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ABSTRACT 

 

Only few studies concerning Shiga toxin-producing E. coli (STEC) detection in coastal 

environments and bivalves have been reported and there have been no reported outbreaks 

by STEC from bivalves in the world.  

The aim of this thesis was to investigate the occurrence of STEC in Norwegian bivalves, and 

to characterize potential STEC isolates obtained from the samples.  

To improve our understanding of STEC, the occurrence was investigated in 269 bivalves 

collected from harvesting areas along the Norwegian coast in 2016/17.  

Microbial enrichment of the samples followed by DNA extraction with subsequent screening 

of STEC-associated genes was performed as described in ISO/TS -13136. Real-time PCR 

assays were conducted for genes encoding Shiga toxin (stx1 and stx2), intimin (eae) and the 

five major serogroups of concern (O157, O26, O111, O145 and O103). The screening results 

revealed the presence of the virulence genes (eae and stx) in 19 of the 269 samples. These 

19 samples were selected for isolation of STEC. Colonies obtained from enrichment were 

screened for presence of stx and positive isolates were further characterized to determine 

their serotype and virulence profile. For two samples, automated immuno-magnetic 

separation (AIMS) was performed to facilitate isolation of STEC associated serogroups. 

Presumptive positive colonies from different serogroups were isolated by AIMS and the 

serogroup O157 was confirmed by real-time PCR but lacked the virulence genes. A total of 

three samples from 269 analyzed harbored STEC isolates, therefore, there seems to be a low 

risk of human infection by STEC in Norwegian bivalves.  

 

 

 
 
 
 
 
 
 
 
 

 



P a g e  | 3 

 

Contents 
ABSTRACT ................................................................................................................................... 2 

1. INTRODUCTION ...................................................................................................................... 5 

1.1 BIVALVES .......................................................................................................................... 5 

1.2 PRODUCTION AND CONSUMPTION OF SHELLFISH IN NORWAY ..................................... 5 

1.3 FOOD SAFETY ASPECTS OF BIVALVES ............................................................................... 6 

1.4 ESCHERICHIA COLI ............................................................................................................ 7 

1.5 SHIGA TOXIN-PRODUCING E. COLI (STEC) ........................................................................ 8 

1.5.1 VIRULENCE GENES ..................................................................................................... 8 

1.5.2 SEROGROUPS ............................................................................................................ 9 

1.5.3 RESERVOIRS ............................................................................................................... 9 

1.5.4 STEC OUTBREAKS .................................................................................................... 10 

1.6 METHODS FOR IDENTIFICATION AND ISOLATION OF STEC ........................................... 10 

2. MATERIALS & METHODS ...................................................................................................... 11 

2.1 STUDY SITE...................................................................................................................... 11 

2.2 STUDY DESIGN ................................................................................................................ 12 

2.3 SCREENING FOR VIRULENCE FACTORS AND SELECTED SEROGROUPS .......................... 15 

2.3.1 SAMPLE PREPARATION AND ENRICHMENT ............................................................ 15 

2.3.2 DNA EXTRACTION BY COMMERCIAL KIT ................................................................. 16 

2.3.3 POLYMERASE CHAIN REACTION (PCR) .................................................................... 17 

2.4 ISOLATION OF STEC BY CULTIVATION ............................................................................ 20 

2.4.1 PLATING AND AGAR PLATES .................................................................................... 20 

2.4.2 AUTOMATED IMMUNO-MAGNETIC SEPARATION (AIMS) ...................................... 21 

2.5 CHARACTERIZATION OF COLONIES ................................................................................ 23 

2.5.1 E. COLI CONFIRMATION BY MALDI-TOF .................................................................. 23 

2.5.2 DNA EXTRACTION BY BOILING ................................................................................ 24 

2.5.3 REAL-TIME PCR ........................................................................................................ 24 

2.5.4 CONVENTIONAL PCR ............................................................................................... 24 

2.5.5 CONVENTIONAL SEROGROUPING ............................................................................... 28 

2.6 REFERENCE STRAINS ....................................................................................................... 29 

3. RESULTS ................................................................................................................................ 30 

3.1 SCREENING OF SAMPLES ................................................................................................ 30 

3.2 ISOLATION OF STEC ........................................................................................................ 33 

3.2.1 DIRECT PLATING ...................................................................................................... 33 

3.2.2 AUTOMATED IMMUNOMAGNETIC SEPARATION (AIMS) ....................................... 35 



P a g e  | 4 

 

3.3 CHARACTERIZATION OF ISOLATES ................................................................................. 36 

3.3.1 MALDI-TOF .............................................................................................................. 36 

3.3.2 VIRULENCE GENE CHARACTERIZATION ................................................................... 37 

3.3.3 SEROTYPING ............................................................................................................ 38 

3.3.4 PHYLOTYPING .......................................................................................................... 39 

3.4 SUMMARY ...................................................................................................................... 41 

4. DISCUSSION .......................................................................................................................... 42 

OCCURRENCE OF STEC IN BIVALVES .................................................................................... 42 

ISOLATION ............................................................................................................................ 42 

LOW DETECTION OF STEC .................................................................................................... 43 

PRESENCE OF STEC IN THE ENVIRONMENT .......................................................................... 45 

SURVIVAL OF E. COLI IN THE MARINE ENVIRONMENT ........................................................ 45 

PHYLOGROUP ....................................................................................................................... 46 

ISOLATES OF stx2 .................................................................................................................. 46 

METHODOLOGICAL CONSIDERATIONS ................................................................................ 48 

5. CONCLUSION ........................................................................................................................ 49 

ACKNOWLEDGEMENTS ............................................................................................................ 50 

REFERENCES ............................................................................................................................. 51 

APPENDIX ................................................................................................................................. 57 

 

 

 

 

 
 
 
 
 

 
 
 
 



P a g e  | 5 

 

1. INTRODUCTION 

1.1 BIVALVES 

Bivalves are mollusks that have laterally compressed bodies enclosed by a shell consisting of 

two hinged parts (Figure 1). Bivalves are opportunistic feeders that exploit the diverse 

nature of suspended particulate matter (Cranford et al., 2011). They are filter-feeders and 

therefore filter water as a feeding mechanism, removing bacteria and toxins from the water 

column. The retention efficiency of suspension-feeding bivalve mollusks depends on particle 

size, it is assumed that effective retention of particles is reached when particles are larger 

than 3-7μm (Cranford et al., 2016).  

The most common bivalve species harvested in Norway are the blue mussels. This edible 

marine bivalve mollusk is in the family Mytilidae and they live in intertidal areas and attach 

themselves with byssal threads to hard substrates. Blue mussels are found along the entire 

Norwegian coast from the Swedish to the Russian borders.  

These organisms have a great potential for bioaccumulation and have the ability to 

concentrate microorganisms, such as Escherichia coli, to a much higher level than that of the 

surrounding seawater.  

 

 

 

 

 

 
  

1.2 PRODUCTION AND CONSUMPTION OF SHELLFISH IN NORWAY 
 

Bivalves are consumed by the Norwegian population, are commonly harvested for food in 

Norway, from both wild and farmed sources and there are many farms in the country 

responsible of the growth of blue mussels (Mytilus edulis) for commercial use. Cultivation of 

bivalves in Norway is an established industry all along the coast and bivalves are grown on 

Figure 1. Blue mussels, oysters and scallops presented as meals. These shellfish are commonly consumed 

worldwide (DISHIN&DISHES, 2012 and SEAFOOD AND RAW BAR, 2017).   

 

https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjVmsrxvpXTAhXiO5oKHbD5BuIQjRwIBw&url=https://www.bbcgoodfood.com/glossary/scallop&bvm=bv.152174688,d.bGs&psig=AFQjCNF2QuTPSvyCQvXPNOPNz72_BzIbNg&ust=1491762595262190
https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjVmsrxvpXTAhXiO5oKHbD5BuIQjRwIBw&url=https://www.bbcgoodfood.com/glossary/scallop&bvm=bv.152174688,d.bGs&psig=AFQjCNF2QuTPSvyCQvXPNOPNz72_BzIbNg&ust=1491762595262190
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horizontal systems of ropes suspended in the water by buoys, pipes or floats. The cultivated 

bivalves are not fed, but they rather filter water. After harvest they are transported in net 

bags. In 2014, 2 016 tons of shellfish were sold in aquaculture, and 1 983 tons were of 

mussels (Directorate of Fisheries, 2015). Shellfish harvesting farms can be influenced by 

sewage discharges or exposed in any other way to fecal contamination from land runoff, 

resulting in an impact to the shellfish by the change in microbiological quality of the water 

(Baliere et al., 2015). Bacteria from animals or humans can wash off into the water, be 

accumulated by bivalves, and result in closure or downgrading of shellfish classification in 

harvesting farms.  

 

1.3 FOOD SAFETY ASPECTS OF BIVALVES 
 
The ability of bivalves to accumulate microorganisms from the water column is of concern as 

it can potentially lead to outbreaks of food poisoning from the consumption of shellfish. 

Several species of bivalves are preferably consumed live or raw (e.g. oysters), or lightly 

cooked (e.g. mussels). Bivalves could be responsible for the transfer of toxic substances, 

viruses and pathogenic bacteria along the food chain considering the importance of this food 

source in the diet of humans. There is an on-going surveillance program run by the National 

Institute of Nutrition and Seafood Research (NIFES) on behalf of the Norwegian Food Safety 

Authority (NFSA), where the harvesting areas of bivalves are monitored. This Norwegian 

surveillance program for shells started under the direction of the Directorate of Fisheries in 

1999 as a follow-up of the EU Council Directives 91/492 EEC and 79/923 EEC. Under the 

establishment of the NFSA in 2004, the program was continued, but changed its name to 

“Monitoring for shells harvested and traded commercially”. The purpose of the program is to 

control and monitor production areas for shells and the quality of shells produced for human 

consumption in EU countries.  

The shells are checked for a range of parameters, including the contents of fecal indicator 

bacteria and Salmonella, as well as undesirables as heavy metals, dioxins, brominated flame 

retardants, poly-chlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) 

(Duinker et al., 2015).   
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The EU has established regulations for cultivation of bivalves (854/2004/EC, 2004), and farm 

localities are classified according to their water quality. All shellfish-harvesting farms are 

classified as Class A, B or C and this is defined by the E. coli concentrations in the harvested 

bivalves (Table 1). The sanitary classification of shellfish-harvesting areas in Europe is an 

important measure that helps to prevent shellfish food-borne outbreaks (Baliere et al., 

2016).   

 

Table 1. Classification of farming localities according to E. coli concentration in bivalves (854/2004/EC, 2004). 

 

1.4 ESCHERICHIA COLI 

E. coli is a gram-negative, facultative anaerobic, rod-shaped bacterium of the family 

Enterobacteriaceae (Figure 2). It is usually a commensal bacterium which can be found in the 

intestinal microbiota of warm-blooded animals. E. coli is a member of the fecal coliform 

group and is often referred to as “indicator organism”. The presence of E. coli in the 

environment can indicate fecal contamination. Most strains are harmless, but some can be 

pathogenic and therefore present a concern to human health. This study focused on Shiga-

toxin producing E. coli (STEC).  

