
 

POPULATION PHARMACOKINETICS OF TACROLIMUS 

IN KIDNEY TRANSPLANT RECIPIENTS 

A model for individual dosing 

 

by 

Elisabet Størset 

 

 

 

 

Thesis submitted for the degree Master of Pharmacy 

 

Centre for Pharmacy 

Department of Public Health and Primary Health Care 

University of Bergen 

November 2012 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2012 Elisabet Størset  
All rights reserved 



 
 

 
 

ABSTRACT 

Background: Population pharmacokinetics is the study of pharmacokinetic variability in the 
population. One goal of such studies is to improve individual drug treatment by identifying 
relationships between pharmacokinetic parameters and patient characteristics. Tacrolimus is 
an immunosuppressive drug used in kidney transplantation. Tacrolimus has a narrow 
therapeutic window and large pharmacokinetic variability both between and within patients. 
In addition, dose-normalized whole blood concentrations tend to increase during the first 
months after kidney transplantation. Therefore, individual dosing of tacrolimus is a major 
clinical challenge. The objective of this study was to develop a population pharmacokinetic 
model for tacrolimus to aid in prediction of initial dose and individual dose requirements 
during the first ten weeks after kidney transplantation. 

Methods: Twenty-nine kidney transplant recipients contributed full pharmacokinetic profiles 
of tacrolimus at 44 dosing occasions, and 44 patients contributed trough concentrations from 
the first ten weeks after kidney transplantation. A total of 1546 blood samples were analyzed. 
Demographic, clinical and pharmacogenetic patient characteristics were evaluated as 
covariates. Population pharmacokinetic modeling was performed in NONMEM 7.2®. 

Results: A two compartment model with first order absorption and lag time adequately 
described the data. Relative bioavailability was 24 % lower in females than in males and 49 % 
lower in CYP3A5 expressers than in CYP3A5 nonexpressers. Fat free mass was the most 
predictive body size metric. Whole blood concentrations of tacrolimus increased linearly with 
increasing hematocrit. An underlying increase in hematocrit with time after kidney 
transplantation largely explained the apparent time-varying pharmacokinetics of tacrolimus.  
In addition, relative bioavailability was 122 % higher than its lowest value immediately after 
transplantation, decreased to its lowest value during the first four days and subsequently 
increased by 31 % with an asymptote at day 60.  

Conclusions: Initial dose of tacrolimus should be predicted from sex, CYP3A5 genotype, fat 
free mass and hematocrit. Hematocrit is an important factor to predict changes in tacrolimus 
whole blood concentrations over time. The model may potentially aid in individual dosing of 
tacrolimus. Its predictive performance must be evaluated before application in clinical 
practice.  

 

Key words: Tacrolimus, hematocrit, population pharmacokinetics, target concentration 
intervention, kidney transplantation 

 

 

 

  



 
 

  



 
 

 
 

SAMMENDRAG 

Bakgrunn: Populasjonsfarmakokinetikk er studien av farmakokinetisk variasjon i 
befolkningen. Et mål med slike studier er å forbedre individualisert legemiddelbehandling ved 
å kartlegge sammenhenger mellom pasientegenskaper og farmakokinetiske parametere. 
Takrolimus er et immundempende legemiddel som benyttes etter nyretransplantasjon. 
Takrolimus har et smalt terapeutisk vindu og stor farmakokinetisk variabilitet både mellom og 
innen pasienter. I tillegg stiger dosenormaliserte fullblodkonsentrasjoner de første månedene 
etter nyretransplantasjon. Individuell dosering av takrolimus er derfor en stor klinisk 
utfordring. Hensikten med denne studien var å utvikle en farmakokinetisk populasjonsmodell 
for takrolimus som kan benyttes til å bedre forutsi riktig oppstartsdose og individuelle 
doseringsbehov de første ti ukene etter nyretransplantasjon. 

Metode: Tjueni nyretransplanterte pasienter bidro med totalt 44 fulle konsentrasjons-
tidskurver, mens 44 pasienter bidro med bunnkonsentrasjoner (C0) de første ti ukene etter 
nyretransplantasjon. Totalt 1546 fullblodkonsentrasjoner av takrolimus ble analysert. 
Demografiske, kliniske og farmakogenetiske pasientegenskaper ble undersøkt som potensielle 
kovariater. Farmakokinetisk populasjonsmodellering ble gjennomført i NONMEM 7.2®. 

Resultater: En to-roms modell med forsinket første ordens absorpsjon beskrev de observerte 
konsentrasjonene. Relativ biotilgjengelighet var 24 % lavere hos kvinner enn hos menn og 49 
% lavere hos pasienter som uttrykte funksjonelt CYP3A5-enzym enn hos pasienter uten 
funksjonelt CYP3A5-enzym. Farmakokinetikken var sterkere relatert til fettfri vekt enn til 
total kroppsvekt. Fullblodkonsentrasjoner av takrolimus steg lineært med stigende hematokrit. 
En underliggende stigning i hematokrit med tid etter nyretransplantasjon forklarte en stor 
andel av de tilsynelatende tidsrelaterte farmakokinetiske endringene for takrolimus. I tillegg 
var relativ biotilgjengelighet 122 % høyere enn den laveste observerte verdien umiddelbart 
etter transplantasjonen, sank til den laveste verdien i løpet av de neste fire dagene og økte 
deretter med 31 % mot en asymptote ved dag 60 etter transplantasjonen.  

Konklusjon: Oppstartdose bør beregnes fra kjønn, CYP3A5 genotype, fettfri vekt og 
hematokrit. Hematokrit er en viktig faktor for å forutsi fullblodkonsentrasjoner av takrolimus 
over tid. Modellen kan potensielt bidra til å forbedre individuell dosering av takrolimus. Den 
må imidlertid ytterligere valideres før den kan tas i bruk i klinisk praksis.  

 

Nøkkelord: Takrolimus, hematokrit, populasjonsfarmakokinetikk, legemiddelmonitorering, 
nyretransplantasjon 
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PREFACE 

The report from this project was written in the format of a research article with the intention 

of publishing in the scientific journal Therapeutic Drug Monitoring. The thesis is therefore 

constructed by four parts.  

  

- Chapter 1 includes an introduction to population pharmacokinetic modeling. Figures, 

Tables and Equations in chapter 1 are named with the prefix 1. 

 

- Chapter 2 includes characteristics of the drug of interest, tacrolimus. Figures are 

named with the prefix 2. 

 

- The research article is placed between chapter 2 and 3 and has a separate list of 

references.  Figures, Tables and Equations are not associated with a prefix and are 

shown subsequent to the article text. The research article may be read independently.  

 

- Chapter 3 consists of an extended discussion on methodological considerations in light 

of the study results. Figures are named with the prefix 3. The literature list provided at 

the end of the document includes references from chapter 1, 2 and 3. 
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1 POPULATION PHARMACOKINETIC MODELING 

1.1 INDIVIDUALIZED DRUG THERAPY 

It is generally recognized that patients respond differently to medical treatment and that 

ideally, treatment should be personalized [1]. One approach towards personalized treatment is 

to adjust dosage regimens of drugs based on the individual response [2]. When the therapeutic 

response of a drug is not easily measured and there is a known relationship between drug 

concentration in blood and drug effects, the measured drug concentrations may serve as 

surrogates for the individual response [3]. The drug concentration associated with the most 

efficient therapy while minimizing risk of toxicity is selected as the target concentration. If 

the acceptable target concentration range (therapeutic window) is narrow and 

pharmacokinetic variability is large, dosage regimens must be adapted for each individual to 

achieve and maintain the selected target concentration [3].  

To characterize the time course of drug concentration and to select appropriate dosage 

regimens, information about the primary pharmacokinetic parameters (bioavailability, 

absorption rate, clearance and volume of distribution) are required. Determination of these 

parameters in a single individual is dependent on multiple sampling within the dose interval 

[4]. There are however financial and ethical obstacles to frequent blood sampling in the target 

population who may be ill, old, very young or perhaps have received an organ transplant [5, 

6]. Average pharmacokinetic parameters are therefore traditionally derived from 

pharmacokinetic studies on a relatively small number of healthy volunteers [7]. However, 

dosage recommendations based on these results are not necessarily optimal for the target 

population who will be receiving the drug [4]. The primary pharmacokinetic parameters vary 

between patients because they depend on physiological properties. Examples of such 

physiological properties include organ function, enzymatic activity, blood flow to eliminating 

organs and binding properties in blood and tissues. Some of these are not easily measurable. 

They are however reflected by measurable factors, such as body weight or body composition, 

age, genotype and laboratory values [3]. By characterizing the quantitative relationship 

between these measurable patient factors and pharmacokinetic parameters, sub-populations 

with different dose requirements may be identified prior to treatment initialization. 

Furthermore, these relationships can be translated into more optimal initial dose 

recommendations for specific groups of patients [8]. In contrast to the traditional methods for 
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pharmacokinetic analysis, population pharmacokinetic analysis offers a powerful approach to 

investigate these relationships based on sparse data available from the patient group of 

interest [4]. 

Population pharmacokinetics is defined as “the study of the sources and correlates of 

variability in the drug concentrations among individuals who are the target population” [9]. 

A population pharmacokinetic model consists of a mathematical model that relates dose, drug 

concentration and patient characteristics. In addition, it consists of a statistical model that 

quantifies the unexplained pharmacokinetic variability and residual variability, assuming that 

these arise from specific distributions [7]. Information about this variability can be used to 

estimate more reliable pharmacokinetic parameters for each individual based on sparse drug 

concentrations available from the clinical setting and thereby further facilitate dose 

individualization. Population pharmacokinetic studies constitute an important part of the 

science of quantitative pharmacology (pharmacometrics) [10]. Although population 

pharmacokinetic studies have greatest application in drug development, they are also used to 

extend knowledge about pharmacokinetic mechanisms of drugs already on the market [4]. 

They provide a framework for improved drug therapy both on the group level and on the 

individual level. Hence, such analyses are important towards the overall goal of personalized 

medical treatment. 

1.2 NONLINEAR MIXED EFFECTS MODELING 

Several methods exist for performing population pharmacokinetic analyses. The “Naïve 

Pooled Data Method” treats data as if all concentrations were derived from the same 

individual and therefore cannot be used to estimate pharmacokinetic variability between 

patients. The “Standard Two-Stage Method” requires richly sampled data from each 

individual to estimate individual parameters in the initial stage and parameter variability in 

the second stage [6]. In contrast, the Nonlinear Mixed Effects Modeling approach allows 

estimation of all parameters simultaneously and is typically the method of choice due to 

several advantages. First, it distinguishes between true biological variability in the 

pharmacokinetic parameters and random residual variability. Second, it does not require 

intensive sampling within the dosage interval. Third, it handles situations when individuals 

contribute unbalanced amounts of data and allows integration of data arising from several 

sub-studies, including data from the routine clinical setting [5]. Thereby, it naturally reflects 

the patient group of interest [4].  
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 Nonlinear mixed effects modeling was introduced to the pharmacokinetic field in the 

end of the 1970s to analyze sparse, heterogeneous data arising from therapeutic drug 

monitoring of digoxin [5]. Nonlinear refers to that the mathematical function describing the 

system is nonlinear in its parameters [7, 11]. Notably, these nonlinearities are not related to 

whether the pharmacokinetic model is linear or nonlinear. Mixed effects refer to effects 

contributing to the overall variability. These effects are of two different types: Fixed effects 

are predictable effects on a variable (e. g. typical clearance of 20 L/h in the population), 

whereas random effects describe unpredictable variability (e. g. 50 % variability between 

subjects around the typical value 20 L/h in the population). In population pharmacokinetics, 

fixed and random effects parameters are referred to as thetas (θ’s) and etas (ηi’s), respectively 

[12]. A population pharmacokinetic model normally consists of three components: 

 

i) a fixed effects structural model to describe the typical pharmacokinetic parameters 

of the drug in the population 

ii)  a random effects statistical model to describe variability in the parameters 

iii)  a fixed effects covariate model to describe predictable effects of patient 

characteristics on the pharmacokinetic parameters 

 

The model components may be viewed as separate models, but they also interact with each 

other to constitute the full population model. This is illustrated in Figure 1-1 together with 

questions that are typically asked during  development of each component. 
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Figure 1-1. Components of a mixed effects population pharmacokinetic model and examples of questions that 
may be asked during development of each particular model component. The structural model and covariate 
model are built by fixed effects, and the statistical model is built by random effects. They can be considered as 
separate model components, but also interact with each other to constitute the full population model.  

The structural model 

The analysis typically begins with describing the data using a pharmacokinetic compartmental 

model. The most common parameterization is by primary pharmacokinetic parameters 

(clearances and volumes of distribution) rather than by rate constants or coefficients and 

exponents [13]. The adequate number of compartments (e. g. one-, two- or three-compartment 

model) and the absorption profile for orally administered drugs (e. g. zero order or first order 

absorption with or without a lag time) are determined [7]. 

The statistical model 

The statistical model consists of sub-models describing between subject variability (BSV), 

between occasion variability (BOV) and residual error. 

  

Structural model

- What type of compartmental 
model  describes the 

observed data?
- How is the drug absorbed?

Covariate model
- How does            

weight affect   
clearance?

- How does age       
affect volume of 

distribution?

Statistical model
- How do the 

parameters vary 
between patients?
- How should the 
residual error be 

modeled?

Fixed effects 

Random effects 

Fixed effects 
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Between subject variability (BSV) 

All individuals have unique pharmacokinetic parameters due to random biologic variability. 

Individual clearance is described by the deviance from the typical value (Eq. 1-1): 

 

 ��� = θ�� + 	� ,  
 

Eq. 1-1 

where CLi is the individual value of clearance, θCL is the parameter estimate of the typical 

value of clearance in the population and ηi is the individual deviation from the typical value 

[13]. Although ηi is unknown, its variance (ω2) is estimated by assuming that individual 

deviations from the typical value are normally distributed around a mean of zero in the 

population [12]. However, biological parameters are generally not normally distributed, 

because negative values are not possible in biology. In addition, the distribution tends to be 

right skewed. The natural logarithm (ln) of biological parameters is however often 

approximately normally distributed [14]. Therefore, BSV in population pharmacokinetic 

models is described exponentially (Eq. 1-2): 

 

 ��� = θ�� 	× �
�.    Eq. 1-2 

 

For interpretation of the variability, the variance of ηi’s is transformed to the apparent 

coefficient of variation: √ω� 	× 	100	%	, to generate an expression of the variability using the 

same scale as the parameter (e. g. L/h for clearance) [7]. 

Between occasion variability (BOV) 

Pharmacokinetic parameters are not constant over time within a patient. When patients are 

sampled at more than one occasion (i. e. more than one hospital visit), BOV must be taken 

into account [15]. BOV is estimated by using the following expanded model for individual 

clearance (Eq. 1-3):  

 

 ���� = θ�� 	× �
��
� ,     Eq. 1-3 

 

where eηk is the deviance between the individual parameter CLi and the occasion-specific 

individual parameter CLik at the kth occasion. In this equation, ηk’s are assumed to be normally 

distributed with mean zero and variance π
2.  
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Residual variability 

The residual variability (ε) is the discrepancy between the predicted concentration and the 

measured concentration after taking BSV and BOV into account. The size of the residual 

error is dependent on [15]: 

o model misspecifications 

o analytical assay errors 

o inaccuracy in dosing time  

o inaccuracy in sampling time 

o within subject variability  

 

The most commonly used models for the residual error are additive (Eq. 1-4) and proportional 

(Eq. 1-5) [12]: 

 

 ��� = ������ + �, Eq. 1-4 

 

 ��� = ������ + (� × ������), Eq. 1-5 

 

where Yij and Concij are is the model predicted concentration with and without residual error, 

respectively, for the ith individual at the jth measurement. The error term � is assumed to be a 

normally distributed random term with mean zero and variance σ2. Whereas additive error 

components are estimated in the same unity as the concentration (e. g. µg/L) and assume a 

constant error over all concentrations, proportional error components are estimated in 

percentages and allows the size of the residual error to increase in proportion to increasing 

concentration [13]. Oftentimes, these models are combined (Eq. 1-6): 

 

 ��� = ������ + (�� × ������ + ��), Eq. 1-6 

 

The combined error model is commonly used because it describes a constant error model at 

low concentrations and a predominant proportional error model at high concentrations [10].  

 If the analyzed data arise from more than one study, the residual error may be different 

across these studies. This is expected if the sub-studies applied different analytical assays to 

determine the concentrations or if they were performed under different circumstances, for 
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example with and without compliance control [7]. Such differences are accounted for by 

estimating a study-dependent fixed effect (θstudyi) (Eq. 1-7): 

 

 ��� = ������ + � !"#$% 	× (�� × ������ + ��),  Eq. 1-7 

 

Finally, when heterogeneous data are used or if non-compliance is expected in some 

individuals, individual contribution to the residual error (�
&''%) can be estimated to prevent 

patients with larger residual errors to have profound impact on the overall residual error (Eq. 

1-8) [16]:  

 

 ��� = ������ + � !"#$% 	× (�� × ������ + ��) × �
&''%, Eq. 1-8 

 

where ηerri’s describe BSV in the residual error and are assumed to be normally distributed 

with mean zero and variance ωerr
2. Figure 1-2 illustrates a typical concentration-time profile 

and its associated variabilites. 
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Figure 1-2. Example of concentration-time profile and its associated variabilities. Top panel: Drug 
concentration-time profile using the population estimates of pharmacokinetic parameters (red line) and an 
example of the observed drug concentrations in an individual (blue diamonds). The blue line is fit to the 
observed concentrations and represents the individual concentration-time profile. In this example, the patient 
differs from the typical patient because it has a different value of clearance. This difference is modeled 
exponentially as in Eq. 1-2: CLi = θCL * eni. Bottom left panel shows the estimated distribution of individual 
clearances, where ηi‘s are assumed to be randomly distributed with a mean value of 0. The standard deviation 
ωCL reflects the estimated variability in clearance (η=N(0,ω2)). A concentration measurement differs from the 
individual predicted concentration by the residual error εij, due to, for example, an error in the analytical assay. 
Bottom right panel shows the estimated residual error distribution with mean zero and standard deviation σ 
(ε=N(0,σ2)). BSV, between subject variability. The values used in the plot are only for demonstration and do not 
correspond to actual values. 
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The covariate model 

Covariates represent measurable patient characteristics. Examples include 

 

o demographic variables, such as total body weight, fat free mass, age and sex 

o genetic variables, such as polymorphisms in genes coding for metabolizing enzymes 

o laboratory values, such as liver function test values, serum creatinine and hematocrit, 

which typically reflect elimination organ function or drug binding components in 

blood  

o disease status, such as gastrointestinal disease affecting absorption 

o environmental factors, such as smoking habits or concomitantly administered drugs 

that interact pharmacokinetically with the drug of interest 

 

Other factors that are plausible contributors to pharmacokinetic variability may also be 

investigated as covariates [7]. A covariate is introduced to the model in the form of a 

mathematical function. For example, a fraction of the total variability in drug clearance in the 

population may be explained by body size. Thus, a measure reflecting body size, such as total 

body weight, is modeled by using a biologically plausible mathematical function of the 

relationship between body weight and clearance [13]. The fit of the population model may 

improve, and the total population variability in clearance can be divided into the variability 

explained by total body weight and the remaining unexplained, random variability [12].  

