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Abstract 

Exposing fish to moderate water currents as a form of exercise is often perceived as positive 

for fish welfare, growth, muscle development and heart condition. This thesis examines what 

effect rearing Atlantic salmon (Salmo salar) post-smolts in a flow through semi-closed raceway 

system (Preline) has on growth, mortality, feed conversion, and development of white skeletal 

and heart muscle. The experiment consists of three phases: 1. Smolt in freshwater 2. Post-smolt 

in seawater (Preline vs. control facilities) and 3. On-growing in seawater. A total of 321.412 

smolts (101 g SEM ± 4.2) were distributed in two groups. Fish in the Preline system was 

exposed to a 10-20 cm/s water current and a traditional open cage system were used as control. 

Temperature, salinity and oxygen varied between the two systems, as this was a large-scale 

experiment and water conditions were difficult to control. After four months in the systems, the 

control fish had a significantly higher weight, length and condition factor compared to the 

Preline group. This was linked with higher temperatures at the control site. The Preline group 

had a 2.44 times higher frequency of small muscle fibres in the white skeletal muscle at the end 

of the post-smolt phase. This was associated with the Preline fish being exposed to a constant 

water flow, promoting aerobic exercise. Furthermore, the increased recruitment of white muscle 

fibres might increase the growth potential for further production. There were significantly 

higher elevated mRNA levels of MEF2C and GATA4, indicating cardiomyocyte hypertrophy, 

in the Preline group at the end of the post-smolt phase. This was also associated with aerobic 

exercise and can possibly help the fish cope with stressful situations they might be exposed to 

in a farming environment.   

 

  



 
7 

 

1 Introduction 

1.1 Background 

The production of Atlantic salmon (Salmo salar) post-smolts have traditionally been conducted 

in open net pen systems in the sea. Post-smolt refers to the period after the fish have been 

transferred from freshwater to seawater, until they reach a weight of approximately 1 kg. The 

seawater stage is considered to be the most critical phase of production, since about 20 % of 

the fish will not make it to market size (Hjeltnes et al., 2017). Throughout the seawater phase, 

many factors contribute to this loss of biomass, including; poor smolt quality, disease and 

treatments. Some of the measures that have been done to prevent production related losses is to 

bring forth new and innovative farming technology. These include the option of using semi-

closed or closed rearing systems in parts or throughout the seawater production phase, to reduce 

the time fish spend in open cage systems.  

 

1.2 Closed aquaculture technology 
A closed, or semi-closed, aquaculture system can be defined as a fish producing system that has 

an impenetrable or close to impenetrable barrier between the fish and the surrounding 

environment (Iversen et al. 2013). During the last couple of years, several new variants of semi-

closed or closed farming technologies have been launched, which can differ in size and shape, 

and volumes may vary from 1000 m3 to 21 000 m3 (Iversen et al., 2013, Teknologirådet, 2013) 

Construction material can vary from enclosed bags, to more rigid material like polyethylene 

(PE), fibreglass, steel and concrete. These constructions can either be land based, or placed in 

the sea. Most of the current semi-closed rearing systems in the sea do not have an extensive 

treatment of the inlet water, and creates only minor differences in the environment inside and 

outside of the system. One of the expected advantages with semi-closed farming technology in 

the sea is the lowered energy costs compared with land based post-smolt systems (Iversen et 

al., 2013, Teknologirådet 2012) as a result of minimal lifting height of the water. The degree of 

control over the water quality and farming environment, by controlling the depth of the water 

intake, is most likely going to be greater in a closed farm rather than a traditional open net pen.  

 

Salmon lice (Lepeophtheirus salmonis) represents one of the biggest challenges in the 

Norwegian salmon aquaculture industry, which inflicts large economic costs and subsequent 

losses, along with potential negative effects on wild salmonid populations (Costello, 2009). By 

pumping water from below the surface layers, closed farming technology should in theory avoid 
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salmon lice infections (Rosten et al., 2011). Closed farming technology can also potentially be 

largely helpful in reducing environmental impacts from aquaculture. This includes reducing 

organic waste emissions, prevent spreading of fish pathogens, and reduce farmed escapees 

(Rosten et al., 2011). This study will focus on a semi-closed seawater raceway system called 

Preline, developed by Preline Fish Farming System in close collaboration with Lerøy Seafood 

Group. The system is constructed as a large oval pipe, with a deep-water intake and outlet at 35 

m, which forms a constant deep-water flow through the system. 

 

1.3 Aerobic exercise 

In closed or semi-closed aquaculture systems it is possible to control the water current, as 

opposed to the traditional open net pen cages. This especially applies to flow-through raceway 

systems. Salmonids are active species of fish and can be made to swim against a constant 

current. This makes them ideal subjects for studies that test the effects of aerobic training. 

Producing a robust fish, by making it constantly swim towards a current on low to moderate 

speeds, can give several advantages. Factors that can be influenced by a training regime are, 

among others, increased growth (East and Magnan, 1987, Totland et al., 1987, Farrell et al., 

1990, Jørgensen and Jobling, 1993, Young and Cech Jr, 1994, Castro et al., 2011, Solstorm et 

al., 2015) reduced aggressive behaviour (Adams et al., 1995, Brännäs, 2009, Solstorm et al., 

2016), better feed conversion (Leon, 1986, East and Magnan, 1987, Christiansen et al., 1992), 

and, development of skeletal and cardiac muscle (Walker and Emerson, 1978, Totland et al., 

1987, Bugeon et al., 2003, Martin and Johnston, 2005, Rasmussen et al., 2011, Castro et al., 

2013). 

 

Increase in growth as an effect of exercise has been documented in many studies for salmonid 

fish species. Swimming at relatively low speeds, 1.5 body lengths per seconds (BL/s) or less, 

have proven to be the most effective in improving growth rate (Walker and Emerson, 1978, 

East and Magnan, 1987, Totland et al., 1987, Farrell et al., 1990, Jørgensen and Jobling, 1993, 

Young and Cech Jr, 1994, Castro et al., 2011, Solstorm et al., 2015). The particular water 

current that causes the best growth rate seems to vary between life stages. Jørgensen and Jobling 

(1993) found that exposing fish to water currents of 1.5 BL/s gave the best growth in juvenile 

Atlantic salmon, when compared to 0, 1.0 and 2.0 BL/s, while Castro et al. (2011) found a better 

growth in pre-smolts reared at 0.8-1.0 BL/s, either by interval or continuous currents. For post-

smolts, Solstorm et al. (2015) found increased growth for groups reared at 0.2 and 0.8 BL/s 

compared to a water velocity of 1.5 BL/s.  
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Salmonids tend to form dominant hierarchies and show aggressiveness towards each other 

(Winberg et al., 1991, Adams et al., 1995). Fish that are swimming freely in still water tend to 

form dominant hierarchies and show increased aggression, which can lead to less food for 

subordinate fish (Adams et al., 1995, Brännäs, 2009) and greater differences in size within the 

fish population (Jobling et al., 1993, Brännäs, 2009). Aggressive behaviour can cause skin 

damage and lesions to other individuals, and further, studies have shown that high aggression 

can lead to increased spontaneous activity (Christiansen et al., 1991, Jobling et al., 1993, 

Solstorm et al., 2016). This can in turn lead to high energetic costs and increase the feed 

conversion ratio of the population. Solstorm et al. (2016) showed in their study that moderate 

water velocities (0.8 BL/s) created less movement and interactions between fish, compared to 

slower velocities (0.2 BL/s). Fish that are swimming towards a constant current tend to form 

schools, which in turn can lead to reduced aggressive behaviour. This can result in more 

available food for subordinate fish and, consequently, a higher growth rate in the population 

(East and Magnan, 1987, Totland et al., 1987, Farrell et al., 1990, Christiansen et al., 1991, 

Christiansen et al., 1992, Jobling et al., 1993, Jørgensen and Jobling, 1993, Adams et al., 1995, 

Brännäs, 2009). The feed conversion ratio (FCR) is of uttermost importance to fish farmers and 

can be described as the amount of mass gained by the fish relative to the amount of feed 

consumed (Jackson, 2009). Several studies have shown that exercise decreases the feed 

conversion ratio for different salmonid species (Leon, 1986, East and Magnan, 1987, 

Christiansen et al., 1992). Although swimming and exercise demands a certain amount of 

energy, the fish eat more food as appetite is stimulated, and weight gain is achieved faster with 

less food used (Davison, 1989).  

 

Due to all the studies showing the effect of training on growth, aggression and feed conversion, 

it is particularly interesting to identify how these factors are affected in post-smolts reared in a 

large-scale raceway system.  

 

 

1.4 Skeletal muscle  

The growth of muscle in fish differs from that of mammals as the recruitment of muscle fibres 

last through large parts of the life cycle, rather than just hypertrophy of the existing fibres 

(Stickland, 1983). The bulk of the myotome in most fish, and thereby the most relevant for the 
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aquaculture industry, consists of white muscle fibres of the skeletal muscle, which is mainly 

used for rapid anaerobic swimming (Alexander, 1969). The diameter of white and red muscle 

fibres in fish rarely exceeds 200 and 50 μm, respectively (Weatherley et al., 1988). Thus, further 

individual growth must come from the recruitment of new muscle fibres. For some fish species, 

like the Atlantic salmon, the recruitment of muscle fibres is massive throughout the life cycle, 

starting at approximately 5000 white skeletal muscle fibres per myotome at hatching, 

approximately 180,000 during smoltification and exceeding 1 million fibres when reaching a 

weight of 4 kg (Johnston, 1999). However, it seems that as fish grow, the contribution to growth 

from muscle fibre recruitment decreases, while the contribution from hypertrophy increases 

(Weatherley et al., 1980, Stickland, 1983). During myogenesis, the formation of muscular 

tissue, myoblast nuclei are absorbed by expanding muscle cells during post-embryotic growth 

to keep a constant ratio between the volume of nuclei and the volume of cytoplasm (Koumans 

et al., 1994). Through this process, muscle fibres are formed by the fusion of myoblasts on 

existing muscle cells, which further leads to the formation of myotubes. Muscle fibre growth 

and recruitment can be achieved and influenced by factors like diet, exercise training and 

temperature (Walker and Emerson, 1978, Totland et al., 1987, Stickland et al., 1988, Bugeon 

et al., 2003, Martin and Johnston, 2005, Ibarz et al., 2011, Rasmussen et al., 2011). 

