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ABSTRACT

Background: Population pharmacokinetics is the study of phaokimetic variability in the
population. One goal of such studies is to impriodévidual drug treatment by identifying
relationships between pharmacokinetic parametaet$atent characteristics. Tacrolimus is
an immunosuppressive drug used in kidney transgtiant Tacrolimus has a narrow
therapeutic window and large pharmacokinetic vdrtgliboth between and within patients.
In addition, dose-normalized whole blood concerarat tend to increase during the first
months after kidney transplantation. Thereforeivigial dosing of tacrolimus is a major
clinical challenge. The objective of this study vi@slevelop a population pharmacokinetic
model for tacrolimus to aid in prediction of initdose and individual dose requirements
during the first ten weeks after kidney transplaata

Methods: Twenty-nine kidney transplant recipients contriloufigll pharmacokinetic profiles
of tacrolimus at 44 dosing occasions, and 44 pitieontributed trough concentrations from
the first ten weeks after kidney transplantatioriotal of 1546 blood samples were analyzed.
Demographic, clinical and pharmacogenetic patibatacteristics were evaluated as
covariates. Population pharmacokinetic modeling performed in NONMEM 7.2

Results: A two compartment model with first order absorptand lag time adequately
described the data. Relative bioavailability wag24bwer in females than in males and 49 %
lower in CYP3AS5 expressers than in CYP3A5 nonexgees Fat free mass was the most
predictive body size metric. Whole blood concemtreg of tacrolimus increased linearly with
increasing hematocrit. An underlying increase imatocrit with time after kidney
transplantation largely explained the apparent-warging pharmacokinetics of tacrolimus.

In addition, relative bioavailability was 122 % hay than its lowest value immediately after
transplantation, decreased to its lowest valuenduhe first four days and subsequently
increased by 31 % with an asymptote at day 60.

Conclusions: Initial dose of tacrolimus should be predicted freex,CYP3A5genotype, fat
free mass and hematocrit. Hematocrit is an impoftartor to predict changes in tacrolimus
whole blood concentrations over time. The model p@tgntially aid in individual dosing of
tacrolimus. Its predictive performance must be e&#d before application in clinical
practice.

Key words:Tacrolimus, hematocrit, population pharmacokirsgtiarget concentration
intervention, kidney transplantation






SAMMENDRAG

Bakgrunn: Populasjonsfarmakokinetikk er studien av farmaketgk variasjon i
befolkningen. Et mal med slike studier er & forleeiddividualisert legemiddelbehandling ved
a kartlegge sammenhenger mellom pasientegenskggarmakokinetiske parametere.
Takrolimus er et immundempende legemiddel som besgiter nyretransplantasjon.
Takrolimus har et smalt terapeutisk vindu og stmmiakokinetisk variabilitet bade mellom og
innen pasienter. | tillegg stiger dosenormaliséurtiblodkonsentrasjoner de fgrste manedene
etter nyretransplantasjon. Individuell doseringalrolimus er derfor en stor klinisk
utfordring. Hensikten med denne studien var & vk farmakokinetisk populasjonsmodell
for takrolimus som kan benyttes til & bedre forutdig oppstartsdose og individuelle
doseringsbehov de farste ti ukene etter nyretranggjon.

Metode: Tjueni nyretransplanterte pasienter bidro med tidilfulle konsentrasjons-
tidskurver, mens 44 pasienter bidro med bunnkonsgjoner (G) de farste ti ukene etter
nyretransplantasjon. Totalt 1546 fullblodkonsentnasr av takrolimus ble analysert.
Demografiske, kliniske og farmakogenetiske pasganskaper ble undersgkt som potensielle
kovariater. Farmakokinetisk populasjonsmodellebiggjennomfgrt i NONMEM 72

Resultater: En to-roms modell med forsinket fgrste ordens gisgon beskrev de observerte
konsentrasjonene. Relativ biotilgjengelighet vae24avere hos kvinner enn hos menn og 49
% lavere hos pasienter som uttrykte funksjonelt GX®Benzym enn hos pasienter uten
funksjonelt CYP3A5-enzym. Farmakokinetikken varlstee relatert til fettfri vekt enn til

total kroppsvekt. Fullblodkonsentrasjoner av taknok steg lineaert med stigende hematokrit.
En underliggende stigning i hematokrit med tid rettgretransplantasjon forklarte en stor
andel av de tilsynelatende tidsrelaterte farmaketiske endringene for takrolimus. 1 tillegg
var relativ biotilgjengelighet 122 % hgyere enn threste observerte verdien umiddelbart
etter transplantasjonen, sank til den laveste gartigpet av de neste fire dagene og gkte
deretter med 31 % mot en asymptote ved dag 60tedtesplantasjonen.

Konkluson: Oppstartdose bar beregnes fra kjigdWP3A5genotype, fettfri vekt og
hematokrit. Hematokrit er en viktig faktor for &tissi fullblodkonsentrasjoner av takrolimus
over tid. Modellen kan potensielt bidra til & fodoe individuell dosering av takrolimus. Den
ma imidlertid ytterligere valideres fgr den kanitasuk i klinisk praksis.

Ngkkelord Takrolimus, hematokrit, populasjonsfarmakokinktilegemiddelmonitorering,
nyretransplantasjon
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PREFACE

The report from this project was written in thenfat of a research article with the intention
of publishing in the scientific journdlherapeutic Drug MonitoringThe thesis is therefore

constructed by four parts.

- Chapter 1 includes an introduction to populatioarptacokinetic modeling. Figures,

Tables and Equations in chapter 1 are named w&tipréfix 1.

- Chapter 2 includes characteristics of the drugntrest, tacrolimus. Figures are

named with the prefix 2.

- The research article is placed between chaptedB3amd has a separate list of
references. Figures, Tables and Equations arassotiated with a prefix and are

shown subsequent to the article text. The resemtaiie may be read independently.

- Chapter 3 consists of an extended discussion ohadelogical considerations in light
of the study results. Figures are named with tleépB. The literature list provided at

the end of the document includes references fraapten 1, 2 and 3.






TABLE OF CONTENTS

LIST OF ABBREVIATIONS ...ttt ettt e e e s e e e e e e e neanees Xiii
LIST OF TABLES ...ttt e e e e e e e s s b e e e e e e e s r b e e e e e e e s e saennees Xiv
LIST OF FIGURES ...ttt e et e e e e e e st e e e et e st e e e e e e sannre e XV

1 POPULATION PHARMACOKINETIC MODELING

1.1  INDIVIDUALIZED DRUG THERAPY ....oiiiiitiiitieitieitie sttt sttt 1
1.2 NONLINEAR MIXED EFFECTS MODELING .....ccccoiiiiiiiiiiieet et 2
The SrUCtUral MOE........ociiiiiiee e 4
The StatiStiCal MO .........c.eieee e 4
The covariate MOTEL .........c.vii i e 9
1.3  BAYESIAN ESTIMATION OF INDIVIDUAL PHARMACOKINETIC PARAMETERS............. 12
1.4 A MODELING SOFTWARE: NONMEM .....cccciiiiiiitiiieiieniee ettt 14
INtroduction t0 NONMEDM ......oouiiiiiiii e e 14
The objective function and the likelihood ratio test............occcuiiiiiie i, 15
1.5  MODEL EVALUATION ...ttt ettt ettt te e te e steesaeesmeeameeambeenbeeseeesneeaneeaneeeneeas 17
Biological plauSIDility ..........oooieii e 17
Precision of the parameter @SHMALES ..........coiii i 17
Graphical evaluation of goodness Of fit ............eoiiiiiiiiiiii e 18
1.6 ACCEPTING A FINAL MODEL ....cctiiiiitiaitieitie ittt ettt ee et sbe e sneesnaeanneennee s 19

2 TACROLIMUS

2.1 CALCINEURIN INHIBITORS IN KIDNEY TRANSPLANTATION ....ooiiiiiiiii, 20
2.2 PHARMACOKINETIC CHARACTERISTICS ... 20
General pharmMacCOKINELICS ..o e e e e e 20
DistribUtion iN DIOOM ... e 21
CYP3AS5 POIYMOIPRNISIM ..veiiiiieiiieciiieie e st s s e e e e s e s e e e e e e s e snnnreeeeeeaeeseannnes 23
Population pharmacokinetic models in literature.........cccccooecivieeiee e 23

RESEARCH ARTICLE

The Importance of Hematocrit for Tacrolimus Target Concentration Intervention................ 29

Xi



3 EXTENDED DISCUSSION ON METHODOLOGICAL CONSIDERATI ONS

3.1 STUDY DESIGN ...ttt e e e e e e e e e e et e e e e e e s e aanbreeeeas 54
3.2 HANDLING MISSING DATA L. ettt e e et e e e e e e e s bbb e eeeeee s 55
3.3 ASSUMPTIONS AND LIMITATIONS IN NONLINEAR MIXED EFFECTS MODELING. ....... 55
Global MINIMUM ....eii et 55

ReSidual €rror MOGE .........eiiiiiiiiie e e 56

Between subject variability model ...............oooiiiii 57

34 RELIABILITY OF THE INDIVIDUAL PHARMACOKINETIC PARAMETER ESTIMATES .... 58
35 CHOICE OF COVARIATES IN THE FINAL MODEL ......coooiiiiiii 59
TYPE | BITON FALE ... s 59

TYPE Il BITOT FALE ... s 61

EITOr iN COVANALES. ......eiiiiiiii ettt e st et e e e 61

Factors NOt aCCOUNLEA FOF........cviiiiie i 62

= (o 1 Tor= L= ] o 1= o £ SRS 62

3.6 EXAMPLE OF INDIVIDUAL GOODNESS OF FIT ..ottt 63
3.7 SUBJECTIVITY IN MODEL DEVELOPMENT ...coiiiiiiiiiiiite et 64
4  FUTURE DIRECTIONS ..ottt 65
REFERENGCES ... ..ottt ene s 66
APPENDICES ...ttt ettt s e ene e 70

APPENDIX A. Algorithm for prediction of fat free mass

APPENDIX B. Frequency distribution of bootstrap parameter estimates

APPENDIX C. Traditional goodness of fit plots

APPENDIX D. Individual goodness of fit in selected individuals

APPENDIX E. Supplemental material for decision-making during model development
APPENDIX F. Overview of evaluated models

APPENDIX G. Final model control stream

APPENDIX H. Example of dataset structure

Xii



LIST OF ABBREVIATIONS

ALAT Alanine aminotransferase

ALB Albumin

ALP Alkaline phosphatase

ASAT Aspartate aminotransferase

BILI Bilirubin

BMI Body mass index

BOV Between occasion variability

BQL Below quantification limit

BS Bootstrap

BSA Body surface area

BSV Between subject variability

Co Trough concentration

CL Clearance

CL/F Apparent clearance

Clggrp Group value of clearance

CL; Individual value of clearance

CMIA Chemoluminescent microparticle immunoassay
CRP C-reactive protein

Ccv Coefficient of variation

CYP3A4 Cytochrome P450 3A4

CYP3A5 Cytochrome P450 3A5

CWRES Conditional weighted residual

DSA Donor-specific antibody

En Hepatic extraction ratio

F Bioavailability

Fe Intestinal availability

Fr Hepatic availability

Fi Individual bioavailability

FFM Fat free mass

Hct Hematocrit

Ka Absorption rate constant

LC-MS/MS Liquid chromatography tandem mass spectrometry
MEIA Microparticle enzyme immunoassay
NONMEM Nonlinear Mixed Effects Modeling
OFV Objective function value

P-gp P-glycoprotein

pcVPC Prediction corrected visual predictive check
PD Pharmacodynamics

PK Pharmacokinetics

PRA Panel reactive antibody

Q/F Apparent intercompartmental clearance
SNP Single nucleotide polymorphism

TX Transplantation

Txt Time after transplantation

TBW Total body weight

TCI Target concentration intervention
TDM Therapeutic drug monitoring

TX Transplantation

Txt Time after transplantation

V1/F Apparent central volume of distribution
V2/F Apparent peripheral volume of distribution
VPC Visual predictive check

WT Weight

Xiii



LIST OF TABLES

Xiv

TABLE 1.1.
TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.

Review of population pharmacokinetic models of tacrolimus...........cccccceevvviivieeeeeenn. 25
Characteristics of pharmacokinetic studies of tacrolimus...........ccoooovieeiiiiniiiiiiiennn. 45
Demographic and clinical data.............cooiiiiiiiiii e 46
Results from backward elimination of covariates. ..o, 47
Final parameter estimates and bootstrap results............c..eeeeeeiiiiiiiee e, 48



LIST OF FIGURES

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8

Figure 2-1
Figure 2-2

Figure
Figure
Figure

Figure

ga b~ W N

Figure

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Components of a mixed effects population pharmacokinetic model .......................... 4
Example of concentration-time profile and its associated variabilities ........................ 8
Example of individual estimates of clearance as function of body weight................. 10
Mathematical functions for modeling of covariates............ccoceeiiiiiiii e, 11
lllustration of Bayesian estimation of individual pharmacokinetic parameters .......... 13
lllustration of shrinkage in individual parameters............coccvveveeeeei i 14
x-distribution with one degree of freEAOM ..........coveveeceeeeeeeeeeeeeeeeeeeeee e 16
Example: Traditional goodness of fit PlOtS.........c.eeeieiiiiiiii e, 18
First pass 10SS Of tACrOlIMUS ........ccoiiiiiiiiiiie e 21

The theoretical influence of hematocrit on tacrolimus whole blood concentrations .. 22

Observed tacrolimus whole blood concentrations ...........ccocoecveeeiiiiie e, 49
Hematocrit as a function of time after transplantation .............cccccvvceeee e, 49
Prediction corrected visual predictive checks over the range of hematocrit.............. 50
Estimated time course of relative bioavailability after transplantation ...................... 51
Prediction corrected visual predictive checks of the final model ..................occcie. 52
Distribution of conditional weighted residuals..........ccccccoviuiiiiiiieii i, 56
(YT (o (U= =T g o gl o] (] £ SRR 57
Frequency distribution of the individual eta values............ccccccceveee i, 58
Randomization test for the effect of sex on bioavailability...............ccccoeviiiiiiiinnnn. 60
Example of individual goodness Of fit ... 63

XV






1 POPULATION PHARMACOKINETIC MODELING

1.1 INDIVIDUALIZED DRUG THERAPY

It is generally recognized that patients resporfiemintly to medical treatment and that
ideally, treatment should be personalized [1]. @pproach towards personalized treatment is
to adjust dosage regimens of drugs based on tinedoél response [2]. When the therapeutic
response of a drug is not easily measured and themeknown relationship between drug
concentration in blood and drug effects, the meabudrug concentrations may serve as
surrogates for the individual response [3]. Thegdconcentration associated with the most
efficient therapy while minimizing risk of toxicitis selected as the target concentration. If
the acceptable target concentration range (theti@pewindow) is narrow and
pharmacokinetic variability is large, dosage regimenust be adapted for each individual to
achieve and maintain the selected target concenirg].

To characterize the time course of drug conceptnadnd to select appropriate dosage
regimens, information about the primary pharmacetken parameters (bioavailability,
absorption rate, clearance and volume of distrdm)tiare required. Determination of these
parameters in a single individual is dependent aiftiphe sampling within the dose interval
[4]. There are however financial and ethical ods&to frequent blood sampling in the target
population who may be ill, old, very young or pgbdave received an organ transplant [5,
6]. Average pharmacokinetic parameters are thezeftraditionally derived from
pharmacokinetic studies on a relatively small numiiiehealthy volunteers [7]. However,
dosage recommendations based on these resultsotreecessarily optimal for the target
population who will be receiving the drug [4]. Themary pharmacokinetic parameters vary
between patients because they depend on physialogioperties. Examples of such
physiological properties include organ functionzymnatic activity, blood flow to eliminating
organs and binding properties in blood and tissBesie of these are not easily measurable.
They are however reflected by measurable factod) as body weight or body composition,
age, genotype and laboratory values [3]. By charamhg the quantitative relationship
between these measurable patient factors and pbekmatic parameters, sub-populations
with different dose requirements may be identifipdor to treatment initialization.
Furthermore, these relationships can be translatéd more optimal initial dose
recommendations for specific groups of patients lf8contrast to the traditional methods for



pharmacokinetic analysis, population pharmacokingtialysis offers a powerful approach to
investigate these relationships based on sparse aatilable from the patient group of
interest [4].

Population pharmacokinetics is defined #s“study of the sources and correlates of
variability in the drug concentrations among indivals who are the target populatio9].
A population pharmacokinetic model consists of @ahmanatical model that relates dose, drug
concentration and patient characteristics. In amditit consists of a statistical model that
quantifies the unexplained pharmacokinetic varigbédnd residual variability, assuming that
these arise from specific distributions [7]. Infaton about this variability can be used to
estimate more reliable pharmacokinetic parametargdich individual based on sparse drug
concentrations available from the clinical settiagd thereby further facilitate dose
individualization. Population pharmacokinetic segliconstitute an important part of the
science of quantitative pharmacology (pharmacoe®tri[10]. Although population
pharmacokinetic studies have greatest applicatiaiirug development, they are also used to
extend knowledge about pharmacokinetic mechanisntiuys already on the market [4].
They provide a framework for improved drug therdmth on the group level and on the
individual level. Hence, such analyses are importawwards the overall goal of personalized

medical treatment.

1.2 NONLINEAR MIXED EFFECTS MODELING

Several methods exist for performing population rpfacokinetic analyses. The “Naive
Pooled Data Method” treats data as if all concéiotna were derived from the same
individual and therefore cannot be used to estinpditarmacokinetic variability between
patients. The “Standard Two-Stage Method” requirehly sampled data from each
individual to estimate individual parameters in thiial stage and parameter variability in
the second stage [6]. In contrast, the NonlineaxediEffects Modeling approach allows
estimation of all parameters simultaneously andyjscally the method of choice due to
several advantages. First, it distinguishes betwéee biological variability in the

pharmacokinetic parameters and random residuabhifity. Second, it does not require
intensive sampling within the dosage interval. @hit handles situations when individuals
contribute unbalanced amounts of data and alloweyiation of data arising from several
sub-studies, including data from the routine chhisetting [5]. Thereby, it naturally reflects

the patient group of interest [4].