Covariate search strategies 

Traditionally, covariate search has been based on graphical evaluation. Scatter plots of 

individual pharmacokinetic parameter estimates as a function of the covariate in question are 

generated for this purpose [17, 18], exemplified in Figure 1-3 by plotting clearance as a 

function of body weight. 
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Figure 1-3. Example of individual estimates of clearance as a function of body weight. Each individual is 
represented by one red dot. The analyst observes a trend of increasing clearance with weight, and implements the 
relationship in the model by a corresponding mathematical equation to evaluate whether variability in clearance 
is explained by body weight. 

 

If a covariate has a predictable effect on a parameter, it should appear as a trend in the 

scatterplot. There are, however, two main disadvantages to this method. First, it is dependent 

on that the individual parameter estimates are accurate [19]. The quality of the individual 

parameter estimates depends on the study design. Second, in longitudinal studies, covariates 

may change over time within individuals. When the first recorded covariate is used to 

generate the scatter plot, the plot is not representative for the entire period of the study. Due to 

these disadvantages, implementation of covariates directly in the modeling software (direct 

covariate testing) is often preferred as an alternative method [20]. This method does not 

suffer from shrinkage in the individual parameter estimates and allows for time-varying 

covariates because the modeling software updates the covariate effect for every new record in 

the dataset [12]. It is however more time consuming, because a greater number of models are 

typically tested [7].  

Coding of covariates 

Continuous covariates are most often introduced to the model in the form of additive or power 

functions [13], exemplified by weight as covariate on clearance (Figure 1-4). In the additive 

model, θCL represents base clearance and θWT represents the change in clearance introduced 

by a change in weight. A nonlinear relationship allows this change to be more pronounced at 

certain values of the covariate. For example, clearance may change more dramatically per kg 

at lower weight compared with at higher weight, because gained fat does not contribute 
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directly to increased clearance [21]. The covariate parameter is typically centered to a normal 

value (e.g. 70 kg) for easier interpretation of the estimate of θCL, which then will apply to a 

patient of 70 kg instead of a patient with a weight of zero. A variety of functional forms may 

be evaluated, such as exponential or sigmoidal models (not shown) [22]. If several functions 

for the same covariate improve the model, the model with the greatest improvement in 

goodness of fit is selected [7] (see later section on model evaluation). 

 

 

 

 

Figure 1-4. Mathematical functions for modeling of covariates. Left panel: Additive model for the effect of 
weight (WT) on clearance. Clearance increases linearly with weight. θCL represents group value of clearance 
(CLGRP) when weight is 70 kg, and θWT is the estimated change in CLGRP per unit change in weight. Right panel: 
Power model for the effect of weight (WT) on clearance. Clearance changes more per kg (θWT is between 0 and 1 
for this shape). θCL represents typical value of clearance (CLGRP) when weight is 70, and θWT is the estimated 
change in log (CLGRP) per unit change in log weight. 

 

For dichotomous covariates, the fractional change in a parameter in one group compared to 

the reference group can be estimated. In the modeling software NONMEM (see later section), 

this is achieved by if-else statements, exemplified in Box 1-1 by coding the effect of sex on 

clearance [12]:  
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BOX 1-1. Coding of dichotomous covariates in the modeling software NONMEM 

Interpretation Code  

If the patient is male (sex equals 0), then 
the group value of clearance (CLGRP) is θCL. 

IF (SEX.EQ.0) THEN 

GRPCL = θCL 

 

Else, ELSE  

if the patient is female (sex does not equal 0), then  the 
group value of clearance is the group value in males with 
a fractional change of θfemale. 

GRPCL = θCL × θfemale   

ENDIF  

 

Because covariates are fixed effects, they only partly explain the overall variability. Although 

body weight may be recognized as a covariate, the same value of clearance will not apply to 

all individuals with similar weight. Nevertheless, covariates provide the best guess for the 

initial dose. To account for the remaining unexplained variability, individual pharmacokinetic 

parameters must be estimated, which requires at least one measured drug concentration [23]. 

Drug concentrations arising in the clinical setting are often sparsely sampled and therefore 

insufficient to calculate individual parameters when viewed independently. However, they 

can be used in conjunction with the typical pharmacokinetic parameters and their population 

distributions to estimate individual parameters with more reliability [24]. This method allows 

dose individualization beyond the information obtained by covariates. 

1.3 BAYESIAN ESTIMATION OF INDIVIDUAL 
PHARMACOKINETIC PARAMETERS 

The method used to estimate individual pharmacokinetic parameters is called Bayesian 

estimation because it is based on prior information provided by a population model [24]. The 

algorithm for estimation of Bayesian individual parameters balances information from the 

population model (prior knowledge) with information obtained from the individual 

concentration measurements to obtain the most likely individual parameters (Eq. 1-9 and 

Figure 1-5). 

 

 
 ()*+,-./ =	∑ (1%2	13%)45%4 + ∑ 6�72	�8794:74;�<� 	=�<�  , Eq. 1-9 

 



 
 

13 
 

where OBJBAYES is the a Bayesian objective function, Pi is the estimated individual parameter, >3 i is the population parameter, ω2 is the variance of the parameter in the population, Cj is the 

observed concentration, �8 i is the predicted concentration from the individual parameters and 

σ
2 is the variance of the residual error in concentration measurements [24]. These estimates 

are also called Empirical Bayes Estimates (EBEs), Maximum a Posteriori Bayesian estimates 

or posthoc estimates and are calculated by a modeling software such as NONMEM (see later 

section). 

 

 

Figure 1-5. Illustration of Bayesian estimation of individual pharmacokinetic parameters. The final estimates are 
obtaind by balancing prior information and individual information. 

 

 If no concentration measurements are available, only prior information from the 

population model is used, and the individual parameters will be equal to the population 

parameters because these parameters are the most likely values. The more individual 

concentration measurements that become available, the less will the individual estimates rely 

on the population parameters [7]. Although Bayesian individual parameter estimates are 

generally more reliable than parameters derived solely from the individual observations, they 

will not be realistic if the sampling design only offers sparse or uninformative drug 
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concentrations. This phenomenon is illustrated in Figure 1-6 and is referred to as shrinkage 

[19]. The consequences of individual dosing based on shrunk individual parameters are 

discussed in the extended discussion section (chapter 3).  

 

 
Figure 1-6. Illustration of shrinkage in individual parameters. The individual estimate of clearance (orange) is 
shrunk towards the population mean (blue) when individual parameter estimates are based on sparse or 
uninformative data. The shrinkage is the difference between the true value of clearance (red) and the individual 
estimate. Figure was created by inspiration from presentation at PAGE-meeting 2007: Savic & Karlsson, 
Shrinkage in Empirical Bayes Estimates for Diagnostics and Estimation. 

1.4 A MODELING SOFTWARE: NONMEM 

Introduction to NONMEM 

NONMEM is a software package that performs parametric nonlinear mixed effects modeling 

[12]. It is the most commonly used software in population pharmacokinetic analyses [6, 7]. 

To perform an analysis in NONMEM, a dataset and a user-defined control stream are 

required. In the dataset, each individual is listed with administered doses, dosing times, 

observed drug concentrations and available covariates (an example is provided in appendix 

H). In the control stream, the user defines the structural, statistical and covariate model, 

selects initial parameter estimates, estimation method and other user-defined options 

(described in more detail in appendix G). The results are output in several text files. Among 

these results are the pharmacokinetic parameter estimates and variances that were requested in 

the control stream [13]. 
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The objective function and the likelihood ratio test 

Typical parameter values and several levels of random variability are estimated 

simultaneously by maximum likelihood estimation [5]. NONMEM employs the user-defined 

initial parameter estimates as starting points and iteratively suggests combinations of 

alternative parameter values. In each step, the likelihood of observing the drug concentrations 

in the dataset given the parameters under evaluation is calculated. The procedure is complete 

when the parameters are found that maximizes the likelihood of observing the data [12]. This 

may however occur at both local and preferably the global maximum of the function [7].   

 The modeler typically defines a variety of different models and wishes to compare 

them. For example, a base model is compared with an alternative model that includes an 

effect of weight on clearance. This comparison is based on calculating the ratio between the 

likelihoods obtained by fitting each model separately. This is called the Likelihood Ratio Test 

[12] (Eq. 1-10): 

 �?@�A?ℎ��C	DEF?� = 	 �GH!	�IG & Eq. 1-10 

 

where Lalt is the likelihood of observing the data using the alternative model (e. g. the model 

with an effect of weight on clearance) and Lbase is the likelihood using the base model. 

However, NONMEM does not output the likelihood directly. It rather calculates an objective 

function value (OFV) proportional to “– 2 x log likelihood”. The OFV therefore represents 

the likelihood indirectly. Importantly, the absolute OFV has no meaningful interpretation. The 

OFV is only meaningful when models are compared. Eq. 1-11 is an extension of Eq. 1-10 by 

including “– 2 × log”. It shows how the expression becomes equal to the difference in OFV: 

 

 −	2 log �OPQ�ROST =	−2 log �GH! − (−2 log �IG &) =    

 −	2 log �GH! + 2 log �IG & =	(UVGH! −	(UVIG & = 	ΔOFV	
  

Eq. 1-11 

 

The transformation is practical: The difference in OFV (∆OFV) is approximately χ2-

distributed, and the contribution of an added parameter can be evaluated at a selected 

significance level according to the χ2-distribution (Figure 1-7) [10].  
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Figure 1-7. χ 2-distribution with one degree of freedom and associated selected significance levels. 

 

A reduction in OFV of > 3.8 and > 6.6 are associated with significance levels of p<0.05 and 

p<0.01, respectively, with one degree of freedom (one added parameter) [8]. The likelihood 

ratio test is restricted to comparison between nested models. Two models are nested if the 

alternative model is identical to the base model when the added parameter (θWT) is fixed to 0, 

as exemplified in Box 1-2 for the effect of weight on the group value of clearance (CLGRP) 

(shown without random effects and centered to a normal weight): 

 

Box 1-2. Example of nested models 

 Base model  ��[\1 = θ�� 

 Alternative model ��[\1 = θ�� +	θ]^ 	× (Weight − 70) 
 

In this example, if the OFV is decreased by at least 3.8 points for the alternative model, it is 

concluded that the effect of weight on clearance is significant (p<0.05). Importantly, the OFV 

is comparable only for models describing identical datasets using the same estimation method 

[12]. Covariates are normally included stepwise by initially selecting the model with the 

greatest decrease in OFV and subsequently reevaluating models by adding new covariates. 

This is done repeatedly until no covariates improves the model statistically significant based 

on the likelihood ratio test [20]. Subsequent to selecting a full covariate model, the 

significance of each covariate is evaluated by removing them sequentially (backward 

elimination) [20].  
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1.5 MODEL EVALUATION 

The above-described likelihood ratio test gives the statistical significance of a model 

component and provides a general model-building criterion. However, decisions in population 

model development are also based on subjective evaluation of biological plausibility of 

parameters, precision of the parameter estimates and graphical evaluation of the model’s 

goodness of fit [10].  

Biological plausibility 

Relationships are biologically plausible if they are explained by known biological principles. 

A typical biologically plausible relationship is increasing clearance and volume of distribution 

with increasing body weight [21]. Such relationships are sometimes recommended to include 

in models even when not statistical significant because they are expected to apply to the 

general population. If a covariate relationship is identified that is inconsistent with biological 

principles it may be rejected even if it is statistically significant [7]. 

Precision of the parameter estimates 

All parameter estimates will have a degree of uncertainty [8]. Symmetric confidence intervals 

are estimated by NONMEM, but these are only approximate. To generate asymmetric 

standard errors and confidence intervals in population pharmacokinetic modeling, the 

nonparametric bootstrap procedure is normally employed [25]. During a bootstrap procedure, 

the dataset is resampled with replacement to create new datasets with the same size but with 

randomly selected combinations of individuals [26]. This procedure is repeated 500-1000 

times, and the parameter estimates resulting from each dataset are ranked in increasing order. 

The 2.5th to 97.5th percentile for each parameter estimate is interpreted as the 95 % 

confidence interval [25] (example of bootstrap results are shown in appendix B). If the 95 % 

confidence interval of a covariate parameter includes the null value (e. g. if the confidence 

interval of the covariate coefficient of sex on clearance is 0.8-1.3) the covariate is normally 

not included because the effect is uncertain [7]. 
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Graphical evaluation of goodness of fit  

Graphical evaluation is essential at all model building stages [7]. Traditionally, the most 

commonly considered graphics are plots of population predicted or individually predicted 

concentrations versus observed concentration (Figure 1-8 and appendix C). Ideally, all 

concentrations are randomly scattered around the line of unity with no sign of bias [7]. A 

large spread around the line of unity in the plot of population predicted concentrations is 

expected due to unexplained BSV [27]. In contrast, the plot of individually predicted 

concentrations versus observed concentrations is usually considerably more precise because it 

is predicting the concentrations from the individual Bayesian parameter estimates.  

 

 

 
 

Figure 1-8. Example of traditional goodness of fit plots. Observed concentrations are plot versus predicted 
concentrations. Left panel: Population parameter estimates are used to predict the concentrations. Right panel:  
Individual parameter estimates are used to predict the concentrations. 

 

 The usefulness of these plots is limited by the fact that they do not include the aspect 

of time and give little information about how to improve the model if bias occurs [27]. Other 

traditional diagnostic plots include residual error plots, plots of the distribution of the 

estimated individual parameters and individual plots of goodness of fit. Examples of these 

plots are provided in chapter 3 (Figures 3-1, 3-2, 3-3, 3-5). However, the recently introduced 

visual predictive checks (VPCs) are now widely accepted as the most informative plots [28]. 

To create VPCs, at least 100 datasets with the same structure as the original dataset are 
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simulated based on the selected model. The analyst visually checks whether 90 % of the 

original observations fall within the 90 % prediction interval of the simulated concentrations. 

Observation intervals and prediction intervals that overlap indicates that the model describes 

the data well [28]. VPCs may be stratified by categorical covariates or created with 

continuous covariates on the x-axis to investigate whether the model predicts well over the 

range of the covariate (Figures 3 and 5 in the Research Article). In contrast to some of the 

traditional plots, VPCs provides information about how to improve the model if 

misspecifications occur.  

 When the data arise from a clinical setting of therapeutic drug monitoring, it is 

important to take into account that doses are adapted according to patient characteristics. This 

means that there will be an inherent relationship between clearance and dose. This 

relationship is not maintained during simulation. Therefore, prediction corrected visual 

predictive checks (pcVPCs) must be generated in such situations [28].  

1.6 ACCEPTING A FINAL MODEL 

Before accepting a final model, the statistical assumptions should be tested (see discussion on 

methodological considerations) [29]. Furthermore, the principle of parsimony also applies to 

population modeling, which means that the final model should be the simplest model that is 

adequate for the predefined purpose [7]. A model may be simplified by removing unnecessary 

random error terms or by combining fixed effects if they have overlapping confidence 

intervals [10]. Finally, the clinical relevance of the covariates and whether the covariates are 

easily measured in clinical practice should be considered [25]. 

 By combining all the above-described criterions during model development, the 

modeling process becomes an overall subjective process. The correct final model does not 

exist because all models are approximations and simplifications of reality [7]. The question is 

not whether the model is right or wrong, but whether it is useful for the purpose it was 

developed [8]. When the model is developed for predictive purposes, it is important to 

evaluate whether the model is also able to predict drug concentrations in patients that were 

not included in the model building dataset [8, 9]. Therefore, validation on an external dataset 

must be performed before a model can be accepted for clinical application [9].  
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2 TACROLIMUS 

2.1 CALCINEURIN INHIBITORS IN KIDNEY 
TRANSPLANTATION 

Kidney transplantation is the preferred treatment for patients experiencing end-stage kidney 

disease [30]. When a patient receives a kidney transplant, lifelong treatment with 

immunosuppressive drugs is essential to prevent allograft rejection [31]. Calcineurin 

inhibitors (cyclosporine and tacrolimus) have been cornerstones in this treatment for several 

decades. Still, there is currently no clinically available biomarker reflecting the 

immunosuppressive effect of these drugs [32]. Therefore, whole blood concentrations are 

used as surrogates for the drug effect, assuming that whole blood concentrations reflect the 

pharmacodynamic response [3].  

 Calcineurin inhibitors are characterized by narrow therapeutic windows and large 

unexplained pharmacokinetic variability between and within patients. Therefore, it is essential 

to frequently measure the drug concentrations to ensure that they are within the acceptable 

target concentration range that adequately suppresses the immune response while toxicity is 

minimized. However, due to unexplained variability, maintaining drug concentrations within 

the acceptable therapeutic range is difficult even with frequent blood sampling, especially in 

the early post-transplant phase [33]. Tacrolimus has recently become the calcineurin inhibitor 

of choice at several kidney transplantation centers, including the National Norwegian 

Transplantation Center (Oslo University Hospital, Rikshospitalet) from January 2012 [34] 

because of a lower acute rejection rate combined with a more beneficial adverse effect profile 

[35]. Still, treatment with tacrolimus frequently leads to serious adverse effects, including 

nephrotoxicity, neurotoxicity, post-transplant diabetes mellitus, hypertension, infections and 

cancer [36]. 

2.2 PHARMACOKINETIC CHARACTERISTICS  

General pharmacokinetics 

Tacrolimus is a lipophilic macrolide compound, normally rapidly absorbed with absorption 

lag times of 0-2 hours [36]. Oral bioavailability is generally poor (mean value is typically 15-

25 %, but differs across studies [36]), and highly variable (range 4 - 89 %) [37]. In blood, 
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tacrolimus binds strongly to erythrocytes and plasma proteins. The unbound fraction is less 

than 1 % [38]. Tacrolimus is a substrate of P-glycoprotein (P-gp) and the cytochrome P-450 

isoenzymes CYP3A4 and CYP3A5. These enzymes are expressed in the liver and intestinal 

cells. Clearance is approximately 2 L/h, which means that the hepatic extraction ratio (EH) is 

very low (3 %) [39]. Less than 1 % of unchanged tacrolimus is renally excreted [37]. 

 The low bioavailability of tacrolimus is a result of poor solubility in the 

gastrointestinal fluids and presystemic metabolism [40]. Intestinal CYP3A metabolism is the 

main contributor to the first pass loss of tacrolimus, and the estimated intestinal availability 

(FG) is 14 % (Figure 2-1) [41]. The additional first pass loss caused by hepatic metabolism is 

modest because of the low hepatic extraction ratio [3]. 

 

 
Figure 2-1. First pass loss of tacrolimus. Metabolism mainly takes place in intestinal cells due to activities of P-
glycoprotein and CYP3A4. In patients expressing CYP3A5, this isoenzyme also contributes to first pass loss 
(not shown). The fraction passing the enterocytes (intestinal availability, FG) is 14 %. A modest additional loss is 
caused by first pass hepatic metabolism (hepatic availability, FH). Numbers are taken from Galetin et al. [41]. 

Distribution in blood 

Tacrolimus readily passes the membrane of erythrocytes and binds to intracellular proteins 

with similar structure as the target protein in T-lymphocytes (FK-binding proteins) [42]. 