 

 

 

 

 

Class 
 

Microbiological standard Treatment after harvesting 

A Live bivalve mollusks must not contain > 230 MPN  
E. coli per 100 g of flesh and intravalvular liquid  

None  

B Live bivalve mollusks must not contain > 4600 MPN  
E. coli per 100 g of flesh and intravalvular liquid  

Purification, relaying in A-area  
or boiling by approved procedure  

C Live bivalve mollusks must not contain > 46 000 MPN  
E. coli per 100 g of flesh and intravalvular liquid  

Relaying in A-area for a long period  
of time or boiling by approved 
procedure  

Figure 2. Electron microscopy of 
several E. coli cells (Genzer, 2009). 
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1.5 SHIGA TOXIN-PRODUCING E. COLI (STEC)  

 

Shiga toxin-producing E. coli (STEC) is a zoonotic pathogen transferred from animals to 

humans that has become an important public health problem worldwide. The Shiga toxin 

name is derived from its source, the dysentery bacillus Shigella dysenteriae, which was first 

described by Kiyoshi Shiga in 1898 (Shiga, 1898). The nomenclature of these toxins varies, 

and they are also referred to as verotoxins. In this study we will use Shiga toxin and the term 

STEC. The main pathogenic property of STEC strains is the production of Shiga toxins (stx) 

(Perelle et al., 2004). STEC are E. coli strains possessing the stx encoding genes making them 

pathogenic, with the ability to cause severe diseases in humans. There are dangerous 

sequelae associated with STEC disease, the hemolytic uremic syndrome (HUS), thrombotic 

thrombocytopenic purpura (TTP) and hemorrhagic colitis (HC). HC can cause gastrointestinal 

bleeding by an inflammation of the colon. HUS is characterized by acute renal failure, this is 

a very serious disease as it can be fatal (Bergan et al., 2012). TTP is a hematologic emergency 

fatal without prompt treatment characterized by clotting in small blood vessels of the body 

(Khatun and Morshed, 2015). Any human being can become infected by STEC but young 

children and immunocompromised people have a higher risk of developing severe illness. 

The severity of the disease can vary, some infections can be very mild (with self-limiting 

watery diarrhea) while other infections can be severe (with hemorrhagic diarrhea) and result 

to be life-threatening. STEC might have a low infectious dose, as low as the order of 1 to 100 

CFU (Paton and Paton, 1998b).  

 

1.5.1 VIRULENCE GENES 

 
The major virulence genes of STEC are the stx genes encoding the Shiga toxins and the eae 

gene, encoding the intimin protein, which is responsible for adhesion. This protein is 

essential for the tight binding of bacteria to target cells and is encoded on a chromosomal 

pathogenicity island termed the locus for enterocyte effacement (LEE) (Paton and Paton, 

1998b). The LEE has an attaching and effacing (A/E) lesion which allows the binding of the 

toxins and hence results in an infection. The vast majority of virulence factors are encoded in 

mobile elements of the DNA: pathogenicity islands, transposons, plasmids and phages 

(Brussow et al., 2004). Shiga genes are encoded in stx phages. There are many other genes 
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associated with STEC virulence, such as saa, paa, ehaA, iha, sab and more (Baliere et al., 

2016), but these are not further discussed here. Two main Shiga toxins have been described: 

stx1 and stx2. Within each group, there have been several variants identified throughout the 

years, stx1 comprising 3 subtypes (stx1a, stx1c and stx1d) and stx2 with seven variants (stx2a, 

stx2b, stx2c, stx2d, stx2e, stx2f, stx2g) (Scheutz et al., 2012). From these subtypes, some specific 

ones are closely associated with human infections (stx2a, stx2c and stx2d) while others affect 

animals (stx2e, related with edema disease in pigs). If the type of variant is known, this can 

give an idea of the origin of that specific strain and the pathogenicity it may have (Vernozy-

Rozand et al., 2004). Strains harboring the stx2 appear to be more commonly responsible for 

severe human infections rather than strains harboring only the stx1 (Boerlin et al., 1999, 

Paton and Paton, 1998a). 

 

1.5.2 SEROGROUPS 

 

STEC belong to a diverse number of serogroups (bacteria containing a common antigen) and 

there are some specific ones that have been linked to severe diseases in humans, such as 

O157, O26, O111, O103 and O145. These are the five main serogroups of concern in Europe, 

whereas in the USA they have two additional serogroups of concern (O45 and O121).  

The O157:H7 serotype is the predominant serotype implicated in food-borne infections 

worldwide, and most frequently associated with HUS. E. coli O157:H7 was the first to be 

described as an STEC and has been implicated in serious diseases since the early 1980s 

(Baliere et al., 2016). Compared with O157 STEC infections, the identification of non-O157 

STEC infections is more complicated and many laboratories typically cannot identify them.  

 

1.5.3 RESERVOIRS  

 

STEC live in the gastrointestinal tract of ruminant animals, including cattle, goats, sheep, 

deer, and elk. The main reservoir for STEC and therefore the major source for human 

illnesses is cattle (Mora et al., 2012). Swine and birds can pick up STEC from the environment 

and may spread it. STEC can persist in the environment for a period of time, at different 

temperatures and environments (Bolton et al., 2011). 

 

 



P a g e  | 10 

 

1.5.4 STEC OUTBREAKS 

 
STEC infections have been reported after ingestion of contaminated food/water or contact 

with animals as many different vehicles can transmit this pathogen to people. In 1993, there 

was a hamburger outbreak in the USA, Washington, where 477 cases of O157:H7 infection 

were reported (O'Brien et al., 1993). Radish sprouts were the vehicle of a large outbreak of 

E. coli O157:H7 infections in Sakai city, Japan, in 1996 (NIID, 1997). In 2006, 17 cases were 

reported in Norway, associated with a traditional cured sausage by a rare STEC variant 

(O103:H25) (Schimmer et al., 2008). In 2011, one of the largest documented outbreaks of 

STEC infection worldwide occurred in Germany by an E. coli strain of serotype O104:H4, 

which was transmitted to humans through the consumption of contaminated sprouts (EFSA, 

2011). To date, no shellfish outbreak involving STEC strains has been described (Baliere et 

al., 2016).  

 

1.6 METHODS FOR IDENTIFICATION AND ISOLATION OF STEC 

Detecting and isolating STEC is a challenge and laborious using conventional methods. 

Screening for E. coli serogroups depends on isolation of the bacteria, confirmation of E. coli 

and identification of the O-antigen using serotyping methods and this is time consuming 

(Perelle et al., 2005). No quick or easy methods are available nowadays to isolate STEC 

strains frequently at laboratories. Automated immuno-magnetic separation is a traditional 

method, which focuses on serogroups but it is very time consuming. Current methods are 

more focused on real-time PCR which is widely used for the detection of virulence genes at 

different levels in the detection methodology.  

Isolation of STEC and subsequent strain characterization is conducted to ensure that the 

detected genes are present on the same bacteria. The disadvantage with this DNA based 

method is that it cannot differentiate between DNA from viable or non-viable cells. A 

standardized method has been developed to detect STEC in food and includes pre-

enrichment and real-time PCR. Environmental samples usually contain low numbers of STEC 

together with background flora and an enrichment step is usually required. It is important to 

obtain a bacterial isolate to be able to further characterize and thereby assess the virulence 

potential of the organism (Nielsen and Andersen, 2003). 
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2. MATERIALS & METHODS 
 

2.1 STUDY SITE 

 
Sampling was coordinated with the Norwegian Food Safety Authority (NFSA). Bivalves are 

routinely monitored for the presence of E. coli to check for fecal contamination on the 

production areas. The bivalves analyzed in this study were collected from 67 harvesting 

farms along the coast of Norway (Figure 3), distributed in 26 municipalities by 13 different 

local offices of NFSA.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Map representing the harvesting farm location sites from where the different 
bivalve samples were obtained for this study.  

Mytilus edulis (Blue mussels) 
Ostrea edulis (Oysters) 
Pecten maximus (Great scallops)  
Arctica islandica (Clams) 
Modiolus (Horse mussels) 
Polititapes rhomboides (Banded carpet shell) 
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2.2 STUDY DESIGN 
 

A total of 269 samples of bivalves were examined in this study. The examined material 

comprised 218 samples of blue mussels (Mytilus edulis), 28 samples of oysters (Ostrea 

edulis), 15 samples of great scallops (Pecten maximus), five samples of horse mussels 

(Modiolus modiolus), two samples of clams (Arctica islandica) and one sample of banded 

carpet shell (Politapes rhomboides). Samples arrived once a week to NIFES, in intact bags in a 

box with cooling elements and were taken to the laboratory for examination. The 

temperature was kept at 4°C and the microbiological analysis was initiated within 24 h. 

 

This study applied the ISO/TS 13136:2012 methodology for detection and isolation of STEC.  

This Technical Specification has a protocol which uses real-time PCR as the reference 

technology for detection of the virulence and serogroup associated genes. Figure 4 shows a 

summary of the steps followed in this study, which consists of an enrichment step, DNA 

extraction, real-time PCR analysis for the detection of the toxin and intimin genes (stx1, stx2 

and eae genes), serogroup determination by real-time PCR (only in case the stx/eae PCR is 

positive), cultivation and isolation of suspected colonies from the enrichment broth, and 

confirmation of the presence of virulence genes by screening the colony itself (Kagkli et al., 

2011). Figure 5 represents a schematic diagram with the steps from ISO/TS 13136:2012 

methodology followed in this study. 
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SAMPLING OF BIVALVES 

 

 

ENRICHMENT 

 

 

DNA EXTRACTION 

 

 

REAL-TIME PCR 

 

 

ISOLATION, CHARACTERIZATION 

 

Figure 4. Flow chart of steps followed in this study. (FISHERIES 2017,  
STOMACHERS 2012, LABEQUIM 2005 and FOOD CONSULTING SERVICES 2017) 

http://www.google.es/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiHmf_f84rRAhUEMhoKHVXmDvkQjRwIBw&url=http://www.fisheries.no/aquaculture/aquaculture_species/Farmed-mussels/&bvm=bv.142059868,d.d24&psig=AFQjCNHeKGS--odzYRu9CS7MQYngfzU8ZA&ust=1482602637439740
http://www.google.es/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiHmf_f84rRAhUEMhoKHVXmDvkQjRwIBw&url=http://www.fisheries.no/aquaculture/aquaculture_species/Farmed-mussels/&bvm=bv.142059868,d.d24&psig=AFQjCNHeKGS--odzYRu9CS7MQYngfzU8ZA&ust=1482602637439740
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PCR for stx + eae + O-groups 

DNA extraction 

Pos stx and neg eae Pos stx and eae 

Sample in glycerol 
(85% at -80°C) 

No further work conducted 
due to shortage of time 

Sample stored at -20°C 

Pre-treatment and enrichment 

Enriched sample 

Sample 

CHARACTERIZATION 
 

MALDI 
 

Figure 5. Schematic diagram showing the methodology steps followed in this study.  
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ISOLATION 

Plating (19 samples) 
50 colonies – pooled PCR 
 

PCR for stx + eae on colonies 
 

PCR for O-groups on colonies 
 

           AIMS (2 samples) 
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PCR for stx + eae 
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2.3 SCREENING FOR VIRULENCE FACTORS AND SELECTED SEROGROUPS 

 
2.3.1 SAMPLE PREPARATION AND ENRICHMENT 

 

Different bivalve species required different approaches and tools to be opened. The shells 

with signs of damage were discarded. Before opening the bivalves, they were rinsed under 

cold, running tap water to remove sediment adhered to the shell. Mussels were opened with 

a regular kitchen knife, which was inserted between the shells, and with a twisting motion 

separated them open and mantel water along with the tissue were emptied into a separate 

sterilized bag (Standard 400, GRADE) with mesh to minimize particles clogging during 

subsequent pipetting. A specific knife with a thick blade was used to withstand the pressure 

applied when opening the oysters without bending. The oysters were placed on a flat 

surface and the knife was pushed into the shell, forcing it open. The tissue was removed and 

placed into a sterilized bag together with intravalvular liquid. One sample represented 

material from 10-15 shells, as a minimum of 25g was required from each sample. 

