next subsection, we describe classification specific methods and HTM, 

followed by section on selected preprocessing tasks such as segmentation via sliding windows, 

sleep period recognition and domain feature extraction. 

 

 

Traditionally, to run machine learning experiments, the main requirement is the availability of 

relevant data. Often the process of data collection is initiated after some idea or research 

question has been set out to which this data will potentially provide an answer. As mentioned 

earlier, this work is concentrated on already existing, labelled data.  It was decided to use the 

Data science methods as observed in the reviewed research in section 3.1.  More specifically 

the methods observed in [43, 46, 80, 86] and others. These are all classification-oriented. 

Consequently, we deal with specifics of HTM in the next section. The basic steps in the 

scientific method for data mining then become: 

  

 Begin with the research question 

 Leverage and explore the data (preprocessing) 

 Extract & create features (preprocessing)  

 Explore parameters, create model(s) (training, performance evaluation)  

 Discuss the results and draw insights 

 Conclude and point out shortcomings 

 

 

4.1 Classification 

 

With the research questions already having been set, we move on to the data exploration and 

preprocessing steps. We advise the reader to study the diagram (Fig. 4-1) describing the detailed 

steps of the process used in the experiment phase as we briefly describe it below. 

 

Exploration of the data is done to gain early knowledge of the possible manual preprocessing 

actions that might be required. Having good knowledge of the data and its domain can be helpful 

in the often-creative feature extraction process. Furthermore, visual clues such as artefacts, 

irregularities, amount of noise in time series signal or missing values in tabular data may help 

in selecting the right type of training methods and in avoiding time consuming mistakes.  
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Fig. 4-1 Supervised learning process model used in the classification experiments. Grid-search with 5-fold cross 
validation was used to get the final model which was then scored on the hold-out test data. This ensures a clear 
split between test, train and validation sets. 
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Classification experiment structure overview 
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Pre-processing involves a multitude of tasks with the common aim of making the information 

in the data more accessible for the learning algorithm. These tasks include cleaning, 

restructuring, imputing (removing or replacing invalid values), various transformations 

(numeric to categorical, categorical to binary, text conversion etc.), standardisation and 

normalization of numerical values [42]. Some are necessary: e.g. MLP requires normalized 

numerical input [24], while distance-based kNN will produce wrong results when feature 

attributes have different scales. 

 

For all experiments, the data has been converted from supplied AWD format to a timestamped 

CSV file with additional migraine attacks annotations added according to separate 

documentation provided with the data. A binary attribute column is created from time 

information of the migraine attack. This attribute was then used (with modification in some 

experiments, see below) as a target variable for the classifiers. For designated experiments, the 

data was additionally truncated where the actigraph has been unequipped, while remaining 

activated creating a very regular artefact in the signal. This is reflected by the “exs” setting in 

the individual experiment settings as shown in 8Appendix C . Finally, segmentation into 

windows and feature extraction are implicit parts of the preprocessing tasks. Both are described 

in detail in the sections below. 

 

Ready segmented and prepared data, was now split into a training and test data set. We used a 

70/30 split, meaning that 70% of the data was randomly selected to be used for training of the 

model, while 30% went to the hold-out test set, to be used in final evaluation.  The random 

generator seed value for the split was set constant for all experiments (seed=505) to enforce 

reproducibility.  

 

The experiments were run using a pipeline11 which included 10 selected classification 

algorithms as described in section 3.2.1.  Each of the selected algorithms received a limited set 

of hyper-parameters as shown in 8Appendix A . These sets were common to all experiment 

runs. Hyper-parameter tuning of a model was carried out using an exhaustive exploration of 

these subsets of the space of possible hyper-parameter configurations. The objective was to find 

hyper-parameter values which lead to optimal classification performance. This type of search 

is also called a grid-search, as the arrays of parameters form a multi-dimensional grid. 

 

Within the grid-search loop, a secondary, optional preprocessing step consisting of feature 

selection and/or dimensionality reduction (see section 3.2.3.2) was undertaken, as both factors 

may noticeably influence the training process. This is reflected by the attributes (for complete 

overview, see 8Appendix C ) included in the result tables.  

 

Cross validation was used for estimation of model prediction performance during training. We 

have decided to use the K-fold cross validation method, (with k = 5) for all the classification 

experiments. Additionally, we used random sampling with stratification, meaning that for every 

                                                
11 To aid in the combined process of finding the best combinations of parameters, training, validation 
and testing, it is highly recommended to automate it. In the Data science community, this is also called 
creating a pipeline. 
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test fold the class distribution of instances will retain a similar ratio to the original train set 

distribution. This is of particular importance when dealing with imbalanced data sets, such as 

our migraine data (see section 2).  

 

Notably, grid-search hyper-parameter optimization with cross-validation is a very time and 

resource consuming process with some experiments taking up to 1300 minutes, i.e. about 20+ 

hours.12  Because of this we limited the hyper-parameter search space as well as the number of 

cross-validation iterations.  

 

Class imbalance is a specific and serious challenge that had to be dealt with in our work. Several 

methods were taken into consideration including under-sampling, over-sampling and 

combinations with proposed imbalance-oriented metrics (see section 3.2.5 and 3.2.4.2). To start 

with we introduced our own simple over-sampling method (SOS) which involves labelling 

windows adjacent to the original target window13 as valid targets. This was done at the 

preprocessing stage when creating window instances, by positively labelling windows within a 

certain distance (measured in timesteps) from the true positive. The advantage of this method 

is that the synthetic new instances have the closest similarity to the original, when measured 

using typical distance measures. (see section 2.1). Naturally, increasing the step distance 

decreases similarity and the best settings should be set by empirical testing. 

 

In addition to our SOS method we decided to use the popular over-sampling technique SMOTE, 

described in section 3.2.5.1.2. SMOTE creates synthetic instances based on the instance 

attributes (in comparison, our oversampling method labelled an existing instance based 

exclusively on sequence similarity, before instance attributes were calculated).  Consequently, 

for under-sampling we utilized another, though less known method called Cluster-Centroids, 

an implementation of which is found in the “Imblearn”-package [60].  The selection of the 

above two methods was based on execution of preliminary tests designed to provide the best 

suited out of a set of possible candidates (see Fig. 4-2 and Fig. 4-3). 

 

                                                
12 One experiment consists of a full grid search for each of the 10 algorithms, including 5-fold cross 
validation and final performance measured on the hold-out test set.  
13 A window related to the sequence containing the target label. 
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Finally, the choice of metrics used for classifier performance evaluation play an important role. 

Although we included all of the metrics described in section 3.2.4.2, we had to decide which 

single metric would be used for training the model. The model produced is dependent on the 

metric used, e.g. using accuracy could be a mistake as described in section 3.2.5 on class 

Fig. 4-2: ROC curve comparing multiple oversampling methods.  The 
underlying classifier for this comparison was kNN with k=3 and one of the 
migraine datasets. 

Fig. 4-3: ROC curve comparing multiple under-sampling implementations. The 
underlying classifier for this comparison was kNN with k=3 and one of the 
migraine datasets. 
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imbalance. Based on the combined knowledge gained from examination of related literature, it 

was decided that MCC will be the metric of choice as it has the desired characteristics [53] and 

is more frequently used (unlike IBA, Geometric mean or even the Kappa statistic).  Using a 

more popular metric, should ease the reproducibility and promote verification of results by 3rd 

parties.   

     

 

 

4.2 HTM  

 

 

Applying unsupervised learning methods is generally simpler than classification. This is also 

true for our HTM experiments.  

 

While exploration is a very useful step, it was not required because we did not need to extract 

features. Basic preprocessing and indexing were performed to supply correct timestamps to the 

algorithm at runtime. Header information from supplied AWT files was removed except the 

monitoring date/time from which the timestamp information was extrapolated and the samples 

timestamped accordingly row by row.  This is required in experiments using the Date encoder, 

which will allow the model to relate certain time periods with certain temporal patterns 

(sequences over time). A simple overview of the HTM experiment structure is given in Fig. 4-4. 

 

The process “train” period in the diagram depicts the process of HTM encountering data with 

no prior history, i.e. the model was allowed to learn a certain number of timesteps while we 

ignored its predictions. This is how the model learns what is normal. We allowed three days 

(4320 timesteps) for this process before the predictions from the model were accepted. 
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Target labels (migraine attack timestamps) were supplied in the data, but were never used as 

input to the model.  Following the “train” period, the remaining raw data was fed to the model 

in a continuous sequential fashion. The anomaly scores were logged for each step and 

additionally, a separate summary file was created better suited for presenting the results. It is 

during the creation of this summary file that the target labels were used to calculate accuracy 

of model predictions.  Next, the parameters of the model were tuned, i.e. as in Grid-search 

described in the classification section above, the parameter combinations were selected from 

supplied sets of values. Finally, the next model was ready to be processed independently with 

the new set of parameters.  

 

 

 

 

Raw data 
 Process “train” period 

(predictions ignored) 

Model 

summary 

HTM experiment structure overview 

Processing

Evaluate

Create 
summary

Tune 
parameters

Fig. 4-4: Representation of the HTM experiment structure.  
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4.3 Pre-processing 

 

 

This section describes in more detail the task-specific preprocessing and preparation that was 

done prior to the classification experiments.  

 

 

4.3.1 Sliding window approach 

 

Crucial and powerful, the sliding window technique has been successfully applied to many 

classification tasks involving time series data. The idea is to create a segment of a certain 

(adjustable) size and slide it over the entire time series sequence, consequently shifting the 

elements of the time series through the window. At each step (also called a stride), the window 

content is processed, performing calculations, such as various statistics, over the windowed 

sequence (Fig. 4-5). Given N=number of data points, then N/stride is the number of windows 

created with stride points between consecutive windows’ start indexes. The systematic mapping 

of features (the feature vector) thus calculated can subsequently be labelled, creating a training 

instance which can be used to train a classifier.  

 

 

 

 

 

 

 

All our classification experiments utilized the sliding window approach prior to execution. The 

importance of the two parameters, i.e. size and stride cannot be understated, as it directly 

translates to the amount of time units of sensor data required to make a prediction. The stride 

 

      

Fig. 4-5: Simplified diagram presentation of the process of feature vector creation using overlapping 
sliding windows technique.  Features calculation (depicted by vertical arrows) is done for each 
segment bounded by the window as it slides along (green arrow) the sequence data. Each of the 
produced (bottom windows) is now a labelled instance of the training and/or test sets.  
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parameter in effect states the degree of overlap between the subsequent windows. An overlap 

was assumed to soften the detrimental effect of slicing up the time series into independent 

chunks, as data points in a sequence are seldom independent of each other. The overlap attempts 

to preserve some of this information. 

 

 

4.3.2 Active sleep period recognition 

 

Sleep quality is an important factor in affective illness. Consequently, detecting sleep periods 

has traditionally been of importance in studies involving actigraphy [7, 75]. Although we did 

not focus on sleep patterns in this study, it is still of importance to be able to differentiate sleep 

periods from active periods. The main reason is the possibility for more accurate domain feature 

extraction, due to the ability to discriminate between periods of continuous time, especially 

when time of day information is not being utilised in feature extraction.   Secondly, partitioning 

the main dataset into night and day potentially narrows down the size of the negative examples 

as no migraine attacks have been registered during night periods in any of the supplied 

datasets14.  

 

 
Fig. 4-6: Example of circadian cycles for one patient with visually segmented night and day periods as detected by 
the sleep recognition algorithm. 

                                                
14 Although it is a factual and useful observation, we do not at any point assume this to be true for any 
future observations. 
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Fig. 4-7: A close-up of the segmented night/day data from Fig. 4-6 above. 

 

The algorithm and parameters used in the following sleep detection algorithm were based on 

study by Nová, Albert, et.al. [5], with modifications: 

 

As a preprocessing step the signal is smoothed by a median filter, window width N=21. Three 

windows of length (lev1 = 10, lev2 = 120, lev3 = 30) is initialized. Next, the algorithm finds 

lev1 − 1 non-zero samples before the i-th-sample and lev1 zero valued samples following ith-

position. The resulting list of points is used in the following step where the algorithm selects 

the index starting a window of lev2 samples that contain 75% zero values. This index 

determines the beginning of a sleep period. End of sleep is defined in a similar fashion as the 

index with lev3 consecutive non-zero values.  Modifications were made in the filter parameter 

(N=21 vs N=20, thus encouraging integer result) and more importantly, the critical 

sleep/waking transition points were accordingly shifted on the unfiltered data to counter the 

effect of sliding window returning indexes offset by the window size. The result of this should 

give more accurate inflection points on unfiltered signal. 
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4.3.3 Domain features 

 

 

The following features were created based on the literature review: skewness delta, kurtosis 

delta, prior night sleep quality and time of day. The motivation and practical details are 

described in the following subsections. 