 

Rasmussen et al. (2011) performed an exercise experiment on rainbow trout for 9 weeks with 

a water velocity of 0.9 BL/s. By using histological image analysis, they found that exercised 

fish showed signs of hyperplasia of the white skeletal muscle, as there was a higher amount of 

muscle fibres in the size class of 0-20 µm compared to the control group, even though this could 

not be statistically confirmed. This may in turn indicate that fish exposed to an exercise training 

regime, may have a higher recruitment of muscle fibres than fish that are not. Several other 

studies have confirmed that a training regime of 0.4-1.6 BL/s stimulates muscle fibre 

hypertrophy and thereby increasing the overall body weight of the fish (Walker and Emerson, 

1978, Totland et al., 1987, Bugeon et al., 2003, Martin and Johnston, 2005, Ibarz et al., 2011).    

 

Since there is a lack of research on white skeletal muscle fibre recruitment in Atlantic salmon 

as an effect of exercise, the current experiment wanted to investigate the effect of training on 

muscle fibre hyperplasia in a semi-closed raceway system. 
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1.5 Heart muscle 

Poor cardiac function is a factor that may contribute to high mortality rates after transfer to 

seawater, and lack of sustained exercise may be one of the reasons for this. The heart of teleost 

fish species is located ventrally towards the head, and is separated from the abdominal cavity 

by septum transversum. It consists of several valves and chambers that keep the blood flow 

running in a constant direction. The oxygen depleted blood gathers in the sinus venosus, from 

the blood vessel venae hepaticae and to venae cardinalis communis (Kryvi and Poppe, 2016). 

Furthermore, the blood is transported to the atrium, which pumps the blood into the ventricle 

of the heart. From there, powerful muscle contractions pump the blood through bulbus 

arteriosus and the ventral aorta, to the gills for oxygen supply, and further out to the rest of the 

body. The ventricle, which has an irregular form and consists for most fish species of a 

spongious myocardium, makes up most of the weight of the heart (Santer et al., 1983). 

However, more active fish species, such as salmonids or scombridae, have a compact layer of 

myocardium surrounding the spongious layer and a pyramidal shaped heart that can give 

powerful contractions (Davie and Farrell, 1991). This can in turn generate a higher blood 

pressure that supports an increase in the cardiovascular demands of active fish. 

 

Growth of cardiac muscle is similar to that of skeletal muscle as it is driven by cardiomyocyte 

hypertrophy and hyperplasia. This growth may be stimulated from exercise training, and it has 

been shown that relative ventricular mass can increase as a result of sustained swimming 

(Castro et al., 2013). A plastic response like this is most likely to satisfy the higher energetic 

demands of the skeletal muscle in active fish, along with an improved contractile ability. For 

mammals, cardiac growth is driven by cardiomyocyte hypertrophy (Soonpaa et al., 1996). It 

has been shown that both hypertrophy and hyperplasia take place as a response to chronic 

anemia and sexual maturation in rainbow trout (Clark and Rodnick, 1998, Simonot and Farrell, 

2009). Exercise training has also shown to increase relative ventricular mass, although not as 

much as through chronic anaemia and sexual maturation (Castro et al., 2013). It is likely that 

this increase is due to both cardiomyocyte hyperplasia and hypertrophy. 

 

Vascular endothelial growth factor (VEGF) is probably the most important factor influencing 

the formation of new blood vessels in vertebrates (Yancopoulos et al., 2000), and is one of the 

main driving forces in improving capillarity through prolonged exercise in fish (Iemitsu et al., 

2006, Castro et al., 2013). It is more than likely that exercise induced cardiac growth is a result 
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of hypertrophy as well as hyperplasia. In mammals, cardiomyocytes will stop proliferating soon 

after birth, and further growth to cope with an increasing workload comes from cardiac 

hypertrophy (Soonpaa et al., 1996). This is mostly driven by the expression levels of cardiac 

transcription factors such as GATA4, Myocyte-specific enhancer factor 2C (MEF2C) and the 

homeobox transcription factor Csx/Nkx2-5 (Kolodziejczyk et al., 1999, Akazawa and Komuro, 

2003) 

 

Cardiac health is one of the main factors that are influenced by the effects of aerobic exercise 

in fish. Constant, moderate movement over a longer period of time can affect several 

mechanisms in cardiac responses including cardiac growth, contractility, vascularization, 

energy metabolism and myokine production in different salmonid species (Davie et al., 1986, 

Farrell et al., 1990, Farrell et al., 1991, Castro et al., 2013). Castro et al. (2013) showed that fish 

kept at a constant current of 1.31 body lengths/s had higher protein levels of PCNA, which can 

be used as an indicator of cardiac growth being driven by cardiomyocyte hyperplasia. In 

addition to this, the fish had elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1. 

This suggested an increase in cardiomyocyte tissue due to enlargement of these specific cells 

located here (cardiomyocyte hypertrophy). Furthermore, the fish showed elevated mRNA 

levels of VEGF and EPO, suggesting a more efficient oxygen supply network. Other effects 

that was influenced by aerobic exercise during this study was potentially improved contractile 

function, a higher capacity for lipid oxidation and a significant enlargement of mitochondrial 

size, which suggest an enhanced energetic support system. It would be interesting to see if a 

study like this can be recreated in a large-scale system, and how this influences the expressed 

mRNA levels of these genes. Therefore, expressed mRNA levels of MEF2C, GATA4 and 

VEGF in a semi-closed system, compared to a traditional cage, were investigated in the current 

study. 
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1.6 Objectives 

Currently, there is little information on the effects of rearing post-smolts in semi-closed 

containment systems, when regarding growth potential, survival, development and welfare 

indicators. However, there is huge potential with this type of raceway system to reduce 

infections by pathogens, such as salmon lice, and improve other factors like cardiac health, 

immune response and overall body composition through aerobic training. The aim of this 

project was to uncover any possible differences between fish reared in a semi-closed raceway 

and a traditional open cage system. The main factors that will be evaluated in this study include 

growth pattern, development of white skeletal muscle and heart condition as an effect of aerobic 

exercise.  

 

The experiment was based on the following hypotheses: 

H01: Rearing Atlantic salmon post-smolts in semi-closed raceway systems and exposing them 

to a 10-20 cm/ water current has no significant effect on growth (weigth, length and condition 

factor (CF)). 

 

H02: Rearing Atlantic salmon post-smolts in semi-closed raceway systems and exposing them 

to a 10-20 cm/ water current has no significant effect on muscle fibre hyperplasia. 

 

H03: Rearing Atlantic salmon post-smolts in semi-closed raceway systems and exposing them 

to a 10-20 cm/ water current has no significant effect on expressed mRNA levels of MEF2C, 

GATA4 and VEGF. 
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2 Materials and methods 

2.1 Fish material and rearing conditions 

The Atlantic salmon smolts used in this experiment were reared at Sjøtroll Havbruk AS 

facilities located at Kjærelva, Fitjar. A total number of 321.412 fish were used in the 

experiment, which had the same genetic and biological background, originating from the strain 

Salmobreed QTL duo, yearling smolts (1+). The eggs were incubated at 5.8 oC, and hatched at 

513 degree days.  First feeding began in early May 2015 (387 degree-days post hatching) and 

took place under conditions of constant light (LL) and heated water (approximately 14 oC). 

During the freshwater period, the fish were kept indoors in green 7m rearing tanks (70m3) at 

ambient water temperature (Table 2.1) and at constant light (until January 11th, 2016, start 

photoperiod treatment). A commercial dry diet (EWOS, Bergen, Norway) was fed to all fish 

according to temperature and fish size. 

 

Table 2.1. Monthly temperature from the June 2015 to June 2016 during the freshwater phase 

of the production. 

Month Minimum, oC Average, oC Maximum, oC 

06-2015 15,3 17,2 18,6 

07-2015 17,0 20,3 25 

08-2015 15,5 17,8 21,8 

09-2015 13,8 15,3 16,4 

10-2015 10,8 13,0 14,1 

11-2015 7,1 8,8 10,9 

12-2015 3,9 5,5 6,9 

01-2016 2,4 3,6 4,5 

02-2016 1,8 2,6 3 

03-2016 3,0 3,8 4,7 

04-2016 4,3 5,8 7,6 

05-2016 6,8 8,3 9,5 
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Smolts were produced according to standard protocols for yearling smolts. A photoperiod 

regime that is known for stimulating smoltification in salmonids was initiated at 11 January 

(Handeland and Stefansson, 2001). This treatment included a decrease in day length from 

LD24:0 to LD12:12 for 8 weeks (January 11th to March 7th), followed by another 8 weeks on 

LD24:0 (March 8th to April 30th). By the end of April, all fish showed morphological sings 

indicating a normal smoltification, including: lowered condition, dark fin margins, silvery 

scales and high NKA-activity (Stefansson et al., 2008). The fish were then ready for transfer to 

seawater and was transferred by well boat (Mowistar) to their respective facilities. 
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2.2 Experimental facilities 

The Preline semi-closed raceway system is located at Sagen in Samnanger, in the Trengereid 

fjord (Hordaland, Norway) (Figure 2.1). This location has a depth of 100 m and is well protected 

from wind, waves and have good water circulation. The Preline platform is 50 x 12 x 8 m and 

holds approximately 2000 m3 water volume (max water flow 400 m3/min, water exchange rate 

5-6 min, water current 10-20 cm/s). Water current was measured by Lerøy Vest AS using a 

Vector 3D Acoustic Velocimeter (Nortek AS, Norway). During the experimental period the 

water was collected from a depth of 35 m and circulated via the inlet pipe to the outlet pipe that 

creates a one-way water current through the system. A traditional open 160m conical circular 

cage was used as control and was located at Skorpo (Hardanger, Norway) (Figure 2.2). This 

location had a depth of approximately 250 m and the cages consisted of an Akvaline ring with 

a 60m deep pen (Norwegian name: spissnot). A facility at Buholmen (Hordaland, Norway) was 

used for the Preline group during the on-growing phase. The system was similar to the one at 

Skorpo.   

 

Figure 2.1. Preline location at Sagen, Trengereid fjord and a diagram of the Preline semi-

closed system (Sveier et al., 2015). 

 

Figure 2.2. Control sea cage facilities at Skorpo, Hardanger fjord and a diagram of the open 

netpen system used at Skorpo (Sveier et al., 2015). 
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2.3 Experimental design 

The experiment consisted of three different phases;  

1. Freshwater: This phase was conducted at the Sjøtroll Havbruk AS facilities located at 

Kjærelva, Fitjar. Fish from this facility were divided into two separate groups; Preline and 

Control.  

