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Abstract

As the front page implies, this is a thesis about log Hochschild homology. Our primary goal will

be to understand how the log Hochschild homology groups acts on products and coproducts in

the category of commutative pre-log algebras. We will prove that the log Hochschild homology

commutes with products, and we shall formulate and prove a Künneth Theorem for log Hochschild

homology. These results allows for the computation of the log Hochschild homology of complicated

pre-log algebras that have been constructed from components we already understand by the process

of taking products and coproducts.
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Introduction

On the Structure and Style of the Thesis

We have attempted to write a paper that is accessible for everyone with a solid background in the

basics of commutative algebra (where we have listed the more specific prerequisites at the begin-

ning of Chapter 1). As a result of a having a broad audience, the preliminary chapter has become

rather extensive and the more experienced reader might find herself bored long before the “actual”

thesis begins. It might therefore be of interest to those who consider themselves members of the

more advanced section of the readership to start reading from Chapter 2 and let Chapter 1 serve as

an easily available reference for some of the more obscure details. The thesis is structured as follows:

In Chapter 1 we deliberate on the notation and terminology that we will use, and present some

technical results that would otherwise have interrupted the flow of the subsequent chapters.

In Chapter 2 we will introduce Hochschild homology groups HH∗(A) of an associative and unital

algebra A. These are defined as the homology groups associated to what is called the Hochschild

complex of A. We will then delve deeper into how the Hochschild homology groups behaves with

respect to the product, tensor products, and localizations of A. These are important results which

we will generalize to the setting of log Hochschild homology in Chapter 4.

In Chapter 3 we present the definitions of pre-log and log structures on commutative algebras

and introduce the category of commutative pre-log algebras. Then follows explicit descriptions of

products and coproducts in the category of commutative pre-log algebras and we present a result

describing how one can calculate limits and colimits generally in this category. At the end of this

chapter we will do the groundwork that is required before we can start on Chapter 4.

In Chapter 4 we give the definition of the log Hochschild homology groups HH∗(A,M) of a commu-

tative pre-log algebra (A,M,α). This is also the chapter where we state and prove the main results

of this thesis. In particular we shall prove that the log Hochschild homology groups commutes

with the categorical product and provide a Künneth Theorem for log Hochschild homology. We

then proceed to use these results to obtain some corollaries, in particular a corollary that proves

log Hochschild homology to commute with localizations. We will also use these new results to do

some calculations of log Hochschild homology groups.
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Notational Conventions

Most of the symbols and expressions we use are the conventional ones but there are also some

anomalies the reader should be aware of, especially if one chooses to omit reading the Preliminaries.

We specify the most frequently used notation below, and hope that the reader will find the list to

be sufficiently complete:

• We will consistently use R to as the notation for a commutative, associative and unital ring

throughout the entire thesis. When we want to put emphasis on the fact that we are working

over a field, we will write Q.

• We have done our best to be consequent about using A to denote an associative and unital

R-algebra. We will assume A to have the additional property of being commutative in both

Chapter 3 and Chapter 4.

• If x is an element of an algebraic structure X, we write 〈x〉 for the substructure generated

by x whenever we are in a setting where this has an obvious meaning. More generally we

write 〈x1, x2, . . . 〉 or 〈xi〉 for the substructure of X generated by several elements xi ∈ X. We

use the same notation, 〈yi〉, for the free “insert the algebraic structure we are working with”

generated by the elements y1, y2, . . . , yi, . . .

• As is usual, Z means all the integers both positive, negative and 0. We let N0 denote the

non-negative integers including zero, while N∗ will mean the non-negative integers excluding

zero.

• We will generally write ⊗ rather than ⊗R and we often write A⊗n instead of A⊗A⊗· · ·⊗A.

We have been careful in pointing it our in the few instances where we deviate from these

conventions.

• We have been somewhat careless when it comes to making a proper distinction between the

direct product and the free sum (denoted respectively as × and ⊕). The reader who is

unaware of this runs the risk of being somewhat confused. This is regrettable, and we would

have corrected every occurrence of this if time had permitted us to do so. Luckily all of

the results are still correct, since we work exclusively with finite products of commutative

algebraic structures, and so these concepts becomes isomorphic.

• Finally, be aware that our notation for the Cartesian product of simplicial modules, C•⊗D•,
is very similar to the notation used for the different concept of the tensor product of chain

complexes, C∗ ⊗D∗.