Temperature dependent blood cell partitioning is the main reason why whole blood 

concentrations are used rather than plasma concentrations [43]. The blood:plasma 

concentration ratio is also dependent on hematocrit, plasma protein concentration, tacrolimus 

concentration and binding affinity to intracellular proteins in erythrocytes [37]. Of these, 
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hematocrit is the most important factor [44]. The erythrocyte bound concentration is inactive 

and protected against elimination [45]. An assumption during therapeutic drug monitoring is 

that the measured total concentration reflects the pharmacologically active unbound 

concentration. However, if any of the variables influencing the blood:plasma concentration 

ratio change, this assumption may not hold [3].  

 Figure 2-2 illustrates the theoretical blood distribution of tacrolimus at two situations 

where the hematocrit levels are 20 % and 40 %. Both levels are plausible in kidney transplant 

recipients [46]. Dosing rate and unbound drug clearance are assumed to be the same in both 

situations. Therefore, the unbound concentration is theoretically similar [47]. The whole 

blood concentration, however, changes in proportion to hematocrit. 

 

 

Figure 2-2. The theoretical influence of hematocrit on tacrolimus whole blood concentrations. Two situations 
are compared with the same dosing rate and unbound clearance and consequently similar unbound 
concentrations (represented by a black triangle constituting 0.1 µg/L). Upper panel: 20 red circles are 
representing erythrocytes corresponding to a hematocrit of 20 %. Lower panel: 40 red circles represent a 
erythrocyte concentration corresponding to a hematocrit of 40 %. Although the unbound, pharmacologically 
active concentration is the same in both situations, the measured whole blood concentration has increased due to 
an increase in hematocrit. The figure illustrates the importance of hematocrit to interpretation of the measured 
total whole blood concentration. The figure is simplified by not including plasma proteins. 
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CYP3A5 polymorphism 

Several studies have been performed to investigate alterations in tacrolimus pharmacokinetics 

caused by single nucleotide polymorphisms (SNPs) in genes coding for the proteins involved 

in tacrolimus metabolism and distribution [48-51]. Polymorphic expression of CYP3A5 is the 

most consistently reported pharmacogenetic covariate for tacrolimus in literature [51, 52]. In 

Caucasians, 90 % are homozygous carriers of the variant allele CYP3A5*3 that is coding for 

enzyme products without enzymatic activity due to an mRNA splicing defect [53]. 

Individuals carrying the CYP3A5*1 allele express CYP3A5 with enzymatic activity in 

several tissues, including intestinal and hepatic cells [53]. In theory, expression of functional 

CYP3A5-enzymes contributes to both higher hepatic clearance and higher presystemic 

metabolism of tacrolimus. However, the relative contribution of these events to the observed 

higher dose requirements in CYP3A5 expressers have not been established [51]. 

Population pharmacokinetic models in literature 

The first published population model in kidney transplanted adults was developed by Staatz et 

al. in 2002. A one-compartment model described the pharmacokinetics, and aspartate 

aminotransferase (ASAT) and time after transplantation were identified as covariates on 

apparent clearance (CL/F) [45]. From 2009, the number of published models for tacrolimus 

per year for tacrolimus increased in parallel with an increasing focus on pharmacogenetic 

covariates. CYP3A5 genotype was consistently recognized as a covariate on tacrolimus CL/F 

[54-59]. Other frequently identified covariates include hematocrit [54, 57, 59, 60], 

corticosteroid dose [55, 61] and an effect of time after transplantation both during the initial 

1-2 weeks [56, 61] and for the time aspect of weeks and months [45, 56, 59]. In contrast, the 

majority of population studies did not find any relationship between tacrolimus 

pharmacokinetics and demographic covariates.  

 Population models have also been developed for patients undergoing other types of 

transplantation. In hematopoietic stem cell transplanted children, serum creatinine was found 

to affect clearance, despite the fact that tacrolimus is not renally cleared [62]. In liver 

transplant patients, both total body weight and alkaline phosphatase were found significant 

[63]. Neither of these covariates have been identified in kidney transplant patients. 

 The structural model is almost exclusively modeled using two compartments [54, 55, 

57, 60, 64, 65]. Only authors who developed models based on solely trough concentrations 
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found one-compartment models more appropriate [45, 61]. The absorption phase is most 

frequently described by first order absorption with lag time [57, 65] or transit compartments 

[54, 60].  

 Table 1-1 lists the population studies of tacrolimus in kidney transplanted adults found 

in a literature search in PubMed in September 2012. An overview is given on the general 

aspects of the study designs, the basic pharmacokinetic results, the evaluated covariates that 

were not found significant (marked in the table with ×) and identified covariates (relationship 

stated). Of notice, only one of these models is reported to be clinically applied for Bayesian 

estimation of individual pharmacokinetic parameters [66]. 
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TABLE 1-1. Review of population pharmacokinetic models in kidney transplanted adults available in literature 
Population pharmacokinetic study (reference) Staatz 

2002 [45] 
Antignac 
2007 [61] 

Press  
2009 [55] 

Benkali 
2009 [60] 

Musuamba 
2009[58] 

Velickovic 
2010 [67] 

Woillard 
2011 [54] 

Passay 
2011 [56] 

Musuamba 
2011 [57] 

Han 
2012 [59] 

 
STUDY DESIGN 

          

  Modeling software NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM NONMEM 
  Number of patients 70 83 31 32 19 63 73 681 65 80 
  Sample type Troughs Troughs Troughs 

and full 
profiles 

Full profiles Full profiles  Troughs Full profiles Troughs Full profiles Troughs 

  Time period for sampling following 
tx 

Day 2-1475 Day 1-60 Week 2-52 Week 1 and 
2 + month 
1, 3 and 6 

NA NA Month 1, 3 
and 6 

Month 1-6 Day 15 Day 1-400 

  Analytical assay LC-MS/MS MEIA MEIA LC-MS/MS MEIA MEIA TFS-MS/MS LC-MS/MS MEIA MEIA 
  External validation? Yes Yes No No No No No No No No 
  Reported to be in clinical use? No Yes No No No No No No No To be 

evaluated 
 
PHARMACOKINETICS 

          

  Adequate number of compartments 1 1 2 2 2 1 2 Not used 2 1 
  CL/F (L/h) in typical patient 23.6 CL=1.81 

(minimum 
value) 

16.1 19.2 
(Hct=45 %) 

29 1.03 21.2 
(Hct=35 %) 

38.4 26.8 22.9 

 
COVARIATES 

          

 Demographic covariates            
Total body weight × × × × × × × × × Vd (linear) 
Fat free mass           
Sex × × × × × × × × × × 
Age × × × × × × × CL/F= 

(Age/50)-0.4 
× × 

 Laboratory tests            
Serum creatinine × ×  ×   ×  × × 
ASAT CL linearly 

decreasing 
with incre-
asing ASAT  

×    ×   × × 

ALAT × ×    ×   × × 
ALP ×        ×  
Total bilirubin ×        ×  
Hematocrit ×  × CL= 

863/Hct 
  CL =  

(Hct /35)-1.14 
 Effect on 

CL/f not 
interpreted 

Higher CL 
when 
Hct<33 % 

Hemoglobin    ×  × ×   × 
Plasma protein 
concentration(albumin) 

 × ×      × × 

HDL, LDL and total cholesterol*   ×        
C-reactive protein           
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 Concomitant medication            
Corticosteroids (prednisolone) × (All used 

< 10 mg) 
60 % higher 
CL with > 
25 mg 

15 % lower 
F with > 10 
mg 

  1.6 L/h 
higher CL 
with> 25mg 

×   × 

Nifedipine        6 % lower 
CL/F if user 

  

Lansoprazole           
Cinacalcet           

 Single nucleotide polymorphisms             
  CYP3A5 *1/*1        100 % 

higher CL/F 
  

CYP3A5 *1/*3   ~ 49 % 
higher CL/F 

× * (only1 
expresser 
in dataset) 

150 % 
higher CL/F 

 100 % 
higher CL/F 

69 % higher 
CL/F 

57 % higher 
CL/F 

~ 118 % 
higher CL/F 

PXR (2385C>T)   × × NC      
ABCB1 (C1236T)   ×  45 % 

higher CL  
 ×  ×  

  ABCB1 (G2677T/A)   ×  ×  ×  × × 
  ABCB1 (C3435T)   ×  ×    ×  
 Other covariates            

Time after tx (early phase) × × Sigmoid 
increase in 
CL first 7 
days with 
highest 
increase at 
day 4. 

  ×  14 % 
decrease 
during the 
first 6-10 
days 

  

Time after tx (late phase) CL/F 
linearly 
decreasing 
first 3 
months, 
then 
plateau 

 ×   × × 29 % 
decrease 
during day 
11-180 
relative to 
day 3-5 

 Decrease 
CL/F first 
21 days, 
plateau 
after 30 
days 

Circadian (time of the day)      Ka=2.18 at 
day time 
and 0.16 at 
night time 

     

Formulation (Advagraf®/Prograf®)   Ka=3.7 for 
Advagraf® 

and 1.8 for 
Prograf® 

   Different 
transit 
absorption 
model 

   

Blank field indicates that relationship was not tested. × indicates that the relationship was tested but not found significant. Significant relationships are stated in text. 
Tx, transplantation; NA, not available; LC MS/MS, Liquid chromatography tandem mass spectrometry; MEIA, Microparticle enzyme immunoassay; TFS MS/MS, Transmition fluctuation spectrometry 
tandem mass spectrometry; CL/F, apparent oral clearance; CL, clearance; Vd, volume of distribution; ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; ALP, alkaline 
phosphatase; HDL, High density lipoprotein; LDL, low density lipoprotein; CYP3A5, Cytochrome P450 3A5, PXR, Pregnane X receptor; ABCB1, ATP-binding cassette, subfamiliy B, member 1  
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ABSTRACT 
 
Introduction: Prediction of individual dose requirements of tacrolimus in kidney transplantation is a major 
clinical challenge due to large pharmacokinetic variability between patients and increasing dose-normalized 
whole blood concentrations during the first post-transplant months. The objectives of this study were to identify 
predictable differences between kidney transplant recipients to improve initial dosing, to investigate whether the 
apparent time-varying pharmacokinetics of tacrolimus may be explained by changes in hematocrit and to 
evaluate the importance of hematocrit for tacrolimus target concentration intervention. 
Methods: Twenty-nine patients contributed full pharmacokinetic profiles at 44 occasions, and 44 patients 
contributed trough concentrations from the first ten weeks after kidney transplantation. A total of 1546 blood 
samples were analyzed. Demographic, clinical and pharmacogenetic patient characteristics were evaluated as 
covariates.  
Results: Relative bioavailability was 24 % lower in females than in males and 49 % lower in CYP3A5 
expressers than in CYP3A5 nonexpressers. Fat free mass was the most predictive body size metric. Whole blood 
concentrations of tacrolimus increased linearly with increasing hematocrit. An underlying increase in hematocrit 
with time after kidney transplantation largely explained the apparent time-varying pharmacokinetics of 
tacrolimus. . In addition, relative bioavailability was 122 % higher immediately after transplantation compared to 
its lowest value, decreased to its lowest value during the first four days and subsequently increased by 31 % with 
an asymptote at day 60.  
Conclusions: Initial dose of tacrolimus should be predicted from sex, CYP3A5 genotype, fat free mass and 
hematocrit. Hematocrit is an important factor to predict changes in tacrolimus whole blood concentrations with 
time after kidney transplantation. The model may potentially aid in individual dosing of tacrolimus. Its 
predictive performance must be evaluated before application in clinical practice. The relationship between 
hematocrit-standardized tacrolimus concentrations and clinical effects should be further investigated. 
 
Key words: Tacrolimus, hematocrit, population pharmacokinetics, target concentration intervention, kidney 
transplantation 
 

INTRODUCTION 

Tacrolimus is a cornerstone immunosuppressive agent in kidney transplantation [1]. Although 

tacrolimus effectively prevents acute rejection, its nephrotoxic adverse effects contribute to 

restricted long-term graft survival [2]. Variability in tacrolimus exposure is an additional risk 

factor for early graft failure [3]. It is therefore important to keep tacrolimus concentrations 

stable at a target concentration to minimize risk toxicity while maintaining adequate 

immunosuppression. 
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 Tacrolimus has a narrow therapeutic window and large pharmacokinetic variability 

both between and within patients [4]. In addition, dose-normalized whole blood 

concentrations tend to increase during the first months after transplantation [4-7]. 

Consequently, both accurate initial dosing and managing time-varying dose requirements are 

major clinical challenges. It is important to understand how patient characteristics influence 

the pharmacokinetics of tacrolimus in order to individualize and optimize treatment. 

Tacrolimus is metabolized in the intestines and liver by cytochrome P450 3A (CYP3A) 

isoenzymes [4]. The most consistently identified covariate for tacrolimus dose requirement is 

CYP3A5 activity predicted from CYP3A5 genotype [8-11]. At some centers, CYP3A5 

genotyping was recently introduced to guide initial dosing of tacrolimus in the clinical setting 

[12]. However, large pharmacokinetic variability also exists between patients who do not 

differ with respect to CYP3A5 genotype. For example, overweight patients and elderly are 

prone to higher tacrolimus concentrations after standard initial dosing proportional to total 

body weight [13, 14]. This variability should be explained and accounted for in order to 

optimize dosing across all patient groups. Furthermore, pharmacogenetics cannot explain the 

apparently time-varying pharmacokinetics of tacrolimus. Hence, a dosing strategy for 

tacrolimus should include a time-varying component to help predict changes in dose 

requirement over time.  

 Whole blood concentrations of tacrolimus are typically used to guide dosage 

adjustments. Tacrolimus is strongly distributed into and bound to erythrocytes. Normally, less 

than one percentage is unbound in blood [15]. Hematocrit is a factor that provides a 

theoretical basis for understanding time-varying pharmacokinetics based on whole blood. 

Hematocrit levels are generally low at the time of kidney transplantation because of the 

underlying kidney disease, blood loss during surgery and postoperative fluid therapy. During 

the months after transplantation, hematocrit levels increase due to restoration of endogenous 

erythropoietin production, although with large variability between individuals [16]. Since 

tacrolimus is a low extraction ratio drug [4], whole blood concentrations are expected to 

increase in proportion to hematocrit while the unbound concentration and unbound clearance 

remains unchanged. Apparent decrease in whole blood clearance of tacrolimus with time after 

kidney transplantation have been attributed to tapering of corticosteroid dose with time after 

transplantation, hypothesizing that corticosteroids induce CYP3A enzymes [5, 17]. However, 

increasing tacrolimus concentrations also occurred in patients receiving fixed corticosteroid  



 
 

31 
 

doses [6]. The relative importance of hematocrit, corticosteroid tapering and other factors on 

the apparent decrease in tacrolimus whole blood clearance with time remains unclear. 

 It is important to investigate the influence of hematocrit on whole blood based 

pharmacokinetics of tacrolimus to understand and predict how the whole blood concentrations 

will change in relation to changes in hematocrit. Furthermore, understanding this relationship 

may have important clinical implications because a dosage reduction followed by increased 

whole blood concentration caused by increased hematocrit may lead to unintended changes in 

the unbound concentration, which is the concentration expected to be more closely related to 

the therapeutic effect [18]. 

 The first objective of the present study was to develop a population pharmacokinetic 

model of tacrolimus in kidney transplant recipients and investigate predictable differences for 

improving initial dosing. The second objective was to investigate whether the apparent time-

varying pharmacokinetics of tacrolimus may be explained by changes in hematocrit and to 

evaluate the importance of hematocrit for tacrolimus target concentration intervention. 

MATERIALS AND METHODS 

Patients and Data Collection 

The study was approved by the Regional Committee for Medical Research Ethics and by the 

Norwegian Medicines Agency. All patients gave written informed consent.  

 Data were collected from patients who underwent kidney transplantation at Oslo 

University Hospital, Rikshospitalet. Combined-organ recipients and patients who received 

drugs that were known to pharmacokinetically interact with tacrolimus were excluded. 

However, if such drugs were used by more than ten percent of the patients, they were 

included and the drug was analyzed as a covariate. A total of 69 patients were eligible for the 

analysis. Forty-four 12-hour concentration-time profiles of tacrolimus in 29 patients were 

available from three previously published clinical studies [19-21] (Figure 1a, Intensive 

Group). Tacrolimus trough concentrations (C0) measured during the first ten weeks following 

kidney transplantation were collected in 44 patients (Figure 1b, TDM Group), four of which 

were also represented in the Intensive Group. Dosing was coded by 12 hour intervals and 

assuming 100 % compliance unless any missed doses were recorded in the patient chart. 

Patients were informed to be fasting at the time of drug intake. 

 Data on CYP3A5 genotype, sex, height and the following time-varying characteristics 

were collected: Hematocrit, total body weight, age, serum albumin, serum creatinine, C-
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reactive protein (CRP), aspartate aminotransferase (ASAT), alanine aminotransferase 

(ALAT), total serum bilirubin, alkaline phosphatase, oral prednisolone dose, intravenous 

methylprednisolone dose, acute rejection episodes, concomitant use of potential interactive 

drugs and time after transplantation. Covariates that were missing on the day of 

transplantation were imputed by carrying back the first known value. Covariates missing at 

any later time point were imputed by carrying forward the last known value. If more than two 

hematocrit values were missing in sequence, values were derived by linear regression between 

all known hematocrit and hemoglobin values within the patient. A summary of the study 

designs is listed in Table 1.  

Therapeutic Drug Monitoring 

According to the center transplant-protocol, initial tacrolimus (Prograf® capsules, Astellas 

Pharma US Inc.) dose was 0.04 mg/kg total body weight twice daily, adjusted to the nearest 

0.5 mg per dose. Subsequent doses were adapted according to measured whole blood trough 

concentration, with an acceptable target range of 3-7 µg/L in standard risk patients and 8-12 

µg/L in high-risk patients (defined as presence of panel reactive antibody (PRA) > 20 % 

and/or presence of donor-specific antibodies (DSA)). Trough concentrations were initially 

measured 3-4 times per week. The frequency decreased in parallel with increasing time since 

transplantation and depending on clinical status. The acceptable target concentration range 

was adjusted to 3-5 µg/L six months after transplantation in all patients. 

Concomitant Immunosuppressive Medication 

The immunosuppressive regimen consisted of mycophenolate mofetil (1.5 g/day), intravenous 

methylprednisolone (day 1: 250 mg), oral prednisolone (day 2-15: 20 mg, day 16-29: 15 mg, 

day 30-61: 10 mg, day 62-180: 7.5 mg and from day 181: 5 mg) and induction therapy with 

basiliximab (day 1 and 5: 20 mg). High-risk patients received mycophenolate mofetil (1.5 – 2 

g/day), oral prednisolone (day 2: 80 mg, tapered to 20 mg daily during day 3-8, day 9-29: 20 

mg, day 30-61: 15 mg, day 62-180: 10 mg and from day 181: 5 mg), intravenous 

methylprednisolone (day 1: 500 mg, day 2: 80 mg) and additional induction therapy with 

human immune globulins and rituximab. Day 1 was defined as the day of transplant.  