 

 

4.3.3.1 Skewness & kurtosis delta 

 

In the original study of Fasmer et.al. [70], the skewness/kurtosis showed a notably significant 

difference from the distribution in the window just prior to the event and the window starting 

with the id of the event. We will call the 1st window “before” and the 2nd window “during” for 

simplification of terms.  The two windows were not overlapping i.e. “before” ends before the 

“during” which must start at the point of labelled migraine attack.  A secondary requirement 

was that each of these windows had a minimum of 50 data points uninterrupted by sequences 

of 0-activity of more than two consecutive 0 values.  A number of examples could not fulfil this 

requirement in the original study. In our experiment, we decided to relax this requirement so as 

not to decrease the already small positive sample population.  

 

The feature created from this description would have to consider the sliding window size used, 

which in turn could mean that a) if the window was smaller than required activity period, no 

calculation could be made, or b) if the window is bigger, it should be adjusted in size to the 

length of the period it is calculated for. In the latter case, the complexity of using irregular 

windows and deciding where to break up the window was deemed needlessly high. While we 

could map out the skewness windows as a preprocessing step over the whole dataset, this would 

not present a realistic solution in a real application with continuously received data sequences.  

The optimal alternative would be to find a relation between an earlier occurring, prior feature 

and a subsequent attack later in time. 
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When looking at Fig. 4-8, assume that the point boundary w3/w5 (shown with the red vertical 

line) is our migraine attack point. The calculated feature of kurtosis/skew delta for the 

before/during periods would be naturally attached to the feature vector of w5. This is because 

w5 completely contains the end of the during period, so the calculation is possible. The target 

label is set to the window with starting point closest to the point of attack. In this instance w5 

has both the target label and the valid result of the calculated skewness/kurtosis feature. 

However, in case a sliding window of size A/B/C, the A window will contain the relevant 

feature value though incorrect (as A overlaps before & during sequence) and B will contain the 

target label. In other words, it is the first completely containing window after the target 

boundary, that will contain the feature. Another problem arises in case target is set to w4 

(assuming w4 begins closer to attack point):  we need to decide which of the windows should 

be labelled with the target class label. If we set target label to w4 as it contains the target, w5 

will (correctly) contain the skewness feature for before/during delta, which the window with 

the target label (i.e. w4) should have received.  

 

Finally, it was decided that we would simplify this feature calculation by applying lagged 

skewness and kurtosis statistics of previous windows to each individual instance. While low 

stride values relative to the window may create overlaps, past window information is not lost.  

This also allows for much more flexibility w.r.t. the window parameters, i.e. keeping them 

fixed. Furthermore, in a preliminary experiment we visually explored how discriminative a 

feature would be obtained from this alone (Table 4-1). Apparently, the result suggests that in 

most instances, the skewness comparison feature has questionable relation to a migraine event 

C A 

W0 W2 W4 W6 W8 W10 W12 

W1 W3 W5 W7 W9 W11 W13 

B D 

Fig. 4-8: Example diagram showing 2 different sized sliding windows (A-D & W0-W13) encountering an 
attack point. The shaded area before and after the point are the before and after periods used to calculate 
the skewness/kurtosis delta feature. In this example window A may hold the calculation result, but it will be B 
that will be assigned with the target label (it starts closer to the attack point). In case windows are sized and 
overlapped as below, w5 could be assigned the label, but the calculation would have to be done based on 
past windows, because of the size of the overlap. 
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in context of all potential before/during transitions. Although the migraine attacks indeed show 

high frequency of low value – high value pairs, when we look at the overall picture we see there 

seems to be no consistent rule.  This indicates that using the difference as a feature alone 

probably adds only weak discriminative power.  

 

 

Skewness & kurtosis consecutive window differences 

  

 

Table 4-1: Skewness pre/post windows comparison based on the dynamic windows described in [70]. Y-axis 
depicts the skewness value obtained. Red bars represent “before” windows, blue bars represent the “during” 
window (after the timestamp of attack). Top row:  example from two migraine patients, filtered out for labelled 
attacks only: showing relatively consistent higher values of the “during” window. Bottom: All consecutive dynamic-
size windows (min. size=50, max=64) from one of the above patients.  
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4.3.3.2 Prior night sleep quality 

 

Prior night sleep quality is a quantitative measurement of total activity during the period of 

sleep preceding the current timestep of activity. Creation of this feature was inspired by the 

study “Sleep and migraine: An Actigraphic study” by Bruni et.al. [75]. The sleep period as 

calculated by the active sleep recognition algorithm in section 4.3.2 over is used for the 

calculation of mean or alternatively the frequency of occurrences above a pre-specified 

threshold value. It was decided to set this threshold at T = 500, although the best value to use 

here is an open issue, that would require further experiments. We did however compare the 

performance of the mean-method vs the threshold method in a few simple exploratory 

experiments. Results are shown in Fig. 4-9 and might need some explanation: In general, we 

would want the red bars to be as short as possible, meaning that on the day of attack the night 

prior to it was measured with low activity. Low activity measures during the night are assumed 

to be a sign of relaxed and therefore good quality sleep. Additionally, the red bars should be on 

average shorter than black bars. Naturally, this feature is highly dependent on the sleep period 

being estimated correctly. The 3rd example has highest frequency of migraine days vs normal 

days and is therefore potentially a poor example.      

 

 

  



63 
 

 

  

  

  

  
Fig. 4-9: Night sleep quality measurement method comparison: Red bars depict days with migraine attacks, black 
bars depict days with no attacks. The magnitude of the bar represents the corresponding prior night sleep quality 
score value for that day. Left column shows relative scores using the mean-method, right column shows relative 
scores using the count (T=500), method. 
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4.3.3.3 Time of Day 

 

This feature was largely inspired by the Date encoder for the HTM algorithm (section 3.2.1.8 

over).  The idea that a relationship exists between circadian cycles and factors influencing 

physiological and mental states is not new [5, 7, 78]. During one visual inspection of the 

migraine data, it was discovered that in all four migraine patients over 90% of attacks were 

registered during the afternoon and evening hours. Naturally, the small sample size of the 

population we operate with is a strong argument against drawing any major conclusions. 

However, this observation was something that we believe can add to the discriminative power 

of the extracted features, and in the end, it is the classifier that makes the decision whether this 

is a useful feature to consider.  The implementation was very simple: the 24-hour, day/night 

period was divide into 3 equal, 8 hour segments, creating a categorical variable with 3 possible 

(numerical) values. The time segments were chosen as follows: { (05:00, 12:59), (13:00, 20:59), 

(21:00, 04.59) }. 
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5 Experiments & Results 

 

 

In this chapter, we present detailed description of implemented experiments and the results 

obtained.  It consists of two subsections covering the two different approaches used: 

unsupervised learning using HTM, followed by supervised learning using selected 

classification methods. In each case additional, method-specific preparation and preprocessing 

might be necessary, in which case further details are included.   

 

 

 

5.1 HTM experiments 

 

 

The idea to use anomaly detection came from the assumption that regular sensor readings taken 

over a prolonged period will develop similar patterns, effectively creating “the norm”. An 

adverse event of some kind that is reflected by changes in the underlying sensor readings would 

then considered abnormal in context of historic readings, “the norm”.  Assuming some 

meaningful change has occurred, we would wish to find it and optimally identify it with certain 

type of events. While the latter part is purely a classification problem, the part of finding the 

abnormal pattern before we know what to look for suits an unsupervised learning task. 

The adverse event becomes the migraine attack, and we want to monitor the signal (before and 

during) to discover any significant correlations with potential abnormalities.  

 

 

5.1.1 Practical issues 

 

We begin with additional details of implementation and practical considerations for the HTM 

experiments. Numenta’s implementation of HTM theory is written in C++ and Python 2.7.x.  

Underlying libraries are organized under the name of Nupic (Numenta Platform for Intelligent 

Computing).  Java implementation has been ported from Nupic by community members under 

the name of HTM-Java. Nupic is distributed under a variant of AGPLv3 open source license15. 

For parties who are unable to use the AGPLv3 license a separate, trial license without 

commercial rights16 has been supplied. The libraries are freely distributable for non-profit 

research purposes as stated on the Numenta homepage. 

 

                                                
15 As described at http://numenta.org/licenses/ 
16 Trial license can be found at http://numenta.org/licenses/trial/ 

http://numenta.org/licenses/trial/
http://numenta.org/licenses/trial/
http://numenta.org/licenses/
http://numenta.org/licenses/trial/
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HTM-Java is not an officially supported release at the time of writing. There are issues with the 

codebase, so even though it was tempting to use the Java version, the decision was made to 

make use of the more stable and officially supported Python version in the beginning. 

Installation was slightly problematic: it has been tested under specific versions of Linux, there 

were several installation attempts on different versions of Ubuntu from 14.04LTS through 15.10 

to 16.04, all with some issues, or failing unit tests. Finally, an acceptable solution was found, 

though 18 of the 800+ unit tests were still failing for unclear reasons. The core functionality 

seemed to work properly on example applications so this installation was accepted. Further 

problems were encountered a few months into the project after an official update made several 

breaking changes. The created models had compatibility issues with the output of the swarming 

scripts. We must add that as Nupic and HTM is still work in progress with no official release 

version available (as of May 2017), such problems should be expected. 

 

For all experiments, the data has been converted from supplied AWD format to a timestamped 

CSV file with additional migraine attacks annotations added according to the documentation 

provided with the data. The files have not been truncated or otherwise additionally modified.  

 

 

5.1.2 Regular signal 

 

As an important first step, we need to know that the algorithm functions as intended and to 

gauge its effectiveness, we start with a simple sine wave experiment. HTM has been reported 

to be effective for processing continuous, regular data streams, this is what we will use as a 

reality check. A simple sine wave is generated and the points stored in the format ready to be 

processed by the model. We let the algorithm learn the pattern for X full cycles (or Y points), 

after which the detection is activated and we measure how it scores the rest of the sequence. 

The assumption is that anomaly scores for the testing sequence should be low, as the distribution 

of data has been seen previously. Simple sine wave signal has been created and the amplitude 

scaled accordingly to the values found in the migraine actigraph data, i.e. range (min. = 0.0, 

max = 4000.0).  The signal is generated over 5000 1-minute timesteps, following the same 

timestamp format as the processed actigraph dataset.  The training period is set to 1000 points, 

during which anomaly scores are ignored. A scalar encoder is used for the model with complete 

parameter settings as shown in 8Appendix B . For delta encoding, the effect is achieved by 

feeding the model differences of consecutive pairs of values and modification of valid value 

ranges of the model parameters, which are otherwise exact duplicates. Under execution, the 

model outputs a raw anomaly score (section 3.2.4.2.9) for each step17, depending on how 

confident it is that the sequence leading up to this point has similarities to sequences learned 

earlier. HTM produces probabilities for its output predictions. The probability distributions are 

used to score the incoming data to produce an anomaly score, which is high (i.e. anomalous) 

for sequences before unseen and low for sequences that have been encountered before or 

bearing enough resemblance.  

                                                
17 With single-step prediction model, which is used by default unless otherwise specified. 
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The anomaly score ranges from [0.0 to 1.0], where a score of 1.0 entails that the current 

sequence is completely new and unrecognizable, and therefore, an anomaly. Consequently, a 

value converging on zero, translates to increasingly recognizable patterns. 

 

 

 
Fig. 5-1: Regular sinusoid pattern (orange) vs raw anomaly score (blue vertical bars), complete plot. Traditionally 
scores > 0.9 are flagged as anomalies. The anomaly score noticeably subsides with time as the pattern is 
repeated. 