2. Post-smolt in seawater: A total of 157 126 and 164 286 fish were transferred to the Preline 

and control facilities on April 30th and May 5th, 2016, respectively.  

3. On-growing in seawater (adult): The Preline fish were transferred by well boat to a 

traditional sea cage facility at Buholmen in Hordaland, Norway on August 31st 2016, while the 

control fish were kept at the Skorpo facility. A schematic representation of the experimental 

protocol is depicted in Figure 2.3. 

 

 

Figure 2.3 Schematic representation of the experimental protocol. One sampling was 

conducted during the freshwater phase (April 15th 2016) and three during the post-smolt phase 

at Preline and control facilities, after one (June 1/2nd), two (June29/30th) and four months 

(August 29/30th) in seawater. 

 

All husbandry practices at the farms were conducted in accordance with standard protocol for 

Lerøy Vest AS. Oxygen concentrations, feeding, salinity and temperature were controlled by 

automatic systems (OxyGuard Commander, Sterner) at the facilities and all data was registered 

daily (Fishtalk, AkvaGroup, Bryne). Oxygen, temperature and salinity were registered at 3m, 

8m and 15m in the open cage systems at both Skorpo and Buholmen, and in the inlet and outlet 

water in the Preline system. All groups were checked twice per day and dead fish were removed. 

The fish in both treatments were fed commercial freshwater/seawater dry diets (EWOS, 

Norway) from automatic feeders (AkvaGroup) throughout the study. 
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2.4 Sampling protocol 

There was one sampling conducted during the freshwater phase on April 15th 2016. Three 

samplings were conducted during the post-smolt phase at each facility, after one month (Control 

– June 1st and Preline – June 2nd), two months (Preline – June 29th and Control – June 30th) and 

four months (Preline – August 29th and Control – August 30th) in seawater. The sampling 

protocol for the post-smolt phase was the same as the freshwater phase. Weight estimations 

based on feed output (Fishtalk calculations, FCE=1.1) was conducted by Lerøy Vest AS 

throughout the post-smolt phase. Further, weight estimations (Fishtalk calculations, FCE=1.1) 

were conducted from the start of the on-growing phase to November 31st.  

Each time during sampling in phase 1, Freshwater and 2, Post-smolt in seawater, a total of 30 

fish were randomly selected by the use of a large net (Norwegian: Storhov) which was lowered 

down to 5 m in the Preline and cage systems. Thereafter, feed was thrown over the net to attract 

fish and then the net was quickly raised to collect fish. Further, the fish was humanely 

euthanized with NaCO3-buffered tricaine methanesulphonate (MS222, Sigma-Aldrich, St 

Louis, MO, USA) anesthetic. Size (weight, g and fork length, cm) for all individuals was 

measured (Mettler Toledo 2000 and length scale). Muscle samples (3-5mm thick) were taken 

posterior to the dorsal fin and stored on buffered formalin for histological image analysis of 

muscle fibre size and distribution in a predefined circular area of 1000 μm in diameter. In 

addition, the ventricle of the heart was sagittally separated into two parts and emptied of blood. 

The heart samples were stored on buffered formalin and RNA later for histological image 

analysis and molecular analysis, respectively. Further, heart, gill, muscle and head kidney 

samples were stored in RNA later in order to screen for selected Salmonid pathogens 

(SAV/PRV) using real-time RT-PCR analyses. 
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2.5 TGC, condition factor and feed conversion ratio 

Since the Preline and control facilities were located in different places, which varied in seawater 

temperature, a weight model incorporating growth rate/day dependent on the daily temperature 

was employed (Thermal Growth Coefficient, TGC). This model takes into account the optimal 

season temperature for fish growth and was calculated for the post-smolt and on-growing phase 

using the following equation: 

 

TGC= (Final weight1/3-Start weight1/3) x 1000/sum of daily temperature 

 

The condition factor (CF) of the randomly selected individuals were calculated for each 

treatment, by using the following equation:  

 

A relative percentage increase in weight was calculated for the two groups during the on-

growing phase, from estimated weight values. 

 

CF = (weight/(length)3) *100 

 

The feed conversion ratio (FCR) was calculated for the post-smolt and on-growing phase using 

the following equation: 

 

FCR = (Biomass gained / feed consumption) *100 

 

 

2.6 Histological image analysis   

Muscle and heart samples stored on buffered formalin were sent to Fish Vet Group Norge, Oslo, 

Norway, for embedding, sectioning, staining and mounting. The sections were then scanned at 

Høyteknologisenteret (Bergen, Norway), using a ZEISS Axio Scan.Z1 slide scanner 

(Oberkochen, Germany). The sections were analysed using ZEN 2.3 (blue edition, ZEISS 

Oberkochen, Germany). A circular area of 1000 μm in diameter in the epaxial white skeletal 

muscle was randomly chosen in approximately the same area for each section (Figure 2.4). In 

each predefined area, muscle fibre size was measured in μm for the greatest possible distance 

in each fibre, including those who only had parts inside the circle (Figure 2.5). Muscle fibre 

diameter was thereafter sorted into 20 μm interval groups (from 0-20 μm up to >220 μm). 

Frequency tables were made for each of the post-smolt phase sampling points.  
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Figure 2.4: In each histological section, a predefined area for the analysis of muscle fibre size 

and distribution was randomly chosen, in the white skeletal muscle, in approximately the same 

area for each section. 

 

 

Figure 2.5: Example of measured fibre diameter in all muscle fibres within a predefined area 

in the white skeletal muscle. All fibres were measured for the greatest possible distance. 
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2.7 Histopathology and pathological real time RT-PCR screening 

As a parallel to the analysis of muscle fibre size, each section was investigated for 

histopathological signs of degeneration and necrosis in red and white skeletal muscle, and heart 

muscle. Based on this histopathological investigation, a total of 90 heart samples from both 

sites, collected in the freshwater (n=30) and last sampling of the post-smolt phase (n=60) (all 

stored in RNA later), were screened for Piscine orthoreovirus (PRV) and salmonid alphavirus 

(SAV), using real time RT-PCR analysis (Nylund et al., 2015). RNA from heart was extracted 

as described below (2.8.1 RNA precipitation). All RNA samples were stored at -20°C until 

further use.   

 

The AgPt-IDTM one step RT-PCR kit (Applied assistant) was used to test the extracted RNA 

from heart tissues for presence of SAV and PRV. The following real time RT-PCR assays were 

used: the PRV-M2 assay targeting the M2 segment capsid protein of PRV (Nylund et al., 2015), 

and the nsP1assay, targeting the nsP1 gene of SAV (Andersen et al., 2007). The real-time PCR 

protocol is described in Gunnarsson et al. (2017). The housekeeping gene elongation factor 1 

alpha (EF1AA assay) was used as an internal control (Olsvik et al., 2005). Standard curves were 

generated using 10-fold serial dilutions of RNA in three parallels. Regression analysis, standard 

curve slopes s (cycle threshold, Ct, versus log quantity), amplification efficiency E (E = [101/(–

slope)] – 1), and the coefficient of determination, R2, were calculated for all assays.  Each run of 

the real-time RT-PCR consisted of 45 cycles and the samples were considered positive when 

the fluorescence signal increased above a set threshold of 0.1. Negative controls, RNA 

extraction controls (lacking target RNA) and no template control, were included in all runs at a 

rate of 1 control per 10 samples to avoid false positives. 

 

2.8 Molecular analysis of heart 

2.8.1 RNA precipitation 

For isolation of total RNA, heart samples were purified using a QIAsymphony nucleic acid 

purification robot (Qiagen, Hilden, Germany). A standard protocol for general purification from 

the manufacturer was followed. A total of 90 heart samples from the freshwater phase (n=30) 

and the last sampling (n=60) in the post-smolt phase was purified. Before the QIA symphony 

procedure, tissue samples had to be disrupted and homogenized. Tubes were prepared with 6-7 

mg of zirconium oxide beads (1.4 µm) and 600 μl of RLT plus lysis buffer. A piece of heart 



 
22 

 

tissue (20-25 mg) was cut off, squeezed slightly to remove access RNA later, weighed and put 

into tubes containing buffer. Samples were then homogenized for 15 seconds at 5000 rpm in a 

Precellys 24 (Bertin technologies, Versailles, France). Homogenization samples were then left 

at least 5 minutes at room temperature for foam subsidence and placed in the refrigerator until 

sufficient number of samples was prepared for RNA purification. The total RNA concentration 

and purity was measured using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher 

Scientific, Massachusetts, United States). 

 

2.8.2 Reverse transcriptase synthesis (cDNA synthesis) 

cDNA from the freshwater fish and from the last two samplings in the post-smolt phase was 

synthesized as follows. Most of the steps were conducted with a Hamilton Microlab Starlet 

robot (Hamilton, Nevada, United States). The following components were added to a nuclease-

free microcentrifuge tube: 1 μl of oligo(dT)20 (50μM), 500 ng of total RNA, 1 μl 10 mM dNTP 

Mix (10 mM each dATP, dGTP, dCTP and dTTP at neutral pH) and sterile, distilled water to 

make a total volume of 13 μl. Further, this mixture was put in C1000 Touch Thermal Cycler 

(Bio-Rad Laboratories, CA, USA) and heated to 65°C for 5 min and then incubated on ice for 

1 min. Then 4 μl of 5X First-Strand Buffer, along with 1 μl 0.1 M DTT, 1 μl RNaseOUTTM 

Recombinant RNase Inhibitor and 1 μl SuperScriptTM III RT (200 units/μl) was added and 

samples were incubated at 50°C for 60 minutes. Starting from pooled cDNA, a dilution series 

with the following concentrations was done with nuclease free water: 1:2, 1:4, 1:8, 1:16, 1:32, 

1:64, 1:128. Based on this dilution series, an optimal dilution of all samples was determined to 

be 1:7.5. The mastermix (MM) for each gene consisted of SYBR Green (78.84 μl), specific 

primers (5.4 μl x 2, forward and reverse) and nuclease free water (36.36 μl).   