2



Nonlinear mixed effects modeling was introducedht® pharmacokinetic field in the
end of the 1970s to analyze sparse, heterogeneatas aftising from therapeutic drug
monitoring of digoxin [5].Nonlinear refers to that the mathematical function descghime
system is nonlinear in its parameters [7, 11]. Nigtathese nonlinearities are not related to
whether the pharmacokinetic model is linear or maar. Mixed effectsrefer to effects
contributing to the overall variability. These effe are of two different type&ixed effects
are predictable effects on a variable (e. g. typat@arance of 20 L/h in the population),
whereasrandom effects describe unpredictable variability (e.5. % variability between
subjects around the typical value 20 L/h in theytaton). In population pharmacokinetics,
fixed and random effects parameters are referres thetast(s) and etasi’s), respectively

[12]. A population pharmacokinetic model normalbnesists of three components:

) a fixed effects structural model to describe thpdsl pharmacokinetic parameters
of the drug in the population

i) a random effects statistical model to describeadity in the parameters

i) a fixed effects covariate model to describe predbiet effects of patient

characteristics on the pharmacokinetic parameters

The model components may be viewed as separatelsnade they also interact with each
other to constitute the full population model. Thasillustrated in Figure 1-1 together with
guestions that are typically asked during develepnof each component.



Fixed effects

Structural model /

- What type of compartmental
model describes the
observed data?

Random effects - How is the drug absorbed?
Fixed effects
Statistical model Covariate model
- How do the - How does
parameters vary weight affect
between patients? clearance?
- How should the - How does age
residual error be affect volume of
modeled? distribution?

Figure 1-1. Components of a mixed effects population pharkiaetic model and examples of questions that
may be asked during development of each partiamadel component. The structural model and covariate
model are built by fixed effects, and the stat@dtimodel is built by random effects. They can besitered as
separate model components, but also interact with ether to constitute the full population model.

The structural model

The analysis typically begins with describing tlaadusing a pharmacokinetic compartmental
model. The most common parameterization is by pymharmacokinetic parameters

(clearances and volumes of distribution) rathemtbg rate constants or coefficients and
exponents [13]. The adequate number of compartnfents one-, two- or three-compartment
model) and the absorption profile for orally adretered drugs (e. g. zero order or first order

absorption with or without a lag time) are detereair7].

The statistical model

The statistical model consists of sub-models desgibetween subject variability (BSV),

between occasion variability (BOV) and residuaberr



Between subject variability (BSV)

All individuals have unique pharmacokinetic paraengtdue to random biologic variability.

Individual clearance is described by the deviamomfthe typical value (Eq. 1-1):

CLl' = GCL + ni Eq 1-1

where Cl. is the individual value of clearanc@;, is the parameter estimate of the typical
value of clearance in the population apds the individual deviation from the typical value
[13]. Although n; is unknown, its variancenf) is estimated by assuming that individual
deviations from the typical value am®rmally distributed around a mean of zero in the
population [12]. However, biological parameters @enerally not normally distributed,

because negative values are not possible in biolmggddition, the distribution tends to be
right skewed. The natural logarithm (In) of biolcgi parameters is however often
approximately normally distributed [14]. TherefoBSV in population pharmacokinetic

models is described exponentially (Eq. 1-2):

CLL‘ = GCL X eni. Eq 1'2

For interpretation of the variability, the varianoé n's is transformed to the apparent

coefficient of variationVw? x 100 %, to generate an expression of the variability gisive

same scale as the parameter (e. g. L/h for cleaydnlc

Between occasion variability (BOV)

Pharmacokinetic parameters are not constant over within a patient. When patients are
sampled at more than one occasion (mere than one hospital visit), BOV must be taken
into account [15]. BOV is estimated by using th#oleing expanded model for individual

clearance (Eqg. 1-3):

CLj, = Oy X eMitnk Eqg. 1-3

where & is the deviance between the individual parameter &dd the occasion-specific
individual parameter Gk at the K' occasion. In this equationy’s are assumed to be normally

distributed with mean zero and variandée



Residual variability

The residual variability ) is the discrepancy between the predicted conagortr and the
measured concentration after taking BSV and BOY mtcount. The size of the residual
error is dependent on [15]:

o model misspecifications
analytical assay errors
inaccuracy in dosing time

inaccuracy in sampling time

O O O O

within subject variability

The most commonly used models for the residual em® additive (Eq. 1-4) and proportional
(Eq. 1-5) [12]:

Y;j = Congy; + ¢, Eqg. 1-4
Y;j = Conc;j + (& X Congyj), Eg. 1-5

where Y; and Cong are is the model predicted concentration with armtout residual error,
respectively, for the"individual at the'] measurement. The error tegnis assumed to be a
normally distributed random term with mean zero amdancec®. Whereas additive error
components are estimated in the same unity asdheeatration (e. g. ug/L) and assume a
constant error over all concentrations, proportioeaor components are estimated in
percentages and allows the size of the residual &vrincrease in proportion to increasing
concentration [13]. Oftentimes, these models amslioed (Eq. 1-6):

Y;j = Conc;j + (&1 X Conc;j + &), Eq. 1-6

The combined error model is commonly used becaudescribes a constant error model at
low concentrations and a predominant proportiomarenodel at high concentrations [10].

If the analyzed data arise from more than oneystiné residual error may be different
across these studies. This is expected if the suthes applied different analytical assays to

determine the concentrations or if they were penéd under different circumstances, for



example with and without compliance control [7].cBudifferences are accounted for by
estimating a study-dependent fixed effégt.g,) (Eq. 1-7):

Yij = Concyj + Ogpuay, X (&1 X Concy; + &), Eq. 1-7

Finally, when heterogeneous data are used or ifcoompliance is expected in some
individuals, individual contribution to the residwaror (e”¢""i) can be estimated to prevent
patients with larger residual errors to have pratbimpact on the overall residual error (Eq.
1-8) [16]:

Yj = Concij + Osruay, X (61 % Concyj + &) x e, Eq. 1-8
wherenerr;'s describe BSV in the residual error and are agsuto be normally distributed

with mean zero and varianog,?. Figure 1-2 illustrates a typical concentratiansi profile

and its associated variabilites.



Concentration-time profile of orally administered d rug
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Figure 1-2. Example of concentration-time profile and its a&ssted variabilities. Top panel Drug
concentration-time profile using the populationiraates of pharmacokinetic parameters (red line) and
example of the observed drug concentrations inrahividual (blue diamonds). The blue line is fit tioe
observed concentrations and represents the individoncentration-time profile. In this example, ihatient
differs from the typical patient because it hasitieknt value of clearance. This difference is rled
exponentially as in Eq. 1-2: GE 0, * e". Bottom left panekhows the estimated distribution of individual
clearances, wherg's are assumed to be randomly distributed with ammealue of 0. The standard deviation
oc, reflects the estimated variability in clearangeN(0,0%). A concentration measurement differs from the
individual predicted concentration by the residesabr g; due to, for example, an error in the analyticalags
Bottom right panelshows the estimated residual error distributiothwnean zero and standard deviat®n
(e=N(0,6%). BSV, between subject variability. The valuesdiin the plot are only for demonstration and db no
correspond to actual values.



The covariate model

Covariates represent measurable patient chardmteriSxamples include

o demographic variables, such as total body weigltrée mass, age and sex

0 genetic variables, such as polymorphisms in geoémg for metabolizing enzymes

o laboratory values, such as liver function test gaJuiserum creatinine and hematocrit,
which typically reflect elimination organ functioor drug binding components in
blood

o disease status, such as gastrointestinal disdastirzd absorption

o environmental factors, such as smoking habits oicamitantly administered drugs

that interact pharmacokinetically with the drugrakrest

Other factors that are plausible contributors t@rptacokinetic variability may also be
investigated as covariates [7]. A covariate isadtrced to the model in the form of a
mathematical function. For example, a fractionha total variability in drug clearance in the
population may be explained by body size. Thusgasure reflecting body size, such as total
body weight, is modeled by using a biologically ydéole mathematical function of the
relationship between body weight and clearance. [IBg fit of the population model may
improve, and the total population variability ireatance can be divided into the variability

explainedby total body weight and the remaining unexplajmaddomvariability [12].

Covariate search strategies

Traditionally, covariate search has been based raphgcal evaluation. Scatter plots of
individual pharmacokinetic parameter estimates ametion of the covariate in question are
generated for this purpose [17, 18], exemplifiedFigure 1-3 by plotting clearance as a

function of body weight.



Individual clearance

Total body weight

Figure 1-3. Example of individual estimates of clearance asiraction of body weight. Each individual is
represented by one red dot. The analyst obserires@ of increasing clearance with weight, and enpénts the
relationship in the model by a corresponding matitéral equation to evaluate whether variabilityclearance
is explained by body weight.

If a covariate has a predictable effect on a patam& should appear as a trend in the
scatterplot. There are, however, two main disachge¥ to this method. First, it is dependent
on that the individual parameter estimates are rate19]. The quality of the individual
parameter estimates depends on the study desigan&en longitudinal studies, covariates
may change over time within individuals. When thestfrecorded covariate is used to
generate the scatter plot, the plot is not reptesige for the entire period of the study. Due to
these disadvantages, implementation of covariatestly in the modeling softwarelifect
covariate testing)is often preferred as an alternative method [2®jfis method does not
suffer from shrinkage in the individual parametstirmates and allows for time-varying
covariates because the modeling software updatesotiariate effect for every new record in
the dataset [12]. It is however more time consumipegause a greater number of models are

typically tested [7].

Coding of covariates

Continuous covariates are most often introducdtiéanodel in the form of additive or power
functions [13], exemplified by weight as covariate clearance (Figure 1-4). In the additive
model,0¢c. represents base clearance épg represents the change in clearance introduced
by a change in weight. A nonlinear relationshipwal this change to be more pronounced at
certain values of the covariate. For example, eleeg may change more dramatically per kg

at lower weight compared with at higher weight, d&aexe gained fat does not contribute
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directly to increased clearance [21]. The covanmtemeter is typically centered to a normal
value (e.g. 70 kg) for easier interpretation of &stimate obc, which then will apply to a
patient of 70 kg instead of a patient with a weightero. A variety of functional forms may
be evaluated, such as exponential or sigmoidal feqdet shown) [22]. If several functions
for the same covariate improve the model, the madéh the greatest improvement in

goodness of fit is selected [7] (see later seatiomodel evaluation).

CL,, — 0. + 0, x (WT - 70) CLyp = 6., X (WT/70)°"

< =

S 3

] v 1

e 2

o o Owr

3 Owr b

vl vl

o a

=1 =1

o o

&) O]
| | I | I | | | | |
10 40 70 100 130 10 40 70 100 130

Body weight (kg) Body weight (kg)

Figure 1-4. Mathematical functions for modeling of covariateseft panel Additive model for the effect of
weight (WT) on clearance. Clearance increases riyegith weight. 6c_ represents group value of clearance
(CLgrp) When weight is 70 kg, ariiyt is the estimated change in & per unit change in weighRight panel
Power model for the effect of weight (WT) on cleare. Clearance changes more pertkg (s between 0 and 1
for this shape)fc, represents typical value of clearance & when weight is 70, anél,t is the estimated
change in log (Cggrp per unit change in log weight.

For dichotomous covariates, the fractional chamga parameter in one group compared to
the reference group can be estimated. In the muaglsbftware NONMEM (see later section),
this is achieved by if-else statements, exemplifire@ox 1-1 by coding the effect of sex on

clearance [12]:
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BOX 1-1. Coding of dichotomous covariates in thedeling software NONMEM

Interpretation Code

If the patient is male (sex equals 0), then IF (SEX.EQ.0) THEN
the group value of clearance (CLGRP}s. GRPCL = o¢_

Else, ELSE

if the patient is female (sex does not equal ®@nththe GRPCL = 6¢cL X Stemale
group value of clearance is the group value in malith
a fractional change ®%cmale ENDIF

Because covariates are fixed effects, they onltfypexplain the overall variability. Although
body weight may be recognized as a covariate, dheesvalue of clearance will not apply to
all individuals with similar weight. Neverthelessyvariates provide the best guess for the
initial dose. To account for the remaining unexpda variability, individual pharmacokinetic
parameters must be estimated, which requires st ¢teee measured drug concentration [23].
Drug concentrations arising in the clinical setteag often sparsely sampled and therefore
insufficient to calculate individual parameters whaewed independently. However, they
can be used in conjunction with the typical pharokatetic parameters and their population
distributions to estimate individual parametershwitore reliability [24]. This method allows

dose individualization beyond the information ob&al by covariates.

1.3 BAYESIAN ESTIMATION OF INDIVIDUAL
PHARMACOKINETIC PARAMETERS

The method used to estimate individual pharmacdikingarameters is calle@ayesian
estimation because it is basedmior information provided by a population model [24her
algorithm for estimation of Bayesian individual gareters balances information from the
population model (prior knowledge) with informatioobtained from the individual
concentration measurements to obtain the mostylikedividual parameters (Eq. 1-9 and
Figure 1-5).

~ A \2
_ op  (Pi_Py)? n (€j-Cj)
OBJpayes = i1~ 7 T 2j=1— 3 — - Eq. 1-9
i J
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where OBdaves is the a Bayesian objective function,$the estimated individual parameter,
P; is the population parametes? is the variance of the parameter in the populati®ms the
observed concentratiod; is the predicted concentration from the individpatameters and
o is the variance of the residual error in concéitmameasurements [24]. These estimates
are also called Empirical Bayes Estimates (EBEs)Ximum a PosteriorBayesian estimates

or posthocestimates and are calculated by a modeling softsach as NONMEM (see later

section).
- . X w ; ; h
Prior information Individual information
Population pharmacokinetic parameters Dosing history
Population distribution of parameters Covariates
(BSV and BOV)
Measured drug concentrations
L Residual variability L I

Bavesian estimation

Individual estimates of
pharmacokinetic
parameters

I ndividual dose

Figure 1-5. lllustration of Bayesian estimation of individysttarmacokinetic parameters. The final estimates are
obtaind by balancing prior information and indivédinformation.

If no concentration measurements are availabléy prior information from the
population model is used, and the individual patansewill be equal to the population
parameters because these parameters are the rkelst values. The more individual
concentration measurements that become availdt@ddess will the individual estimates rely
on the population parameters [7]. Although Bayesiadividual parameter estimates are
generally more reliable than parameters derivedlg®lom the individual observations, they

will not be realistic if the sampling design onlffess sparse or uninformative drug
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concentrations. This phenomenon is illustratedigufe 1-6 and is referred to as shrinkage
[19]. The consequences of individual dosing basedslrunk individual parameters are

discussed in the extended discussion section (e€hajt

Between subject variability in clearance

Individual estimate if no data
> 0.2 -
2
k3 Individual estimate if sparse data
2
.% 0.1 -
Q0
= hri
o Shrinkage
& True individual clearance
0.0

Individual clearance (n,)

Figure 1-6. lllustration of shrinkage in individual parametemhe individual estimate of clearance (orange) is
shrunk towards the population mean (blue) whenviddal parameter estimates are based on sparse or
uninformative data. The shrinkage is the differebeeveen the true value of clearance (red) andntfigidual
estimate.Figure was created by inspiration from presentatian PAGE-meeting 2007: Savic & Karlsson,
Shrinkage in Empirical Bayes Estimates for Diagimssand Estimation.

1.4 A MODELING SOFTWARE: NONMEM

Introduction to NONMEM

NONMEM is a software package that performs paramewnlinear mixed effects modeling
[12]. It is the most commonly used software in dapan pharmacokinetic analyses [6, 7].
To perform an analysis in NONMEM, a dataset andsar-defined control stream are
required. In the dataset, each individual is listeith administered doses, dosing times,
observed drug concentrations and available coegrian example is provided in appendix
H). In the control stream, the user defines thecstiral, statistical and covariate model,
selects initial parameter estimates, estimationhottand other user-defined options
(described in more detail in appendix G). The tssafe output in several text files. Among
these results are the pharmacokinetic parameieraets and variances that were requested in

the control stream [13].
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The objective function and the likelihood ratio test

Typical parameter values and several levels of oandvariability are estimated
simultaneously by maximum likelihood estimatid}. NONMEM employs the user-defined
initial parameter estimates as starting points #@edatively suggests combinations of
alternative parameter values. In each step, tleéihdodof observing the drug concentrations
in the dataset given the parameters under evafuegioalculated. The procedure is complete
when the parameters are found that maximizes kieéHbod of observing the data [12]. This
may however occur at both local and preferablygibeal maximum of the function [7].

The modeler typically defines a variety of diffetenodels and wishes to compare
them. For example, a base model is compared withl@nnative model that includes an
effect of weight on clearance. This comparisonasda on calculating the ratio between the
likelihoods obtained by fitting each model sepdyaf€his is called the Likelihood Ratio Test
[12] (Eq. 1-10):

L
Likelihood ratio = alt

Eq. 1-10

base

where Ly is the likelihood of observing the data using theraative model (e. g. the model
with an effect of weight on clearance) anghshis the likelihood using the base model.
However, NONMEM does not output the likelihood ditg. It rather calculates an objective
function value (OFV) proportional to-“2 x log likelihood”.The OFV therefore represents
the likelihood indirectly. Importantly, the abs@uDFV has no meaningful interpretation. The
OFV is only meaningful when models are compared.1Efl is an extension of Eq. 1-10 by

including - 2 x log”. It shows how the expression becomes equal to fferetice in OFV:

Lg
-2 log_lt = —2logLg; — (—21log Lpgse) =

base

—210g Ly + 2108 Lygse = OFVy — OFVpyse = AOFV Eq. 1-11

The transformation is practical: The difference @FV (AOFV) is approximatelyy*
distributed, and the contribution of an added patamcan be evaluated at a selected
significance level according to th&distribution (Figure 1-7) [10].
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Figure 1-7. x >distribution with one degree of freedom and assted selected significance levels.

A reduction in OFV of > 3.8 and > 6.6 are assodatéth significance levels of p<0.05 and
p<0.01, respectively, with one degree of freedome(added parameter) [8]. The likelihood
ratio test is restricted to comparison betweestedmodels. Two models are nested if the
alternative model is identical to the base modet¢mine added paramet®i) is fixed to O,
as exemplified in Box 1-2 for the effect of weigir the group value of clearance ¢zb

(shown without random effects and centered to enabweight):

Box 1-2. Example of nested models

Base model CLgrp = O¢y,

Alternative model CLgrp = B¢, + Byr X (Weight — 70)

In this example, if the OFV is decreased by attl@a8 points for the alternative model, it is
concluded that the effect of weight on clearancggsificant (p<0.05). Importantly, the OFV
is comparable only for models describing identatatiasets using the same estimation method
[12]. Covariates are normally included stepwiseifyially selecting the model with the
greatest decrease in OFV and subsequently reevajuabdels by adding new covariates.
This is done repeatedly until no covariates impsotree model statistically significant based
on the likelihood ratio test [20]. Subsequent tdesttng a full covariate model, the
significance of each covariate is evaluated by rengp them sequentially (backward
elimination) [20].
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1.5 MODEL EVALUATION

The above-described likelihood ratio test gives #tatistical significance of a model
component and provides a general model-buildingron. However, decisions in population
model development are also based on subjectiveuavah of biological plausibility of
parameters, precision of the parameter estimatdsgamphical evaluation of the model's
goodness of fit [10].