 

 
Fig. 5-2: Zoomed in on the first 1500 data points of Fig. 5-1. Several strong anomalies (blue vertical bars) are 
recorded early in the learning phase, consistent with the model not having seen this pattern earlier. This is normal 
and expected behaviour.  

 

In Fig. 5-1 and Fig. 5-2 we see how the model learns the pattern, the anomaly score functioning 

as an effective (inverted) indicator of confidence in current prediction. It is important to note 

that that the anomaly prediction is done in real-time, as the signal arrives, while the plot shows 

the complete history. From the above we can see that the model is able to learn the regular 
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pattern, resulting in very low anomaly scores as time progresses. This is true for both encoding 

types (see Fig. 5-3 & Fig. 5-4 for delta encoded alternatives). 

 

 
Fig. 5-3: Regular sinusoid pattern deltas (orange) vs raw anomaly score (blue vertical bars), complete plot, using 
the delta encoding technique. The anomaly score seems to adapt quicker in the early stages when compared to 
Fig. 5-1. 

 
Fig. 5-4: Zoomed in first 1500 data points of Fig. 5-3. (The anomaly score scale is on the left axis, the effective 
delta value is the right axis) 

 

To measure which model outputs more confident predictions, we counted and calculated the 

mean totals of anomaly scores over a pre-set noise threshold, which we set to 0.3. A lower 

threshold will pick up less significant variations, which at these empirically low levels can be 

considered as noise. However, we include the 0-threshold (total) score for completeness in 

Table 5-1: 
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  t > 0.3 
(count) 

mean total points total mean 

     

Standard encoding 11 0.40226 4498 0.01677 

Delta encoding 4 0.46875 4498 0.01762 

Table 5-1 A summary of anomaly scores for standard value encoding and delta encoding after 500-point training 
margin. Threshold (t) breach counts, mean, followed by total count and total mean. Standard encoding is more 
prone to alerts with 11 counts, while delta seems to produce fewer but with higher confidence. 

 

In the next step, we added two anomalies to the existing sequence, and again used both models 

in the comparison (Fig. 5-5 and Fig. 5-6). The two anomalies are purposefully created in 

different ways: the first emulates the “dip” of the curve, but bottoms out about 10% higher than 

usual. The second anomaly is a rough “slide” of strength +/-600 over 10 time steps. 

 

 

  
Fig. 5-5: The same sinusoid pattern with 2 artificially added anomalies. (highlighted, just before 15:00pm Jan 3 
and 07:00am Jan 04). The subplots show close-ups of the anomalies. Note: the first anomaly would normally not 
be flagged with the achieved score of just above 0.4.  

 

As we can read from the plots, the delta-model is visibly more sensitive in this example than 

the standard model. It catches both artificially planted anomalies in the dataset. While this is no 

indication of which one is better in a real-life noisy data setting, it is clear that we should test 

both in our further experiments, because of the presented results.  
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Fig. 5-6: The same sinusoid pattern with 2 artificially added anomalies as scored by the delta model. (just before 
15:00pm Jan 3 and 07:00am Jan 04). The subplots show close-ups of the anomalies. Note: both anomalies are 
detected (with multiple hits) after achieving above 0.9 scores. The scale is visibly shifted, because of the relatively 
extremely large size of the delta value registered in the 2nd anomaly. 

 

 

5.1.3 Anomaly Detection with HTM 

 

In this series of experiments, the migraine sensor data was fed through the HTM anomaly 

detection model in a continuous (streaming) fashion, resembling a real life setting of online 

processing. The motivation was to discover if anomalies coincide with the adverse events, in 

this case migraine attacks. Since this is unsupervised learning, the target labels were used 

exclusively for the final evaluation of the result. The difference between the experiments 

consists of the type of running pre-processing methods used.  

 

Data points (1 minute epochs for single-step, [2, …,15] minutes for aggregate) were entered to 

the model using the first 3 days (4320 data-points) for training. By “training” in this context we 

mean that the model learns the sequences, it receives no labels or feedback on what it is learning, 

i.e. unsupervised learning. As in the previous experiments, the model produced predictions 

(anomaly scores) for each timestep, which were ignored during the training period. After the 

training period, the anomaly score predictions were recorded for each timestep and appended 

into a separate result file. Anomaly scores with values over a specific threshold (threshold = 

1.0) were counted as “hits”, as described earlier in the sinusoid experiment.  
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Fig. 5-7: An example of the segmentation of data into periods, centred around the target label timestamp. There 
are 2 hypothetical labelled attacks (thick orange verticals) in the figure. The 1st shows how the “hits” of anomaly 
predictions are segmented into the before (red) and after (blue) windows. Default size of each is P=120.  

 

For the model to be evaluated, a period (P) before and after was marked for each consecutive 

target label as the target segments (Fig. 5-7). P was set to 120 timesteps, which translates into 

the period of P minutes. All hits counted within these segments were then summed into a score 

summary file together with anomaly likelihood and log of anomaly likelihood scores. An 

individual entry for each of the above scores in the result summary file was structured as 

follows: 

  

  [ # hits in P before, # hits in P after, total # anomaly hits in total in current dataset] 

 

An example extract from the score summary is illustrated in Listing 2: 

 

This was repeated with 6 to 7 complete datafiles, constituting a batch of the 4 positive sets, the 

rest being healthy controls18 with varying model parameter configurations, and with the purpose 

to find the best parameters for optimal prediction accuracy. Over 200 such batches were 

produced with each taking an estimated 90-120 minutes to process. Each batch run was 

annotated with a header: the name of the model parameter file used to create the model. In 

Listing 2, it is ‘mp_h1_d0_w1_a05_n500_rad30_bst1_pam1_w51’, meaning hours ‘h1’, weekends ‘w1’ are 

accounted for, ‘d0’, days of the week are not, ‘a05’, states alpha is 0.05, ‘n500’ the number of 

buckets, etc. A variety of model parameters were searched in the experiments: number of 

buckets, alpha (learning rate), boost values, Date encoder settings (weekends, time of day, day 

of week) and many more. The documentation details on these parameters were available 

                                                
18 In later experiments, the number of datasets in each batch was reduced to 4,  due to time resource 
constraints.  

#mp_h1_d0_w1_a05_n500_rad30_bst1_pam1_w51  

2017-01-05 21:18,stm_aasane01_03_modified.csv,"[0, 0, 4]","[1, 3, 85]","[0, 0, 17]",5,3,23247 

2017-01-05 21:27,stm_aasane16_modified.csv,"[0, 0, 9]","[0, 0, 48]","[0, 0, 11]",7,6,22150 

2017-01-05 21:38,stm_aasane18_modified.csv,"[0, 0, 6]","[1, 2, 57]","[1, 1, 9]",4,4,25913 

2017-01-05 22:01,stm_fusa04 (edited).csv,"[0, 0, 11]","[0, 0, 185]","[0, 0, 39]",0,0,47136 

2017-01-05 22:14,stm_sb_modified.csv,"[0, 0, 9]","[2, 0, 77]","[1, 0, 21]",13,10,31488 

# 

# 
 

Fig. 5-8:  

Listing 2: A sample of score summary output file (early version) with 5-line batch. Color-coded scores: Raw 
Anomaly (red), Anomaly Likelihood (blue), Log Anomaly Likelihood (green). Format: [ before, after, total]. 
Followed by total number of target labels, target labels outside training sequence, total data points. Prepended 
on each line the starting time and file name. 
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through the Nupic source code (comments) on GitHub.  Based on the score counts in the result 

summary file, the best parameters settings were discovered and reported for the final HTM 

model. As mentioned earlier, raw anomaly score and a related Anomaly likelihood score were 

kept for subsequent accuracy calculations based on the provided labels. Anomaly likelihood 

score is an alternative non-thresholding metric calculated in addition to the raw anomaly score. 

It is a probabilistic score that evaluates the current state to be anomalous based on a modelled 

distribution of historic anomaly scores from this model [59].  

 

We started with single-timestep and scalar encoding, followed by aggregated scalar encoding 

and finally close with delta-encoding for single/aggregated step. 

 

 

5.1.3.1 Single step, Scalar 

 

In this setting single-step 1 minute epochs are processed. This is the same as the (effective) 

sample frequency of the sensor data. Scalar encoding is used for each timestep value and the 

anomaly predictions are therefore directly based on predicted vs actual value sequences. The 

top ten results are shown in Table 5-2.  

 

 

Summary scores: non-aggregate scalar encoding 

stamp name acc prec recall F1-score preval newRecall 

08.02.2017 11:37 stm_aasane01_03 1 0,5 0,333 0,400 0,00013 FALSE 

09.04.2017 14:50 stm_aasane16 0,9986 0,167 0,857 0,280 0,00033 FALSE 

08.02.2017 11:19 stm_sb 0,9999 0,4 0,2 0,267 0,00033 FALSE 

05.02.2017 10:13 stm_aasane01_03 0,9978 0,153 1 0,265 0,00013 FALSE 

03.01.2017 21:37 stm_aasane01_03 0,9936 0,123 1 0,219 0,00013 FALSE 

03.01.2017 21:47 stm_aasane16 0,9961 0,109 1 0,197 0,00028 FALSE 

29.01.2017 20:48 stm_sb 0,9939 0,105 1 0,190 0,00033 FALSE 

05.02.2017 19:32 stm_aasane01_03 0,9942 0,103 1 0,187 0,00013 FALSE 

29.01.2017 15:43 stm_sb 0,9919 0,102 1 0,185 0,00033 FALSE 

05.02.2017 11:13 stm_sb 0,9984 0,109 0,6 0,184 0,00033 FALSE 
 

Summary scores: non-aggregate scalar encoding (new) 

stamp name acc prec recall F1-score preval newRecall 

10.04.2017 09:20 stm_aasane16 0,9991 0,308 0,5 0,381 0,00028 TRUE 

10.04.2017 11:27 stm_aasane16 0,9991 0,308 0,5 0,381 0,00028 TRUE 

11.04.2017 00:10 stm_aasane16 0,9991 0,308 0,5 0,381 0,00028 TRUE 

11.04.2017 12:51 stm_aasane16 0,9991 0,308 0,5 0,381 0,00028 TRUE 

06.05.2017 00:41 stm_aasane16 0,9985 0,162 0,5 0,245 0,00028 TRUE 
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06.05.2017 06:35 stm_aasane16 0,9985 0,162 0,5 0,245 0,00028 TRUE 

07.05.2017 00:00 stm_sb 0,9968 0,139 0,8 0,237 0,00033 TRUE 

07.05.2017 05:48 stm_sb 0,9968 0,139 0,8 0,237 0,00033 TRUE 

10.04.2017 18:48 stm_sb 0,9941 0,138 0,8 0,235 0,00033 TRUE 

11.04.2017 07:28 stm_sb 0,9941 0,138 0,8 0,235 0,00033 TRUE 
 

Table 5-2 Top ranked results for non-aggregate (single-step) using scalar encoder and raw anomaly score as 
base for calculation. Entries are sorted by descending f1-score from precision/recall of positives. False value in 
“newRec” column indicates imperfect recall score calculations, from earlier runs.  obtained by counting multiple 
hits in single target area. 

 

5.1.3.2 Aggregate multi-step Scalar 

 

Much like the previous experiment, except the data-points are now aggregated using the mean 

method (sum of N points/N) and this value is fed to the algorithm on every iteration step.  This 

additional step performs simple smoothing of the data, decreasing the significance of outliers 

and noise on the overall result. Aggregation has been performed in step sizes of 2, 3 and 6 

minute intervals. In more recent experiments (‘newRecall’ = True) the stride of the aggregation 

window can be adjusted independently.  At the same time the number of individual data points 

processed by the model is reduced proportionally to the size of the aggregation stride. This has 

the additional effect of reducing the running time and it can potentially be an advantage in a 

real-life application, saving battery and network resources. The top results are shown in Table 

5-3.  
 