• The reader should be aware that the notation C•(A,M), C∗(A,M) and H∗(A,M) will be used

for two different concepts. In Chapter 2 it will be the notation for the Hochschild simplical

R-algebra, Hochschild chain complex and Hochschild homology groups respectively, while in

Chapter 4 it will mean the log Hochschild simplical R-algebra, log Hochschild chain complex

and log Hochschild homology groups.
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Chapter 1

Preliminaries

In this preliminary, we recall concepts that will be frequently used throughout the thesis. As a

result, this chapter is largely devoted to definitions and elementary results from algebra, category

theory and homology. The purpose of this is to establish terminology and notation, and to ensure

the paper to be fairly self-contained. The reader is expected to have some familiarity with algebraic

objects and constructions, such as groups, rings, modules, algebras, tensor products, localizations

and split exact sequences. In addition, some prior exposure to either homological algebra or alge-

braic topology would serve as source of motivation, although this is not an absolute prerequisite.

To keep the text from becoming over-fragmented, there will be times when definitions appear in-

side the text. We will then lend ourself to the boldface convention, meaning that we write the

expression that is being defined in thick letters.

1.1 Abstract Algebra

Throughout the thesis, R will be assumed to be a commutative ring with a unit element. All

unspecified tensor products are taken to be over R, unless otherwise stated. So, whenever the

reader finds “⊗” written, what we we really mean is “⊗R”. In addition to this, A is always

assumed to be an associative and unital R-algebra. This means that A is both an R-module

and a unital and associative ring, where we have that, for all a, b ∈ A and for all r ∈ R:

r(ab) = (ra)b = a(rb)

Given R-algebras A and B, we call an R-linear ring homomorphism, f : A → B, for an algebra

homomorphism from A to B.

Example 1.1.1. Here is a selection of some elementary examples of R-algebras:

• The polynomial ring over R in n variables, R[x1, . . . , xn]. This is an R-algebra by let-

ting the scalar multiplication of an element r ∈ R be ordinary multiplication by a constant:

r · p(x1, . . . , xn).

• The n-fold product ring of R, Rn = R×R× · · · ×R. This is an R-algebra with R-module

structure defined to be multiplication by r ∈ R in all coordinates. In particular, we have that

R is an R-algebra.

• An example of a non-commutative algebra is the vector space R3, with cross product as mul-

tiplicative ring structure. The R-algebra structure is again obtained by scalar multiplication.
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1.1.1 Bimodules

Definition 1.1.2. That M is an A-bimodule means that M is both a right A-module and a left

A-module. These module structures need to be compatible with each other, in the sense that scalar

multiplications of A on the right should commute with scalar multiplications of A on the left. To

be precise, we have that for all a, a′ ∈ A and for all m ∈M :

(am)a′ = a(ma′)

We make a remark of the fact that M inherits both a left and a right R-module structure. For all

r ∈ R, m ∈M and 1 ∈ A, we define left scalar multiplication as r ·m = (r1) ·m, and similarly for

right scalar multiplication, we let m · r = m · (r1).

We need bimodules in order to define Hochschild homology in Chapter 2, but then mainly in the

form of the following alternative description. Let M be a bimodule over the R-algebra, A. Then

there is a unique interpretation of M as a left module over the R-algebra, Ae = A ⊗ Aop, called

the enveloping algebra of A. Aop is called the opposite R-algebra, defined as the R-algebra

〈A,+, ·op〉. The underlying additive group structure of Aop and A is the same, while multiplication

in Aop is obtained by a permutation of the factors prior to multiplication: a·opb = b ·a. It is routine

to verify that Aop is an R-algebra and we omit this calculation. We can manoeuvre back and forth

between A-bimodules and left Ae-modules by letting:

a ·m = (a⊗ 1Aop) ·m
m · b = (1A ⊗ b) ·m

Let M and N be A-bimodules. An A-bimodule homomorphism is a right and left A-linear

function f : M → N . In the left Ae-module interpretation, this can be shown to be equivalent to

f : M → N being Ae-linear.

Example 1.1.3. The product of a ring A by itself n times,
n∏
A, is an A-bimodule if we define

scalar multiplication of A on
n∏
A to be:

a(a1, a2, . . . , an) = (aa1, aa2, . . . , aan)

(a1, a2, . . . , an)a = (a1a, a2a, . . . , ana)

Example 1.1.4. The tensor product of a ring A by itself n times, A⊗n, is an A-bimodule if we

define scalar multiplication of A on A⊗n to be:

a(a1 ⊗ a2 ⊗ · · · ⊗ an) = (aa1 ⊗ a2 ⊗ · · · ⊗ an)

(a1 ⊗ a2 ⊗ · · · ⊗ an)a = (a1 ⊗ a2 ⊗ · · · ⊗ ana)

In particular, these two examples makes A into an A-bimodule over itself, by letting n = 1.