Biological plausibility

Relationships are biologically plausible if they axplained by known biological principles.
A typical biologically plausible relationship isdreasing clearance and volume of distribution
with increasing body weight [21]. Such relationshgre sometimes recommended to include
in models even when not statistical significanteaese they are expected to apply to the
general population. If a covariate relationshifdentified that is inconsistent with biological

principles it may be rejected even if it is stat@lly significant [7].

Precision of the parameter estimates

All parameter estimates will have a degree of uagstly [8]. Symmetric confidence intervals
are estimated by NONMEM, but these are only appnaté. To generate asymmetric
standard errors and confidence intervals in pojulapharmacokinetic modeling, the
nonparametric bootstrap procedure is normally eggald25]. During a bootstrap procedure,
the dataset is resampled with replacement to createdatasets with the same size but with
randomly selected combinations of individuals [2Bhis procedure is repeated 500-1000
times, and the parameter estimates resulting frach eataset are ranked in increasing order.
The 2.5th to 97.5th percentile for each parame&imate is interpreted as the 95 %
confidence interval [25] (example of bootstrap tesare shown in appendix B). If the 95 %
confidence interval of a covariate parameter inetuthe null value (e. g. if the confidence
interval of the covariate coefficient of sex onatkence is 0.8-1.3) the covariate is normally
not included because the effect is uncertain [7].
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Graphical evaluation of goodness of fit

Graphical evaluation is essential at all model dog stages [7]. Traditionally, the most
commonly considered graphics are plots of populapeedicted or individually predicted
concentrations versus observed concentration (EiduB and appendix C). Ideally, all
concentrations are randomly scattered around tteedf unity with no sign of bias [7]. A
large spread around the line of unity in the plbfpopulation predicted concentrations is
expected due to unexplained BSV [27]. In contrdsg plot of individually predicted
concentrations versus observed concentrationsuedlysonsiderably more precise because it

Is predicting the concentrations from the individBayesian parameter estimates.

Observed drug concentrations
Observed drug concentrations

Population predicted concentrations Individual predicted concentrations

Figure 1-8. Example of traditional goodness of fit plots. @h&d concentrations are plot versus predicted
concentrationsLeft panel:Population parameter estimates are used to prégictoncentrationgight panel
Individual parameter estimates are used to préaéctoncentrations.

The usefulness of these plots is limited by tret faat they do not include the aspect
of time and give little information about how topnove the model if bias occurs [27]. Other
traditional diagnostic plots include residual erqgots, plots of the distribution of the
estimated individual parameters and individual lot goodness of fit. Examples of these
plots are provided in chapter 3 (Figures 3-1, 3-3, 3-5). However, the recently introduced
visual predictive checks (VPCs) are now widely ated as the most informative plots [28].
To create VPCs, at least 100 datasets with the sdmeture as the original dataset are
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simulated based on the selected model. The anaissally checks whether 90 % of the
original observations fall within the 90 % preductiinterval of the simulated concentrations.
Observation intervals and prediction intervals thngrlap indicates that the model describes
the data well [28]. VPCs may be stratified by catégpl covariates or created with
continuous covariates on the x-axis to investigattether the model predicts well over the
range of the covariate (Figures 3 and 5 in the &ekbeArticle). In contrast to some of the
traditional plots, VPCs provides information abobbw to improve the model if
misspecifications occur.

When the data arise from a clinical setting ofrdipeutic drug monitoring, it is
important to take into account that doses are adagtcording to patient characteristics. This
means that there will be an inherent relationshgiwben clearance and dose. This
relationship is not maintained during simulatiorhefefore, prediction correctedvisual
predictive checks (pcVPCs) must be generated ih siigations [28].

1.6 ACCEPTING A FINAL MODEL

Before accepting a final model, the statisticalagstions should be tested (see discussion on
methodological considerations) [29]. Furthermdhe, principle of parsimonglso applies to
population modeling, which means that the final elaghould be the simplest model that is
adequate for the predefined purpose [7]. A modsi beasimplified by removing unnecessary
random error terms or by combining fixed effectsthey have overlapping confidence
intervals [10]. Finally, the clinical relevance thfe covariates and whether the covariates are
easily measured in clinical practice should be o®rsd [25].

By combining all the above-described criteriongimty model development, the
modeling process becomes an overall subjectiveegsocThe correct final model does not
exist because all models are approximations anglications of reality [7]. The question is
not whether the model is right or wrong, but whethes useful for the purpose it was
developed [8]. When the model is developed for igte@ purposes, it is important to
evaluate whether the model is also able to predtiegy concentrations in patients that were
not included in the model building dataset [8, ®jerefore, validation on an external dataset

must be performed before a model can be acceptatiriccal application [9].
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2 TACROLIMUS

2.1 CALCINEURIN INHIBITORS IN KIDNEY
TRANSPLANTATION

Kidney transplantation is the preferred treatmemtdatients experiencing end-stage kidney
disease [30]. When a patient receives a kidneyspant, lifelong treatment with
immunosuppressive drugs is essential to preverdgraft rejection [31]. Calcineurin
inhibitors (cyclosporine and tacrolimus) have beemerstones in this treatment for several
decades. Still, there is currently no clinically adable biomarker reflecting the
immunosuppressive effect of these drugs [32]. Toeee whole blood concentrations are
used as surrogates for the drug effect, assumigvthole blood concentrations reflect the
pharmacodynamic response [3].

Calcineurin inhibitors are characterized by narrtherapeutic windows and large
unexplained pharmacokinetic variability between witthin patients. Therefore, it is essential
to frequently measure the drug concentrations sBumenthat they are within the acceptable
target concentration range that adequately supgsdbe immune response while toxicity is
minimized. However, due to unexplained variabilityaintaining drug concentrations within
the acceptable therapeutic range is difficult ewgh frequent blood sampling, especially in
the early post-transplant phase [33]. Tacrolimusreaently become the calcineurin inhibitor
of choice at several kidney transplantation cent@msluding the National Norwegian
Transplantation Center (Oslo University HospitalkdRospitalet) from January 2012 [34]
because of a lower acute rejection rate combinéd avmore beneficial adverse effect profile
[35]. Still, treatment with tacrolimus frequentlgads to serious adverse effects, including
nephrotoxicity, neurotoxicity, post-transplant ceés mellitus, hypertension, infections and

cancer [36].

2.2 PHARMACOKINETIC CHARACTERISTICS

General pharmacokinetics

Tacrolimus is a lipophilic macrolide compound, naiiy rapidly absorbed with absorption
lag times of 0-2 hours [36]. Oral bioavailability generally poor (mean value is typically 15-
25 %, but differs across studies [36]), and higédyiable (range 4 - 89 %) [37]. In blood,
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tacrolimus binds strongly to erythrocytes and plagoteins. The unbound fraction is less
than 1 % [38]. Tacrolimus is a substrate of P-gbyotein (P-gp) and the cytochrome P-450
isoenzymes CYP3A4 and CYP3AS5. These enzymes amessedl in the liver and intestinal
cells. Clearance is approximately 2 L/h, which nsetirat the hepatic extraction ratioyjE&s
very low (3 %) [39]. Less than 1 % of unchangeddhaus is renally excreted [37].

The low bioavailability of tacrolimus is a resultf poor solubility in the
gastrointestinal fluids and presystemic metaboli46j. Intestinal CYP3A metabolism is the
main contributor to the first pass loss of tacreignand the estimated intestinal availability
(Fc) is 14 % (Figure 2-1) [41]. The additional firsigs loss caused by hepatic metabolism is

modest because of the low hepatic extraction fatio

4 A
TaA 9y
A AA A A—DA
by s L”

>y
Fc=0.14 ;JFH=O.96

A—>

() Tacrolimus tablet 4 Tacrolimus ‘ Metabolized tacrolimus

Figure 2-1. First pass loss of tacrolimus. Metabolism mailgets place in intestinal cells due to activitiefof
glycoprotein and CYP3A4. In patients expressing GX®, this isoenzyme also contributes to first plass
(not shown). The fraction passing the enterocyitagsgtinal availability, k) is 14 %. A modest additional loss is
caused by first pass hepatic metabolism (hepatidability, /). Numbers are taken from Galetin et al. [41].

Distribution in blood

Tacrolimus readily passes the membrane of erytiescgnd binds to intracellular proteins
with similar structure as the target protein inymphocytes (FK-binding proteins) [42].
Temperature dependent blood cell partitioning ie tmain reason why whole blood
concentrations are used rather than plasma coatens [43]. The blood:plasma
concentration ratio is also dependent on hematqaasma protein concentration, tacrolimus

concentration and binding affinity to intracellulproteins in erythrocytes [37]. Of these,
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hematocrit is the most important factor [44]. Thgtlerocyte bound concentration is inactive
and protected against elimination [45]. An assuarptiuring therapeutic drug monitoring is
that the measured total concentration reflects pirarmacologically active unbound
concentration. However, if any of the variableduahcing the blood:plasma concentration
ratio change, this assumption may not hold [3].

Figure 2-2 illustrates the theoretical blood dmition of tacrolimus at two situations
where the hematocrit levels are 20 % and 40 %. Rotils are plausible in kidney transplant
recipients [46]. Dosing rate and unbound drug eleee are assumed to be the same in both
situations. Therefore, the unbound concentrationheoretically similar [47]. The whole

blood concentration, however, changes in propotidmematocrit.

a) Hematocrit =20 %

DOPPP@®@®®P®®W® . . niton 2.0 | Measured
(a0 (D () (D) () (D (D (A (D (A total concentration

[ 1 ]
T
A Unbound concentration 0.1

&

== Farmacologically active

b) Hematocrit = 40 %
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A Unbound concentration 0.1

D ; :
Farmacologically active

Key to the symbols A\ Tacrolimus unbound . Tacrolimus bound to erythrocyte

Figure 2-2. The theoretical influence of hematocrit on taecris whole blood concentrations. Two situations
are compared with the same dosing rate and unbatledrance and consequently similar unbound
concentrations (represented by a black trianglestitoting 0.1 pg/L).Upper panel: 20 red circles are
representing erythrocytes corresponding to a hesritof 20 %. Lower panel 40 red circles represent a
erythrocyte concentration corresponding to a heantof 40 %. Although the unbound, pharmacolodical
active concentration is the same in both situafitms measured whole blood concentration has ieetkdue to
an increase in hematocrit. The figure illustrates importance of hematocrit to interpretation a&f theasured
total whole blood concentration. The figure is diifigd by not including plasma proteins.
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CYP3AS5 polymorphism

Several studies have been performed to investajseations in tacrolimus pharmacokinetics
caused by single nucleotide polymorphisms (SNPgeimes coding for the proteins involved
in tacrolimus metabolism and distribution [48-5Rplymorphic expression of CYP3AS5 is the
most consistently reported pharmacogenetic cowaf@ttacrolimus in literature [51, 52]. In
Caucasians, 90 % are homozygous carriers of thantallele CYP3A5*3 that is coding for
enzyme products without enzymatic activity due to @RNA splicing defect [53].
Individuals carrying the CYP3A5*1 allele express E3A5 with enzymatic activity in
several tissues, including intestinal and hepatlts¢53]. In theory, expression of functional
CYP3A5-enzymes contributes to both higher hepatearance and higher presystemic
metabolism of tacrolimus. However, the relative tabation of these events to the observed

higher dose requirements in CYP3A5 expressers hatvBeen established [51].

Population pharmacokinetic models in literature

The first published population model in kidney splanted adults was developed by Staatz et
al. in 2002. A one-compartment model described pih@armacokinetics, and aspartate
aminotransferase (ASAT) and time after transplamtatvere identified as covariates on
apparent clearance (CL/F) [45]. From 2009, the remd published models for tacrolimus
per year for tacrolimus increased in parallel wait increasing focus on pharmacogenetic
covariatesCYP3Ab5genotype was consistently recognized as a coeaniattacrolimus CL/F
[54-59]. Other frequently identified covariates luae hematocrit [54, 57, 59, 60],
corticosteroid dose [55, 61] and an effect of tiafier transplantation both during the initial
1-2 weeks [56, 61] and for the time aspect of weskd months [45, 56, 59]. In contrast, the
majority of population studies did not find any a@bnship between tacrolimus
pharmacokinetics and demographic covariates.

Population models have also been developed foeratundergoing other types of
transplantation. In hematopoietic stem cell traasigd children, serum creatinine was found
to affect clearance, despite the fact that tacnadins not renally cleared [62]. In liver
transplant patients, both total body weight andalatle phosphatase were found significant
[63]. Neither of these covariates have been ideqtih kidney transplant patients.

The structural model is almost exclusively modalsthg two compartments [54, 55,

57, 60, 64, 65]. Only authors who developed mobelsed on solely trough concentrations
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found one-compartment models more appropriate $4%, The absorption phase is most
frequently described by first order absorption wég time [57, 65] or transit compartments
[54, 60].

Table 1-1 lists the population studies of tacrolénn kidney transplanted adults found
in a literature search in PubMed in September 2@&tR2overview is given on the general
aspects of the study designs, the basic pharmastakiresults, the evaluated covariates that
were not found significant (marked in the tablehwi) and identified covariates (relationship
stated). Of notice, only one of these models i®ntepl to be clinically applied for Bayesian

estimation of individual pharmacokinetic parame{égj.
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TABLE 1-1. Review of population pharmacokinetic models in kidney transplanted adults available in literature

Population pharmacokinetic study (reference) Staatz Antignac Press Benkali Musuamba  Velickovic Woillard Passay Musuamba  Han
2002 [45] 2007 [61] 2009 [55] 2009 [60] 2009[58] 2010 [67] 2011 [54] 2011 [56] 2011 [57] 2012 [59]
STUDY DESIGN
Modeling software NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM
Number of patients 70 83 31 32 19 63 73 681 65 80
Sample type Troughs Troughs Troughs Full profiles  Full profiles ~ Troughs Full profiles  Troughs Full profiles  Troughs
and full
profiles
Time period for sampling following Day 2-1475 Day 1-60 Week 2-52 Week 1 and NA NA Month 1, 3 Month 1-6 Day 15 Day 1-400
tx 2 + month and 6
1,3and 6
Analytical assay LC-MS/MS  MEIA MEIA LC-MS/MS  MEIA MEIA TFS-MS/IMS  LC-MS/MS  MEIA MEIA
External validation? Yes Yes No No No No No No No No
Reported to be in clinical use? No Yes No No No No No No No To be
evaluated
PHARMACOKINETICS
Adequate number of compartments 1 1 2 2 2 1 2 Not used 2 1
CL/F (L/h) in typical patient 23.6 CL=1.81 16.1 19.2 29 1.03 21.2 38.4 26.8 22.9
(minimum (Hct=45 %) (Hct=35 %)
value)
COVARIATES
Demographic covariates
Total body weight X X X X X X X X X Vd (linear)
Fat free mass
Sex X X X X X X X X X X
Age X X X X X X X CL/F= X X
(Age/50)°*
Laboratory tests
Serum creatinine x x x x x x
ASAT CL linearly X X X X
decreasing
with incre-
asing ASAT
ALAT X X X X X
ALP x x
Total bilirubin x x
Hematocrit X X CL= CL= Effect on Higher CL
863/Hct (Hct /35) CL/f not when
interpreted Hct<33 %
Hemoglobin X X X X

Plasma protein
concentration(albumin)

HDL, LDL and total cholesterol*
C-reactive protein

X

X
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Concomitant medication
Corticosteroids (prednisolone)
Nifedipine
Lansoprazole
Cinacalcet

Single nucleotide polymorphisms
CYP3A5 *1/*1
CYP3AS5 *1/*3
PXR (2385C>T)

ABCB1 (C1236T)
ABCB1 (G2677T/A)
ABCB1 (C3435T)

Other covariates
Time after tx (early phase)

Time after tx (late phase)

Circadian (time of the day)

Formulation (Advagraf®/Prograf®)

x (All used
<10 mg)

CL/F
linearly
decreasing
first 3
months,
then
plateau

60 % higher
CL with >
25 mg

15 % lower
F with > 10
mg

~49 %
higher CL/F

X
X

X
X

Sigmoid
increase in
CL first 7
days with
highest
increase at
day 4.

X

Ka=3.7 for

Advagraf®

and 1.8 for
Prograf®

x * (onlyl
expresser

in dataset)
X

150 %
higher CL/F

NC

45 %
higher CL
X

X

Ks=2.18 at
day time
and 0.16 at
night time

1.6 L/h X

higher CL

with> 25mg
100 %
higher CL/F
X
X

X

X X
Different
transit
absorption
model

6 % lower
CL/F if user

100 %
higher CL/F
69 % higher
CL/F

57 % higher
CL/F

14 %
decrease
during the
first 6-10
days

29 %
decrease
during day
11-180
relative to
day 3-5

Blank field indicates that relationship was not tested. x indicates that the relationship was tested but not found significant. Significant relationships are stated in text.
Tx, transplantation; NA, not available; LC MS/MS, Liquid chromatography tandem mass spectrometry; MEIA, Microparticle enzyme immunoassay; TFS MS/MS, Transmition fluctuation spectrometry

tandem mass spectrometry; CL/F, apparent oral clearance; CL, clearance; Vd, volume of distribution; ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; ALP, alkaline

~ 118 %
higher CL/F

Decrease
CL/F first
21 days,
plateau
after 30
days

phosphatase; HDL, High density lipoprotein; LDL, low density lipoprotein; CYP3A5, Cytochrome P450 3A5, PXR, Pregnane X receptor; ABCB1, ATP-binding cassette, subfamiliy B, member 1
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ABSTRACT

Introduction: Prediction of individual dose requirements of tdianas in kidney transplantation is a major
clinical challenge due to large pharmacokineticialzlity between patients and increasing dose-néizeg
whole blood concentrations during the first poatiplant months. The objectives of this study werieentify
predictable differences between kidney transplaaipients to improve initial dosing, to investigatbether the
apparent time-varying pharmacokinetics of tacroBmmay be explained by changes in hematocrit and to
evaluate the importance of hematocrit for tacrofrtarget concentration intervention.

Methods. Twenty-nine patients contributed full pharmacokimgbrofiles at 44 occasions, and 44 patients
contributed trough concentrations from the first teeeks after kidney transplantation. A total off@5lood
samples were analyzed. Demographic, clinical arafrphcogenetic patient characteristics were evaluase
covariates.