Summary scores: aggregate scalar encoding 

stamp Name acc prec recall F1-score preval newRecall 

05.01.2017 14:09 stm_sb 0,9994 0,452 1 0,623 0,00033 FALSE 

05.01.2017 15:00 stm_sb 0,9994 0,452 1 0,623 0,00033 FALSE 

07.02.2017 09:34 stm_aasane16 0,9994 0,435 1 0,606 0,00028 FALSE 

05.02.2017 09:52 stm_aasane16 0,9998 0,5 0,667 0,572 0,00028 FALSE 

07.02.2017 11:50 stm_aasane16 0,9994 0,4 1 0,571 0,00028 FALSE 

05.01.2017 11:40 stm_sb 0,999 0,375 1 0,545 0,00033 FALSE 

29.01.2017 12:49 stm_sb 0,9973 0,362 1 0,532 0,00033 FALSE 

12.01.2017 09:42 stm_aasane01_03 0,9909 0,353 1 0,522 0,00013 FALSE 

12.01.2017 09:51 stm_sb 0,9899 0,351 1 0,520 0,00033 FALSE 

05.01.2017 14:27 stm_sb 0,9992 0,342 1 0,510 0,00033 FALSE 
 

Summary scores: aggregate scalar encoding (new) 

stamp Name acc prec recall F1-score preval newRecall 

07.05.2017 21:23 stm_aasane16 1 1 0,25 0,400 0,00063 TRUE 

08.05.2017 00:13 stm_aasane16 1 1 0,25 0,400 0,00063 TRUE 
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07.05.2017 23:36 stm_aasane16 0,9998 0,5 0,25 0,333 0,00063 TRUE 

08.05.2017 02:25 stm_aasane16 0,9998 0,5 0,25 0,333 0,00063 TRUE 

09.05.2017 02:05 stm_aasane01_03 0,9914 0,183 0,667 0,287 0,00044 TRUE 

09.05.2017 07:36 stm_aasane01_03 0,9914 0,183 0,667 0,287 0,00044 TRUE 

07.05.2017 21:32 stm_aasane16 0,9997 0,333 0,25 0,286 0,00063 TRUE 

08.05.2017 00:22 stm_aasane16 0,9997 0,333 0,25 0,286 0,00063 TRUE 

10.05.2017 00:30 stm_aasane16 0,9903 0,162 0,667 0,261 0,00094 TRUE 

10.05.2017 04:16 stm_aasane16 0,9903 0,162 0,667 0,261 0,00094 TRUE 
 

Table 5-3: Top ranking sorted summary scores (sorted by f1-score) from aggregate scalar encoder experiments.  
The “newRec” column (all false values) indicate imperfect Recall score calculations, obtained by counting multiple 
hits in single target area. 

 

 

 

 

5.1.3.3 Delta encoding 

 

Delta encoding [38], is an alternative to encoding sequences of individual data points, where 

the sequences of absolute change values is memorized and subsequently predicted by the model. 

In an anomaly detection setting, this will flag the rarely seen sequences, and completely ignore 

the actual sensor values. 

The idea of this experiment is the assumption that certain activity patterns might be specifically 

distinct relative to the power of preceding sensor readings and not depend only on the actual 

value. This basically means that we attempt to find patterns in a chain of pairs of activity value 

readings. In practice, the input to the model again consists of single step 1 min epochs, while 

the output score is now related to the expected difference in values (i.e. the delta value).  

 

Summary scores: non-aggregate delta (raw) 

stamp name Acc prec recall F1-score preval newRecall 

03.05.2017 21:58 stm_aasane16 0,9985 0,162 0,5 0,245 0,00028 TRUE 

04.05.2017 03:51 stm_aasane16 0,9985 0,162 0,5 0,245 0,00028 TRUE 

05.05.2017 00:35 stm_aasane16 0,9985 0,162 0,5 0,245 0,00028 TRUE 

05.05.2017 06:30 stm_aasane16 0,9985 0,162 0,5 0,245 0,00028 TRUE 

01.05.2017 23:19 stm_aasane01_03 0,9998 0,167 0,333 0,222 0,00013 TRUE 

02.05.2017 10:32 stm_aasane01_03 0,9998 0,167 0,333 0,222 0,00013 TRUE 

02.05.2017 00:02 stm_sb 0,9991 0,161 0,3 0,210 0,00033 TRUE 

02.05.2017 11:14 stm_sb 0,9991 0,161 0,3 0,210 0,00033 TRUE 

02.05.2017 06:34 stm_sb 0,9953 0,118 0,8 0,206 0,00033 TRUE 

30.04.2017 23:12 stm_sb 0,988 0,114 1 0,205 0,00033 TRUE 
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Summary scores: non-aggregate delta (likelihood)  

stamp name Acc prec recall F1-score preval newRecall 

03.05.2017 02:58 stm_aasane16 0,9994 0,52 0,5 0,510 0,00028 TRUE 

04.05.2017 00:23 stm_aasane16 0,9991 0,394 0,5 0,441 0,00028 TRUE 

05.05.2017 08:55 stm_aasane16 0,9991 0,394 0,5 0,441 0,00028 TRUE 

30.04.2017 06:27 stm_aasane16 0,9994 0,381 0,5 0,432 0,00028 TRUE 

02.05.2017 23:58 stm_aasane16 0,9988 0,35 0,5 0,412 0,00028 TRUE 

03.05.2017 00:29 stm_aasane16 0,9986 0,333 0,5 0,400 0,00028 TRUE 

03.05.2017 06:39 stm_aasane16 0,9986 0,333 0,5 0,400 0,00028 TRUE 

01.05.2017 00:49 stm_aasane01_03 0,9982 0,397 0,333 0,362 0,00013 TRUE 

01.05.2017 05:11 stm_aasane01_03 0,9982 0,397 0,333 0,362 0,00013 TRUE 

30.04.2017 02:20 stm_aasane01_03 0,9978 0,377 0,333 0,354 0,00013 TRUE 
 

Table 5-4: Top ranked results from non-aggregate delta encoded experiments. Top: results obtained from raw 
anomaly scores. Bottom: results based on anomaly likelihood scores. 

 

 

Summary scores: aggregate delta (raw) 

stamp name acc prec recall F1-score preval newRecall 

11.05.2017 22:49 stm_aasane16 0,9951 0,184 0,667 0,288 0,00094 TRUE 

12.05.2017 02:39 stm_aasane16 0,9951 0,184 0,667 0,288 0,00094 TRUE 

11.05.2017 22:40 stm_aasane16 0,995 0,179 0,667 0,282 0,00094 TRUE 

12.05.2017 02:30 stm_aasane16 0,995 0,179 0,667 0,282 0,00094 TRUE 

11.05.2017 23:35 stm_aasane16 0,9928 0,164 0,667 0,263 0,00094 TRUE 

12.05.2017 03:25 stm_aasane16 0,9928 0,164 0,667 0,263 0,00094 TRUE 

11.05.2017 23:02 stm_sb 0,9904 0,142 0,636 0,232 0,00116 TRUE 

12.05.2017 02:52 stm_sb 0,9904 0,142 0,636 0,232 0,00116 TRUE 

12.05.2017 08:17 stm_sb 0,9869 0,133 0,636 0,220 0,00116 TRUE 

12.05.2017 09:05 stm_sb 0,9869 0,133 0,636 0,220 0,00116 TRUE 

Table 5-5: Top ranked results from aggregate (size 6, stride 3) delta encoder experiments. Scores are based on 
the raw anomaly scores obtained. 

 

The results shown above are the truncated top-ranking models in each category. The complete 

score summary files are supplied with the archive. 

 

The best consistent results overall are obtained when using anomaly likelihood score rather than 

raw anomaly scores in combination with delta encoding (see Table 5-4 for single-step and Table 

5-5 for aggregated results).  We should add that we used much less time running delta 

experiments (due to limited time and resource constraints) and believe that with more extensive 

parameter tuning, better results may be possible. 
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The best performing models, although showing relatively poor results (F1-score ≤ 0.5) do in 

fact seem to support the findings from [70], where skewness and mean showed statistically 

significant differences from before a migraine attack to after the start timestamp of the attack 

(termed as the “during” period in the paper). The ratio of hits in the before window to the after 

window is 5:14 in favour of the after window (see Listing 3). This is not what we would 

normally expect from a distribution where all windows have equal hit probabilities, i.e. random. 

Similar observation can be made in other well performing models (see supplied summary files).  

 

 

 

It must be added that some of the early results suffer from incompleteness issues, due to the 

way early counting of hits was set up. The calculation was based on total number of hits in the 

target areas in relation to the count of target areas, but multiple hits inside the same target area 

were counted equally to those with single hits. Because of this, the Recall score obtained from 

the early versions cannot be considered correct. This is fixed in later runs, by extending the 

result with a 3-tuple of correctly calculated Recall scores. Due to the long processing time of 

each file (10-15 mins per individual dataset), we did not repeat the almost 500 earlier runs. The 

corrected results are annotated accordingly in the results table using the “newRec” column 

(True annotations depict results with correctly calculated recall). 

  

# 

# mp_h1_d0_w1_a05_n400_rad30_bst1_pam1 (MEAN step=5) 

2017-01-05 14:09, stm_sb_modified.csv,"[5, 14, 31]","[0, 0, 0]","[0, 0, 0]",13,10,31488 

Listing 3: The entry corresponding to the top scorer from summary file in Table 4-1. Notice the 5:14 ratio of hits in 
the before/after windows. This ratio has consistently turned out to the advantage of ‘after’ window, potentially 
indicating a significant difference from the rest. 
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5.2 Classification experiments 

  

 

Our motivation for using classification for this problem stems from the fact that based on the 

studied literature, such problems are traditionally solved, applying similar methods. The closest 

analogy is mood detection and ADL detection as described in earlier chapters. We have labelled 

data, two distinct classes, i.e. a binary classification problem of attack vs no attack. Given that, 

we train classifiers on a subset of the data and evaluate performance on a hold-out set.  

Furthermore, we expect to be able to compare the two systemic approaches as part of the 

analysis.  

 

It has been shown that there are significant variations in activity patterns, as recorded by an 

wearable actigraph, between healthy and diagnosed subjects, as well as in periods before, during 

and after the migraine attacks in patients [70]. These variations should consequently be 

detectable in the patterns formed by the underlying sequence data. Through these experiments, 

we attempt to build the optimal classification model to recognize attack periods with highest 

possible accuracy. As a secondary objective, we attempt to derive the best performing 

combination of preprocessing techniques, classifiers and hyper-parameters.  

 

The result tables presented in this section are coded with abbreviations of metrics and 

experiment parameter settings. An explanation of these codes is found in 8Appendix C . 

 

 

 

 

5.2.1 Basic feature set 

 

In this classification experiment we create a base set of 20 statistical features for every window 

created with the sliding window process. Every such window now represents an instance, 

consisting of feature attributes and a designated target label. It is important to mention that the 

statistics are calculated independently for each instance, i.e. no information is made available 

on the statistical variables of the parent dataset. Features calculated for this purpose include: 

Mean, standard deviation, skewness, kurtosis, quantile (0.25), quantile (0.75), quantile (0.90), 

quantile (0.15), median, mean absolute deviation, standard error of the mean (SEM), 

autocorrelation ACF (lag 1-5), mode (most frequent value). Notably, we have made an attempt 

to include the highest scoring features as described in [43] among them. The complete list is 

presented in Table 5-6, below.  
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1. Arithmetic mean 

 

2. Standard deviation 

 

3. Skewness 

 

4. Kurtosis (excess) 

  

5. Quantile (15%) 
𝑄15 =  

15

100
(𝑛 + 1) 

6. Quantile (25%) 
𝑄25 =  

25

100
(𝑛 + 1) 

7. Quantile (75%) 
𝑄75 =  

75

100
(𝑛 + 1) 

8. Quantile (90%) 
𝑄90 =  

90

100
(𝑛 + 1) 

9. Median (middle item in sorted list) 𝑀 =  𝑀(𝑛+1)/2 

𝑀 =  

𝑀𝑛+1
2

+ 𝑀𝑛+1
2

+1

2
 

10. MAD, Mean Absolute Deviation 

average distance between each data value and 

the mean 

𝑀𝐴𝐷 =  
1

𝑛
∑ |𝑥𝑖 − �̅�

𝑛

𝑖=1

| 

11. SEM, Standard error of the mean in a sample 

 

12. Unbiased sample variance  

 

13. Autocorrelation (lag 1) 

 
  

14. Autocorrelation (lag 2) 

15. Autocorrelation (lag 3) 

16. Autocorrelation (lag 4) 

17. Autocorrelation (lag 5) 

18. Mode (most frequently occurring value) 𝑀𝑓𝑚𝑎𝑥
 

 
Table 5-6: Statistical features that were calculated for each individual instance used in classification experiments. 
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5.2.2 Early (flawed) results: mixed window size, SOS 

 

Early classification experiments were executed with a limited base feature set consisting of 

16 features: feature no.10 (MAD) and no.18 (Mode) were left out (see Table 5-6).  The early 

experiment runs were executed with mixed stride values and window sizes. Additionally, our 

simplified oversampling (SOS) method was used.    

