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Introduction

In the branch of mathematical analysis known as functional analysis, one mainly studies func-
tions defined on vector spaces. For partial differential equations (PDEs), this analysis has
proven to be a mighty resource of understanding and modelling the behavior of the equations.
Throughout this thesis, the work will focus of theory of function spaces and existence and
uniqueness theorems for variational formulations in normed vector spaces. We will recast PDEs
as variational problems with operators acting on normed spaces, and further seek to prove the
existence and uniqueness of a solution by assigning certain properties to the operator.

The outline of this thesis is as follows:

In Chapter 1, we summarize the Basic Notions of Functional Analysis relevant for
the later work in the thesis. We define operators, discuss monotonicity, present the theory of
Sobolev spaces, and illustrate the finite element method, giving short hints to the future rele-
vancy of the described properties.

Linear Problems have been extensively studied in the past. In Chapter 2, we present
three important theorems illustrating the conditions for existence and uniqueness of solutions
for variational formulations of the type:

(i) Galerkin formulations in Hilbert spaces: The Lax-Milgram Theorem,

(ii) Petrov-Galerkin formulations in Hilbert spaces: The Babuška-Lax-Milgram Theorem,

(iii) Petrov-Galerkin formulations in Banach spaces: The Banach-Nečas-Babuška Theorem,

and give their proofs.

Chapter 3 is dedicated to the study of Non-linear Problems. We seek to extend the ideas
of the previous chapter to variational formulations containing a non-linearity b(·) depending on
the solution we seek. This has a major application in the analysis of non-linear PDEs, which
in general may not possess analytical solutions. To attack these types of problems, we define a
weak formulation of the main problem, and discretize the domain of where a solution is sought.
Next, existence and uniqueness is established through fixed point theorems, which will be given
with proof.

We will focus our study on two central problems: The Richards equation (a non-linear,
possibly degenerate parabolic PDE) and a transport equation modelling reactive flow in porous
media (two coupled PDEs). For the fully discrete (non-linear) formulation of Richards equation
we show results for

(i) a Lipschitz continuous non-linearity. Here we consider three cases:
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(a) First, a linearization scheme is proposed. We prove existence and uniqueness by using
the Lax-Milgram Theorem in combination with the Banach Fixed Point Theorem.

(b) Second, we make the assumption that the non-linearity is strongly monotone. Here,
existence is proven by the Brouwer Fixed Point Theorem

(c) Third, we let the non-linearity be monotone and add a regularization term to the
fully discrete formulation. Here, we prove existence as in the previous step, and lastly
show convergence of the regularized scheme to the fully discrete scheme.

(ii) a Hölder continuous non-linearity. We give two results:

(a) First, we prove existence for a monotone and bounded non-linearity.

(b) Second, we state the result of existence for a strongly monotone and bounded non-
linearity by the Brouwer Fixed Point Theorem.

In the applications of Brouwer Fixed Point Theorem, the uniqueness of the problem is proved
by assuming there exists two solutions and obtaining a contradiction through inequalities by
showing estimates that can not be true.

Lastly, in Chapter 4, a mathematical model of Two-phase Flow in porous media is studied.
We discuss the case of a Lipschitz continuous saturation, and show for the first time a proof
of existence and uniqueness of a solution for the fully discrete (non-linear) scheme, assuming
the saturation to be Hölder continuous and strongly monotonically increasing. This is done by
creating a regularization of the fully discrete scheme, further proving existence with the Brouwer
Fixed Point Theorem, and finally showing convergence with the help of an a priori estimate.
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Chapter 1

Basic Notions of Functional Analysis

In this chapter we will state and discuss the prerequisites for the future chapters. The purpose
of this chapter is to provide preliminary knowledge of functional analysis, and to make the thesis
fairly self-contained.

We start by defining operators in normed spaces (Section 1.1) and explain their most relevant
properties, especially monotonicity (Section 1.2). This will be an important tool for future work
in Chapters 3 and 4. In Section 1.3, we give a short but concise summary of the theory of the
different function spaces considered. The results presented in this thesis will only require the
reader to be fluent in the most fundamental facts regarding Sobolev Spaces.

In Section 1.4, the Eberlein-Šmuljan Theorem will be stated, and compact embeddings for
Sobolev spaces will be discussed briefly. The most useful inequalities for proving estimates in
chapters 3 and 4 can be found in Section 1.5. In Section 1.6, we give an example of a relevant
problem for the theory in Chapter 2.

Finally, in Section 1.7, a short introduction to the Finite Element Method is given. This
will be a motivation and a main application for the existence and uniqueness analysis explored
in later chapters.

1.1 Operators between Normed Spaces

The definitions and results in this section are collected from [22].

A normed vector space is a vector space with a metric defined by a norm. We assume
the definition of a vector space, norm, inner product and the other cornerstone definitions of
functional analysis and set theory to be known by the reader. If X is a normed vector space,
we will denote a norm on X by ‖ · ‖X or simply ‖ · ‖ if there is no room for confusion. If
x := (x1, . . . , xn) ∈ Rn, then we denote by

|x|n :=
√
x2

1 + · · ·+ x2
n,

the Euclidean norm in Rn (unless specified otherwise). A Banach space X is a complete normed
vector space. That is, if {xk}k is a sequence in X satisfying

‖xn − xm‖X → 0 as m,n→∞,

for m,n ∈ N (i.e. a Cauchy sequence), then {xk} converges to an element x ∈ X. A Hilbert
space H is a Banach space with a norm induced by an inner product, denoted by 〈·, ·〉H , or
simply 〈·, ·〉 if we explicitly state so in the text.
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Let X and Y be normed spaces. We define an operator T to be a mapping from a domain
D(T ) ⊂ X into Y , and write

T : D(T )→ Y.

We will denote the action of an operator T on an element x ∈ D(T ) by Tx, or T (x). The kernel
(or null space) and the range (or image) of T are defined by

Ker(T ) := {x ∈ D(T ) | Tx = 0},

Im(T ) := {y ∈ Y | Tx = y for x ∈ D(T )}.

Moreover, if T is linear, Ker(T ) and Im(T ) form subspaces of X and Y , respectively. If T is
mapped into R, we call T a functional.

Definition 1.1. Let T : D(T ) → Y be an operator between normed spaces X and Y , where
D(T ) ⊂ X. We say that

(i) T is linear if T (αx1 + βx2) = αTx1 + βTx2 for all x1, x2 ∈ D(T ) and for all α, β ∈ R.

(ii) T is bounded if there exists a constant M > 0 such that ‖Tx‖Y ≤ M‖x‖X . The
smallest such M (if it exists) is called the operator norm of T , denoted ‖T‖L(X,Y ).
That is,

‖T‖L(X,Y ) := sup
x∈D(T )

‖Tx‖Y
‖x‖X

, x 6= 0.

(iii) T is injective if Tx1 = Tx2 implies that x1 = x2 ∀x1, x2 ∈ D(T ).

(iv) T is surjective if for all y ∈ Y there exists x ∈ D(T ) such that Tx = y.

(v) Let Y = R, then T is said to be corecive if ‖x‖X →∞ implies Tx→∞.

Definition 1.2 (Continuity of operators). Let T be an operator between normed spaces X
and Y . T is said to be continuous if it is continuous at each x ∈ X, that is, if for all ε > 0 there
exists a δ > 0 such that

‖Tx1 − Tx2‖Y < ε whenever ‖x1 − x2‖X < δ ∀x1, x2 ∈ X.

We say that T is Hölder continuous with exponent α if there exists α ∈ (0, 1] and C > 0 such
that

‖Tx1 − Tx2‖Y ≤ C‖x1 − x2‖αX , ∀x1, x2 ∈ X.

We say that T is Lipschitz continuous if it is Hölder continuous with exponent α = 1, that is,
There exists L > 0 such that

‖Tx1 − Tx2‖Y ≤ L‖x1 − x2‖X , ∀x1, x2 ∈ X.

If L < 1, we call T a contraction.

It is then clear that the following chain of implications holds:

T is Lipschitz continuous =⇒ T is Hölder continuous =⇒ T is continuous.

Let T be a linear operator. One can easily show that if T is bounded, then it is necessarily
continous, and vice versa. We define L(X,Y ) to be the space of all linear and continuous
operators from X into Y .
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Definition 1.3 (Dual space). The dual space of a normed space X is the collection of all
linear and continuous functionals defined on X, and is denoted V ∗ (= L(X,R)).

Remark 1.0.1. For T ∈ X∗, the action (or duality product) between X and X∗ will often be
written as 〈T, x〉X∗,X . To avoid confusion with the inner product of a Hilbert space, this notation
will be specified beforehand.

Definition 1.4. Let X and Y be normed spaces. A bilinear form a on X × Y is a mapping

a : X × Y → R

that is linear with respect to each arguments. That is, for x, x1, x2 ∈ X, y, y1, y2 ∈ Y and
c, d ∈ R, we have

a(cx1 + dx2, y) = ca(x1, y) + da(x2, y),

a(x, cy1 + dy2) = ca(x, y1) + da(x, y2).

If there exists a real number M > 0 such that for all x ∈ X and y ∈ Y , we have

|a(x, y)| ≤M‖x‖Y ‖y‖Y ,

then a is said to be bounded. The smallest such M is called the norm of a, and is denoted
‖a‖L(X×Y,R). Moreover, we define L(X × Y,R) to be the space of all bounded linear operators
defined on X × Y .

Definition 1.5 (Adjoint operator). Let X and Y be normed spaces and let T ∈ L(X,Y ).
The adjoint operator T ∗ : Y ∗ → X∗ of T is defined by

〈T ∗g, x〉X∗,X = 〈g, Tx〉Y ∗,Y for g ∈ Y ∗, x ∈ X.

Theorem 1.1. Let X and Y be Banach spaces and let T ∈ L(X,Y ) be an operator. Then there
exists a unique linear and continuous adjoint operator T ∗ of T . Moreover, T ∗ satisfies

‖T ∗‖L(Y ∗,X∗) = ‖T‖L(X,Y ).

Definition 1.6 (Annihilator). Let M be a nonempty subset of a normed space X. The
annihilator M⊥ of M in X is the set of all φ ∈ X∗ that are zero everywhere on M . That is,

M⊥ := {φ ∈ X∗ | φ(m) = 0 ∀m ∈M}.

In the case of a Hilbert space H and a closed subspace Y of H, we shall denote Y ⊥ the orthogonal
complement of Y in H, defined as

Y ⊥ := {v ∈ H | 〈y, v〉H = 0 ∀y ∈ Y }.

Proposition 1.1. Let M be a subspace of a Banach space X with M⊥ = {0}. Then M is dense
in X.

Remark 1.1.1. This result also holds for orthogonal complements in Hilbert spaces. Also, if Y
is a closed subspace of a Hilbert space H, then

H = Y ⊕ Y ⊥.

That is, for y ∈ Y, z ∈ Y ⊥, we can represent an element x ∈ H as x = y + z.
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The next theorem is a very important result in functional analysis and will be used in the
proof of the existence and uniqueness theorems in Chapter 2, and can be found in [22], p. 188
& 192):

Theorem 1.2 (The Riesz Representation Theorem). Let W,V be Hilbert spaces,
a ∈ L(W ×V,R), and f ∈ V ∗. Then there exist an operator A ∈ L(W,V ) and an element z ∈ V
such that

a(u, v) = 〈Aw, v〉V and f(v) = 〈z, v〉V ,

where A and z are uniquely determined by a and f , respectively, and have norms

‖A‖L(W,V ) = ‖a‖L(W×V,R), and ‖z‖V = ‖f‖V ∗ .

1.2 Monotone Operators

The definitions and results of this section are collected from [15, 39], and will be regularly
referenced in chapters 3 and 4 when we discuss the behavior of operators that may be non-
linear (as opposed to Definition 1.1 (i)). Let X be a Banach space and A : X → X∗ an
operator. Consider the problem:

Given f ∈ X∗,find u ∈ X such that Au = f. (P1)

We shall now discuss the assumptions required to prove existence and uniqueness of Problem
(P1). As a simple example, we study the case where X = R, given in [39] (page 471):

Let f : R→ R. Consider the problem:

Given y ∈ R, find x ∈ R such that f(x) = y. (P2)

If f is continuous and f → ±∞ as x → ±∞, the Intermediate Value Theorem (as found in
elementary texts on Calculus) states that f takes any value on the interval (−∞,∞). This gives
the existence of x. For the uniqueness of a solution we note that if we assume f to be strictly
increasing (see Figure 1.2), i.e. if f ′(x) > 0 ∀x ∈ R, it will only pass through points in R once.

x

y

f

Figure 1.1: A strictly increasing function.

Therefore we conclude that if f is continuous, strictly increasing and if f → ±∞ as x→ ±∞,
then there exists a unique x ∈ R solving Problem (P2). To extend this analysis to Problem
(P1), we first generalize the definition of an ”increasing function”:
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Definition 1.7. Let X be a Banach space, A : X → X∗ an operator, and 〈·, ·〉 the duality
product between X and X∗. Then

(i) A is called monotone if

〈Au−Av, u− v〉 ≥ 0 ∀u, v ∈ X.

(ii) A is called strictly monotone if

〈Au−Av, u− v〉 > 0 ∀u, v ∈ X, u 6= v.

(iii) A is called strongly monotone if ∃ c > 0 such that

〈Au−Av, u− v〉 ≥ c‖u− v‖2 ∀u, v ∈ X.

(iv) A is called coercive if Au ∈ X∗ is coercive. That is, if

lim
‖u‖→∞

〈Au, u〉
‖u‖

→ ∞.

In most of the results we prove in Chapter 3, we will assume X to be a Hilbert space,
and the non-linearity to be strongly monotone as in Definition 1.7 (iii) and increasing. If we
furthermore assume that A(0) = 0, we have the estimate

〈Au, u〉 ≥ c‖u‖2.

Let Ax,Ay ∈ Im(A) with Ax = Ay. Then Ax − Ay ∈ X∗ is the zero functional. We observe
that if A is a strictly monotone operator as in (ii), then we must necessarily have x = y. This
establishes the uniqueness.

The property f → ±∞ as x → ±∞ implies coercivity for Problem (P2). We have X =
X∗ = R, ‖ · ‖ = | · | and thus

〈f(x), x〉
‖x‖

=
f(x)x

|x|
→ ∞ as |x| → ∞.

The next result we present is the Minty-Browder Theorem. This gives sufficient conditions
for an operator to be surjective, which is equivalent to the existence of a solution of Problem
(P1). The proofs of the following theorems are in [15], sections 9.13 and 9.14.

Definition 1.8 (Hemicontinuity). Let X be a normed vector space. A mapping A : X → X∗

is said to be hemicontinuous if, given any u, v, w ∈ X, there exist t0 = t0(u, v, w) > 0 such that
the function

t ∈ (−t0, t0) 7→ 〈A(u+ tv), w〉 ∈ R,
is continuous at t = 0.

Theorem 1.3 (The Minty-Browder Theorem). Let X be a real separable Banach space and
A : X → X∗ a coercive and hemicontinuous monotone operator. Then there exists a solution of
Problem (P1) ∀f ∈ X∗. If A is strictly monotone, the solution is unique.

Remark 1.3.1. Note that the existence implies surjectivity of A, while the uniqueness implies
injectivity. Thus A is bijective.

Theorem 1.4. Let X be a finite-dimensional normed vector space and let A : X → X∗ be a
hemicontinuous operator. Then A is continuous.

The problems encountered in Chapter 3 will be attached to finite-dimensional spaces, so the
choices of properties for the non-linearities will be motivated by the hypothesis of Theorem 1.4
in combination with Theorem 1.3.
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1.3 Function Spaces

In this section the function spaces we will utilize later on is given. These definitions and results
are from [17]. We will present some theory about the structural properties of Sobolev spaces,
which will prove to be very useful for analysis of partial differential equations.

Definition 1.9. Let Ω be an open subset of Rn and 1 < p < ∞. We define Lp(Ω) to be the
space of all measurable functions f : Ω→ R for which ‖f‖Lp(Ω) <∞, where

‖f‖Lp(Ω) :=

(∫
Ω
|f |pdx

)1/p

.

Remark 1.4.1. It can be shown that the space L2(Ω) is a Hilbert space with inner product

〈f, g〉 :=

∫
Ω
fg dx.

Definition 1.10. We define the space of test functions

C∞c (Ω) :=
{
f ∈ C∞(Ω) | f has compact support

}
.

Furthermore, let L1
loc(Ω) is the space of all integrable functions on every compact subset of Ω.

Let u, v ∈ L1
loc(Ω). The function v is the αth weak partial derivative of u, written Dαu = v,

provided ∫
Ω
uDαφdx = (−1)|α|

∫
Ω
vφ dx,

for all test functions φ ∈ C∞c (Ω). If so, we say that the α-th partial derivative of u exists in the
weak sense.

Definition 1.11 (Mollifier). A sequence of mollifiers is any sequence {ρn}n of test functions
on Rd satisfying

supp(ρn) ⊂ B1/n(0),

∫
Rd
ρndx = 1, ρn ≥ 0 on Rd.

The sequence of standard mollifiers {ηj}j is defined as ηj := jdη(jx) for x ∈ Rd, such that

η(x) :=

Ce
(

1
|x|2−1

)
, if |x| < 1,

0, if |x| ≥ 1,

where C ∈ R is chosen such that {ηj}j is a sequence of mollifiers.

Remark 1.4.2. One can check that η ∈ C∞c (Rd). Moreover, supp(ηj) ⊂ B1/j(0).