  

The samples were homogenized using a Stomacher 400 CIRCULATOR (Seward) for 2min and 

30secs. The enrichment broth was prepared by adding 225ml of Buffered Peptone Water 

(BPW) to the shell homogenate and this mix was homogenized again in the stomacher for 

30secs. The homogenate was incubated aerobically at 37°C ± 1°C for 18-24h. Two aliquots 

from the enrichment broth were withdrawn after incubation, one for DNA extraction (1ml, 

frozen at -20°C) and the other for possible further isolation of STEC. Enrichment broth 

(1.5ml) was transferred to glycerol (0.5ml) (85%) in a 2ml Eppendorf tube and stored at  

-80°C for further analysis.  
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2.3.2 DNA EXTRACTION BY COMMERCIAL KIT 

 

DNA extraction breaks the bacterial cell wall, removes inhibitors and release DNA. DNA 

extraction from the tissue of the samples was performed using the DNeasy ® Blood & Tissue 

test kit (Qiagen, Germany). From the enrichment broth, 200μl was pipetted into an 

Eppendorf tube, followed by 180μl of buffer ATL and 20μl of Proteinase K, for tissue lysis and 

optimal DNA-binding conditions to the DNeasy membrane. The mixture was vortexed to 

yield a homogenous solution and incubated at 56°C in a block heater for 30min until 

achieving the breakdown of the cell wall and membrane. To purify the DNA, 200μl buffer AL 

and 200μl of ethanol (96-100%) were added followed by vortexing. The full mixture (800μl) 

was pipetted into a DNeasy Mini spin column placed in a 2ml collection tube. This was then 

centrifuged at 6 000 relative centrifugal force (rcf) for 1min. The spin column was placed in a 

new collection tube and 500μl of Buffer AW1 was added. This tube was centrifuged at 6 

000rcf for 1min to remove any contaminants and enzyme inhibitors, and furthermore to 

bind the DNA to the DNeasy membrane.  The spin-column was carefully removed once more 

and placed in a clean collection tube and 500μl of Buffer AW2 was added. This was followed 

by centrifugation at 20 000rcf for 3min to dry the DNeasy membrane. The last step is 

important as residual ethanol could interfere with subsequent reactions. This step ensured 

that no ethanol would be carried over during the following elution.  

The spin-column was put into an Eppendorf tube and 50μl Buffer AE was carefully added 

directly on top of the DNeasy membrane. The sample was incubated 1min at room 

temperature before centrifuging one last time at 6 000rcf for 1min. Purified DNA was eluted 

from the spin column in 50μl buffer AE giving results of high amounts of DNA binding to the 

DNeasy membrane. Approximately 60–80% of the DNA will elute in the first elution. This 

buffer is composed of 10 mM Tris·Cl, 0.5 mM EDTA, pH 9.0. The DNA concentration and 

purity was measured using a Nanodrop ND/1000 3.8.1 Spectrophotometer (Thermo Fisher, 

USA). All DNA preparations were then stored at -20°C until further examination. 
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2.3.3 POLYMERASE CHAIN REACTION (PCR) 

  

PCR detects and multiplies specific areas of DNA (fragments). The reaction starts with 

samples heated to denature (separate into single strands) the target DNA. The temperature 

is lowered to allow the primers to anneal to their complementary sequences. The 

temperature is raised again and polymerase can attach at each priming site and synthesize a 

new DNA strand. 

 

2.3.3.1 REAL-TIME PCR 

 

In the present study, real-time PCR was used and this system relies on the detection from a 

fluorescent reporter. Probes are fluorescently labelled DNA oligonucleotides and bind to the 

DNA strand during the PCR reaction to give a fluorescent signal. The primers are designed to 

specifically bind to DNA region to be amplified. One of the advantages of the real-time PCR is 

that is produces a final result within 2h. The 5’ end of the probe is labelled with a fluorescent 

reporter molecule and on the 3’ end of the probe is a quencher molecule. The cycle 

threshold (Ct) value was defined as the PCR cycle at which the fluorescent intensity raised 

above the threshold and became detectable. Any negative results obtained by the PCR 

method indicated the absence of the corresponding target in the sample. Positive controls 

were included in all analysis, whereas a sample comprising milliQ water was included as 

negative controls. Samples were screened for virulence genes and amplifications using a 

master mix containing 12.5µl TaqMan® Universal (Applied Biosystems, UK), 0.5µM of each 

forward and reverse primer, 200nM probe, 4.5µl of water and 5µl of DNA template. The PCR 

assays were run with C1000 Touch Thermal Cycler, CFX384 Real-Time System instrument 

(Bio-Rad Laboratories) (Figure 6) using the program described in Table 2 and data acquisition 

and analysis of the PCR assays were handled by the Bio-Rad CFX Manager 3.1 software.  
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Table 2. Real-time PCR program description used at NIFES laboratory to screen for virulence genes and O-
serogroups. Details on PCR steps with time and temperature, estimated run time 1h and 43 min. 

Target gene 
 

PCR program 

 Time (seconds) Temperature (°C) 

 
stx1, stx2, eae, O157, 
O145, O26, O103, 
O111 

Pre-PCR: Decontamination  120 50 

Polymerase activation and template 
denaturation 

600 95 

PCR 45 consecutive cycles: 

Denaturation 15 95 

Annealing and DNA synthesis 60 60 

 

 

2.3.3.2 PROBES AND PRIMERS FOR REAL-TIME PCR 

 

The set of probes and primers used were obtained from the literature and standard methods 

to detect the specific serogroups and virulence genes (Table 3). The probe targeting stx1 

contained the FAM dye at the 5’end and a non-fluorescent quencher (BHQ1) at the 3’end. 

The probe targeting stx2 contained the HEX dye at the 5’end and BHQ1 at the 3’end. 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Real-time PCR instruments, to the left the Strategene Mx3005P 
QPCR systems (Agilent Technologies, Germany) used at VI, Oslo. To the 
right, the C1000 Touch Thermal Cycler, CFX384 Real-Time System 
instrument (Bio-Rad Laboratories, United Kingdom) used at NIFES, 
Bergen.  
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Table 3. List of primers and probes used for detection of virulence genes/O-serogroups for real-time PCR 
assays. In the sequence, F is forward primer, R is reverse primer and P is probe.  In the sequence Y is (C, T), S is 
(C, G), W is (A, T), R is (A, G), M is (A, C).  

 
Target 
gene 

Primer and 
probe 

Sequence (5' - 3') Location 
within 

sequence 

Amplicon 
size (bp) 

Reporter 
dye 

GenBank 
accession 

no. 

References 

 
 
stx1 
 
stx2 

stx-F TTT GTY ACT GTS ACA GCW GAA GCY TTA CG 878-906  
131 

 
FAM 

 
M16625 

 
ISO/TS 
13136:2012  
 
(Perelle et 
al., 2004) 

stx-R CCC CAG TTC ARW GTR AGR TCM ACR TC 983-1008 

stx1-P FAM-CTG GAT CTC AGT GGG CGT TCT TAT GTA A-BHQ1 941-971 

stx2-P HEX-TCG TCA GGC ACT GTC TGA AAC TGC TCC-BHQ1 838-864 128 HEX X07865 

 
eae 

eae-F CAT TGA TCA GGA TTT TTC TGG TGA A 899-924  
102 

 
FAM-
TAMRA 

 
Z11541 

ISO/TS 
13136:2012 
 
(Nielsen 
and 
Andersen, 
2003) 

eae-R CTC ATG CGG AAA TAG CCG TTA 1000-979 

eae-P FAM-ATA GTC TCG CCA GTA TTC GCC ACC AAT ACC-
TAMRA 

966-936 

 
wzy  
O145 

O145wzy2-F ATA TTG GGC TGC CAC TGA TGG GAT 6052-6075  
310 

 
FAM 

 
AY863412 

 
(Fratamico 
et al., 2009) O145wzy2-R TAT GGC GTA CAA TGC ACC GCA AAC 6361-6338 

 

O145wzy-P FAM-AGC AGT GGT TCG CGC ACA GCA TGG T-BHQ1 6215-6238 

 
rfbE  
O157 

rfbE0157-F TTT CAC ACT TAT TGG ATG GTC TCA A 348-372  
88 

 
FAM-
TAMRA 

 
AF163329 

 
 
 
 
 
 
 
ISO/TS 
13136:2012 
 
(Perelle et 
al., 2004) 
 

rfbE0157-R CGA TGA GTT TAT CTG CAA GGT GAT 412-435 

rfbE0157-P FAM-AGG ACC GCA GAG GAA AGA GAG GAA TTA AGG-
TAMRA 

381-410 

 
wbdl  
O111 

wbdl0111-F CGA GGC AAC ACA TTA TAT AGT GCT TT 3464-3489  
146 

 
FAM-
TAMRA 

 
AF078736 

wbdl0111-R TTT TTG AAT AGT TAT GAA CAC CTT GTT TAG C 3579-3609 

wbdl0111-P FAM-TTG AAT CTC CCA GAT CAA CAT CGT GAA-TAMRA 3519-3548 

 
wzx  
O26 

wzx026-F CGC GAC GGC AGA GAA AAT T 5648-5666  
135 

 
FAM-
TAMRA 

 
AF529080 

wzx026-R AGC AGG CTT TTA TAT TCT CCA ACT TT 5757-5782 

wzx026-P FAM-CCC CGT TAA ATC AAT ACT ATT TCA CGA GGT 
TGA-TAMRA 

5692-5724 

 
wzx  
O103 

wzx0103-F CAA GGT GAT TAC GAA AAT GCA TGT 4299-4323  
99 

 
FAM 

 
AY532664 

wzx0103-R GAA AAA AGC ACC CCC GTA CTT AT 4397-4375 

wzx0103-P FAM-CAT AGC CTG TTG TTT TAT-MGB 4356-4373 
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2.4 ISOLATION OF STEC BY CULTIVATION  

 

2.4.1 PLATING AND AGAR PLATES  

 

The samples which were PCR-positive for stx, eae and O-groups were selected for isolation 

of STEC. For the isolation of STEC strains, ISO/TS 13136:2012 was used with some 

modifications. Prior to isolation, tubes with enrichment broth were thawed in a water bath 

(GRANT) at 50oC until the ice had melted (2-3 min), followed by 1h incubation at room 

temperature. The sample was transferred (1ml) into a tube with 9ml of fresh buffered 

peptone water (BPW) pre-warmed to 37oC. These tubes were further incubated for 2-3h at 

37oC. After incubation, the cultures were mixed using a vortexer (IKA®M53 basic, USA) and a 

1:10 dilution of the culture in BPW was prepared. Undiluted and diluted (1:10), volume of  

10μl, cultures were plated onto agar media plates by a streaking technique, in order to 

obtain well isolated colonies. The media plates used were CHROMagar™ O157 (CHROMagar 

Microbiology, Paris, France) and Sorbitol MacConkey agar (SMAC, Oxoid CM813) (Media 

production, NVI). These plates were incubated overnight at 37°C.  

 

 

 

A selection of 50 colonies with typical or suspicious E. coli morphology from the four plates 

(2 CHROM plates and 2 MacConkey plates, each with one diluted and one undiluted) were 

point inoculated on blood agar plates (BAP, Media production, NVI) and incubated overnight 

at 37°C. From each sample, five pools were produced, and each pool included material from 

10 colonies. The colony morphology was registered for all individual selected colonies.  

Figure 7. E. coli colonies growing on different selective media plates. To the left, MacConkey agar with sorbitol 
(SMAC) plate, in the middle, blue CHROMagar plate containing a chromogenic mix with chromogenic substrates 
and to the right, blood agar plate (BAP) containing mammalian blood.  
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DNA from the pooled samples was extracted by the boiling method (see 2.5.2) and used in 

real-time PCR for detection of virulence genes (stx1, stx2, eae) and O-serogroups (O145, 

O157, O111, O103 and O26). Whenever a positive pool was detected, DNA were extracted 

once more from the 10 single colonies comprising the positive pool, and re-tested for the 

presence of these target genes/serogroups to obtain information on exact colony carrying 

the genes and to have an isolate for further characterization.  

 

2.4.2 AUTOMATED IMMUNO-MAGNETIC SEPARATION (AIMS) 

 

In this study, automated immuno-magnetic separation (AIMS) was used for rapid and 

selective concentration of E. coli serogroups (O111, O145, O157, O103 and O26). The AIMS 

were performed applying the BeadRetriever  instrument, and during the process most of the 

background flora from a pre-enriched sample aliquot was removed. Two samples from the 

19 analyzed samples from which isolation was attempted, were selected for this 

methodology. Sample 1246 was tested for serogroup O157 and sample 734 for O26, O111, 

O145 and O157.  