 

 

 
Fig. 5-9: Average scores per classifier in the preliminary experiments.  A notable point is the relative difference in 
ACC scores between id.7 and id.4, as id.7 performs better even with lower ACC score as discussed in section 
3.2.4.2 on metrics.  

 

test alg acc mcc kap auc geo iba TN FP FN TP pr re f1 feats 

1 7 0,989 0,834 0,828 0,967 -1 -1 1808 17 3 50 0,99 0,99 0,99 16 

5 7 0,992 0,823 0,818 0,958 -1 -1 3054 21 5 60 0,99 0,99 0,99 16 

4 9 0,995 0,887 0,886 0,953 -1 -1 3065 9 6 60 1 1 1 16 

4 7 0,993 0,844 0,842 0,952 -1 -1 3058 16 6 60 0,99 0,99 0,99 16 

4 3 0,996 0,892 0,892 0,946 -1 -1 3067 7 7 59 1 1 1 16 

6 7 0,993 0,843 0,841 0,945 -1 -1 3058 15 7 60 0,99 0,99 0,99 16 

5 9 0,996 0,897 0,897 0,945 -1 -1 3069 6 7 58 1 1 1 16 

3 7 0,994 0,861 0,861 0,944 -1 -1 3065 11 7 57 0,99 0,99 0,99 16 

2 7 0,982 0,758 0,748 0,941 -1 -1 1791 28 6 53 0,99 0,98 0,98 16 

4 6 0,995 0,874 0,874 0,931 -1 -1 3067 7 9 57 0,99 0,99 0,99 16 

Fig. 5-10: Top 10 scores for the mixed/SOS early experiments sorted by AUC.  These results were obtained using 
an early version of the basic feature set using our simple oversampling technique, based on adjacent/overlapping 
sequences. (‘test’: batch id, 'alg': id of algorithm used, ‘feats’: feature count). Compare to Fig. 5-9. 

   

The disadvantage of the SOS method became evident when applying the random train-test set 
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ordinary, with one exception: the results were surprisingly good, especially if we consider the 

findings from the exploratory data analysis.  It was when the SMOTE method was used and a 

comparison of results made that serious suspicion arose.     

On closer inspection, it was discovered that this anomaly was caused by the process of splitting 

the data. Synthetic instances, which we know to be strongly similar, were sampled randomly 

from the data for the training set in the same way as the originals. However, the originals (as 

mentioned in exploration section) do not actually show these high levels of similarity. Since 

SMOTE synthesizes the final instance (feature vector created for some underlying sequence) 

and not the underlying sequence itself, the final effect is two very different instances. This could 

also be the reason behind SMOTE experiments’ weak positive effect on classifier performance. 

A second flaw, probably more serious was that some synthetic instances created based on the 

complete data set, were then leaked into the test set. Both have been corrected in the remaining 

experiments.  
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5.2.3 Extended feature set 

 

In order to investigate the importance of a large amount of complex features we decided to 

greatly extend the basic feature set. Increasing the number of features often, but not always 

leads to improved classification performance and in fact, often may lead to worse results [93].  

The inclusion of more complex features (as compared to the basic set), such as spectral features, 

frequency, entropy and wavelet functions should also broaden the discriminative power of the 

model. Incidentally,  the approximate entropy measure of regularity is contained within this set, 

a significant feature to include according to [12]. As the task of correctly implementing a huge 

number of complex features is outside the scope of this work, not to mention time consuming, 

we decided to search for 3rd party libraries providing this functionality. The “TSfresh” library 

[94] serves this purpose, though newer versions have caused instability and system crashes. For 

this reason, a slightly older version 0.5 is used.  

 

The 67 base methods listed in 8Appendix C are used to derive the features, some requiring 

further parameters and some producing multiple outputs.  A total of 217 individual, extended 

features are extracted with no modifications done to the default parameters.  The actual number 

extracted is higher but feature columns with NaN-values (Not a Number) were removed prior 

to further processing. The set of extended features is never combined with the basic set; 

however, we note the following overlaps: autocorrelation, kurtosis, mean, median, quantile, 

skewness, standard deviation and variance.   

 

 
Fig. 5-11: Average scores for experiments (200x25) using the extended feature set. Classifiers are sorted from 
highest MCC score. 
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Fig. 5-12: Average scores obtained for each type of feature set (basic vs extended). 

 

Fig. 5-11 represents the total average scores (AUC, MCC, IBA) obtained exclusively from 

experiment runs using the extended feature set. Fig. 5-12 shows a direct comparison of total 

average scores (including ACC) between the basic and extended feature sets. We observe a 

slight advantage of basic over extended (AUC & IBA). It is not however, reflected in MCC or 

ACC scores. 

 

 

5.2.4 Additional features 

 

In addition to the selected feature set (basic or extended) described above, most experiments 

were executed using combinations of the specially created domain features. As described in 

earlier sections (4.3.3) these include skewness delta, kurtosis delta, quality of sleep and time of 

day. The lags for the kurtosis/skewness feature are chosen from the set {1, 2, 5}. The default 

value is L=1, meaning that L previous windows’ skewness/kurtosis values are added to the 

current instance features. 
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As the final step of feature extraction, polynomial features are optionally created from the total 

set of features, further extending the set. The order of the polynomial used is considered 

depending on the size of the set prior to avoid creating an explosion in number of features. For 

the basic set, we choose from the set {0, 2, 3}, while for the much bigger extended set, we limit 

the max allowed order value to 2. Fig. 5-13 summarizes the overall effect of polynomial features 

on average scores. The impact does not seem to be huge, but it must be noted that some 

classifiers like SVC with non-linear kernels may not be impacted by this.  

 

 

 

 

5.2.5 Filters, PCA, K-select 

 

As a further measure, two different smoothing filters, Tukey [95] and Hodrick-Prescott (HP) 

filter were applied individually and in combinations. Tukey belongs to the group of windowing 

functions for smoothing values, also known as tapering functions. These filters are generally 

used for performing apodization19, i.e. smoothing of discontinuities from the outer edges of the 

window. The HP-filter is used mainly in financial domains for detrending and smoothing of 

time series [96].  The influence of filtering on performance is shown in Fig. 5-14 and Fig. 5-15. 

 

                                                
19 Meaning literally «removal of the foot».  
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Fig. 5-13: Influence of polynomial feature extraction on average score of the mixed 200x25 
experiments. 
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Fig. 5-14: Influence of filtering on the classification results for 200x25 experiments. Left: Average scores, Right: 
Maximum scores obtained. 

 

  
Fig. 5-15: Influence of (filter/feature set/number of selected features) combinations for the top performing 
classifiers (according to MCC). Left: Filtering + feature set type. Right: Feature selection (K-select) + feature set 
type.  Values are in percent of top scorers with MCC ≥ 0.40. 
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Selected experiment runs are processed with dimensionality reduction techniques. Principal 

Component Analysis (PCA) and a simple feature selection algorithm, K-select [20] are 

optionally applied reducing the number of features to k most important ones. An important 

factor to consider is the number of features before applying these techniques. We have set the 

set of possible values to k ϵ {20, 40, 50, 60, 80, 100, 200}. The number of features before 

processing must be at least k, so most combinations require either the extended feature set or a 

basic set extended by polynomial features. K-select results on the top scoring experiments is 

shown in Fig. 5-15 (right side).   

 

 

 
Fig. 5-16: Influence of PCA on the average results for 200x25 experiments, sorted by MCC. (Note: applying a 

value of x implies that the total number of features before processing is ≥ x).  

 

All features are standardized (with 0 mean), as this is a requirement for the correct functionality 

[24] of the classification algorithms used.  PCA influence on average performance of the 

classifiers is presented in Fig. 5-16.  The minimum feature count requirement described for K-

select applies also to PCA, i.e. in practice PCA values of over 20 can only be used on the 

extended dataset (or basic dataset expanded with polynomial features).  
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5.2.6 Class balancing 

 

 

Class balancing methods (see section 3.2.5) were optionally applied in a number of 

experiments in order to create grounds for comparison of their effectiveness in combination 

with the other methods used. We have selected two best performing methods according to the 

mini-experiment described in section 4.1, i.e. SMOTE and CC.  

 

 

 
Fig. 5-17: Class balancing method impact in top ranking results using MCC measure. 

 

These were used in the majority of experiments where class balancing was employed. 

Additionally, we applied a few variants of these in selected experiment runs (where execution 

times were expected to be relatively short, not impacting the process heavily).  One of these 

variants (SMOTETomek) has managed to obtain scores good enough to end up in the top 

results. The distribution of these methods among top ranking results using MCC and AUC, 

respectively are presented below (Fig. 5-17 and Fig. 5-18). We observe very strong 

domination of oversampling methods, specifically SMOTE, while under-sampling (CC) 

shows mixed results. 
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Fig. 5-18: Class balancing method impact in top ranking results using the AUC metric. 
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5.2.7 Final results 

 

The best results were obtained using a combination of methods and features described above. 

The results are based on classifiers optimized to maximize the MCC-score, using 5-fold cross 

validation technique. We managed to obtain a MCC score of 0.705 (AUC 0.75) with 0 FP 

values, 2 TP and 2 FN out of a total of 4 positives (see table Fig. 5-19: Top 10 results 200x25 

sorted by MCC-score. and confusion matrix in Fig. 5-20).  This is the result that minimizes the 

number of false positives and therefore avoiding potential false alarms.  

 

 

alg acc mcc kap auc geo iba TN FP FN TP pca poly ksel exs feats imb filter set 

8 0,993 0,705 0,664 0,75 0,707 0,475 296 0 2 2 0 0 80 998 220 1 yes extend 

8 0,99 0,572 0,566 0,748 0,706 0,474 295 1 2 2 80 2 80 998 25425 1 yes extend 

6 0,99 0,572 0,566 0,748 0,706 0,474 295 1 2 2 0 0 40 998 222 1 yes extend 

3 0,99 0,572 0,566 0,748 0,706 0,474 295 1 2 2 80 2 40 998 25425 0 yes extend 

6 0,992 0,498 0,397 0,625 0,5 0,231 372 0 3 1 60 3 60 1252 2024 0 no basic 

6 0,992 0,498 0,397 0,625 0,5 0,231 372 0 3 1 0 0 200 1252 438 1 no extend 

8 0,99 0,497 0,397 0,625 0,5 0,231 296 0 3 1 80 2 80 998 24976 0 yes extend 

8 0,99 0,497 0,397 0,625 0,5 0,231 296 0 3 1 80 2 80 998 25425 0 yes extend 

5 0,99 0,497 0,397 0,625 0,5 0,231 296 0 3 1 0 0 40 998 222 0 yes extend 

5 0,99 0,497 0,397 0,625 0,5 0,231 296 0 3 1 0 0 80 998 220 0 yes extend 

Fig. 5-19: Top 10 results 200x25 sorted by MCC-score. 

 

 

 

Best by MCC-score  Best by AUC-score 

 Predicted Condition 

Actual 

Condition 
Normal Attack 

Normal  296 0 

Attack 2 2 
 

  Predicted Condition 

Actual 

Condition 
Normal Attack 

Normal 278 18 

Attack 0 4 
 

   
Fig. 5-20: Confusion matrix for the best scoring models. Left: the best scoring (by MCC-score) id.8 (Voting 
classifier) with score of 0.705 and AUC 0.75.  Right: Best scoring (by AUC-score), id.9 (KNN classifier) with AUC 
of 0.97 and MCC of 0.413.  