 

 

2.8.3 qPCR 

Quantitative PCR (q-PCR) was performed to quantify the mRNA abundance of selected genes 

using the C1000 Touch Thermal Cycler, CFX96 Real-Time System (Bio-Rad Laboratories, 

CA, USA) in conjunction with the software CFX Manager (version 3.1, Bio-Rad). The qPCR 

reactions were performed in a total volume of 10µl containing 4.38 µl Gene Expression Master 

Mix (Bio-Rad Laboratories, CA, USA), 0.3 µl of forward and reverse primer (200 nm final 

concentration) (Table 2.2), 0.2 µl of nuclease free water and 3 µl of cDNA diluted 1:7.5 The 

qPCR reactions were performed in 96-well plates (Bio-Rad) and the following thermal cycling 

protocol was used: 3 min at 95°C, 37 repetitions of 15 sec at 95°C and 1 min at 60°C and in the 
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end 10 sec at 95°C, 5 sec at 65°C and 5 sec at 95°C. All samples were run in duplicates and to 

confirm absence of DNA contamination and residues, “non-template control (NTC)” (Bio-Rad 

Laboratories, CA, USA) was included to the all plates. Furthermore, each plate had duplicate 

sample of pooled cDNA that was included on each plate and used for correction of differences 

between plates. Targets genes and reference gene for each individual sample were run in 

duplicates on separate plates. Prior to analyzing mRNA expression on all samples, all primer 

set were validated by running two-fold dilution series made from a representative pool of cDNA 

taken from selected samples covering all time points and different groups.   

The amplification efficiency (E) was determined by the slope of a regression line (threshold 

cycle (ct) values versus log cDNA dilution) from the dilution curve. The efficiency was 

calculated based on the following formula (Pfaffl, 2004) 

 

E = 10(-1/slope) 

 

Normalization of the genes expression based on target versus reference gene was calculated as 

follows (Pfaffl, 2004): 

 

Ratio = E (CTmean)ref / E (CTmean)target 

 

Ct - threshold cycle for each individual sample 

E ref – qPCR efficiency of the reference gene.  

E target – qPCR efficiency of the target gene.  

Ct mean – average Ct value of duplicate reaction of individual sample 

 

 

Table 2.2 Primer sequences for each qPCR assay (heart samples) 

Gene Primer sequences (5'  3') Accession no. Reference 

Ef1a 
F CCCCTCCAGGACGTTTACAAA 

AF321836 
(Olsvik et al., 

2005) R CACACGGCCCACAGGTACA 

MEF2C 
F CACCGTAACTCGCCTGGTCT 

GU252207 
(Castro et al., 

2013) R GCTTGCGGTTGCTGTTCATA 

GATA4 
F TCTCCATTCGACAGCTCCGT 

HM475152 
(Castro et al., 

2013) R CATCGCTCCACAGTTCACACA 

VEGF 
F AGACAGCCCACATACCCAAG 

NM_001124417 
(Castro et al., 

2013) R GAAGACGTCCACCAGCATCT 
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2.9 Statistical analysis 

All data sets were tested for normality using the Kolmogornov-Smirnov test. The Hartley F 

max test was used to test for homogeneity of variances for all groups. All the collected data 

from the experiment was analysed using the statistical program STATISTICA 13.2. To 

determine the level of significance for weight, length and condition factor between treatments, 

a one-way ANOVA was conducted. A one-way ANCOVA was conducted on the white skeletal 

muscle fibre size, to determine the level of significance between treatments, where length was 

used as a covariate factor. This was to remove the effect of size as a factor. A one-way ANOVA 

was conducted to see if there were any differences between the fish that showed symptoms of 

degeneration and necrosis in red and white skeletal muscle, and heart muscle. The need for 

homogeneity of variances was fulfilled for all groups, except for the molecular analysis of heart 

muscle. Therefore, a non-parametric ANOVA (Kruskal-Wallis ANOVA) was conducted for 

the cardiac muscle mRNA expression of MEF2C, GATA4 and VEGF, to determine the level 

of significance between treatments. A non-parametric ANOVA (Kruskal-Wallis ANOVA) was 

also conducted to determine the level of significance between SAV-positive and negative fish, 

within the last sampling of the control group. All statistical results are given in Appendix I. 

Differences were considered significant when p<0.05. All data in tables and figures are given 

as mean ± standard error of mean (SEM). 
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3 Results 

Temperature, salinity and oxygen varied within the net pen at the open cage facilities and the 

mentioned parameters were registered daily at three different depths: 3 m, 8 m and 15 m. 

Temperature, salinity and oxygen for the open cage systems, both at Skorpo and Buholmen, are 

given as average of these three depths. For the Preline facility, these parameters were monitored 

at the water inlet and outlet, and the registrations from the outlet water are given in the results. 

In order to compare the systems, all registered data for these parameters are given from May 

5th 2016 to November 31st 2016. 

 

3.1 Temperature 

An increase in temperature from about 7,5°C on May 5th, to 15 and 12,3 °C on August 31st, was 

seen in the control and Preline facilities, respectively (Figure 3.1). After the Preline fish was 

transferred to Buholmen for the on-growing period the temperature gradually increased from 

15,3 °C on August 31st, peaking at 16,9 °C September 21st, and after that gradually decreasing 

to 8,7 °C on November 31st. For the control group the same trends were seen, from 15 °C on 

August 31st, peaking at 16,4 °C September 21st, and further, gradually decreasing to 8,6 °C on 

November 31st.   
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Figure 3.1: Average water temperature (°C) at the Preline and control (red) facilities from May 

5th to November 31st. The blue line represents average temperature in the Preline system during 

the post-smolt phase, from May 5th to August 31st, whereas the green line represents the on-

growing period at Buhomen from August 31st to November 31st. 
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3.2 Salinity 

The registered salinity at the two facilities was higher for Preline than the control during both 

the post-smolt phase and the on growing phase (Figure 3.2). The salinity during the post-smolt 

phase varied between 26,2 and 34,7 ppt, and averaged at 31,7 ppt, in the Preline system. In the 

control cage it varied between 21,6 and 27,5 ppt and averaged at 24,2 ppt. During the on-

growing period the lowest registered salinity was 26.9 and 20.1 ppt and highest 30.5 and 27.6 

ppt in Preline (Buholmen) and control groups, respectively. The average during this period was 

28.8 ppt for Preline and 24.6 ppt for control. 
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Figure 3.2: Salinity (ppt) at the Preline and control (red) facilities from May 5th to November 

31st. The blue line represents the salinity in the Preline system during the post-smolt phase, 

from May 5th to August 31st, whereas the green line represents the salinity during on-growing 

period at Buholmen from August 31st to November 31st. 

 

 

 

 

 

 



 
27 

 

3.3 Oxygen 

The lowest oxygen concentration registered in the outlet water at the Preline facility during the 

post-smolt phase was 72,2%, whereas the highest registered concentration was 131,56 %. For 

the control group the concentrations were 75,7 % and 111,6 % (Figure 3.3). The average O2-

concentration was 102.74 % and 97.21 % in Preline and control, respectively, during this 

period. During the on growing phase the lowest registered O2-concentration was 83,8 % for 

Preline (Buholmen) and 78 % for the control fish. The highest O2-concentration was registered 

at 99,4 % in Preline and 96 % in control. The average O2-concentration was 92.96 % and 86.63 

% in Preline and control groups, respectively, during this period. 
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Figure 3.3: Oxygen concentration (%) at the Preline and control (red) facilities from May 5th 

to November 31st. The blue line represents the O2-concentration in the Preline system during 

the post-smolt phase, from May 5th to August 31st, whereas the green line represents the O2-

concentration during on-growing period at Buholmen from August 31st to November 31st. 
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3.4 Mortality 

Mortality was registered from April 30th at the Preline facility and from May 5th at the control 

facility during the post-smolt phase. From the first registered point at both facilities, the 

accumulated mortality was 0.54 and 0 % for Preline and control, respectively. The Preline 

facility had a higher mortality rate throughout the post-smolt phase, and by the end of August 

the rate had changed to 1.34 and 0.98 % for Preline and control, respectively (Figure 3.4). 

Notably, three months after the post-smolt phase the mortality in the control group had 

increased to 3.52%, while it had increased to 2.48% in the Preline (Buholmen) group.  
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Figure 3.4: Accumulated mortality (%) in the Preline and control (red) group from April 30th 

(Preline) and May 5th (control) to November 30th. The blue line represents the post-smolt phase 

of the Preline group, from April 30th to August 31st, whereas the green line represents the on-

growing period at Buholmen from August 31st to November 31st. 
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3.5 Weight 

Mean weight (mean ±SEM) from the freshwater sampling (FW) on April 15th was measured to 

101 ± 4.2 g. From the weight measurements that was conducted during the post-smolt 

samplings, there was a significant increase (p<0.001) in mean weight from sampling 1 (June 

1/2nd) to sampling 3 (August 29/30th) for both groups. For the Preline fish the increase was from 

130.51 ± 10.9 g to 429.27 ± 15.4g and 125.01 ± 4.4g to 730 ± 57.2g for the control group 

(Figure 3.5). There were significant differences in mean weight between the Preline and control 

groups (p<0.001) at sampling 2 and 3 during the post-smolt phase.  

FW Sampling 1 Sampling 2 Sampling 3
0

100

200

300

400

500

600

700

800

900

M
e

a
n

 w
e

ig
h

t 
(g

)

 Preline
 Control

***

***

 

Figure 3.5: Mean weight in Preline and control groups from the freshwater sampling (FW) on 

April 15th, and during the post-smolt phase, after sampling 1 (June 1/2nd), sampling 2 

(June29/30th) and sampling 3 (August 29/30th). Asterisk indicates the level of significance 

between treatments; *p<0.05, **p<0.01, ***p<0.001. Each data sampling point is given as 

mean±SEM, n=30. 
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An estimation of average weight based on feed output (Fishtalk calculations, FCE=1.1) was 

done by the Lerøy Vest AS. From June 1/2nd to August 29/30st there was an increase in mean 

weight, from 132 to 443.6 g in the Preline group, while the fish at the control facility had an 

increase in mean weight, from 136.7 to 733.5 g, during the same period (Figure 3.6). On 

November 31st, three months after the post-smolt phase, the mean weight of the two groups was 

estimated to 1474.7 g and 1666 g for Preline (Buholmen) and control, respectively (Figure 3.6). 