Proposition 1.2. Assume f ∈ C(Ω), and let {ρn}n be a sequence of mollifiers. Then ρn∗f → f
uniformly as n→∞ on every compact subset of Rd. Moreover, let

Ωε := {x ∈ Ω | dist(x,Rn − Ω) > ε}, (1.1)

for all open Ω ⊂ Rn. Then ρ ∗ f ∈ C∞(Ωε) for all ε > 0.
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Definition 1.12 (Sobolev spaces). Let k ∈ N and 1 ≤ p ≤ +∞. The Sobolev space W k,p(Ω)
is the space of all functions f : Ω → R whose 1, . . . , k-th order partial derivatives belong to
Lp(Ω) in the weak sense. That is,

W k,p(Ω) :=
{
f ∈ Lp(Ω) | ∃ Dαf̃ ∈ Lp(Ω) for all multi-indices |α| ≤ k

}
.

For u ∈W k,p(Ω), a norm on W k,p(Ω) is defined as

‖u‖Wk,p(Ω) :=

( ∑
|α|≤k

∫
Ω
‖Dαu‖pLp(Ω)

)1/p

,

for 1 ≤ p < +∞, and

‖u‖Wk,∞(Ω) :=
∑
|α|≤k

ess sup
Ω
|Dαu|.

Remark 1.4.3. It can be shown that the space Hk(Ω) := W k,2(Ω) is a Hilbert space.

The work in this paper will mostly be focused on the Hilbert space H1(Ω) := W 1,2(Ω), which
is the space of functions with a first-order weak derivative in L2(Ω). This has norm which we
from here on will denote by ‖ · ‖1 := ‖ · ‖H1(Ω). For u ∈ H1(Ω) we have

‖u‖1 :=

(∫
Ω
|u|2 + |∇u|2 dx

)1/2

.

Definition 1.13. We define the space W k,p
0 (Ω) as the closure of C∞c (Ω) in W k,p(Ω).

Remark 1.4.4. W k,p
0 (Ω) can and will be interpreted as the space of functions that have Dαu = 0

on the boundary of Ω ∀|α| ≤ k − 1. So, H1
0 (Ω) will be defined as

H1
0 (Ω) :=

{
f ∈ H1(Ω) | f = 0 on ∂Ω

}
.

This space is highly relevant for studying PDEs with homogeneous Dirichlet boundary condi-
tions.

Definition 1.14. We denote by H−1(Ω) the dual space of H1
0 (Ω).

Remark 1.4.5. H1
0 ⊂ L2(Ω) ⊂ H−1(Ω).

Next, Bochner spaces will create a Sobolev space structure for functions that also possess a
time variable. As an illustration. let T > 0 be a real number. If u = u(t, x) : [0, T ]×Ω→ R and
u(t, x) ∈ L2(Ω) for all t ∈ [0, T ], we look at u as a mapping from [0, T ] into L2(Ω). Indeed, this
generalizes the concept of Lp-spaces to functions with range in Banach spaces (not necessarily
just the real numbers).

For a summary of measure theory, we refer to [17], Appendix E.

Definition 1.15 (Bochner spaces). Let X be a Banach space, and T > 0. The space
Lp(0, T ;X) consists of all Bochner measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) :=

(∫ T

0
‖u(t)‖pX dt

)1/p

<∞,

for 1 ≤ p <∞ and
‖u‖Lp(0,T ;X) := ess sup

0≤t≤T
‖u(t)‖X <∞.
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In the context of Bochner spaces, a weak derivative of L1(0, T ;X) means that ∃ v ∈
L1(0, T ;X) such that ∫ T

0
φ′(t)u(t) dt = −

∫ T

0
φ(t)v(t) dt,

for all φ ∈ C∞0 (0, T ).

Definition 1.16 (Weak derivatives in Bochner spaces). Let X be a Banach space. The
Sobolev space W 1,p(0, T ;X) consists of all u ∈ Lp(0, T ;X) such that ∂tu exists in the weak
sense and belongs to Lp(0, T ;X). Furthermore,

‖u‖W 1,p(0,T ;X) :=

(∫ T

0
‖u(t)‖pX + ‖∂tu(t)‖pX dt

)1/p

<∞,

for 1 ≤ p <∞ and

‖u‖W 1,p(0,T ;X) := ess sup
0≤t≤T

{
‖u(t)‖X + ‖∂tu(t)‖X

}
<∞.

1.4 Embeddings

The theory in this section is from [17].

Here we will provide a short discussion on convergence of sequences and some compactness
arguments. This will be used in later chapters, where if we cannot prove existence and unique-
ness with the methods we apply, we construct a similar problem. For this similar problem, we
prove existence and uniqueness, and then apply the theory of this chapter to prove that there
can be constructed a sequence of solutions for the similar problem which converge to a solution
of the original problem.

Let X be a normed vector space with norm ‖ · ‖X . We say that a sequence {xn}n in X
converges weakly to x ∈ X if for every φ ∈ X∗ we have φ(xn) → φ(x) as n → ∞. We denote
this by

xn ⇀ x ∈ X as n→∞.

A sequence {xn}n is bounded in X if there exists a constant M > 0 such that ‖xn‖X ≤ M for
all n ∈ N.

Remark 1.4.6. It can be shown that if X is finite-dimensional, weak convergence is equivalent
to strong convergence.

We begin with an essential result:

Theorem 1.5 (Eberlein-Šmuljan). Let X be a reflexive normed space and {xn}n a bounded
sequence in X. Then there exists a subsequence {xnk}k ⊂ {xn}n and x ∈ X such that

xnk ⇀ x ∈ X.

Definition 1.17 (Continuous embedding). Let X,Y be normed spaces. We say that X is
continuously embedded in Y if X ⊂ Y and ∃ c > 0 such that

‖u‖Y ≤ c‖u‖X u ∈ X.

We write
X ↪→ Y.
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Definition 1.18 (Compact embedding). Let X,Y be Banach spaces and X ⊂ Y . We say
that X is compactly embedded in Y , written X ⊂⊂ Y , provided X is continuously embedded in
Y and that each bounded sequence in X has a convergent subsequence in Y .

Theorem 1.6 (The Trace Theorem). Let Ω be a bounded domain with Lipschitz continuous
boundary ∂Ω. Then there exists a c > 0 such that

‖u‖Lp(∂Ω) ≤ c‖u‖W 1,p(Ω) ∀u ∈ C1(Ω̄).

Remark 1.6.1. This tells us that there exists a linear and continuous mapping

γ : W 1,p(Ω)→ Lp(∂Ω),

which we call the trace operator.

Remark 1.6.2. In the problems we will be studying, we usually consider a boundary condition
for a PDE. When reducing the problem to a weak formulation, the trace operator allows us to
go smoothly from the domain to its boundary even though the boundary may be of measure
zero.

Next, the Rellich-Kondrachov Theorem is an interesting and useful tool for proving existence
and uniqueness of continuous variational formulations in Sobolev spaces. As we will talk about in
Section 1.7, the Galerkin method focuses on defining and finding solutions to discrete problems,
and next, showing that there is a sequence converging to the solution of the original problem.
To show convergence, one often show it in the Lp(Ω)-norm for a relevant p and then use the
Rellich-Kondrachov Theorem to say that the Sobolev space in which we seek a solution in is
compactly embedded in Lp(Ω).

Theorem 1.7 (Rellich-Kondrachov). Let Ω ∈ Rd be open, bounded with ∂Ω ∈ C1. Suppose
1 ≤ p < n and let p∗ := pn

n−p . Then there holds

W 1,p(Ω) ⊂⊂ Lq(Ω),

for each 1 ≤ q < p∗.

1.5 Inequalities

The theorems in this section are from [17], and will just be stated in short here and referenced
frequently in chapters 3 and 4.

Theorem 1.8 (The Cauchy-Schwarz Inequality). Let H be a Hilbert space with inner
product 〈·, ·〉. Then

|〈u, v〉| ≤ ‖u‖H‖v‖H ∀ u, v ∈ H.

Theorem 1.9 (The Young Inequality). Let a, b ∈ R, 1 < p, q < ∞ with 1
p + 1

q = 1. Then,
for any ε > 0,

|ab| ≤ εa
2

p
+ ε−1 b

2

q
.

Theorem 1.10 (The Poincaré Inequality). Assume Ω ∈ Rn is open and bounded. Let
p ∈ [1,∞]. Then there exists a constant C = C(Ω, p) such that for every u ∈W 1,p(Ω),

‖u‖Lp(Ω) ≤ C‖Du‖Lp(Ω).
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1.6 A First Look at a Weak Formulation

To start off the study of existence and uniqueness of variational formulations motivated by
partial differential equations, let us consider the Poisson equation as an example. Let Ω ⊂ Rn
be an open, bounded domain, and f ∈ L2(Ω). We seek a solution to the problem:{

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(A)

Let V be some function space we have yet to define, and let v ∈ V . If we multiply both
sides of the equation (A) by v and integrate over Ω, we get

−
∫

Ω
(∆u)v dx =

∫
Ω
fv dx.

Next, we integrate by parts (assuming this is well defined for v). If we furthermore suppose
that v also satisfies the boundary condition v = 0 on ∂Ω, we obtain the equation∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx, (1.2)

where the boundary term is removed because of the properties of v. If we now define the space
V to be

V := H1
0 (Ω)

and say that we seek a solution u satisfying (1.2), the problem becomes equivalent to the
variational formulation

Find u ∈ H1
0 (Ω) such that a(u, v) = f(v) ∀v ∈ H1

0 (Ω), (B)

where a(u, v) :=
∫

Ω∇u · ∇v dx is a bilinear form (linear in each argument separately) and
f(v) :=

∫
Ω fv dx is a linear functional.

It is interesting to note that the original Problem (A) has been reduced to a weaker statement
in Problem (B): The functions in C2(Ω) which takes zero as value on the boundary are included
in H1

0 (Ω). From here on we will often call variational formulations derived in the same manner
as (B) weak formulations. The space in which we seek a solution u is called the solution space,
while the space of all v we call the test space. A problem for which the test and solution space
are the same, as in (B)), is called a Galerkin formulation. If they are different, it is termed a
Petrov-Galerkin formulation.

In the next chapter we will state the necessary and sufficent properties this type of problem
must posess in order to prove the existence and uniqueness of such a function u. For now, we
note the following properties for the bilinear form a(·, ·) in Problem (B):

(i) a(·, ·) is bounded: let u, v ∈ H1
0 (Ω). Then

|a(u, v)| ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ ‖u‖H1(Ω)‖v‖H1(Ω),

which follows from the Cauchy-Schwarz inequality (Theorem 1.8).

(ii) a(·, ·) is coercive. We can show this by using the Poincaré inequality (Theorem 1.10). Let
v ∈ H1

0 (Ω). Then ∃ m > 0 such that

a(v, v) = ‖∇v‖2L2(Ω) ≥ m‖v‖
2
H1(Ω).
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1.7 The Finite Element Method

The theory of this section is extracted from [15, 16].

Consider the problem

Find u ∈ V such that a(u, v) = f(v) ∀v ∈ V, (G)

where V is a Hilbert space, the bilinear form a : V × V → R is bounded and coercive, and
f ∈ V ∗. The standard way to find an approximate solution of a Galerkin formulation is the
Galerkin method. In this method, we find a finite-dimensional subspace Vh ⊂ V and consider
the discrete problem:

Find uh ∈ Vh such that a(uh, vh) = f(vh) ∀vh ∈ Vh. (Gh)

as we will see in the next chapter, existence and uniqueness of Problem (G) can be proved with
the Lax-Milgram Theorem (Theorem 2.4). For the discrete problem (Gh), we can also apply
the same theorem, since a finite-dimensional subspace of a Hilbert space is in its own right a
Hilbert space (see [22]).

Let us illustrate the convergence by means of assuming the Hilbert space H is separable (see
[22]). If so, there exists a sequence of finite-dimensional subspaces {Vh}h ∈ H (of dimension
h) such that

⋃
h∈N Vh is dense in H (see [15], Theorem 2.2-7). Therefore, if we can find unique

solutions uh of Problem (Gh) for each Vh, then {uh}h forms a sequence that may converge to
a solution u ∈ V for Problem (G). The Eberlein-Šmuljan Theorem (Theorem 1.5) will give
existence of a subsequence of {uh}h converging to some u ∈ V , and we further need to show
that this is the solution we seek. Mind that this is just a sketch, and is only meant to be used
as an ideal example. The expressions we consider in the next chapters will be of a different
complexity than Problems (G) and (Gh).

The Finite Element method is related to the Galerkin method, where we specify the con-
struction of the space Vh and focus on solving Problem (Gh). In the analysis presented later
on in the thesis, u := u(t, x) is a function of time and space. So our objective is to discretize a
function space, which will require us to first partition the time and space, and next the functions
defined on each element of the partition.

We discretize the time with step length τ > 0. So for t ∈ (0, T ], where T > 0 is the final
time, we characterize the time steps as tn := nτ , where n ∈ {1, . . . , N} for τ = T

N (see Figure
1.7).

t
tn tn+1

τ

Figure 1.2: A time discretization.

We will usually discretize the possible time derivatives in the variational formulations derived
from partial differential equations through the Backward Euler method, where we approximate

∂tu(tn, x) ≈ u(tn, x)− u(tn−1, x)

τ
.

at time step tn.
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For the spatial discretization, we will assume that the domain Ω ∈ Rd can be partitioned
into d-simplices. We denote this as a triangulation Th over the set Ω (see Figure 1.7). That is,
Ω is subdivided into a finite number of subsets K (called finite elements), satisfying

(i) Ω =
⋃
K∈Th K

(ii) For each K ∈ Th, the set K is closed, and the interior of K is nonempty.

(iii) For each distinctive K1,K2 ∈ Th, the interiors of K1 and K2 do not intersect.

(iv) For each K ∈ Th, the boundary ∂K is Lipschitz continuous.

Figure 1.3: A triangularization of a square domain.

Next, one defines a function space over each K, called a finite element space. This space
should be finite-dimensional. These are often referred to in later chapters as discrete subspaces
of the test and solution spaces. The finite element spaces we will consider will either be spaces
of constant functions or piecewise polynomial on each element K.

The solution is constructed from a set of basis functions for the finite element space, de-
fined on each element K. We will not go into detail and show explicit calculations on how this
is further analysed. For a more detailed explanation and concrete examples, we refer to [7, 9, 16].

In chapters 3 and 4, we will also encounter mixed finite elements, which will be based on the
introduction of a new variable in the variational formulation motivated by a partial differential
equation. There we will define two finite element spaces and seek solutions for our problems in
both of them simultaneously.
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Chapter 2

Linear Problems

In this chapter we will go through the necessary and sufficient conditions needed for proving
existence and uniqueness for linear variational formulations in general. We will study problems
of the type:

Find u ∈W such that a(u, v) = 〈f, v〉V ∀v ∈ V, (2.1)

where a(·, ·) : W ×V → R is a bilinear form and f ∈ V ∗ is a continuous linear functional. First,
in Section 2.1, we present the Open Mapping Theorem and Closed Range Theorem, which are
essential results for proving the existence and uniqueness theorems. Section 2.2 deals with the
case of Problem (2.1) for which W and V are Hilbert spaces. We prove the theorems for W = V
(the Lax-Milgram Theorem) and W 6= V (the Babuška-Lax-Milgram Theorem).

In the final Section 2.3, we prove a result for W 6= V , with W and V being Banach spaces
(the Banach-Nečas-Babuška Theorem).

2.1 Central Results

To be able to construct the proofs of the existence and uniqueness theorems for linear variational
formulations, we will revisit the cornerstones of functional analysis. First, we present the
Baire Category Theorem, which will be used in the proof of the Open Mapping Theorem
(Theorem 2.2). The results in this section are from [8].

Theorem 2.1 (the Baire Category Theorem). Let X be a complete metric space and let
{Xn}n be a sequence of closed subsets in X with empty interior. Then

Int(
∞⋃
n=1

Xn) = ∅.

Or, equivalently; let
⋃∞
i=1Xn = X. Then there exists a non-empty closed subset Xn0 ⊂ X for

some n0 ∈ N.

Definition 2.1 (Open mapping). Let X,Y be metric spaces. Then T : D(T ) → Y with
domain D(T ) ⊂ X is called an open mapping if for every open set in D(T ) the image is an open
set in Y .

Theorem 2.2 (The Open Mapping Theorem). Let E,F be Banach spaces, T ∈ L(E,F )
surjective. Then T is an open mapping.

Proof. It suffices to show that T maps the open unit ball to a neighbourhood of the origin of
F. This proof will consist of two steps:

13



(i) Assume that T ∈ L(E,F ) is surjective. Then there exists a c > 0 such that

T (BE(0, 1)) ⊃ BF (0, 2c).

(ii) Assume that T satisfies step 1. Then

T (BE(0, 1)) ⊃ BF (0, c),

which is the desired result.

Proof of step 1. Define U = BE(0, 1) and Xn = nT (U), n ∈ N. Since T is surjective and linear,

F = T (E) = T
( ∞⋃
n=1

nU
)

=
∞⋃
n=1

nT (U) =
∞⋃
n=1

Xn.

It is immaterial if we use the union of the closed sets because F is complete. Combining this
with the fact that each Xn is closed, we make use of the Baire theorem: there exists k ∈ N
such that Int(Xk) 6= ∅. This implies that X1 must contain an open ball. Let v ∈ BF (0, 1). Pick
c > 0 and y0 ∈ F satisfying

BF (y0, 4c) ⊂ X1,

then y0, y0 + cv ∈ BF (y0, 4c). By this and continuity, we get

4cv ∈ BF (y0, 4c) +BF (y0, 4c) ⊂ 2X1,

and so 2cv ∈ X1. v ∈ BF (0, 1) is equivalent to 2cv ∈ BF (0, 2c), which gives

BF (0, 2c) ⊂ X1.