 

The second, equally promising result is the best classifier with AUC-score of 0.97 (MCC 

0.413), with confusion matrix presented in Fig. 5-20. The detailed top 10 performers sorted by 

AUC-score are presented in Fig. 5-21. In this case, the model correctly finds all attacks, but also 

misclassifies 18 negatives as attacks.  It is somewhat surprising that KNN using a basic feature 

set ends up on the 2 top spots.  The dominant classifier in both top scoring charts is id.3, Extra-

Trees. 
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alg acc mcc kap auc geo iba TN FP FN TP pca poly ksel exs feats imb filter set 

9 0,94 0,413 0,292 0,97 0,969 0,945 278 18 0 4 0 0 20 998 22 1 yes basic 

9 0,923 0,37 0,24 0,961 0,96 0,929 273 23 0 4 0 0 0 998 38 1 yes basic 

3 0,918 0,324 0,19 0,958 0,957 0,924 341 31 0 4 0 0 0 1252 22 0 yes basic 

3 0,88 0,268 0,134 0,94 0,938 0,89 327 45 0 4 0 0 40 1252 222 0 no extend 

3 0,878 0,265 0,131 0,938 0,936 0,887 326 46 0 4 0 2 60 1252 780 0 no basic 

3 0,867 0,253 0,121 0,933 0,93 0,877 322 50 0 4 0 2 0 1252 276 0 no basic 

2 0,84 0,229 0,1 0,919 0,916 0,852 312 60 0 4 0 0 20 1252 22 1 yes basic 

3 0,83 0,221 0,093 0,914 0,91 0,842 308 64 0 4 60 2 60 1252 741 0 no basic 

3 0,816 0,211 0,085 0,907 0,903 0,83 303 69 0 4 0 0 0 1252 22 0 no basic 

5 0,811 0,208 0,083 0,905 0,9 0,825 301 71 0 4 0 2 40 1252 24976 2 no extend 

Fig. 5-21: Top 10 results 200x25, sorted by AUC-score. 

 

To obtain a more accurate overview over which classifiers showed the best performance overall, 

we created additional queries. First, out of all classifiers scoring MCC 0.40 or better we select 

the best obtained MCC scores for each (Fig. 5-22). Apparently, 4 out of 10 did not once manage 

to obtain a required minimum score (MCC ≥ 0.40) and do not appear in this chart (id: 0, 1, 4, 

7). 

 

 
Fig. 5-22: Best scored classifiers with the requirement that MCC ≥ 0.40. 

 

 

Fig. 5-23 presents a more specific picture of the frequency of each classifier in the top scoring 

group of entries with scores MCC ≥ 0.40 and AUC ≥ 0.90 respectively. We can clearly see that 

classifier id.3 (Extra-Trees) dominates the best results evaluated using AUC, while id.5 and 8 

(MLP and Voting) amount for over 55% of the best results measured with MCC. 
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Fig. 5-23: Percentage of classifiers with top scoring entries in respective ranges (MCC ≥ 0.40 and AUC ≥ 0.90).  

 

 

Finally, we should point out an additional factor that could be of interest, namely the column 

named “exs” in the result tables. This column specifies the number of examples in the train set 

for that experiment, but what is more important, it corresponds directly to whether the data was 

cleared of inactive periods (an artefact of the actigraph watch being taken off for longer periods) 

or not. Upon a closer look, we observe a dominance of the cleaned datasets, i.e. the ‘998’ vs 

‘1252’ (see Fig. 5-19 and Fig. 5-21).  Fig. 5-24 shows the result of comparing the average scores 

obtained for each group.   

 

 

 
Fig. 5-24: Average scores obtained for data with artefacts removed (label 998), 

 and for data with artefacts (1252). 
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All the above results focus on one specific sliding window setting: window size of 200 and 

stride of 25.  A total of 2760 experiments have been recorded using these settings. Naturally, 

we have explored other window settings (early result logs and summaries are included 

separately), but due to time constraints we were forced to settle on one. Windows sizes of {100, 

200, 500, 1000, 2000} and strides of {2, 3, 10, 25, 30, 44} were briefly tested in preliminary 

experiments. The majority of migraine attacks lasted on average 2-3 hours [70]. Choosing 200 

timesteps was partly due to the need to minimize the window size to provide a more realistic 

scenario. 200 timesteps corresponds to 3 hours and 20 minutes, while a window of 1000 is over 

16 hours. The second reason was the initial poor results from other window sizes, e.g. 500x25 

as shown in Fig. 5-25.  It must be said that preliminary experiments only tried a minimal number 

of combinations.  

 

 

 
Fig. 5-25: Average results all experiments over 500x25 (size=500, stride=25). SOS was not applied.  
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6 Discussion 

 

 

We set out with several objectives for this work. The first was to determine the feasibility of 

applying supervised machine learning techniques to the detection of patterns related to periods 

of transition states prior to bipolar mood episodes.  In the absence of specific bipolar dataset, 

we settled for a migraine attacks dataset. The objective changed to detection of patterns related 

to migraine attacks. In context of RQ1, we found that analysis of given actigraph signals using 

machine learning has some potential for detection of temporal activity patterns experienced 

during migraine attacks.  We base this on results obtained from a variety of experiments using 

supervised (section 3.2.1) and unsupervised (section 3.2.1.8) methods.  

 

Through a number of experiments, we found specific algorithms and feature combinations 

which result in better overall classification performance with this type of dataset. The top result 

obtained an AUC score of 0.97 and MCC score of 0.41, with a KNN classifier.  This result 

included a number of false positives (FP), but classified all attacks correctly.  FP above zero 

may not be desirable in a system that must potentially provide a warning in case of positive 

detection. For this reason, we additionally trained classifiers to optimize the MCC score. The 

winner, the Voting classifier obtained AUC of 0.75 and MCC of 0.71, with zero FP count. This 

in turn, provided the best result with zero FP count, but at the cost of some (50%) false negatives 

(FN). FN count above zero in practice means some attacks were not detected, however in this 

scenario the warning could potentially be given not risking false alarms.  

 

On the whole, we obtained promising results from several classification experiments.  Although 

Extra-Trees (id.3) did not end up as the best individual winner of any experiment, it has shown 

an overall good performance dominating among the top-ranking classifiers. KNN (id.9) and 

Voting ensemble (id.8) consisting of combined Logistic Regression, Random Forest and KNN 

have multiple times provided the best results. An interesting proposition would be to substitute 

the Extra-Trees element for Random Forest in the ensemble, something we leave for future 

attempts. A more intriguing fact is KNN obtaining the best result, even after we found evidence 

that the underlying sequences will not respond to classification using distance measures (section 

2).  

 

As concerns distance measures, the DTW-experiment showed that we cannot simply apply 

sequence/pattern matching to obtain good results in discovering and classification of these sub-

sequences. This is a detriment to methods like Nearest Neighbour searches using typical 

distance (similarity) measures, but it also implies that an algorithm such as HTM struggles 

recognizing what should potentially be comparable sequences.  We need to remind ourselves 

however, that after preprocessing into segments and feature extraction, KNN was not 

comparing sequences directly, but the feature vectors created from the underlying sequences. 

The feature extraction step has potentially improved the classifier’s classification performance, 

as could be expected. 
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We have obtained mixed results from application of over-sampling and under-sampling 

methods to improve classification accuracy.  Some interesting observations were made as to the 

various classifiers combined with the SMOTE oversampling method. A significant number of 

top scoring entries used SMOTE apart from combinations involving Extra-Trees classifier. 

Under-sampling on the other hand, has had less noticeable impact, which is somewhat 

surprising, given the extreme dominance of negative instances.   

 

Due to time and resource constraints we could not possibly focus on finding the most optimal 

parameters for every step of the process which could be tuned. Filtering, oversampling, under-

sampling are some examples where only one setting was used that could be further 

experimented with. The same can be said for many features produced with the TSfresh library 

– attempting to research and experiment with alternative parameter settings for each feature 

would be a major project in itself!  

 

For HTM, we performed hundreds of tests using anomaly detection models with varying 

parameters to discover their sensitivity to changing activity patterns during migraine attacks. 

Models were allowed to build a “norm” for a certain number of timesteps and then set to report 

anomaly scores for the remaining data. The migraine attacks data when processed without 

applying timestamp information, purely as a stream of values, has given poor results with 

anomaly detection. This could be attributed to the fact that timestamp information adds an 

additional discriminative dimension to the data, by preserving the time-context of learned 

sequences.  Such effect is quite intuitive and we would expect that it would be beneficial for 

anomaly detection in increasingly long monitoring periods. Longer periods, means that 

weekdays and weekends gain importance, something we could not reliably test with only 14 

days’ worth of data. 

 

Anomaly detection has been used with the intention of discovering migraine attacks, but this 

unveiled an unsurprising fact in that an anomaly does not necessarily imply an attack. Any 

event that fails to reach some threshold of resemblance to the already known will be flagged. 

Furthermore, if the abnormal event repeats within a certain period, it will no longer be regarded 

as anomalous. This is due to the continuous learning capability of HTM, which can be tweaked.  

This brings us back to the problem of recognizing the event to ignore.  Unlike the classification 

experiments, our HTM experiments were applied directly to the data sequence. More 

specifically, no window segments or features were extracted.  HTM processes the data as 

temporal sequences by matching new patterns against those historically learned. In section 2 on 

similarity measures, we found that the migraine attack sequences respond poorly to distance 

and correlation based comparison.  In this context, we find it plausible to assume that the reason 

that DTW sequence matching failed can be related to the poor performance of HTM. In 

summary, anomaly detection provides anonymous results, so its practicality for this task is 

questionable.  Consequently, in context of  RQ2, we conclude that anomaly detection with HTM 

is not recommended for this problem.     
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6.1 Problems 

 

 

As we have pointed out in section 1.5, the bipolar long-term datasets did not become available 

in time to be used in this work. Consequently, the migraine-attacks dataset was used as: (a) it 

was collected using wearable actigraph, (b) measurements were continuously taken over a 

relatively long period, (c) the event of interest was labelled. The migraine data was assumed to 

be a fitting substitute for the task of working with detection of specific event over time, but 

cannot be considered for drawing any conclusions related to bipolar phase transitions prior to 

mood episodes. 

 

Amount of data, specifically the absolute number of positive samples (attacks) turned out to be 

the biggest fundamental problem. The only solution here is to acquire more data as it becomes 

available.  Additionally, we found reasons for scepticism about the accuracy of manual 

labelling, which we describe in more detail in the next section together with a suggestion for 

improvements. 

 

The extreme class imbalance was a major challenge for the supervised classification part of the 

experiments, while it could be said that for anomaly detection it was the opposite.  The problem 

encountered with our own implementation of over-sampling method can’t be reliably judged 

before a much more significant number of positive samples can be examined. The underlying 

idea, certainly seems sound. The fact that differences between positive samples are apparently 

greater than between specially selected negative-positive pairs is something that should be 

validated with bigger datasets.  In later stages, we found a flaw that in effect allowed accidental 

data leakage into the test set. Due to time constraints, we did not spend much time on correction 

and improvements of this method as we should and settled on using known methods.  

 

Technical issues were encountered with both HTM and the TSFresh-package. In case of HTM, 

the discrepancy was between the so-called swarming model creation and usage of the model 

afterwards. Specifically, the “maxBoost” vs “Boosting” parameters were causing crashes. This 

and some failing unit tests, which could apparently “be ignored”, according to information 

obtained from HTM forums.   The TSFresh package has issues with parallelization on the 

AMD-based computer system that was used for running most of the classification experiments. 

We found that using version 0.5 rather than newer versions solved this issue.   
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6.2 Possible Improvements 

 

 

Labelling 

 

Something that has not been explicitly mentioned is attack reporting (labelling). The reliability 

of labelling attacks in the data should be questioned. Since the labels are based on patient-kept 

diaries the registered time of attack may be quite inaccurate, depending how the patients 

organize adding entries of the days’ events.  We have come upon this possibility after 

encountering an attack start that did not show any actual activity value (as recorded by the 

actigraph). The assumption is that some activity is registered in connection with the act of 

manually writing an entry in the diary to be registered by the actigraph at around the time of 

reported attack.  Naturally, a patient could add the entry at a later time, but this is exactly why 

this entry might be inaccurate. This “later time” could be 10 minutes or 6 hours, in which case 

the accuracy of the patient’s recollection could be questioned.  Modern actigraphs come with a 

feature that allows inserting a timestamped label by the click of a button. We believe this could 

improve the reliability of labelling by simplifying this manual task for the patient.   