Proposition 1.1.5. Let M be an R-module. Then we give A⊗M ⊗A and Ae ⊗M the structure

of A-bimodules by defining:

(b⊗ b′) · (a⊗m⊗ a′) = (b · a⊗m⊗ a′ · b′)
(b⊗ b′) · (a⊗ a′ ⊗m) = (b · a⊗ a′ · b′ ⊗m)
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Doing so makes A⊗M ⊗A and Ae ⊗M isomorphic via the map:

A⊗M ⊗Ae −→ Ae ⊗M
a⊗m⊗ a′ 7−→ a⊗ a′ ⊗m

Proof. By the universal property of the tensor product, we always have an R-module isomorphism

A⊗M ⊗A ∼= A⊗A⊗M , which is the one described. That this is an isomorphism of Ae-modules

follows from definition.

1.1.2 Projective Modules

Projective modules generalizes the concept of free modules, while preserving many of their impor-

tant properties. There are several equivalent definitions of projective modules floating around. We

list the ones we will use here:

Definition 1.1.6. Let X be a ring which is not necessarily commutative. Let P be a a left X-

module. We say that P is X-projective, or projective as a left X-module if one (and hence all)

of the following statements are true:

• For all diagrams of left X-modules below there exists a lift, meaning the dashed arrow,

making the diagram commute. The notation in the diagram is meant to indicate that f has

to be surjective:

N

f
����

P g
//

∃h
>>

M

• P is the direct summand of a free module. In other words, there exists a left X-module,

Q, such that:

P ⊕Q ∼=
⊕
α∈I

X

• Hom(P,−) : X-Mod→ AbGrp is an exact functor. I.e. applying Hom(P,−) to an exact

sequence of left X-modules always yield a new exact sequence.

Proof. We refer the reader to Chapter 1 of [Mac Lane, 1967] for a proof of the equivalence of these

definitions.

The definitions of right projective is obtained by changing every “left” to “right” in the definition

above. We suppress the “left” (respectively “right”) in left (respectively right) projective whenever

it is obvious which is meant (in this paper, everything will be left projective)

Example 1.1.7. Any free R-module, F , is R-projective, since the direct sum F ⊕ 0 = F is free.

Some further properties that can easily be deduced with the direct sum definition, is that the direct

sum and direct summands of R-projective modules are R-projective. There are non-free projective

modules, such as Z3 considered as a Z6-module. The reason is that Z3 is a summand of Z6 under

the isomorphism Z3⊕Z2
∼= Z6 As a counter-example to the statement “all modules are projective”,
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we have Z2, which is not Z4-projective. This is easily proven, as there is no lift in the diagram

below. Here, q is the quotient map obtained when we quotient out by the ideal {0, 2} in Z4.

Z4

q
����

Z2
Id
//

>>

Z2

In Chapter 2, we will be in need of Corollary 1.1.10. The next three results are claims found in

[Loday, 1998]. We write out the proofs for completeness.

Proposition 1.1.8. Let M and N be R-modules. If M and N are R-projective, then M ⊗ N is

R-projective as an R-module. In particular, if A is R-projective, then A⊗n is R-projective.

Proof. Using the “exact functor” definition of projectivity, we try to prove that HomR(M ⊗N,−)

is an exact functor. We start by rewriting this via the well known natural isomorphism:

HomR -Mod(M ⊗N,−) ∼= HomR -Mod(M, (HomR -Mod(N,−))

See for instance [Atiyah and Macdonald, 2016] for a proof. Since both M and N are by assumption

R-projective, then the right hand side of the isomorphism is the composition of two exact functors.

The composition of two exact functors is an exact functor, so HomR -Mod(M, (HomR -Mod(N,−)) is

an exact functor. Since HomR -Mod(M ⊗ N,−) is naturally isomorphic to an exact functor, it is

itself an exact functor. Thus we have that M ⊗N is projective as an R-module.

Proposition 1.1.9. If P is an R-projective module, then A ⊗ P ⊗ A is Ae-projective, with the

Ae-module structure described in Proposition 1.1.5.

Proof. We give two proofs for this Proposition. This proof uses the lifting property, and so we want

to construct a lift in the diagram of Ae-modules below:

M

g
����

A⊗ P ⊗A f // N

We start by temporarily thinking of this as a diagram of R-modules rather than of Ae-modules.

We can then extend this diagram by the R-linear homomorphism ι : P → A ⊗ P ⊗ A, given by

ι : p 7→ 1 ⊗ p ⊗ 1. Because we have assumed that P is R-projective, we know that there exists an

R-linear lift, g : P →M , such that the diagram

M

h
����

P ι
//

g

44

A⊗ P ⊗A
f
// N

commute. We will use the Ae-module A ⊗M ⊗ A as a stepping stone in the construction of our

lift, giving it the Ae-module structure where (α ⊗ β) · (a ⊗m ⊗ b) := α · a ⊗m ⊗ b · β (this is the
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same structure as in Proposition 1.1.5). The lift is then defined as the composition of the Ae-linear

functions ψ and φ, defined on generators as:

ψ : A⊗ P ⊗A −→ A⊗M ⊗A φ : A⊗M ⊗A −→ N

a⊗ p⊗ a′ 7−→ a⊗ g(p)⊗ a′ a⊗m⊗ a′ 7−→ a ·m · a′

Notice that ψ is well-defined since it defines an R-multilinear function on
n∏
A. It is easy to verify

that this function is Ae-linear, by writing out the definitions. A similar argument can be applied

to φ. Finally, it remains to show that the composition φ ◦ ψ provides a lift in the diagram:

A⊗M ⊗A φ //M

h
����

A⊗ P ⊗A
f
//

φ◦ψ

99

ψ

OO

N

Equivalently, this is to ask if we have the equality h ◦ ψ ◦ φ = f . It is enough to verify this on the

generators, and we see that:

h(ψ(φ(a⊗ p⊗ a′))) = h(a · g(p) · a′) = a · h(g(p)) · a′ = a · f(ι(p)) · a′

= a · f(1⊗ p⊗ 1) · a′ = f(a⊗ p⊗ a′)

Here, the first equality is by definition, the second equality is by Ae-linearity, the third equality is

by commutativity of the second diagram, the fourth equality is by definition and the final equality

is again by Ae-linearity.

Proof. We present a second proof, where we use the direct sum definition. Assume that there exists

an R-module S such that P ⊕ S ∼= ⊕
i∈I
Ri. By the following isomorphisms:

(A⊗P ⊗A)⊕ (A⊗S⊗A) ∼= Ae⊗P ⊕Ae⊗S ∼= Ae⊗ (P ⊕S) ∼= Ae⊗ (⊕
i∈I
Ri) ∼= ⊕

i∈I
Ri⊗Ae ∼= ⊕

i∈I
Ae

A ⊗ P ⊗ A is the direct summand of a free Ae-module, and so A ⊗ P ⊗ A is Ae-projective per

definition.

Proposition 1.1.8 and Proposition 1.1.9 yield the corollary below.

Corollary 1.1.10. Let A be an R-algebra with an R-projective underlying module structure. Then

we have that A⊗n+2 is projective as an Ae-module for all n ∈ N0, where the Ae-module structure

on A⊗n+2 is the one given in both Example 1.1.4 and Proposition 1.1.5.

Proof. By induction on n, we can show that A⊗n is R-projective. The induction step is to apply

Proposition 1.1.8 to A ⊗ (A⊗k−1). The base cases of n = 0, 1 follow by the standard convention

that A⊗0 = R, which is R-projective and from the fact that A⊗1 = A, which is also R-projective.

Combining this with Proposition 1.1.9, where we let P = A⊗n, yields the desired result.
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1.1.3 Group Completion

Group completion will be used in our study of log Hochschild homology in the subsequent chapters.

In brief, to group complete is to associate a group Mgp to any monoid, M (see the definition

immediately below). This group should be optimal with respect to other groups, in a sense made

precise by Proposition 1.1.15.

Definition 1.1.11. A monoid is a set, M , together with a binary operation, which is associative

and has a unit element, 1, such that for all m ∈M we have that 1·m = m = m·1. A commutative

monoid is a monoid where the binary operation is commutative. A monoid homomorphism

from the monoid M to the monoid N is a function, f : M → N , such that f commutes with the

binary operation and f sends the unit of M to the unit of N

We write the unit since a unit element is always unique by the usual proof. Assuming both 1 and

1′ to be different units of the monoid, M , then we get a contradiction, since by the property of

units we have that:

1 = 1 · 1′ = 1′

Example 1.1.12. Clearly all groups are monoids, since groups are just monoids with an addi-

tional axiom of inverses. All group homomorphism are monoid homomorphisms and all monoid

homomorphisms between groups are group homomorphism. Similarly, all (unital and associative)

rings, 〈X,+, ·〉, are monoids. Both in the sense that the group 〈X,+〉 is a monoid and in the sense

that 〈X, ·〉 satisfies the axiom of a monoid. Whenever we refer to the underlying monoid of the

ring X we mean the monoid 〈X, ·〉. It is easy to verify that ring homomorphism induces monoid

homomorphism on the underlying monoids.

Definition 1.1.13. The group completion functor associates to every commutative monoid M

the quotient Mgp := (M ×M)/ ∼, where we identify elements (m1,m2) and (n1, n2) of M ×M if

there exists an element k ∈M such that m1 · n2 · k = n1 ·m2 · k

Proposition 1.1.14. Let M be a commutative monoid. Then Mgp inherits a binary operation

making Mgp into an abelian group.