Dynabeads, which are paramagnetic and can be extracted by a magnet, wash buffers and 

samples were aseptically loaded into the tube-strips, placed into the rack and inserted into 

the instrument. The program (EPEC/VTEC) automatically performed the entire AIMS process. 

During incubation, the antibodies coated onto the beads would bind with the target 

bacteria. The bead-bacteria complexes were subsequently separated from the enrichment 

broth by a magnet, washed, and followed by final re-suspension into the last tube for further 

processing to detect and/or isolate the target organisms.  

 

The AIMS method on BeadRetriever comprised the following steps: mixing beads, sample 

incubation, collecting, first wash, second wash and then releasing the beads with bacteria 

attached. After running AIMS, for the isolation of E. coli, all re-suspended bead-bacteria 

complex from the 5th tube was plated onto CHROMagar® and CT-SMAC plates (with Cefixime 

Tellurite selective supplement, Oxoid SR0172E) and incubated at 37°C overnight. The swab-

streak technique was used when plating, as this resulted in better isolated pure colonies on 

the culture media (Figure 8). Typical and suspicious colonies were tested with the respective 

agglutination sera (SIFIN, Berlin, Germany) recommended for use with the kit.  
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The test sera were for pre-testing the serogroup of presumptive E. coli strains isolated by 

using slide agglutination. If the strain possessed an antigen covered by the test serum, this 

antigen became bound when mixed with the specific antibody. Small amounts of bacterial 

mass from typical and suspicious colonies was transferred onto a slide and mixed with one 

drop of the specific test serum as shown in Figure 9. The result was read with the naked eye 

by holding in front of a light source against a dark background tilting it back and forth. A 

positive result would be seen as visible agglutination, confirming antigen-antibody reaction, 

whereas a negative result would be seen as cloudy. The agglutination positive colonies were 

then plated for purity and confirmed or rejected by using the PCR approach as described in 

2.3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Swab 2. Streak with a loop 3. New loop and streak 

Figure 8. Swab-streak plating technique represented graphically. The bead-bacteria complex 
was spread over one half of the plate with a sterile swab to ensure the break-up of the 
complex. This was then diluted further by streaking with an inoculating loop. 

Figure 9. Plate with droplets of antiserum (Statens 
Serum Institut, Denmark) mixed with bacterial mass 
showing agglutination analysis.  

Negative 

Positive 
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2.5 CHARACTERIZATION OF COLONIES 

2.5.1 E. COLI CONFIRMATION BY MALDI-TOF 

 

For the identification of organisms, matrix-assisted laser desorption/ionization time-of-flight 

mass spectrometry (MALDI-TOF) was used. This is a well-established approach for rapid 

species classification from microbial cultures. For the analysis, one isolated colony was 

picked with a sterile wooden stick and smeared on a MALDI steel target plate (Figure 10) in 

its corresponding sample position (previously labelled on the MALDI-TOF spreadsheet). A 

droplet of 1μl of 70% formic acid was added on each position and left to dry at room 

temperature. Portions of 1μl of the matrix solution (HCCA) were added to extract the 

proteins that mainly constituted ribosomal proteins found in high concentration.  

 

The plate was placed in the MALDI Biotyper mass spectrometer (Bruker, Germany, Figure 11) 

and a laser irradiated the spot. This caused evaporation of the matrix and intact proteins 

into the vacuum, resulting in the release of positively charged proteins and peptides. The 

mass spectrometer measured the time between pulsed acceleration and the corresponding 

detector signal, and the speed was converted into an exact molecular mass.  

The MALDI-TOF software used to interpret the results was the MBT compass (Bruker, 

Germany) and it showed the best-matching species to that specific bacterium tested at the 

time.  

 

 
 
 
 
 
 
 

 

Figure 10. MALDI target plate, where 
bacteria is loaded before inserting into 
MALDI-TOF instrument 

Figure 11. MALDI-TOF instrument 
used at VI for E. coli confirmation 
(Microflex, Maldi Biotyper) 
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2.5.2 DNA EXTRACTION BY BOILING  

 

Material from bacterial colonies was suspended in Eppendorf tubes 

containing 100μl of milliQ water. These tubes were heated in a 

heating block (TECHNE, Dri-Block® DB·2D, Tamro Lab, Figure 12) at 

100°C for a duration of 15m. Subsequently, the suspensions were 

centrifuged (VWR, Microstar 17) at 10 000rcf for 10m. The 

supernatants were used as template for the PCR analysis.  

 

2.5.3 REAL-TIME PCR 

 

Real-time PCR was used to detect for virulence genes and O-serogroups, as described in 

2.3.3. PCR set up was prepared in the DNA/RNA UV-Cleaner Box (UVT-B-AR, Grant-Bio). The 

master mix used was Brilliant III Ultra-Fast QPCR (Agilent Technologies, USA). The instrument 

was Strategene Mx3005P QPCR systems (Agilent Technologies, Germany) which was 

associated with the software MxPro Mx3005P to register and analyze the results. 

 

2.5.4 CONVENTIONAL PCR  

2.5.4.1 SUBTYPING OF stx2 

 

Conventional PCR is an end-point detection method while real-time PCR will not only detect 

but also display the data of amplification during the run after each cycle.  

Subtyping of stx2 genes, with pure cultures of STEC, was conducted by conventional PCR with 

the BioRad T100 Thermal cycler instrument, and followed by gel electrophoresis (see 

2.5.4.3). The seven subtypes (a-g) of stx2 were analyzed (Scheutz et al., 2012). Amplification 

reaction mixtures containing the respective primers (0.75μl of each), 12.5μl HotStar Taq® 

and milliQ water were added to make a master mix of 23μl and 2μl of DNA template were 

used. 

 

 
 
 
 

Figure 12. Heating block 
(TECHNE) used for boiling DNA  
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2.5.4.2 PHYLOGENETIC ANALYSIS 

 
Conventional multiplex PCR was used to divide the E. coli strains into four phylogenetic 

groups (A, B1, B2, and D). This approach used the phylogenetic markers; chuA, yjaA, 

TSPE4.C2 and gadA (Clermont et al., 2000, Doumith et al., 2012). E. coli Bæ14 was used as a 

positive control for the four genes. A primer mix was made by using 5μl of each 

corresponding primer (Table 4) added to 20μl milliQ water. For the PCR reactions, 12.5μl of 

2x Qiagen mastermix (QIAGEN ®, Germany), 0.5μl of the primer mix and 10μl of milliQ water 

was produced with the addition of 2μl of DNA template. The program run is described in 

Table 5 and the result interpretation is described in Table 6. Agarose gel was run as 

described accordingly in 2.5.4.3. 

 

 
Table 4. Description of primers used for subtyping of stx2 (a-g) and phylotyping of E. coli 
 

Target 
gene 

Primer Sequence Location 
within 
sequence 

Amplicon 
size (bp) 

References 

 
 
stx2a 

vtx2a-F2  
 

GCGATACTGRGBACTGTGGCC 754-774   

vtx2a-R3 CCGKCAACCTTCACTGTAAATGTG 
 

1079-1102 349  
 
 
 
 
 
 
 
 
(Scheutz et 
al., 2012) 

vtx2a-R2 GGCCACCTTCACTGTGAATGTG 
 

1079-1100 347 

 
stx2b 

vtx2b-F1  
 

AAA-TAT-GAA-GAA-GAT-ATT-TGT-AGC-GGC  
 

968-994  

vtx2b-R1  
 

CAG-CAA-ATC-CTG-AAC-CTG-ACG  
 

1198-1218 251  
 

 
stx2c 

vtx2c-F1  
 

GAAAGTCACAGTTTTTATATACAACGGGTA  
 

926-955  

vtx2c-R2  
 

CCGGCCACYTTTACTGTGAATGTA  
 

1079-1102 177  

 
 
stx2d 

vtx2d-F1  
 

AAARTCACAGTCTTTATATACAACGGGTG  
 

927-955  

vtx2d-R1  
 

TTYCCGGCCACTTTTACTGTG  
 

1085-1105 179 

vtx2d-R2  
 

GCCTGATGCACAGGTACTGGAC  
 

1184-1206 280 

 
stx2e 

vtx2e-F1  
 

CGG-AGT-ATC-GGG-GAG-AGG-C  
 

695-713  

vtx2e-R2  
 

CTT-CCT-GAC-ACC-TTC-ACA-GTA-AAG-GT  
 

1080-1105 411 

 
stx2f 

vtx2f-F1  
 

TGG-GCG-TCA-TTC-ACT-GGT-TG  
 

451-475  

vtx2f-R1  
 

TAA-TGG-CCG-CCC-TGT-CTC-C  
 

856-874 424 

 
stx2g 

vtx2g-F1  
 

CAC-CGG-GTA-GTT-ATA-TTT-CTG-TGG-ATA-
TC  
 

203-231  

vtx2g-R1  
  

GAT-GGC-AAT-TCA-GAA-TAA-CCG-CT  
 

771-793 573  
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Multiplex: 
gadA, 
chuA,yjaA, 
TSPE4.C2 

gadA.F  GATGAAATGGCGTTGGCGCAAG  
 

  
373 

 
 
 
(Doumith et 
al., 2012) 
 
(Clermont et 
al., 2000) 

gadA.R  
 

GGCGGAAGTCCCAGACGATATCC  
 

chuA.F  
 

ATGATCATCGCGGCGTGCTG  
 

 
281 

chuA.R  
 

AAACGCGCTCGCGCCTAAT  
 

yjaA.F  
 

TGTTCGCGATCTTGAAAGCAAACGT  
 

 
216 

yjaA.R  
 

ACCTGTGACAAACCGCCCTCA  
 

TSPE4.C2 F  
 

GCGGGTGAGACAGAAACGCG  
 

 
152 

TSPE4.C2 R  
 

TTGTCGTGAGTTGCGAACCCG  
 

  

 
Table 5. Description of conventional PCR program for subtyping of stx2 (a-g) and phylogenetic analysis of E. coli 

Target gene Conventional PCR program 

 Time (seconds) Temperature (°C) 

 
Subtyping: 
stx2a,stx2b,stx2c, 
stx2d,stx2e,stx2f, 
stx2g 

 900 95 

 
PCR 35 cycles 

50 95 

40 64/66* 

60 72 

 180 72 

 ∞ 4 

BAKT/FYLOGR program 

 
Multiplex: 
gadA, chuA, yjaA, 
TSPE4.C2 

 900 95 

 
PCR 30 cycles 

30 95 

30 60 

30 72 

 300 72 

 ∞ 8 

 Annealing temperature was different between the subtypes; stx2a, stx2b, stx2e, stx2f, stx2g was set to 
64°C and stx2c and stx2d was set to 66°C to avoid cross-reactions. 

 

 
 
Table 6. Interpretation of results from phylogenetic analysis.  

Phylogroup gadA chuA yjaA TSPE4.C2 

A + - +/- - 

B1 + - - + 

B2 + + + +/- 

D + + - +/- 
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2.5.4.3 AGAROSE GEL ELECTROPHORESIS 

 

The products from the conventional PCR assays were detected by gel electrophoresis, which 

is a well-established method used to separate, detect and visualize DNA or RNA fragments 

by size. This is achieved by moving negatively charged nucleic acid molecules from negative 

to positive pole through an agarose matrix with an electric field. Agarose DNA pure grade 

(Electron, VWR Chemicals) was weighed to 2g and mixed with 200ml of TBE buffer 

(Tris/Borate/EDTA) giving a 1% agarose gel. This was heated to boil in the microwave and 

then checked the solution was clear with no signs of threads floating. The mix cooled before 

adding 20μl of GelRed (Fermentas, Life Sciences, USA) in the agarose and mixed thoroughly. 