 

 

 

Sampling Frequency 

 

The effective sampling rate of the signal in the data is 1/60Hz (1 minute intervals). Internally, 

the signal is sampled at a constant rate of 0.32Hz by the actigraph, but then sum-aggregated 

into 1min intervals [70], which is the data we obtained.  Naturally, this greatly reduces the 

information that we can possibly extract from the data. The reason can be shown using a simple 

example: given 2 sequences {1,1,1,1,21} & {5,5,5,5,5} with equal number of data points, we 

calculate their sums (25 & 25). If we assume that the elements represent samples before 

aggregation into a single value, as described above, we can see that in both cases our effective 

activity reading would be 25. The argument is that the pattern formed by these more frequent 

samples is lost, denying us the possibility to build a more accurate model. Higher frequency 

sampling is a requirement for accurate classification of activities, which when combined into 

sequences of activities should potentially produce much more useful information. Advantages 

of more finely grained data is increased information gain, more useful features, promotes 

recognition of individual activity patterns on the level of ADL’s [80] and lessens ‘blur’ or noise 

which blurs the activity information. The main disadvantages are: memory requirement 

increase, processing power increase, increased battery power usage.  

 

 

Deep Learning 

 

Admittedly, there was some bias involved in the way hyper-parameters were pre-selected for 

the classification experiments. This was especially true for MLP (id.5, 8Appendix A ) and 
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SVC (id.7, 8Appendix A ). In both cases we intentionally limited the size of the hyper-

parameter sets even though we would prefer to provide many more possible combinations. 

The reason stems from the fact that training these two algorithms is (time) expensive and our 

time resources were limited. In the early stages, deep learning frameworks (Keras & 

Tensorflow) were considered for inclusion in this work, as they are designed to handle ANN 

training very efficiently by utilizing GPUs (Graphical Processing Unit).  This would eliminate 

the slow (Scikit Learn [20]) MLP-implementation but not the SVC, so we decided to defer 

Deep Learning for a later time.  We know from unofficial and unpublished experiments that 

deep learning is an interesting direction to follow, even though our MLP results are not that 

good.  

 

 

Sensor fusion. 

 

A potential improvement on a higher level (i.e. the sensor hardware), a straightforward 

improvement might involve sensor fusion [68], in many ways similar to the sensor ensembles 

used in “Robust and Accurate Modelling Approaches for Migraine Per-Patient Prediction from 

Ambulatory Data” [74].  Fusion of sensor inputs intelligently combines data from several 

sensors thereby improving application or system performance. Combining input from multiple 

sensors corrects for the deficiencies of the individual sensors effectively improving accuracy 

and reliability. Every relevant input is a possible source of new features, correlations between 

series (or lack of such) may have a greatly positive influence on the effectiveness of classifiers.  

The disadvantages could be increased system cost, greater hardware requirements, higher 

memory usage and increased complexity. 
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7 Conclusion 

 

 

We found specific combinations of preprocessing techniques, features and models that obtained 

promising results for potential implementation in a monitoring application. While the two best 

models use KNN and Voting ensemble, we found that Extra-Trees Forest classifier dominates 

the top results in general. We observed that the combination of extended feature set and feature 

selection consistently improves results, as does artefact removal and filtering to a smaller 

degree.  SMOTE stands out positively from other class balancing methods, with the notable 

exception of combinations involving Extra-Trees. Additional fine-tuning of these combinations 

is possible and recommended as it may further improve classification performance.  

 

We have shown that it is possible to detect actigraph patterns related to migraine attacks, with 

fair accuracy by using supervised learning. The methods used should be applicable in similar 

tasks. Assuming transitions prior to bipolar mood episodes can be proven to correlate with 

specific discernible patterns in the time/frequency domain, then these patterns can be detected, 

thereby effectively predicting the mood episodes.   

 

Anomaly detection results were relatively poor, however more historic data should improve 

HTM’s accuracy in detecting abnormal patterns. More importantly, HTM results suffer from 

ambiguity as to the context of the anomaly from noisy actigraph data. This seriously limits its 

utility for the task of detecting specific events like migraine attacks.  For this reason, HTM 

anomaly detection is not recommended for this task.  

 

The methods of labelling attacks during collection should be revised to lower the risk of 

inconsistencies.  Finally, it is crucially important to note that the presented results are based on 

a very small positive sample size. In order to draw more reliable conclusions, much more data 

is recommended.  
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 Classifier hyper-parameter sets 

 

Note: The VotingClassifer is an ensemble of LogisticRegression (lr), RandomForest (rf) and 

KNN (knn), all with individual hyper-parameters (prefixed). 

 

ID Name Parameter: [value set] 

0 Gaussian NB {} 
 

1 Logistic Regression 'C': [0.001, 0.01, 0.1, 1, 5, 10], 
'class_weight': [{1:3}, {1:15}, {1:50}, {1:500}, 'balanced'], 
'intercept_scaling': [0.1, 0.01, 1, 5, 10], 
'solver': ['lbfgs', 'liblinear', 'sag']} 

2 SGD Classifier 'alpha': [0.0001, 0.001, 0.1, 0.5, 1], 
'class_weight': [{1:3}, {1:15}, {1:50}, {1:500}, 'balanced'], 
'eta0': [0.01, 0.001, 0.5], 
'learning_rate': ['constant', 'optimal', 'invscaling'], 
'loss': ['modified_huber', 'squared_hinge', 'perceptron'], 
'penalty': ['none', 'l1', 'l2', 'elasticnet']}, 

3 Extra Trees 'n_estimators': [15, 30, 50], 
'criterion': ['gini', 'entropy'], 
'max_depth': [8, 16, 32, None], 
'class_weight': [{1:3}, {1:15}, {1:50}, {1:500}, 'balanced'], 
'max_features': ['auto', 0.75, 0.33]}, 

4 Random Forest 'n_estimators': [15, 30, 50], 
'criterion': ['gini', 'entropy'], 
'max_depth': [8, 16, 32, None], 
'class_weight': [{1:3}, {1:15}, {1:50}, {1:500}, 'balanced'], 
'max_features': ['auto', 0.75, 0.33]}, 

5 MLP 'alpha': [0.001, 0.01, 0.1, 0.5], 
'solver': ['lbfgs'], # 'sgd', 'adam'], 
'activation': ['tanh', 'relu'], 
'learning_rate': ['adaptive', 'invscaling'], 
'hidden_layer_sizes': [(240,40,), (60,20,10,), (500,)]}, 

6 AdaBoost 'n_estimators': [15, 50, 80], 
'base_estimator__criterion': ['gini', 'entropy'], 
'base_estimator__splitter': ['best', 'random'], 
'base_estimator__max_depth': [4, 8, 16, 32], 
'base_estimator__class_weight': [{1:5}, {1:50}, {1:500}, 
'balanced'], 
'learning_rate': [0.5, 1.0, 2.0]}, 

7 SVC 'decision_function_shape': ['ovr'], 
'C': [0.01, 0.1, 0.5, 1, 10], 
'gamma': [0.01, 0.1, 1, 10], 
'class_weight': [{1:3}, {1:50}, {1:500}, 'balanced'], 
'kernel': ['linear', 'rbf']}, 
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8 Voting Classifier 'voting': ['soft'], #, 'hard'], 
'lr__C': [0.1, 1.0, 10.0], 
'lr__class_weight': [{1:15}, {1:500}, 'balanced'], 
'rf__n_estimators': [10, 30], 
'rf__class_weight': [{1:15}, {1:500}, 'balanced'], 
'knn__weights': ['distance', 'uniform'], 
'knn__n_neighbors': [2, 4]}, 

9 KNN 'weights': ['distance', 'uniform'], 
'p': [1, 2, 3, 4], 
'metric': ['minkowski'], 
'leaf_size': [30, 5], 
'n_neighbors': [1, 2, 3, 4, 5, 6]}, 
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 HTM base model settings 

 

 
 
 MODEL_PARAMS={ 
   'aggregationInfo': { 
  'days': 0, 
  'fields': [], 
  'hours': 0, 
  'microseconds': 0, 
  'milliseconds': 0, 
  'minutes': 0, 
  'months': 0, 
  'seconds': 0, 
  'weeks': 0, 
  'years': 0 
 }, 
 'model': 'CLA', 
 'modelParams': { 
  'anomalyParams': { 
  u'anomalyCacheRecords': None, 
  u'autoDetectThreshold': None, 
  u'autoDetectWaitRecords': 5030 
 }, 
 'clParams': { 
  'alpha': 0.0381314, 
  'verbosity': 0, 
  'regionName': 'SDRClassifierRegion', 
  'steps': '1' 
 }, 
 'inferenceType': 'TemporalAnomaly', 
 'sensorParams': { 
  'encoders': { 
  '_classifierInput': { 
  'classifierOnly': True, 
  'clipInput': True, 
  'fieldname': 'value', 
  'maxval': 5000, 
  'minval': 0, 
  'n': 400, 
  'name': '_classifierInput', 
  'type': 'ScalarEncoder', 
  'w': 21 
 }, 
 u'value': { 
  'clipInput': True, 
  'fieldname': 'value', 
  'maxval': 4000, 
  'minval': 0, 
  'n': 400, 
  'name': 'value', 
  'type': 'ScalarEncoder', 
  'w': 21 
 }, 
 u'timestamp_dayOfWeek': None, 
 u'timestamp_timeOfDay': { 
  'fieldname': 'timestamp', 
  'name': 'timestamp', 
  'timeOfDay': (21, 2.0), 
  'type': 'DateEncoder' 
 }, 
 
  
       u'timestamp_weekend': None 
 }, 
 'sensorAutoReset': None, 
 'verbosity': 0 
 }, 
 'spEnable': True, 
 'spParams': { 
  'columnCount': 2048, 
  'globalInhibition': 1, 
  'inputWidth': 0, 
  'numActiveColumnsPerInhArea': 40, 
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  'potentialPct': 0.8, 
  'seed': 1956, 
  'spVerbosity': 0, 
  'spatialImp': 'cpp', 
  'synPermConnected': 0.1, 
  'synPermActiveInc': 0.0001, 
  'synPermInactiveDec': 0.0005, 
  'maxBoost': 0.0, 
 
 }, 
 'tpEnable': True, 
 'tpParams': { 
  'activationThreshold': 12, 
  'cellsPerColumn': 32, 
  'columnCount': 2048, 
  'globalDecay': 0.0, 
  'initialPerm': 0.21, 
  'inputWidth': 2048, 
  'maxAge': 0, 
  'maxSegmentsPerCell': 128, 
  'maxSynapsesPerSegment': 32, 
  'minThreshold': 10, 
  'newSynapseCount': 20, 
  'outputType': 'normal', 
  'pamLength': 1, 
  'permanenceDec': 0.1, 
  'permanenceInc': 0.1, 
  'seed': 1960, 
  'temporalImp': 'cpp', 
  'verbosity': 0 
 }, 
 'trainSPNetOnlyIfRequested': False 
 }, 
 'predictAheadTime': None, 
 'version': 1 
 } 
 

 

Fields highlighted in RED were manipulated during the experiment parameter tuning phase. 

These values could differ from values presented in this snapshot. Remaining base models 

are attached as files. 

 

 

 

  



113 
 

 Classification result table codes 

 

 

Code Description  

 

Id Excel table entry id 

test id Sequentially numbered experiment batch (per summary file) 

alg id Algorithm identification number (see 8Appendix A ) 

acc Classification accuracy score 

mcc Matthews Correlation Coefficient 

kap Cohens Kappa statistic 

auc Area under the ROC curve 

geo Geometric mean 

iba Index of balance accuracy 

TN True Negatives 

FP False Positives 

FN False Negatives 

TP True Positives 

Pr Precision 

re Recall 

f1 F1-measure 

sp Support (number of instances in evaluation set) 

pca PCA setting (0 for None) 

poly Polynomial feature order value (0 for None) 

ksel K-select setting (0 for None) 

exs Total examples created 

feats Total features created 

tvars Total target class labels  

imb Class balancing method applied (or None) 

time Execution time for the batch (i.e. test id) 

filter Filter flag 

set Extended feature set flag 
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 Extended feature set 

 

Overview of features calculated for the extended feature set. Several of these results in more 

than one feature columns, depending on the parameters passed. This overview is a modified 

transcript of the more detailed descriptions found in the “TSFresh” manual [94]. 