Proof. First, we prove that the inherited binary operation is well-defined. This means that we

need to verify that (m1,m2) ∼ (m′1,m
′
2) and (n1, n2) ∼ (n′1, n

′
2) implies that (m1,m2)(n1, n2) ∼

(m′1,m
′
2)(n′1, n

′
2). By definition, this is the same as asking if (m1n1,m2n2) ∼ (m′1n

′
1,m

′
2n
′
2). Thus

we need to find an element k ∈ M , which such that m1n1m
′
2n
′
2k = m2n2m

′
1n
′
1k. The trick here is

to write k as the product of two elements to be chosen later: k = x · y. We use commutativity of

M to rearrange the left side m1n1m
′
2n
′
2k = m1n1m

′
2n
′
2xy = (m1m

′
2x)(n1n

′
2y), and similarly, we for

the right hand side we have m2n2m
′
1n
′
1k = m1n1m

′
2n
′
2xy = (m2m

′
1x)(n2n

′
1y).

By the assumption that (m1,m2) ∼ (m′1,m
′
2), we know that there exists an x ∈ M such that

m1m
′
2x = m2m

′
1x. Similarly, by the assumption that (n1, n2) ∼ (n′1, n

′
2) we know that there exists

an y ∈M such that n1n
′
2y = n2n

′
1y. We are now finished, since we have:

m1n1m
′
2n
′
2k = (m1m

′
2x)(n1n

′
2y) = (m2m

′
1x)(n2n

′
1y) = m2n2m

′
1n
′
1k

Secondly, we need to find a unit element in Mgp. This is not hard, the equivalence class of

(1, 1) ∈M ×M clearly does this job.
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Thirdly, we need to find an inverse for the equivalence class of any element: (m1,m2). Notice

that, (1, 1) ∼ (m1,m2)(m2,m1) = (m1m2,m2m1), since 1(m1m2)k = (m2m1)1k for any choice of

k ∈ M . We omit the final step of verifying commutativity of the group, since this simply involves

writing out a general product and comparing it to the commuted product.

Lemma 1.1.15. Let M be a commutative monoid. Then there is a monoid homomoprhism denoted

by γ : M → Mgp such that for all abelian groups G and monoid homomorphism f : M → G, there

exists a unique monoid homomorphism f ′ : Mgp → G making the diagram

M

∀f ""

ι //Mgp

∃!f ′
��
G

commute.

Proof. First, let γ : M → Mgp be given by γ : m 7→ (m, 1). Then, for any monoid homomor-

phism f : M → G, we define f ′ : Mgp → G to be the group homomorphism f ′ : (m1,m2) 7→
f(m1)

(
f(m2)

)−1
. To see that this function is well-defined, let (m1,m2) ∼ (n1, n2), i.e. m1n2k =

m2n1k. Then we see that:

f((m1,m2)) = f(m1)
(
f(m2)

)−1
= f(m1)

(
f(m2)

)−1
f(n1)

(
f(n1)

)−1
f(n2)

(
f(n2)

)−1
f(k)

(
f(k)

)−1

=
(
f(m1)f(n2)f(k)

)(
f(m2)f(n1)f(k)

)−1
f(n1)

(
f(n2)

)−1

= f(n1)
(
f(n2)

)−1
= f((n1, n2))

To see that the function f ′ is the only possible group homomorphism, notice that the equivalence

classes of the elements of the form (m, 1) and (1,m) generate Mgp. Since the diagram above

should commute, f must equal f ′ ◦γ. Hence f ′(m, 1) is forced to equal f(m) and since (1,m) is the

inverse of (m, 1), we get that f ′(1,m) = f ′((m, 1)−1) = f ′(m, 1)−1 =
(
f(m)

)−1
. This completes

the proof.

Proposition 1.1.16. For the commutative monoids, M and N , we have (M×N)gp ∼= Mgp×Ngp.

Proof. We prove this using the universal property of the group completion. Let γ′ : M → Mgp,

γ′′ : N → Ngp and γ : M × N → (M × N)gp be maps corresponding to the γ in Lemma 1.1.15.

By the universal property of the group completion, there exists a unique monoid homomorphism

φ : (M ×N)gp →Mgp ×Ngp making the diagram

M ×N γ //

(γ′,γ′′) ''

(M ×N)gp

∃!φ
��

Mgp ×Ngp

commute. We need there to be a unique monoid homomorphism ψ : Mgp × Ngp → (M × N)gp,

making the diagram

M ×N
(γ′,γ′′)//

γ ''

Mgp ×Ngp

∃!ψ
��

(M ×N)gp

11



commute. We know that Mgp × Ngp is both the product and the coproduct in the category of

commutative monoids. Let i1 be the inclusion of Mgp into Mgp × Ngp with the identity in the

second coordinate, and let i2 be the inclusion of Ngp into Mgp ×Ngp with the identity in the first

coordinate, and let p1 be the projection M ×N →M and p2 be the projection M ×N → N . The

diagram below shows the existence of a unique monoid homomorphism Mgp ×Ngp → (M ×N)gp,

that makes the above diagram commute. Therefore there is a unique monoid homomorphism,

ψ : Mgp×Ngp → (M ×N)gp. In the diagram, the morphisms ψ′ and ψ′′ follows from the universal

property of the group completion, while ψ is from the universal property of the coproduct (see the

next section about category theory).