Results: Relative bioavailability was 24 % lower in femaldsan in males and 49 % lower in CYP3A5
expressers than in CYP3A5 nonexpressers. Fat feess mas the most predictive body size metric. Whided
concentrations of tacrolimus increased linearhyhvificreasing hematocrit. An underlying increas@éématocrit
with time after kidney transplantation largely eaiped the apparent time-varying pharmacokinetics of
tacrolimus. . In addition, relative bioavailabilityas 122 % higher immediately after transplantatiompared to
its lowest value, decreased to its lowest valuénduthe first four days and subsequently incredsedl % with

an asymptote at day 60.

Conclusions: Initial dose of tacrolimus should be predicted freax, CYP3A5genotype, fat free mass and
hematocrit. Hematocrit is an important factor tegict changes in tacrolimus whole blood concemtnatiwith
time after kidney transplantation. The model mayeptally aid in individual dosing of tacrolimustsl
predictive performance must be evaluated befordicgtion in clinical practiceThe relationship between
hematocrit-standardized tacrolimus concentratiorscinical effects should be further investigated.

Key words Tacrolimus, hematocrit, population pharmacokicgttarget concentration intervention, kidney
transplantation

INTRODUCTION

Tacrolimus is a cornerstone immunosuppressive ageddiney transplantation [1]. Although
tacrolimus effectively prevents acute rejectios, nephrotoxic adverse effects contribute to
restricted long-term graft survival [2]. Variabylitn tacrolimus exposure is an additional risk
factor for early graft failure [3]. It is therefoienportant to keep tacrolimus concentrations
stable at a target concentration to minimize riskidity while maintaining adequate

immunosuppression.
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Tacrolimus has a narrow therapeutic window andelgsbarmacokinetic variability
both between and within patients [4]. In additiodpse-normalized whole blood
concentrations tend to increase during the firstntm® after transplantation [4-7].
Consequently, both accurate initial dosing and rgagatime-varying dose requirements are
major clinical challenges. It is important to urgtand how patient characteristics influence
the pharmacokinetics of tacrolimus in order to wndlialize and optimize treatment.
Tacrolimus is metabolized in the intestines ancrliby cytochrome P450 3A (CYP3A)
iIsoenzymes [4]. The most consistently identifiegtar@te for tacrolimus dose requirement is
CYP3A5 activity predicted fromCYP3AS5 genotype [8-11]. At some centers, CYP3A5
genotyping was recently introduced to guide initiasing of tacrolimus in the clinical setting
[12]. However, large pharmacokinetic variabilitys@lexists between patients who do not
differ with respect taCYP3A5genotype. For example, overweight patients andriicare
prone to higher tacrolimus concentrations aftencaad initial dosing proportional to total
body weight [13, 14]. This variability should bepdxined and accounted for in order to
optimize dosing across all patient groups. Furtlieenpharmacogenetics cannot explain the
apparently time-varying pharmacokinetics of taecnols. Hence, a dosing strategy for
tacrolimus should include a time-varying componént help predict changes in dose
requirement over time.

Whole blood concentrations of tacrolimus are tgjljc used to guide dosage
adjustments. Tacrolimus is strongly distributediabd bound to erythrocytes. Normally, less
than one percentage is unbound in blood [15]. Heaonditis a factor that provides a
theoretical basis for understanding time-varyin@rpiacokinetics based on whole blood.
Hematocritlevels are generally low at the time of kidney #@lantation because of the
underlying kidney disease, blood loss during swyr@erd postoperative fluid therapy. During
the months after transplantation, hematocrit leveisease due to restoration of endogenous
erythropoietin production, although with large wadility between individuals [16]. Since
tacrolimus is a low extraction ratio drug [4], whdblood concentrations are expected to
increase in proportion to hematocrit while the wnib concentration and unbound clearance
remains unchanged. Apparent decrease in whole ldleadance of tacrolimus with time after
kidney transplantation have been attributed tortageof corticosteroid dose with time after
transplantation, hypothesizing that corticosterantkice CYP3A enzymes [5, 17]. However,

increasing tacrolimus concentrations also occuimepatients receiving fixed corticosteroid
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doses [6]. The relative importance of hematocatticosteroid tapering and other factors on
the apparent decrease in tacrolimus whole blocata@iee with time remains unclear.

It is important to investigate the influence ofnfaocrit on whole blood based
pharmacokinetics of tacrolimus to understand aedipt how the whole blood concentrations
will change in relation to changes in hematocnitrtkermore, understanding this relationship
may have important clinical implications becausgogage reduction followed by increased
whole blood concentration caused by increased leamtiay lead to unintended changes in
the unbound concentration, which is the concewinagixpected to be more closely related to
the therapeutic effect [18].

The first objective of the present study was toellegp a population pharmacokinetic
model of tacrolimus in kidney transplant recipieat&l investigate predictable differences for
improving initial dosing. The second objective wasnvestigate whether the apparent time-
varying pharmacokinetics of tacrolimus may be exyd by changes in hematocrit and to

evaluate the importance of hematocrit for tacroBrtarget concentration intervention.

MATERIALS AND METHODS

Patients and Data Collection
The study was approved by the Regional Committedtiedical Research Ethics and by the
Norwegian Medicines Agency. All patients gave wertinformed consent.

Data were collected from patients who underwenin&y transplantation at Oslo
University Hospital, Rikshospitalet. Combined-orgatipients and patients who received
drugs that were known to pharmacokinetically interaith tacrolimus were excluded.
However, if such drugs were used by more than tercgmt of the patients, they were
included and the drug was analyzed as a covaAatetal of 69 patients were eligible for the
analysis. Forty-four 12-hour concentration-time fipgs of tacrolimus in 29 patients were
available from three previously published clinicgtudies [19-21] (Figure 1la, Intensive
Group). Tacrolimus trough concentrationg)(@easured during the first ten weeks following
kidney transplantation were collected in 44 pasgitigure 1b, TDM Group), four of which
were also represented in the Intensive Group. [Qosias coded by 12 hour intervals and
assuming 100 % compliance unless any missed doses gcorded in the patient chart.
Patients were informed to be fasting at the timdraf intake.

Data onCYP3A5genotype, sex, height and the following time-vagycharacteristics

were collected: Hematocrit, total body weight, agefum albumin, serum creatinine, C-
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reactive protein (CRP), aspartate aminotransfer@8AT), alanine aminotransferase
(ALAT), total serum bilirubin, alkaline phosphataseral prednisolone dose, intravenous
methylprednisolone dose, acute rejection episod@scomitant use of potential interactive
drugs and time after transplantation. Covariateat ttvere missing on the day of
transplantation were imputed by carrying back & known value. Covariates missing at
any later time point were imputed by carrying fordvéhe last known value. If more than two
hematocrit values were missing in sequence, valiees derived by linear regression between
all known hematocrit and hemoglobin values withie tpatient. A summary of the study

designs is listed in Table 1.

Therapeutic Drug Monitoring

According to the center transplant-protocol, initiacrolimus (Progrdf capsules, Astellas
Pharma US Inc.) dose was 0.04 mg/kg total body hteigice daily, adjusted to the nearest
0.5 mg per dose. Subsequent doses were adaptediagcto measured whole blood trough
concentration, with an acceptable target range-6fu)/L in standard risk patients and 8-12
Mg/l in high-risk patients (defined as presenceparfiel reactive antibody (PRA) > 20 %
and/or presence of donor-specific antibodies (DSA)pugh concentrations were initially
measured 3-4 times per week. The frequency deateagmrallel with increasing time since
transplantation and depending on clinical statuse &cceptable target concentration range

was adjusted to 3-5 pg/L six months after trandptéon in all patients.

Concomitant | mmunosuppr essive M edication

The immunosuppressive regimen consisted of mycagaenmofetil (1.5 g/day), intravenous
methylprednisolone (day 1: 250 mg), oral prednisel¢day 2-15: 20 mg, day 16-29: 15 mg,
day 30-61: 10 mg, day 62-180: 7.5 mg and from d&l. 5 mg) and induction therapy with
basiliximab (day 1 and 5: 20 mg). High-risk patgergceived mycophenolate mofetil (1.5 — 2
g/day), oral prednisolone (day 2: 80 mg, tapere?Otang daily during day 3-8, day 9-29: 20
mg, day 30-61: 15 mg, day 62-180: 10 mg and frony d&81: 5 mg), intravenous
methylprednisolone (day 1: 500 mg, day 2: 80 mg) additional induction therapy with

human immune globulins and rituximab. Day 1 wasndef as the day of transplant.

Analytical Assay
Table 1 shows the analytical assay details in sathstudy and the respective performance
data. Immunoassay measurements of tacrolimus tenflet higher than concentrations

determined by liquid chromatography due to cros&tieity with tacrolimus metabolites
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[22]. Concentrations determined by liquid chromaapdpy-tandem mass spectrometry (LC-
MS/MS) were converted to corresponding immunoassdyes by the aid of the following

equation (Eqg. 1), established by the laboratory pleaformed all analyses:

_ (LC-0.19)
T 080

CM : Eq. 1

where CM is the chemoluminescent microparticle imoassay tacrolimus concentration in

png/L and LC is the LC-MS/MS tacrolimus concentratio pg/L.

CYP3A5 Genotyping

DNA was extracted from EDTA anti-coagulated wholledd using the MagNA Pure
instrument (Roche Applied Science, Penzberg, GeymalyYP3A5genotyping (rs776746;
NG_007938.1:9.12083G>A, AZYP3A5*1and GLYP3A5*3 was performed by PCR and
melt curve analysis with hybridization probes oe thightCyclef 480 instrument (Roche
Applied Science, Penzberg, Germany). Primers wesigded using LightCycler Probe
Design software version 2 (Roche) and hybridizagwabe sequences were derived from
Cheuncet al [23].

Population Phar macokinetic M odeling

Structural Model

Models with one or two compartments, zero or fingter absorption and with or without an
absorption lag time were investigated. Only oraladaere available. Therefore, apparent
parameter estimates were obtained (e. g. CL/F,.\M/R¢ population value of bioavailability
(F) was defined as 1, and F was estimated reldtvthis value. Random effects in the
pharmacokinetic parameters were modeled in ternbefeen subject variability (BSV) and
between occasion variability (BOV). One hospitaitvivas defined as one occasion for the
Intense Group. For the TDM Group, a new occasioa defined when a dose change took
place. BSV and BOV were estimated using exponemtadels (Eg. 2):.

Pik == PGRP X eni+nk, Eq 2

where R is the value of parameter P for tHendividual at the K occasion, Breis the group
value of P in the population?ds the deviation betweensgb and the individual value; Rnd
e is the deviance between the individual valyel the occasion-specific valug 24].

The following model for the residual error was usi@@ughout the analysis (Eq. 3):
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Y;; = Concyj + Ogyay, X (81 X Concyj + &5) X €977, Eg. 3

where Y; and Cong are the model predicted drug concentrations witth &ithout residual
error, respectively, for th&individual at the | measurementsuaqyiis a study-specific fixed
effect,e; is a residual error term proportional to the meadwoncentrations; is an additive
error term and"€™ is the individual random difference in residuaioerfor the " individual
[25]. The random variables, nk, €1, €2 andnerni are assumed to be normally distributed with

mean zero and variance$s, 7°p , 61%, 6, 2 andoer , respectively.

Covariate Model

All recorded patient characteristics were evaluatedovariates on the parameters where an
effect was biologically plausible or if an effecasvfound in previous studies. To investigate
the influence of body size, fat free mass was ptedifrom total body weight, height and sex
[26]. Pharmacokinetic parameters were relatedttrde mass using allometric coefficients of
3/4 for clearances and 1 for volumes of distributie@spectively [27]. The additional effect of
fat mass on pharmacokinetic parameters was estinaatelescribed by Andersen al. [28]

(Eq. 4):
NFM = FFM + Ogpar X (TBW — FFM), Eq. 4

where NFM is the normal fat mass, FFM is the predidat free mas$rrat is an estimable
parameter describing the additional effect of fatsemnand TBW is total body weight. Binary
covariates were modeled by estimating a fractichahge in one group compared to the other
group. To initially investigate the shape of thefeef of continuous covariates on
pharmacokinetic parameters, subjects were categbrizy covariate value and a mean
pharmacokinetic parameter were estimated withinh eaategory. The relationship was
subsequently modeled using linear, power, expoalentisigmoidal functions.

The following general equation can be used toutale standardized concentrations

accounting for varying hematocrit [29] (EQ. 5):

Chyeg = Cu + =2 X (Cbyor — Cu), Eq. 5

where Chlyg is the standardized whole blood concentrationjsCithe unbound concentration,
Hct.om IS @ normal hematocrit value (e. g. 45 %), Hahess measured hematocrit and:&is
the measured total whole blood concentration. Henebecause Cu was unknown and

because Gl will be considerably greater than Cu, the equatvas simplified to Eqg. 6:
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Hcthorm

Cbgsg = Het

X Cbyor. Eq. 6

This simplified equation assumes that hematocra ssirrogate for erythrocyte mass and the
number of protein binding-sites within erythrocytéBo evaluate whether erythrocytes
become saturated with tacrolimus within the thewm#ipeconcentration range, nonlinear
functions were investigated (not shown). It wa® atempted to estimate between subject
variability in a parameter relating hematocrit aviable blood concentrations, as described by
Wabhlbyet al.[30]. To account for binding to serum albumin, fbkkowing equation using the

same principles as described above was used (Eq. 7)

Albnorm
CStd == Alb X CbStd’ Eq 7

where Gy is standardized for both albumin and hematocrih.f, is @ normal albumin
concentration (e. gi5 g/L) and Alb is the measured serum albumin cotmagon.

To initially investigate the shape of the timeyrag pharmacokinetics, twelve time
intervals were defined after day 1 (day of transpladay 2, 3, 4-5, 6-7, 8-10, 11-14, 15-21,
22-28, 29-42, 43-56, 57-70 and >70 days. For eatdrval, a CL/F or F interval-specific
parameter was estimated. Empirical models wereesuiently used to match the discrete
distribution of parameter values as a functionrogt

Model Evaluation and Statistical Analysis

Pharmacokinetic modeling was performed in NONMEMNonlinear Mixed Effects
Modeling, version 7.2, ICON Development SolutioBSiott City, MD, USA) [31], using the
first order conditional estimation method with irstetion. Model selection was guided by
biological plausibility and prediction-correctedsual predictive checks (pcVPCs) as function
of time and relevant covariates, comparing obsemyat with 90 % prediction intervals
constructed from 100 simulated subsets of the malgiataset [32]. Statistical significance
was evaluated using the likelihood ratio test wathrequired significance level of 0.05
(difference in objective function valuAQFV) = -3.8 for 1 parameter) [31]. Covariates were
included stepwise and subsequently deleted fromfutthenodel (backward elimination) to
evaluate their final statistical contributio@onfidence intervals of the parameters were
generated from 500 nonparametric bootstrap replcig3]. Random effects were retained if
the lower 2.5 percentile did not approach zero. Covariate coiefits were retained if the 95

% confidence interval did not include the valueiegient to no effect.
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Models and bootstrap procedures were run usinggsVior NONMEM® (Holford
NHG. Wings for NONMEM v. 720 for NONMEM 7.2. httpwifn.sourceforge.net, 2011). The
statistical package ‘R(v. 2.15.0) was used for statistical and graphéoslyses. Means for
normally distributed covariates was compared udimg-tailed t-tests with assumption of
equal variance. If not stated otherwise, descrptstatistics are expressed as mean

standard deviation.

RESULTS

Patients and Data Collection

Demographic and clinical characteristics, detdisw tacrolimus treatment and the number
of missing values are presented in Table 2. Patiarsing fluconazole and carbamazepine
were excluded because of drug interaction potemti#h tacrolimus while patients using
nifedipine (26 patients), lansoprazole (12 patieatsd/or cinacalcet (5 patients, interactive
drug according to sub-study 1) were retained. Bigpercent of tacrolimus trough
concentrations were outside the defined acceptaisieentration range. Hematocrit increased
from 31+5 to 38+3 from day 1 to day 70 post-trapgplwith large variability between
patients (Figure 2). Mean hematocrit did not vagy dex (p=0.28) oiICYP3A5genotype
(p=0.51). Mean total body weight was 19 kg highermales (86 + 21 kg) compared to
females (67 +15 kg) (p<0.001), but not differentaas CYP3A5genotypes (p=0.93). Mean
fat free mass was 19 kg higher in males (64 + 1D dampared to females (46 +5 kg)
(p<0.001), but not different acro€¥ P3A5genotypes (p=0.37).

Population Phar macokinetic M odeling

Structural Model

Tacrolimus pharmacokinetics were best describedh hwo-compartment model with first
order absorption and a lag time. A study specifisoaption rate constantjkand lag time
improved the description of sub-study 2. BSV andvB@ere tested for all pharmacokinetic
parameters except lag time, which was assumedvi i@ random variability. When BOV in
F was included, the lower f??percentile of the 95 % confidence intervals of BiD\the four
disposition parameters approached zero and werevesAOFV +7.3 for four parameters,
p=0.12). For K only BOV was retained as random effeaOFV +3.4 by removing BSV,
p=0.07 andAOFV +28.7 by removing BOV, p<0.001), indicating ttithe variability in
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absorption rate is mainly dependent on dosing é@casther than being a subject specific
process. Estimating a full correlation matrix besweCL/F, M/F, Q/F and Y/F (AOFV=-59.0
for 6 added parameters, p<0.001) was chosen r#tharretaining BSV in FAOFV=-32.4
for 1 added parameter, p<0.001). Figure 3 showpehC of predictions of the base model

with a systematic prediction bias over the rangleeavhatocrit.

Covariate Model

Standardization of whole blood concentrations teematocrit of 45 % improved the model
markedly AOFV = -78.4) and removed the systematic predictbas over the range of
hematocrit values (Figure 3c). Accounting for tlessability of saturated erythrocyte proteins,
BSV in the relationship between tacrolimus wholedol concentrations and hematocrit or
simultaneous standardization to albumin concewinatdid not improve the model. The time
interval-specific value of F changed with time atr@nsplantation (Figure 4). Tlehanges in
the individual value of F (Fwere describable using two distinct sigmoid fimes of time
after transplant (Txt), including a random effeesdribing the BSV in the extent of change at

late time (Eq. 8):

FmaXearly Fmaxj,tex e
", Txt HlHFearly " Txt —Hlllplate
Fearly50 Flateso

where FhaseineiS @ relative term fixed to 1, Fmay, is the maximum increase in F

F; = | FFpaseline +

; Eg. 8

immediately after transplantationsafysois the day with half maximum early effect on Flwit
the associated shape coefficient Hillydescribing the steepness of this changgsfis the
day with half maximum later effect on F with thesasiated steepness coefficient Hill.
FmaXae is the asymptotic maximum value of the late chaingEé and & is the difference
between the individual asymptote and the populaa®ymptote, wherg'’s are assumed to be
normally distributed with mean zero and variangg.. The six fixed effects parameters
replaced the 12 time interval parameters withoss io model goodness of fhQFV = -64.6
VS -66.5 respectively), and BSV ingEresulted in a further decreaseQFV = -47.1 for 1
parameter, p<0.001). Estimating BSV in the rem@rmarameters in Eq. 8 was not supported
by the data. The remaining time-varying covariaiasluding prednisolone dose, did not
replace the empirical time model for F without lassnodel goodness of fit.