During the on-growing period the Preline group had a 232.44 % increase in weight, from 

August 31st to November 31st, while the Control group had a 122.73 % increase during the same 

period.  
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Figure 3.6: Estimated mean weight (Fishtalk calculations, FCE=1.1) for Preline and control 

(red line) groups from May 5th to November 31st. The blue line represents the weight gain in 

the Preline system during the post-smolt phase, from May 5th to August 31st, whereas the green 

line represents the weight gain during on-growing period at Buholmen from August 31st to 

November 31st. 
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3.6 Length 

Mean length (mean ±SEM) from the freshwater sampling (FW) on April 15th was measured to 

20.6 ± 0.2 cm. From the length measurements that was conducted during the post-smolt 

samplings, there was a significant increase (p<0.001) in mean length from sampling 1 (June 

1/2nd) to sampling 3 (August 29/30th) for both groups. This increase was from 22.9 ± 0.2 cm to 

38.7 ± 0.9 cm in the control group and from 23.2 ± 0,5 cm to 33.4 ± 0.3 cm in the Preline group 

(Figure 3.7). There were significant differences in mean length between the Preline and control 

groups (p<0.001) at sampling 2 and 3, during the post-smolt phase.  
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Figure 3.7: Mean length of sampled fish in Preline and control groups from the freshwater 

sampling (FW) on April 15th, and during the post-smolt phase, after sampling 1 (June 1/2nd), 

sampling 2 (June29/30th) and sampling 3 (August 29/30th). Asterisk indicates the level of 

significance between treatments; *p<0.05, **p<0.01, ***p<0.001. Each data sampling point 

is given as mean±SEM, n=30. 
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3.7 Condition factor 

The average (mean ±SEM) condition factor was calculated to 1.15 ± 0.01 from the freshwater 

sampling (FW) conducted on April 15th. From sampling 1 (June 1/2nd) to sampling 3 (August 

29/30th) the condition factor significantly increased (p<0.001) from 1.03 ± 0.01 to 1.20 ± 0.02 

in the control group and from 1.04 ± 0.01 to 1.12 ± 0.02 in the Preline group (Figure 3.8). There 

was a significant difference in CF at sampling 3 in the post-smolt phase (p<0.05).  
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Figure 3.8: Condition factor (CF) of sampled fish in Preline and control groups from the 

freshwater sampling (FW) on April 15th, and during the post-smolt phase, after sampling 1 

(June 1/2nd), sampling 2 (June29/30th) and sampling 3 (August 29/30th). Asterisk indicates the 

level of significance between treatments; * p<0.05, ** p<0.01, *** p<0.001. Each data 

sampling point is given as mean±SEM, n=30. 
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3.8 FCR and TGC 

The feed conversion ratio (FCR) was found to be 1.04 in the Preline group and 1.08 in the 

control group, during the post-smolt phase (May 5th – August 31st) (Table 3.1). During the on-

growing phase the FCR changed to 1.03 in the Preline (Buholmen) group and stayed the same 

in the control group, 1.08. 

Table 3.1 Feed Conversion Ratio (FCR) in Preline and Conrol groups during the post-smolt 

(May 5th – August 31st) and on-growing phase (August 31st – November 30th). 

 

Group FCR 

Preline (post-smolt) 1.04 

Control (post-smolt) 1.08 

Preline (on-growing) 1.03 

Control (on-growing) 1.08 

 

TGC for the sampled fish was calculated to 3.149 and 2.778 for control and Preline, 

respectively, during the post-smolt phase (Table 3.2). TGC was also calculated from estimated 

values (Fishtalk calculations, FCE=1.1), to 3.041 and 2.850 for control and Preline during the 

same period (June 1/2nd to August 29/30th). After the Preline fish was transferred to Buholmen, 

for the on-growing phase, the TGC value decreased in the control group (2.318) and increased 

in the Preline group (3.001) (Table 3.2).  

Table 3.2 Thermal Growth Coefficient (TGC) in Preline and control groups during the post-

smolt (May 5th – August 31st) and on-growing phase (August 31st – November 30th). TGC was 

calculated from weight samplings, and estimated weight values.  

Group TGC (weight from sampling) TGC (estimated weight) 

Preline (post-smolt) 2.778 2.850 

Control (post-smolt) 3.149 3.041 

Preline (on-growing) - 3.001 

Control (on-growing) - 2.318 
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3.9 Histological image analysis 

3.9.1 Sampling 1 (June 1/2nd) 

At the first sampling point (June 1/2nd) the control fish had a significantly (p<0.05) higher 

frequency of muscle fibres in the range of 0-20 and 140-160 μm, while the Preline fish had had 

a significant (p<0.01) higher frequency in the 40-60 μm interval (Figure 3.9). The average 

number of fibres per predefined area was 258 ± 7.4 for control and 266.7 ± 9.1 for Preline, at 

this sampling point. 
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Figure 3.9: Frequency (%) of muscle fibres in 20 μm interval groups in Preline and control 

from sampling 1 (June 1/2nd) during the post-smolt phase. Asterisk indicates the level of 

significance of treatment between groups; * p<0.05, ** p<0.01, *** p<0.001.  
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3.9.2 Sampling 2 (June29/30th) 

At sampling 2 (June29/30th) the control group had a significantly (p<0.001) higher frequency 

of muscle fibres in the 20-40 μm interval, while the Preline group had a significantly (p<0.05) 

higher frequency in the 100-120, 120-140 and 160-180 μm interval groups (Figure 3.10). The 

average number of fibres per predefined area was 312.2 ± 14.4 for control and 257.5 ± 7.4 for 

Preline, at this sampling point. 
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Figure 3.10: Frequency (%) of muscle fibres in 20 μm interval groups in Preline and control 

from sampling 2 (June29/30th) during the post-smolt phase. Asterisk indicates the level of 

significance of treatment between groups; * p<0.05, ** p<0.01, *** p<0.001.  
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3.9.3 Sampling 3 (August 29/30th) 

During sampling 3 (August 29/30th), at the end of the post-smolt phase, the fish in the Preline 

group had a significantly (p<0.05) higher frequency of the smallest muscle fibres, ranging from 

0-20 and 20-40 μm, compared to the control fish. In the 0-20 μm interval, this equals a 2.44 

times higher frequency. The control group had a significantly (p<0.001) higher frequency in 

the 60-80 μm interval group (Figure 3.11). The average number of fibres per predefined area 

was 259 ± 12.9 for control and 265.5 ± 10.9 for Preline, at this sampling point. 
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Figure 3.11: Frequency (%) of muscle fibres in 20 μm interval groups in Preline and control 

from sampling 3 (August 29/30th) during the post-smolt phase. Asterisk indicates the level of 

significance of treatment between groups; * p<0.05, ** p<0.01, *** p<0.001.  
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3.10 Histopathology and pathological real time RT-PCR screening 

8 of the 30 fish from sampling 3 (August 29/30th), during the post-smolt phase, in the control 

group showed histological signs of degeneration and necrosis in red and white skeletal muscle, 

and heart muscle (Figure 3.13-3.15). However, through real time RT-PCR, positive results for 

salmonid alphavirus (SAV) was found in 5 fish in the control group (16,67 %) from sampling 

3 during the post-smolt phase (Figure 3.12). These were five of the fish that also showed 

histopathological symptoms of degeneration and necrosis. Positive results for PRV was found 

in all groups tested, freshwater (80,0 %), Preline (80,0 %) and control (73,33 %). There were 

no significant differences in muscle fibre size distribution between fish that showed histological 

signs of degeneration and necrosis in red and white skeletal muscle, and heart muscle, and those 

that did not, within the control group.  
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Figure 3.12: Prevalence (%) of Piscine orthoreovirus (PRV) and salmonid alphavirus (SAV) in 

Freshwater (FW), and in Preline and Control from sampling 3 (August 29/30th) during the post-

smolt phase 
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Figure 3.13A: Black arrows are showing degenerated white skeletal muscle fibres. Scale bar 

at 100 μm. Figure 3.13B Showing normal white skeletal muscle fibres. Scale bar at 100 μm. 

 

Figure 3.14A: Black arrow is showing a necrotic cardiac muscle fibre. Scale bar at 100 μm. 

Figure 3.14B Showing normal cardiac muscle fibres. Scale bar at 100 μm. 

 

Figure 3.15A: Black arrows are showing degenerated red skeletal muscle fibres. Scale bar at 

50 μm. Figure 3.15B Showing normal red skeletal muscle fibres. Scale bar at 100 μm. 
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3.11 Molecular analysis of heart 

There were significant (p<0.001) higher mRNA expression levels of MEF2C, GATA4 and 

VEGF in freshwater group (FW), compared to Preline and control, from sampling 3 (August 

29/30th). The Preline fish had significant (p<0.01) higher expressed mRNA levels of MEF2C 

compared to control at sampling 3 (Figure 3.16). Furthermore, there was a significant difference 

(p<0.05) in expressed mRNA levels of GATA4 between Preline and control at sampling 3 

(Figure 3.17). No significant differences were found for mRNA levels of VEGF, between 

Preline and control at sampling 3 (Figure 3.18). No significant differences were found for the 

expressed mRNA levels of MEF2C within the control group, when SAV-positive fish were 

compared with SAV-negative. However, significant (p<0.05) differences were found for the 

mRNA expression levels of GATA4 and VEGF within the control group. 
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Figure 3.16: Expressed mRNA levels of MEF2C, relative to housekeeping gene (EF1a), in 

freshwater (FW), and control and Preline fish from sampling 3 (August 29/30th), during the 

post-smolt phase. Different letters represent significant differences in mRNA expression levels 

between groups (p<0.05). 
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Figure 3.17: Expressed mRNA levels of GATA4, relative to housekeeping gene (EF1a), in 

freshwater (FW), and control and Preline fish from sampling 3 (August 29/30th), during the 

post-smolt phase. Different letters represent significant differences in mRNA expression levels 

between groups (p<0.05). 
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Figure 3.18: Expressed mRNA levels of VEGF, relative to housekeeping gene (EF1a), in 

freshwater, and control and Preline fish from sampling 3 (August 29/30th), during the post-

smolt phase. Different letters represent significant differences in mRNA expression levels 

between groups (p<0.05). 

.  
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4 Discussion 

4.1 Discussion of methods 

In order to compare the two groups, it was essential that the fish originated from the same 

genetic background and rearing conditions during the freshwater stage, and had a similar 

experimental period in seawater. Even though the environmental conditions and physical 

parameters cannot be controlled in this experiment, the results presented in this thesis show 

field results as they would be in a real production situation. Hence, this study can be regarded 

as a large-scale follow-up on studies that test the effect of training in small scale lab 

experiments. Optimally, the sampling would have been conducted on the same day. However, 

this was not logistically possible due to long distances between locations. 