M

γ′

��

M ×Np1oo p2 //

γ

��

N

γ′′

��

(M ×N)gp

Mgp
i1
//

ψ′

∃!

88

Mgp ⊕Ngp

∃!ψ
OO

Ngp

ψ′′

∃!

ff

i2
oo

We have proved that there are unique monoid homomorphisms, φ : (M ×N)gp →Mgp ×Ngp and

ψ : Mgp ×Ngp → (M ×N)gp making both the diagrams

(M ×N)gp

∃!φ
��

Mgp ×Ngp

∃!ψ
��

M ×N
(γ′,γ′′)//

γ
&&

γ
88

Mgp ×Ngp

∃!ψ
��

M ×N γ //

(γ′,γ′′) &&

(γ′,γ′′)
88

(M ×N)gp

∃!φ
��

(M ×N)gp Mgp ×Ngp

commute. By the universal property of the group completion, there is also a unique monoid ho-

momorphism equal to the composite of the vertical maps making the leftmost diagram commute.

There is also at most a unique monoid homomorphism in the rightmost diagram. To see this, notice

that by the universal property of the group completion, there is precisely one unique monoid homo-

morphism in each coordinate that can make the outer diagram to commute (the unique map from

Mgp to itself induced by γ′ and the unique map from Ngp to itself induced by γ′′). Thus the prod-

uct of these functions is the only possible monoid homomorphism that makes the diagram commute.

Clearly, the appropriate identity homomorphisms are monoid homomorphisms making both outer

triangle commute in the diagram above. Since we have proven the uniqueness of these monoid

homomorphisms, the compositions along the vertical maps in the above diagrams must equal the

identity morphism. Hence we have that ψ and φ are inverses to each other.

There are other ways to prove the previous proposition. For instance, Lemma 1.2.15 in the next

section states that all right adjoint functors preserve limits. Products and coproducts are isomorphic

for commutative monoids and abelian groups, and coproducts are a kind of colimit. The group

completion functor can be shown to be left adjoint functor (see [Mac Lane, 1971]), and so the
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product should commute with group completion. A third approach would be to prove directly that

we have inverse homomorphisms

ψ : Mgp ×Ngp −→ (M ×N)gp φ : (M ×N)gp −→Mgp ×Ngp(
(m1,m2), (n1, n2)

)
7−→

(
(m1, n1), (m2, n2)

) (
(m1, n1), (m2, n2)

)
7−→

(
(m1,m2), (n1, n2)

)

1.2 Basic Category Theory

This is a short introduction which covers the category theory that will be used in this the-

sis. There are numerous books on the topic, and the interested reader can consult any one

of these for a more detailed exposition of the subject (see for instance the standard source on

the topic [Mac Lane, 1971], or the more leisurely written [Adámek et al., 2006]). We shall use

[Mac Lane, 1971] as a general reference for the definitions given in this section.

1.2.1 Categories & Functors

Category theory provides both a useful language and an efficient organizing tool, permeating many

areas of modern pure mathematics. If a construction in one part of mathematics can be expressed

categorically, it is often easy to see how its analogue may be defined in completely different fields.

The reader who is unfamiliar with the subject might want to mentally replace the word object by

set and the word morphism by function in the definition below.

Definition 1.2.1. We say that C is a category if C consists of a class of objects, OC , and a

class of morphisms/arrows, AC , which we describe shortly. C should also be equipped with

four operations relating these two classes. These operations must be subject to a unit law and an

associativity axiom. Explicitly, we have:

1. The domain operation, dom(−), assigns an object to every morphism.

2. The codomain operation, cod(−), assigns an object to every morphism.

3. The identity operation, Id(−), assigns a morphism to every object, called the identity mor-

phism of the object. It relates to the previous operations in that for all objects a ∈ C,
dom(Ida)=cod(Ida) = a.

4. The composition operation, ◦ , assigns to every pair of morphisms (g, f) where cod(f) =

dom(g) a composite morphism g ◦ f . The domain and codomain is given to be dom(g ◦ f) =

dom(f) and cod(g ◦ f) = cod(g).

Finally we have the two axioms that needs to be fulfilled. These axioms should hold for all objects

a and for all morphism f , g, h, i and j in any category, where the compositions given below are

defined. First we have the axiom of associativity, which says that composition of morphism is

associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f . Secondly, the unit laws says that composing a morphism with

the identity is the same as doing nothing, i.e. that i ◦ Ida = i and Ida ◦ j = j.