Analytical Assay 

Table 1 shows the analytical assay details in each sub-study and the respective performance 

data. Immunoassay measurements of tacrolimus tend to be higher than concentrations 

determined by liquid chromatography due to cross-reactivity with tacrolimus metabolites 
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[22]. Concentrations determined by liquid chromatography-tandem mass spectrometry (LC-

MS/MS) were converted to corresponding immunoassay values by the aid of the following 

equation (Eq. 1), established by the laboratory that performed all analyses: 

 �e = (��fg.�i)g.jg ,         Eq. 1 

where CM is the chemoluminescent microparticle immunoassay tacrolimus concentration in 

µg/L and LC is the LC-MS/MS tacrolimus concentration in µg/L. 

CYP3A5 Genotyping 

DNA was extracted from EDTA anti-coagulated whole blood using the MagNA Pure 

instrument (Roche Applied Science, Penzberg, Germany). CYP3A5-genotyping (rs776746; 

NG_007938.1:g.12083G>A, A=CYP3A5*1 and G=CYP3A5*3) was performed by PCR and 

melt curve analysis with hybridization probes on the LightCycler® 480 instrument (Roche 

Applied Science, Penzberg, Germany). Primers were designed using LightCycler Probe 

Design software version 2 (Roche) and hybridization probe sequences were derived from 

Cheung et al. [23].  

Population Pharmacokinetic Modeling 

Structural Model 

Models with one or two compartments, zero or first order absorption and with or without an 

absorption lag time were investigated. Only oral data were available. Therefore, apparent 

parameter estimates were obtained (e. g. CL/F, V/F). The population value of bioavailability 

(F) was defined as 1, and F was estimated relative to this value. Random effects in the 

pharmacokinetic parameters were modeled in terms of between subject variability (BSV) and 

between occasion variability (BOV). One hospital visit was defined as one occasion for the 

Intense Group. For the TDM Group, a new occasion was defined when a dose change took 

place. BSV and BOV were estimated using exponential models (Eq. 2):. 

 >�� = >[\1 	× �
��
�,         Eq. 2 

where Pik is the value of parameter P for the ith individual at the kth occasion, PGRP is the group 

value of P in the population, eηi is the deviation between PGRP and the individual value Pi and 

eηk is the deviance between the individual value Pi and the occasion-specific value Pik [24]. 

The following model for the residual error was used throughout the analysis (Eq. 3): 
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 ��� = ������ + � !"#$% 	× (�� × ������ + ��) × �
&''%,    Eq. 3 

where Yij and Concij are the model predicted drug concentrations with and without residual 

error, respectively, for the ith individual at the jth measurement, θstudyi is a study-specific fixed 

effect, ε1 is a residual error term proportional to the measured concentrations, ε2 is an additive 

error term and eηerri is the individual random difference in residual error for the ith individual 

[25]. The random variables ηi, ηk, ε1, ε2 and ηerri are assumed to be normally distributed with 

mean zero and variances ω
2
P, π

2
P , σ1

2, σ2 
2 and ωerr

2 , respectively.  

Covariate Model 

All recorded patient characteristics were evaluated as covariates on the parameters where an 

effect was biologically plausible or if an effect was found in previous studies. To investigate 

the influence of body size, fat free mass was predicted from total body weight, height and sex 

[26]. Pharmacokinetic parameters were related to fat free mass using allometric coefficients of 

3/4 for clearances and 1 for volumes of distribution, respectively [27]. The additional effect of 

fat mass on pharmacokinetic parameters was estimated as described by Anderson et al. [28] 

(Eq. 4): 

 NFM = FFM+	θmmno 	× (TBW− FFM),      Eq. 4 

where NFM is the normal fat mass, FFM is the predicted fat free mass, θFFAT is an estimable 

parameter describing the additional effect of fat mass and TBW is total body weight. Binary 

covariates were modeled by estimating a fractional change in one group compared to the other 

group. To initially investigate the shape of the effect of continuous covariates on 

pharmacokinetic parameters, subjects were categorized by covariate value and a mean 

pharmacokinetic parameter were estimated within each category. The relationship was 

subsequently modeled using linear, power, exponential or sigmoidal functions.  

 The following general equation can be used to calculate standardized concentrations 

accounting for varying hematocrit [29] (Eq. 5):  

 Cbtuv = Cu + xyuz{|}xyu × (Cbu~u − Cu),      Eq. 5 

where Cbstd is the standardized whole blood concentration, Cu is the unbound concentration, 

Hctnorm is a normal hematocrit value (e. g. 45 %), Hct is the measured hematocrit and Cbtot is 

the measured total whole blood concentration. However, because Cu was unknown and 

because Cbtot will be considerably greater than Cu, the equation was simplified to Eq. 6: 
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 Cbtuv = xyuz{|}xyu 	× Cbu~u.        Eq. 6 

This simplified equation assumes that hematocrit is a surrogate for erythrocyte mass and the 

number of protein binding-sites within erythrocytes. To evaluate whether erythrocytes 

become saturated with tacrolimus within the therapeutic concentration range, nonlinear 

functions were investigated (not shown). It was also attempted to estimate between subject 

variability in a parameter relating hematocrit and whole blood concentrations, as described by 

Wahlby et al. [30]. To account for binding to serum albumin, the following equation using the 

same principles as described above was used (Eq. 7):  

 Ctuv = n��z{|}n�� × Cbtuv,        Eq. 7 

where Cstd is standardized for both albumin and hematocrit, Albnorm is a normal albumin 

concentration (e. g. 45 g/L) and Alb is the measured serum albumin concentration. 

 To initially investigate the shape of the time-varying pharmacokinetics, twelve time 

intervals were defined after day 1 (day of transplant): day 2, 3, 4-5, 6-7, 8-10, 11-14, 15-21, 

22-28, 29-42, 43-56, 57-70 and >70 days. For each interval, a CL/F or F interval-specific 

parameter was estimated. Empirical models were subsequently used to match the discrete 

distribution of parameter values as a function of time.   

Model Evaluation and Statistical Analysis 

Pharmacokinetic modeling was performed in NONMEM® (Nonlinear Mixed Effects 

Modeling, version 7.2, ICON Development Solutions, Elliott City, MD, USA) [31], using the 

first order conditional estimation method with interaction. Model selection was guided by 

biological plausibility and prediction-corrected visual predictive checks (pcVPCs) as function 

of time and relevant covariates, comparing observed data with 90 % prediction intervals 

constructed from 100 simulated subsets of the original dataset [32]. Statistical significance 

was evaluated using the likelihood ratio test with a required significance level of 0.05 

(difference in objective function value (∆OFV) = -3.8 for 1 parameter) [31]. Covariates were 

included stepwise and subsequently deleted from the full model (backward elimination) to 

evaluate their final statistical contribution. Confidence intervals of the parameters were 

generated from 500 nonparametric bootstrap replicates [33]. Random effects were retained if 

the lower 2.5th percentile did not approach zero. Covariate coefficients were retained if the 95 

% confidence interval did not include the value equivalent to no effect. 
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 Models and bootstrap procedures were run using Wings for NONMEM® (Holford 

NHG. Wings for NONMEM v. 720 for NONMEM 7.2. http://wfn.sourceforge.net, 2011). The 

statistical package R® (v. 2.15.0) was used for statistical and graphical analyses. Means for 

normally distributed covariates was compared using two-tailed t-tests with assumption of 

equal variance. If not stated otherwise, descriptive statistics are expressed as mean ± 

standard deviation.  

RESULTS 

Patients and Data Collection 

Demographic and clinical characteristics, details about tacrolimus treatment and the number 

of missing values are presented in Table 2. Patients using fluconazole and carbamazepine 

were excluded because of drug interaction potential with tacrolimus while patients using 

nifedipine (26 patients), lansoprazole (12 patients) and/or cinacalcet (5 patients, interactive 

drug according to sub-study 1) were retained. Eighty percent of tacrolimus trough 

concentrations were outside the defined acceptable concentration range. Hematocrit increased 

from 31±5 to 38±3 from day 1 to day 70 post-transplant with large variability between 

patients (Figure 2). Mean hematocrit did not vary by sex (p=0.28) or CYP3A5 genotype 

(p=0.51). Mean total body weight was 19 kg higher in males (86 ± 21 kg) compared to 

females (67 ±15 kg) (p<0.001), but not different across CYP3A5 genotypes (p=0.93). Mean 

fat free mass was 19 kg higher in males (64 ± 10 kg) compared to females (46 ±5 kg) 

(p<0.001), but not different across CYP3A5 genotypes (p=0.37). 

Population Pharmacokinetic Modeling 

Structural Model 

Tacrolimus pharmacokinetics were best described by a two-compartment model with first 

order absorption and a lag time. A study specific absorption rate constant (ka) and lag time 

improved the description of sub-study 2. BSV and BOV were tested for all pharmacokinetic 

parameters except lag time, which was assumed to have no random variability. When BOV in 

F was included, the lower 2.5th percentile of the 95 % confidence intervals of BOV in the four 

disposition parameters approached zero and were removed (∆OFV +7.3 for four parameters, 

p=0.12). For ka, only BOV was retained as random effect (∆OFV +3.4 by removing BSV, 

p=0.07 and ∆OFV +28.7 by removing BOV, p<0.001), indicating that the variability in 
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absorption rate is mainly dependent on dosing occasion rather than being a subject specific 

process. Estimating a full correlation matrix between CL/F, V1/F, Q/F and V2/F (∆OFV=-59.0 

for 6 added parameters, p<0.001) was chosen rather than retaining BSV in F (∆OFV=-32.4 

for 1 added parameter, p<0.001). Figure 3 shows the pcVPC of predictions of the base model 

with a systematic prediction bias over the range of hematocrit.  

Covariate Model 

Standardization of whole blood concentrations to a hematocrit of 45 % improved the model 

markedly (∆OFV = -78.4) and removed the systematic prediction bias over the range of 

hematocrit values (Figure 3c). Accounting for the possibility of saturated erythrocyte proteins, 

BSV in the relationship between tacrolimus whole blood concentrations and hematocrit or 

simultaneous standardization to albumin concentrations did not improve the model. The time 

interval-specific value of F changed with time after transplantation (Figure 4). The changes in 

the individual value of F (Fi) were describable using two distinct sigmoid functions of time 

after transplant (Txt), including a random effect describing the BSV in the extent of change at 

late time (Eq. 8):    

U� = �FF��t����� + m�����|��
��� ������|�����

�������|�� 	� × �	 m�������×	���
��� �����������

2���������� ,    Eq. 8 

where FFbaseline is a relative term fixed to 1, Fmaxearly is the maximum increase in F 

immediately after transplantation, Fearly50 is the day with half maximum early effect on F with 

the associated shape coefficient HillFearly describing the steepness of this change, Flate50 is the 

day with half maximum later effect on F with the associated steepness coefficient HillFlate. 

Fmaxlate is the asymptotic maximum value of the late change in F and eηi is the difference 

between the individual asymptote and the population asymptote, where ηi’s are assumed to be 

normally distributed with mean zero and variance ωFlate
2. The six fixed effects parameters 

replaced the 12 time interval parameters without loss in model goodness of fit (∆OFV = -64.6 

vs -66.5 respectively), and BSV in Flate resulted in a further decrease (∆OFV = -47.1 for 1 

parameter, p<0.001). Estimating BSV in the remaining parameters in Eq. 8 was not supported 

by the data. The remaining time-varying covariates, including prednisolone dose, did not 

replace the empirical time model for F without loss in model goodness of fit.  

 During covariate inclusion, CYP3A5 genotype had a significant effect on both CL/F 

and F (p<0.001). The additional effect of fat mass (θFFAT) to the effect of fat free mass on 
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pharmacokinetic parameters indicated that fat free mass was a more appropriate size metric 

than total body weight (θFFAT=0.1, 95 % confidence interval (-0.7-1.9) for clearances, 

θFFAT=0.3, 95 % confidence interval -0.7-2.4 for volumes of distribution). It was noted in the 

pcVPCs that in patients with fat free mass < 55 kg tacrolimus concentrations were 

overpredicted, whereas in those with fat free mass > 60 kg concentrations were slightly 

underpredicted. This prediction error over the range of fat free mass was reduced by including 

sex as a covariate on F (∆OFV =-6.2, p=0.01). No other covariate, including the evaluated 

drugs, was found to affect pharmacokinetics of tacrolimus. 

Model Reduction and Evaluation 

Based on 95 % confidence intervals generated by the bootstrap procedure it was decided to 

retain a proportional residual error model (∆OFV +41.1 for removing BSV in the residual 

error and ∆OFV +1.7 for removing the additive error term) with joint study specific 

component for sub-study 1 and 4 (∆OFV +1.0). In addition, only the random effect 

correlation between CL/F and Q/F was retained (∆OFV = +17.5, 5 parameters). The effect of 

CYP3A5 genotype on CL/F was removed because the 95 % confidence interval of 0.61-1.23 

did not support its inclusion in addition to an effect on F (∆OFV +0.01, p=0.91). Table 3 

shows the results from backward elimination of covariates.  

 The final model parameter estimates are presented in Table 4. Based on bootstrap 

averages, relative bioavailability was 49 % lower in CYP3A5 expressers and 24 % lower in 

females. Relative bioavailability was 122 % higher immediately after transplantation relative 

to its lowest value, followed by a steep decrease (Fearly Hill = 8.7) to a baseline with half of the 

change at day 2.4 after transplantation. Relative bioavailability then increased more slowly 

(Flate Hill = 2.4) to an asymptote 31 % higher than the baseline (BSV 104 %) with half of the 

change after 30 days (Figure 4). According to the pcVPCs, the model predicted the observed 

tacrolimus concentrations well within the 12-hour dose interval for the Intensive Group and 

during the first 70 days after transplantation in the TDM Group (Figure 5 a, b). It also 

predicted without sign of bias over the range of covariates (Figure 5 c-h), except for some 

overprediction in females.  

DISCUSSION 

In the present study, a population pharmacokinetic model was developed for tacrolimus using 

data from 69 kidney transplanted adults. A wide range of covariates were investigated, and 
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the results suggest using hematocrit, CYP3A5 genotype, fat free mass, sex and time post-

transplant to predict the initial dose. By standardizing tacrolimus concentrations in proportion 

to hematocrit the model improved markedly. The apparent time-varying pharmacokinetics of 

tacrolimus after kidney transplantation were largely explained by a parallel increase in 

hematocrit, suggesting that hematocrit, which is normally measured during routine post-

transplant care, can help to predict changes in tacrolimus whole blood concentrations over 

time. Kidney transplant patients are more prone to extreme hematocrit values than the normal 

population both during the first year and at later times after transplantation [16], pointing out 

the particular importance of considering hematocrit levels for this patient group. 

 Hematocrit has been identified as a covariate in several previously performed 

population pharmacokinetic analyses of tacrolimus [10, 11, 34, 35], but these applied 

hematocrit either to clearance or volume of distribution. In theory, all pharmacokinetic 

disposition parameters based on total concentrations should be similarly influenced by a 

change in unbound fraction for a low extraction ratio drug such as tacrolimus, which was the 

rationale for modeling hematocrit on the whole blood concentrations rather than on any single 

parameters. The linear relationship appeared as simple and practical. There was no sign of 

saturation of erythrocytes at the evaluated concentration range (1.5-48.4 µg/L).  

 Tacrolimus is also bound to albumin, α1-glycoprotein and lipoproteins [36]. 

Variability in plasma concentrations of these proteins represents another potential source of 

variability in tacrolimus whole blood concentrations. Ideally, standardization of whole blood 

concentrations should account for both binding to proteins in erythrocytes and binding to 

plasma proteins [15]. However, only albumin concentrations were recorded in the present 

study. Standardization to albumin did not improve the fit. The potential influence of albumin 

was possibly obscured by missing and imputed albumin values for 32 % of the samples or by 

the correlated increase in albumin and hematocrit following kidney transplantation.  

 The fact that fat free mass appeared as the more suitable body size metric is 

biologically plausible because fat mass is not expected to contribute directly to metabolic 

capacity [28]. It provides an explanation to the higher tacrolimus concentrations observed in 

overweight patients when initial dose is calculated in proportion to total body weight [13, 14]. 

This result is therefore of particular relevance to prevent risk of toxicity in obese patients.  

 The result of a 24 % lower relative bioavailability in females compared with men has 

some support by previous studies [7, 14]. Although the effect was small in terms of ∆OFV, 

the visual predictive checks over the range fat free mass with and without a sex effect 
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confirmed its importance. Sex differences in the pharmacokinetics of CYP3A substrates 

remain controversial in literature, and one study used intravenous data to demonstrate a higher 

clearance of the CYP3A substrate midazolam without an additional effect on bioavailability 

[37]. In our study, there was little evidence for an effect on clearance, but an underlying 

contributing effect cannot be excluded based on the relatively large fraction of sparse 

sampling. The importance of body size and sex as covariates are in conflict with previous 

population studies of tacrolimus in kidney transplanted adults [8, 34, 38, 39]. These studies 

did however not investigate fat free mass as body size metric. In addition, they applied the 

stepwise covariate inclusion method, which only retains covariates improving the model 

independently [40]. The contribution of correlated covariates may be masked using this 

method.  

 On the day following surgery (day 2), bioavailability was estimated to be about two 

times higher than on day 4. Others found a pattern of a rapid change in clearance during the 

first post-transplant week [38], which might also be the underlying explanation to our 

observations. Higher bioavailability may result from low food intake following surgery [4]. 

Alternatively, both clearance and bioavailability might be affected by a potential immediate 

effect on CYP3A transcription by inflammatory cytokines [41] or methylprednisolone 

administration in conjunction to surgery [42]. The later increase in bioavailability up to 

around day 60 after transplantation have also been described by others [6, 39]. During this 

period, prednisolone daily dose was tapered from 20 mg to 10 mg in most patients, but 

prednisolone failed to serve as a covariate. Prednisolone administration should not thereby be 

rejected as the underlying cause. Traditional covariate models do not explicitly model the 

induction/de-induction of CYP3A/P-glycoprotein transcription and prednisolone exposure is 

not well reflected by dose [43]. The observed time related changes in bioavailability in this 

study are interesting from a population perspective, but of limited value in an individual 

clinical setting due to the large BSV (apparent CV of 104 %) in the asymptotic value of 

relative bioavailability. 

 The results from this study support the previous recommendations of doubling initial 

dose of tacrolimus to CYP3A5 expressers [12, 44]. Previous population studies identified 

CYP3A5 genotype solely as a covariate on clearance (CL/F) [10, 34, 45]. In contrast, our 

results indicate 49 % decreased relative bioavailability in CYP3A5 expressers without an 

additional effect on clearance, suggesting that CYP3A5 activity in the gut wall is the more 

important factor leading to higher dose requirement in this patient group. However, only five 
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twelve-hour pharmacokinetic profiles were available in CYP3A5 expressers. These results 

should therefore be carefully interpreted. 

 There was a large fraction of tacrolimus trough concentrations (80 %) outside the 

defined acceptable concentration range of 3-7 µg/L, demonstrating that the currently applied 

method of target concentration intervention is not optimal. Bayesian estimation of individual 

pharmacokinetic parameters (e.g. CL/F) may aid in prediction of the required individual 

tacrolimus dose to achieve a target concentration [46]. The presented population model 

should be suitable to provide a prior distribution for this purpose. The estimate of CL/F (18.8 

L/h for a male CYP3A5 non-expresser with fat free mass of 60 kg and hematocrit of 45 %) 

was somewhat lower than estimated by others (26.8 L/h [10], 23.6 L/h [39]). This was 

expected because the parameters were standardized to a higher hematocrit value than the 

typical value in kidney transplant recipients. Studies reporting hematocrit found similar 

clearances (19.2 L/h [35] and 16.5 L/h [34]) when standardized to 45 %. Random variability 

of 17 % in bioavailability between dosing occasions (BOV) was the main source of variability 

in tacrolimus concentrations within patients as also previously described [6, 8]. Quantification 

of BOV is important, because it describes the variability that cannot be controlled by target 

concentration intervention [24]. 