 

Feature name Short description 

abs_energy Returns the absolute energy of the time series which is the sum over 
the squared values 

absolute_sum_of_changes Returns the sum over the absolute value of consecutive changes in the 
series x 

approximate_entropy(x, m, r) Implements a vectorised Approximate entropy algorithm. 

ar_coefficient This feature calculator fits the unconditional maximum likelihood of an 
autoregressive AR(k) process. The k parameter is the maximum lag of 
the process 

augmented_dickey_fuller The Augmented Dickey-Fuller test is a hypothesis test which checks 
whether a unit root is present in a time series sample. This feature 
calculator returns the value of the respective test statistic. 

autocorrelation Calculates the lag autocorrelation of a lag value of lag. 

binned_entropy First bins the values of x into max-bins equidistant bins. Then 
calculates the value of where pk is the percentage of samples in bin k. 

count_above_mean Returns the number of values in x that are higher than the mean of x 

count_below_mean Returns the number of values in x that are lower than the mean of x 

cwt_coefficients Calculates a Continuous wavelet transform for the Ricker wavelet, also 
known as the “Mexican hat wavelet”. This feature calculator takes three 
different parameters: widths, coeff and w. The feature calculator takes 
all the different widths arrays and then calculates the cwt one time for 
each different width array. Then the values for the different coefficient 
for coeff and width w are returned. 

fft_coefficient Calculates the Fourier coefficients of the one-dimensional discrete 
Fourier Transform for real input by fast Fourier transformation algorithm 

first_location_of_maximum Returns the first location of the maximum value of x. The position is 
calculated relatively to the length of x. 

first_location_of_minimum Returns the first location of the minimal value of x. The position is 
calculated relatively to the length of x. 

friedrich_coefficients(x, c, param) Coefficients of polynomial, which has been fitted to the deterministic dynamics 
 of Langevin model 
 

has_duplicate Checks if any value in x occurs more than once 

has_duplicate_max Checks if the maximum value of x is observed more than once 

has_duplicate_min Checks if the minimal value of x is observed more than once 

index_mass_quantile Those apply features calculate the relative index i where q% of the 
mass of the time series x lie left of i. For example, for q = 50% this 
feature calculator will return the mass centre of the time series 

Kurtosis Returns the kurtosis of x (calculated with the adjusted Fisher-Pearson 
standardized moment coefficient G2). 

large_number_of_peaks Checks if the number of peaks is higher than n. 
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large_standard_deviation Boolean variable denoting if the standard dev of x is higher than ‘r’ 
times the range = difference between max and min of x.  

last_location_of_maximum Returns the relative last location of the maximum value of x. The 
position is calculated relatively to the length of x. 

last_location_of_minimum Returns the last location of the minimal value of x. The position is 
calculated relatively to the length of x. 

length(x) Returns the length of x 

longest_strike_above_mean Returns the length of the longest consecutive subsequence in x that is 
bigger than the mean of x 

longest_strike_below_mean Returns the length of the longest consecutive subsequence in x that is 
smaller than the mean of x 

max_langevin_fixed_point(x, r, 
m) 

Largest fixed point of dynamics estimated from polynomial h(x), which 
has been fitted to the deterministic dynamics of Langevin model 

maximum(x) Calculates the highest value of the time series x 

mean(x) Returns the mean of x 

mean_abs_change Returns the mean over the absolute differences between subsequent 
time series values which is 

mean_abs_change_quantiles First fixes a corridor given by the quantiles ql and qh of the distribution 
of x. Then calculates the average absolute value of consecutive 
changes of the series x inside this corridor. Think about selecting a 
corridor on the Y-Axis and only calculating the mean of the absolute 
change of the time series inside this corridor. 

mean_autocorrelation Calculates the average autocorrelation taken over different all possible 
lags (1 to length of x) 

mean_change Returns the mean over the absolute differences between subsequent 
time series values which is 

mean_second_derivate_central Returns the mean value of a central approximation of the second 
derivative 

median(x) Returns the median of x 

minimum(x) Calculates the lowest value of the time series x. 

number_cwt_peaks This feature calculator searches for different peaks in x. To do so, x is 
smoothed by a Ricker-wavelet and for widths ranging from 1 to n. This 
feature calculator returns the number of peaks that occur at enough 
width scales and with sufficiently high Signal-to-Noise-Ratio (SNR) 

number_peaks Calculates the number of peaks of at least support n in the time series 
x. A peak of support n is defined as a subsequence of x where a value 
occurs, which is bigger than its n neighbours to the left and to the right. 

percentage_of_reoccurring_data
points_to_all_datapoints 

Returns the percentage of unique values, that are present in the time 
series more than once. 

percentage_of_reoccurring_value
s_to_all_values 

Returns the ratio of unique values, that are present in the time series 
more than once. 

Quantile Calculates the q quantile of x. This is the value of x greater than q% of 
the ordered values from x. 

range_count(x, min, max) Count observed values within the interval [min, max). 

ratio_value_number_to_time_seri
es_length 

Returns a factor which is 1 if all values in the time series occur only 
once, and below one if this is not the case.  

sample_entropy(x) Calculate and return sample entropy of x. 
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Skewness Returns the sample skewness of x (calculated with the adjusted Fisher-
Pearson standardized moment coefficient G1). 

spkt_welch_density This feature calculator estimates the cross power spectral density of the 
time series x at different frequencies. To do so, the time series is first 
shifted from the time domain to the frequency domain. The feature 
calculator returns the power spectrum of the different frequencies. 

standard_deviation Returns the standard deviation of x 

sum_of_reoccurring_data_points Returns the sum of all data points, that are present in the time series 
more than once. 

sum_of_reoccurring_values Returns the sum of all values, that are present in the time series more 
than once. 

sum_values(x) Calculates the sum over the time series values 

symmetry_looking Boolean variable denoting if the distribution of x looks symmetric. 

time_reversal_asymmetry_statisti
c 

This function calculates the value of  
where E is the mean and L is the lag operator. 

value_count(x, value) Count occurrences of value in time series x. 

Variance Returns the variance of x 

variance_larger_than_standard_d
eviation 

Boolean variable denoting if the variance of x is greater than its 
standard deviation. Is equal to variance of x being larger than 1 
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 Top scorers: raw output 

 

Winner by AUC score: (source file: Results_200x25_basic_filter.txt) 

 

pre/post: 25/0  win/stride: 200/25  label:start  
filename: stm_sb_modified.csv  
datetime: 2017-05-10 19:14:23.374000  
pca_target: 0   poly degree: 0   kselect: 20  
Imbalance: SMOTE(k=None, k_neighbors=5, kind='regular', m=None, m_neighbors=10, 
n_jobs=1, 
   out_step=0.5, random_state=None, ratio='auto', svm_estimator=None)  
Extended target (count):  25141 325 
('Total : Processed (count): ', (998L, 22L), 13) 
Final feature (count):  (998L, 22L) 
 
... 
 
Running GridSearchCV for KNeighborsClassifier. 
Fitting 5 folds for each of 96 candidates, totalling 480 fits 
BEST: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', 
           metric_params=None, n_jobs=4, n_neighbors=2, p=2, 
           weights='uniform') 
  ACC   MCC   KAP   AUC   GEOM   IBA 
 0.940  0.413  0.292  0.970  0.969  0.945 
[[278  18] 
 [  0   4]] 
             precision    recall  f1-score   support 
 
          0       1.00      0.94      0.97       296 
          1       0.18      1.00      0.31         4 
 
avg / total       0.99      0.94      0.96       300 
 
... 
 
 

 
Filter 
Window size 
Stride 
Feature set 
PCA 
polynomial 
k-select 
imbalance 
Classifier 
Leaf_size 
Metric 
N_neighbors 
P 
weights 

 
Yes 
200 
25 
basic 
0 
0 
20 
SMOTE(k_neighbors=5, m_neighbors=10, out_step=0.5) 
KNeighborsClassifier 
30 
Minkowski 
2 
2 
Uniform 
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Winner by MCC score: (source file: Results_200x25_tsfresh_filter.txt) 
 
pre/post: 25/0  win/stride: 200/25  label:start  
filename: stm_sb_modified.csv  
datetime: 2017-05-09 14:09:56.672000  
pca_target: 0   poly degree: 0   kselect: 80  
Imbalance: SMOTE(k=None, k_neighbors=5, kind='regular', m=None, m_neighbors=10, 
n_jobs=1, 
   out_step=0.5, random_state=None, ratio='auto', svm_estimator=None)  
Extended target (count):  25141 325 
('Total : Processed (count): ', (998L, 220L), 13) 
Final feature (count):  (998L, 220L) 
 
... 
Running GridSearchCV for VotingClassifier. 
Fitting 5 folds for each of 216 candidates, totalling 1080 fits 
BEST: VotingClassifier(estimators=[('lr', LogisticRegression(C=10.0, 
class_weight='balanced', dual=False, 
          fit_intercept=True, intercept_scaling=1, max_iter=100, 
          multi_class='ovr', n_jobs=4, penalty='l2', random_state=None, 
          solver='liblinear', tol=0.0001, verbose=0, warm_start=False)), ('rf', 
...wski', 
           metric_params=None, n_jobs=4, n_neighbors=2, p=2, 
           weights='distance'))], 
         n_jobs=4, voting='soft', weights=[1, 1, 1]) 
  ACC   MCC   KAP   AUC   GEOM   IBA 
 0.993  0.705  0.664  0.750  0.707  0.475 
[[296   0] 
 [  2   2]] 
             precision    recall  f1-score   support 
 
        0.0       0.99      1.00      1.00       296 
        1.0       1.00      0.50      0.67         4 
 
avg / total       0.99      0.99      0.99       300 
 
 
 
Filter 
Window size 
Stride 
Feature set 
PCA 
polynomial 
k-select 
imbalance 
Classifier 
Ensemble 

 
Yes 
200 
25 
extended 
0 
0 
80 
SMOTE(k_neighbors=5, m_neighbors=10, out_step=0.5) 
VotingClassifier 
LogisticRegression, RandomForest, KNeighborsClassifier 
 

 
  



119 
 

 Libraries and tools 

 

Python 2.7 was used for the majority of the code. Additionally, some early preprocessing and 

exploratory analysis was done using the R-language with R-Studio.  All our code and result 

files are available at https://github.com/tomhvl/migraine-attacks/ 

 

 

The following external Python libraries were used in this project: 

 

Statsmodels Classes and functions for the estimation of many different statistical models, as 

well as for conducting statistical tests, and statistical data exploration. 

http://www.statsmodels.org/stable/install.html 

 

Pandas BSD-licensed library providing high-performance, easy-to-use data structures 

and data analysis tools. 

http://pandas.pydata.org/pandas-docs/stable/install.html# 

 

Numpy The fundamental package for scientific computing with Python.  

Installs with Scikit-learn or from: 

https://www.scipy.org/scipylib/download.html 

 

Imblearn Package offering a number of re-sampling techniques commonly used in 

datasets showing strong between-class imbalance. 

https://github.com/scikit-learn-contrib/imbalanced-learn 

 

Scikit-Learn Python module for machine learning built on top of SciPy and distributed 

under the 3-Clause BSD license.  

https://github.com/scikit-learn/scikit-learn 

 

FastDTW Fast, linear time approximation algorithm for Dynamic Time Warping. 

https://github.com/rmaestre/FastDTW 

 

MatplotLib Python 2D plotting library. 

https://matplotlib.org/users/installing.html 

 

NuPIC NuPIC is a machine intelligence platform that implements the HTM learning 

algorithms. HTM is a detailed computational theory of the neocortex. 

distribution found at:  

https://github.com/numenta/nupic 

 

tsfresh Contains many feature extraction methods. 

 https://github.com/blue-yonder/tsfresh 

 

 

https://github.com/tomhvl/migraine-attacks/
http://www.statsmodels.org/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html
https://www.scipy.org/scipylib/download.html
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/rmaestre/FastDTW
https://matplotlib.org/users/installing.html
https://github.com/numenta/nupic
https://github.com/blue-yonder/tsfresh