This was poured into a mold with combs responsible for making the well spaces. The gel was 

left to solidify in the mold and was placed in the electrophoresis chamber, where TBE buffer 

was poured until gel was barely covered and the comb was then removed.  

 

From each PCR product, 25μl were mixed with 5µl of loading Dye (Thermo Fisher Scientific, 

Canada) where an aliquot of 12μl were loaded into each well. The size marker “O’Gene Ruler 

50 bp DNA Ladder” (Fermentas, Life Sciences, USA) was transferred in the first and in the last 

well (3μl). This was done to create a reference ladder on each side of the gel to then 

compare and refer to the sizes in the results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Top left is the gel setup and below is the final matrix with 
wells. To the right, the molecular imager instrument (Bio-Rad, UK) 
used to take images from gel.  
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The instrument used was the PowerPac™ Basic (BioRad, UK) power supply ran at 90 volts for 

1h. The bands were visualized under UV light to check that they were sufficiently separated. 

The Bio-Rad Molecular Imager® ChemiDoc ™ XRS+ Imaging System (Figure 13) was used to 

analyze the final result and the gel images were acquired and analyzed by the software 

Image Lab 5.1 (BioRad, UK).  

 

2.5.5 CONVENTIONAL SEROGROUPING  

 

Serogrouping cultures with O-antisera (Statens Serum Institut, Denmark) was conducted for 

13 different O-serogroups (Table 7). When a bacterial culture is mixed with a specific 

antiserum directed against bacterial surface components, the cells are bound together 

through antigen-antibody bonds to form aggregates. A colony was picked for inoculation and 

incubated overnight at 37°C. The cultures were boiled for 1h, allowing sedimentation of 

bacterial debris, and left at room temperature for another hour. O-antiserum was mixed 

(80μl) in microtiterplates with 80μl of the corresponding sample and incubated at 50°C 

overnight. The results were read with a black background and against light to distinguish 

between negative and positive outcomes. If it was positive, a “grey carpet” would be 

observed covering the bottom of the well, whereas if it was negative, the bacterial 

suspension would be seen as a small white spot centered in the bottom of the well (Figure 

14). 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 14. To the left, the mictotiterplate with round bottom used for O-group typing. To 
the right, the set-up with the dropper bottles belonging to the E. coli antisera. 

Positive Negative 
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2.6 REFERENCE STRAINS 

 

Positive E. coli controls were used in each of the tests conducted in this study to ensure 

reliable results. The reference strains for each of the genes/serogroups were from the 

reference laboratory in Oslo and are described in Table 7 below. The negative controls were 

milliQ or distilled water. 

 

Table 7. List of control strains used in this study, possessing relevant genes.  

  

Approach Target gene/serogroup Control strains Reference 

 

 
 
 
Real-time  

PCR 

stx1 VI51046 / VI51048 / EDL-933 (Perelle et al., 2004) 

stx2 VI51048 / VI51049 / EDL-933 

eae VI51048 / VI51049 / EDL-933 (Nielsen and Andersen, 2003) 

rfbE (O157) VI51277 / VI51049  

(Perelle et al., 2004) wbdl (O111) VI51048 

wzx (O26) VI51052 

wzy(O145) VI51046 (Fratamico et al., 2009) 

wzx (O103) VI51050 (Perelle et al., 2004) 

 

 
 
 
Conventional  

PCR 

stx2a 94C (O'Brien et al., 1984) 

stx2b EH250 (Pierard et al., 1998) 

stx2c 031 (Paton et al., 1992) 

stx2d  C165-02 (Persson et al., 2007) 

stx2e S1191 (Weinstein et al., 1988) 

stx2f T4/97 (Schmidt et al., 2000) 

stx2g 7v (Leung et al., 2003) 

gadA, chuA, yjaA, TSPE4.C2 Bæ14 (Clermont et al., 2000, Doumith et al., 2012) 

 

 
 
 

Serological 
detection 

- 
 

Serotyping by 

E. coli antisera 

O145 A08  

 

 

 

European Union Reference Laboratory VTEC 

(EURL VTEC) 

O121 B08 

O111 C08 

O157 D08 

O103 E08 

O91 F08 

O26  G08 

O113 CRL-464 

O128 T4/97 (D3546) 

O146 EC_Norway_NVI_257 

O104 H519 

O55 Su 3912-41 

O45 EU-RL-VTEC-EF-129 
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3. RESULTS 
 
3.1 SCREENING OF SAMPLES 
 

A total of 269 bivalve samples collected from harvesting farms distributed across the coast of 

Norway were analyzed for STEC. The samples were divided into their respective species 

categories, blue mussels comprising the largest category. A breakdown of how many 

virulence genes and how often they were detected by screening of enrichment broth by real-

time PCR is included in Table 8. Two samples of clams and one banded carpet shell have not 

being included in this table as the real-time PCR detected no virulence genes or O-

serogroups. The appendices shows the complete screening results obtained by real-time PCR 

for all the samples analyzed in this study. 

 
Table 8. Number of samples divided into their corresponding species categories, with the number of samples 
positive for virulence genes and/or O-serogroups detected in the screening by real-time PCR.  

 

 

 

Sample category 

 

Samples 

 Virulence genes and O-serogroups 

 stx1 stx2 eae O145 O157 O111 O26 O103 

 

Blue mussels 

 

218 

  

17 

 

16 

 

68 

 

17 

 

15 

 

15 

 

17 

 

11 

Oysters 28  1 2 4 1 1 1 3 1 

Scallops 15  - 1 - - - 1 1 - 

Horse mussels 5  1 - 1 - - 2 1 - 

  Total 19 19 73 18 16 19 22 12 
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The screening of 269 bivalve enrichment broths by real-time PCR returned 105 samples 

positive for at least one or more of the eight targeted genes tested. The stx genes (stx1 

and/or stx2) were detected in 28 samples, and 19 of these samples contained stx and eae 

(some also harbored O-serogroups), hence were selected for attempted isolation of STEC 

and characterization of isolates obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 19 samples selected for attempted strain isolation comprised 17 blue mussels and two 

oysters. They derived from different shellfish harvesting farms, distributed in six counties. 

These 19 samples harbored stx and eae genes and also relevant O-serogroups were detected 

in the first real-time PCR experiment performed when screening at NIFES as described in 

Table 9.  

 

PCR 
(stx and/or eae and/or O-groups)  

269 samples analyzed 

Positive PCR result for  
stx and/or eae and/or O-groups 

105 samples  

stx genes detected by PCR 
28 samples 

stx and eae and O-groups detected 
by PCR 

19 samples 

Figure 15.  Real-time PCR steps followed for sample analysis. Showing the initial 
screening for marker genes in all the samples, the number of positive PCR results 
obtained, and the breakdown of how many samples were detected with stx, eae 
and O-groups.   



P a g e  | 32 

 

Table 9. Description of the stx and eae positive samples, (blue mussel (BM) and oyster) with their corresponding 
origin by county and the total number of virulence genes & O-groups detected by real-time PCR.  

 

 
Sample  

 

 
Sample 

category 

 
County 

 
Genes 

targeted 

Virulence genes &  
O-serogroups 

stx1 stx2 eae O145 O157 O111 O26 O103 

 
561 

 
BM 

 
Hordaland 

 
2 

 
+ 

 
- 

 
+ 

 
- 

 
- 

 
- 

 
- 

 
- 

635 BM Sør-Trøndelag 5 - + + + + - + - 

733 BM Sør-Trøndelag 7 + + + + + + + - 

738 BM Sør-Trøndelag 4 + - + - + - + - 

735 BM Sør-Trøndelag 7 + + + + + + + - 

734 BM Sør-Trøndelag 7 + + + + + + + - 

732 BM Nord-Trøndelag 7 + + + + + + + - 

737 BM Sør-Trøndelag 5 + + + - + - + - 

809 BM Sogn og Fjordane 5 + + + - + - + - 

811 Oysters Rogaland 2 - + + - - - - - 

1041 BM Nord-Trøndelag 3 - + + - - - - + 

1246 BM Sør-Trøndelag 3 - + + - + - - - 

1218 BM Sør-Trøndelag 2 - + + - - - - - 

1200 BM Nord-Trøndelag 4 + - + + - - + - 

1239 BM Sogn og Fjordane 4 - + + + - - - + 

1330 BM Nordland 3 - + + - - - + - 

1373 BM Nord-Trøndelag 3 + + + - - - - - 

1329 Oysters Hordaland 7 + + + + + - + + 

1332 BM Sør-Trøndelag 5 + + + - + - - + 
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3.2 ISOLATION OF STEC  

3.2.1 DIRECT PLATING 

 
Direct plating was performed on the 19 samples in order to pick-and-pool 50 colonies. 

Typical and suspicious colonies were obtained for all the samples. The pools were tested for 

stx1 and stx2 genes by PCR, and the results revealed a total of four samples harboring the stx2 

gene in one or more pools (Table 10). The stx1 genes were not detected in any of the 19 

samples analyzed by real-time PCR. 

 

Table 10.  Samples of colony pools analyzed for virulence genes 
(stx1, stx2 and eae) by real-time PCR. NA is not available.  
Positive sample results marked in red. 

 

 

 

  
  
  
  

 

 

 

 

 

 

 

 

  

 

 

 

 

 
Sample No. 

 

Genes detected 

stx1 stx2 eae 

 
561 

 
- 

 
- 

 
NA 

635 - - NA 

733 - - NA 

738 - - NA 

735 - - NA 

734 - - NA 

732 - - NA 

737 - - NA 

809 - - NA 

811 - + - 

1041 - - NA 

1246 - + - 

1218 - - NA 

1200 - - NA 

1239 - + - 

1330 - - NA 

1373 - - NA 

1329 - + + 

1332 - - NA 
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From the corresponding positive pools, all ten single colonies comprising the pool, were 

analyzed separately by PCR to identify which colony harbored the stx2 gene. From the pools 

of the four samples analyzed, eight colonies were detected as stx2 positive (Table 11). The 

eae gene from the eight colonies was also tested by real-time PCR, showing only one eae-

positive isolate (sample 1329, colony number 29). These colonies were identified as 

presumptive STEC, further subjected to identification by MALDI-TOF (see section 2.5.1). 

Real-time PCR was used to check for O-serogroups (O145, O157, O103, O111 and O26) in 

these eight isolates, revealing that none of the isolates belonged to any of the serogroups 

tested for.  

 

Table 11. Eight isolates belonging to the four positive samples, showing screening results as detected by real-
time PCR. Morphology of the colonies is also noted.  

  

 

 

 

Sample 

 

Positive pools 

 

Positive colonies 

 

Colony n◦ 

 

Morphology 

 

Ct-values from screening results 

stx2  eae  

 

811 

 

4 

 

4 

 

20 

23 

35 

49 

 

BLUE 

PINK 

PINK 

PINK 

 

14.69 

16.23 

13.88  

16.55 

 

- 

- 

- 

- 

 

1246 

 

1 

 

1 

 

14 

 

BLUE 

 

17.00 

 

- 

 

1239 

 

1 

 

2 

 

3 

4 

 

PINK 

PINK 

 

30.85 

17.94 

 

- 

- 

 

1329 

 

1 

 

1 

 

29 

 

PINK 

 

34.00 

 

32.17 
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3.2.2 AUTOMATED IMMUNOMAGNETIC SEPARATION (AIMS) 

 
The phenotypical method, AIMS, was used for two samples (734 and 1246) to test an 

alternative isolation method which focuses on O-serogroups. 

Screening of the enrichment broth indicated presence of O-groups O26, O111, O145 and 

O157 in sample 734, while sample 1246 was positive only for O157. AIMS was used as a tool 

to help with isolation, testing separately for each serogroup. Colonies were tested by 

agglutination to determine the presence of serogroups.  

In sample 734, there were no colonies present on the plates for the O157 serogroup.  