 The major limitation of the present study was a high proportion (67 %) of trough 

concentrations. Other limitations included absence of homozygote CYP3A5 *1/*1 expressers, 

a high frequency (30 %) of missing values for some covariates and only one patient with high 

hematocrit levels (> 45 %). Hematocrit-related bias in tacrolimus concentrations determined 

by analytical immunoassays should however not be a relevant limitation because CMIA is not 

affected by hematocrit [22] and all samples analyzed with microparticle enzyme 

immunoassay (MEIA) had corresponding hematocrit levels not associated with bias (25-45 

%) [47]. 

 A relationship between tacrolimus whole blood concentrations and clinical effects is 

not yet established, and there is lack of consensus on the optimal whole blood target 

concentration [22]. Unbound drug concentrations are generally more closely related to clinical 

effects. To date, no studies have been performed on the concentration-effect relationship of 

tacrolimus using unbound concentrations. However, one study used radiolabeling to estimate 

the unbound tacrolimus concentration and found it significantly lower in liver transplant 

patients experiencing acute rejection compared with stable patients (p<0.001), without a 

significant difference in whole blood concentration (p=0.5) [48]. Some studies on 
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cyclosporine, which have similar binding properties to tacrolimus in blood, found stronger 

inhibition of calcineurin at low hematocrit values [49], and others found that unbound 

concentrations predicted rejection rate [50]. Thus, variable results of reports using tacrolimus 

whole blood concentrations to characterize the concentration-effect relationship might partly 

result from not accounting for the confounding effect of hematocrit variability. In the absence 

of specialized analytical equipment to measure unbound concentrations, standardization of 

total concentrations to a normal hematocrit value provides a simple method to obtain 

concentrations that more accurately reflect the unbound concentrations [29]. Relating 

hematocrit-standardized tacrolimus concentrations to clinical effects may potentially extend 

the current understanding of the optimal target concentration of tacrolimus. 

CONCLUSION 

A population pharmacokinetic model for tacrolimus was developed using data from 69 kidney 

transplanted adults. The results suggest increasing initial tacrolimus dose by 2 in CYP3A5 

expressers, by 1/3 in females and to scale pharmacokinetic parameters allometrically to fat 

free mass. Hematocrit appears as an important factor both for calculation of more accurate 

initial doses and to predict changes in whole blood concentrations of tacrolimus with time 

after kidney transplantation. By applying the presented population model in clinical dose 

decisions, individualized therapy with tacrolimus may be optimized, potentially improving 

long-term graft survival. A prospective study must be performed to evaluate the clinical utility 

of the model before application in clinical practice. The relationship between hematocrit-

standardized whole blood concentrations of tacrolimus and clinical effects should be 

investigated. 
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TABLES 

TABLE 1.  Characteristics of pharmacokinetic studies of tacrolimus 

Study 
and 
ref. 

Concs, 
n 

Patients a 

(n) 
Assay 
type 

LLOQ 
(µg/L) 

Assay CV (%) Sampling times Excluded patients 
from original 
dataset (reason) 

1  
[20] 

134 5 MEIAb 3.0 13 at 5 µg/L 
7 at 23 µg/L 

0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 
6, 8, 10 and 12 hours 
after administration 

1 (use of 
carbamazepine) 

2  
[21] 

164 7 LC-
MS/MSc 

1.1 ≤ 5.2 0.25, 0.5, 1, 2, 3, 4, 6, 8, 
10, and 12 hours after 
administration 

1 (not known 
CYP3A5 genotype) 

3 
[22] 

216 19 CMIAd 1.0 < 6 at 2.3 µg/L 
< 9 at 7.0 µg/L 

0.25, 0.5, 1, 1.5, 2, 3, 4, 
6, 8, 10, 12, 23 and 24 
hours after administration 

1 (food intake before 
tacrolimus 
administration) 

4 
NP 

1032 44 CMIA d 1.0 < 6 at 2.3 µg/L 
< 9 at 7.0 µg/L 

Predose (Trough 
concentrations) 

 

Ref, reference; Conc, concentration; n, number; LLOQ, lower limit of quantification; CV, between series coefficient of variation; 
MEIA II, microparticle enzyme immunoassay; LC-MS/MS, liquid chromatography/tandem mass spectrometry; CMIA, 
chemoluminescent microparticle immunoassay; NP, not previously published data 
a Four patients contributed in more than one study. These were identified and their data were associated with the same ID in the 
dataset, with an increase in the number of occasions. The total number of individuals was 69. 
b Analyzed on the IMx® instrument (Abbott Laboratories, Abbott Park, IL, USA) 
c Converted to corresponding immunoassay concentrations CM = (LC – 0.19) / 0.80, see main text for details 
d Analyzed on the Architect® instrument (Abbott Laboratories, Abbott Park, IL, USA) 
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TABLE 2 . Demographic and clinical data 
  

 
 
Number 

 
 
 

Mean 

 
 
 
(SD) 

Change in TDM Group after 
transplantation 
Day 1 

Mean(SD) 
Day 70 
Mean(SD) 

      
Patients (Intensive group) 29b     
 Male / Female 21 / 8     
 CYP3A5 genotype (*1/*1, *1/*3, *3/*3)    0 / 3 / 26     
 Tacrolimus concentrations (below LLOQ) 546 (0)     
 Tacrolimus samples per patient  18  (9)   
 Tacrolimus concentration (µg/L)  11.3 (6.0)   
      
Patients (TDM group) 44b     
 Male / Female 32 / 12     
 CYP3A5 genotype (*1/*1, *1/*3, *3/*3) 0 / 8 / 36     
 Tacrolimus concentrations (below LLOQ) 1038 (2)     
 Tacrolimus samples per patient  23 (5)   
 Tacrolimus concentration (µg/L)  7.0 (2.5) b   
 High-risk patients 7     
      
Patients (all)a 69     
  CYP3A5 genotype (*1/*1, *1/*3, *3/*3) 0 / 10 / 59     
  Male / Female 50 / 19     
  Age (years)  43 (14)   
  Height (cm)  176 (11)   
  Total body weight (kg)  81 (21) 83(22)   to  80(21) 
  Predicted fat free mass (kg)   59 (12) 60(12)   to  55(10) 
  Hematocrit (%)  36  (5) 31(5)    to  38(3) 
  Serum creatinine (µmol/L)   147 (73) 409(262)   to  120(40) 
  CRP (mg/L  7 (8) 12(11)   to  3(5) 
  Serum albumin (g/L)  42 (4) 37(5)   to  45(4) 
  Total serum bilirubin (µmol/L)  7 (3) 5(3)   to  6(4)   
  ASAT (IU/L)  23 (7) 35(26)   to  20(5) 
  ALAT (IU/L)  31 (20) 50(45)   to  22(11) 
  ALP (IU/L)  66 (21) 60(19)   to  70 (22) 
      
CYP3A5, cytochrome P450 3A5; LLOQ, lower limit of quantification; TDM, therapeutic drug monitoring; CRP, C-reactive protein; 
ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; ALP, alkaline phosphatase  

a Calculated from mean value across all observation times in each patient 
b Four patients contributed data to both groups  

c Trough concentration 
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TABLE 3.  Results from backward elimination of covariates 

Parameter Covariate Number of parameters  ∆ OFV p 

     

F Hematocrit 0 + 52.2 < 0.001 

F Function for early time effect 3 + 77.0 < 0.001 

F Function for late time effect 4 + 80.2 < 0.001 

F CYP3A5 *1/*3 genotype 1 + 32.7 < 0.001 

F Sex 1 +   6.4    0.01 

V1/F, V2/F  Allometric scaling to fat free mass 0 +   6.6    - 

CL/F, Q/F Allometric scaling to fat free mass 0 +   3.2    - 

OFV, Objective function value; F, bioavailability; CYP3A5, cytochrome P450 3A5; CL/F, apparent clearance; V1/F, apparent 
central volume of distribution; Q/F, apparent intercompartmental clearance; V2/F, apparent peripheral volume of distribution 
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TABLE 4.  Final model parameter estimates and bootstrap results 

Parameter Model estimate  a BS mean BS 95 % CIb 

      
 CL/F (L/h) 18.6 19.2 16.3-22.5 
 V1/F  (L) 104 97 48-138 
 Q/F  (L/h) 29.6 32.3 21.5-48.5 
 V2/F  (L) 411 424 297-583 
 Ka (h-1) 1.21 1.16 0.57-1.88 
 Kastudy 2 (h-1) 0.41 0.37 0.25-0.52 
 Lag time (h) 0.21 0.22 0.20-0.36 
 Lag timestudy 2 (h) 0.81 0.81 0-38-0.90 
      
Covariates on F      
 CYP3A5 *1/*3 Factor 0.50 0.51 0.38-0.65 
 Female sex Factor 0.77 0.76 0.61-0.94 
 Time, early     
  Fmaxearly  0.95 1.22 0.60-2.98 
  Fearly 50 days 2.6 2.4 1.6-2.9 
  Fearly Hil  10.0c 8.7 3.2-10.0c 

 Time, late     
  Fmaxlate  0.28 0.31 0.16-0.53 
  Flate 50 days 29.6 30.2 21.7-40.8 
  Flate Hil  2.4 2.4 1.5-4.6 
       
BSV     
 CL/F   (CV %) 30 30 19-40 
 V1/F (CV %) 24 27 0.2-99 
 Q/F (CV %) 88 75 32-105 
 V2/F (CV %) 58 56 36-76 
 Flate Hill (CV %) 105 104 72-139 
Correlation     
 CL/F ~ Q/F  0.58 0.58 0.03-0.92 
      
BOV     
 Relative F (CV %) 17 16 13-20 
 ka (CV %) 67 60 29-88 
      
Residual variability     
 Proportional error (%) 16.7 17.0 15.3-18.5 
    Study 2 Factor 0.57 0.56 0.42-0.70 
    Study 3 Factor 0.72 0.71 0.55-0.87 

BS, bootstrap; CI, confidence interval; CL/F, apparent clearance; V1/F, apparent central volume of 
distribution; Q/F, apparent intercompartmental clearance; V2/F, apparent peripheral volume of 
distribution; F, bioavailability; ka, absorption rate constant; CYP3A5, cytochrome P450 3A5; Fmaxearly, 
the maximum increase in F immediately after transplantation; Fearly50, the day with half maximum 
early effect on F, HillFearly ; shape coeffiecient at early time; Flate50, the day with half maximum later 
effect on F; HillFlate., shape coefficient at later time; Fmaxlate,maximum value of the late change in F; 
BSV, between subject variability; BOV, between occasion variability 

aStandardized to male, CYP3A5 nonexpresser with fat free mass of 60 kg and hematocrit of 45 %, at 
a time point with the lowest relative bioavailability (e. g. day 4 post transplant). 
b2.5-97.5 percentile obtained from 500 bootstraps replicates  
cUpper bound 
The final model was parameterized as follows: 
CL/F = 18.8× (FFM / 60)3/4 L/h, V1/F = 104 × (FFM / 60) L, Q/F = 29.6× (FFM / 60)3/4 L/h, V2/F = 411 
× (FFM / 60) L 
F = (1 + 0.95 / (1 + (TXT/2.6)10)) × (1 + 0.28 / (TXT/29.6)-2.4) × 0.50 (if CYP3A5 expresser) × 0.77 (if 
female) 
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FIGURES 

 

Figure 1. Observed tacrolimus whole blood concentrations during a) a dosing interval (12 hours) at steady state; 
and b) during the first seventy days after transplantation (only trough concentrations). Both figures are stratified 
by cytochrome P450 3A5 (CYP3A5) genotype. 

 

 

 

Figure 2. Hematocrit as a function of time after transplantation (n=44, thin lines). A smoother is added to 
visualize the trend. 
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Figure 3. Prediction corrected visual predictive checks over the range of hematocrit. a) Observed whole blood 
concentrations over the range of hematocrit values; b) Prediction corrected visual predictive check over the range 
of hematocrit using the base model; c) Prediction corrected visual predictive check over the range of hematocrit 
using the base model with hematocrit standardized concentrations. PC Tac conc, Prediction corrected tacrolimus 
whole blood concentration. Solid gray line is median observed blood concentration, dashed red lines are 90% 
observation interval, solid black line is median predicted blood concentrations, dashed black lines are the 90 % 
prediction interval. Gray shaded area represents 95 % confidence interval of each prediction interval. 
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Figure 4. Estimated time course of relative bioavailability (F) after transplantation. Time interval specific means 
in relative bioavailability are illustrated by triangles. Each triangle represents one day. Baseline bioavailability is 
set to the literature value of 0.23 [6], and other values of bioavailability are relative to this baseline value. The 
length of the symbols at the same level represent one pre-defined time-interval. The superposed line represents 
the model estimated time course of relative bioavailability described by two separate sigmoidal functions (Eq. 8). 
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Figure 5. Prediction corrected visual predictive checks of the final model; a) within a 12 hour dose interval of 
tacrolimus at steady state; b) over the first seventy days after transplantation; c) over the first seventy days after 
transplantation in CYP3A5 *3/*3 expressers; d) over the first seventy days after transplantation in CYP3A5 
*1/*3 expressers; e) in all patients over the range of fat free mass; f) in all patients over the range of hematocrit; 
g) over the first seventy days after transplantation in females; h) over the first seventy days after transplantation 
in males. PC Tac conc, Prediction corrected tacrolimus whole blood concentration. Solid gray line is median 
observed blood concentration, dashed red lines are 90% observation interval, solid black line is median predicted 
blood concentrations based on 100 simulated datasets, dashed black lines are the 90 % prediction interval based 
on 100 simulated datasets. Gray shaded area represents 95 % confidence interval of each prediction interval. 
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3 EXTENDED DISCUSSION ON 
METHODOLOGICAL CONSIDERATIONS 

3.1 STUDY DESIGN  

One of the strengths of the nonlinear mixed effects modeling approach is its ability to handle 

sparse and unbalanced data from different sources. If only trough concentrations had been 

available, clearance would be the only identifiable parameter [68]. Prior to the study, it was 

hypothesized that pharmacokinetic information from the twelve-hour pharmacokinetic 

profiles (Intensive group) would stabilize the sparsely sampled data to be fit to a two-

compartment model. The stability of the final model indicated that this was successful. There 

was, however, a high degree of uncertainty in some of the parameter estimates (Table 4 in 

Research Article). Whereas CL/F was the most precisely estimated parameter (CV 9 %), the 

lower precision of the remaining pharmacokinetic parameters (CV 18-26 %) probably 

reflected the high proportion of trough concentrations [68]. It has been demonstrated in 

studies evaluating different study designs that trough concentrations are the least informative 

concentration time point [69], both because they are late in the dose interval and because there 

is uncertainty in the time passed since dose administration. Thus, although the population 

approach allows analysis of sparsely sampled data, the results will still suffer from data 

associated with little information or uncertainty [4]. 

 Another aspect of the study design was the range the covariates were represented at. 

Body weight was represented at a wide range (44 - 155 kg). In contrast, the distribution of 

hematocrit values did not cover the upper range, and except from one patient with mean 

hematocrit of 56 %, mean hematocrit was below 45 % in all patients. In addition, there were 

relatively few older patients (43 ± 14 years) because cyclosporine A was the preferred 

calcineurin inhibitor in elderly patients at the time patients were included in the study [34]. 

Females were also underrepresented (19 out of 69 patients). Extrapolating a model to patients 

with covariate values outside the range of those evaluated during model development should 

generally be done with caution [70]. Future studies should particularly include more females, 

elderly and patients with hematocrit > 45 %. 

  



 
 

55 
 

3.2 HANDLING MISSING DATA 

Tacrolimus blood concentrations below quantification limit (BQL) of the analytical assay 

were discarded. BQL data are left-censored, which means that they are not missing at random. 

Omitting data not missing at random may lead to biased parameter estimates [71]. Other 

methods exist for more appropriate handling of such data [72]. However, the methodology is 

complex and not further discussed here. Only two out of 1548 concentration measurements 

were BQL. Therefore, one can assume that discarding them had little effect on overall results. 

 The method for handling missing covariates (last value carried forward/backward) was 

chosen for its simplicity and because it is commonly used in population pharmacokinetic 

analyses [7, 73]. In this study, albumin, ASAT, ALAT, ALP and bilirubin were frequently 

missing, and the method was therefore not optimal. Linear extrapolation of the covariate 

between the last known value and the next known value or predicting the most likely 

covariate value from other known covariates would probably be more appropriate to impute 

missing values for these covariates [74]. If a similar situation is encountered in a future study 

it should be considered using another method for covariate imputation to increase the 

probability of establishing true covariate relationships. 

3.3 ASSUMPTIONS AND LIMITATIONS IN NONLINEAR 
MIXED EFFECTS MODELING 

Global minimum 

Several assumptions are made when population modeling is based on maximum likelihood 

estimation [29]. One assumption is that the model has found its global minimum (the lowest 

possible objective function value for that set of parameters) during minimization of “-2 × log 

likelihood”. To check whether the final parameter estimates were sensitive to the initial user-

defined parameter estimates, the model parameters were re-estimated after increasing and 

decreasing the initial estimates by 25 % [29]. The parameter estimates were similar in both 

cases with identical OFV. This was a strong indication that the proposed model was at global 

minimum [7]. However, this is never guaranteed. 
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Residual error model 

The residual errors (predicted concentrations subtracted from observed concentration) were 

assumed to be normally distributed with mean zero [29]. To assess this assumption, a 

histogram of the conditional weighted residuals (CWRES) was created (Figure 3-1). The plot 

indicated that the residuals were normally distributed and that the selected residual error 

model was appropriate. CWRES did not systematically change over time after transplantation 

(Figure 3-2, left). However, CWRES versus predicted concentrations showed a slight bias 

towards overprediction at predicted concentrations above 10-15 µg/L (Figure 3-2, right). It 

appeared from a closer look that the trend was driven by about 20 lower tacrolimus 

concentrations observed mainly in two patients with unexplained higher values of individual 

clearance (Patient 216 and 313). Therefore, this slight bias does not seem to reflect a major 

model misspecification. 

 

 

 
Figure 3-1. Distribution of conditional weighted residuals, superimposed with a dashed line showing the normal 
distribution. 
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Figure 3-2. Residual error plots. Left panel: Conditional weighted residuals versus time. Right panel: 
Conditional weighted residuals versus predicted tacrolimus concentrations. 