�

Proof of step 2. Choose y ∈ BF (0, c). Our goal is to find x ∈ E such that

‖x‖E < 1, Tx = y.

By the previous step, we can find z ∈ BE(0, 1
2) such that ∀ ε > 0, ∃ z ∈ E such that

‖z‖E <
1

2
, and ‖y − Tz‖F < ε.

Let ε = c
2 . Then ∃ z1 ∈ E such that

‖z1‖E <
1

2
, and ‖y − Tz1‖F <

c

2
.

We can keep this process going: since Tz1 − y ∈ BF (0, c2), ∃ z2 ∈ BE(0, 1
4) ⊂ E such that

‖z1‖E <
1

4
, and ‖(y − Tz1)− Tz2‖F <

c

2
.

Hence we obtain a sequence {zn}n satisfying

‖zn‖E <
1

2n
, and ‖y − T (z1 + z2 + ...+ zn)‖F <

c

2n
.

It is easy to see that xn := z1 + ... + zn is a Cauchy sequence converging to some x ∈ E with
‖x‖E < 1. Also, by continuity; xn → x =⇒ Txn → Tx = y.

�

14



This concludes the proof.

The next result is an immediate consequence of Theorem 2.2:

Corollary 2.2.1 (Continuous inverse). Let E,F be Banach spaces, T ∈ L(E,F ) bijective.
Then T−1 : F → E is continuous.

Theorem 2.3 (Closed Range). Let X,Y be Banach spaces, A ∈ L(X,Y ). The following
statements are equivalent

(i) Im(A) is closed,

(ii) Im(A∗) is closed,

(iii) Im(A) = (Ker(A∗))⊥,

(iv) Im(A∗) = (Ker(A))⊥.

2.2 Existence and Uniqueness in Hilbert Spaces

Let V be a Hilbert space, a(·, ·) : W × V → R a bilinear form, f ∈ V ∗. Consider the Petrov-
Galerkin formulation

Find u ∈W such that a(u, v) = 〈f, v〉V ∀v ∈ V, (2.2)

which can be deduced from a boundary-value problem like (A) in Chapter 1. Now, we may ask,
what are the sufficient conditions for existence and uniqueness of a solution for this problem?
We will observe that the facts explored in Section 1.6 with the Poisson equation will be exactly
what is needed.

2.2.1 Lax-Milgram Theorem

In this subsection we assume W = V in Problem (2.2). To write a proof of the Lax-Milgram
Theorem, we first establish this simple (but powerful) result:

Lemma 2.1. Let X,Y be Banach spaces and let T ∈ L(X,Y ) be injective. Then T has closed
range if and only if there exists c > 0 such that

‖Tx‖Y ≥ c‖x‖X ∀x ∈ X.

Proof. Assume the range of T to be closed in Y . Then by the continuous inverse Corollary
(Corollary 2.2.1), T : X → Im(T ) admits a continuous inverse, that is, there exists c > 0 such
that

‖T−1y‖X ≤ c‖y‖Y ∀ y ∈ Im(T ).

This further implies
‖x‖X ≤ c‖Tx‖Y ∀ x ∈ X.

Conversely, let ‖Tx‖Y ≥ c‖x‖X for all x ∈ X. Let {yn}n ∈ Im(T ) be a sequence converging
to y ∈ Y , Txn = yn for all n ∈ N. Then

‖yn − ym‖Y ≥ c‖xn − xm‖X ∀m,n ∈ N,

so {xn}n is a Cauchy sequence in X. Thus xn → x ∈ X. By continuity of T , we have
Txn → Tx ∈ Im(T ) and Tx = y. Hence Im(T ) is closed, and the proof is complete.
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The next theorem is the much celebrated Lax-Milgram Theorem. It is a remarkable result,
and was proved by Peter Lax and Arthur Milgram in 1954 (see [25]).

Theorem 2.4 (The Lax-Milgram Theorem). Let W = V be a Hilbert space and a ∈
L(V × V ;R) a continuous bilinear form which is coercive, i.e.

a(v, v) ≥ m‖v‖2V ∀ v ∈ V, m ∈ R.

Then for any f ∈ V ∗, there exist a unique solution of (2.2). Furthermore, the following estimate
holds:

m‖u‖V ≤ ‖f‖V ∗ . (2.3)

Proof. Pick w ∈ V . Define the operator Aw as Aw(v) := a(w, v) for all v ∈ V . Then Aw ∈ V ∗
because it is linear (a is bilinear) and bounded: for fixed w ∈ V , there exists M > 0 such that

|Aw(v)| = |a(w, v)| ≤M‖v‖V .

Then Aw(v) = f(v) for all v ∈ V . Now we can define A : V → V ∗ as Av = Av for all v ∈ V .
The operator A ∈ L(V, V ∗), because A is linear and by

‖Aw‖V ∗ = ‖Aw‖V ∗ = sup
v∈V

|Aw(v)|
‖v‖V

≤M‖w‖V ,

A is bounded.
The task now is to prove that A is bijective. First, for the error estimate in equation (2.3),

we have

‖f‖V ∗ = ‖Aw‖V ∗ = sup
v∈V

〈Aw, v〉V ∗,V
‖v‖V

≥ a(w,w)

‖w‖V
≥ m‖w‖V , (2.4)

for fixed w ∈ V . From this follows injectivity: let w1, w2 ∈ V be such that Aw1 = Aw2. Then
by the result in equation (2.4) we have

0 = ‖Aw1 −Aw2‖V ∗ = ‖A(w1 − w2)‖V ∗ ≥ m‖w1 − w2‖V . (2.5)

By Lemma 2.1, Im(A) is closed.
The orthogonal complement of Im(A) is given by

[Im(A)]⊥ := {ψ ∈ V ∗ | 〈ψ, φ〉V ∗ = 0 ∀φ ∈ Im(A)}.

Since V is a Hilbert space, there exist unique vψ, vφ ∈ V related to ψ, φ such that 〈ψ, φ〉V ∗ =
〈vψ, vφ〉V = 0. This implies that vψ = 0 and thus 〈vψ, v〉V = ψ(v) = 0 ∀v ∈ V , so ψ is the
zero functional and therefore

[Im(A)]⊥ = {0}.

This implies that Im(A) is dense in V ∗.

2.2.2 Babuška-Lax-Milgram Theorem

The next result is due to Ivo Babuška (1971) [4], and provides a significant generalization to the
Lax-Milgram Theorem (Theorem 2.4) to problems posed with a Petrov-Galerkin formulation in
Hilbert spaces.

Theorem 2.5 (Babuška-Lax-Milgram). Let W,V be Hilbert spaces and a ∈ L(W,V ). As-
sume that
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(i) a is weakly coercive (inf-sup). That is, ∃α > 0 such that

inf
w∈W
u6=0

sup
v∈V
v 6=0

|a(w, v)|
‖w‖W ‖v‖V

≥ α. (2.6)

(ii) Let v ∈ V, v 6= 0 be fixed. Then
sup
w∈W

|a(w, v)| > 0. (2.7)

Then there exists a unique u ∈ W that solves (2.2). Moreover, there exists M > 0 such that u
satisfies

‖u‖W ≤M‖f‖V ∗ (2.8)

Proof. By the Riesz Representation Theorem (Theorem 1.2), there exists A ∈ L(W,V ) such
that

〈Aw, v〉V = a(w, v)

and a furthermore a representative z ∈ V for f ∈ V ∗. We obtain the equivalent problem of
finding u ∈W such that

Au = z.

We need to prove that A is bijective. The inf-sup condition in (i) gives

α ≤ inf
w∈W
u6=0

sup
v∈V
v 6=0

|a(w, v)|
‖w‖W ‖v‖V

≤ inf
w∈W
u6=0

sup
v∈V
v 6=0

‖Aw‖V ‖v‖V
‖w‖W ‖v‖V

= inf
w∈W
u6=0

‖Aw‖V
‖w‖W

, (2.9)

which implies ‖Aw‖V ≥ α‖w‖W and injectivity follows as in equation (2.5). To show surjectivity,
we prove that Im(A) = V . That is, Im(A) is closed and dense in V . The fact that A has closed
range follows directly from Lemma 2.1.

Im(A) is a subspace of a Hilbert space V . Let y ∈ V be chosen such that

〈Aw, y〉V = 0 ∀ w ∈W.

Then a(w, y) = 0 and supw∈W |a(w, y)| = 0. This contradicts our hypothesis unless y = 0, and
so [Im(A)]⊥ = {0}. Thus Im(A) is dense in V .

The error estimate (2.8) is derived directly from (2.9): There exists M > 0 such that

‖u‖W ≤
1

α
‖Au‖V = M‖f‖V ∗ .

This concludes the proof.

2.3 Existence and Uniqueness in Banach Spaces

From the proofs presented in the previous existence and uniqueness theorems, it is clear that it
is equivalent to consider the problem

Find u ∈W such that Au = f, (2.10)

where A : W → V ∗ and f ∈ V ∗. Before we start to talk about existence and uniqueness for the
case of V,W being Banach spaces, we want to find necessary conditions for A to be bijective.
The Banach space version of our model problem reads:

Find u ∈W such that a(u, v) = 〈f, v〉V ∗,V ∀v ∈ V. (2.11)
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Let T ∈ L(X,Y ). By now it is clear that the bounding property in Lemma 2.1:

‖Tx‖Y ≥ c‖x‖X ∀x ∈ X,

is equivalent to saying that T is injective and has closed range. If T has the bounding property,
then Ker(T ) = {0} and thus by the Closed Range Theorem (Theorem 2.3), T ∗ has closed range
and Im(T ∗) = [Ker(T )]⊥ = {0}⊥ =⇒ Im(T ∗) dense in X∗, so T ∗ is surjective. This process
can also be reversed : if the previous hold, then T ∗ injective =⇒ T surjective. We obtain the
result

T bounding and T ∗ injective =⇒ T bijective.

We will apply this result to prove the next theorem. Condition (i) in Theorem 2.6 will imply
that A is bounding, while condition (ii) will imply that A∗ is injective.

We could of course have this reasoning in the previous theorems for Hilbert spaces, but this
spices things up a bit, and it is fun and fruitful to construct different proofs. It is worth noting
that we require V to be reflexive. We need this for the process to go smoothly when we define
the adjoint operator A∗ : (V =) V ∗∗ →W ∗ for Problem (2.10).

The next theorem can be found in [19], and is often referred to as the Banach-Nečas-Babuška
Theorem, or in short the BNB Theorem. It was first stated in 1962 by Jindřich Nečas [27], and
popularized by Ivo Babuška in 1972 [5]. The proof of this theorem will be a direct consequence
of the Open Mapping Theorem (Theorem 2.2) and the Closed Range Theorem (Theorem 2.3),
and this is from where Stefan Banach gets his name attatched to the results, which were proved
in his 1932 groundbreaking work Théorie des opérations linéaires [6].

Theorem 2.6 (Banach-Nečas-Babuška). Let W be a Banach space and V a reflexive Banach
space. Let a ∈ L(W × V,R) and f ∈ V ∗. Then, (2.11) has a unique solution iff

(i) ∃ α > 0 such that

inf
w∈W

sup
v∈V

a(w, v)

‖w‖W ‖v‖V
≥ α.

(ii) Let v ∈ V . Then

a(w, v) = 0 ∀ w ∈W =⇒ v = 0.

Moreover, the following a priori estimate holds

‖u‖W ≤
1

α
‖f‖V ∗ ∀ f ∈ V ∗.

Proof. In the same way as in the proof of the Lax-Milgram Theorem (Theorem 2.4), we con-
struct the operators Aw ∈ V ∗ and A ∈ L(W,V ∗). This process should be seamless. By the
Theorem on the existence of a unique adjoint operator (Theorem 1.1), there exists a unique
A∗ ∈ L(V ∗∗,W ∗) = L(V, V ∗) defined by

〈Aw, v〉V ∗,V = 〈w,Av〉W,W ∗ = a(w, v) ∀w ∈W, ∀v ∈ V.

Assume (i), (ii) holds. We begin the proof by showing that A is bijective. Statement (i)
implies

‖Aw‖V ∗ ≥ α‖w‖W ∀w ∈W,

and so A has the bounding property. By this and linearity of A, Lemma 2.1 implies that Im(A)
is closed. (ii) implies that Ker(A∗) = {0}. By the Closed Range Theorem (Theorem 2.3),
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Im(A) = {0}⊥ =⇒ Im(A) dense in V ∗ and thus A is bijective.

Conversely, assume A is bijective. We want to show that this proves that the statements (i)
and (ii) hold. By Lemma 2.1, we have that

A injective
Im(A) = V ∗

V ∗ Banach

 =⇒ ‖Aw‖V ∗ ≥ α‖w‖W ∀w ∈W.

Combining this with the dual norm

‖Aw‖V ∗ = sup
v∈V

〈Aw, v〉V ∗,V
‖v‖V

= sup
v∈V

a(w, v)

‖v‖V
∀w ∈W,

implies the inf-sup condition (i). A is surjective and thus by the Closed range Theorem (Theo-
rem 2.3) we have Im(A) = [Ker(A∗)]⊥ = V ∗ =⇒ Ker(A∗) = {0}. A∗ is therefore injective, so
A∗v is the zero functional in W ∗ iff v = 0. Consequently,

〈A∗v, w〉W ∗,W = a(w, v) = 0 ∀w ∈W

implies that v = 0, which proves (ii).

This concludes the proof.

Remark 2.6.1. An interesting result which also follows from playing around with the Closed
Range Theorem ideas is that if T ∈ L(X,Y ) with X,Y Banach spaces, then

T bijective ⇐⇒ T ∗ bijective.
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Chapter 3

Non-linear Problems

Solving non-linear partial differential equations is extremely important as many of the real world
mathematical models are based on non-linear equations. The focus of this chapter is to explain
different methods for studying existence and uniqueness of such problems. Inspired by the ideas
of the previous chapter, we focus on the following type of variational formulations:

Let V be a Hilbert space and 〈·, ·〉V an inner product on V . Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V, where a(u, v) := 〈b(u), v〉V . (3.1)

As we will see later, many non-linear equations have this form (sometimes after applying a
variable transformation). It is also possible to extend the analysis to operators b : X → X∗,
where X is a Banach space and 〈·, ·〉X is the duality product between X∗ and X.

The existence and uniqueness of problems like (3.1) relies on the properties of the function
b : V → V . In our analysis, we will assume b to be a continuous monotone operator (see
definition 1.7), mapping R to R (thus giving a coefficient depending on the values of u). The
monotonicity is motivated by the Minty-Browder Theorem (see Section 1.2, page 4). For the
continuity, we look at the possibilities that follows if b is Lipschitz or Hölder continuous.

In section 3.1, we explore Fixed Point Theorems (Banach and Brouwer) and sketch how
they can be used to prove existence of a solution of variational formulations. The main part
of this chapter (section 3.2) is dedicated to an application of these ideas to a weak formulation
of a non-linear, possibly degenerate partial differential equation: the Richards equation. The
different types of properties for the coefficient function b(·) we will explore in this section are
as follows:

Case 1: b(·) linear with b(u) = u. We prove existence and uniqueness by using the Lax-
Milgram Theorem (Theorem 2.4).

Case 2: b(·) Lipschitz continuous and monotone. First we consider a linearization of the
variational formulation. Here we will prove (∃!) by Lax-Milgram (Theorem 2.4) and
show convergence to the original formulation by the Banach fixed point Theorem
(Theorem 3.1). Secondly, we will assume strong monotonicity for b(·) and show how
the Brouwer Fixed Point Theorem (Theorem 3.2) can be applied to prove existence
directly of the non-linear formulation. Lastly, we will also look at how we can extend
this to the weaker condition of b(·) being monotone increasing.

Case 3: b(·) Hölder continuous, monotone and bounded. We prove a similar result as in the
previous step, using the Brouwer Fixed Point Theorem.
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In Section 3.3, we extend the previous theory to the case of a coupling of two PDEs (the
Richards equation coupled with a transport equation) discretized through mixed finite elements.

In Figure 3.1 below, a flowchart of the results and the assumptions from which they are
derived from is given.

Fully discrete Richards
Equation scheme

Lipschitz
continuous

Hölder
continuous

Monotone
increasing

Strongly mono-
tone increasing

Strongly mono-
tone increasing

Strictly mono-
tone increasing

Linearization
scheme

Prove (∃!) by the
Brouwer Fixed
Point Theorem

Prove (∃!) by the
Brouwer Fixed
Point Theorem

Prove (∃!) by
the Brouwer
Fixed Point

Theorem, but
cannot let τ → 0Prove (∃!) by

Lax-Milgram
Theorem and

then apply
Banach Fixed

Point Theorem

Regularization
scheme

Prove (∃!) for
strictly monotone
increasing non-
linearity by the
Brouwer Fixed
Point Theorem

Figure 3.1: Flowchart of results derived in this chapter. The orange boxes represent the schemes,
the green assumptions, and the blue results.