 

 

4.1.1 Water parameters 

Since this project is conducted at full scale production, similar environmental conditions 

between experimental groups is difficult to achieve, in contrast to small scale lab experiments. 

All the three environmental parameters that was measured (temperature, salinity, oxygen) 

varied between Preline and control, both during the post-smolt and the on-growing phase. This 

variation was mostly due to the two different systems, but also differences between locations. 

Since the water intake of the Preline system was at a depth of 35 m, and the fish in the control 

facility were exposed to surface layers, one would expect differences in temperature, salinity 

and oxygen. The effect of this causes different temperature controlled growth patterns (see 

4.1.2). Further, fish in the open system distribute themselves over various depths, so knowing 

which exact parameter they were exposed to is difficult. However, the measured data of oxygen 

and salinity was within normal levels and should not have affected growth and survival in 

Preline and control (Duston, 1994, Boeuf and Payan, 2001, Thorarensen and Farrell, 2011).   
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4.1.2 Growth 

Temperature is regarded as one of the main factors influencing growth (Fry, 1971). Since the 

average temperature during the post-smolt phase (9.5 °C in Preline, 12.9 °C in control) varied 

between facilities, a difference in final weight and length was expected. The estimations based 

on feed output (Fishtalk calculations, FCE=1.1) correspond with the weight measurements that 

we conducted during the post-smolt sampling. Therefore, we expect that the weight estimations 

conducted during the on-growing phase are credible. TGC in this study was not calculated from 

individually tagged fish, which would be optimal. To compensate for this, 30 random sampled 

fish were used. It should also be noted that TGC should be used with caution when temperature 

exceeds the optimum of 15-16 °C (Jobling, 2003), which it did during the on-growing period. 

Growth rate starts to decrease at temperatures above optimum, so calculating TGC is most 

accurate between 4-14 °C. This will most likely not affect the TGC, as the period with 

temperatures above 16 °C was short and at approximately the same time for both groups.    

 

 

4.1.3 Histology  

The fish in this project is the third generation reared in the Preline system and is a continuation 

of an ongoing project (SFI, CtrlAQUA). For the analysis of muscle fibre size, the first 

generation was examined in the same way as the current by Sveier et al. (2015). Therefore, the 

results from this study will be compared to the previous generation, to see if there are any 

similarities that can be observed. Compared to Sveier et al. (2015), the predefined area in which 

muscle cells was counted was doubled, to get more data to analyse. To best compare these two 

studies, the methods used were similar, including measuring fibre diameter for the furthest 

possible distance. Since the sectioning can affect how the fibres will appear in a histological 

section, measuring the fibres for the shortest possible distance was considered. However, since 

there was a large number of individuals and a large predefined area with a great number of 

fibres, the current method was considered to be optimal.  
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4.1.4 Histopathology 

Other facilities in the same fjord system as the control facility had detected SAV in their fish, 

so it was suspected that SAV might be present in the control fish as well. Since SAV causes 

necrosis and degeneration in heart and skeletal muscle (Bruno et al., 2013), each histological 

section was investigated for such symptoms. Symptoms were only found in the control group 

at the last sampling point in the post-smolt phase. Therefore, real time RT-PCR analysis was 

used to detect if SAV was present. It was discussed whether the fish that showed signs of 

necrosis and degeneration from histology, and those were SAV was present, should be included 

in the study. Therefore, a statistical test (one-way ANOVA) was conducted, to establish 

potential differences between fish with and without symptoms. No significant differences were 

found for muscle fibre size within the control group, when fish that showed symptoms were 

compared with fish without symptoms. Therefore, these fish were not excluded from the study. 

Further, no significant differences were found for the expressed mRNA levels of MEF2C within 

the control group. However, significant (p<0.05) differences were found for the mRNA 

expression levels of GATA4 and VEGF within the control group, so SAV-positive fish were 

excluded for the analysis of these genes. PRV was detected in both Preline (80%) and control 

(73.33%), and similar to SAV, it causes necrosis and degeneration in heart and skeletal muscle 

(Bruno et al., 2013). However, since SAV was detected in 5 of the 8 fish that showed 

histological signs of necrosis and degeneration, it was presumed that SAV was the cause. 

 

4.1.5 Heart 

Heart weight was planned to be measured, in order to calculate relative ventricular mass 

(RVM), but problems with waves at the open cage facility made it impossible to get accurate 

weighings. 30 random sampled fish were brought back to Høyteknologisenteret (Bergen, 

Norway) to do the measuring there, but by that time, the blood inside the heart had coagulated 

and was impossible to get out. Therefore, data from heart weight are not presented in this study. 

Along with this, it should have been done a molecular analysis of all heart samplings. It would 

have been interesting to see how the expressed mRNA levels develop over time, by also 

analysing the first and second sampling in the post-smolt phase, but because of limited 

resources and time, this was not possible. However, the samples are stored on -80 °C and will 

be analysed on a later occasion.  
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4.1.6 Statistical analysis 

Since this is a large-scale experiment, it was not possible to run several experimental group 

replicates. The total number of fish transferred to the Preline and control facilities were 157 126 

and 164 286, respectively. Sampling in large-scale projects can be challenging with regards to 

ensureing homogenous sample material. Therefore, 30 fish were chosen for each sampling point 

which is based on what is common when pathogen screenings are conducted in large scale 

systems (Handeland, 2017, pers. comm.). TGC and FCR are observational values calculated 

from data given by Lerøy Vest AS, for each phase. Since there is only one replicate for each 

treatment, no statistical analysis could be conducted for these values. To get more data to 

analyse statistically, the predefined area in the histological sections were doubled from what 

Sveier et al. (2015) analysed in their study. Since the size of the fish effects the frequency of 

small and large muscle fibres (Stickland, 1983), removing the effect of this covariate factor was 

necessary. Length was chosen as the measurement for size, since this factor is more stable than 

weight. Comparisons between generation one (Sveier et al., 2015) and the current generation 

gives the histological analysis of muscle fibres a timely parallel, which contribute to 

strengthening the interpretation of the results from the current study.  
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4.2 Discussion of results 

4.2.1 Growth and feed conversion  

Temperature is regarded as one of the main factors influencing growth (Fry, 1971). 

Temperature is controlling the rate of metabolic functions, and thereby, influencing the 

efficiency of increased biomass from feed energy transformation (Handeland et al., 2008). This 

was evident in the current experiment, as fish from the control group had a significant higher 

final weight, length and condition factor, compared to the Preline group, at the end of the post-

smolt phase. It can be assumed that this difference in growth is mostly due to exposure to 

different temperatures between experimental groups. The control group was exposed to higher 

temperatures (12,9 °C on average), whereas the Preline fish were reared in colder water (9,5 °C 

on average) pumped up from approximately 35 m. Since the temperature profiles differed 

between locations, a weight model incorporating growth rate/day dependent on the daily 

temperature was employed (Thermal Growth Coefficient, TGC), which takes into account the 

different rearing temperatures. It should be noted that during some parts of the on-growing 

phase, the water temperature exceeded 16 °C, which can affect the TGC value (Jobling, 2003). 

However, the temperature profiles between the groups during the on-growing phase did not 

differ as much as during the post-smolt phase and both exceeded 16 °C around the same time, 

thus, making them comparable. This model showed that the Preline fish still had a lower growth 

rate during the post-smolt phase. This was in contrast to what was found in Sveier et al. (2015), 

where TGC was similar in Preline and control (2.141). However, the TGC in Preline (2.778) is 

still around what is considered average (2.7), calculated and reviewed from several papers by 

Thorarensen and Farrell (2011). What is noteworthy is that after the Preline fish were 

transferred to Buholmen, for the on-growing phase, the TGC increased and exceeded that of 

the control group, and therefore, grew faster. The Preline fish had a higher relative increase in 

growth (232.44 %), compared to the control group (122.73 %), during this period. Studies have 

shown that fish kept at low temperatures (2-6 °C) can compensate for a set-back in growth, by 

rapidly increasing growth when exposed to warmer ambient temperatures (11-14 °C), and catch 

up with fish constantly kept at ambient temperatures.  (Mortensen and Damsgård, 1993, Nicieza 

and Metcalfe, 1997, Maclean and Metcalfe, 2001). This might explain why the Preline fish 

showed a higher relative increase in growth, even though the fish in these studies were exposed 

to abnormally low temperatures. Furthermore, it cannot be ruled out that the decrease we see in 

TGC for the control group is due to SAV or PRV.  
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Studies have shown that moderate exercise creates more efficient feed conversion in fish groups 

(Leon, 1986, East and Magnan, 1987, Christiansen et al., 1992). This was evident in the current 

study, as the observed feed conversion ratio was lower in the Preline fish group, compared to 

the control group. It is likely that the FCR was influenced by the training regime that the Preline 

fish were exposed to. The observed values in the current study are supported by other studies 

showing the direct effect of training, where appetite is stimulated and weight gain is achieved 

faster with less feed used (Davison, 1989), and studies showing decreased FCR as a result of 

exercise (Leon, 1986, East and Magnan, 1987, Christiansen et al., 1992). Along with this, 

studies have shown fewer interactions between individuals and reduced aggressive behaviour 

when groups are exposed to constant currents (Christiansen et al., 1991, Jobling et al., 1993, 

Solstorm et al., 2016). This is also, most likely, affecting the FCR in the Preline and control 

groups.  