 

Between subject variability model 

The distribution of individual pharmacokinetic parameters were assumed to be log normally 

distributed with mean zero. Frequency distributions of the Bayesian estimates of the 

individual pharmacokinetic parameters (expressed as η’s) were generated in order to test this 

assumption (Figure 3-3) [29]. In addition, the means of these estimates and the associated p-

value for the probability that the mean was different from zero were calculated by NONMEM 

[12]. All the parameter means were close to zero (< ± 0.02) with associated p-values > 0.05, 

and the parameters were symmetrically distributed around the value of zero, indicating that 

the assumption held.  
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Figure 3-3. Frequency distribution of the individual eta values of the Bayesian individual estimates of the 
disposition parameters: Apparent clearance (CL/F), apparent central volume of distribution (V1/F), apparent 
intercompartmental clearance (Q/F) and apparent peripheral volume of distribution (V2/F), respectively (green 
bars). Blue dashed lines are superimposed and show the estimated normal distribution of the corresponding etas 
in the population according to the final model. Shrinkage is calculated by dividing the standard deviation of the 
EBEs by the estimated population standard deviation (these values are also given by NONMEM). Means are 
expressed in each plot with an associated p-value. The p-value is calculated by NONMEM and is given for the 
null hypothesis that the true value is different from 0.  

3.4 RELIABILITY OF THE INDIVIDUAL PHARMACOKINETIC 
PARAMETER ESTIMATES 

The greatest advantage of using the Bayesian method to estimate the individual 

pharmacokinetic parameters is that samples may be drawn at any time point, without being 

restricted to for example exactly two hours after dose [75]. This allows flexibility in a clinical 

setting. In addition, the number of required samples for therapeutic drug monitoring are 

normally reduced when Bayesian Estimation is applied, which leads to lower costs and less 

discomfort for patients [64]. However, not all sampling time points contain equal amounts of 

pharmacokinetic information as feedback [76]. A great limitation of Bayesian estimation is 
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shrinkage of the individual estimates towards the population mean values when the 

concentrations are sparse or measured at uninformative time points [19]. In Figure 3-3 it is 

illustrated that the standard deviations for the distributions of the individual parameter 

estimates were smaller than the standard deviation for the estimated population variability. 

The amount of shrinkage was quantified by calculating the ratio between these standard 

deviations [7]. CL/F was the parameter with lowest degree of shrinkage (15 %). Accurate 

estimation of CL/F is important because CL/F determines the required dosing rate to achieve 

a steady state target concentration [3]. In contrast, considerable shrinkage (66 %) was seen for 

V1/F, probably reflecting the lack of information about V1/F in samples drawn late in the 

dosage interval. Shrinkage > 25 % in the remaining disposition parameters (Q/F, V2/F) is also 

considered high [19]. These individual pharmacokinetic parameter estimates are therefore not 

reliable. The optimal sampling time points after dose to obtain higher quality of the Bayesian 

individual parameter estimates should be investigated [76].  

3.5 CHOICE OF COVARIATES IN THE FINAL MODEL  

Type I error rate 

Type I error rate describes to the risk of including a covariate in the model when the covariate 

is in fact not a true covariate [70]. The least significant covariate in the final model was the 

effect of sex on bioavailability (p=0.012, Table 3 in Research Article). One of the main 

limitations of the likelihood ratio test is that ∆OFV is only approximately χ2-distributed. 

Significance levels obtained by the likelihood ratio test are therefore not exact and are called 

nominal significance levels [77]. The p-value is defined as the probability of finding a 

relationship, given that the null hypothesis (no relationship with the covariate) is true [7]. If 

∆OFV is large and the associated p-value very small, the approximate results of the likelihood 

ratio test are sufficient. However, the p-value for the effect of sex on bioavailability in the 

presented model is questionable. A randomization test was performed to calculate the actual 

p-value. For this test, 1000 data subsets were generated. These were identical except from a 

random permutation of the sex characteristics between the individuals in each subset to 

remove the potential covariate effect. The model control stream allowing an effect of sex was 

fit for each data subset and ∆OFV was calculated. Subsequently, all the results were ranked in 

the order of ∆OFV [77]. The two original nested models had a difference in OFV of 6.4. This 

value was fund associated with a percentile in the ranked ∆OFVs. The results showed that 
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∆OFV was greater than 6.4 in 25 of the 1000 runs, corresponding to p=0.025, slightly higher 

than the nominal value (Figure 3-4).  

 

Figure 3-4. Randomization test for the effect of sex on bioavailability. Distribution of the difference in objective 
function from 1000 simulated datasets that were fit to the final model and compared with the model without a 
sex effect on bioavailability. The original difference of 6.4 was associated with an actual significance level of 
p=0.025 

 

      To reduce the risk of including false covariates, a more stringent significance criterion of 

p<0.01 has been suggested during backward elimination of covariates [7]. If the more 

stringent significance criterion was selected in this study, sex would be statistically rejected as 

a covariate. However, biological plausibility and improvement in plots of goodness of fit 

supported retaining sex as a covariate in the final model, and bias was evident over the range 

of weight without it (appendix E.6). This emphasizes the importance of not relying solely on 

statistical significance in model selection and also demonstrates how model selection is 

affected by subjective judgment. It was apparent from the visual predictive check (Figure 5g 

in Research Article) that tacrolimus concentrations in females were still overpredicted. This 

unexplained overprediction seems to be the greatest weakness of the model. More females 

should be included in a future modeling dataset to investigate further the true effect of sex on 

tacrolimus pharmacokinetics.  
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Type II error rate 

Type II error rate describes the risk of rejecting a true covariate [70]. Prednisolone, albumin 

concentration and liver function tests are examples of rejected covariates that are biologically 

plausible and were identified as covariates in literature [45, 55, 61, 78]. If these covariates are 

true covariates, some factors may have contributed to failure of establishing a relationship. 

First, when the effect of a covariate on a pharmacokinetic parameter is expected to occur after 

a time delay, the traditional methods for covariate inclusion will not capture the relationship 

well [12]. Covariates such as corticosteroids or cytokines are potential covariates by induction 

of CYP3A4 transcription, which is a delayed process. Although methods exist to take such 

delays into account [79], this was not attempted in the present study due to the complexity of 

such methodology. In addition, prednisolone pharmacokinetics vary between individuals [80], 

and the interaction potential is probably not reflected well by dose. All patients received 

similar prednisolone dosage regimens. To distinguish between the relative underlying effects 

of prednisolone and other factors varying with time after transplantation, patients on 

corticosteroid-free immunosuppressive regimens should be included in future studies.  

 Although the liver function markers (serum albumin, serum bilirubin, ASAT, ALAT, 

ALP) tend to increase in liver disease, they are affected differently dependent on type of liver 

disease and are not good measures of the liver’s drug metabolizing capacity [81]. In a 

previous study, patients with moderate to severe reduced liver function were identified with 

lower clearance of tacrolimus [82]. In this study, it was attempted to model liver disease as a 

dichotomous covariate by defining a liver function test value above 1.5 times the upper 

normal limit as ‘1’ and otherwise ‘0’. This approach was used in a model for nevirapine 

which is a drug similar to tacrolimus with respect to pharmacokinetic properties [83]. 

However, no relationship was revealed. Importantly, these results are not evidence of that 

tacrolimus metabolism is not altered during liver disease. An overview of all evaluated 

covariate relationships is shown in appendix F. 

Error in covariates 

Covariates were treated as if they are measured without error. However, manual transfer of 

data from patient charts to a computer might introduce errors. In addition, some covariates 

may be measured imprecisely, such as laboratory values or genotype [29]. Moreover, fat free 

mass was not measured, but predicted from total body weight, height and sex (appendix A) 
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[84]. Although the employed equation is acknowledged to perform accurate predictions of fat 

free mass, it has not been evaluated in transplant patients. During the initial year following 

kidney transplantation, the proportion of fat in patients increases (fat mass content 25.8 to 

31.2 %, p<0.001) [85]. Determining fat free mass more accurately is based on advanced 

techniques using bone mineral density, which are less available in clinical practice [86]. 

Nevertheless, small errors in covariates are not expected to contribute to false covariate 

selection and probably contribute little to the overall variability.  

Factors not accounted for 

Although some of the prior unexplained variability was explained by covariates, the 

unexplained variability was large also subsequent to covariate inclusion. For example, BSV in 

the asymptotic value of individual bioavailability was 104 %. Some factors are known to 

contribute to the overall variability, but cannot be easily quantified. For example, when 

patients experience a diarrhea episode, tacrolimus concentrations are observed to increase, 

probably due to damaged enterocytes and decreased presystemic metabolism [87]. Diarrhea 

episodes occur frequently in kidney transplant patients as adverse reactions to tacrolimus or 

mycophenolate mofetil [87]. However, such episodes are usually not reported by the patient 

or recorded by the clinician and diarrhea is therefore difficult to assess as a covariate. In 

addition, bioavailability may decrease in presence of food [88] or antacids [89]. Although 

patients are informed to fast, eating habits are normally not controlled in the outpatient 

setting. Finally, dosing history errors in the dataset due to non-compliant patients is expected 

to be an important contributor to the residual error [7].  

Practical aspects  

The applicability of presented model is limited by fact that not all transplant centers have the 

opportunity to perform CYP3A5 genotyping. Sex, height, total body weight and hematocrit 

on the other hand are factors that are normally readily available. All the model components 

seem to be clinically relevant, because each covariate leads to dose alterations of at least 30 % 

within the expected covariate range. It is however questionable whether it is clinically 

relevant to account for the early time effects in the model. In fact, it may be beneficial that a 

higher extent of the dose is absorbed during the first days after transplantation. In practice, it 
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would be similar to administration of a loading dose. These aspects should be further 

considered before clinical application. 

3.6 EXAMPLE OF INDIVIDUAL GOODNESS OF FIT  

The patient with the most inaccurate population predicted concentrations was a male CYP3A5 

nonexpresser. The concentration-time profile of this patient is shown in Figure 3-5 

(subsequent to the initial five dose intervals, the predictions within the dose intervals are 

omitted for easier interpretation). Observed tacrolimus concentrations during the first week 

after transplantation varied between 1.5 and 2.5 µg/L and were consistently below the 

acceptable concentration range (3-7 µg/L). The clinicians did not establish the individual dose 

requirement of 16 mg daily before one week had passed. The Bayesian estimate of individual 

CL/F was 33 L/h, almost twice as high as the population predicted value of CL/F in this 

patient. If this estimate of individual CL/F had been available to the clinicians, it would 

encourage a more rapid increase in dosage and potentially prevented consistent underexposure 

during the critical initial post-transplant week. This figure emphasizes the importance of 

revising the individual parameters when tacrolimus concentrations become available as 

feedback to the model. Additional examples of individual goodness of fit plots are provided in 

appendix D. 

 

Figure 3-5. Example of individual goodness of fit. ID 44 is a 47 year old male CYP3A5 nonexpresser receiving 
2.5 mg of tacrolimus twice daily as initial dose. The individual dose requirement was 8 mg twice daily. Circles 
represent measured tacrolimus concentrations. The blue line reflects the population predicted concentrations. 
The red line reflects the individually predicted concentrations. The arrows on top represent administered doses. 
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3.7 SUBJECTIVITY IN MODEL DEVELOPMENT 

A number of subjective considerations and choices were made during model development. 

Both evaluation of goodness of fit plots and biological plausibility are highly subjective 

processes. The main results from the modeling process are presented in appendix E. All 

models are wrong, but some are useful [7]. Several models could probably be developed from 

the dataset in the present study, and several models may be useful for the purpose of dose 

individualization of tacrolimus. The presented work suggests one of these. 
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4 FUTURE DIRECTIONS 

Individual dosing based on Bayesian estimation of individual pharmacokinetics has been 

found superior to traditional therapeutic drug monitoring for several drugs with narrow 

therapeutic windows, including vancomycin [90], aminoglycosides [91], antiretroviral drugs 

[92], phenytoin [93] and cyclosporine [94]. However, before the present model can be 

clinically applied for tacrolimus, an external validation procedure must be performed [9]. 

Information on hematocrit, CYP3A5 genotype, fat free mass, sex, dosing history and 

measured drug concentrations must be collected in a group of new patients to generate an 

external validation dataset. The model’s ability to predict the initial concentrations should be 

compared with the predictions of the current initial dose algorithm based on total body 

weight. The model control stream and an example of the dataset structure are provided in 

appendix G and H, respectively. Next, to evaluate the usefulness of the model as a dose 

adjustment tool, a randomized prospective study should be performed [94]. For example, one 

group may receive tacrolimus doses guided by traditional therapeutic drug monitoring while 

the other group receives doses as predicted by the model. Comparison of the observed 

tacrolimus concentrations between the groups will demonstrate whether patients receiving 

model-based individual dosing are reaching the target concentration more rapidly and whether 

the target concentration is more precisely maintained. If so, the model may be clinically 

applied to improve individual dosing of tacrolimus. 

 To date, eleven population pharmacokinetic models have been published for 

tacrolimus in kidney transplanted adults. In the end, pharmacokinetics by itself is of little 

value if pharmacodynamics and clinical effects are poorly reflected by the pharmacokinetics. 

Monitoring of biomarkers reflecting the immunosuppressive effect has been proposed as a 

next step towards individualized treatment, although not currently clinically available [95]. 

Future population modeling of tacrolimus should aim to integrate pharmacokinetic and 

pharmacodynamic biomarkers in a joint pharmacokinetic and pharmacodynamic (PK/PD) 

model. The goal of all modeling is to improve patient care. Developing a population 

pharmacokinetic model is an enjoyable process and might lead to a useful dose adjustment 

tool. We are, however, not successful before the population model leads to observable clinical 

effects in terms of fewer rejections, longer survival times and healthier patients. 
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APPENDIX A. Algorithm for prediction of fat free mass 

 

 

Fat free mass (FFM, Janmahasatian et al. [84]) 
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APPENDIX B. Frequency distribution of bootstrap parameter 
estimates 

 
Figure B-1. Frequency distribution of the results from the bootstrap procedure of 500 dataset replications, 
showing the distribution of the typical estimates of apparent clearance (CL/F), apparent central volume of 
distribution (V1/F), apparent intercompartmental clearance (Q/F) and apparent peripheral volume of distribution 
(V2/F) and the covariate coefficients of the effect of CYP3A5 genotype and sex on bioavailability (F). The 2.5th, 
97.5th percentiles and the mean are shown in blue dashed lines. Red solid line marks the parameter estimate of 
the final model.  
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APPENDIX C. Traditional goodness of fit plots 

 

 

Figure C-1. Left panel: Population predicted concentration versus observed concentration. Right panel: 
Individual predicted concentration versus observed concentration. Green circles represent a measured tacrolimus 
whole blood concentration. The diagonal line is the line of unity. The red line is a smoother to show the general 
trend around the line of unity. 
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APPENDIX D. Individual goodness of fit in selected individuals 

 

  

 

ID 101. 61 year-old male CYP3A5 nonexpresser 
receiving 4 mg of tacrolimus twice daily 

ID 203. 35 year-old female CYP3A5 nonexpresser 
receiving 2.5 mg of tacrolimus twice daily 

 

 

 

 

ID 302. 48 year-old male CYP3A5 nonexpresser 
receiving 2 mg of tacrolimus twice daily 

ID 319. 31 year-old male CYP3A5 expresser receiving 
6 mg of tacrolimus twice daily 

 

Figure D-1. Examples on goodness of fit at the individual level, represented by the first individual in each sub-
study from which full pharmacokinetic profiles were obtained. One CYP3A5 expresser from sub-study 3 is also 
shown to represent an individual with poorly population predicted concentrations, emphasizing that some 
patients are different on the individual level compared to the group level due to unexplained variability. Circles 
represent observed tacrolimus concentrations. Blue line represents the group prediction using population 
pharmacokinetic parameters and covariates. Red line represents the individual prediction using individual 
parameters. 



 
 

 

 
 
 
 
 
 
 
 
 
 
 

ID 48. 21 year-old male 
CYP3A5 nonexpresser 
receiving 3 mg of tacrolimus 
twice daily as initial dose 

 

 
 
 
 
 
 

 

 

ID 97. 59 year-old female 
CYP3A5 expresser receiving 2 
mg of tacrolimus twice daily as 
initial dose 

       

 
 
 
 
 
 
 
 

 

ID 97. 64 year old male 
CYP3A5 expresser receiving 
3.5 mg of tacrolimus twice daily 
as initial dose 

Figure D-2. Examples showing the individual fit, represented by randomly selected subjects from sub-study 4 
(TDM group) representing males, females, CYP3A5 expressers and nonexpressers at different age groups and 
tacrolimus dose requirements. The predictions during the first five dose intervals are fully illustrated, followed 
by only prediction of trough concentration. In ID 48 the predictions during the first post-transplant week is 
shown. ID 97 and 99 are examples of that in some patients the the trough concentrations are predicted well by 
both using population parameters and individual parameters.  



 
 

 
 

APPENDIX E. Supplemental material for decision-making 
during model development 

E.1. Development of the structural model 

Table E.1 shows the results from the development of the structural model. Only key models 
referred to in the research article are provided. 
 

TABLE E.1.  Structural model development summary.  
Model 
nr. 

Compart -
ment model 

Absorption model  Random 
effects 

OFV Compared 
to 
model nr. 

Number of 
parameters 
removed 

∆OFV 

 
Absorption model  
 
1 2 comp. First order absorption 

with lag time 
BOV: All  
BSV: All 
 

3148.9   0 

2 2 comp. First order absorption  BOV: All 
BSV: All 
 

3343.4 1 + 1 + 194.5 

3 2 comp. Zero order absorption BOV: All 
BSV: All 
 

3530.0 1  + 381.1 

 
Number of compartments 
 
4 1 comp First order absorption 

with lag time 
BOV: All 
BSV: All 
 

3620.2 1 - 6 + 471.4 

 
Random effects reduction and correlation matrix 
 
5 2 comp. First order absorption 

with lag time 
BOV: Ka, F, 
BSV: All 

3156. 2 
 

1 - 4 + 7.3 

6 2 comp. First order absorption 
with lag time 

BOV: Ka, F, 
BSV: CL/F, 
V1/F, Q/F,  
V2/F, F 
 

3159.6 5 - 1 + 3.4 

7 
Struct-
ural 
model  

2 comp.  First order absorption 
with lag time 

BOV: K a, F, 
BSV: CL/F, 
V1/F, Q/F, V2/F 
Correlation 
matrix between 
CL/F, V1/F, Q/F, 
V2/F 

3133.0 6 - 1 
+4 

- 26.6 

Comp, compartments; OFV, Objective function value; CL/F, apparent clearance; V1/F, apparent central volume of distribution; 
Q/F, apparent intercompartmental clearance; V2/F, apparent peripheral volume of distribution; F, bioavailability; ka, absorption 
rate constant; BSV, between subject variability; BOV, between occasion variability 

 

 
  



 
 

E.2. Parameter estimates and goodness of fit for th e structural model 

Table E.2 shows the parameter estimates of the structural model and Figure E-2.1 and E-2.2 
show prediction corrected visual predictive check of the structural model over the range of 
time after transplantation and hematocrit, respectively. 