We frequently write f : a → b for a morphism f with domain a and codomain b. This is useful,

since it is both compact and it helps visualization. For example, the identity operation can be

described in the following way: For every object a there is a morphism Ida : a → a. Similarly for
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the composition operation: For all objects a, b and c and for all morphism f : a→ b and g : b→ c

there is a morphism g ◦ f : a→ c.

Remark 1.2.2. The definition of a category is symmetric in the sense that if we swap every domain

and codomain and reverse the order of every composition so that f ◦ g becomes g ◦ f we obtain a

new category. This category is often referred to as the dual or opposite category. We write Cop

for the opposite category of C

Definition 1.2.3. We say that C′ is a subcategory of C if C′ is a category where all objects and

all morphisms of C′ are respectively objects and morphisms of C. We write C′ ⊂ C for this. A

subcategory, C′ ⊂ C, is said to be a full subcategory if the collection, HomC′(a, b), of morphisms

between any two objects a, b ∈ C′, is equal to the collection, HomC(a, b), of all morphisms between

any two objects a, b ∈ C.

Example 1.2.4. The following categories will all crop up at some point in the thesis.

• The category of sets, denoted as Set. The objects are sets and the morphisms are functions.

• The category of monoids, for which we write Mon. The objects are monoids and the mor-

phisms are monoid homomorphisms, i.e. functions f : M → N where for all m,n ∈ M ,

f(m · n) = f(m) · f(n) and f(1) = 1. As a subcategory of Mon we have another cate-

gory: The category of commutative monoids, denoted CMon. The objects are commutative

monoids and the morphisms are monoid homomorphisms.

• The category of groups, denoted as Grp. The objects are groups and the morphism are group

homomorphisms. Similarly to above, we have a subcategory inside the category of groups

called the category of abelian groups, AbGrp. AbGrp have as objects all abelian groups

and as morphisms the group homomorphisms between them.

• We also have a category of rings, Ring, and a category commutative rings CRing. These are

defined analogously to the above examples of Mon and CMon, and of Grp and AbGrp.

• The category of R-modules, denoted as R-Mod: The objects are R-modules, and the mor-

phisms are R-linear homomorphisms.

• The category of A-bimodules, with notation A-BiMod: The objects are A-bimodules, and

the morphisms are homomorphisms that are right A-linear and left A-linear.

These examples are all categories where the objects are sets with some additional structure and

the morphisms are functions that preserve this structure. Far from every category appear in this

form however, and concepts such as commutative diagrams and order relations can be interpreted

as categories. There is also a category of categories, where the objects are categories and the

morphisms are called functors:

Definition 1.2.5. A functor, F , from the category C to the category D, usually written as

F : C → D, consists of two operations, both of which are called F . One that sends objects to
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objects, F : OC → OD, and one that sends morphisms to morphisms, F : AC → AD, such that for

any object, a, and any pair of composable morphisms, f and g, in C, then:

F (Ida) = IdF (a)

F (f ◦ g) = F (f) ◦ F (g)

A functor that is defined to have domain in the opposite category Cop of some category C is called

a contravariant functor.

We make the last statement prior to the definition precise: Notice that the object and morphism

wise composition of two functors is a functor and that there exists identity functors for any category

Id: C → C, sending objects Id: a 7→ a and morphisms Id: f 7→ f . Thus we have justified the claim

above the definition, stating that the functors can be morphisms between categories.

Example 1.2.6. Here is a list of some relevant functors the reader might recognize. Several of the

examples are called “the forgetful” functor. This prefix just imply that the functor is defined to

“forget” some of the structure of the objects in the domain category, like a binary operation, an

order, the topology etc.

• The forgetful functor Mon → Set. It sends a monoid 〈M, ·〉 to the underlying set M and a

monoid homomorphism f : 〈M, ·〉 → 〈N, ·〉 to the underlying function f : M → N .

• The forgetful functor AbGrp→ Grp. It sends an abelian group to itself, but as an object in

Grp. Similarly for the morphism, f : G→ H ∈ AbGrp is simply sent to f : G→ H ∈ Grp

• The forgetful functor CRing → CMon. It sends a commutative ring 〈A,+, ·〉 to the un-

derlying monoid 〈A, ·〉. A ring homomorphism f : A → B ∈ AbGrp is simply sent to

〈f, ·〉 : 〈A, ·〉 → 〈B, ·〉 ∈ Grp

• The free monoid functor (−)∗ : Set→Mon. It sends a set X to the free monoid generated

on the set X. As a set, this is all the different finite “words” with “letters” in X: X∗ :=

{x1x2 . . . .xn | xi ∈ X,n ∈ N}. This is a monoid, with monoid multiplication defined to be

the conjoining of two words. The unit element is then the “empty word” or the “word with

no letters”. This is often given some appropriate notation, like ∗ or 1. Functions f : X → Y

are sent to the unique monoid morphism f∗ : X∗ → Y ∗ induced by sending x 7→ f(x)

• The abelianization functor Grp → AbGrp. It sends a group G to the abelianized group
G

[G,G] , and morphisms to the morphisms induced on those quotients.