4.2.2 Mortality 

Daily measurements from Lerøy Vest AS displayed a higher mortality rate directly after transfer 

to seawater in the Preline group, compared to control. Studies have described that fish used in 

exercise experiments tend to have an increased mortality rate during the first few days of 

exposure to an exercise regime (Davison and Goldspink, 1977, Totland et al., 1987). This might 

explain why the Preline fish showed a higher accumulated mortality than the control group 

directly after transfer to seawater. However, it is also likely that this accumulated mortality was 

due to complications during transportation, as the fish were transferred to seawater at different 

times. Furthermore, we can see from Figure 3.4 that the accumulated mortality in the control 

cage is gradually increasing over time, while the rate is quite stable in the Preline group. This 

was also shown in Totland et al. (1987), where raceway reared fish had a 1.2 % mortality rate 

after two weeks of the experiment. After 8 months, the mortality rates between raceway and 

control groups had changed to 4.4 % and 8.8 %, respectively. After the Preline fish were 

transferred to an open system, the control group exceeded Preline in accumulated mortality, 

and by the end of November the mortality rate was 3.52 % in control and 2.48% in Preline. One 

can speculate whether this difference is due to the training effect the Preline group were exposed 

to, and thereby producing a more robust fish, or if other factors were contributing. The 

pathological screening in this experiment showed that 16,67 % of the control fish showed 

positive results for a SAV. This virus is the cause of pancreas disease and can reduce appetite, 

growth and increase morality (Bruno et al., 2013). This might have contributed to an increase 

in accumulated mortality in the control group, especially during the on-growing phase.    
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4.2.3 Skeletal muscle 

From the histological analysis, we can see how the distribution of muscle fibre size changes as 

the fish grow. After one month in seawater, both groups have many fibres distributed in the 

interval 0-20 μm. After four months in seawater, the frequency of fibres in this interval had 

decreased in both groups, indicating less recruitment of new muscle fibres. As the fish grow, 

the rate of hyperplasia in skeletal muscle decreases (Weatherley et al., 1980, Stickland, 1983), 

which explains what is observed in the current study. However, the Preline fish showed a 

significant higher frequency of small muscle fibres (0-20 μm) at sampling 3, after four months 

in seawater. The same result was also found by Sveier et al. (2015) in the first generation reared 

in the Preline system (Figure 4.1). This can potentially be an indication of higher muscle fibre 

recruitment, compared to the control fish, as a result of aerobic training. Studies showing the 

effect of training on muscle fibre recruitment in salmonids are marginal. However, it has been 

shown, although not significant, tendencies for higher frequencies of small muscle fibres as a 

result of exercise (Rasmussen et al., 2011).  

  

Figure 4.1: Frequence (%) of muscle fibres in 20 μm interval groups from 0-300 μm in Preline 

and control generation 1. The figure is taken from Sveier et al., 2015.   
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The larger part of the fish muscle consists of white skeletal muscle. When the fibres in this 

muscle group contract, the fish gain high speed, but becomes exhausted after a short while. The 

ATP produced in the white skeletal muscle is mainly by hydrolysis of stored phosphocreatine, 

as the muscle cells contain few mitochondria (Videler, 1993). Even though white muscle fibres 

are mainly used for anaerobic swimming, studies have shown that they provide power for 

speeds that is less than what is known as the critical swimming speed (Ucrit), for some salmonid 

species (Johnston and Moon, 1980b, Burgetz et al., 1998). As the current experiment unfolded, 

the water velocity in the Preline system relative to fish size decreased from approximately 0.45 

– 0.85 BL/s in early May, to about 0.30-0.60 BL/s at the end of the post-smolt phase. Several 

studies have found that muscle fibre recruitment increase with higher water velocities for 

different fish species (Johnston and Moon, 1980a, Johnston and Moon, 1980b, Rome and 

Alexander, 1990), but at the same time Ucrit decreases as the fish grow (Remen et al., 2016). 

Furthermore, as fish get larger, the contribution to growth by muscle fibre recruitment 

decreases, and muscle fibre hypertrophy increases (Weatherley et al., 1980, Stickland, 1983). 

Since this study counted and measured muscle fibres within a predefined area, it would in 

principle imply that the number of muscle fibres inside this area should decrease from the start 

to the end of the experiment. This trend was not observed for either of the groups. Therefore, it 

is reasonable to assume that the difference in frequency in the muscle fibre interval group 0-20 

μm is due to muscle fibre recruitment, as a result of aerobic training.  

 

Several studies have indicated that water velocities above 0.40 BL/s can give positive effects 

on growth through muscle fibre hypertrophy (Walker and Emerson, 1978, Totland et al., 1987, 

Bugeon et al., 2003, Martin and Johnston, 2005, Ibarz et al., 2011). Totland et al. (1987) 

performed a more or less similar study as the current, where they tested what effect rearing 

Atlantic salmon in a raceway system had on muscle growth and composition, compared to a 

traditional net pen system. The experimental fish used in this study showed improved appetite 

and consequently 40 % higher weight than the reference fish at the end of the experiment. The 

white skeletal muscle of the raceway fish was the muscle type that was mostly effected and 

showed an increased muscle fibre size through hypertrophy, compared to the control group. An 

interesting note, when regarding muscle fibre hypertrophy, is that the Preline fish did not have 

a significant lower frequency of muscle fibres in the size class 120- 220 or larger μm at the end 

of the post-smolt phase, compared to the control group. This is noteworthy, since the number 

of larger muscle fibres tend to increase with the size of the fish, while the number of small 
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fibres decrease (Weatherley et al., 1980, Stickland, 1983). The Preline fish had a significantly 

lower weight and length, and were exposed to lower temperatures than the control group during 

the post-smolt phase, which could give reason to believe that they would also have fewer of the 

larger muscle fibres. Since this is not the case, it can be assumed that there has been an effect 

of training, causing increased muscle cell hypertrophy. After the Preline fish were transferred 

to Buholmen for the on-growing period, the TGC exceeded that of the control group. This 

increase could possibly be due to hypertrophy of newly recruited muscle fibres which were 

more present in the Preline fish, compared to control. If this is the case, there is a huge potential 

in rearing post-smolts in raceway systems, to increase the individual growth potential as a result 

of aerobic training.        

 

4.2.4 Heart condition 

No significant differences were found between groups when regarding expressed mRNA levels 

of VEGF. However, significant elevated mRNA levels of MEF2C and GATA4 were found in 

the Preline group compared to the control fish. MEF2C, GATA4 and VEGF are transcription 

factors known to show elevated mRNA levels when exposed to a training regime (Akazawa 

and Komuro, 2003, Iemitsu et al., 2006, Castro et al., 2013). Elevated mRNA levels of MEF2C 

and GATA4 can be an indication of increase in cardiomyocyte hypertrophy as an effect of 

training (Kolodziejczyk et al., 1999, Akazawa and Komuro, 2003, Castro et al., 2013). There 

was a significant decrease in expressed mRNA levels of all the genes evaluated in this study, 

from the freshwater stage to the end of the post-smolt phase. This could possibly be due to 

differences between freshwater and seawater stages, or that freshwater fish were exposed to a 

higher water velocity (Handeland, 2017, pers. comm.), giving a training effect. In Castro et al. 

(2013), it was found significant elevated expressed mRNA levels of MEF2C, GATA4 and 

VEGF in a group exposed to a high water velocity (1.3 BL/s), compared to a control group. The 

current study did not show significant differences in expression levels of VEGF, only in 

MEF2C and GATA4. It seems that higher water velocities provide a greater impact on the 

expressed mRNA levels of these genes, which might explain why no differences were found in 

VEGF mRNA levels. The water current in the Preline system had an effect on the expressed 

mRNA levels of MEF2C and GATA4, which is supported by the results from Castro et al. 

(2013). However, in Castro et al. (2013) the expression levels in the moderate velocity group 

(0.65 BL/s) showed no significant differences, compared to control. Although this water 

velocity might be more comparable to the results found in the current study, Castro et al. (2013) 
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did their study on juvenile Atlantic salmon, i.e. smaller fish. Since Ucrit has been found to 

decrease with size (Remen et al., 2016), it might be possible that the current study is comparable 

to a water velocity in between 0.65 and 1.3 BL/s. 

 

Improved contractile function is most likely regulated by the expressed levels of genes that are 

involved in the excitation-contraction process and in handling fluxes of Ca2+, in mammals 

(Morán et al., 2003, Rolim et al., 2007). Castro et al. (2013) found an up-regulation of genes 

related to the excitation-contraction process, which suggests improved contractility. If exercise 

training can lead to increased cardiac output as a result of increased ventricular mass and 

improved contractile function (Farrell et al., 1991, Castro et al., 2013), the Preline fish might 

be able to handle stressful situations better than untrained control fish. Cardiac failure is a factor 

contributing to accumulated mortality in the seawater stage of production (Hjeltnes et al., 2017). 

Therefore, it can be largely helpful with an improved heart condition, in a farming environment, 

when the fish undergoes treatments, is transported or handled in any way.  

 

5 Conclusions 

The fish in the Preline system had a lower weight, length and condition factor, compared to the 

control group during the post-smolt phase, due to differences in temperature. TGC was lower 

during this phase in the Preline group, suggesting a lower growth rate regardless of temperature. 

H01 can thereby be rejected, but as an effect of temperature, rather than aerobic exercise. When 

regarding muscle fibre size and distribution, we see the same trends as Sveier et al. (2015) did 

in their study. The Preline fish had, at the end of the post-smolt phase, a 2.44 times higher 

frequency of muscle fibres in the smallest interval group (0-20 μm), compared to the control 

fish. This, accompanied by what we know from literature on effects of training on muscle and 

muscle development, indicates that there is increased rate of muscle fibre recruitment. 

Therefore, we can reject H02 as it is shown clear indications of increased hyperplasia in the 

Preline fish. Furthermore, the Preline fish did not have a lower amount of large muscle fibres 

(>100 μm) at the end of the post-smolt phase, indicating hypertrophy of white skeletal muscle 

as an effect of aerobic exercise. The increase in TGC for the Preline fish during the on-growing 

phase, is possibly a result of hypertrophy of the newly recruited muscle fibres. This suggests 

that the trained fish have a greater growth potential, after the post-smolt period, than untrained 

fish, which is beneficial for further production. Results from this study suggest an increased 
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rate of cardiomyocyte hypertrophy in response to aerobic exercise in raceway systems, 

compared to traditional sea cages, as the Preline fish had higher expressed mRNA levels of 

MEF2C and GATA4. Hence, H03 can be rejected for MEF2C and GATA4, but not for VEGF, 

since there were no significant differences in expressed mRNA for this gene between 

experimental groups. Increased growth of the heart ventricle can in turn potentially increase the 

robustness of the fish. This can be helpful in a farming environment, as the fish are exposed to 

a lot of stressors which demand a good heart condition. 

 

Future perspectives     

It is important with this type of large scale experiment to repeat over several years, compare 

results and look for trends between generations. One possible issue that should be investigated 

further is whether fish produced in Preline fish farming system have a higher metabolic use of 

lipids as a result aerobic exercise. Different studies have shown that fish species that normally 

have a high swimming activity, such as Scombridae and Salmonides favour the use of lipids for 

metabolic functions (Magnoni and Weber, 2007). It would also be interesting to see if the same 

results for muscle fibre size distribution and heart condition can be observed for under yearling 

(0+) smolts, as water temperatures would be different during the autumn and winter. If similar 

trends could be shown, it would strengthen the results found in the current study. Further, 

following up the fish throughout the on-growing period with the same analyses, to see how 

aerobic training during the post-smolt phase can affect the fish in later life stages. If increased 

recruitment of white muscle fibres increases the individual growth potential, and if this growth 

potential lasts until slaughter, it can be of great value for the salmon farming industry.  
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Appendix I 

Weight, length and condition factor 

TABLE I. Test results from a one-way ANOVA on weight for sampling 1 (June 1/2nd), during 

the post-smolt phase. 