3.1 Fixed Point Theorems

In this section we will give the proofs of two important fixed point theorems and discuss how
their applications for variational formulations. The most celebrated result is the Banach Fixed
Point Theorem:

Theorem 3.1 (The Banach Fixed Point Theorem). Let X be a Banach space, U a closed
subspace of X, and f : U → X Lipschitz continuous with Lipschitz constant L < 1. Assume
f(U) ⊆ U . Then (∃!) x∗ ∈ U such that f(x∗) = x∗. Moreover, the sequence defined by
xn = f(xn−1), n ≥ 1, with x0 chosen arbitrarily, converges to x∗. Further we have the a priori
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and a posteriori error estimates:

‖xk − x∗‖X ≤
L

1− L
‖xk − xk−1‖X ,

‖xk − x∗‖X ≤
Lk

1− L
‖x1 − x0‖X .

The proof follows the lines of [14].

Proof. Let ‖ · ‖ := ‖ · ‖X . Define a sequence xn := f(xn−1), n ≥ 1 as in the hypothesis, with
x0 ∈ U arbitrary. We will show that this is a Cauchy sequence. Let k ≥ 1. Then, by the
Lipschitz continuity of f(·),

‖xk+1 − xk‖ = ‖f(xk)− f(xk−1)‖ ≤ L‖xk − xk−1‖ ≤ · · · ≤ Lk‖x1 − x0‖. (3.2)

It follows by (3.2), the Lipschitz continuity of f(·) and the triangle inequality that for any
m > n > 1 ∈ N,

‖xm − xn‖ = ‖(xm − xm−1) + (xm−1 − xm−2) + · · ·+ (xn+1 − xn)‖

≤ ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ · · ·+ ‖xn+1 − xn‖

≤ (Lm−1 + Lm−2 + · · ·+ Ln)‖x1 − x0‖

= Ln(Lm−n−1 + Lm−n−2 + · · ·+ L)‖x1 − x0‖

≤ Ln 1

1− L
‖x1 − x0‖.

The last inequality is due to

L+ . . . Lm−n−1 ≤
∞∑
k=0

Lk =
1

1− L
,

for L < 1. Thus we obtain

‖xm − xn‖ → 0 as m,n→∞,

which implies that {xk}k is a Cauchy sequence. Since U ⊆ X is a closed subspace of a Banach
space, U is itself a Banach space, and thus xk ∈ U ∀k ≥ 1 gives the existence of some x∗ ∈ U
such that xn → x∗ in U . This proves the convergence of {xk}k to a fixed point x∗ = f(x∗).

For the uniqueness, assume that there exists fixed points x, y ∈ U with x 6= y. Then

‖x− y‖ = ‖f(x)− f(y)‖ ≤ L‖x− y‖

implies L ≥ 1, which contradicts the hypothesis that L < 1.

For the error estimates, let k ≥ 1. Then

‖xk − x∗‖ = ‖(xk+1 − xk)− (xk+1 − x∗)‖

≤ ‖xk+1 − xk‖ − ‖xk+1 − x∗‖

= ‖f(xk)− f(xk−1)‖+ ‖f(xk)− f(x∗)‖

≤ L‖xk − xk−1‖+ L‖xk − x∗‖,
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which yields the a posteriori error estimate

‖xk − x∗‖ ≤
L

1− L
‖xk − xk−1‖. (3.3)

The a priori error estimate is derived directly as a consequence of equations (3.2) and (3.3):

‖xk − x∗‖ ≤
Lk

1− L
‖x1 − x0‖.

this concludes the proof.

In the next section we will see an application of this theorem to a linearized version (an
iterative method) of a non-linear variational formulation. The process of showing that the
solution of the linear problem converges to the non-linear solution will follow two steps:

(i) Using the theory from Chapter 2 to prove existence and uniqueness for the linearized
problem.

(ii) Assuming that such a solution exists, we consider two consecutive solutions uin, u
i+1
n of

the linearized problem. Define a function F(uin) = ui+1
n , and show that it is Lipschitz

continuous with LF < 1.

Then the Banach fixed point theorem implies existence of a unique un such that uin → un as
i→∞.

There will be times when we do not have Lipschitz continuity. As an example F might
be Hölder continuous. The Brouwer Fixed Point Theorem gives sufficient conditions for the
existence of fixed points of continuous functions:

Theorem 3.2 (The Brouwer Fixed Point Theorem). Let K be a compact and convex
subset of a finite-dimensional normed vector space, and f : K → K a continuous function.
Then f has at least one fixed point.

Proof. Let B := B1(0). Define Ck(X,Y ) as the space of functions f : X → Y with continuous
k-th order partial derivatives. The proof of this theorem is due to [18] and is presented as in
[15], p. 720. There are four steps:

(i) We show first that here is no mapping v ∈ C2(B,Rn) that satisfies

v(x) ∈ ∂B ∀x ∈ B, and v(x) = x ∀x ∈ ∂B. (3.4)

(ii) Second, we prove that there is no mapping w ∈ C(B,Rn) that satisfies

w(x) ∈ ∂B ∀x ∈ B, and w(x) = x ∀x ∈ ∂B. (3.5)

(iii) Third, we show that any continuous mapping g : B → B has at least one fixed point in
B.

(iv) Finally, we extend the previous result to any compact and convex subset of Rn.

24



Proof of step (i). Assume such a mapping exist. Define another mapping ṽ ∈ C2(B,Rn) by
ṽ(x) = x ∀x ∈ B. Now, since v ≡ ṽ on ∂B and for F ∈ Rn×n, the mapping F 7→ det(F ) is a
null Lagrangian (Theorem 2, p. 463 in [17]), Theorem 2 (p. 461) in [17] implies∫

B
det(∇v(x))dx =

∫
B

det(∇ṽ(x))dx =

∫
B
dx > 0,

where the last equality is due to the fact that ∇v(x) is the n× n identity matrix. We want to
show that ∫

B
det(∇v(x))dx = 0,

thus yielding a contradiction. Let ϕ : B → Rn be defined by ϕ(x) = |v(x)|2. ϕ is differentiable,
and

ϕ′(x)h = 2〈∇v(x)h, v(x)〉 ∀h ∈ Rn, ∀x ∈ B.

ϕ is also constant, because v(x) ∈ ∂B ∀x ∈ B =⇒ |v(x)| = 1. Thus

0 = ϕ′(x)h = 2hT (∇v(x))T v(x) ∀h ∈ Rn,∀x ∈ B.

This further implies that
(∇v(x))T v(x) = 0 ∀x ∈ B.

By (3.4), v(x) 6= 0 for all x ∈ B. Thus v(x) is an eigenvector to (∇v(x))T with corresponding
eigenvalue 0. An elementary linear algebra fact states that a matrix has non-zero determinant
if and only if 0 is not an eigenvalue. Thus

det((∇v(x))T ) = det(∇v(x)) = 0 ∀x ∈ B.

This yields a contradiction.
�

Proof of step (ii). Define w ∈ C(B,Rn) such that

w(x) ∈ ∂B ∀x ∈ B, and w(x) = x ∀x ∈ ∂B. (3.6)

We will show that this implies the existence of a mapping in C2(B,Rn) with the same properties,
thus contradicting step (i).

Extend the domain of w to Rn by w(x) := x for |x| > 1. The mapping now satisfies

w ∈ C(Rn,Rn), w(x) = x for |x| ≥ 1, |w(x)| = 1 for |x| < 1. (3.7)

For each i ∈ {1, . . . , n}, let wi,ε be the convolution of the i-th component of w and a sequence
{ηε}ε of standard mollifiers (as in Definition 1.11). Then

wi,ε(x) :=

∫
Bε(0)

ηε(x− y)wi(y)dy ∀x ∈ Rn

resides in C∞(Rn) for all ε > 0, and one can show that there exists 0 < ε0 ≤ 1 such that
wε := (w1,ε, . . . , wn,ε) ∈ C∞(Rn,Rn) satisfies

|wε(x)| > 0 ∀ε ≤ ε0 and ∀ |x| ≤ 2

since |w(x)| ≥ 1 for all |x| ≤ 2. Moreover, we have

wi,ε(xi) =

∫
Bε(0)

ηε(y)wi(xi − y)dy = xi ∀ |x| ≥ 2,
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so wε(x) = x for all |x| ≥ 2 and ε ≤ ε0. Based on this, define

v(x) =
wε0(2x)

|wε0(2x)|
∀|x| ≤ 1.

This mapping is in C∞(Rn;Rn) and satisfies

|v(x)| = 1 ∀x ∈ B and v(x) = x ∀x ∈ ∂B,

which is a contradiction to (3.4).
�

Proof of step (iii). Let g : B → B be a continuous map. Assume per reducto ad absurdum that
g has no fixed point. Pick x ∈ B. There exists a uniquely defined point w(x) and a real number
α(x) ≥ 1 such that

w(x) ∈ ∂B and w(x) = g(x) + α(x)(x− g(x)).

If x ∈ ∂B, we specify α(x) = 1, so w(x) = x. We want to show that this w(x) is a continuous
mapping. If so, w ∈ C(B;Rn) and satisfies

w(x) ∈ ∂B ∀x ∈ B and w(x) = x ∀x ∈ ∂B,

thus giving a contradiction to step (ii). α : B → R is continuous, since ∀ x ∈ B, α(x) is the
unique root ≥ 1 of the polynomial

λ ∈ R 7→ λ2|x− g(x)|2 + 2λ(x− g(x)) · g(x) + |g(x)|2 − 1.

This is due to:

α2|x− g|2 + 2α(x− g) · g + |g|2 − 1

= |w − g|2 + 2(w − g) · g + |g|2 − 1

= |w|2 − 2w · g + |g|2 + 2w · g − 2|g|2 + |g|2 − 1

= 0.

The coefficients of this polynomial are continuous functions of x ∈ B. Consequently w is
continuous, because it it composed of continuous functions. This contradicts (3.5), so g must
have at least one fixed point.

�

Proof of step (iv). The result in the previous step will also hold if B is replaced by any ball
Br(0) of radius r > 0 centered at the origin. Let K be a compact and convex subset of Rn.
Then ∃ r > 0 such that K ⊂ Br(0). Let P : Rn → K be a projection operator. That is,
P (x) ∈ K is defined as

|x− P (x)| = inf
z∈K
|x− z| = dist(x,K).

By Theorem 4.3-1 (p. 183) in [15], P is continuous (it is here that we make use of the convexity
of K). Let f : K → K be a continuous function. Then the mapping

g := f ◦ P : Br(0)→ Br(0)

is continuous and by step (iii), g has at least one fixed point x0 ∈ K. Thus

x0 = g(x0) = f(P (x0)) = f(x0),

which implies that f(x0) = x0. Therefore f has at least one fixed point.
�
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This concludes the proof of the Brouwer Fixed Point Theorem.

The next result is of great importance in proving existence for variational formulations of
PDEs in Hilbert spaces.

Corollary 3.2.1. Let H be a finite-dimensional Hilbert space. Let f : H → H be continuous
with the following property

∀ v ∈ H, ‖v‖ = M, 〈f(v), v〉 ≥ 0. (3.8)

Then ∃ v0 ∈ H with ‖v0‖ ≤M such that

f(v0) = 0.

Proof. Assume f(v) 6= 0 ∀v ∈ H satisfying ‖v‖ ≤ M . Define a mapping F : BM (0) → BM (0)
(where BM (0) ⊂ H) by

F (v) =
−Mf(v)

‖f(v)‖
.

The function F is continuous because f is. By the Brouwer Fixed Point Theorem (Theorem 3.2)
there exists v0 ∈ BM (0) such that

F (v0) =
−Mf(v0)

‖f(v0)‖
= v0.

Thus

〈f(v0), v0〉 = 〈f(v0),
−Mf(v0)

‖f(v0)‖
〉 = −M‖f(v0)‖2 < 0,

which contradicts (3.8). Hence f(v) = 0.

As stated previously, this corollary will be essential in proving existence whenever we are
working with variational formulations on Hilbert spaces. To illustrate this, consider the problem:

Find u ∈ Vh such that 〈Au, vh〉 = 〈f, vh〉 ∀vh ∈ Vh, (3.9)

where Vh is a finite-dimensional subspace of L2(Ω), 〈·, ·〉 is the L2(Ω) inner product, A : Vh → Vh
and f is either an element of Vh or 〈f, vh〉 is f acting on vh for f : Vh → R. We form an
orthonormal basis {ϕ1, . . . , ϕk} on Vh ⊂ L2(Ω). Assuming dim(Vh) = k, we can construct some
α = (α1, . . . , αk) ∈ Rk such that ‖ū‖L2(Ω) = |α|k for any ū =

∑k
i=1 αiϕi ∈ Vh. We define

F : Rk → Rk as
Fi(α) := 〈A

(∑k
j=1 αjϕj

)
− f, ϕi〉 = 〈Aū− f, ϕi〉. (3.10)

for i = 1, . . . , k. Next, we want to get a lower bound with respect to |α|k on

〈F(α), α〉Rk :=

k∑
i=1

〈Aū− f, ϕi〉αi = 〈Aū− f, ū〉,

where 〈·, ·〉Rk is the Euclidean inner product. To satisfy the hypothesis of Corollary 3.2.1, we
pick M based on the previous estimate. If this holds true for the Euclidean inner product and
norm on Rk, there exists a bounded α̂ = (α̂1, . . . , α̂k) ∈ Rk such that u :=

∑k
i=1 α̂iϕi satisfies

F(α̂) = 0 and thus is a solution to the variational formulation (3.9). We will prove a result
based on this in the next section.
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3.2 The Richards Equation

Let Ω ∈ Rd be an open and bounded domain with Lipschitz continuous boundary Γ, and
t ∈ (0, T ], where T > 0 is the final time. In this section we will consider a non-linear variational
formulation that can be motivated from the Richards equation

∂tΘ(ψ)−∇ · (K(Θ(ψ))∇(ψ + z)) = f in (0, T ]× Ω, (3.11)

which is a non-linear, possibly degenerate parabolic PDE. This equation is used to model water
flow in saturated/unsaturated porous media, where ψ = ψ(t, x) is the pressure head, Θ the water
content, f a source term, K the hydraulic conductivity, and z the height in the gravitational
direction. To achieve more regular unknowns and reduce the non-linearities to a single one, it
is useful to apply the Kirchhoff transform:

K : R→ R

ψ 7→
∫ ψ

0
K(Θ(s))ds.

If we now define u := K(ψ) and let

b(u) := Θ ◦ K−1(u)

k(b(u)) := K ◦Θ ◦ K−1(u),

the equation (3.11) becomes

∂tb(u)−∇ · (∇u+ k(b(u))ez) = f in (0, T ]× Ω.

We refer to [1, 3, 26, 30, 33] for results concerning the mathematical analysis of this problem.
Here, we will study the Richards equation without the gravity term. After imposing initial
conditions for time and homogeneous Dirichlet boundary conditions for space, we want to find
u such that 

∂tb(u)−∆u = f in (0, T ]× Ω,

u = u0 on 0× Ω,

u = 0 on (0, T ]× Γ.

(3.12)

In this section, we will study five variational formulations that can be related to this problem.
These are denoted as follows:

(P ) : Continuous non-linear weak formulation.

(Pnτ ) : Semidiscrete non-linear weak formulation (discrete in time).

(Pn,hτ ) : Fully discrete non-linear weak formulation (discrete in time and space).

(Pn,hτ,i ) : Fully discrete linearized weak formulation.

(Pn,hτ,ε ) : Fully discrete regularized weak formulation.

We let 〈·, ·〉 be the inner product in L2(Ω) or the duality pairing between H−1(Ω) and
H1

0 (Ω), ‖ · ‖1 := ‖ · ‖H1(Ω), ‖ · ‖−1 := ‖ · ‖H−1(Ω) and ‖ · ‖ := ‖ · ‖L2(Ω). Next, we define the weak
formulation of the Problem (3.11) using the notation of Bochner spaces (see Definition 1.15):
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Problem (P ): Let f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω) be given. A function u is called a
weak solution of (3.12) iff b(u) ∈ H1(0, T ;H−1(Ω)), u ∈ L2(0, T ;H1

0 (Ω)) and u(0) = u0 satisfies∫ T

0
〈∂tb(u), φ〉+ 〈∇u,∇φ〉 dt =

∫ T

0
〈f, φ〉 dt

for all φ ∈ H1(0, T ;H1
0 (Ω)).

The requirement b(u) ∈ H1(0, T ;H−1(Ω)) comes from the fact that we need ∂tb(u) ∈
L2(0, T ;H−1(Ω)) (see definition 1.16). Next, we discretize in time by using the Backward
Euler method: Partition the interval [0, T ] into N + 1 time steps tn with uniform step length
τ := tn − tn−1 ∀n ∈ {1, . . . , N}. Define un := u(tn). We approximate

∂tb(u) ≈ b(un)− b(un−1)

τ
.

If f ∈ C(0, T ;H−1(Ω)), we let fn := f(tn). If not, we use the time average over (tn−1, tn],

fn :=
1

τ

∫ tn

tn−1

f(t)dt.

This alternative definition is not needed for un, because Theorem 3 (p. 303) in [17] implies
u ∈ C([0, T ], L2(Ω)) (after possibly being redefined on a set of measure zero). At time step tn,
we define the time discrete Problem (Pnτ ):

Problem (Pnτ ): Let n ∈ {1, . . . N}, un−1 ∈ H1
0 (Ω) be given. Find un ∈ H1

0 (Ω) such that

〈b(un)− b(un−1), v〉+ τ〈∇un,∇v〉 = τ〈fn, v〉 ∀v ∈ H1
0 (Ω),

where τ is the step length, so tn = nτ and un is the solution at time step tn.

Now we will prove a result for existence and uniqueness of the linear case b(u) = u of (Pnτ )
by using Lax-Milgram (theorem 2.4):

Proposition 3.1. Let b(u) := u. Then there exists a unique solution of problem (Pnτ ) for τ > 0.