 

  

TABLE E.2.  Parameter estimates, bootstraps means and 95 % confidence intervals of the parameter of 
the base model 
Parameter  Model estimate   BS mean  BS 95 % CIa 

   

 CL/F (L/h) 20.4 20.6 18.0-23.2 

 V1/F  (L) 177 184 142-249 

 Q/F  (L/h) 18.3 17.9 13.6-23.8 

 V2/F  (L) 1820 2022 1190-3242 

 Ka (h-1) 1.41 1.42 0.91-2.12 

 Kastudy 2 (h-1) 0.47 0.81 0.34-2.32 

 Lagtime (h) 0.22 0.23 0.20-0.25 

 Lagtimestudy 2 (h) 0.80 0.82 0.73-0.89 

      

BSV   

 CL/F   (%) 48 47 38-56 

 V1/F (%) 65 64 46-82 

 Q/F (%) 82 81 60-98 

 V2/F (%) 138 134 90-175 

Correlations     

 CL/F ~ V1/F  0.77 0.65 0.03-0.92 

 CL/F ~ Q/F  0.50 0.53 0.41-0.82 

 CL/F ~ V2/F  0.38 0.26 -0.18-0.59 

 V1/F ~ Q/F  -0.11 -0.16 -0.50-0.27 

 V1/F ~ V2/F  0.54 0.73 0.22-0.96 

 Q/F ~ V2/F  0.17 -0.15 -0.52-0.33 

      

BOV   

 Relative F (%) 17 18 14-23 

 ka (%) 81 89 65-131 

      

Residual va riability   

 Proportional 
error 

  (%) 16.4 16.1 13.4-19.0 

 Additive error µg/L 0.30 0.40 0.05-0.57 

     Study 2 Factor 0.53 0.55 0.41-0.73 

     Study 3 Factor 0.68 0.66 0.53-0.83 

  Study 4 Factor 1.00 1.00 0.84-1.18 

 BSV  (%) 13.6 10.5 0.001-0.22 

BS, bootstrap; CI, confidence interval; CL/F, apparent clearance; V1/F, apparent central volume of distribution; Q/F, apparent 
intercompartmental clearance; V2/F, apparent peripheral volume of distribution; F, bioavailability; ka, absorption rate constant; BSV, 
between subject variability; BOV, between occasion variability 
a2.5-97.5 percentile obtained from 500 bootstraps replicates 



 
 

 
 

Figure E-2.1. Prediction corrected visual predictive checks of the structural model. The concentrations are 
systematically overpredicted during the first 40 days. Left panel: All observed tacrolimus concentrations over 
time after transplantation. Solid red line is median observation in each time interval, consisting of 10 days. 
Dashed red lines are the 90 % observation interval. Right panel: Red solid and dashed line are identical to left 
panel. Observations are excluded for easier visual interpretation. Solid black line is median predicted 
concentration, dashed black lines are the 90 % prediction interval. Gray shaded area represents 95 % confidence 
interval of each prediction interval. 
 

 

Figure E-2.2. Prediction corrected visual predictive check of the structural model. The concentrations are 
systematically overpredicted at low hematocrit (< 35 %) and high hematocrit (>40 %) values. For graphical 
interpretation, see Figure E.2-1. 
  



 
 

E.3. Flowchart of covariate model development 

 

 

 

 

  

Yes 

No 

Add covariates on selected parameter 

Select covariates 

Does any covariate 
decrease OFV by     

> 3.8 points?  

Include covariate in 
model  

Rank improvement in goodness of fit by evaluating 
objective function value 

Does any removed 
covariate increase 

OFV by  > 6.6 
points?  

Evaluate significance, 
biological plausibility 

and goodness of fit plots 
before deciding whether 

it should be removed 

No 

Full covariate model 

Delete covariates from model in sequence  

Keep covariates 

Yes 



 
 

 
 

 

  Run 100-500 bootstrap replicates and 
generate 95 % confidence intervals 

Does any 95 % 
confidence interval of 

covariate effects 
include 1? 

Final covariate model 

Evaluate biological 
plausibility and 

goodness of fit plots 
before deciding 

whether it should be 
removed 

Create visual predictive checks over the range of 
each covariate 

Consider correlated 
covariates and try to 
improve model based 

on knowledge from prior 
covariate building 

process  

Is there any model 
misspecification over 

the range of 
covariates? 

Are any retained 
covariate relationship 

biologically 
implausible? 

No 

 

Yes 

Consider removal 

Figure E-3.1. Flowchart of the main steps during the covariate modeling process. Several of the choices 
made are subjective. This is only a general overview. The modeling process will typically move upwards and 
downwards in the flowchart depending on observations and experience gained. 

Yes No 



 
 

E.4 Covariate inclusion 

Table E.4 gives an overview of the main steps during covariate inclusion. Only a short 
summary is provided, excluding evaluated models not leading to model improvement. See 
appendix F for a qualitative overview of all evaluated models. 

 

  

TABLE  E.4. Results from covariate inclusion 

Model 
number 

Parameter 
 

Covariate  Imple mented as  OFV LRT Added 
paramet
ers 

Compa
red to 

p 

8 Conc. Hematocrit Linear with 
parameter 

3052.7 -80.4 1 7 <0.001 

9 Conc. Hematocrit Nonlinear with 
power parameter 

3054.2 -78.8 1 7 <0.001 

10 Conc. Hematocrit Nonlinear, Smax 3055.8 - 77.3 2 7 <0.001 

11 Conc. Hematocrit Nonlinear, Bmax 3059.0 -74.0 1 7 <0.001 

12 Conc.  Hematocrit  Linear without 
parameter 

3054.6 -78.4 0 7 <0.001 

13 CL/F CYP3A5 Proportional  3035.3 -19.3 1 12 <0.001 

14 F CYP3A5 Proportional  3020.4 -14.9 1 13 <0.001 

15 F Time Time intervals 2953.9 -66.5 12 14 <0.001 

16 CL/F Time Time intervals 2967.7 -52.7 12 14 <0.001 

17 F Time Sigmoidal (early)  2967.5 -52.9 3 14 <0.001 

18 F Time Sigmoidal (late) 2955.8 -11.7 3 17 <0.001 

19 F BSV in F_time Exponential 2908.7 -47.1 1 18 <0.001 

20 CL/F,V1/F, 
Q/F, V2/F 

Fat free mass Allometric scaling 2908.9 +0.2 0 19 - 

21 F Sex Proportional 2907.9 -0.75 1 19 - 

22* CL/F,V1/F 
Q/F, V2/F 
 
 
F 

Fat free mass  
 
and 
 
Sex 

Allometric 
scaling 
 
 
Proportional 

2902.5 -6.2 1 19 0.01 

OFV, Objective function value; LRT, Likelihood ratio test; CL/F, apparent clearance; V1/F, apparent central volume of 
distribution; Q/F, apparent intercompartmental clearance; V2/F, apparent peripheral volume of distribution ; F, bioavailability; 
Smax, Empirical sigmoidal function; Bmax, Saturation function using values for Bmax (maximal binding constant) and Kd 
(affinity constant) obtained from literature (see details in Appendix F); CYP3A5, Cytochrome P450 3A5  
* Full covariate model 



 
 

 
 

E.5. Parameter estimates of the full covariate mode l 

Table E.5 shows the parameter estimates of the full covariate model. 

 

 

  
 

TABLE E.5.  Typical values, bootstraps mean and 95 % confidence intervals of the parameters of the full 
covariate model (model nr. 22). Gray marked parameters were removed in reduction round 1.  
Parameter Estimate BS  

mean 
BS  
95 % CIa 

 CL/F (L/h) 18.9 19.2 16.2 – 22.5 
 V1/F  (L) 112 103 56.7 – 154 
 Q/F  (L/h) 31.9 32.8 18.3 – 48.5 
 V2/F  (L) 385 393 270 – 568 
 Ka (h-1) 1.22 1.2 0.62 – 1.8 
 Kastudy 2 (h-1) 0.39 0.36 0.22 – 0.55 
 Lagtime (h) 0.22 0.22 0.19 – 0.24 
 Lagtimestudy 2 (h) 0.84 0.84 0.78 – 0.90 
      
Covariates on relative CL/F     
 CYP3A5 *1/*3 Factor 1.38 1.30 0.73 – 1.82 
      
Covariates on relative F     
 CYP3A5 *1/*3 Factor 0.76 0.73 0.37 – 1.39 
 Female sex Factor 0.75 0.76 0.60 – 0.94 
 Time, early     
  Fearly  1.21 1.51 0.65 – 2.98 
  Fearly 50 days 2.19 2.2 1.6 – 2.8 
  Fearly Hil  6.85 8.0 3.6 – 10.0b 

  Time, late     
  Flate  0.28 0.29 0.14 – 0.50 
  Flate 50 days 29.9 30.6 22.6 – 46.1 
  Flate Hil  2.17 2.4 1.5 – 3.9 
       
BSV   
 CL/F   (%) 38 36 25 – 49 
 V1/F (%) 44 58 29 – 116 
 Q/F (%) 84 77 35 – 113 
 V2/F (%) 74 72 52 - 98 
 Flate Hill (%) 109 108 76 - 149 
Correlations     
 CL/F ~ V1/F  0.63 0.55 -0.16 – 0.98 
 CL/F ~ Q/F  0.66 0.57 0.12 – 0.93 
 CL/F ~ V2/F  0.40 0.35 -0.12 – 0.71 
 V1/F ~ Q/F  -0.08 -0.17 -0.97 – 0.81 
 V1/F ~ V2/F  0.43 0.09 -0.69 – 0.80 
 Q/F ~ V2/F  0.50 0.60 - 0.04 – 0.99 
      
BOV   
 Relative F (%) 14 14 9 - 18 
 ka (%) 68 58 25 - 85 
      
Residual variability   

 
Proportional 
error   (%) 16.8 17.0 13.7 – 20.6 

 Additive error µg/L 0.28 0.40 0.003 – 0.53 
     Study 2 Factor 0.50 0.55 0.41 – 0.68 
     Study 3 Factor 0.62 0.66 0.47 – 0.78 
  Study 4 Factor 0.90 1.00 0.73 – 1.11 
 BSV  (%) 16.9 10.5 0.002 – 0.27 
BS, bootstrap; CI, confidence interval; CL/F, apparent clearance; V1/F, apparent central volume of distribution; Q/F, apparent 
intercompartmental clearance; V2/F, apparent peripheral volume of distribution; F, bioavailability; ka, absorption rate constant; BSV, 
between subject variability; BOV, between occasion variability 
a 2.5-97.5 percentile obtained from 200 bootstraps replicates 
b 10.0 was upper bound 



 
 

E.6. Visual predictive check without and with the e ffect of sex on bioavailability 

The following pcVPCs (Figure E.6-1) using fat free mass on the X-axis guided the inclusion 
of sex on bioavailability to reduce the systematic bias over the range of fat free mass. The 
effect of these covariates masked each other, and only improved the model when added 
simultaneously (∆OFV =-6.2, p=0.01).  
 

Figure E.6-1. Prediction corrected visual predictive check over the range of fat free mass using model nr. 20 
(without sex on bioavailability, left) and nr. 22 (with sex on bioavailability, right). For graphical interpretation, 
see figure E-2.1. 

 

  



 
 

 
 

APPENDIX F. Overview of evaluated models 

 

Function Comment on models not mentioned in main 
text 

Compartmental models  

1 compartment model  

2 compartment model  

Absorption process models  

Zero order absorption  

No lag time  

Singe ka for all patients + More sensible to describe the absorption 
profile uniformly across patients 
―   Unstable model and worsens the fit in group 
2 considerably. There is clearly a different type 
of absorption profiles in study 2, but the reason 
for this is unknown. 

Mixture model for ka + Flexible 
― Long model run times 
― Models not stable 

Random effects models   

BSV in lagtime + Biologically plausible that lag time differs 
between patients 
―  Not enough data from absorption phase  to 
support BSV in both lag time and ka 

BSV in ka only for intensively sampled group  

Both BSV and BOV in ka  

Occasions for TDM data divided by day or week 
 

― Violates the assumption of random 
distribution of the random effects described by 
BOV. 

Covariate models   

Hematocrit on whole blood concentration 
 
General model 
CBSTD=F  
CONC = CBSTD * Function of hematocrit 
Y = CONC + error  

In all following models, CBSTD means 
standardized whole blood concentration and 
equal the model predicted standardized 
concentrations (F). 
CONC are the non-standardized predicted 
concentrations, and Y are the measured 
concentrations. The function for the relationship 
between CBSTD and CONC were defined using 
a different approaches: 

Exponential hematocrit model 
 
CONC=CBSTD*EXP(THETA(X)*(HCT-45))      

 
 



 
 

Power model for hematocrit allowing saturation 
 
CONC=CBSTD*(HCT/45)**(THETA (1)) 

 
 
Allows nonlinear relationship 
 
 
 
Estimating plasma based pharmacokinetic 
parameters using literature values of saturable 
binding to erythrocytes (Jusko et al. 1995) 
 
 

Saturation model for hematocrit estimating plasma based 
pharmacokinetic paramters 
 
CP=CSTD/55 ; Standardized for a BPR of 55:1 
BMAX=418 
KD=3.8 
BPR=1+(HCT/100)*BMAX/(KD+CP) 
CONC=CP*BPR 

Empirical saturation model for hematocrit 
IF (CBSTD.LE.0) THEN 
   CONC=0 
ELSE 
  
CONC=HCT/45*((CBSTD**THETA(1))*THETA(2))/  
((CBSTD**THETA(1))+(THETA(3)**THETA(1))) 
 ENDIF 
 

Estimating erythrocyte saturation using 
empirical Smax function for the relationship 
between whole blood concentrations and 
hematocrit 
 
Unstable 
 
 
 
Account for different binding affinity across 
patients 

Random effects in the standardization to hematocrit  
 
CONC=CBSTD*(HCT/45)**(1*EXP(ETA(X))) 

Hematocrit on clearance and volume of distribution 
     Linear function 
     Power function 

 
Not superior to hematocrit on concentration 

CYP3A5 genotype 
     Proportional on only clearance 
     Proportional on both clearance and bioavailability  

 
Not superior to CYP3A5 on only F 

Total body weight, BMI, BSA on clearance and volume of 
distribution 
     Linear function 
     Allometric function  
     Power function 
     Sigmoidal function 
     Estimating the effect of fat mass:  

 
 
Not superior to allometric scaling to fat free 
mass 

Time after transplantation on clearance and 
bioavailability 
     Linear function 
     Exploratory model using twelve time intervals 

 

Prednisolone on clearance and bioavailability 
     Linear function 
     Power function 
     Sigmoidal 
     Treated as binary covariate with cut-off values at daily 
doses of  5, 10, 15, 20, 25, 30, 40, 50, 60, 70 mg. 
    Treated as categorical covariate with different parameter     
for each discrete dose size 

 
 
Significant improvement, but not superior to the 
use of time after transplantation as covariate 

Prednisolone/kg on clearance and bioavailability 
     Linear function 
     Power function 

 
Significant improvement, but not superior to the 
use of time after transplantation as covariate 



 
 

 
 

Age on clearance and volume of distribution 
     Linear function 
     Power function 

 
No improvement 

Height on clearance and volume of distribution 
     Linear function 
     Power function 

 
No improvement 

Sex     
    Binary effect on clearance 
    Binary effect on volume of distribution 

 
Not superior to effect on bioavailability 
Tendency towards model improvement, 
significant during covariate inclusions but not 
during backward elimination 

Albumin on clearance and volume of distribution 
     Linear function 
     Power function 

 
No improvement 

Serum creatinine  
     Linear function on clearance 
     Linear function on volume of distribution 

 
No improvement  
Decreased OFV by 6 points, but not retained due 
to lack of biological plausibility 

C-reactive protein on clearance and bioavailability 
     Linear function 
     Power function 
     Treated as categorical covariate with cut-off values at               
C-reactive protein=5, 10, 20, 40, 50 mg/L 

 
No improvement. Difficult to model and should 
account for a delay in a possible induction 
process 

ASAT on clearance 
     Linear function 
     Power function 
     Linear function using log ASAT 
     Power function using log ASAT 
     Cutoff value: 1.5 * upper normal value 

 
 
No improvement 
 

ALAT on clearance 
     Linear function 
     Power function 
     Linear function using log ALAT 
     Power function using log ALAT 
     Cutoff value: 1.5 * upper normal value 

 
 
No improvement 

ALP on clearance 
     Linear function 
     Power function 
     Linear function using log ALP 
     Power function using log ALP 
     Cutoff value: ALP=200 

 
 
No improvement 

Bilirubin on clearance 
     Linear function 
     Power function 
     Linear function using log bilirubin 
     Power function using log bilirubin 
     Cutoff value: 1.5 * upper normal value 

 
 
No improvement 

Acute rejection episode on clearance and bioavailability 
     Binary effect 
     Account for delayed effect by assigning different 
clearance during 3,4,5,7,10 days after a rejection episode 

 
No improvement 



 
 

Methylprednisolone on clearance and bioavailability 
    Distinct values for CL and F at different time intervals 
after administration of a methylpednisolone dose (in 
conjunction to surgical procedure and rejection episodes) 

 
No improvement 

Lansoprazole on clearance and bioavailability 
     Binary effect (use/not use) not accounting for different 
dose strengths 

 
No improvement 

Nifedipine on clearance and bioavailability 
     Binary effect (use/not use) not accounting for different 
dose strengths 

 
No improvement 

Cinacalcet on clearance and bioavailability 
     Binary effect (use/not use) not accounting for different 
dose strengths 

 
No improvement 

 

  



 
 

 
 

APPENDIX G. Final model control stream 

CODE Comment 

 

;----------------------------- 

; Final control strem 

; Elisabet 21.09 

;----------------------------- 

; BSV: CL, V1, Q, V2, Flate 

; BOV: F, Ka 

; Covariates: 

; Sex on F 

; CYP3A5 on F 

; Two separate time effects on F 

; Concentrations: Hematocrit standardized 

;----------------------------- 

$SIZES LVR=46 

$SIZES PL=15 

$PROBLEM Final model  

$INPUT ID STU TIME EVID DV AMT II ADDL SS STER CYP LAN 

NIF CRP TXT HCT SCR BILI ASAT ALAT ALP ALB M0F1 AGE  

TBWKG HTCM FFMKG FATKG BMI BSA XOCC RICH OCC 

 

$DATA DATA\FULL_input.csv IGNORE=# 

 

 

 

The symbol “;” comments out and are not read 

by NONMEM. This allows specifications in the 

control stream for the user 

 

 

 

 

Description 

 

 

 

 

$SIZES is used to increase the number of 

allowed parameters 

$PROBLEM is user-defined model name 

$INPUT refers to each column in the data set. 

NONMEM-defined column names are 

underlined. 

 

$DATA tells NONMEM where to find the input file 

(dataset) and instructs NONMEM to ignore the 

rows starting with # (header row) 

 

$ESTIMATION METHOD=COND INTER 

MAX=9990 NSIG=3  

NOABORT PRINT=1 

$COV PRINT=E 

 

 

$ESTIMATION is user-defined to instruct 

NONMEM on which estimation method to use. 

METHOD=COND INTER means Use the 

conditional method (FOCE) with interaction. 

MAX=9990 means Iterate max 9990 times, if not 

successfully converged at this time, please stop. 

NSIG=3  means Aim for 3 significant digits in the 

parameters before converging 

PRINT=1 means print each iteration in NONMEM 

output 

$COV PRINT=E means Estimate covariance  

matrix and print associated  eigenvalues  

 

$THETA 

(0.1,18,)           ; CLNR_STD L/H 

(0.1,104,)          ; VC_STD L 

(0.1,29.5,)         ; Q_STD L/H 

(0.1,411,)          ; VT_STD L 

(0,0.213,)          ; LAG1_STUDY1 

(0,0.81,)           ; LAG2_STUDY2 

(0,1.20,)           ; KA1_STUDY1 

$THETA is used for initial estimates of the vector 

of fixed effects (typical values, pharmacokinetic 

parameters and covariates). 