 

TABLE II. Test results from a one-way ANOVA on weight for sampling 2 (June29/30th), 

during the post-smolt phase. 

  

TABLE III. Test results from a one-way ANOVA on weight for sampling 3 (August 29/30th), 

during the post-smolt phase. 

  

 

TABLE IV. Test results from a one-way ANOVA on length after for sampling 1 (June 1/2nd), 

during the post-smolt phase. 

  

 

TABLE V. Test results from a one-way ANOVA on length after for sampling 2 (June29/30th), 

during the post-smolt phase. 
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TABLE VI. Test results from a one-way ANOVA on length for sampling 3 (August 29/30th), 

during the post-smolt phase. 

 

 

 

TABLE VII. Test results from a one-way ANOVA on condition factor after for sampling 1 

(June 1/2nd), during the post-smolt phase. 

 

 

TABLE VIII. Test results from a one-way ANOVA on condition factor for sampling 2 

(June29/30th), during the post-smolt phase.  

 

 

TABLE IX. Test results from a one-way ANOVA on condition factor for sampling 3 (August 

29/30th), during the post-smolt phase. 

  

 

TABLE X. Test results from a one-way ANOVA on length increase from sampling 1 (June 

1/2nd) to 3 (August 29/30th), during the post-smolt phase, for the control groups. 
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TABLE XI. Test results from a one-way ANOVA on weight increase from sampling 1 (June 

1/2nd) to 3 (August 29/30th), during the post-smolt phase, for the control groups. 

 

 

TABLE XII. Test results from a one-way ANOVA on CF increase from sampling 1 (June 

1/2nd) to 3 (August 29/30th), during the post-smolt phase, for the control groups. 

 

 

TABLE XIII. Test results from a one-way ANOVA on length increase from sampling 1 (June 

1/2nd) to 3 (August 29/30th), during the post-smolt phase, for the Preline group. 

  

 

TABLE XIV. Test results from a one-way ANOVA on weight increase from sampling 1 (June 

1/2nd) to 3 (August 29/30th), during the post-smolt phase, for the Preline group. 

 

 

TABLE XV. Test results from a one-way ANOVA on CF increase from sampling 1 (June 1/2nd) 

to 3 (August 29/30th), during the post-smolt phase, for the Preline group. 
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Skeletal muscle 

TABLE XVI. Test results from a one-way ANCOVA for the muscle fibre interval group 0-20 

μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

 

 

TABLE XVII. Test results from a one-way ANCOVA for the muscle fibre interval group 20-

40 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

  

 

TABLE XVIII. Test results from a one-way ANCOVA for the muscle fibre interval group 40-

60 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

   

  

TABLE XIX. Test results from a one-way ANCOVA for the muscle fibre interval group 60-

80 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 
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TABLE XX. Test results from a one-way ANCOVA for the muscle fibre interval group 80-

100 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

  

 

TABLE XXI. Test results from a one-way ANCOVA for the muscle fibre interval group 100-

120 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

 

 

TABLE XXII. Test results from a one-way ANCOVA for the muscle fibre interval group 120-

140 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

  

 

TABLE XXIII. Test results from a one-way ANCOVA for the muscle fibre interval group 140-

160 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 
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TABLE XXIV. Test results from a one-way ANCOVA for the muscle fibre interval group 160-

180 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

  

 

TABLE XXV. Test results from a one-way ANCOVA for the muscle fibre interval group 180-

200 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

  

 

TABLE XXVI. Test results from a one-way ANCOVA for the muscle fibre interval group 200-

220 μm for sampling 1 (June 1/2nd), during the post-smolt phase. 

  

 

TABLE XXVII. Test results from a one-way ANCOVA for the muscle fibre interval group 

220- μm for sampling 1 (June 1/2nd), during the post-smolt phase. 
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TABLE XXVIII. Test results from a one-way ANCOVA for the muscle fibre interval group 

0-20 μm for sampling 2 (June29/30th), during the post-smolt phase. 

  

 

TABLE XXIX. Test results from a one-way ANCOVA for the muscle fibre interval group 20-

40 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXX. Test results from a one-way ANCOVA for the muscle fibre interval group 40-

60 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXI. Test results from a one-way ANCOVA for the muscle fibre interval group 60-

80 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

 

 

  



 
66 

 

TABLE XXXII. Test results from a one-way ANCOVA for the muscle fibre interval group 80-

100 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXIII. Test results from a one-way ANCOVA for the muscle fibre interval group 

100-120 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXIV. Test results from a one-way ANCOVA for the muscle fibre interval group 

120-140 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXV. Test results from a one-way ANCOVA for the muscle fibre interval group 

140-160 μm for sampling 2 (June29/30th), during the post-smolt phase. 
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TABLE XXXVI. Test results from a one-way ANCOVA for the muscle fibre interval group 

160-180 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXVII. Test results from a one-way ANCOVA for the muscle fibre interval group 

180-200 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXVIII. Test results from a one-way ANCOVA for the muscle fibre interval group 

200-220 μm for sampling 2 (June29/30th), during the post-smolt phase. 

   

 

TABLE XXXIX. Test results from a one-way ANCOVA for the muscle fibre interval group 

220- μm for sampling 2 (June29/30th), during the post-smolt phase. 
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TABLE XL. Test results from a one-way ANCOVA for the muscle fibre interval group 0-20 

μm for sampling 3 (August 29/30th), during the post-smolt phase. 

   

 

TABLE XLI. Test results from a one-way ANCOVA for the muscle fibre interval group 20-

40 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE XLII. Test results from a one-way ANCOVA for the muscle fibre interval group 40-

60 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

 

 

TABLE XLIII. Test results from a one-way ANCOVA for the muscle fibre interval group 60-

80 μm for sampling 3 (August 29/30th), during the post-smolt phase. 
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TABLE XLIV. Test results from a one-way ANCOVA for the muscle fibre interval group 80-

100 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE XLV. Test results from a one-way ANCOVA for the muscle fibre interval group 100-

120 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE XLVI. Test results from a one-way ANCOVA for the muscle fibre interval group 120-

140 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE XLVII. Test results from a one-way ANCOVA for the muscle fibre interval group 

140-160 μm for sampling 3 (August 29/30th), during the post-smolt phase. 
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TABLE XLVIII. Test results from a one-way ANCOVA for the muscle fibre interval group 

160-180 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE XLIX. Test results from a one-way ANCOVA for the muscle fibre interval group 180-

200 μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE L. Test results from a one-way ANCOVA for the muscle fibre interval group 200-220 

μm for sampling 3 (August 29/30th), during the post-smolt phase. 

  

 

TABLE LI. Test results from a one-way ANCOVA for the muscle fibre interval group 220- 

μm for sampling 3 (August 29/30th), during the post-smolt phase. 
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Heart 

TABLE LII. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

MEF2C between control and freshwater. 

  

TABLE LIII. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

MEF2C between Preline and freshwater. 

, 

 

TABLE LIV. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

MEF2C between control and Preline. 

 

 

TABLE LV. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

GATA4 between control and freshwater. 

 

 

TABLE LVI. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

GATA4 between Preline and freshwater. 

 

 

TABLE LVII. Test results from a Kruskal-Wallis ANOVA for the relative expression levels 

of GATA4 between control and Preline. 
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TABLE LVIII. Test results from a Kruskal-Wallis ANOVA for the relative expression levels 

of VEGF between control and freshwater. 

 

 

TABLE LIX. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

VEGF between Preline and freshwater. 

 

 

TABLE LX. Test results from a Kruskal-Wallis ANOVA for the relative expression levels of 

VEGF between control and Preline. 
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SAV test 

TABLE LXI. Test results from a One-way ANOVA for the muscle fibre interval group 0-20 

μm for within the control group, between SAV positive and SAV negative fish. 

 

 

TABLE LXII. Test results from a One-way ANOVA for the muscle fibre interval group 20-40 

μm for within the control group, between SAV positive and SAV negative fish. 

 

 

TABLE LXIII. Test results from a One-way ANOVA for the muscle fibre interval group 40-

60 μm for within the control group, between SAV positive and SAV negative fish. 

 

 

TABLE LXIV. Test results from a One-way ANOVA for the muscle fibre interval group 60-

80 μm for within the control group, between SAV positive and SAV negative fish. 

 

 

TABLE LXV. Test results from a One-way ANOVA for the muscle fibre interval group 80-

100 μm for within the control group, between SAV positive and SAV negative fish. 
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TABLE LXVI. Test results from a One-way ANOVA for the muscle fibre interval group 100-

120 μm for within the control group, between SAV positive and SAV negative fish. 

  

 

TABLE LXVII. Test results from a One-way ANOVA for the muscle fibre interval group 120-

140 μm for within the control group, between SAV positive and SAV negative fish. 

  

 

TABLE LXVIII. Test results from a One-way ANOVA for the muscle fibre interval group 

140-160 μm for within the control group, between SAV positive and SAV negative fish. 

   

 

TABLE LXIX. Test results from a One-way ANOVA for the muscle fibre interval group 160-

180 μm for within the control group, between SAV positive and SAV negative fish. 

  

 

TABLE LXX. Test results from a One-way ANOVA for the muscle fibre interval group 180-

200 μm for within the control group, between SAV positive and SAV negative fish. 
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TABLE LXXI. Test results from a One-way ANOVA for the muscle fibre interval group 200-

220 μm for within the control group, between SAV positive and SAV negative fish. 

  

 

TABLE LXXII. Test results from a One-way ANOVA for the muscle fibre interval group >220 

μm for within the control group, between SAV positive and SAV negative fish. 

  

 

TABLE LXXIII. Test results from a Kruskal-Wallis ANOVA expressed mRNA levels of 

MEF2C within the control group, between SAV positive and SAV negative fish. 

 

 

TABLE LXXIV. Test results from a Kruskal-Wallis ANOVA expressed mRNA levels of 

GATA4 within the control group, between SAV positive and SAV negative fish. 

  

 

TABLE LXXV. Test results from a Kruskal-Wallis ANOVA expressed mRNA levels of VEGF 

within the control group, between SAV positive and SAV negative fish. 

 

 