Proof. Define

l(v) := τ〈f, v〉+ 〈un−1, v〉,

a(u, v) := 〈u, v〉+ τ〈∇u,∇v〉.

It is trivial that l(·) is linear and a(·, ·) is bilinear.

(i) a(·, ·) bounded:
|a(u, v)| ≤ ‖u‖‖v‖+ τ‖∇u‖‖∇v‖ ≤ C‖u‖1‖v‖1

where C := max{1, τ}.

(ii) a(·, ·) coercive:
a(u, u) = ‖u‖2 + τ‖∇u‖2 ≥ m‖u‖21

where m := min{1, τ}.

(iii) l(·) bounded :
|l(v)| ≤ τ‖f‖−1‖v‖1 + ‖un−1‖‖v‖ ≤ C‖v‖1,

where C := max{τ‖f‖−1, ‖un−1‖}.

Thus by the Lax-Milgram Theorem (Theorem 2.4) there exists a unique un ∈ H1
0 (Ω) solving

(Pnτ ).
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3.2.1 A Linearization Scheme

If b(·) is not linear, existence and uniqueness of problem (Pnτ ) can no longer be studied with
the theory we discussed earlier, because what we have now resembles

a(u, v) := 〈b(u), v〉+ τ〈∇u,∇v〉.

To be able to look at this in the eyes of Chapter 1, we have to perform a linearization. The
L-scheme is a linearization scheme proposing to create an iterative method ui+1

n = F(uin) where
we add one extra term

L〈ui+1
n − uin, v〉

and then instead evaluate b(·) at the solution in the previous iteration, uin. The first iteration
at each time step will be given as the value at the previous time step; that is, the initial guess
is u0

n+1 := un. Define the difference between two consecutive solutions of the iterative method
as ei+1

n := ui+1
n − uin. For the convergence, we want to get an inequality resembling

‖ei+1
n ‖ ≤ C‖ein‖ (3.13)

for C < 1. This will imply

‖F(uin)−F(ui−1
n )‖ ≤ C‖uin − ui−1

n ‖, (3.14)

for which we can apply the Banach fixed point Theorem (Theorem 3.1).
From here on we also substitute H1

0 (Ω) with a finite-dimensional subspace Vh ⊂ H1
0 (Ω).

This is not necessary for proving existence and uniqueness, but is in harmony with the finite
element method, which requires the finite-dimensionality. We define the fully discrete (non-

linear) problem (Pn,hτ ):

Problem (Pn,hτ ): Let n ∈ {1, . . . N}, Vh ⊂ H1
0 (Ω) be finite-dimensional, un−1 ∈ Vh be given.

Find un ∈ Vh such that

〈b(un)− b(un−1), vh〉+ τ〈∇un,∇vh〉 = τ〈fn, vh〉 ∀vh ∈ Vh (3.15)

where τ is the step length, so tn = nτ and un is the solution at time step tn.

Assuming uin → un as i→∞, we define the linearized fully discrete problem (Pn,hτ,i ):

Problem (Pn,hτ,i ): Let n ∈ {1, . . . , N} and uin, un−1 ∈ Vh be given, with u0
n := un−1. Let L > 0

be a constant. Find ui+1
n ∈ Vh such that

〈b(uin)− b(un−1), vh〉+ τ〈∇ui+1
n ,∇vh〉+ L〈ui+1

n − uin, vh〉 = τ〈fn, vh〉 (3.16)

for all vh ∈ Vh.

Now we wish to prove two results:

(i) The existence of a unique solution of (Pn,hτ,i ) for each i.

(ii) That (Pn,hτ,i ) converges to (Pn,hτ ) as i → ∞. That is, the sequence of solutions {uin}i of

(Pn,hτ,i ) converges to a unique un ∈ Vh solving (Pn,hτ ) as i→∞.

Proposition 3.2. Let n ∈ {1, . . . , N} and i ∈ N be fixed. Suppose b(·) is Lipschitz continuous

with Lipschitz constant Lb > 0. Then there exists a unique solution of problem (Pn,hτ,i ).
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Proof. We will apply the Lax-Milgram Theorem (Theorem 2.4) to show this: Let

α(u, v) := τ〈∇u,∇v〉+ L〈u, v〉,

β(v) := 〈b(un−1)− b(ui−1
n ), v〉+ L〈ui−1

n , v〉+ τ〈fn, v〉.

α(·, ·) is linear (trivial) and bounded:

|α(u, v)| ≤ τ‖∇u‖‖∇v‖+ L‖u‖‖v‖ ≤M‖u‖1‖v‖1,

with m := τ + L, and coercive

α(v, v) = τ‖∇v‖2 + L‖v‖2 ≥ m‖v‖21,

where m := min{τ, L}. At last, we show that β is bounded (it is clear that it is linear). There
holds:

|β(v)| ≤
(
‖b(un−1)− b(ui−1

n )‖+ L‖ui−1
n ‖+ τ‖f‖

)
‖v‖

≤
(
‖un−1 − ui−1

n ‖+ L‖ui−1
n ‖+ τ‖f‖

)
‖v‖

≤ m‖v‖1.

Thus by the Lax-Milgram Theorem, there exists a unique solution of Problem (Pn,hτ,i ).

Proposition 3.3. Let n ∈ {1, . . . , N}. Assume uin ∈ Vh solves (Pn,hτ,i ) and un ∈ Vh solves

(Pn,hτ ). Suppose b(·) is monotone increasing and Lipschitz continuous with Lipschitz constant
Lb > 0. Then uin → un as i→∞ whenever

L ≥ Lb
2
.

Proof. The proof is based on the Banach Fixed Point Theorem (Theorem 3.1). Let ei+1
n :=

ui+1
n − uin be the difference between two iterations. We want to show that there exists c < 1

such that

‖ei+1
n ‖ ≤ c‖ein‖ ∀ i ∈ N.

We look at two consecutive solutions ui+1
n , uin ∈ V of problem (Pn,hτ,i ). Subtract the two equations

(3.16) from each other to obtain

〈b(uin)−b(un−1), vh〉+ τ〈∇ui+1
n ,∇vh〉+ L〈ui+1

n − uin, vh〉

= 〈b(ui−1
n )− b(un−1), vh〉+ τ〈∇uin,∇vh〉+ L〈uin − ui−1

n , vh〉,

for all vh ∈ Vh. This is equivalent to

L〈ei+1
n − ein, vh〉+ τ〈∇ei+1

h ,∇vh〉+ 〈b(uin)− b(ui−1
n ), vh〉 = 0 ∀vh ∈ Vh. (3.17)

Choose now vh = ei+1
n as test function in (3.17) above. Then, after expanding the last term,

L〈ei+1
n − ein, ei+1

n 〉+ τ‖∇ · ei+1
n ‖2

+ 〈b(uin)− b(ui−1
n ), ei+1

n − ein〉 = −〈b(uin)− b(ui−1
n ), ein〉.
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Since we assumed b(·) to be Lipschitz and monotonically increasing, we have

1

Lb
‖b(uin)− b(ui−1

n )‖2 =
1

Lb

∫
Ω
|b(uin(x))− b(ui−1

n (x))|2 dx

≤
∫

Ω
|b(uin(x))− b(ui−1

n (x))||uin(x)− ui−1
n (x)| dx

≤ 〈b(uin)− b(ui−1
n ), uin − ui−1

n 〉.

There holds also the obvious algebraic identity

2〈ei+1
n − ein, ein〉 = ‖ei+1

n ‖2 + ‖ei+1
n − ein‖2 − ‖ein‖2.

Next we apply the Cauchy-Schwarz inequality (Theorem 1.8), the Young inequality (Theo-
rem 1.9), and the Poincaré inequality (Theorem 1.10) to get

L

2
‖ei+1
n ‖2 +

L

2
‖ei+1
n − ein‖2 + τCΩ‖ei+1

n ‖2 +
1

Lb
‖b(uin)− b(ui−1

n )‖2

≤ L

2
‖ein‖2 +

1

2L
‖b(uin)− b(ui−1

n )‖2 +
L

2
‖ei+1
n − ein‖2.

And thus for L ≥ Lb
2

, we have

‖ei+1
n ‖2 ≤

L

L+ 2τCΩ
‖ein‖2.

Which is equivalent to
‖F(uin)−F(ui−1

n )‖ ≤ LF ‖uin − ui−1
n ‖, (3.18)

with LF < 1. Hence ui+1
n = F(uin) is a Lipschitz continuous contraction for any L ≥ Lb

2
.

3.2.2 A First Application of the Brouwer Fixed Point Theorem

In the previous section, we performed a linearization scheme and studied existence and unique-
ness for the new version of the problem, and proved that it did in fact converge to the solution
of problem (Pn,hτ ). Now we will look at an application of the Corollary of the Brouwer Fixed
Point Theorem (Corollary 3.2.1); we wish to tackle the nonlinearity directly. Assuming the
previous hypotheses hold true, there are two cases we need to split the problem into for proving
existence:

(i) b is strongly monotone increasing, i.e. there exists b0 > 0 such that

〈b(u)− b(v), u− v〉 ≥ b0‖u− v‖2,

(ii) b is monotone increasing, but not necessarily strongly:

〈b(u)− b(v), u− v〉 ≥ 0,

for all u, v ∈ Vh. In our study, we assume b : R → R, so for b(0) = 0 these cases are imply (i)
b′(u) ≥ b0 > 0 for all u ∈ Vh and (ii) b′(u) ≥ 0 for all u ∈ Vh.

To apply Corollary 3.2.1, note that we need also assume Vh ⊂ H1
0 (Ω) to be a finite-

dimensional subspace. We recall the definition of Problem (Pn,hτ ):
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Problem (Pn,hτ ): Let n ∈ {1, . . . N}, Vh ⊂ H1
0 (Ω) be finite-dimensional, un−1 ∈ Vh be given.

Find un ∈ Vh such that

〈b(un)− b(un−1), vh〉+ τ〈∇un,∇vh〉 = τ〈fn, vh〉 ∀vh ∈ Vh (3.19)

where τ is the time step length, so tn = nτ and un is the solution at time step tn.

Proposition 3.4. Suppose b(·) is Lipschitz continuous with Lipschitz constant Lb > 0, strongly
monotone increasing with b′ ≥ b0 > 0, and b(0) = 0. Then there exists a unique solution of

problem (Pn,hτ ) for all τ > 0.

Proof. Existence: We will apply the Corollary of the Brouwer Fixed Point Theorem (Corol-
lary 3.2.1). Let dim(Vh) = k. Let {ϕ1, . . . , ϕk} be an orthogonal basis for Vh as a subspace of
H1

0 (Ω) and orthonormal as a subspace of L2(Ω). That is,

〈ϕi, ϕj〉L2(Ω) = δij ,

〈ϕi, ϕj〉H1(Ω) = 0 for i 6= j.

Then for some element ū ∈ Vh there exists α = (α1, . . . , αk) ∈ Rk such that

ū =

k∑
i=1

αiϕi, and ‖ū‖ = |α|k,

where | · |k is the Euclidean norm defined as |x|k :=
√∑k

i=1 x
2
i for x = (x1, . . . , xk) ∈ Rk. Let

F : Rk → Rk be defined by F(α) = α̂, where

α̂i := 〈b(ū)− b(un−1), ϕi〉+ τ〈∇ū,∇ϕi〉 − τ〈fn, ϕi〉, i = 1, . . . , k.

F is continuous:

|F(α)−F(β)|2k =

k∑
i=1

|Fi(α)−Fi(β)|2

=
k∑
i=1

∣∣∣〈b(∑k
j=1 αjϕj

)
− b
(∑k

j=1 βjϕj
)
, ϕi〉+ τ(αi − βi)‖∇ϕi‖2

∣∣∣2.
Apply the inequality

∑
|an + bn|2 ≤ 2

∑
|an|2 + 2

∑
|bn|2 for real sequences {an}n, {bn}n; the

Cauchy-Schwarz inequality (Theorem 1.8) and use the Lipschitz continuity of b(·) to obtain

|F(α)−F(β)|2k

≤ 2Lb

k∑
i=1

‖
∑k

j=1(αj − βj)ϕj‖2 + 2τ2
k∑
i=1

|αi − βi|2‖∇ϕi‖4.

We have ∥∥∑k
j=1(αj − βj)ϕj

∥∥2
=

∫
Ω

∣∣∑k
j=1(αj − βj)ϕj

∣∣2dx
≤
∫

Ω

(∑k
j=1 |αj − βj |2

)(∑k
j=1 |ϕj |2

)
dx

= |α− β|2k
∫

Ω

( k∑
j=1

|ϕj |2
)
dx ≤M |α− β|2k,
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where M <∞. The second to last inequality is the Cauchy-Schwarz inequality (Theorem 1.8).
The integral is bounded because dim(Vh) < +∞. Thus we get

|F(α)−F(β)|2k ≤ 2MLb|α− β|2k + 2τ2 max
j∈{1,...,k}

‖∇ϕj‖4|α− β|2k,

which implies that F is Lipschitz continuous and furthermore that F is continuous.

Next, we want to show that there exists a ball of radius M in Rk for which

〈F(α), α〉k ≥ 0 ∀α ∈ Rk such that |α|k = M.

where 〈·, ·〉k is the Euclidean inner product defined by 〈x, y〉 :=
∑k

i=1 xnyn for x, y ∈ Rk. We
have

〈F(α), α〉k = 〈b(ū)− b(un−1), ū〉+ τ‖∇ū‖2 − τ〈fn, ū〉

≥ 〈b(ū), ū〉 − ‖b(un−1)‖‖ū‖+ τCΩ‖ū‖2 − τ‖fn‖‖ū‖,

by Cauchy-Schwarz inequality (Theorem 1.8) and the Poincaré inequalitity (Theorem 1.10).
Next, using the strong monotonicity of b(·) and the fact that b(0) = 0 we have 〈b(u), u〉 ≥
b0‖u‖2 ∀u ∈ Vh. We also apply Young inequality (Theorem 1.9) to get

〈F(α), α〉k ≥
1

2
(b0 + τCΩ)|α|2k −m1,

where m1 :=
1

2b0
‖b(un−1)‖2 +

τ

2CΩ
‖fn‖2. Indeed, for all α ∈ Rk satisfying

|α|k =

√
2m1

b0 + τCΩ
,

we have
〈F(α), α〉k ≥ 0.

Thus there exists a bounded α0 ∈ Rk such that F(α0) = 0. Thus α̂0
i = 0 for all i ∈ {1, . . . , k},

and therefore for all vh ∈ Vh. Consequently, we obtain that

u :=
k∑
i=1

α0
iϕi

is a solution to Problem (Pn,hτ ), proving the desired existence.

Uniqueness: Assume un,1, un,2 ∈ Vh solve (Pn,hτ ). Then if we subtract eq. (3.15) with un,1,
un,2, and pick vh = un,1 − un,2, we obtain

〈b(un,1)− b(un,2), un,1 − un,2〉+ τ‖∇(un,1 − un,2)‖2 = 0

which, by the monotonicity of b(·), only holds if un,1 = un,2.

Remark 3.2.1. Note the fact that b0 > 0 was essential in order to prove the result. We had to
apply the Young inequality to absorb the negative terms from the inner products with b(un−1)
and fn.
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In the next proposition we will see that we actually can study the case when b0 ≥ 0, by
adding a regularization term to problem (Pn,hτ ) of a factor of some ε > 0, giving a regularized

problem (Pn,hτ,ε ). The strategy further on is to prove existence and uniqueness of a solution

of (Pn,hτ,ε ), and then check that this converges to a solution of problem (Pn,hτ ). We define the

regularized problem (Pn,hτ,ε ):

Problem (Pn,hτ,ε ): Let n ∈ {1, . . . N}, Vh ⊂ H1
0 (Ω) be finite-dimensional, uεn−1 ∈ Vh be given,

and ε > 0. Find uεn ∈ Vh such that

ε〈uεn, vh〉+ 〈b(uεn)− b(uεn−1), vh〉+ τ〈∇uεn,∇vh〉 = τ〈fn, vh〉 ∀vh ∈ Vh

where τ is the time step length, so tn = nτ and un is the solution at time step tn.

Remark 3.2.2. The existence of a solution of problem (Pn,hτ,ε ) is ensured by applying Proposi-
tion 3.4 for ε > 0 and then using Proposition 3.5 to show convergence as ε→ 0. The details are
presented in the proof of Proposition 3.6.

First we derive an a priori estimate for the solution of problem (Pn,hτ,ε ).

Proposition 3.5. Assume uεn solves problem (Pn,hτ,ε ) . Suppose b(·) is monotone increasing,
Lipschitz continuous with Lipschitz constant Lb > 0, and b(0) = 0. Then there exists a constant
C > 0 such that

ε‖uεn‖2 +
τ

2
‖∇uεn‖2 ≤ C.

Proof. Let vh = uεn. Then

ε‖uεn‖2+〈b(uεn)− b(uεn−1), uεn − uεn−1〉+ τ‖∇uεn‖2

= τ〈fn, uεn〉 − 〈b(uεn)− b(uεn−1), uεn−1〉.

Using the Cauchy-Schwarz inequality (Theorem 1.8), the Poincaré inequality (Theorem 1.10),
monotonicity and Lipschitz continuity of b(·), we obtain

ε‖un‖2+
1

Lb
‖b(uεn)− b(uεn−1)‖2 + τ‖∇uεn‖2

≤ τCΩ‖fn‖‖∇uεn‖+ ‖b(uεn)− b(uεn−1)‖‖uεn−1‖.