First number  = Lower bound (optional) 

Middle number = Initial estimate 

Last number   = Upper bound (optional) 

 

 



 
 

(0,0.407,)          ; KA2_STUDY2 

 

 

;CYP3A5 ON F 

(0,0.498,3)         ; F_CYP 

 

;TIME FUNCTIONS 

(0.1,0.949,3)       ; TXT_F   EXTENT OF INCREASE IN  F  

(0.1,2.48,100)      ; TXT50    DAY OF 50 % CHANGE 

(0.1,9.,10)         ; TXTHILL 

 

;LATE TIME ON F 

(0,0.281,3)        ; TIME_F INCREASE IN F FROM BASE LINE 

(1,29.6,70)        ; TIME50 DAY OF 50 % CHANGE 

(1,2.35,10)        ; TIMEHILL 

 

;SEX ON F    

(0,0.773,)         ; FSEX_FEM 

 

;RESIDUAL ERROR 

(0,0.569,)         ; Residual STUDY 2 

(0,0.725,)         ; Residual STUDY 3 

(0,0.167,)         ; Proportional residual error 

 

 

FIX means that the estimate is not varied during 

minimization. Name of each theta is given after 

semicolon. This is not read by NONMEM but 

helps the user keep track of the thetas. 

Although not stated, thetas are counted in the 

sequence they are stated. 

 

$OMEGA BLOCK(1) 

0.0585 ; BSV_VC 

$OMEGA BLOCK(2) 

0.0918 ; BSV_CL 

0.153 0.767 ; BSV_Q 

 

$OMEGA BLOCK(1) 

0.332 ;BSV_VT 

 

$OMEGA is the matrix of random effects. 

BLOCK matrices allow estimating the correlation 

between two random effects. Here, a correlation 

is estimated between clearance and 

intercompartmental clearance (Q)  (the 

underlined number). 

 

$OMEGA BLOCK(1) 

0.0283 ; BOV_F_1 ; BOV FOR RICH AND SPARSE DATA 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

When between occasion variability (BOV) is 

estimated, an $OMEGA must be defined for each 

defined occasion, and “SAME” gives NONMEM 

information that the estimated value should be 

equal for all omegas. 

This is a “trick” to force NONMEM to estimate 

BOV, because an easier method is not currently 

available in NONMEM. 

 

 

 

 

 

 

 

 

 



 
 

 
 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME  

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME  

 

 

 

 

22 $OMEGAs are given because there are 22 

occasions defined. 

 

$OMEGA BLOCK(1) 

0.437 ; BOV_KA1 

$OMEGA BLOCK(1) SAME 

$OMEGA BLOCK(1) SAME 

 

BOV in KA is only estimated from the intensively 

sampled profiles at maximum 3 occasions. 

$OMEGA BLOCK(1) 

1.12 ; BSV_FTIME 

 

$SIGMA 1. FIX ; EPS1 

 

$SIGMA denotes the initial estimate of epsilon. 

However, oftentimes this is fixed to 1, and thetas 

are used in the residual error instead. This is 

done because modelers have found it to be more 

stable in addition to allow printing of the residual 

error in the tables, which is not allowed for 

sigma. It is a matter of what the modeler prefers. 

Using the $SIGMA would give similar results. 

$SUBROUTINE ADVAN4 TRANS4 

 

Subroutines are library built-in codes in 

NONMEM. ADVAN4 instructs NONMEM to use a 

two-compartment model with first order 

absorption and elimination.  

 

$PK 

;GROUP PK PARAMETERS 

   TVCL  = THETA(1) *  (FFMKG/60)**(3/4) ; L/H 

   TVV1  = THETA(2) *  (FFMKG/60)**(1/1) ; L 

   TVQ   = THETA(3) *  (FFMKG/60)**(3/4) ; L/H 

   TVV2  = THETA(4) *  (FFMKG/60)**(1/1) ; L 

 

   IF (STU.EQ.2) THEN 

      TVLAG = THETA(6) 

      TVKA  = THETA(8) 

   ELSE 

      TVLAG = THETA(5) 

      TVKA  = THETA(7) 

   ENDIF 

 

$PK is the block where the user defines the 

pharmacokinetic model properties.  

Typical values/group values of all 

pharmacokinetic parameters are defined and 

associated with the covariates. 

 

IF (M0F1.EQ.1) THEN  

      FFSEX=THETA(16) 

   ELSE 

      FFSEX=1 

ENDIF 

 

For example, this block states that if M0F1 (a 

column in the dataset for sex) is 1 (female) the 

user-defined name FFSEX is equal to the 

estimable theta. If gender is male, FFSEX is 1. 

Later, when typical value of F is declared, it is 

multiplied with FFSEX. There are also other 

methods to obtain the same result. 



 
 

 

FFTXT=1+THETA(10)/(1+(TXT/THETA(11))**(THETA(12))) 

 

This is a sigmoidal function for the early time 

function 

 

INDTIME_F=THETA(13)*EXP(ETA(30)) 

 

An eta (random effect) is added to the individual 

change in F over time 

IF (TXT.GT.3) THEN 

      FFTIME=1+(INDTIME_F)/(1+(TXT/THETA(14))**(-

THETA(15))) 

   ELSE 

      FFTIME=1 

ENDIF 

 

Sigmoidal function for the late time function 

 

IF (CYP.EQ.1) THEN 

      FFCYP=THETA(9)  

   ELSE 

      FFCYP=1 

ENDIF 

The effect of CYP3A5 genotype on F 

 

TVF=1*FFCYP*FFTXT*FFTIME*FFSEX 

 

Here, all above introduced covariates on F are 

associated with typical value of F (TVF). 

 

IF(OCC.EQ.1) THEN 

   BOVKA=ETA(27) 

   BOVF=ETA(5) 

ENDIF 

IF(OCC.EQ.2) THEN 

   BOVKA=ETA(28) 

   BOVF=ETA(6) 

ENDIF 

IF(OCC.EQ.3) THEN 

   BOVKA=ETA(29) 

   BOVF=ETA(7) 

ENDIF 

IF(OCC.EQ.4) THEN 

   BOVF=ETA(8) 

ENDIF 

IF(OCC.EQ.5) THEN 

   BOVF=ETA(9) 

ENDIF 

IF(OCC.EQ.6) THEN 

   BOVF=ETA(10) 

ENDIF 

IF(OCC.EQ.7) THEN 

   BOVF=ETA(11) 

ENDIF 

IF(OCC.EQ.8) THEN 

   BOVF=ETA(12) 

ENDIF 

IF(OCC.EQ.9) THEN 

This is a necessary block of statements to allow 

between occasion variability (BOV) in ka and F. 

OCC is referring to occasions defined in the 

dataset. 

 



 
 

 
 

   BOVF=ETA(13) 

ENDIF 

IF(OCC.EQ.10) THEN 

   BOVF=ETA(14) 

ENDIF 

IF(OCC.EQ.11) THEN 

   BOVF=ETA(15) 

ENDIF 

IF(OCC.EQ.12) THEN 

   BOVF=ETA(16) 

ENDIF 

IF(OCC.EQ.13) THEN 

   BOVF=ETA(17) 

ENDIF 

IF(OCC.EQ.14) THEN 

   BOVF=ETA(18) 

ENDIF 

IF(OCC.EQ.15) THEN 

   BOVF=ETA(19) 

ENDIF 

IF(OCC.EQ.16) THEN 

   BOVF=ETA(20) 

ENDIF 

IF(OCC.EQ.17) THEN 

   BOVF=ETA(21) 

ENDIF 

IF(OCC.EQ.18) THEN 

   BOVF=ETA(22) 

ENDIF 

IF(OCC.EQ.19) THEN  

   BOVF=ETA(23) 

ENDIF 

IF(OCC.EQ.20) THEN 

   BOVF=ETA(24) 

ENDIF 

IF(OCC.EQ.21) THEN 

   BOVF=ETA(25) 

ENDIF 

IF(OCC.EQ.22) THEN 

   BOVF=ETA(26) 

ENDIF 

 

;INDIVIDUAL PK PARAMETERS 

 

CL=TVCL*EXP(ETA(2)) 

V2=TVV1*EXP(ETA(1)) 

Q =TVQ *EXP(ETA(3)) 

V3=TVV2*EXP(ETA(4)) 

KA=TVKA*EXP(BOVKA) 

ALAG1=TVLAG 

Finally, individual parameters are defined and 

associated with random effects. 

 



 
 

F1=TVF*EXP(BOVF) 

 

; Scale to central compartment 

S2=V2 

 

The scale factor is important to convert mass 

unites and to define which compartment blood 

samples are drawn from. V2=Central volume of 

distribution in ADVAN4. 

$ERROR 

; Standardize 

IPRED=F*(HCT/45)  

 

$ERROR is the block for defining the residual 

error model. 

F is the model prediction (NONMEM-specific 

name) 

 

IF (STU.EQ.2) THEN 

   FSDYRUV=THETA(17) ; STUDY 2 

ELSE IF (STU.EQ.3) THEN 

   FSDYRUV=THETA(18) ; STUDY 3 

ELSE 

   FSDYRUV=1 

ENDIF 

PROP=IPRED*THETA(19) 

W=FSDYRUV*SQRT(PROP*PROP) 

 

Study-specific residual errors are introduced. 

 

Proportional residual error defined by a theta. 

 

 

Y = IPRED + W*EPS(1) 

 

Measured concentrations (Y) = individual 

predicted concentration (IPRED) + residual error 

(W). EPS(1) is epsilon, which is fixed to 1, but is 

required by NONMEM to run. 

$TABLE ID DV TIME PRED IPRED RES CWRES NOPRINT 

ONEHEADER FILE=sdtab295 

$TABLE ID DV TIME IPRED CL V2 Q V3 KA ALAG1 NOPRINT  

NOAPPEND ONEHEADER FILE=patab295 

$TABLE ID DV STER CRP TXT HCT SCR BILI ASAT ALAT AL P 

ALB AGE TBWKG HTCM FFMKG FATKG BMI 

BSA NOPRINT ONEHEADER NOAPPEND FILE=cotab295 

$TABLE ID DV CYP LAN NIF M0F1 NOPRINT ONEHEADER 

NOAPPEND FILE=catab295 

Finally, the user can ask NONMEM for to create 

tables of interest. 

Create a table of the parameters and residuals 

Create a table of individual parameter estimates 

Create a table of continuous covariates 

Create a table of categorical covariates 

 

  



 
 

 
 

APPENDIX H. Example of dataset structure 

 

#ID STU TIME EVID DV AMT II ADDL SS OCC STER TXT CYP LAN NIF CIN AGE WT HEIG SEX FFM CRP HCT SCR BILI ASAT ALAT ALP ALB 

101 1 0 1 0 4000 12 0 1 1 20 25 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 10.88 0 13.8 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 11.47 1 0 4000 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 11.98 0 17.3 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 12.5 0 26.4 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 13.02 0 28.8 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 13.5 0 28.4 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 14.03 0 26.7 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 14.5 0 24.6 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 15.53 0 19.3 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 16.52 0 14.5 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 17.47 0 12.8 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 19.5 0 10.8 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 21.48 0 10 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 23.47 0 9.8 0 0 0 0 1 20 26 0 0 0 0 61 104 179 0 70.4 26 29 269 7 20 47 51 36 

101 1 0 4 0 4000 12 0 1 2 15 31 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 11.28 0 6.9 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 11.4 1 0 4000 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 11.93 0 9.7 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 12.38 0 20.1 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 12.88 0 21.6 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 13.4 0 21.6 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 13.92 0 19.8 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 14.42 0 20 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 15.4 0 15.8 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 16.33 0 13.5 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 17.38 0 11.1 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 19.45 0 9.6 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 21.33 0 9.2 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 23.27 0 8.7 0 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 24.25 1 0 4000 0 0 0 2 15 32 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 35 0 10.8 0 0 0 0 2 15 33 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

101 1 35.75 0 9.1 0 0 0 0 2 15 33 0 0 0 1 61 99 179 0 68.7 12 29 256 9 23 42 53 36 

102 1 0 1 0 2000 12 0 1 1 25 55 0 0 1 0 52 77 186 0 62.1 1 30 99 12 20 30 100 38 

102 1 11.08 0 5 0 0 0 0 1 25 56 0 0 1 0 52 77 186 0 62.1 1 30 99 12 20 30 100 38 

102 1 11.17 1 0 2000 0 0 0 1 25 56 0 0 1 0 52 77 186 0 62.1 1 30 99 12 20 30 100 38 

102 1 11.68 0 7.1 0 0 0 0 1 25 56 0 0 1 0 52 77 186 0 62.1 1 30 99 12 20 30 100 38 

102 1 12.17 0 12.9 0 0 0 0 1 25 56 0 0 1 0 52 77 186 0 62.1 1 30 99 12 20 30 100 38 

1 4 0 1 0 2500 12 2 0 1 20 1 0 0 0 0 42 80 171 0 58.9 27 35 344 6 87 155 58 40 

1 4 36 1 0 3000 12 3 0 2 20 2 0 0 0 0 42 81 171 0 59.3 27 34 259 6 87 155 58 40 

1 4 48 0 4.1 0 0 0 0 2 20 3 0 0 0 0 42 84 171 0 60.4 29 31 167 6 87 155 58 40 

1 4 72 0 3.8 0 0 0 0 2 20 4 0 0 0 0 42 84 171 0 60.4 21 30 129 6 87 155 58 40 

1 4 84 1 0 4000 12 22 0 3 20 4 0 0 0 0 42 84 171 0 60.4 21 30 129 6 87 155 58 40 

1 4 96 0 4.8 0 0 0 0 3 20 5 0 0 0 0 42 84 171 0 60.4 9 30 112 6 87 155 58 40 



 
 

#ID STU TIME EVID DV AMT II ADDL SS OCC STER TXT CYP LAN NIF CIN AGE WT HEIG SEX FFM CRP HCT SCR BILI ASAT ALAT ALP ALB 

1 4 144 0 6.2 0 0 0 0 3 20 7 0 0 0 0 42 79 171 0 58.5 4 33 108 6 87 155 58 40 

1 4 168 2 0 0 0 0 0 3 20 8 0 0 0 0 42 78 171 0 58.1 4 33 108 6 87 155 58 40 

1 4 192 0 7.6 0 0 0 0 3 20 9 0 0 0 0 42 77 171 0 57.7 2 36 107 5 77 180 66 45 

1 4 240 0 8.5 0 0 0 0 3 20 11 0 0 0 0 42 78 171 0 58.1 2 35 100 5 77 180 66 45 

1 4 312 0 8.9 0 0 0 0 3 20 14 0 0 0 0 42 78 171 0 58.1 1 35 114 7 33 92 49 43 

1 4 360 0 9.9 0 0 0 0 3 20 16 0 0 0 0 42 79 171 0 58.5 1 35 124 7 33 92 49 43 

1 4 360 1 0 3000 0 0 0 4 20 16 0 0 0 0 42 79 171 0 58.5 1 35 124 7 33 92 49 43 

1 4 372 1 0 2000 12 120 0 5 20 16 0 0 0 0 42 79 171 0 58.5 1 35 124 7 33 92 49 43 

1 4 408 0 5.6 0 0 0 0 5 15 18 0 0 0 0 42 78 171 0 58.1 1 36 113 7 33 92 49 43 

1 4 480 0 4.3 0 0 0 0 5 15 21 0 0 0 0 42 78 171 0 58.1 0 35 109 5 32 64 44 44 

1 4 528 0 4.8 0 0 0 0 5 15 23 0 0 0 0 42 78 171 0 58.1 1 34 113 5 32 64 44 44 

1 4 576 0 4.4 0 0 0 0 5 15 25 0 0 0 0 42 78 171 0 58.1 1 35 107 5 32 64 44 44 

1 4 648 0 4.8 0 0 0 0 5 15 28 0 0 0 0 42 79 171 0 58.5 2 35 109 5 30 67 45 44 

1 4 696 0 5 0 0 0 0 5 15 30 0 0 0 0 42 78 171 0 58.1 3 35 113 5 30 67 45 44 

1 4 744 0 4.9 0 0 0 0 5 15 32 0 0 0 0 42 79 171 0 58.5 3 37 109 5 30 67 45 44 

1 4 840 0 4.9 0 0 0 0 5 10 36 0 0 0 0 42 79 171 0 58.5 7 36 100 6 41 82 55 46 

1 4 912 0 5.1 0 0 0 0 5 10 39 0 0 0 0 42 78 171 0 58.1 5 35 111 6 41 82 55 46 

1 4 984 0 4.9 0 0 0 0 5 10 42 0 0 0 0 42 79 171 0 58.5 6 35 102 8 37 81 59 43 

1 4 1056 0 5.4 0 0 0 0 5 10 45 0 0 0 0 42 79 171 0 58.5 7 36 112 8 37 81 59 43 

1 4 1152 0 5.1 0 0 0 0 5 10 49 0 0 0 0 42 79 171 0 58.5 8 35 104 5 51 85 66 43 

1 4 1200 0 5.4 0 0 0 0 5 10 51 0 0 0 0 42 77 171 0 57.7 4 36 107 6 60 107 70 44 

1 4 1320 0 7.4 0 0 0 0 5 10 56 0 0 0 0 42 78 171 0 58.1 1 35 94 5 52 84 56 42 

1 4 1392 0 8.9 0 0 0 0 5 10 59 0 0 0 0 42 78 171 0 58.1 1 38 98 5 52 84 56 42 

1 4 1488 0 7 0 0 0 0 5 10 63 0 0 0 0 42 79 171 0 58.5 1 37 99 6 30 60 50 42 

1 4 1560 0 6.4 0 0 0 0 5 10 66 0 0 0 0 42 79 171 0 58.5 1 36 103 6 30 60 50 42 

1 4 1704 0 5.8 0 0 0 0 5 10 72 0 0 0 0 42 79 171 0 58.5 1 35 102 6 31 43 43 45 

2 4 0 1 0 4000 12 4 0 1 20 1 1 0 0 0 24 107 206 0 81.8 17 30 755 6 139 134 46 37 

2 4 48 0 3.7 0 0 0 0 1 20 3 1 0 0 0 24 108 206 0 82.2 17 29 453 6 139 134 46 37 

 
ID, patient ID; STU, study number; TIME, time relative to zero; EVID, Event ID (1=Dosing record, 0=Observation record, 4=Reset system and introduce new dose; DV, Dependent variable 
(Tacrolimus concentration); Amt, Dose amount in micrograms; II, dose interval in hours; ADDL, Additional doses; SS, steady state is assumed if 1; OCC, Occasion; STER, steroid dose; TXT, 
Time after transplantation; CYP, CYP3A5 expresser=1, non-expresser=0; LAN, lansoprazole; NIF, nifedipine; CIN, cinacalcet; AGE, patient age; WT, Total body weight in kg, HEIG, height in 
cm; SEX, sex (0=male, 1=female); FFM, predicted fat free mass; CRP, C-reactive protein, HCT, hematocrit (%), SCR, Serum creatinine; BILI, bilirubin; ASAT, Aspartate aminotransferase; 
ALAT, Alanine aminotransferase; ALP, Alkaline phosphatase; ALB, albumin 
 

 

  



 
 

 
 

 