During covariate inclusionCYP3A5genotype had a significant effect on both CL/F
and F (p<0.001). The additional effect of fat mé&sar) to the effect of fat free mass on
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pharmacokinetic parameters indicated that fat fress was a more appropriate size metric
than total body weight0fra1=0.1, 95 % confidence interval (-0.7-1.9) for cheares,
0rra7=0.3, 95 % confidence interval -0.7-2.4 for voluneéglistribution). It was noted in the
pcVPCs that in patients with fat free mass < 55 tlkgrolimus concentrations were
overpredicted, whereas in those with fat free mas®0 kg concentrations were slightly
underpredicted. This prediction error over the eaafjfat free mass was reduced by including
sex as a covariate on BQFV =-6.2, p=0.01). No other covariate, includimg tevaluated

drugs, was found to affect pharmacokinetics ofdiaTius.

Model Reduction and Evaluation

Based on 95 % confidence intervals generated bydlogéstrap procedure it was decided to
retain a proportional residual error modalOFV +41.1 for removing BSV in the residual
error and AOFV +1.7 for removing the additive error term) wijbint study specific
component for sub-study 1 and AQFV +1.0). In addition, only the random effect
correlation between CL/F and Q/F was retairk@KV = +17.5, 5 parameters). The effect of
CYP3A5genotype on CL/F was removed because the 95 %demce interval of 0.61-1.23
did not support its inclusion in addition to aneeff on F AOFV +0.01, p=0.91). Table 3
shows the results from backward elimination of cates.

The final model parameter estimates are presenté&tble 4. Based on bootstrap
averages, relative bioavailability was 49 % loweiQYP3A5 expressers and 24 % lower in
females. Relative bioavailability was 122 % higihmmediately after transplantation relative
to its lowest value, followed by a steep decre&sg(win = 8.7) to a baseline with half of the
change at day 2.4 after transplantation. Relatieavailability then increased more slowly
(Fiate Hin = 2.4) to an asymptote 31 % higher than the baséBSV 104 %) with half of the
change after 30 days (Figure 4). According to tt¢RCs, the model predicted the observed
tacrolimus concentrations well within the 12-howsd interval for the Intensive Group and
during the first 70 days after transplantation le fTDM Group (Figure 5 a, b). It also
predicted without sign of bias over the range ofacates (Figure 5 c-h), except for some

overprediction in females.

DISCUSSION

In the present study, a population pharmacokimatdel was developed for tacrolimus using
data from 69 kidney transplanted adults. A widegeanf covariates were investigated, and
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the results suggest using hematoddity P3A5genotype, fat free mass, sex and time post-
transplant to predict the initial dose. By standang) tacrolimus concentrations in proportion
to hematocrit the model improved markedly. The appiatime-varying pharmacokinetics of
tacrolimus after kidney transplantation were laygekplained by a parallel increase in
hematocrit, suggesting that hematocrit, which ismadly measured during routine post-
transplant care, can help to predict changes irolietus whole blood concentrations over
time. Kidney transplant patients are more pronextoeme hematocrit values than the normal
population both during the first year and at lditeres after transplantation [16], pointing out
the particular importance of considering hematdetiels for this patient group.

Hematocrit has been identified as a covariate enemal previously performed
population pharmacokinetic analyses of tacrolima§, [11, 34, 35], but these applied
hematocrit either to clearance or volume of disitidn. In theory, all pharmacokinetic
disposition parameters based on total concentsutslrould be similarly influenced by a
change in unbound fraction for a low extractionoralrug such as tacrolimus, which was the
rationale for modeling hematocrit on the whole lbl@oncentrations rather than on any single
parameters. The linear relationship appeared aplsiand practical. There was no sign of
saturation of erythrocytes at the evaluated comagoh range (1.5-48.4 pg/L).

Tacrolimus is also bound to albumim,-glycoprotein and lipoproteins [36].
Variability in plasma concentrations of these pirderepresents another potential source of
variability in tacrolimus whole blood concentratsorideally, standardization of whole blood
concentrations should account for both binding totens in erythrocytes and binding to
plasma proteins [15]. However, only albumin concaiins were recorded in the present
study. Standardization to albumin did not improwe fit. The potential influence of albumin
was possibly obscured by missing and imputed albwalues for 32 % of the samples or by
the correlated increase in albumin and hemataaiawing kidney transplantation.

The fact that fat free mass appeared as the matabke body size metric is
biologically plausible because fat mass is not etgukto contribute directly to metabolic
capacity [28]. It provides an explanation to thghar tacrolimus concentrations observed in
overweight patients when initial dose is calculategdroportion to total body weight [13, 14].
This result is therefore of particular relevancetevent risk of toxicity in obese patients.

The result of a 24 % lower relative bioavailalilih females compared with men has
some support by previous studies [7, 14]. Althotlgh effect was small in terms aDFV,
the visual predictive checks over the range faé freass with and without a sex effect
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confirmed its importance. Sex differences in tharptacokinetics of CYP3A substrates
remain controversial in literature, and one stusigdiintravenous data to demonstrate a higher
clearance of the CYP3A substrate midazolam witlesutdditional effect on bioavailability
[37]. In our study, there was little evidence far effect on clearance, but an underlying
contributing effect cannot be excluded based on ridatively large fraction of sparse
sampling. The importance of body size and sex asr@ies are in conflict with previous
population studies of tacrolimus in kidney transpéal adults [8, 34, 38, 39]. These studies
did however not investigate fat free mass as bazly metric. In addition, they applied the
stepwise covariate inclusion method, which onlyairet covariates improving the model
independently [40]. The contribution of correlatedvariates may be masked using this
method.

On the day following surgery (day 2), bioavailélilwas estimated to be about two
times higher than on day 4. Others found a patiémn rapid change in clearance during the
first post-transplant week [38], which might alse the underlying explanation to our
observations. Higher bioavailability may resultifrdow food intake following surgery [4].
Alternatively, both clearance and bioavailabilitygimt be affected by a potential immediate
effect on CYP3A transcription by inflammatory cyiogés [41] or methylprednisolone
administration in conjunction to surgery [42]. Thaer increase in bioavailability up to
around day 60 after transplantation have also lgeseribed by others [6, 39]. During this
period, prednisolone daily dose was tapered froom20to 10 mg in most patients, but
prednisolone failed to serve as a covariate. Psetbme administration should not thereby be
rejected as the underlying cause. Traditional dat@mmodels do not explicitly model the
induction/de-induction of CYP3A/P-glycoprotein teamiption and prednisolone exposure is
not well reflected by dose [43]. The observed timkated changes in bioavailability in this
study are interesting from a population perspectiwg of limited value in an individual
clinical setting due to the large BSV (apparent 6iV104 %) in the asymptotic value of
relative bioavailability.

The results from this study support the previ@sommendations of doubling initial
dose of tacrolimus to CYP3A5 expressers [12, 44¢viBus population studies identified
CYP3A5genotype solely as a covariate on clearance (ClU&) 34, 45]. In contrast, our
results indicate 49 % decreased relative bioavithalin CYP3A5 expressers without an
additional effect on clearance, suggesting that 83 activity in the gut wall is the more

important factor leading to higher dose requiremerthis patient group. However, only five
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twelve-hour pharmacokinetic profiles were availallleCYP3A5 expressers. These results
should therefore be carefully interpreted.

There was a large fraction of tacrolimus trougmasmtrations (80 %) outside the
defined acceptable concentration range of 3-7 padgimonstrating that the currently applied
method of target concentration intervention is optimal. Bayesian estimation of individual
pharmacokinetic parameters (e.g. CL/F) may aid redigtion of the required individual
tacrolimus dose to achieve a target concentrat48]. [The presented population model
should be suitable to provide a prior distributfonthis purpose. The estimate of CL/F (18.8
L/h for a male CYP3A5 non-expresser with fat freassiof 60 kg and hematocrit of 45 %)
was somewhat lower than estimated by others (26h8[10], 23.6 L/h [39]). This was
expected because the parameters were standardiza&cigher hematocrit value than the
typical value in kidney transplant recipients. $#sdreporting hematocrit found similar
clearances (19.2 L/h [35] and 16.5 L/h [34]) whéandardized to 45 %. Random variability
of 17 % in bioavailability between dosing occasifB®V) was the main source of variability
in tacrolimus concentrations within patients a® geeviously described [6, 8]. Quantification
of BOV is important, because it describes the ‘mlitg that cannot be controlled by target
concentration intervention [24].

The major limitation of the present study was ghhproportion (67 %) of trough
concentrations. Other limitations included absesfdeomozygote CYP3A5 *1/*1 expressers,
a high frequency (30 %) of missing values for smmeariates and only one patient with high
hematocrit levels (> 45 %). Hematocrit-related brasacrolimus concentrations determined
by analytical immunoassays should however not teeaant limitation because CMIA is not
affected by hematocrit [22] and all samples analyaeith microparticle enzyme
immunoassay (MEIA) had corresponding hematocriellewnot associated with bias (25-45
%) [47].

A relationship between tacrolimus whole blood @rications and clinical effects is
not yet established, and there is lack of consemsughe optimal whole blood target
concentration [22]. Unbound drug concentrationsgamerally more closely related to clinical
effects. To date, no studies have been performeth@moncentration-effect relationship of
tacrolimus using unbound concentrations. Howewvee, study used radiolabeling to estimate
the unbound tacrolimus concentration and foundighiScantly lower in liver transplant
patients experiencing acute rejection compared wittble patients (p<0.001), without a
significant difference in whole blood concentratiqp=0.5) [48]. Some studies on
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cyclosporine, which have similar binding properttestacrolimus in blood, found stronger
inhibition of calcineurin at low hematocrit valug¢49], and others found that unbound
concentrations predicted rejection rate [50]. Tiwasiable results of reports using tacrolimus
whole blood concentrations to characterize the eotnation-effect relationship might partly
result from not accounting for the confounding effef hematocrit variability. In the absence
of specialized analytical equipment to measure untloconcentrations, standardization of
total concentrations to a normal hematocrit valuevigdes a simple method to obtain
concentrations that more accurately reflect theound concentrations [29]. Relating
hematocrit-standardized tacrolimus concentratianslinical effects may potentially extend

the current understanding of the optimal targeteaotration of tacrolimus.

CONCLUSION

A population pharmacokinetic model for tacrolimuasadeveloped using data from 69 kidney
transplanted adults. The results suggest increasitigl tacrolimus dose by 2 in CYP3A5
expressers, by 1/3 in females and to scale phakimeatec parameters allometrically to fat
free mass. Hematocrit appears as an importantrfacth for calculation of more accurate
initial doses and to predict changes in whole bloodcentrations of tacrolimus with time
after kidney transplantation. By applying the preed population model in clinical dose
decisions, individualized therapy with tacrolimusymbe optimized, potentially improving
long-term graft survival. A prospective study mbstperformed to evaluate the clinical utility
of the model before application in clinical praeticThe relationship between hematocrit-
standardized whole blood concentrations of tacmadimand clinical effects should be

investigated.
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TABLES

TABLE 1. Characteristics of pharmacokinetic studies of tacrolimus

Study Concs, Patients® Assay LLOQ  AssayCV (%) Sampling times Excluded patients

and n (n) type (Mg/L) from original

ref. dataset (reason)

1 134 5 MEIA® 3.0 13 at 5 pg/L 05,1,15,2,25,3,4,5 1 (useof

[20] 7 at 23 pg/L 6, 8, 10 and 12 hours carbamazepine)
after administration

2 164 7 LC- 1.1 <52 0.25,0.5,1, 2,3, 4,6, 8, 1 (not known

[21] MS/MS* 10, and 12 hours after CYP3AS5 genotype)
administration

8 216 19 CMIA® 1.0 <6at2.3pug/lL 0.25,0.5,1, 1.5, 2, 3, 4, 1 (food intake before

[22] <9at7.0ug/lL 6, 8, 10, 12, 23 and 24 tacrolimus
hours after administration  administration)

4 1032 44 CMIA ¢ 1.0 <6at2.3pug/lL Predose (Trough

NP <9at7.0ug/L concentrations)

Ref, reference; Conc, concentration; n, number; LLOQ, lower limit of quantification; CV, between series coefficient of variation;
MEIA 11, microparticle enzyme immunoassay; LC-MS/MS, liquid chromatography/tandem mass spectrometry; CMIA,
chemoluminescent microparticle immunoassay; NP, not previously published data

& Four patients contributed in more than one study. These were identified and their data were associated with the same ID in the
dataset, with an increase in the number of occasions. The total number of individuals was 69.

b Analyzed on the IMx® instrument (Abbott Laboratories, Abbott Park, IL, USA)

¢ Converted to corresponding immunoassay concentrations CM = (LC — 0.19) / 0.80, see main text for details

d Analyzed on the Architect® instrument (Abbott Laboratories, Abbott Park, IL, USA)
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TABLE 2. Demographic and clinical data

Change in TDM Group after
transplantation

Day1l Day70

Number Mean (SD) Mean(SD) Mean(SD)
Patients (Intensive group) 29°
Male / Female 21/8
CYP3A5 genotype (*1/*1, *1/*3, *3/*3) 0/3/26
Tacrolimus concentrations (below LLOQ) 546 (0)
Tacrolimus samples per patient 18 (9)
Tacrolimus concentration (ug/L) 11.3 (6.0)
Patients (TDM group) 44°
Male / Female 32/12
CYP3A5 genotype (*1/*1, *1/*3, *3/*3) 0/8/36
Tacrolimus concentrations (below LLOQ) 1038 (2)
Tacrolimus samples per patient 23 (5
Tacrolimus concentration (ug/L) 7.0 (2.5)°
High-risk patients 7
Patients (all)® 69
CYP3A5 genotype (*1/*1, *1/*3, *3/*3) 0/10/59
Male / Female 50/19
Age (years) 43 (14)
Height (cm) 176 (11)
Total body weight (kg) 81 (21) 83(22) to 80(21)
Predicted fat free mass (kg) 59 (12) 60(12) to 55(10)
Hematocrit (%) 36 (5) 31(5) to 38(3)
Serum creatinine (umol/L) 147  (73) 409(262) to 120(40)
CRP (mg/L 7 (8) 12(11) to 3(5)
Serum albumin (g/L) 42 (4 37(5) to 45(4)
Total serum bilirubin (umol/L) 7 (3 5@3) to 6(4)
ASAT (IU/L) 23 (7) 35(26) to 20(5)
ALAT (IU/L) 31 (20) 50(45) to 22(11)
ALP (IU/L) 66 (21) 60(19) to 70(22)

CYP3AS5, cytochrome P450 3A5; LLOQ, lower limit of quantification; TDM, therapeutic drug monitoring; CRP, C-reactive protein;
ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; ALP, alkaline phosphatase

& Calculated from mean value across all observation times in each patient

® Four patients contributed data to both groups

¢ Trough concentration
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TABLE 3. Results from backward elimination of covariates

Parameter  Covariate Number of parameters A OFV p

F Hematocrit 0 +52.2 <0.001
F Function for early time effect 8 +77.0 <0.001
F Function for late time effect 4 +80.2 <0.001
F CYP3A5 *1/*3 genotype 1 +32.7 <0.001
F Sex 1 + 64 0.01
V4/F, VJIF Allometric scaling to fat free mass 0 + 6.6 -
CL/F, Q/F Allometric scaling to fat free mass 0 + 32 -

OFV, Objective function value; F, bioavailability; CYP3A5, cytochrome P450 3A5; CL/F, apparent clearance; V./F, apparent
central volume of distribution; Q/F, apparent intercompartmental clearance; V./F, apparent peripheral volume of distribution




TABLE 4. Final model parameter estimates and bootstrap results

Parameter Model estimate * BS mean BS 95 % CI°
CL/F (L/h) 18.6 19.2 16.3-22.5
Vi/F (L) 104 97 48-138
QIF (L/h) 29.6 32.3 21.5-48.5
V,IF (L) 411 424 297-583
Ka (h™ 1.21 1.16 0.57-1.88
Kastudy 2 (™ 0.41 0.37 0.25-0.52
Lag time (h) 0.21 0.22 0.20-0.36
Lag timesay 2 (h) 0.81 0.81 0-38-0.90

Covariates on F
CYP3A5 *1/*3 Factor 0.50 0.51 0.38-0.65
Female sex Factor 0.77 0.76 0.61-0.94
Time, early

FmaXeary 0.95 1.22 0.60-2.98

I:early 50 days 2.6 2.4 1.6-2.9

I:early Hil 1O.OC 8.7 3.2-1O.OC
Time, late

FmaxXjate 0.28 0.31 0.16-0.53

Fiate 50 days 29.6 30.2 21.7-40.8

Flate il 2.4 2.4 1.5-4.6

BSV
CL/F (CV %) 30 30 19-40
Vi/F (CV %) 24 27 0.2-99
Q/F (CV %) 88 75 32-105
s (CV %) 58 56 36-76
Fiate Hill (CV %) 105 104 72-139

Correlation
CL/F ~ Q/IF 0.58 0.58 0.03-0.92

BOV
Relative F (CV %) 17 16 13-20
Ka (CV %) 67 60 29-88

Residual variability
Proportional error (%) 16.7 17.0 15.3-18.5

Study 2 Factor 0.57 0.56 0.42-0.70
Study 3 Factor 0.72 0.71 0.55-0.87

BS, bootstrap; Cl, confidence interval; CL/F, apparent clearance; V./F, apparent central volume of
distribution; Q/F, apparent intercompartmental clearance; V./F, apparent peripheral volume of
distribution; F, bioavailability; ks, absorption rate constant; CYP3A5, cytochrome P450 3A5; FmaXeary,
the maximum increase in F immediately after transplantation; Fearnyso, the day with half maximum
early effect on F, Hilleeary ; Shape coeffiecient at early time; Fiaeso, the day with half maximum later
effect on F; Hillrae, Shape coefficient at later time; Fmaxe,maximum value of the late change in F;
BSV, between subject variability; BOV, between occasion variability

#Standardized to male, CYP3A5 nonexpresser with fat free mass of 60 kg and hematocrit of 45 %, at
a time point with the lowest relative bioavailability (e. g. day 4 post transplant).