The presumptive colonies were screened by real-time PCR to test for four O-serogroups 

(O26, O157, O145 and O111). This was done to confirm the results obtained from slide-

agglutination with the antiserums. Three serogroups were not detected, therefore 

considered negative (O26, O111 and O145).   

Real-time PCR confirmed the agglutination results from sample 1246, showing all 23 colonies 

to be O157 positive (Table 12). For sample 734, however, the real-time PCR results were not 

in accordance with the agglutination results from AIMS.  

 

 

 

Table 12. Agglutination results for the two samples (734 and 1246) tested with the AIMS approach.  

 

 

 

Sample O-serogroups CHROMagar® CT-SMAC 

 

734 

 

O157 

 

0 

 

0 

O26 22 24 

O111 2 8 

O145 

 

1 18 

1246 O157 23 0 
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3.3 CHARACTERIZATION OF ISOLATES 

3.3.1 MALDI-TOF 

 

The eight presumptive STEC isolates (as indicated from colony morphology and presence of 

stx2 gene), from the direct plating method, were further characterized by the MALDI-

Biotyper and six isolates were identified as E. coli (Table 13). Samples 1239 and 1329 were 

detected as Citrobacter freundii and Enterobacter cloacae, respectively. The samples 

analyzed had score values between 2.10 and 2.50, showing high confidence identification.   

 

Table 13. MALDI-TOF identification results overview for the eight isolates 

Sample Organism 
(best match) 

Score Value Organism 
(second best-match) 

Score Value 

811_20 Escherichia coli 2.31 Escherichia coli 2.28 

811_23 Escherichia coli 2.43 Escherichia coli 2.35 

811_35 Escherichia coli 2.33 Escherichia coli 2.32 

811_49 Escherichia coli 2.29 Escherichia coli 2.29 

1246_14 Escherichia coli 2.36 Escherichia coli 2.33 

1239_3 Citrobacter freundii 2.26 Citrobacter braakii 2.24 

1239_4 Escherichia coli 2.32 Escherichia coli 2.32 

1329_29 Enterobacter cloacae 2.37 Enterobacter cloacae 2.27 

From picking 50 colonies From AIMS 

Figure 16. Sample 1246 showing colonies growing on different selective media (CHROMagar and CT-SMAC) from 
two different isolation approaches. Note there is no colony growth on CT-SMAC plate from AIMS compared to the 
same plate with the different approach of isolation by direct streaking on plate.  
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3.3.2 VIRULENCE GENE CHARACTERIZATION 

 
The colonies isolated by AIMS from sample 1246, (23 O157 isolates) were tested for stx1, stx2 

and eae genes by using real-time PCR in order to be able to consider it a STEC or not. The 

results revealed the absence of these virulence genes, therefore these isolates do not belong 

to the STEC group.  

 

Subtyping of six STEC strains positive for stx2 was performed and the variants stx2a, stx2e and 

stx2g were detected (alone and not in combination with other stx2 subtypes) amongst five of 

the six isolates respectively (Table 14). Three strains from the same sample (811) were 

positive for the stx2a subtype, while the remaining strain from this sample gave no outcome. 

One strain from sample 1246 was stx2g and one strain from sample 1239 was stx2e (see 

appendix). No isolates carried the stx2 subtypes of stx2b, stx2c, stx2d or stx2f (see summary 

Table 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

DNA Ladder 

Sample 811_20 

Sample 811_23 

Positive control 

Figure 17. Agarose gel image showing two stx2a positive strains 
from the sample 811 for stx2a. 
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Table 14. Results of the six confirmed E. coli isolates tested by multiplex PCR to identify the stx2 variant 

 

 

3.3.3 SEROTYPING 
 

The six isolates were tested by serotyping, as this identified the somatic antigens.  

O-agglutination was performed for the following O-groups; O145, O121, O26, O103, O111, 

O91, O157, O113, O128, O146, O104, O55 and O45.  

The serotyping results were non-typable (NT) for all strains, tested for all 13 O-serogroups.  

As stx2e is associated with disease in pigs (Beutin et al., 2008) and usually associated to 

specific serogroups, four additional O-serogroups were tested (O138, O139, O141abc and 

O149). Results were negative for all four groups, therefore this isolate was also classified as 

NT (Summary Table 16). 

 

 

 

Sample stx2a stx2b stx2c stx2d stx2e stx2f stx2g 

811_20 + - - - - - - 

811_23 + - - - - - - 

811_35 + - - - - - - 

811_49 - - - - - - - 

1246_14 -   - - - - - + 

1239_4 - - - - + - - 

Pos control + + + + + + + 

Neg control - - - - - - - 
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3.3.4 PHYLOTYPING 
 

Phylogenetic analysis obtained from gel electrophoresis can be observed in Figure 18. The 

gene chuA did not show a positive outcome in the positive control well, therefore there are 

two sets of possible results. Table 15 shows results 1 (B1/A) with the outcome if the chuA 

gene was absent from the strains analyzed, hence was a true negative. Results 2 (B2/D) 

would determine the phylogroup if the chuA gene was present, therefore positive. Either 

way, the isolates would belong to two different groups, B1/A or B2/D. Due to time 

limitations, the analysis could not be run again to obtain one set of results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Image obtained from gel electrophoresis run for the 
phylogenetic analysis 

gadA 

chuA 

yjaA 

TSPE4.C2 

DNA Ladder (bp) 

811_49 

Wells 

1000 

900 

800

00 700 

600 

500 

400 

300 

250 

200 

150 

100 

50 

811_35 1246_14 1239_4 811_23 811_20 POS NEG 

 

900 



P a g e  | 40 

 

Table 15. Results from phylotyping of the six STEC strains obtained in the present study.  

 
 
 
 
 
 
 
 
 
 
 

Sample gadA 
373 bp 

chuA 
281 bp 

yjaA 
216 bp 

TSPE4.C2 
152 bp 

Results 1 Results 2 

811_20 + - + - A B2 

811_23 + - + - A B2 

811_35 + - + - A B2 

811_49 + - - + B1 D 

1246_14 + - - + B1 D 

1239_4 + - - + B1 D 

Pos control + - + + B2 B2 

Neg control - - - - - - 
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3.4 SUMMARY 
 

The results from the isolation and characterization of STEC from 269 samples of bivalves are 

summarized in Table 16. 

 

Table 16. Summary of results with information on STEC strains detected in this study. NT is Non-typable. 

 

 

 

 
 
 
 

Sample Sample type 

  

Virulence 

gene 

E. coli 

pathogroup 

MALDI Ct value from 

stx2  PCR 

stx2 variant Phylogroup Serotype 

811_20 Oysters stx2 STEC E. coli 14.69 stx2a A/B2 NT 

811_23 Oysters stx2 STEC E. coli 16.23 stx2a A/B2 NT 

811_35 Oysters stx2 STEC E. coli 13.88 stx2a A/B2 NT 

811_49 Oysters stx2 STEC E. coli 16.55 NT B1/D NT 

1239_4 Blue 

mussels 

stx2 STEC E. coli 17.94 stx2e B1/D NT 

1246_14 Blue 

mussels 

stx2 STEC E. coli 17.00 stx2g B1/D NT 
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4. DISCUSSION 
 
The current study is the first to address the isolation and characterization of STEC strains 

from bivalves originating from different shellfish-harvesting farms scattered along the 

Norwegian coast. The aims of this study were to examine the presence of STEC, by detecting 

presence of toxin encoding genes, adherence genes and/or the genes for the five serogroups 

of most concern (O157, O145, O111, O103 and O26).  Very few studies have focused on STEC 

detection and isolation from bivalves (Baliere et al., 2015, Bennani et al., 2011, Sanath 

Kumar et al., 2001, Gourmelon et al., 2006, MacRae et al., 2005). 

 

OCCURRENCE OF STEC IN BIVALVES 

 

STEC detection started with initial screening of virulence genetic markers (stx1, stx2, eae) and 

O-serogroups (O157, O145, O111, O103 and O26) with the real-time PCR approach to 

identify the presence or absence of these marker genes which belong to strains associated 

with human infections. The screening resulted in an indication that 7.1% of the samples (19 

of 269 samples), were harboring virulence genes (both stx and eae). By the end of the study, 

after further examination and isolation of STEC was attempted, it was confirmed that three 

samples contained STEC. 

 

ISOLATION 

 
Shiga toxins and intimin represent two of the major virulence attributes of typical STEC 

strains (Paton and Paton, 1998b). The presence/absence of these genes are considered 

trademarks of STEC as a preliminary identification of the pathogenicity of E. coli.  

 

From all the bivalve samples analyzed in this study (n=269), three samples contained in total 

six verified STEC isolates. Four of the isolates were from the same sample. All the six isolates 

harbored the stx2 gene, however, they all revealed the absence of the eae gene. The lack of 

this intimin gene is in agreement with Bennani et al. (2011) in the study of STEC from 

Moroccan shellfish.  
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LOW DETECTION OF STEC 

 

The low number of isolated STEC isolates (three) compared to the high numbers of genetic 

markers detected in the analyzed samples is a common finding, previously observed in other 

studies. Gourmelon (2006) studied STEC prevalence in French shellfish and stx genes were 

detected by PCR in 40 from 144 samples. STEC isolates were further detected by colony DNA 

hybridization and isolated five STEC strains. These strains belonged to the serogroups O38, 

O100 and O149 and harbored the stx1 genes. Bennani (2011) revealed the first detection in 

Morocco of STEC in shellfish by PCR but also found low numbers of these (5 from 82).  A 

study in India by Sanath Kumar (2001) looked at the prevalence of STEC in seafood by PCR 

and reported a 5% non-O157 STEC discovery in clams. This current study reported <2% 

prevalence. 

 

When trying to explain the low detection of STEC, some possibilities need to be considered. 

When initial screening by PCR is performed on samples, targeted stx, eae and serotypes 

markers could give a positive outcome because they can be detected by viable but non-

culturable or dead bacteria being present. This can result from the stressful conditions these 

bacteria can experience in the environment (Rozen and Belkin, 2001). E. coli can enter a 

dormancy state where they lose culturability but remain viable and potentially pathogenic 

(Grimes et al., 1986). 

 

Another possibility is that the real-time PCR detected these genes encoded in stx 

bacteriophages. These are mobile genetic elements that play an important role in the 

evolution of STEC strains. E. coli can shift from being harmless to pathogenic from gaining 

genetic mobile elements from bacteriophages, pathogenicity islands and plasmids (Baliere et 

al., 2016).These stx-encoding bacteriophages can exist freely in the environment (Martinez-

Castillo et al., 2013), and they possess the ability to transfer the stx genes and consequently 

convert nonpathogenic strains into STEC. The stx-phages are capable of acting as survival 

capsules for stx genes allowing them to persist outside their host cells (Bergan et al., 2012) in 

the natural environment. These phages seem to be stable in the environment for long 

periods of time, therefore, because of their numbers and persistence, they may be an 

important source of new toxigenic strains in the environment (Muniesa et al., 1999).  
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They originate from fecal contamination that contains both free stx-phages and STEC strains 

(Allison, 2007).  The ability to lose stx genes could also occur. The stx genes can be gained or 

lost giving pathogenicity changes to the strain. The ability to lose stx genes has been 

previously observed by (Karch et al., 1992). E. coli may become harmless by losing the stx-

converting bacteriophage genome (Bielaszewska et al., 2007, Feng et al., 2001). 

 

Other bacteria, which are not E. coli, can also harbor these genes. Shigella, Enterobacter and 

Citrobacter have previously been discovered to possess Shiga toxins (Gray et al., 2015, Paton 

and Paton, 1997, Schmidt et al., 1993). In this current study, a non-E. coli isolate from a blue 

mussel sample harbored stx genes, specifically stx2, showing a high Ct value (30.85). This 

isolate was analyzed by MALDI-TOF and was identified as Citrobacter freundii. Another 

isolate from an oyster sample was detected by real-time PCR as containing stx2 genes, with a 

high Ct value (34), and when analyzed by MALDI-TOF, the isolate was classified as 

Enterobacter cloacae. This could be due to having a mixed culture as the Ct values are quite 

high for a pure culture and could be considered negative, therefore these two results have 

some uncertainties that could be clarified by whole genome sequencing.  