In conclusion, applying the Young inequality (Theorem 1.9) yields

ε‖uεn‖2 +
τ

2
‖∇uεn‖2 ≤

τC2
Ω

2
‖fn‖2 +

Lb
4
‖uεn−1‖2.

The right-hand side of this inequality is bounded by C > 0 from our previous assumptions.

Proposition 3.6. Suppose b(·) is monotone increasing, Lipschitz continuous with Lipschitz

constant Lb > 0, and b(0) = 0. Then there exists a unique solution uεn of problem (Pn,hτ,ε ) for
fixed τ > 0. Moreover, the sequence {uεn}ε converges to a unique solution un ∈ Vh of problem

(Pn,hτ ) as ε→ 0.

Proof. Uniqueness: Assume uεn,1, u
ε
n,2 ∈ Vh both solve (Pn,hτ,ε ). By the same manner as in the

proof of Proposition 3.4, we get that uεn,1 = uεn,2.
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Existence: Let b̃(u) := b(u) + εu. Then it follows that b̃ is strongly monotone:

〈̃b(u)− b̃(v), u− v〉 = 〈b(u)− b(v), u− v〉+ ε‖u− v‖2 ≥ ε‖u− v‖2,

and we have b̃(0) = 0. Furthermore, it is trivial that b̃(·) is Lipschitz continuous. In these terms,
we seek uεn such that

〈̃b(uεn)− b(uεn−1), vh〉+ τ〈∇uεn,∇vh〉 = τ〈fn, vh〉 ∀vh ∈ Vh.

The existence of such a uεn can be proved by the same method as in Proposition 3.4.

Convergence: From Proposition 3.5, we get that the sequence {∇uεn}ε is bounded indepen-
dently of ε. By the Eberlein-Šmuljan Theorem (Theorem 1.5) there exists a subsequence that
converges weakly to some ∇un. Since Vh is finite-dimensional, we obtain strong convergence.
By the Poincaré inequality, we get

‖uεn − un‖ ≤ CΩ‖∇(uεn − un)‖,

which goes to zero as ε→ 0. We also have

ε〈uεn, vh〉 ≤
√
ε(
√
ε‖uεn‖)‖vh‖ ≤

√
εC‖vh‖ → 0 as ε→ 0,

by Proposition 3.5. At last, we have

〈b(uεn)− b(un), vh〉 ≤ Lb‖uεn − un‖‖vh‖ → 0 as ε→ 0.

Thus the solution of problem (Pn,hτ,ε ) converges to the solution of (Pn,hτ ) as ε→ 0.

3.2.3 The Case of a Hölder Continuous Non-linearity b(·)

In this subsection we investigate the third and last of the cases from the introduction (page 21),
where we equip b(·) with the weaker condition of being Hölder continuous. That is, there exists
Cb > 0 and γ ∈ (0, 1) such that

‖b(v1)− b(v2)‖ ≤ Cb‖v1 − v2‖γ ∀v1, v2 ∈ Vh

We recall problem (Pn,hτ ):

Problem (Pn,hτ ): Let n ∈ {1, . . . N}, Vh ⊂ H1
0 (Ω) be finite-dimensional, un−1 ∈ Vh be given.

Find un ∈ Vh such that

〈b(un)− b(un−1), vh〉+ τ〈∇un,∇vh〉 = τ〈fn, vh〉 ∀vh ∈ Vh

where τ is the time step length, so tn = nτ and un is the solution at time step tn.

Proposition 3.7. Assuming that the following properties hold for b(·):
b(·) is Hölder continuous,

b(·) is monotonically increasing,

b(0) = 0,

b(·) is bounded.

Then Problem (Pn,hτ ) has a unique solution for fixed τ > 0.
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Proof. Uniqueness: Assume un,1, un,2 ∈ Vh solves (Pn,hτ ). It follows that

〈b(un,1)− b(un,2), vh〉+ τ〈∇(un,1 − un,2), vh〉 = 0 ∀vh ∈ Vh.

Let vh := un,1 − un,2. Then

〈b(un,1)− b(un,2), un,1 − un,2〉+ τ‖∇(un,1 − un,2)‖2 = 0

only holds for un,1 = un,2 because the first term is greater than or equal to zero by the mono-
tonicity of b(·).

Existence: Let dim(Vh) = k. Let {ϕ1, . . . , ϕk} be an orthogonal basis for Vh as a subspace
of H1

0 (Ω) and orthonormal as a subspace of L2(Ω). Then we can represent an element ū ∈ Vh
as

ū =

k∑
j=1

αjϕj , with ‖ū‖ = |α|k

where α = (α1, . . . , αk) ∈ Rk. Define F : Rk → Rk as F(α) = α̂, where

α̂i : = 〈b
(∑k

j=1 αjϕj
)
− b(un−1), ϕi〉+ τ〈∇(

∑k
j=1 αjϕj),∇ϕi〉 − τ〈fn, ϕi〉

= 〈b
(∑k

j=1 αjϕj
)
− b(un−1), ϕi〉+ ταi‖∇ϕi‖2 − τ〈fn, ϕi〉,

for i ∈ {1, . . . , k}. We will now prove that F is continuous. Pick α, β ∈ Rk. Then

|F(α)−F(β)|2k =
k∑
i=1

|Fi(α)−Fi(β)|2

=

k∑
i=1

∣∣∣〈b(∑k
j=1 αjϕj

)
− b
(∑k

j=1 βjϕj
)
, ϕi〉+ τ(αi − βi)‖∇ϕi‖2

∣∣∣2.
Apply the inequality

∑
n |an + bn|2 ≤ 2

∑
n |an|2 + 2

∑
n |bn|2 for real sequences {an}n, {bn}n

and the Cauchy-Schwarz inequality (Theorem 1.8) to obtain

|F(α)−F(β)|2k ≤ 2
k∑
i=1

‖b
(∑k

j=1 αjϕj
)
− b
(∑k

j=1 βjϕj
)
‖2

+ 2τ2
k∑
i=1

|αi − βi|2‖∇ϕi‖4.

It follows, since b(·) is Hölder continuous, that

∥∥∥b( k∑
j=1

αjϕj
)
− b
( k∑
j=1

βjϕj
)∥∥∥2

≤ Cb‖
k∑
j=1

(αj − βj)ϕi‖2γ

= Cb

(∫
Ω
|
k∑
j=1

(αj − βj)ϕi|2dx
)γ
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≤ Cb
(∫

Ω

k∑
j=1

|αj − βj |2
k∑
j=1

|ϕi|2dx
)γ

= Cb|α− β|2γk
(∫

Ω

k∑
j=1

|ϕi|2dx
)γ
≤M |α− β|2γk ,

where M <∞. The second to last inequality is the Cauchy-Schwarz inequality for the Euclidean
inner product and norm in Rk. Thus we arrive at

|F(α)−F(β)|2k ≤ 2M |α− β|2γk + 2τ2 max
j∈{1,...,k}

‖∇ϕj‖4|α− β|2k. (3.20)

The continuity of F now follows.

Next, we want to apply the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1)

to prove the existence of a solution for problem (Pn,hτ ). We want to show that there exists a
constant M < +∞ such that

〈F(α), α〉Rk ≥ 0 ∀α ∈ Rk such that |α|k ≤M.

We have

〈F(α), α〉Rk =
k∑
i=1

(
〈b
(∑k

j=1 αjϕj
)
− b(un−1), αiϕi〉

+ τ〈∇(
∑k

j=1 αjϕj),∇αiϕi〉 − τ〈fn, αiϕi〉
)
.

Let ū ∈ Vh be defined as before,

ū :=
k∑
j=1

αjϕj .

Then
〈F(α), α〉Rk = 〈b(ū)− b(un−1), ū〉+ τ‖∇ū‖2 − τ〈fn, ū〉.

By the Poincaré inequality (Theorem 1.10) and the Cauchy-Schwarz inequality (Theorem 1.8),
we have

〈F(α), α〉Rk ≥ 〈b(ū), ū〉 − ‖b(un−1)‖‖ū‖+
τ

C2
Ω

‖ū‖2 − τ‖fn‖‖ū‖, (3.21)

and then applying the Young inequality (Theorem 1.9) gives

〈F(α), α〉Rk ≥ 〈b(ū), ū〉+
τ

2C2
Ω

‖ū‖2 −R(τ),

where

R(τ) :=
C2

Ω

τ
‖b(un−1)‖2 + τC2

Ω‖fn‖2.

By the assumption of monotonicity of b(·) and b(0) = 0, we have 〈b(ū), ū〉 ≥ 0. Since ‖ū‖ = |α|k,
we arrive at

〈F(α), α〉Rk ≥ 0 ∀α ∈ Rk with |α|2k =
2C2

ΩR(τ)

τ
.

By the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1), ∃ α̃ ∈ Rk such that

F(α̃) = 0 and |α̃|k ≤ CΩ

√
2R(τ)

τ
,
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which proves the existence of a solution of problem (Pn,hτ ).

Remark 3.2.3. This does not hold for τ → 0. Moreover, without the assumption of b(·) being
bounded, we would need to recompute R(τ) at each time step, thus getting a dependence on
n. In the Lipschitz case we got boundedness directly.

Remark 3.2.4. In the case where would we would assume strong monotonicity of b(·), yielding
〈b(ū), ū〉 ≥ b0‖ū‖2, we could use b0‖ū‖2 in eq. (3.21) to absorb the negative ‖ū‖2 terms and get
a a bound on a solution α̃ ∈ Rk not blowing up as τ → 0. Here we would obtain (after some
calculations),

〈F(α), α〉Rk ≥
1

2

(
b0 +

τ

CΩ

)
|α|2k −R(τ).

which implies the existence of a solution u =
∑k

i=1 ˆαiϕi satisfying

|α̂|2k ≤ CΩ
‖b(un−1)‖2 + τC2

Ω‖fn‖2

(b0 + τ)b0
.

We give the theorem below without proof.

Proposition 3.8. Assuming that the following properties hold for b(·):
b(·) is Hölder continuous,

b(·) is strongly monotone increasing,

b(0) = 0,

b(·) is bounded.

Then there exists a unique solution of problem (Pn,hτ ) for all τ > 0.

3.3 The Transport Equation

For our next example, we wish to look at how we can apply the Corollary of the Brouwer Fixed
Point Theorem (Corollary 3.2.1) to prove existence and uniqueness for a coupled problem.

Let Ω ⊂ Rd be an open, bounded domain with Lipschitz continuous boundary Γ. The
reaction-convection-diffusion equation reads as

∂tu+ Lu = f on (0, T ]× Ω,

u = 0 on (0, T ]× Γ,

u = g on 0× Ω.

(3.22)

We define the operator L as

Lu := −∇ · (A∇u) +~b∇u+ cu,

where A = A(t, x) ∈ Rd×d, ~b = ~b(t, x) ∈ Rd and c = c(t, x) ∈ R. For our application, we present
an equation describing reactive transport in saturated/unsaturated porous media. The result
in Theorem 3.3 is recited from [29]. For a relatively recent review on numerical methods for
flow and reactive transport in saturated/unsaturated porous media we refer to [37]. In [23, 24],
compactness arguments are used for proving the existence and uniqueness of solutions.
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We want to find c = c(t, x) on (0, T ]× Ω satisfying{
∂t(Θ(ψ)c) +∇ · q = Θ(ψ)r(c),

q = −∇c+ Qc,

along with the initial and boundary conditions

c = cI in 0× Ω, and c = 0 on (0, T ]× Γ,

where ∇ · q is the diffusion and convection, and r(·) is the reactive term. In porous media
terminology, Θ = Θ(ψ) describes the water content (as a fraction of the total volume), ψ is the
pressure head, Q is the water flux, and c the concentration. We obtain Θ and Q by solving
Richards equation (which we discussed in the previous section), where Q = −K(Θ(ψ))∇(ψ+z).

As before, we let 〈·, ·〉 be the L2(Ω) inner product or the duality pairing between H−1(Ω)
and H1

0 (Ω). We discretize in time with the Backward Euler method, and define the spatial
discretizations: Let Th be a regular decomposition of Ω ⊂ Rd into d-simplices, assuming Ω =⋃
T∈Th T . We will use here the Raviart-Thomas spaces [9]:

Wh :=
{
p ∈ L2(Ω) | p is constant on each T ∈ Th

}
,

Vh :=
{
q ∈ H(div; Ω) | q|T = a + bx ∀ T ∈ Th,a ∈ Rd, b ∈ R

}
.

For a detailed description of a mixed formulation for multi-component transport in porous
media, see [34, 35]. For other spatial discretizations we refer to [36], where also a discussion on
numerical diffusion for the different formulations can be found.

Furthermore, we define the projections

Ph : L2(Ω)→Wh, with 〈Phw − w,wh〉 = 0,

Πh : H(div; Ω)→ Vh, with 〈∇ · (Πhv − v), wh〉 = 0,

for all w ∈ L2(Ω),v ∈ H(div; Ω) and wh ∈Wh. We make the following assumptions:

(A1) 0 < ΘR ≤ Θ(x) ≤ Θs ≤ 1 ∀x ∈ Ω.

(A2) r : R→ R is Lipschitz continuous and r(c) = 0 for c ≤ 0.

(A3) Qn
h, a discrete approximation of Q (see [29], page 4), belongs to L∞(Ω) ∀n. Thus
∃M < +∞ such that ‖Qn

h‖ < M

Let us define the fully discrete Problem (PCnh ):

Problem (PCnh ): Let n ≥ 1 be fixed and Θ(ψnh),Θ(ψn−1
h ),Qn

h, c
n−1
h be given. Find (cnh,q

n
h) ∈

Wh × Vh such that

〈Θ(ψnh)cnh −Θ(ψn−1
h )cn−1

h , wh〉+ τ〈∇ · qnh, wh〉 = τ〈Θ(ψnh)r(cnh), wh〉

〈qnh,vh〉 − 〈cnh,∇ · vh〉 − 〈cnhQn
h,vh〉 = 0

for all wh ∈Wh and vh ∈ Vh. The initial guess is c0
h = PhcI .

Theorem 3.3. Assuming (A1)-(A3) hold true, there exists a unique solution of Problem (PCnh )
for τ sufficiently small.
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Proof. The proof follows in the lines of [29].
Uniqueness: Assume that there exist two sets of solutions (cnh,1,q

n
h,1) ∈Wh×Vh and (cnh,2,q

n
h,2) ∈

Wh × Vh. Let cnh := cnh,1 − cnh,2 and qnh := qnh,1 − qnh,2. Then there holds ∀wh ∈Wh,vh ∈ Vh:

〈Θ(ψnh)cnh, wh〉+ τ〈∇ · qnh, wh〉 = τ〈Θ(ψnh)[r(cnh,1)− r(cnh,2)], wh〉, (3.23)

〈qnh,vh〉 − 〈cnh,∇ · vh〉 − 〈cnhQn
h,vh〉 = 0. (3.24)

Now pick wh = cnh and vh = τqnh in (3.23) and (3.24), respectively. Add the resulting equalities
to obtain

〈Θ(ψnh)cnh, c
n
h〉+ τ‖qnh‖2 = τ〈Θ(ψnh)[r(cnh,1)− r(cnh,2)], cnh〉+ τ〈chQn

h,q
n
h〉.

by the Cauchy-Schwarz Inequality (Theorem 1.8) and assumptions (A1)-(A3), we get

ΘR‖cnh‖2 + τ‖qnh‖2 ≤ τΘSLr‖cnh‖2 + τM‖cnh‖‖qnh‖. (3.25)

Next, using the Young inequality (Theorem 1.9) on the rightmost term of eq. (3.25), implies

ΘR

2
‖cnh‖2 + τ‖qnh‖2 ≤ τΘSLr‖cnh‖2 + τ2 M

2

2ΘR
‖qnh‖2.

Thus cnh,1 = cnh,2 for τ sufficiently small. This further implies that qnh,1 = qnh,2 for τ sufficiently
small. This concludes the proof of uniqueness.

Existence: We will now go use the Corollary of the Brouwer Fixed Point Theorem (Corol-
lary 3.2.1) to prove the existence of a solution of Problem (PCnh ).

Let {w1, . . . , wk1} and {v1, . . . , vk2} be orthonormal bases for Wh and Vh such that

〈wi, wj〉L2(Ω) = 〈vi, vj〉L2(Ω) = δij ,

〈wi, wj〉H1(Ω) = 〈vi, vj〉H1(Ω) = 0 if i 6= j.

Then we can represent elements w̄ ∈Wh and v̄ ∈ Vh as

w̄ :=

k1∑
j=1

αjwj , ‖w̄‖ = |α|k1 ,

v̄ :=

k2∑
j=1

βjvj , ‖v̄‖ = |β|k2 ,

for α = (α1, . . . , αk1) ∈ Rk1 and β = (β1, . . . , βk2) ∈ Rk2 . | · |k is the Euclidean norm in Rk,
defined as |x|k :=

√∑k
j=1 x

2
j . Let ξ, ξ̂ ∈ Rk1+k2 . We define F : Rk1+k2 → Rk1+k2 as F(ξ) = ξ̂,

with ξ := (α, β), ξ̂ := (α̂, β̂) for α, α̂ ∈ Rk1 and β, β̂ ∈ Rk2 , where

α̂i := 〈Θ(ψnh)w̄ −Θ(ψn−1
h )cn−1

h , wi〉+ τ〈∇ · v̄, wi〉 − τ〈Θ(ψnh)r(w̄), wi〉,

for all i ∈ {1, . . . , k1}, and

β̂i := 〈v̄,vi〉 − 〈w̄,∇ · vi〉 − 〈w̄Qn
h,vi〉,
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for all i ∈ {1, . . . , k2}. Let κ ∈ {k1, k2}. We define an inner product on Rk1+k2 as

〈ξ1, ξ2〉Rk1+k2 := 〈α1, α2〉k1 + τ〈β1, β2〉k2 ,

∀ ξ1, ξ2 ∈ Rk1+k2 with ξκ = (ακ, βκ) for ακ ∈ Rk1 and βκ ∈ Rk2 . 〈·, ·〉κ is the Euclidean inner
product in Rκ, defined by 〈x, y〉κ :=

∑κ
i=1 xiyi, ∀x, y ∈ Rκ. These inner products induce a

norm on Rk1+k2 ,
‖ξ‖2Rk1+k2 := |α|2k1 + τ |β|2k2 .