P2.5-97.5 percentile obtained from 500 bootstraps replicates

‘Upper bound

The final model was parameterized as follows:

CL/F = 18.8x (FFM / 60)** L/h, V,4/F = 104 x (FFM / 60) L, Q/F = 29.6x (FFM / 60)** L/h, V,/F = 411
x (FFM / 60) L

F=(1+0.95/(1+ (TXT/2.6)'%) x (1 + 0.28 / (TXT/29.6)*%) x 0.50 (if CYP3A5 expresser) x 0.77 (if
female)
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Figure 1. Observed tacrolimus whole blood concentratiorrindua) a dosing interval (12 hours) at steadyestat
and b) during the first seventy days after tranggléon (only trough concentrations). Both figuees stratified

by cytochrome P450 3A%(YP3A5)genotype.
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Figure 2. Hematocrit as a function of time after transpléinta(n=44, thin lines). A smoother is added to

visualize the trend.
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Figure 3. Prediction corrected visual predictive checks dlierrange of hematocrit. a) Observed whole blood
concentrations over the range of hematocrit valag®rediction corrected visual predictive checkrathe range
of hematocrit using the base model; c) Predictimmerted visual predictive check over the rangkeshatocrit
using the base model with hematocrit standardipedentrations. PC Tac conc, Prediction correctelianus
whole blood concentration. Solid gray line is mediserved blood concentration, dashed red liree8@%
observation interval, solid black line is mediaadicted blood concentrations, dashed black linesha 90 %
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g) Females, first 70 days h) Males, first 70 days
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Figure5. Prediction corrected visual predictive checks effinal model; a) within a 12 hour dose interval of
tacrolimus at steady state; b) over the first sgvdays after transplantation; c) over the firstesgy days after
transplantation in CYP3A5 *3/*3 expressers; d) ower first seventy days after transplantation inRGX5
*1/*3 expressers; e) in all patients over the raoffat free mass; f) in all patients over the g hematocrit;
g) over the first seventy days after transplantatiofemales; h) over the first seventy days df@msplantation
in males. PC Tac conc, Prediction corrected tamwadi whole blood concentration. Solid gray line iedmn
observed blood concentration, dashed red lineS@¥e observation interval, solid black line is medpaedicted
blood concentrations based on 100 simulated datat&thed black lines are the 90 % predictionvatdrased
on 100 simulated datasets. Gray shaded area rapg&e% confidence interval of each predictioerival.
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3 EXTENDED DISCUSSION ON
METHODOLOGICAL CONSIDERATIONS

3.1 STUDY DESIGN

One of the strengths of the nonlinear mixed effewtsleling approach is its ability to handle
sparse and unbalanced data from different souttemly trough concentrations had been
available, clearance would be the only identifighégameter [68]. Prior to the study, it was
hypothesized that pharmacokinetic information frahe twelve-hour pharmacokinetic
profiles (Intensive group) would stabilize the smdy sampled data to be fit to a two-
compartment model. The stability of the final moohelicated that this was successful. There
was, however, a high degree of uncertainty in soimihe parameter estimates (Table 4 in
Research Article). Whereas CL/F was the most pecisstimated parameter (CV 9 %), the
lower precision of the remaining pharmacokinetiacapaeters (CV 18-26 %) probably
reflected the high proportion of trough concentnasi [68]. It has been demonstrated in
studies evaluating different study designs thaighoconcentrations are the least informative
concentration time point [69], both because theylate in the dose interval and because there
IS uncertainty in the time passed since dose adiration. Thus, although the population
approach allows analysis of sparsely sampled dhtaresults will still suffer from data
associated with little information or uncertaingy.[

Another aspect of the study design was the rahgedvariates were represented at.
Body weight was represented at a wide range (485-Kh). In contrast, the distribution of
hematocrit values did not cover the upper range, except from one patient with mean
hematocrit of 56 %, mean hematocrit was below 4 %l patients. In addition, there were
relatively few older patients (43 + 14 years) besawyclosporine A was the preferred
calcineurin inhibitor in elderly patients at theng patients were included in the study [34].
Females were also underrepresented (19 out of t&€nps). Extrapolating a model to patients
with covariate values outside the range of thosduated during model development should
generally be done with caution [70]. Future studiesuld particularly include more females,

elderly and patients with hematocrit > 45 %.
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3.2 HANDLING MISSING DATA

Tacrolimus blood concentrations below quantificationit (BQL) of the analytical assay
were discarded. BQL data are left-censored, whiebma that they are not missing at random.
Omitting data not missing at random may lead tcsdmlaparameter estimates [71]. Other
methods exist for more appropriate handling of si&ta [72]. However, the methodology is
complex and not further discussed here. Only twbadul548 concentration measurements
were BQL. Therefore, one can assume that discatgm had little effect on overall results.
The method for handling missing covariates (ladti@ carried forward/backward) was
chosen for its simplicity and because it is commamed in population pharmacokinetic
analyses [7, 73]. In this study, albumin, ASAT, ALAALP and bilirubin were frequently
missing, and the method was therefore not optir@lear extrapolation of the covariate
between the last known value and the next knowmevalr predicting the most likely
covariate value from other known covariates woulobpbly be more appropriate to impute
missing values for these covariates [74]. If a Ensituation is encountered in a future study
it should be considered using another method foragate imputation to increase the

probability of establishing true covariate relasbips.

3.3 ASSUMPTIONS AND LIMITATIONS IN NONLINEAR
MIXED EFFECTS MODELING

Global minimum

Several assumptions are made when population nmgdedibased on maximum likelihood
estimation [29]. One assumption is that the moael found its global minimum (the lowest
possible objective function value for that set afgmeters) during minimization of2' x log
likelihood'. To check whether the final parameter estimatesevgensitive to the initial user-
defined parameter estimates, the model parameters re-estimated after increasing and
decreasing the initial estimates by 25 % [29]. Paeameter estimates were similar in both
cases with identical OFV. This was a strong indiicathat the proposed model was at global

minimum [7]. However, this is never guaranteed.
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Residual error model

The residual errors (predicted concentrations aat#d from observed concentration) were
assumed to be normally distributed with mean z&®].[ To assess this assumption, a
histogram of the conditional weighted residuals ([RE$) was created (Figure 3-1). The plot
indicated that the residuals were normally distelduand that the selected residual error
model was appropriate. CWRES did not systematicdlbnge over time after transplantation
(Figure 3-2, left). However, CWRES versus predictedicentrations showed a slight bias
towards overprediction at predicted concentratiabsve 10-15 pg/L (Figure 3-2, right). It
appeared from a closer look that the trend wasedriby about 20 lower tacrolimus
concentrations observed mainly in two patients witlexplained higher values of individual

clearance (Patient 216 and 313). Therefore, tighitsbias does not seem to reflect a major

model misspecification.
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Figure 3-1. Distribution of conditional weighted residualspstimposed with a dashed line showing the normal
distribution.
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Conditional weighted residual
Conditional weighted residual
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Time after transplantation (days) Predicted tacrolimus concentration (ug/L)

Figure 3-2. Residual error plotsLeft panel Conditional weighted residuals versus tiniRight panel
Conditional weighted residuals versus predictetbianus concentrations.

Between subject variability model

The distribution of individual pharmacokinetic pareters were assumed to be log normally
distributed with mean zero. Frequency distributianfs the Bayesian estimates of the
individual pharmacokinetic parameters (expressegsgsvere generated in order to test this
assumption (Figure 3-3) [29]. In addition, the meahthese estimates and the associated p-
value for the probability that the mean was différieom zero were calculated by NONMEM
[12]. All the parameter means were close to zerer (3<02) with associated p-values > 0.05,
and the parameters were symmetrically distributedirad the value of zero, indicating that

the assumption held.
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Figure 3-3. Frequency distribution of the individual eta vauef the Bayesian individual estimates of the
disposition parameters: Apparent clearance (ClLapparent central volume of distribution (V1/F), apmt
intercompartmental clearance (Q/F) and apparenphpeal volume of distribution (V2/F), respectivelgreen
bars). Blue dashed lines are superimposed and gt@estimated normal distribution of the correspogatas

in the population according to the final model. i8kage is calculated by dividing the standard désaof the
EBEs by the estimated population standard devidtiioese values are also given by NONMEM). Means are
expressed in each plot with an associated p-vdloe.p-value is calculated by NONMEM and is given ttee

null hypothesis that the true value is differeiinfirO.

3.4 RELIABILITY OF THE INDIVIDUAL PHARMACOKINETIC
PARAMETER ESTIMATES

The greatest advantage of using the Bayesian metioodestimate the individual
pharmacokinetic parameters is that samples mayd&ndat any time point, without being
restricted to for example exactly two hours aftesel[75]. This allows flexibility in a clinical
setting. In addition, the number of required samier therapeutic drug monitoring are
normally reduced when Bayesian Estimation is apphehich leads to lower costs and less
discomfort for patients [64]. However, not all sdimg time points contain equal amounts of

pharmacokinetic information as feedback [76]. Aagriémitation of Bayesian estimation is
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shrinkage of the individual estimates towards thepuytation mean values when the
concentrations are sparse or measured at uninfmeni@tne points [19]. In Figure 3-3 it is
illustrated that the standard deviations for thetrdiutions of the individual parameter
estimates were smaller than the standard devidtiothe estimated population variability.
The amount of shrinkage was quantified by calcntptine ratio between these standard
deviations [7]. CL/F was the parameter with lowdegree of shrinkage (15 %). Accurate
estimation of CL/F is important because CL/F deteas the required dosing rate to achieve
a steady state target concentration [3]. In cohtcasmsiderable shrinkage (66 %) was seen for
V./F, probably reflecting the lack of information aibd/,/F in samples drawn late in the
dosage interval. Shrinkage > 25 % in the remainlisgosition parameters (Q/F/N¥) is also
considered high [19]. These individual pharmacadkingarameter estimates are therefore not
reliable. The optimal sampling time points afteseldo obtain higher quality of the Bayesian
individual parameter estimates should be invest)fZ6].

3.5 CHOICE OF COVARIATES IN THE FINAL MODEL

Type | error rate

Type | error rate describes to the risk of inclgdancovariate in the model when the covariate
is in fact not a true covariate [70]. The leasnh#igant covariate in the final model was the
effect of sex on bioavailability (p=0.012, Tableir8B Research Article). One of the main
limitations of the likelihood ratio test is tha&OFV is only approximatelmz-distributed.
Significance levels obtained by the likelihood odkest are therefore not exact and are called
nominal significance levels [77]. The p-value isfidked as the probability of finding a
relationship, given that the null hypothesis (n@ttenship with the covariate) is true [7]. If
AOFV is large and the associated p-value very sittadlapproximate results of the likelihood
ratio test are sufficient. However, the p-value tioe effect of sex on bioavailability in the
presented model is questionable. A randomizatishwas performed to calculate the actual
p-value. For this test, 1000 data subsets werergtie These were identical except from a
random permutation of the sex characteristics batwie individuals in each subset to
remove the potential covariate effect. The modekmd stream allowing an effect of sex was
fit for each data subset an®FV was calculated. Subsequently, all the resudieewanked in
the order oAOFV [77]. The two original nested models had aatghce in OFV of 6.4. This
value was fund associated with a percentile inrdmkedAOFVs. The results showed that
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AOFV was greater than 6.4 in 25 of the 1000 rungesponding to p=0.025, slightly higher

than the nominal value (Figure 3-4).
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Figure 3-4. Randomization test for the effect of sex on balkability. Distribution of the difference in objgee
function from 1000 simulated datasets that weréofithe final model and compared with the modehwiit a
sex effect on bioavailability. The original differee of 6.4 was associated with an actual signitiedevel of
p=0.025

To reduce the risk of including false coveesa a more stringent significance criterion of
p<0.01 has been suggested during backward elimmatf covariates [7]. If the more
stringent significance criterion was selected is #tudy, sex would be statistically rejected as
a covariate. However, biological plausibility andprovement in plots of goodness of fit
supported retaining sex as a covariate in the fimadel, and bias was evident over the range
of weight without it (appendix E.6). This emphasizke importance of not relying solely on
statistical significance in model selection andoatkemonstrates how model selection is
affected by subjective judgment. It was appareminfthe visual predictive check (Figure 59
in Research Article) that tacrolimus concentrationgemales were still overpredicted. This
unexplained overprediction seems to be the greateakness of the model. More females
should be included in a future modeling datasenvestigate further the true effect of sex on

tacrolimus pharmacokinetics.
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Type Il error rate

Type Il error rate describes the risk of rejectmmfyue covariate [70]. Prednisolone, albumin
concentration and liver function tests are exampfagjected covariates that are biologically
plausible and were identified as covariates indiigre [45, 55, 61, 78]. If these covariates are
true covariates, some factors may have contribtdefdilure of establishing a relationship.
First, when the effect of a covariate on a pharrkex&tic parameter is expected to occur after
a time delay, the traditional methods for covariatusion will not capture the relationship
well [12]. Covariates such as corticosteroids dokiyes are potential covariates by induction
of CYP3A4 transcription, which is a delayed procesishough methods exist to take such
delays into account [79], this was not attemptethenpresent study due to the complexity of
such methodology. In addition, prednisolone phaokeetics vary between individuals [80],
and the interaction potential is probably not retiel well by dose. All patients received
similar prednisolone dosage regimens. To distirgbistween the relative underlying effects
of prednisolone and other factors varying with tiratter transplantation, patients on
corticosteroid-free immunosuppressive regimens Ishioel included in future studies.

Although the liver function markers (serum albupserum bilirubin, ASAT, ALAT,
ALP) tend to increase in liver disease, they afectd differently dependent on type of liver
disease and are not good measures of the livedg dretabolizing capacity [81]. In a
previous study, patients with moderate to sevedeiaed liver function were identified with
lower clearance of tacrolimus [82]. In this studyyvas attempted to model liver disease as a
dichotomous covariate by defining a liver functitest value above 1.5 times the upper
normal limit as ‘1’ and otherwise ‘0’. This apprdagvas used in a model for nevirapine
which is a drug similar to tacrolimus with respedot pharmacokinetic properties [83].
However, no relationship was revealed. Importanthgse results are not evidence of that
tacrolimus metabolism is not altered during livesedse. An overview of all evaluated

covariate relationships is shown in appendix F.

Error in covariates

Covariates were treated as if they are measurdwbutiterror. However, manual transfer of
data from patient charts to a computer might inicederrors. In addition, some covariates
may be measured imprecisely, such as laboratonesadr genotype [29]. Moreover, fat free

mass was not measured, but predicted from totay aaight, height and sex (appendix A)
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[84]. Although the employed equation is acknowlatitee perform accurate predictions of fat
free mass, it has not been evaluated in transplatients. During the initial year following
kidney transplantation, the proportion of fat intipats increases (fat mass content 25.8 to
31.2 %, p<0.001) [85]. Determining fat free massrenaccurately is based on advanced
techniques using bone mineral density, which ass lavailable in clinical practice [86].
Nevertheless, small errors in covariates are ngeebed to contribute to false covariate

selection and probably contribute little to the @levariability.

Factors not accounted for

Although some of the prior unexplained variabilityas explained by covariates, the
unexplained variability was large also subsequeicbi/ariate inclusion. For example, BSV in
the asymptotic value of individual bioavailabiliyas 104 %. Some factors are known to
contribute to the overall variability, but canno¢ leasily quantified. For example, when
patients experience a diarrhea episode, tacrolioonsentrations are observed to increase,
probably due to damaged enterocytes and decreassysfemic metabolism [87]. Diarrhea
episodes occur frequently in kidney transplantgrda as adverse reactions to tacrolimus or
mycophenolate mofetil [87]. However, such episodesusually not reported by the patient
or recorded by the clinician and diarrhea is theeefdifficult to assess as a covariate. In
addition, bioavailability may decrease in presentdood [88] or antacids [89]. Although
patients are informed to fast, eating habits arematly not controlled in the outpatient
setting. Finally, dosing history errors in the datadue to non-compliant patients is expected

to be an important contributor to the residual efr.

Practical aspects

The applicability of presented model is limitedflagt that not all transplant centers have the
opportunity to perform CYP3A5 genotyping. Sex, Imejgotal body weight and hematocrit
on the other hand are factors that are normallgiseavailable. All the model components
seem to be clinically relevant, because each catealeads to dose alterations of at least 30 %
within the expected covariate range. It is howegaestionable whether it is clinically
relevant to account for the early time effectsha model. In fact, it may be beneficial that a

higher extent of the dose is absorbed during tis¢ diays after transplantation. In practice, it
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would be similar to administration of a loading dosThese aspects should be further

considered before clinical application.

3.6 EXAMPLE OF INDIVIDUAL GOODNESS OF FIT

The patient with the most inaccurate populatiordjmted concentrations was a male CYP3A5
nonexpresser. The concentration-time profile ofs tipatient is shown in Figure 3-5
(subsequent to the initial five dose intervals, fiedictions within the dose intervals are
omitted for easier interpretation). Observed tagros concentrations during the first week
after transplantation varied between 1.5 and 2.BA_pemnd were consistently below the
acceptable concentration range (3-7 ug/L). Thaatéins did not establish the individual dose
requirement of 16 mg daily before one week hadgqmhsEhe Bayesian estimate of individual
CL/F was 33 L/h, almost twice as high as the pamrapredicted value of CL/F in this
patient. If this estimate of individual CL/F hadepeavailable to the clinicians, it would
encourage a more rapid increase in dosage andtjaditeprevented consistent underexposure
during the critical initial post-transplant weekhi3 figure emphasizes the importance of
revising the individual parameters when tacrolimamicentrations become available as
feedback to the model. Additional examples of irdlial goodness of fit plots are provided in

appendix D.
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Figure 3-5. Example of individual goodness of fit. ID 44 igl@ year old male CYP3A5 nonexpresser receiving
2.5 mg of tacrolimus twice daily as initial doséheTindividual dose requirement was 8 mg twice ddllycles
represent measured tacrolimus concentrations. Tiee lime reflects the population predicted concaiuns.
The red line reflects the individually predictechcentrations. The arrows on top represent admiedtdoses.
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3.7 SUBJECTIVITY IN MODEL DEVELOPMENT

A number of subjective considerations and choicesewnade during model development.
Both evaluation of goodness of fit plots and biatad plausibility are highly subjective

processes. The main results from the modeling poege presented in appendix E. All
models are wrong, but some are useful [7]. Seveaalels could probably be developed from
the dataset in the present study, and several moday be useful for the purpose of dose

individualization of tacrolimus. The presented westlggests one of these.
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4 FUTURE DIRECTIONS

Individual dosing based on Bayesian estimationnafiviidual pharmacokinetics has been
found superior to traditional therapeutic drug moming for several drugs with narrow
therapeutic windows, including vancomycin [90], aoglycosides [91], antiretroviral drugs
[92], phenytoin [93] and cyclosporine [94]. Howeyvdrefore the present model can be
clinically applied for tacrolimus, an external \tion procedure must be performed [9].
Information on hematocritCYP3A5 genotype, fat free mass, sex, dosing history and
measured drug concentrations must be collecteddgroap of new patients to generate an
external validation dataset. The model’'s abilityptedict the initial concentrations should be
compared with the predictions of the current ihitidse algorithm based on total body
weight. The model control stream and an exampléhefdataset structure are provided in
appendix G and H, respectively. Next, to evaluaie wsefulness of the model as a dose
adjustment tool, a randomized prospective studylshioe performed [94]. For example, one
group may receive tacrolimus doses guided by it therapeutic drug monitoring while
the other group receives doses as predicted bymibgel. Comparison of the observed
tacrolimus concentrations between the groups vélhdnstrate whether patients receiving
model-based individual dosing are reaching thestazgncentration more rapidly and whether
the target concentration is more precisely maiethinf so, the model may be clinically
applied to improve individual dosing of tacrolimus.