 

Other bacteria can grow in shellfish enrichment broths and suppose a challenge in the 

isolation of the samples. The AIMS approach deals with background flora as it contains 

serotype specific beads which increases the chances for recovery of STEC. The plating on 

different agar plates is also helpful, allowing the target to be distinguished from the 

numerous background flora present.   
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PRESENCE OF STEC IN THE ENVIRONMENT 

 

The existence of STEC in bivalves is due to their introduction in the water column from an 

animal or human reservoir. STEC strains are commonly found in the intestine of cattle and 

other ruminants, cattle are considered the principal reservoir of STEC (Brussow et al., 2004).  

These bacteria can enter the marine environment by runoff from land or via the sewage. 

 

STEC could also be temporarily present in surface sediments and can be re-introduced in 

water, followed by accumulation and filtering behavior from bivalves. Fremaux (2010) 

studied the fate of STEC strains in soil and concluded that they were able to disseminate 

down through the soil but were not able to survive for extended periods. Persistence of 

strains can vary between different serotypes as Ma (2014) studied the differences and 

observed a non-O157 STEC persistence of up to 3 months in agricultural soil.  

Berthe (2013) showed distinct generic E. coli survival types and coexistence in bodies of 

estuarine water in France.  

 

SURVIVAL OF E. COLI IN THE MARINE ENVIRONMENT 
 

When bacteria enter the marine environment, they experience several stress factors that 

they need to overcome with their adaptation capacity in order to survive.  

Several studies have investigated the factors that can alter E. coli concentrations in 

seawater. Rainfall is recognizably one of the main factors (Lunestad et al., 2016) affecting the 

increased exposure of bacterial pathogens in bivalves (Campos et al., 2011). During rainfall, 

the water washes animal wastes (containing E. coli) from contaminated areas and finds its 

way into water bodies. However, seawater pH normally ranges between 7.5 and 8.5 and this 

contributes to a lower E. coli survival, as an acidic pH was found to be more favorable for 

generic E. coli survival (Rozen and Belkin, 2001). Temperature is an important factor 

affecting E. coli survival, they can survive at lower temperatures encountered in the 

seawater, even though their optimal growth is usually 37°C. Sunlight can also affect the 

bacteria as light is considered to contribute to bacterial die-off in the sea. Some biotic 

factors can also influence the survival of E. coli in the marine environments such as 

predation (commonly by protozoa) and competition (Rozen and Belkin, 2001).  
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PHYLOGROUP 
 

The STEC strains in this study were classified into either A and B1, or D and B2.  

The reason for these two sets of results is due to the failure in one of the phylogenetic 

markers (chuA). The positive control used for the phylogroup analysis was Bæ14, which 

worked efficiently for all the genes except for chuA. If chuA represents a true negative then 

the results of this study would be in agreement with (Garcia-Aljaro et al., 2005) who also 

discovered the predominance of the phylogroups A and B1 in the environmental STEC strains 

isolated from urban sewage and animal wastewaters in Spain.  

The discovery of environmental samples belonging more frequently to the B1 phylogroup 

was also observed by a recent study from aquatic environments in France (Berthe et al., 

2013). 

 

ISOLATES OF stx2  
 
The STEC strains which are highly pathogenic to humans, commonly harbor stx1 and/or stx2 

as well as the intimin coding gene, eae (Kagkli et al., 2011).  

The latter is lacking from the strains isolated in this study, hence this could indicate a lower 

virulence to humans as the eae gene is considered an important virulence factor.  

The most important virulence gene associated with severe human disease has proven to be 

stx2 (Boerlin et al., 1999, Paton and Paton, 1998a). It has been observed that strains 

associated with HUS often harbor the stx2 gene alone or together with stx1 (Gerber et al., 

2002).  

 

The six isolated strains in this study lacked the eae gene, but it is not verified that these 

strains do not have the genetic ability to adhere to host cells through other structures 

because they could possess other genes that contain the adhesion factors such as saa, paa, 

ehaA, lpfA, espP, iha and sab. These genes were not studied in this study, therefore a whole-

genome sequencing analysis for three strains belonging to three different samples is being 

done to obtain the information needed to classify the strains. Unfortunately, the results are 

not available within the timeframe of this thesis. 
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Among the STEC strains discovered in this study, five of six could be pathogenic to humans 

and cause infection because they revealed the presence of stx2 variants, stx2a, stx2e and stx2g. 

stx2a was the most frequently found variant (present in three strains) and STEC harboring 

this stx subtype have been associated with clinical symptoms, such as HUS and HC (Baliere et 

al., 2016).  

The subtype stx2e has been associated with swine edema disease, and this stx2 variant has 

been proven to be less pathogenic to humans (Beutin et al., 2008) The subtype stx2g could be 

associated with cattle sources, and a recent study from Baliere (2016) classified a sample 

originating from shellfish as stx2g positive, which is in agreement with the findings of this 

study. Leung (2003) discovered the stx2g variant in bovine strains. 

 

The knowledge of the type of variant of the toxin is important to not only have an 

understanding of the origin of the strains but also the virulence of the STEC strain.  

The isolates in this study can be somewhat compared to a study by Baliere (2016). The 

discovery of strains belonging to stx2a, stx2e and stx2g were isolated from shellfish, mussels 

specifically. These French STEC strains subtypes are in agreement with the Norwegian STEC 

isolates in this study and they also showed the absence of stx1 and eae. The discrepancy 

between them is however the phylogroups. The corresponding phylogroups for the variants 

stx2a, stx2e and stx2g from the other study was B1, A and A accordingly. In this study, the 

groups are either A/B2, B1/D and B1/D respectively. The virulence factors are similar, but 

the phylogroups are different, thus they are different strains.  

 

A study by Beutin (2007) found 42 strains of stx2e in pork samples and 6 strains of stx2g from 

219 samples analyzed from meat, milk and cheese in Germany. The role of stx2g as agents of 

disease is not very clear yet. A study on French environmental samples by Vernozy-Rozand 

(2004) found 15 positive samples for stx2e originating from wastewater treatment plant, pig 

farms and dairy cattle herd. The data in this study also suggests the spread of STEC from pigs 

to cattle. The pathogenicity of stx2e STEC strains for humans is regarded as low (Beutin et al., 

2008). 
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METHODOLOGICAL CONSIDERATIONS 

 

PCR is usually considered to be the main approach to screen for specific genes required or 

typical for STEC. The PCR-based approach used to detect the virulence genes in the shellfish 

samples was followed from the ISO13136:2012 technical specification.  

The enrichment broth was produced in order to increase the bacterial growth and therefore 

the number of copies of the target sequence (Paton and Paton, 1998a).  

 

The interpretation of the presumptive results from the AIMS approach depends on the skill 

of the person carrying out the analysis to correctly identify and differentiate the isolated 

colonies based on typical E. coli morphology.  

The use of two different culture media (CT-SMAC and CHROMagar®) was used to increase 

the chances of detecting suspect colonies that have distinct differential features on each 

media. On the CT-SMAC, suspicious colonies would appear colourless and on CHROMagar® 

they would appear pink-mauve. 

Indeed, antigenically similar organisms (e.g. E. hermannii, Proteus spp.) can cross-react and 

bind, however this will not affect the binding of E. coli O157 to the beads.  

There is an increasing demand for improved diagnostic procedures for the detection of STEC 

in food samples.  
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5. CONCLUSION 
 

Our knowledge about Shiga toxins in bacteria and how they affect humans has expanded in 

the last few years, but there is still more research that needs to be done in order to better 

understand the risk STEC presents.  

STEC have emerged as an important cause of food-borne infections, therefore the objective 

of this study was to investigate and characterize STEC in Norwegian commercially farmed 

bivalves.  

 

In total, six strains were identified as STEC (as they harbored the stx2 genes) from three of 

the 269 samples examined. This represents a low number, hence a low occurrence of STEC 

strains is seen in shellfish originating from Norwegian harvesting farms. The risk of STEC 

infection after consuming shellfish from these designated areas can be considered as low.  

Rapid methods need to be implemented in food microbiology. The ISO/TS-13136 

methodology has proved to be suitable in this study to detect STEC strains.  

The incorporation of whole genome sequencing methods in STEC surveillance aim to 

improve the tracking of infections and gain more knowledge on the biology of this group of 

bacteria.  

 

When food poisoning by pathogenic E. coli occurs, it is of great importance to be able to 

rapidly detect and type the stx and O-antigen genes of STEC strains from humans and 

suspected food samples. This early detection has priority for public health for several 

reasons: could prevent the advancement into life-threatening infections such as HUS and to 

be able to trace back the source of infection to then further prevent outbreaks. 

 

All of the STEC strains isolated in this study lacked the eae gene which is strongly associated 

with high virulence to humans, hence reinforcing the conclusion that the potential risk of 

STEC infection for shellfish consumers is limited. Nevertheless, this study demonstrated the 

presence of STEC in bivalves, which could emerge as being pathogenic to humans. 
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APPENDIX 
 
 
The following pictures show the gel images of two samples positive for stx2e and stx2g 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Below is a complete overview of the real-time PCR results for detection of virulence genes 

and O-serogroups for all the samples analyzed in this study  

The results obtained are shown as “+” when the DNA sample gave a signal of gene 

amplification, and as blank when no signal was detected.  

 

Figure 19. Gel image showing positive sample 1239 for stx2e 

Sample 1239_4 

Positive control 

Figure 20. Gel image showing positive sample 1246 for stx2g 

Sample 1246_14 

Positive control 
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Sample Category Municipality Screening 

   stx1 stx2 eae O145 O157 O111 O26 O103 

2016-1402 Blue mussel 
BRØNNØY   +      

2016-1401 Blue mussel 
LILLESAND         

2016-1400 Blue mussel 
BJUGN         

2016-1399 Blue mussel 
BJUGN         

2016-1398 Blue mussel 
ÅFJORD         

2016-1397 Blue mussel 
ÅFJORD         

2016-1396 Blue mussel 
ÅFJORD         

2016-1395 Blue mussel 
FJALER         

2016-1394 Blue mussel 
FJALER         

2016-1393 Blue mussel 
ÅFJORD   +      

2016-1379 Blue mussel 
ÅFJORD         

2016-1378 Blue mussel 
ÅFJORD   +      

2016-1377 Blue mussel 
ÅFJORD   +      

2016-1366 Oysters 
SVEIO         

2016-1367 Blue mussel 
NORDREISA   +      

2016-1369 Blue mussel 
BØMLO  +       

2016-1370 Blue mussel 
VESTVÅGØY         

2016-1371 Scallops 
         

2016-1372 Blue mussel 
MOSVIK FØR 2012   +      

2016-1373 Blue mussel 
INDERØY + + +      

2016-1374 Blue mussel 
ÅFJORD   +  +    

2016-1375 Blue mussel 
ÅFJORD   +      

2016-1376 Blue mussel 
ÅFJORD         

2016-1332 Blue mussel 
ÅFJORD + + +  +   + 

2016-1331 Blue mussel 
MOSVIK FØR 2012   +      

2016-1330 Blue mussel 
BINDAL  + +    +  

2016-1329 Oysters 
SVEIO + + + + +  + + 

2016-1297 Oysters 
SVEIO         

2016-1296 Blue mussel 
MOSVIK FØR 2012         

2016-1295 Blue mussel 
INDERØY         

2016-1293 Blue mussel 
         

2016-1292 Blue mussel 
RISSA   +      

2016-1291 Blue mussel 
FOSNES         

2016-1290 Blue mussel 
FOSNES         

2016-1256 Blue mussel 
NAMDALSEID         

2016-1255 Blue mussel 
NAMDALSEID         

2016-1254 Blue mussel 
ÅFJORD         

2016-1253 Blue mussel 
GRIMSTAD         

2016-1252 Blue mussel 
MOSVIK FØR 2012         

2016-1251 Oysters 
SVEIO         

2016-1250 Blue mussel 
TYSVÆR         

2016-1249 Blue mussel 
BJUGN        + 

2016-1248 Blue mussel 
BJUGN   +     + 

2016-1246 Blue mussel 
ÅFJORD  + +  +    
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2016-1245 Blue mussel 
ÅFJORD   +      