We will now show that F is continuous. Let ξn := (αn, βn) and ξ̂n := (α̂n, β̂n) in Rk1+k2

satisfy F(ξn) = ξ̂n for n = 1, 2. Then∥∥F(ξ1)−F(ξ2)
∥∥2

Rk1+k2

=
∥∥ξ̂1 − ξ̂2

∥∥2

Rk1+k2 =
∣∣α̂1 − α̂2

∣∣2
k1

+ τ
∣∣β̂1 − β̂2

∣∣2
k2

=

k1∑
i=1

∣∣α̂1
i − α̂2

i |2 + τ

k2∑
i=1

∣∣β̂1
i − β̂2

i

∣∣2
=

k1∑
i=1

∣∣∣〈Θ(ψnh)
∑k1

j=1(α1
j − α2

j )wj , wi〉+ τ〈∇ · (
∑k2

j=1(β1
j − β2

j )vj), wi〉

− 〈Θ(ψnh)
[
r
(∑k1

j=1 α
1
jwj
)
− r
(∑k1

j=1 α
2
jwj
)]
, wi〉

∣∣∣2
+ τ

k2∑
i=1

∣∣∣〈∑k2
j=1(β1

j − β2
j )vj ,vi〉 − 〈

∑k1
j=1(α1

j − α2
j )wj ,∇ · vi〉

− 〈
[∑k1

j=1(α1
j − α2

j )wj
]
Qn
h,vi〉

∣∣∣2.
Further we use the inequality

k∑
n=1

|an + bn + cn|2 ≤ 2
k∑

n=1

|an|2 + 4
k∑

n=1

|bn|2 + 4
k∑

n=1

|cn|2,

for real sequences {an}kn=1, {bn}kn=1, {cn}kn=1, along with Cauchy-Schwarz inequality (Theo-
rem 1.8) and the assumptions (A1)-(A3) to get∥∥F(ξ1)−F(ξ2)

∥∥2

Rk1+k2

≤ 2Θ2
s

k1∑
i=1

∣∣α1
i − α2

i

∣∣2 + 4k1τ
2
k2∑
j=1

∣∣β1
j − β2

j

∣∣2‖∇ · vj‖2 + 4Θ2
sL

2
r

k1∑
i=1

∣∣α1
i − α2

i

∣∣2
+ 2τ

k2∑
j=1

∣∣β1
j − β2

j

∣∣2 + 4τ

k1∑
j=1

∣∣α1
i − α2

i

∣∣2 k2∑
i=1

‖∇ · vi‖2 + 4M2k2τ

k1∑
j=1

∣∣α1
j − α2

j

∣∣2
≤
(

2Θ2
s + 4Θ2L2

r + 4k2τ max
i=1,...,k1

‖∇ · vi‖2 + 4M2k2τ
)∣∣α1 − α2

∣∣2
k1

+
(

4k1τ max
j=1,...,k2

‖∇ · vj‖2 + 2
)
τ
∣∣β1 − β2

∣∣2
k2
.
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Thus there exists C < +∞ such that∥∥F(ξ1)−F(ξ2)
∥∥2

Rk1+k2 ≤ C
∥∥ξ1 − ξ2

∥∥2

Rk1+k2 ,

for all ξ1, ξ2 ∈ Rk1+k2 , which implies that F is continuous.

Next we want to prove the existence of a solution for Problem (PCnh ). We will apply the
Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1) for the previously defined
function F , which we already have shown to be continuous. We want to show that there exists
M < +∞ such that

〈F(ξ), ξ〉Rk1+k2 ≥ 0 ∀ ξ ∈ Rk1+k2 satisfying ‖ξ‖Rk1+k2 = M,

and this will imply the existence.
Let ξ := (α, β) ∈ Rk1+k2 and (w̄, v̄) ∈Wh × Vh be defined as

w̄ :=

k1∑
j=1

αjwj , v̄ :=

k2∑
j=1

βjvj .

for α := (α1, . . . , αk1) ∈ Rk1 and β := (β1, . . . , βk2) ∈ Rk2 . Then

〈F(ξ), ξ〉Rk1+k2 = 〈α̂, α〉k1 + τ〈β̂, β〉k2
= 〈Θ(ψnh)w̄ −Θ(ψnh)cn−1

h , w̄〉+ τ〈∇ · v̄, w̄〉 − τ〈τ(ψnh)r(w̄), w̄〉

+ τ‖v̄‖2 − τ〈w̄,∇ · v̄〉 − τ〈w̄Qn
h, v̄〉.

By the Cauchy-Schwarz inequality (Theorem 1.8) and assumptions (A1)-(A3), we obtain

〈F(ξ), ξ〉Rk1+k2 ≥ ΘR‖w̄‖2 − ‖Θ(ψn−1
h cn−1

h )‖‖w̄‖ − τLr‖w̄‖2

+ τ‖v̄‖2 − τM‖w̄‖‖v̄‖.

Furthermore, the Young inequality (Theorem 1.9) and the fact that the basis vectors are unitary
implies that

〈F(ξ), ξ〉Rk1+k2 ≥
(

ΘR

2
− τ
[
LrΘs +

M2

2

])∣∣α∣∣2
k1

+
1

2
τ
∣∣β|2k2 − 1

2
C,

where C =
‖Θ(ψn−1

h )cn−1
h ‖2

ΘR
. For τ small enough, there exists m < +∞ such that ΘR −

τ(2LrΘS +M2) ≥ m > 0, which implies that

〈F(ξ), ξ〉Rk1+k2 ≥
1

2
(min{m, 1}

∥∥ξ∥∥2

Rk1+k2 − C).

Thus 〈F(ξ), ξ〉Rk1+k2 ≥ 0 for all ξ ∈ Rk1+k2 satisfying

‖ξ‖Rk1+k2 =

√
C

min{m, 1}
.

By the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1), we obtain the existence
of a ξ̃ ∈ Rk1+k2 such that

F(ξ̃) = 0 and ‖ξ̃‖Rk1+k2 ≤

√
C

min{m, 1}
,

which concludes the proof of existence.
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Chapter 4

Two-phase Flow

In this final chapter we will look at existence and uniqueness for a mathematical model of two-
phase flow in porous media. There are many societal relevant applications modelled by multi-
phase flow in porous media. This includes enhanced oil recovery, groundwater extraction and
contamination, and geological storage of CO2 [28]. In order to form robust discretizations and
develop good linear solvers of the physical problems, the questions of existence and uniqueness
are indeed a very important part of the research performed.

The work in this chapter will complement the results in [32]. In the paper, for the fully
discrete (non-linear) formulation, a Lipschitz continuous saturation is considered. The question
of proving existence of a solution if the saturation is assumed Hölder continuous is left open. It
is suggested to apply the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1) as in
[29], which we earlier discussed and recited in Theorem 3.3 (page 40). Motivated by the results
we proved for Hölder continuous non-linearities of the Richards equation in Proposition 3.7 (page
36) and Proposition 3.8 (page 39), and furthermore the regularization technique analysed in
Subsection 3.2.2 (page 32), we will in this chapter prove a result for the existence and uniqueness
of a fully discrete formulation in Theorem 4.2.

The application of these techniques to two-phase in porous media enables for the first time,
to our knowledge, the proof of existence for the case of a non-Lipschitz saturation.

Let Ω ⊂ Rd, (d > 1) be a bounded domain with Lipschitz continous boundary Γ. Let T > 0
be an upper bound for the time. We will assume immiscible and incompressible fluids, and
a non-deformable solid matrix. Let α = w, n be the wetting and non-wetting phase, sα the
saturation, pα the pressure, qα the flux and ρα the density of phase α. The model combines
the mass balance law in equation (4.1) with the Darcy law in equation (4.2):

∂(φραsα)

∂t
+∇ · (ραqα) = 0,

qα = −kkr,α
µα

(∇pα − ραg),

sw + sn = 1,

pn − pw = pcap(sw),

(4.1)

(4.2)

(4.3)

(4.4)

for α = w, n, where g denotes the constant gravitational vector. We have assumed an algebraic
evidence expressing the pores to be filled with the two fluids in (4.3), and a relationship between
the capillary pressure and the pressure for each phase (4.4) (we assume pcap to be known). The
permeability k is a scalar. The porosity φ and the viscosities µα are given constants, and the
relative permeabilities kr,α(·) are given functions of sw.
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4.1 Discretization

In this section, the goal is to derive a fully discrete (non-linear) scheme to be used for simulation
of two-phase flow in porous media. First, we wish to define two new unknowns as in [3, 10, 11,
12, 13]: a global pressure defined as

p(sw) := pn −
∫ sw

0
fw(ξ)

∂pcap

∂ξ
dξ,

and a complementary pressure defined by a Kirchhoff transformation

Θ(sw) := −
∫ sw

0
fw(ξ)λn(ξ)

∂pcap

∂ξ
dξ,

where λα :=
kr,α
µα

is the mobility of phase α and fw :=
λw

λw + λn
is the fractional flow function.

In the new unknowns, we obtain the system:

∂ts(Θ) +∇ · q = 0,

q = −∇Θ + fw(s)u + f1(s),

∇ · u = f2(s),

a(s)u = −∇p− f3(s).

(4.5)

(4.6)

(4.7)

(4.8)

where s := sw, q is the (wetting) flux, and u is the total flux. The equations are defined on
Ω× (0, T ].

We are now in possession of a coupling of two non-linear partial differential equations.
The equations (4.5) and (4.6) form a degenerate parabolic equation (which degenerates as the
derivative of s(·) possibly vanishes or blows up), while equations (4.7) and (4.8) form an elliptic
equation. For the computational details and exact expressions for the coefficient functions s(·),
a(·), f1(·), f2(·), f3(·) and fw(·) in equations (4.5)-(4.8), we refer to [11, 12, 13]. We adapt the
initial and homogeneous Dirichlet boundary conditions

Θ(0, ·) = ΘI in Ω and Θ = 0, p = 0 on (0, T ]× Γ (4.9)

Let 〈·, ·〉 be the L2(Ω) inner product (as in Remark 1.4.1) or the duality pairing between
H1

0 (Ω) and H−1(Ω). ‖ · ‖ is the L2(Ω) norm induced by 〈·, ·〉. We define time steps tn = nτ for
n ∈ {1, . . . , N} ⊂ N with step length τ .

First, a continuous mixed variational formulation is obtained by integration in time and
space. The existence and uniqueness of the continuous variational formulation for a mixed
finite element formulation of two-phase flow was proved in [31] by an equivalence with the
conformal formulation used in [11]. For the analysis of two-phase flow with dynamic capillarity,
including a linearization algorithm we refer to [20], [21].

Second, the Backward Euler method is applied in time to get a semi-discrete mixed vari-
ational formulation. Third, we give the discrete subspaces Wh, Vh of L2(Ω) and H(div; Ω),
respectively. Let Th be a regular decomposition of Ω ∈ Rd into closed d-simplices T with mesh
size h (see [16], Chapter 2), assuming Ω =

⋃
T∈Th T . We define the Raviart-Thomas spaces [9]

Wh :=
{
p ∈ L2(Ω) | p is constant on each T ∈ Th

}
, (4.10)

Vh :=
{
q ∈ H(div; Ω) | q(x) := aT + bTx on each T ∈ Th,aT ∈ Rd, bT ∈ R

}
. (4.11)

We define the fully discrete (non-linear) variational formulation (Pnh ):
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Problem (Pnh ): Let n ∈ N, n ≥ 1, snh := s(Θn
h), and assume Θn−1

h is known. Find Θn
h, p

n
h ∈Wh

and qnh,u
n
h ∈ Vh such that

〈snh − sn−1
h , wh〉+ τ〈∇ · qnh, wh〉 = 0, (4.12)

〈qnh,vh〉 − 〈Θn
h,∇ · vh〉 − 〈fw(snh)unh,vh〉 = 〈f1(snh),vh〉, (4.13)

〈∇ · unh, wh〉 = 〈f2(snh), wh〉, (4.14)

〈a(snh)unh,vh〉 − 〈pnh,∇ · vh〉+ 〈f3(snh),vh〉 = 0 (4.15)

for all wh ∈Wh and vh ∈ Vh.

We make the following assumptions as stated in [32] (page 7):

(A1) The function s : R→ R, s(0) = 0 is strongly monotonically increasing: there exists
s0 > 0 such that

〈s(Θ1)− s(Θ2),Θ1 −Θ2〉 ≥ s0|Θ1 −Θ2|2,

and Hölder continuous with exponent α ∈ (0, 1], that is, ∃ Ls > 0 such that

|s(Θ1)− s(Θ2)| ≤ Ls|Θ1 −Θ2|α, ∀ Θ1,Θ2 ∈ R.

(A2) a(·) satisfies the growth condition

|a(s(Θ1))− a(s(Θ2))|2 ≤ C〈s(Θ1)− s(Θ2),Θ1 −Θ2〉, ∀ Θ1,Θ2 ∈ R,

and there exists a?, a
? > 0 such that

0 < a? ≤ a(y) ≤ a? <∞, ∀ y ∈ R.

(A3) The coefficient functions f1, f3 : R → Rd and f2, fw : R → R are bounded, satisfy
F (0) = 0 and the growth condition

|F (s(Θ1))− F (s(Θ2))|2 ≤ C〈s(Θ1)− s(Θ2),Θ1 −Θ2〉, ∀ Θ1,Θ2 ∈ R,

for C > 0 and where F is any of the functions above. We specify the constants as
C1, C2, C3 and Cw.

Furthermore, to prove existence with the Corollary of the Brouwer Fixed Point Theorem
(Corollary 3.2.1), it is necessary for us to define a similar problem (Pn,εh ) and then show after-
wards that a possibly unique solution of (Pn,εh ) converges to (Pnh ) as ε → 0. A regularization
term is added to equation (4.14), and the reason for this will become apparent when we seek to
satisfy the hypothesis of Corollary 3.2.1 with a norm defined as in equation (4.54). We define
the regularized problem (Pn,εh ):

Problem (Pn,εh ): Let n ∈ N, n ≥ 1, sn,εh := s(Θn,ε
h ), ε > 0, and assume Θn−1,ε

h is known. Find
Θn,ε
h , pn,εh ∈Wh and qn,εh ,un,εh ∈ Vh such that

〈sn,εh − s
n−1
h , wh〉+ τ〈∇ · qn,εh , wh〉 = 0, (4.16)

〈qn,εh ,vh〉 − 〈Θn,ε
h ,∇ · vh〉 − 〈fw(sn,εh )un,εh ,vh〉 = 〈f1(sn,εh ),vh〉, (4.17)

ε〈pn,εh , wh〉+ 〈∇ · un,εh , wh〉 = 〈f2(sn,εh ), wh〉, (4.18)

〈a(sn,εh )un,εh ,vh〉 − 〈pn,εh ,∇ · vh〉+ 〈f3(sn,εh ),vh〉 = 0 (4.19)

for all wh ∈Wh and vh ∈ Vh.
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4.2 Existence and Uniqueness

In this section an a priori estimate of the regularized problem (Pn,εh ) will be shown in Propo-
sition 4.1. Further, we prove existence and uniqueness of a solution of (Pn,εh ). It will become
necessary to assume f2 ≡ 0 to be able to apply Corollary 3.2.1. Combining these two results,
along with the Eberlein-Šmuljan Theorem (Theorem 1.5), will give convergence of the sequence
{pn,εh }ε to a solution pnh of Problem (Pnh ) as ε→ 0. Thus proving the existence and uniqueness
of Problem (Pnh ).

For the next proposition, we need the following lemma, which was proven in [38]:

Lemma 4.1. Given a wh ∈Wh, there exists a vh ∈ Vh satisfying

∇ · vh = wh and ‖vh‖ ≤ CΩ,d‖wh‖ (4.20)

with CΩ,d > 0 not depending on wh or the mesh size.

Proposition 4.1. Let Θn,ε
h , pn,εh ∈Wh and qn,εh ,un,εh ∈ Vh be the solution components of Problem

(Pn,εh ), assuming f2 ≡ 0. Then the following a priori estimate holds:

s0‖Θn,ε
h ‖

2 + τ‖qn,εh ‖
2 + ‖pn,εh ‖

2 + ‖un,εh ‖
2 ≤ C (4.21)

for all ε > 0 and some positive constant C < +∞.