To date, eleven population pharmacokinetic modedse been published for
tacrolimus in kidney transplanted adults. In thel,gpharmacokinetics by itself is of little
value if pharmacodynamics and clinical effects @werly reflected by the pharmacokinetics.
Monitoring of biomarkers reflecting the immunosupgsive effect has been proposed as a
next step towards individualized treatment, althfomgt currently clinically available [95].
Future population modeling of tacrolimus should dim integrate pharmacokinetic and
pharmacodynamic biomarkers in a joint pharmacolgnahd pharmacodynamic (PK/PD)
model. The goal of all modeling is to improve patiecare. Developing a population
pharmacokinetic model is an enjoyable process aigthtniead to a useful dose adjustment
tool. We are, however, not successful before thmiladion model leads to observable clinical

effects in terms of fewer rejections, longer suavittmes and healthier patients.
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APPENDIX A. Algorithm for prediction of fat free mass

Fat free mass (FFM, Janmahasatian et al. [84])

9270 X Total body weight (kg)

FFM,male (kg) = 6680 + 216 X BMI

9270 X Total body weight (kg)

FFM, female (kg) = 8780 + 244 x BMI

Body mass index (BMI)

kg) _ Total body weight (kg)

EMI (W Height(m?)




APPENDIX B. Frequency distribution of bootstrap parameter

estimates
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Figure B-1. Frequency distribution of the results from the tstrap procedure of 500 dataset replications,
showing the distribution of the typical estimatéspparent clearance (CL/F), apparent central velom

distribution (Vi/F), apparent intercompartmental clearance (Q/B)amparent peripheral volume of distribution

(V,/F) and the covariate coefficients of the effecEdfP3A5 genotype and sex on bioavailability (F)eThs",

97.5" percentiles and the mean are shown in blue ddstes] Red solid line marks the parameter estirofte

the final model.



APPENDIX C. Traditional goodness of fit plots

Population goodness of fit, final model

Population predicted blood concentration (ug/L)

Individual goodness of fit, final model
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Figure C-1. Left panel: Population predicted concentratiorsus observed concentration. Right panel:
Individual predicted concentration versus obsem@utentration. Green circles represent a measacedlimus
whole blood concentration. The diagonal line islthe of unity. The red line is a smoother to shbe general
trend around the line of unity.



APPENDIX D. Individual goodness of fit in selected individuals
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Figure D-1. Examples on goodness of fit at the individuaklevepresented by the first individual in each-sub
study from which full pharmacokinetic profiles weybtained. One CYP3A5 expresser from sub-studyabsis
shown to represent an individual with poorly popiola predicted concentrations, emphasizing thatesom
patients are different on the individual level cargd to the group level due to unexplained vaiitgbiCircles
represent observed tacrolimus concentrations. Bleaepresents the group prediction using popufati
pharmacokinetic parameters and covariates. Reddjm@sents the individual prediction using indiat

parameters.
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Figure D-2. Examples showing the individual fit, representgddndomly selected subjects from sub-study 4
(TDM group) representing males, females, CYP3ASesgers and nonexpressers at different age growps a
tacrolimus dose requirements. The predictions duttie first five dose intervals are fully illusteat followed

by only prediction of trough concentration. In 1B the predictions during the first post-transplaeek is
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APPENDIX E. Supplemental material for decision-making

during model development

E.1. Development of the structural model

Table E.1 shows the results from the developmetite&tructural model. Only key models
referred to in the research article are provided.

TABLE E.1. Structural model development summary.

Model Compart - Absorption model Random OFV Compared Number of AOFV
nr. ment model effects to parameters
model nr. removed
Absorption model
1 2 comp. First order absorption BOV: All 3148.9 0
with lag time BSV: All
2 2 comp. First order absorption BOV: All 33434 1 +1 +194.5
BSV: All
8 2 comp. Zero order absorption BOV: All 3530.0 1 +381.1
BSV: All
Number of compartments
4 1 comp First order absorption BOV: All 3620.2 1 -6 +471.4
with lag time BSV: All
Random effects reduction and correlation matrix
B 2 comp. First order absorption BOV: K, F, 3156.2 1 -4 +7.3
with lag time BSV: All
6 2 comp. First order absorption BOV: K, F, 3159.6 5 -1 +3.4
with lag time BSV: CL/F,
V1/F, QIF,
V2/F, F
7 2 comp. First order absorption BOV: K,, F, 3133.0 6 -1 - 26.6
Struct- with lag time BSV: CL/F, +4
ural V1/F, QIF, V2/F
model Correlation

matrix between
CL/F, V1/F, QIF,
V2/F

Comp, compartments; OFV, Objective function value; CL/F, apparent clearance; V./F, apparent central volume of distribution;
Q/F, apparent intercompartmental clearance; V./F, apparent peripheral volume of distribution; F, bioavailability; k,, absorption
rate constant; BSV, between subject variability; BOV, between occasion variability




E.2. Parameter estimates and goodness of fit for th e structural model

Table E.2 shows the parameter estimates of thetstel model and Figure E-2.1 and E-2.2
show prediction corrected visual predictive chetihe structural model over the range of
time after transplantation and hematocrit, respebti

TABLE E.2. Parameter estimates, bootstraps means and 95 % confidence intervals of the parameter of
the base model

Parameter Model estimate BS mean BS 95 % CI*
CL/F (L/h) 20.4 20.6 18.0-23.2
Vi/F (L) 177 184 142-249
Q/F (L/h) 18.3 17.9 13.6-23.8
V,/F (L) 1820 2022 1190-3242
Ka (h™ 1.41 1.42 0.91-2.12
Kastudy 2 (h™ 0.47 0.81 0.34-2.32
Lagtime (h) 0.22 0.23 0.20-0.25
Lagtimesuay 2 (h) 0.80 0.82 0.73-0.89

BSV
CL/F (%) 48 47 38-56
Vi /F (%) 65 64 46-82
QIF (%) 82 81 60-98
V,L/F (%) 138 134 90-175

Correlations

CL/F ~ Vu/F 0.77 0.65 0.03-0.92
CL/F ~ Q/IF 0.50 0.53 0.41-0.82
CL/F ~ V. /F 0.38 0.26 -0.18-0.59
Vi/F ~ QIF -0.11 -0.16 -0.50-0.27
Vi/F ~ V,/F 0.54 0.73 0.22-0.96
Q/F ~ V,/F 0.17 -0.15 -0.52-0.33

BOV
Relative F (%) 17 18 14-23
Ka (%) 81 89 65-131

Residual va riability

Err%‘i"”'o”a' (%) 16.4 16.1 13.4-19.0

Additive error pa/L 0.30 0.40 0.05-0.57
Study 2 Factor 0.53 0.55 0.41-0.73
Study 3 Factor 0.68 0.66 0.53-0.83
Study 4 Factor 1.00 1.00 0.84-1.18

BSV (%) 13.6 10.5 0.001-0.22

BS, bootstrap; Cl, confidence interval; CL/F, apparent clearance; V1/F, apparent central volume of distribution; Q/F, apparent
intercompartmental clearance; V./F, apparent peripheral volume of distribution; F, bioavailability; k,, absorption rate constant; BSV,
between subject variability; BOV, between occasion variability

2.5-97.5 percentile obtained from 500 bootstraps replicates
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Figure E-2.1. Prediction corrected visual predictive checkshef structural model. The concentrations are
systematically overpredicted during the first 4@siaeft panel All observed tacrolimus concentrations over
time after transplantation. Solid red line is med¥éservation in each time interval, consisting @fdays.
Dashed red lines are the 90 % observation inteRight panel Red solid and dashed line are identical to left
panel. Observations are excluded for easier vistelpretation. Solid black line is median predicte
concentration, dashed black lines are the 90 %igifed interval. Gray shaded area represents 99#fidence
interval of each prediction interval.
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E.3. Flowchart of covariate model development

Select covariates

Add covariates on selected parameter

|

Rank improvement in goodness of fit by evaluating
objective function value

l

Does any covariate
decrease OFV by
> 3.8 points?

[vo

Full covariate model

}

Delete covariates from model in sequence

l

A

Yes Include covariate in
—_—> model

Evaluate significance,

biological plausibility E— Does any removed
and goodness of fit plots covariate increase
before deciding whether OFV by > 6.6
it should be removed points?
Yes
No

Keep covariates



Run 100-500 bootstrap replicates and
generate 95 % confidence intervals

Evaluate biological
plausibility and
goodness of fit plots
before deciding
whether it should be
removed

v

Does any 95 %
confidence interval of
covariate effects
include 1?

A

Are any retained
covariate relationship

biologically
implausible?
Yes No
v
Consider removal
\ 4 v

p Create visual predictive checks over the range of
each covariate

Consider correlated
covariates and try to

improve model based Yes Is there any model
on knowledge from prior *—— misspecification over
covariate building the range of
process covariates?

lNo

Final covariate model

Figure E-3.1. Flowchart of the main steps during the covariatel@ting process. Several of the choices
made are subjective. This is only a general ovarvighe modeling process will typically move upwaedsl
downwards in the flowchart depending on observatamd experience gained.



E.4 Covariate inclusion

Table E.4 gives an overview of the main steps ducovariate inclusion. Only a short
summary is provided, excluding evaluated modeldesating to model improvement. See

appendix F for a qualitative overview of all evakhmodels.

TABLE E.4. Results from covariate inclusion

Model
number

10
11
12

13
14
15
16
17
18
19
20

21
22*

Parameter

Conc.

Conc.

Conc.
Conc.

Conc.

CL/F,V1/F,
QIF, V2IF

F

CL/F,V1/F
QIF, V2IF

F

Covariate

Hematocrit

Hematocrit

Hematocrit
Hematocrit

Hematocrit

CYP3A5
CYP3A5

Time

Time

Time

Time

BSV in F_time

Fat free mass

Sex

Fat free mass
and

Sex

Imple mented as

Linear with
parameter

Nonlinear with
power parameter

Nonlinear, Smax
Nonlinear, Bmax

Linear without
parameter

Proportional
Proportional
Time intervals
Time intervals
Sigmoidal (early)
Sigmoidal (late)
Exponential

Allometric scaling
Proportional

Allometric
scaling

Proportional

OFV

3052.7

3054.2

3055.8
3059.0
3054.6

3035.3
3020.4
2953.9
2967.7
2967.5
2955.8
2908.7
2908.9

2907.9
2902.5

LRT

-80.4

-78.8

-77.3
-74.0
-78.4

-19.3
-14.9
-66.5
-52.7
-52.9
-11.7
-47.1
+0.2

-0.75
-6.2

Added
paramet
ers

1

12

o B W w

[N

Compa
red to

12
13
14
14
14
17
18
19

19
19

p

<0.001

<0.001

<0.001
<0.001
<0.001

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

0.01

OFV, Objective function value; LRT, Likelihood ratio test; CL/F, apparent clearance; V./F, apparent central volume of

distribution; Q/F, apparent intercompartmental clearance; V./F, apparent peripheral volume of distribution ; F, bioavailability;
Smax, Empirical sigmoidal function; Bmax, Saturation function using values for Bmax (maximal binding constant) and Kd

(affinity constant) obtained from literature (see details in Appendix F); CYP3A5, Cytochrome P450 3A5
* Full covariate model




E.5. Parameter estimates of the full covariate mode |

Table E.5shows the parameter estimates of the full covamatdel.

TABLE E.5. Typical values, bootstraps mean and 95 % confidence intervals of the parameters of the full
covariate model (model nr. 22). Gray marked parameters were removed in reduction round 1.

. BS BS
Parameter Estimate e 95 % CI?
CL/F (L/h) 18.9 19.2 16.2 -22.5
Vi/F L) 112 103 56.7 — 154
Q/F (L/h) 31.9 32.8 18.3-48.5
V,/F L) 385 393 270 — 568
Ka (h™h 1.22 1.2 0.62-1.8
Kastudy 2 (h™ 0.39 0.36 0.22 -0.55
Lagtime (h) 0.22 0.22 0.19-0.24
Lagtimesuay 2 (h) 0.84 0.84 0.78 — 0.90
Covariates on relative CL/F
CYP3A5 *1/*3 Factor 1.38 1.30 0.73-1.82
Covariates on relative F
CYP3A5 *1/*3 Factor 0.76 0.73 0.37 - 1.39
Female sex Factor 0.75 0.76 0.60 —0.94
Time, early
Feary 1.21 1.51 0.65 - 2.98
Fearly 50 days 2.19 2.2 1.6-28
Fearly Hi 6.85 8.0 3.6-10.0°
Time, late
Fiate 0.28 0.29 0.14-0.50
Fate 50 days 29.9 30.6 22.6 —46.1
Fate Hil 2.17 2.4 1.5-39
BSV
CL/F (%) 38 36 25— 49
Vi/F (%) 44 58 29-116
QIF (%) 84 77 35-113
V,o/F (%) 74 72 52 -98
Fiate Hi (%) 109 108 76 - 149
Correlations
CL/F ~ V4/F 0.63 0.55 -0.16 — 0.98
CL/F ~QIF 0.66 0.57 0.12-0.93
CL/F ~ V,/F 0.40 0.35 -0.12-0.71
V4/F ~ QIF -0.08 -0.17 -0.97 - 0.81
Vi/F ~ V,/F 0.43 0.09 -0.69 — 0.80
Q/F ~ V,/F 0.50 0.60 -0.04 - 0.99
BOV
Relative F (%) 14 14 9-18
Ka (%) 68 58 25 -85
Residual variability
Err%‘;o”'ona' (%) 16.8 17.0 13.7-206
Additive error pg/L 0.28 0.40 0.003 —0.53
Study 2 Factor 0.50 0.55 0.41 -0.68
Study 3 Factor 0.62 0.66 0.47-0.78
Study 4 Factor 0.90 1.00 0.73-1.11
BSV (%) 16.9 10.5 0.002 - 0.27

BS, bootstrap; Cl, confidence interval; CL/F, apparent clearance; V./F, apparent central volume of distribution; Q/F, apparent
intercompartmental clearance; V,/F, apparent peripheral volume of distribution; F, bioavailability; k,, absorption rate constant; BSV,
between subject variability; BOV, between occasion variability

42.5-97.5 percentile obtained from 200 bootstraps replicates

® 10.0 was upper bound




E.6. Visual predictive check without and with the e ffect of sex on bioavailability

The following pcVPCs (Figure E.6-1) using fat fraass on the X-axis guided the inclusion
of sex on bioavailability to reduce the systemhtas over the range of fat free mass. The
effect of these covariates masked each other, alydraproved the model when added
simultaneouslyAOFV =-6.2, p=0.01).

20 e 20

Blood concentration (meg/L)
=]
K ’
Blood concentration (mcg/L)
=

51 r—--_.‘h:- _.—.:_-". 54 t:::!: ------- ._*-___—-'_'
I et el S
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Figure E.6-1. Prediction corrected visual predictive check aberrange of fat free mass using model nr. 20
(without sex on bioavailabilityeft) and nr. 22 (with sex on bioavailabilityght). For graphical interpretation,
see figure E-2.1.



APPENDIX F. Overview of evaluated models

Function

Comment on models not mentioned in main
text

Compartmental models

1 compartment model

2 compartment model

Absor ption process models

Zero order absorption

No lag time

Singe kfor all patients

+ More sensible to describe the absorption
profile uniformly across patients

— Unstable model and worsens the fit in group
2 considerably. There is clearly a different type
of absorption profiles in study 2, but the reason
for this is unknown.

Mixture model for k

+ Flexible
— Long model run times
— Models not stable

Random effects models

BSV in lagtime

+ Biologically plausible that lag time differs
between patients

— Not enough data from absorption phase to
support BSV in both lag time ang k

BSV in ka only for intensively sampled group

Both BSV and BOV in k

Occasions for TDM data divided by day or week

— Violates the assumption of random
distribution of the random effects described by
BOV.

Covariate models

Hematocrit on whole blood concentration

General model

CBSTD=F

CONC =CBSTD * Function of hematocrit
Y = CONC + error

In all following models, CBSTD means
standardized whole blood concentration and
equal the model predicted standardized
concentrations (F).

CONC are the non-standardized predicted
concentrations, and Y are the measured
concentrations. Thieinctionfor the relationship
between CBSTD and CONC were defined using
a different approaches:

Exponential hematocrit model

CONC=CBSTD*EXP(THETA(X)*(HCT-45))




Power model for hematocrit allowing saturation

CONC=CBSTD*(HCT/45)*(THETA (1))

Saturation model for hematocrit estimating plasraadal
pharmacokinetic paramters

CP=CSTD/55 ; Standardized for a BPR of 55:1
BMAX=418

KD=3.8

BPR=1+(HCT/100)*BMAX/(KD+CP)
CONC=CP*BPR

Empirical saturation model for hematocrit
IF (CBSTD.LE.O) THEN

CONC=0
ELSE

CONC=HCT/45*((CBSTD*THETA(L))*THETA(2))/
((CBSTD**THETA(L))+(THETA(3)*THETA(1)))
ENDIF

Random effects in the standardization to hematocrit

CONC=CBSTD*(HCT/45)*(1*EXP(ETA(X)))

Allows nonlinear relationship

Estimating plasma based pharmacokinetic
parameters using literature values of saturable
binding to erythrocytes (Jusko et al. 1995)

Estimating erythrocyte saturation using
empirical Smax function for the relationship
between whole blood concentrations and
hematocrit

Unstable

Account for different binding affinity across
patients

Hematocrit on clearance and volume of distribution
Linear function
Power function

Not superior to hematocrit on concentration

CYP3A5 genotype
Proportional on only clearance
Proportional on both clearance and bioavditsibi

Not superior to CYP3A5 on only F

Total body weight, BM I, BSA on clearance and volume of
distribution

Linear function

Allometric function

Power function

Sigmoidal function

Estimating the effect of fat mass:

Not superior to allometric scaling to fat free
mass

Time after transplantation on clearance and
bioavailability

Linear function

Exploratory model using twelve time intervals

Prednisolone on clearance and bioavailability

Linear function

Power function

Sigmoidal

Treated as binary covariate with cut-off valag daily
doses of 5, 10, 15, 20, 25, 30, 40, 50, 60, 70 mg.