2016-1244 Blue mussel 
ÅFJORD   +      

2016-1243 Blue mussel 
KVITSØY         

2016-1242 Oysters 
KVITSØY         

2016-1241 Scallops 
KVITSØY         

2016-1240 Blue mussel 
FJALER   +     + 

2016-1239 Blue mussel 
FJALER  + + +    + 

2016-1238 Blue mussel 
ÅFJORD         

2016-1218 Blue mussel 
ÅFJORD  + +      

2016-1217 Blue mussel 
BRØNNØY         

2016-1216 Blue mussel 
LEIRFJORD         

2016-1215 Oysters 
OS I HORDALAND         

2016-1214 Blue mussel 
VERRAN   +      

2016-1213 Blue mussel 
INDERØY         

2016-1212 Scallops 
         

2016-1211 Blue mussel 
NORDREISA   + +     

2016-1210 Blue mussel 
BØMLO         

2016-1202 Blue mussel 
ÅFJORD         

2016-1201 Blue mussel 
VERRAN   +      

2016-1200 Blue mussel 
FOSNES +  + +   +  

2016-1199 Blue mussel 
FOSNES         

2016-1198 Blue mussel 
BINDAL   +      

2016-1197 Blue mussel 
VESTVÅGØY         

2016-1179 Blue mussel 
MOSVIK FØR 2012      +   

2016-1178 Blue mussel 
VERRAN         

2016-1177 Blue mussel 
INDERØY         

2016-1176 Oysters 
OS I HORDALAND         

2016-1175 Scallops 
KVITSØY         

2016-1174 Oysters 
KVITSØY      +   

2016-1173 Blue mussel 
BJUGN         

2016-1172 Blue mussel 
ÅFJORD   +      

2016-1171 Blue mussel 
BJUGN         

2016-1170 Blue mussel 
ÅFJORD         

2016-1169 Blue mussel 
ÅFJORD         

2016-1168 Blue mussel 
RISSA   +      

2016-1167 Oysters 
SVEIO         

2016-1148 Blue mussel 
         

2016-1147 Blue mussel 
FJALER   +      

2016-1146 Blue mussel 
FJALER   +      

2016-1145 Blue mussel 
ÅFJORD         

2016-1140 Blue mussel 
NAMDALSEID   +      

2016-1139 Blue mussel 
NAMDALSEID         

2016-1138 Blue mussel 
NAMSOS         

2016-1137 Blue mussel 
NAMSOS   +      

2016-1136 Blue mussel 
NAMSOS         

2016-1132 Blue mussel 
VERRAN         
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2016-1131 Blue mussel 
MOSVIK FØR 2012         

2016-1129 Blue mussel 
VESTVÅGØY         

2016-1127 Blue mussel 
NORDREISA   + +    + 

2016-1076 Blue mussel 
VERRAN         

2016-1075 Blue mussel 
NAMDALSEID         

2016-1074 Blue mussel 
NAMDALSEID         

2016-1073 Scallops 
         

2016-1072 Blue mussel 
RISSA   +      

2016-1069 Scallops 
KVITSØY       +  

2016-1065 Oysters 
KVITSØY   +      

2016-1064 Blue mussel 
KVITSØY   +      

2016-1063 Oysters 
SVEIO         

2016-1042 Blue mussel 
NAMSOS         

2016-1041 Blue mussel 
NAMSOS  + +     + 

2016-1040 Blue mussel 
ÅFJORD         

2016-1039 Blue mussel 
ÅFJORD         

2016-1038 Blue mussel 
ÅFJORD         

2016-1037 Blue mussel 
ÅFJORD         

2016-1036 Blue mussel 
ÅFJORD         

2016-1035 Blue mussel 
BJUGN   +      

2016-1034 Blue mussel 
BJUGN   +      

2016-1033 Blue mussel 
ÅFJORD         

2016-1032 Blue mussel 
ÅFJORD         

2016-1031 Blue mussel 
ÅFJORD         

2016-1030 Blue mussel 
ÅFJORD         

2016-1029 Blue mussel 
FJALER         

2016-1028 Blue mussel 
FJALER         

2016-1026 Blue mussel 
VESTVÅGØY       +  

2016-954 Blue mussel 
NORDREISA         

2016-946 Blue mussel 
NAMDALSEID         

2016-945 Blue mussel 
         

2016-944 Blue mussel 
ÅFJORD         

2016-943 Blue mussel 
ÅFJORD         

2016-942 Blue mussel 
        + 

2016-941 Blue mussel 
BØMLO         

2016-930 Blue mussel 
   +      

2016-925 Blue mussel 
LILLESAND         

2016-923 Oysters 
OS I HORDALAND   +    +  

2016-922 Oysters 
ØYGARDEN       +  

2016-921 Oysters 
SVEIO         

2016-884 Blue mussel 
NÆRØY         

2016-883 Blue mussel          

2016-882 Blue mussel NAMDALSEID         

2016-881 Blue mussel FOSNES        + 

2016-880 Blue mussel FOSNES         

2016-879 Blue mussel BINDAL         
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2016-878 Blue mussel RISSA      +   

2016-874 Blue mussel LILLESAND         

2016-873 Blue mussel GRIMSTAD         

2016-836 Blue mussel NAMDALSEID   +      

2016-835 Blue mussel GRIMSTAD         

2016-834 Blue mussel LILLESAND         

2016-833 Blue mussel    +    + + 

2016-832 Blue mussel ÅFJORD         

2016-831 Blue mussel ÅFJORD         

2016-830 Blue mussel BJUGN       +  

2016-829 Blue mussel BJUGN         

2016-828 Blue mussel ÅFJORD         

2016-827 Blue mussel ÅFJORD         

2016-815 Horse mussel    +      

2016-814 Blue mussel FORSAND         

2016-813 Blue mussel KVITSØY         

2016-812 Scallops KVITSØY  +       

2016-811 Oysters KVITSØY  + +      

2016-810 Blue mussel FJALER    +   +  

2016-809 Blue mussel FJALER + + +  +  +  

2016-808 Horse mussel No origin info +      +  

2016-743 Blue mussel GRIMSTAD + +  + + + +  

2016-738 Blue mussel ÅFJORD +  +  +  +  

2016-737 Blue mussel ÅFJORD + + +  +  +  

2016-735 Blue mussel ÅFJORD + + + + + + +  

2016-734 Blue mussel ÅFJORD + + + + + + +  

2016-733 Blue mussel ÅFJORD + + + + + + +  

2016-732 Blue mussel NAMDALSEID + + + + + + +  

2016-731 Blue mussel NAMSOS   +      

2016-730 Blue mussel NAMDALSEID         

2016-729 Blue mussel NAMDALSEID   +      

2016-728 Oysters OS I HORDALAND         

2016-727 Blue mussel          

2016-725 Blue mussel VESTVÅGØY         

2016-724 Scallops          

2016-722 Oysters SVEIO         

2016-720 Blue mussel NORDREISA     +    

2016-717 Blue mussel BØMLO         

2016-687 Blue mussel GRIMSTAD         

2016-686 Blue mussel NAMDALSEID         

2016-685 Blue mussel NAMSOS         

2016-684 Blue mussel NAMSOS +        

2016-683 Blue mussel FOSNES         

2016-682 Blue mussel FOSNES         

2016-681 Blue mussel ÅFJORD +        

2016-680 Blue mussel BINDAL +        
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2016-679 Oysters          

2016-678 Blue mussel RISSA   +      

2016-651 Scallops KVITSØY         

2016-650 Oysters KVITSØY         

2016-649 Blue mussel KVITSØY      +   

2016-644 Blue mussel NAMSOS         

2016-643 
Sand shell (Banded carpet 

shells) Ulvsundet         

2016-642 Arctica islandica Ulvsundet         

2016-641 Scallops No origin info         

2016-639 Blue mussel ÅFJORD         

2016-450 Oysters OS I HORDALAND         

2016-449 Blue mussel BINDAL         

2016-447 Blue mussel NAMSOS         

2016-445 Blue mussel          

2016-444 Blue mussel BØMLO         

2016-443 Oysters BØMLO         

2016-442 Blue mussel FJALER         

2016-441 Blue mussel FJALER         

2016-439 Scallops          

2016-380 Blue mussel ÅFJORD   + +     

2016-379 Blue mussel ÅFJORD   +      

2016-377 Blue mussel ÅFJORD   + +     

2016-376 Blue mussel ÅFJORD         

2016-375 Blue mussel ÅFJORD   + +     

2016-374 Oysters KVITSØY         

2016-373 Blue mussel KVITSØY         

2016-371 Scallops KVITSØY         

2016-370 Blue mussel          

2016-368 Blue mussel NORDREISA         

2016-367 Blue mussel FOSNES    +   +  

2016-366 Blue mussel FOSNES         

2016-357 Arctica islandica ØYGARDEN         

2016-356 Scallops ØYGARDEN         

2016-326 Sea urchin          

2016-324 Blue mussel FORSAND         

2016-322 Horse mussel          

2016-321 Blue mussel RISSA   +      

2016-320 Scallops          

2016-319 Oysters SVEIO         

2016-265 Oysters SVEIO         

2016-264 Blue mussel BJUGN         

2016-263 Blue mussel ÅFJORD +      +  

2016-262 Blue mussel BJUGN         

2016-261 Blue mussel ÅFJORD         

2016-260 Blue mussel ÅFJORD   +      

2016-259 Blue mussel ÅFJORD         
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2016-204 Oysters OS I HORDALAND         

2016-202 Blue mussel FJALER         

2016-201 Blue mussel FJALER         

2016-199 Oysters BØMLO         

2016-638 Blue mussel ÅFJORD         

2016-637 Blue mussel ÅFJORD         

2016-636 Blue mussel BJUGN         

2016-635 Blue mussel ÅFJORD  + + + +  +  

2016-633 Blue mussel BJUGN         

2016-632 Blue mussel FJALER         

2016-631 Blue mussel FJALER         

2016-630 Blue mussel GRIMSTAD         

2016-570 Oysters OS I HORDALAND         

2016-568 Oysters GRIMSTAD         

2016-567 Blue mussel NAMSOS         

2016-566 Blue mussel NAMDALSEID   +     + 

2016-565 Blue mussel NAMDALSEID   +      

2016-564 Blue mussel NAMSOS         

2016-563 Blue mussel    + + + +   

2016-561 Blue mussel BØMLO +  +      

2016-560 Scallops       +   

2016-559 Horse mussel       +   

2016-558 Blue mussel FORSAND   +   +   

2016-557 Blue mussel NORDREISA   +      

2016-540 Blue mussel GRIMSTAD      +   

2016-539 Blue mussel LILLESAND   +      

2016-538 Scallops No origin info         

2016-537 Blue mussel BJUGN      +   

2016-536 Blue mussel ÅFJORD         

2016-535 Oysters SVEIO         

2016-534 Blue mussel VESTVÅGØY         

2016-510 Blue mussel GRIMSTAD +     +   

2016-509 Blue mussel LILLESAND      +   

2016-508 horse mussel NAMSOS      +   

2016-507 Blue mussel NAMSOS     +    

2016-506 Blue mussel    + +     

2016-505 Blue mussel RISSA   +      

2016-504 Blue mussel BINDAL   +      

2016-503 Blue mussel ÅFJORD         

2016-502 Blue mussel BJUGN         

2016-501 Blue mussel ÅFJORD         

2016-500 Blue mussel ÅFJORD   +      

2016-499 Blue mussel FOSNES      +   

2016-498 Blue mussel FOSNES         