Proof. Throughout this proof, we let 0 < C < +∞ be a generic positive constant. Pick
wh := pn,εh in (4.18) and vh := un,εh in (4.19). Then

ε‖pn,εh ‖
2 + 〈∇ · un,εh , pn,εh 〉 = 0, (4.22)

〈a(sn,εh )un,εh ,un,εh 〉 − 〈p
n,ε
h ,∇ · un,εh 〉+ 〈f3(sn,εh ),un,εh 〉 = 0. (4.23)

Adding equations (4.22) and (4.23) gives

〈a(sn,εh )un,εh ,un,εh 〉+ ε‖pn,εh ‖
2 + 〈f3(sn,εh ),un,εh 〉 = 0. (4.24)

By the Cauchy-Schwarz inequality (Theorem 1.8), assumption (A2), and lastly the Young in-
equality (Theorem 1.9), we get the bound

‖un,εh ‖
2 ≤ C. (4.25)

By Lemma 4.1, there exists vh ∈ Vh such that ∇ · vh = pn,εh and

‖vh‖ ≤ CΩ,d‖pn,εh ‖. (4.26)

Pick vh ∈ Vh satisfying this for equation (4.19). Then we get

〈a(sn,εh )un,εh ,vh〉 − ‖pn,εh ‖
2 + 〈f3(sn,εh ),vh〉 = 0. (4.27)

Next, the Cauchy-Schwarz inequality (Theorem 1.8), the relation in (4.26) and the assumptions
(A2) and (A3) imply that

‖pn,εh ‖
2 ≤ a∗CΩ,d‖un,εh ‖‖p

n,ε
h ‖+ C3CΩ,d‖pn,εh ‖.

By the Young inequality (Theorem 1.9), we obtain the estimate

‖pn,εh ‖ ≤ 2(a∗)2C2
Ω,d‖u

n,ε
h ‖

2 + C2
3C

2
Ω,d. (4.28)
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We can combine (4.28) with (4.25) to get

‖pn,εh ‖
2 + ‖un,εh ‖

2 ≤ C. (4.29)

Now test equation (4.16) with wh := Θn,ε
h and equation (4.17) with vh := τqn,εh . Then

〈sn,εh − s
n−1,ε
h ,Θn,ε

h 〉+ τ〈∇ · qn,εh ,Θn,ε
h 〉 = 0, (4.30)

τ‖qn,εh ‖
2 − τ〈Θn,ε

h ,∇ · qn,εh 〉 − τ〈fw(sn,εh )un,εh ,qn,εh 〉 = τ〈f1(sn,εh ),qn,εh 〉. (4.31)

Adding these two equations yields

〈sn,εh − s
n−1,ε
h ,Θn,ε

h 〉+ τ‖qn,εh ‖
2 = τ〈fw(sn,εh )un,εh ,qn,εh 〉+ τ〈f1(sn,εh ),qn,εh 〉. (4.32)

By the Cauchy-Schwarz inequality (Theorem 1.8), the estimate (4.29) and the assumptions (A1)
and (A3), we obtain the existence of a positive constant C such that

s0‖Θn,ε
h ‖

2 + τ‖qn,εh ‖
2 ≤ ‖sn−1,ε

h ‖‖Θn,ε
h ‖+ τC‖qn,εh ‖. (4.33)

Lastly, the Young inequality (Theorem 1.9) implies

s0

2
‖Θn,ε

h ‖
2 +

τ

2
‖qn,εh ‖

2 ≤ 1

2s0
‖sn−1,ε
h ‖2 + τC2. (4.34)

Hence there exists C > 0 such that

s0‖Θn,ε
h ‖

2 + τ‖qn,εh ‖
2 ≤ C. (4.35)

This, added to the inequality (4.29), proves the statement in Proposition 4.1.

Remark 4.0.1. Note that the condition f2 ≡ 0 was not necessary to prove Proposition 4.1. It is
only used to show the bound for un,εh . The reason for including the assumption is because we
want to apply the proposition directly in Theorem 4.1.

Theorem 4.1. Assuming (A1)-(A3) hold true and f2 ≡ 0, there exists a unique solution of
problem (Pn,εh ) for τ sufficiently small.

Proof. Uniqueness: Assume there exists two sets of solutions Θn,ε
h,i , p

n,ε
h,i ∈Wh and qn,εh,i ,u

n,ε
h,i ∈ Vh

for i = 1, 2. Define

Θn,ε
h := Θn,ε

h,1 −Θn,ε
h,2, qn,εh := qn,εh,1 − qn,εh,2 (4.36)

pn,εh := pn,εh,1 − p
n,ε
h,2, un,εh := un,εh,1 − un,εh,2 (4.37)

Moreover, we define sn,εh,i := s(Θn,ε
h,i ) for i = 1, 2 and sn,εh := sn,εh,1 − s

n,ε
h,2. Pick wh := Θn,ε

h and

vh := τqn,εh in (4.16) and (4.17). Subtract the equations with the two solutions to obtain

〈sn,εh ,Θn,ε
h 〉+ τ〈∇ · qn,εh ,Θn,ε

h 〉 = 0, (4.38)

τ‖qn,εh ‖
2 − τ〈Θn,ε

h ,∇ · qn,εh 〉 − τ〈fw(sn,εh,1)un,εh,1 − fw(sn,εh,2)un,εh,2,q
n,ε
h 〉

= 〈f1(sn,εh,1)− f1(sn,εh,2),qn,εh 〉.
(4.39)
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Add the above equations (4.38), (4.39), and expand the fw(·)-term to get

〈sn,εh ,Θn,ε
h 〉+ τ‖qn,εh ‖

2 = τ〈
[
fw(sn,εh,1)− fw(sn,εh,2)

]
un,εh,1,q

n,ε
h 〉

+ τ〈fw(sn,εh,2)un,εh ,qn,εh 〉+ τ〈f1(sn,εh,1)− f1(sn,εh,2),qn,εh 〉.

By assumptions (A1), (A3) and the Cauchy-Schwarz inequality (Theorem 1.8),

s0‖Θn,ε
h ‖

2 + τ‖qn,εh ‖
2 ≤ τMu‖fw(sn,εh,1)− fw(sn,εh,2)‖‖qn,εh ‖

+ τMw‖un,εh ‖‖q
n,ε
h ‖+ τ‖f1(sn,εh,1)− f1(sn,εh,2)‖‖qn,εh ‖.

Furthermore, the Young inequality (Theorem 1.9) and assumption (A3) implies that there exists
a positive constant C < +∞ such that

s0‖Θn,ε
h ‖

2 +
τ

4
‖qn,εh ‖ ≤ τM

2
w‖u

n,ε
h ‖

2 + τC〈sn,εh ,Θn,ε
h 〉 (4.40)

Next, pick wh := pn,εh and vh := un,εh . Subtracting the equations (4.18) and (4.19) from
themselves with the two solutions yields

ε‖pn,εh ‖
2 + 〈∇ · un,εh , pn,εh 〉 = 0, (4.41)

〈a(sn,εh,1)un,εh − a(sn,εh,2)un,εh ,un,εh 〉 − 〈p
n,ε
h ,∇ · un,εh 〉+ 〈f3(sn,εh,1)− f3(sn,εh,2),un,εh 〉 = 0. (4.42)

After adding (4.41) and (4.42), and expanding the a(·)-term, we obtain

ε‖pn,εh ‖
2 + 〈a(sh,2)un,εh ,un,εh 〉 = −〈

[
a(sn,εh,1)− a(sn,εh,2)

]
un,εh,1,u

n,ε
h 〉 − 〈f3(sn,εh,1)− f3(sn,εh,2),un,εh 〉.

It follows from the Cauchy-Schwarz inequality (Theorem 1.8), the Young inequality (Theo-
rem 1.9), Proposition 4.1, and the assumptions (A2), (A3), that ∃C > 0 such that

ε‖pn,εh ‖
2 +

a∗
4
‖un,εh ‖

2 ≤ C〈sn,εh ,Θn,ε
h 〉. (4.43)

Combining this with the inequality (4.40), we have

s0‖Θn,ε
h ‖

2 +
τ

4
‖qn,εh ‖

2 +
4M2

wε

a∗
τ‖pn,εh ‖

2 ≤ τC〈sn,εh ,Θn,ε
h 〉, (4.44)

for some C < +∞. For τ sufficiently small, we get Θn,ε
h = 0. This further implies that qn,εh = 0

and pn,εh = 0. un,εh = 0 follows from (4.43). This concludes the proof of uniqueness.

Existence: We will apply the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1)
to prove the existence of a solution of problem (Pn,εh ). Let {w1, . . . , wk1} and {v1, . . . ,vk2} be
orthonormal bases for Wh, Vh, respectively. Then we can represent elements of Θ̄, p̄ ∈ Wh and
q̄, ū ∈ Vh as

Θ̄ :=

k1∑
j=1

α1
jwj , with ‖Θ̄‖ = |α1|k1 , (4.45)

p̄ :=

k1∑
j=1

α2
jwj , with ‖p̄‖ = |α2|k1 , (4.46)

q̄ :=

k2∑
j=1

β1
jvj , with ‖q̄‖ = |β1|k2 , (4.47)

ū :=

k2∑
j=1

β2
jvj , with ‖ū‖ = |β2|k1 , (4.48)
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for αn := (αn1 , . . . , α
n
k1

) ∈ Rk1 and βn := (βn1 , . . . , β
n
k2

) ∈ Rk2 , with n = 1, 2. To prove existence
with the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1), we consider the finite-
dimensional Hilbert space H := Rk1+k2 × Rk1+k2 with inner product defined as the sum of two
different inner products on Rk1+k2 . From here on, we will denote elements of H by η := (ξ1, ξ2),
for ξn := (αn, βn) ∈ Rk1+k2 with αn ∈ Rk1 , βn ∈ Rk2 , n = 1, 2. If we consider more than one
element of H, we will separate them by subscripts:

ηm := (ξ1
m, ξ

2
m) :=

(
(α1

m, β
1
m), (α2

m, β
2
m)
)
, m ∈ N, (4.49)

for ξ1
m, ξ

2
m ∈ Rk1+k2 and α1

m, α
2
m ∈ Rk1 , β1

m, β
2
m ∈ Rk2 . For elements of Rk1+k2 , we specify

ξm := (αm, βm) for αm ∈ Rk1 and βm ∈ Rk2 with m ∈ N.
We define two inner products on Rk1+k2 by

〈ξ1, ξ2〉1 := 〈α1, α2〉k1 + τ〈β1, β2〉k2 , (4.50)

〈ξ1, ξ2〉2 := 〈α1, α2〉k1 + 〈β1, β2〉k2 . (4.51)

For κ = k1, k2, 〈·, ·〉κ is the Euclidean inner product in Rκ, defined by

〈x, y〉κ :=
κ∑
j=1

xjyj , ∀x, y ∈ Rκ. (4.52)

The motivation behind the different choices of inner products will become apparent when we
develop an estimate satisfying the hypothesis of Corollary 3.2.1. See Remark 4.1.1 for further
details. Let η1, η2 ∈ H. We define an inner product on H as

〈η1, η2〉H := 〈ξ1
1 , ξ

1
2〉1 + 〈ξ2

1 , ξ
2
2〉2. (4.53)

For η ∈ H, this inner product induces a norm∥∥η∥∥2

H
:=

∥∥ξ1
∥∥2

1
+
∥∥ξ2
∥∥2

2
:=

∣∣α1
∣∣2
k1

+ τ
∣∣β1
∣∣2
k2

+
∣∣α2
∣∣2
k1

+
∣∣β2
∣∣2
k2
. (4.54)

Next, define F → H as F(η) := η̂, where the notation of η̂ ∈ H will follow η ∈ H as defined
previously. Recall the sample elements of H in equations (4.45)-(4.48). η̂ := ((α̂1, β̂1), (α̂2, β̂2))
is given componentwise as

α̂1
i := 〈s(Θ̄)− sn−1

h , wi〉+ τ〈∇ · q̄, wi〉, (4.55)

α̂2
i := ε〈p̄, wi〉+ 〈∇ · ū, wi〉, (4.56)

for i ∈ {1, . . . , k1}, and

β̂1
i := 〈q̄,vi〉 − 〈Θ̄,∇ · vi〉 − 〈fw(s(Θ̄))ū,vi〉 − 〈f1(s(Θ̄)),vi〉, (4.57)

β̂2
i := 〈a(s(Θ̄))ū,vi〉 − 〈p̄,∇ · vi〉+ 〈f3(s(Θ̄)),vi〉, (4.58)

for i ∈ {1, . . . , k2}. It can be shown that F is continuous. Next, we deduce the estimate for the
inner product:

〈F(η), η〉H = 〈η̂, η〉H

= 〈α̂1, α1〉k1 + τ〈β̂1, β1〉k2 + 〈α̂2, α2〉k1 + 〈β̂2, β2〉k2
= 〈s(Θ̄)− sn−1

h , Θ̄〉+ τ〈∇ · q̄, Θ̄〉+ τ‖q̄‖2 − τ〈Θ̄,∇ · q̄〉 − 〈fw(s(Θ̄))ū, q̄〉

+ 〈f1(s(Θ̄)), q̄〉+ ε‖p̄‖2 + 〈∇ · ū, p̄〉+ 〈a(s(Θ̄))ū, ū〉

− 〈p̄,∇ · ū〉+ 〈f3(s(Θ̄)), ū〉.

51



Using the Cauchy-Schwarz inequality (Theorem 1.8), the assumptions (A2)-(A3), and Proposi-
tion 4.1,

〈F(η), η〉H ≥ s0‖Θ̄‖2 − ‖sn−1
h ‖‖Θ̄‖+ τ‖q̄‖2 − Cw‖ū‖‖q̄‖ − τC1‖q̄‖

+ ε‖p̄‖2 + a∗‖ū‖2 − C3‖ū‖.

At last, after applying the Young inequality (Theorem 1.9) and using the norm relations in
(4.45)-(4.48), we obtain the estimate

〈F(η), η〉H ≥
s0

2

∣∣α1
∣∣2
k1

+
1

4
τ
∣∣β1
∣∣2
k2

+ ε
∣∣α2
∣∣2
k1

+
1

2
(a∗ − τC2

w)
∣∣β2
∣∣2
k2

−
( 1

2s0
‖sn−1
h ‖2 + τC2

1 +
1

2a∗
C2

3

)
.

For τ sufficiently small, we have a∗ − τC2
w > 0 Let m := min{ s02 ,

1
4 , ε,

1
2(a∗ − τC2

w)}. Then

〈F(η), η〉H ≥ m‖η‖2H − C, ∀η ∈ H, (4.59)

where C :=
1

2s0
‖sn−1
h ‖2 + τC2

1 +
C2

3

2a∗
. Therefore, for all η ∈ H satisfying

‖η‖2H =
C

m
(4.60)

we have
〈F(η), η〉H ≥ 0. (4.61)

By the Corollary of the Brouwer Fixed Point Theorem (Corollary 3.2.1), ∃ η̃ ∈ H such that

F(η̃) = 0 and ‖η̃‖H ≤
√
C

m
(4.62)

which proves the existence of a solution of problem (Pn,εh ).

Remark 4.1.1. The choice of inner products in the proof of existence were directed at the removal
of the terms τ〈∇ · q̄, wi〉 in (4.55), 〈∇ · ū, wi〉 in (4.56), 〈Θ̄,∇ · vi〉 in (4.57), and 〈p̄,∇ · vi〉 in
(4.58). In the Galerkin formulations we considered in Chapter 2, we could simply apply the
Poincaré inequality directly, but in the mixed case considered here, such a statement (a relation
between Wh and Vh) does not necessarily exist.

Remark 4.1.2. It can be shown that the result of uniqueness in Theorem 4.1 is still valid without
the assumption f2 ≡ 0.

Here is the final result:

Theorem 4.2. Assuming (A1)-(A3) hold true and f2 ≡ 0, there exists a unique solution of
problem (Pnh ) for τ sufficiently small.

Proof. By Theorem 4.1, there exists a unique set of solutions (Θn,ε
h , qn,εh , pn,εh , un,εh ) ∈Wh×Vh×

Wh × Vh. Moreover by Proposition 4.1, these are bounded sequences in ε. Therefore, by the
Eberlein-Šmuljan Theorem (Theorem 1.5) there exists (Θn

h, qnh, pnh, unh) ∈ Wh × Vh ×Wh × Vh
and subsequences of {Θn,ε

h }ε, {q
n,ε
h }ε, {p

n,ε
h }ε and {un,εh }ε converging weakly to (Θn

h, qnh, pnh,
unh). Vh and Wh are finite-dimensional, and therefore weak convergence is equivalent with
strong convergence.
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4.3 Summary

In this chapter we have proved a result for existence and uniqueness of a fully discrete formu-
lation (Pnh ) derived from a mathematical model of two-phase flow in porous media, and based
on the assumptions (A1)-(A3).

The objective of this chapter was to explore which properties the saturation s(·) could
possess in order for us to show a result. We assumed s(·) to be Hölder continuous and strongly
monotonically increasing, which was essential to derive a result.

In [32], it is discussed that a proof of existence and uniqueness of a solution of (Pnh ) with s(·)
Lipschitz continuous and monotonically increasing is based on the Banach fixed point theorem
(Theorem 3.1) along with the Lax-Milgram Theorem (Theorem 2.4). The construction of such
a proof is similar to the result we showed in Proposition 3.2 followed by Proposition 3.3. There,
we first proposed a linearization scheme, then proved existence and uniqueness of a solution of
the scheme, and finally used the Banach fixed point Theorem to show for which values of L > 0
in the L-scheme we obtained convergence to a solution of the main problem.

For future studies, it would be interesting to see if it is possible to derive a result for a
Hölder continuous and monotonically increasing saturation. The method using the Corollary of
the Brouwer Fixed Point Theorem could also be applied to other physical problems, possibly
giving satisfactory results for existence and uniqueness of other variational formulations.
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