Treated as categorical covariate with diffeqgartameter
for each discrete dose size

Significant improvement, but not superior to the
use of time after transplantation as covariate

Prednisolone/kg on clearance and bioavailability
Linear function
Power function

Significant improvement, but not superior to the
use of time after transplantation as covariate




Ageon clearance and volume of distribution
Linear function
Power function

No improvement

Height on clearance and volume of distribution
Linear function
Power function

No improvement

Sex
Binary effect on clearance
Binary effect on volume of distribution

Not superior to effect on bioavailability
Tendency towards model improvement,
significant during covariate inclusions but not
during backward elimination

Albumin on clear ance and volume of distribution
Linear function
Power function

No improvement

Serum creatinine
Linear function on clearance
Linear function on volume of distribution

No improvement
Decreased OFV by 6 points, but not retained due
to lack of biological plausibility

C-reactive protein on clearance and bioavailability
Linear function
Power function
Treated as categorical covariate with affitvalues at
C-reactive protein=5, 10, 20, 40, 50 mg/L

No improvement. Difficult to model and should
account for a delay in a possible induction
process

ASAT on clearance
Linear function
Power function
Linear function using log ASAT
Power function using log ASAT
Cutoff value: 1.5 * upper normal value

No improvement

ALAT on clearance
Linear function
Power function
Linear function using log ALAT
Power function using log ALAT
Cutoff value: 1.5 * upper normal value

No improvement

ALP on clearance
Linear function
Power function
Linear function using log ALP
Power function using log ALP
Cutoff value: ALP=200

No improvement

Bilirubin on clearance
Linear function
Power function
Linear function using log bilirubin
Power function using log bilirubin
Cutoff value: 1.5 * upper normal value

No improvement

Acutergjection episode on clearance and bioavailability
Binary effect
Account for delayed effect by assigning digfietr
clearance during 3,4,5,7,10 days after a reje@psode

No improvement




M ethylprednisolone on clearance and bioavailability
Distinct values for CL and F at different tinmeervals

after administration of a methylpednisolone doge (i

conjunction to surgical procedure and rejectiorsepes)

No improvement

L ansoprazole on clearance and bioavailability
Binary effect (use/not use) not accounting foredit
dose strengths

No improvement

Nifedipine on clearance and bioavailability
Binary effect (use/not use) not accounting foretiit
dose strengths

No improvement

Cinacalcet on clearance and bioavailability
Binary effect (use/not use) not accounting foretiit
dose strengths

No improvement




APPENDIX G. Final model control stream

CODE

; Final control strem
; Elisabet 21.09

; BSV: CL, V1, Q, V2, Flate

; BOV: F, Ka

; Covariates:

; Sexon F

; CYP3A5 0on F

; Two separate time effects on F

; Concentrations: Hematocrit standardized

$SIZES LVR=46

$SIZES PL=15

$PROBLEM Final model

NIF CRP TXT HCT SCR BILI ASAT ALAT ALP ALB MOF1 AGE
TBWKG HTCM FFMKG FATKG BMI BSA XOCC RICH OCC

$DATA DATA\FULL _input.csv IGNORE=#

$ESTIMATION METHOD=COND INTER
MAX=9990 NSIG=3
NOABORT PRINT=1

$COV PRINT=E

$THETA

(0.1,18,) : CLNR_STD L/H
(0.1,104,) :VC_STD L
(0.1,29.5) :Q_STD L/H
(0.1,411)) :VT_STDL
(0,0.213)) : LAG1_STUDY1
(0,0.81,) :LAG2_STUDY2

(0,1.20,) : KA1_STUDY1

LAN

Comment

The symbol “;” comments out and are not read
by NONMEM. This allows specifications in the
control stream for the user

Description

$SIZES is used to increase the number of
allowed parameters

$PROBLEM is user-defined model name
$INPUT refers to each column in the data set.
NONMEM-defined column names are

underlined.

$DATA tells NONMEM where to find the input file
(dataset) and instructs NONMEM to ignore the
rows starting with # (header row)

$ESTIMATION is user-defined to instruct
NONMEM on which estimation method to use.
METHOD=COND INTER means Use the
conditional method (FOCE) with interaction.
MAX=9990 means lterate max 9990 times, if not
successfully converged at this time, please stop.
NSIG=3 means Aim for 3 significant digits in the
parameters before converging

PRINT=1 means print each iteration in NONMEM
output

$COV PRINT=E means Estimate covariance

matrix and print associated eigenvalues

$THETA is used for initial estimates of the vector
of fixed effects (typical values, pharmacokinetic
parameters and covariates).

First number = Lower bound (optional)

Middle number = Initial estimate

Last number = Upper bound (optional)



(0,0.407,) : KA2_STUDY2

:CYP3A5 ON F
(0,0.498,3) :F_CYP

“TIME FUNCTIONS
(0.1,0.949,3) ; TXT_F EXTENT OF INCREASE IN
(0.1,2.48,100) ;TXT50 DAY OF 50 % CHANGE
(0.1,9.,10) s TXTHILL

;LATE TIME ON F

(0,0.281,3)  : TIME_F INCREASE IN F FROM BASE
(1,29.6,70)  ; TIME50 DAY OF 50 % CHANGE
(1,2.35,10)  : TIMEHILL

'SEXON F

(0,0.773)) : FSEX_FEM

;RESIDUAL ERROR

(0,0.569,) ; Residual STUDY 2
(0,0.725,) ; Residual STUDY 3
(0,0.167,) ; Proportional residual error

$OMEGA BLOCK(1)
0.0585 ; BSV_VC
$OMEGA BLOCK(2)
0.0918 ; BSV_CL
0.1530.767 ; BSV_Q

$OMEGA BLOCK(1)
0.332 ;BSV_VT

$OMEGA BLOCK(1)
0.0283 ; BOV_F_1 ; BOV FOR RICH AND SPARSE DATA
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME

FIX means that the estimate is not varied during
minimization. Name of each theta is given after
semicolon. This is not read by NONMEM but
helps the user keep track of the thetas.
Although not stated, thetas are counted in the

sequence they are stated.

LINE

$OMEGA is the matrix of random effects.
BLOCK matrices allow estimating the correlation
between two random effects. Here, a correlation
is estimated between clearance and
intercompartmental clearance (Q) (the

underlined number).

When between occasion variability (BOV) is
estimated, an $OMEGA must be defined for each
defined occasion, and “SAME” gives NONMEM
information that the estimated value should be
equal for all omegas.

This is a “trick” to force NONMEM to estimate
BOV, because an easier method is not currently
available in NONMEM.




$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1)

0.437 ; BOV_KA1
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME

$OMEGA BLOCK(1)
1.12 ; BSV_FTIME

$SIGMA 1. FIX ; EPS1

$SUBROUTINE ADVAN4 TRANS4

$PK

:GROUP PK PARAMETERS
TVCL = THETA(L) * (FFMKG/60)**(3/4) ; L/H
TW1 = THETA(2) * (FFMKG/60)**(1/1) ; L
TVQ =THETAQ)* (FFMKG/60)*(3/4) ; L/H
TVV2 = THETA@4) * (FFMKG/60)**(1/1) ; L

IF (STU.EQ.2) THEN
TVLAG = THETA(6)
TVKA = THETA(S)

ELSE
TVLAG = THETA(5)
TVKA = THETA(7)

ENDIF

IF (MOF1.EQ.1) THEN
FFSEX=THETA(16)
ELSE
FFSEX=1
ENDIF

22 $OMEGAs are given because there are 22
occasions defined.

BOV in KA is only estimated from the intensively

sampled profiles at maximum 3 occasions.

$SIGMA denotes the initial estimate of epsilon.
However, oftentimes this is fixed to 1, and thetas
are used in the residual error instead. This is
done because modelers have found it to be more
stable in addition to allow printing of the residual
error in the tables, which is not allowed for
sigma. It is a matter of what the modeler prefers.

Using the $SIGMA would give similar results.

Subroutines are library built-in codes in
NONMEM. ADVAN4 instructs NONMEM to use a
two-compartment model with first order

absorption and elimination.

$PK is the block where the user defines the
pharmacokinetic model properties.

Typical values/group values of all
pharmacokinetic parameters are defined and
associated with the covariates.

For example, this block states that if MOF1 (a
column in the dataset for sex) is 1 (female) the
user-defined name FFSEX is equal to the
estimable theta. If gender is male, FFSEX is 1.
Later, when typical value of F is declared, it is
multiplied with FFSEX. There are also other
methods to obtain the same result.



FFTXT=1+THETA(L0)/(1+(TXT/THETA(11))*(THETA(12)))

INDTIME_F=THETA(13)*EXP(ETA(30))

IF (TXT.GT.3) THEN
FFTIME=1+(INDTIME_F)/(1-+(TXT/THETA(14))**(-
THETA(15)))
ELSE
FFTIME=1
ENDIF

IF (CYP.EQ.1) THEN
FFCYP=THETA(9)
ELSE
FFCYP=1
ENDIF

TVF=1*FFCYP*FFTXT*FFTIME*FFSEX

IF(OCC.EQ.1) THEN
BOVKA=ETA(27)
BOVF=ETA(5)

ENDIF

IF(OCC.EQ.2) THEN
BOVKA=ETA(28)
BOVF=ETA(6)

ENDIF

IF(OCC.EQ.3) THEN
BOVKA=ETA(29)
BOVF=ETA(7)

ENDIF

IF(OCC.EQ.4) THEN
BOVF=ETA(8)

ENDIF

IF(OCC.EQ.5) THEN
BOVF=ETA(9)

ENDIF

IF(OCC.EQ.6) THEN
BOVF=ETA(10)

ENDIF

IF(OCC.EQ.7) THEN
BOVF=ETA(11)

ENDIF

IF(OCC.EQ.8) THEN
BOVF=ETA(12)

ENDIF

IF(OCC.EQ.9) THEN

This is a sigmoidal function for the early time
function

An eta (random effect) is added to the individual

change in F over time

Sigmoidal function for the late time function

The effect of CYP3AS5 genotype on F

Here, all above introduced covariates on F are

associated with typical value of F (TVF).

This is a necessary block of statements to allow
between occasion variability (BOV) in k, and F.
OCC is referring to occasions defined in the
dataset.



BOVF=ETA(13)
ENDIF
IF(OCC.EQ.10) THEN
BOVF=ETA(14)
ENDIF
IF(OCC.EQ.11) THEN
BOVF=ETA(15)
ENDIF
IF(OCC.EQ.12) THEN
BOVF=ETA(16)
ENDIF
IF(OCC.EQ.13) THEN
BOVF=ETA(17)
ENDIF
IF(OCC.EQ.14) THEN
BOVF=ETA(18)
ENDIF
IF(OCC.EQ.15) THEN
BOVF=ETA(19)
ENDIF
IF(OCC.EQ.16) THEN
BOVF=ETA(20)
ENDIF
IF(OCC.EQ.17) THEN
BOVF=ETA(21)
ENDIF
IF(OCC.EQ.18) THEN
BOVF=ETA(22)
ENDIF
IF(OCC.EQ.19) THEN
BOVF=ETA(23)
ENDIF
IF(OCC.EQ.20) THEN
BOVF=ETA(24)
ENDIF
IF(OCC.EQ.21) THEN
BOVF=ETA(25)
ENDIF
IF(OCC.EQ.22) THEN
BOVF=ETA(26)
ENDIF

;INDIVIDUAL PK PARAMETERS Finally, individual parameters are defined and
associated with random effects.
CL=TVCL*EXP(ETA(2))
V2=TVVI*EXP(ETA(1))
Q =TVQ *EXP(ETA(3))
V3=TVV2*EXP(ETA(4))
KA=TVKA*EXP(BOVKA)
ALAG1=TVLAG




F1=TVF*EXP(BOVF)

; Scale to central compartment
S2=V2

$ERROR
; Standardize
IPRED=F*(HCT/45)

IF (STU.EQ.2) THEN
FSDYRUV=THETA(17) ; STUDY 2
ELSE IF (STU.EQ.3) THEN
FSDYRUV=THETA(18) ; STUDY 3
ELSE
FSDYRUV=1
ENDIF
PROP=IPRED*THETA(19)
W=FSDYRUV*SQRT(PROP*PROP)

Y = IPRED + W*EPS(1)

$TABLE ID DV TIME PRED IPRED RES CWRES NOPRINT
ONEHEADER FILE=sdtab295

$TABLE ID DV TIME IPRED CL V2 Q V3 KA ALAG1 NOPRINT
NOAPPEND ONEHEADER FILE=patab295

$TABLE ID DV STER CRP TXT HCT SCR BILI ASAT ALAT AL
ALB AGE TBWKG HTCM FFMKG FATKG BMI

BSA NOPRINT ONEHEADER NOAPPEND FILE=cotab295
$TABLE ID DV CYP LAN NIF MOF1 NOPRINT ONEHEADER
NOAPPEND FILE=catab295

The scale factor is important to convert mass
unites and to define which compartment blood
samples are drawn from. V2=Central volume of
distribution in ADVAN4.

$ERROR is the block for defining the residual
error model.
F is the model prediction (NONMEM-specific

name)

Study-specific residual errors are introduced.

Proportional residual error defined by a theta.

Measured concentrations (Y) = individual
predicted concentration (IPRED) + residual error
(W). EPS(2) is epsilon, which is fixed to 1, but is
required by NONMEM to run.

Finally, the user can ask NONMEM for to create
tables of interest.

Create a table of the parameters and residuals
Create a table of individual parameter estimates
Create a table of continuous covariates

Create a table of categorical covariates



APPENDIX H. Example of dataset structure

STU  TIME EVID DV AMT Il ADDL  SS occ STER TXT CYP LAN NIF CIN AGE Wt HEIG  SEX FFM CRP  HCT SCR BILI ASAT ALAT ALP ALB

#ID

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
38
38
38
38
38
40
40
40
40
40
40

47 51

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
23
20

269
269
269
269
269
269
269
269
269
269
269
269
269
269
269
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256
256

29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
30
30
30
30
30
35
34
31
30
30
30

26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

70.4

179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
186
186
186
186
186
171
171
171
171
171

104
104
104
104
104
104
104
104
104
104
104
104
104
104
104

61

25
26
26
26
26
26
26
26
26
26
26
26
26
26
26
31

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
15
15

4000 12

0
13.8

101
101
101
101
101

51

47

70.4

61

0
1
0

10.88
11.47
11.98

1
1
1

51

47

70.4

61

4000 0

0
17.3

51

47

70.4

61

51
51

47

70.4

61

26.4
28.8

12.5
13.02

47

70.4

61

0

1

101
101

51
51

47

70.4

61

28.4
26.7

13.5
14.03

47

70.4

61

0

1

101
101
101
101
101
101
101
101

51

47

70.4

61

24.6

14.5
15.53
16.52
17.47

51

47

70.4

61

19.3

0
0
0

1
1
1

51

47

70.4

61

14.5

51

47

70.4

61

12.8

51

47

70.4

61

10.8

19.5
21.48
23.47

51

47

70.4

61

10
9.8

0
0

1
1

51
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
53
100
100
100
100
100

47

70.4

61

42

68.7

99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
77
77
77
77
77
80
81

61

4000 12

0
6.9

101
101

42

68.7

61

32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
33
33

0

11.28

1

42

68.7

61

15
15
15
15
15
15
15
15

4000 0

0
9.7
20.1

11.4
11.93
12.38
12.88

101
101
101
101
101
101
101
101

42

68.7

61

0
0
0

1
1
1

42

68.7

61

42

68.7

61

21.6
21.6

42

68.7

61

13.4
13.92
14.42

42

68.7

61

19.8

0
0

1
1

42

68.7

61

20
15.8

42

68.7

61

15.4
16.33
17.38
19.45
21.33
23.27
24.25

42

68.7

61

15
15

135

0
0
0
0
0
1

1
1
1
1
1
1

101
101

42

68.7

61

11.1

42

68.7

61

15
15
15
15
15
15
25
25

9.6
9.2
8.7

101
101
101
101
101
101

42

68.7

61

42

68.7

61

42

68.7

61

4000 0

0
10.8

42

68.7

61

35
35.75

42

68.7

61

9.1

0

1

30
30
30
30
30
155
155
155
155
155
155

12
12
12
12
12

99
99
99
99
99
344
259
167
129
129
112

62.1

52
52
52
52
52
42

55
56
56
56
56

2000 12

0

102
102
102
102
102

20
20

62.1

0
1
0
0

11.08
11.17
11.68
12.17

1
1
1
1

62.1

25
25

2000 0

0
7.1

20
20
87

62.1

62.1

25

12.9

58
58
58
58
58
58

27
27
29
21

58.9

20
20

12
12

2500
3000

0
0

4.1

87

59.3

42

36
48

87

60.4

84
84
84
84

42

20
20

87

60.4

42

3.8

72
84

87

21

60.4

42

20
20

4000 12 22

0
4.8

87

60.4

171

42

96




#ID STU TIME
1 4 144
1 4 168
1 4 192
1 4 240
1 4 312
1 4 360
1 4 360
1 4 372
1 4 408
1 4 480
1 4 528
1 4 576
1 4 648
1 4 696
1 4 744
1 4 840
1 4 912
1 4 984
1 4 1056
1 4 1152
1 4 1200
1 4 1320
1 4 1392
1 4 1488
1 4 1560
1 4 1704
2 4 0
2 4 48

ID, patient ID; STU, study number; TIME, time relative to zero; EVID, Event ID (1=Dosing record, 0=Observation record, 4=Reset system and introduce new dose; DV, Dependent variable
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(Tacrolimus concentration); Amt, Dose amount in micrograms; Il, dose interval in hours; ADDL, Additional doses; SS, steady state is assumed if 1; OCC, Occasion; STER, steroid dose; TXT,
Time after transplantation; CYP, CYP3AS5 expresser=1, non-expresser=0; LAN, lansoprazole; NIF, nifedipine; CIN, cinacalcet; AGE, patient age; WT, Total body weight in kg, HEIG, height in

cm; SEX, sex (O=male, 1=female); FFM, predicted fat free mass; CRP, C-reactive protein, HCT, hematocrit (%), SCR, Serum creatinine; BILI, bilirubin; ASAT, Aspartate aminotransferase;
ALAT, Alanine aminotransferase; ALP, Alkaline phosphatase; ALB, albumin