• The free R-algebra functor on a monoid M , R[−] : CMon→ CR-alg. Let N∗ denote the set

of positive integers, excluding 0. The functor R[−] sends a commutative monoid, M , to the

free R-algebra generated on M , R[M ]. This R-algebra has as its underlying set:{i=n∑
i=1

ri ·mi | ri ∈ R,mi ∈M,n ∈ N∗
}

The addition of two elements in this set is defined as it is for addition of free group on elements

in M , while multiplication is defined to be:

(
i=n∑
i=1

ri ·mi)(

j=m∑
j=1

rjmj) =
i=n∑
i=1

j=m∑
j=1

(ri · rj) · (mi ·mj)
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Multiplication of the scalar r inR with an element x inR[M ] is given by letting r·x = (r·1)·(x).

A monoid morphism φ : M → N induces the morphism

φ : R[M ] −→ R[N ]

φ :
∑
i∈I

ri ·mi 7−→
∑
i∈I

ri · φ(mi)

1.2.2 Natural Transformations & Adjoint Functors

Definition 1.2.7. Let F and G be two functors F , G : C → D. A natural transformation from

F to G, written as α : F → G, is a function (operation) assigning to each object, a ∈ C, a morphism

in D, αa : F (a) −→ G(a), in such a way that for all morphisms f ∈ HomC(a, b) we always have

commutativity αa ◦ F (f) = G(f) ◦ αb. More intuitively, this condition means that the diagram

beneath commutes for every morphism f ∈ C:

F (a)
F (f) //

αa

��

F (b)

αb

��
G(a)

G(f)
// G(b)

We have a category of functors from any category C to any category D, where the natural trans-

formations are the morphisms. For the existence of an identity morphism, we let F be any functor

F : C → D. The natural transformation Id: F → F defined by assigning the identity morphism of

F (a) to every object a in the category C is a natural transformation. For the existence of com-

positions, we let F , G, H : C → D be three functors, where there are natural transformations:

α : F → G and β : G→ H. Then we can define the composition β ◦α object wise, by sending each

object to the composition of the two original morphisms. We write HomCat(C,D) for this category.

Adjoint functors occur frequently in mathematics, and there are several different definitions of

these, with the different definitions illustrating different aspects. The definition we give below is

referred to as the Hom-set definition of adjoints.

Definition 1.2.8. A pair of functors F : C → D and G : D → C are said to be adjoint to each

other if for every object X ∈ C and Y ∈ D there is an isomorphism:

ι : HomD(F (X), Y ) ∼= HomC(X,G(Y ))

These isomorphisms should be “natural” for all objects in C and for all objects in D. By natural

we mean that for any morphism f : X ′ → X or g : Y → Y ′ respectively, the diagrams below should

commute:

HomC(F (X), Y )
∼=
ι
//

HomC(F (f),IdY )
��

HomD(X,G(Y ))

HomD(f,IdG(Y ))

��

HomC(F (X), Y )
∼=
ι
//

HomC(IdF (X),g)

��

HomD(X,G(Y ))

HomD(IdX ,G(g))
��

HomC(F (X ′), Y )
∼=
ι
// HomD(X ′, G(Y )) HomC(F (X), Y ′)

∼=
ι
// HomD(X,G(Y ′))

F is then called the left adjoint functor to G, and G is called the right adjoint functor to F
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This is a slightly technical formulation, and the best way to learn what it means is to have a look

at a few examples. In fact, we have already defined three pairs of adjoint functors. We go through

the first one in detail:

Example 1.2.9. The forgetful functor Mon → Set is right adjoint to the free monoid functor

Set → Mon. A function f : X → M induces a unique monoid homomorphism f : X∗ → M by

sending x1x2 . . . xn 7→ f(x1)f(x2) . . . f(xn), similarly a monoid morphism g : X∗ → M induces a

unique function from g : X → M by xi 7→ g(xi). Notice that (g) = g and (f) = f , so there is a

bijection. The naturality requirement for objects in Mon and Set is by noting that composing

with a function φ : Y → X or a monoid homomorphism ψ : M → N induces commutativity as

required in the definition:

Example 1.2.10. . The forgetful functor AbGrp → Grp is right adjoint to the abelianization

functor Grp→ AbGrp.

Example 1.2.11. The forgetful functor CR-alg → CMon is right adjoint to the free R-algebra

functor R[−] : CMon→ CR-alg.

1.2.3 Limits & Colimits

The definition of a (co)limit is rather technical, so we start with a short example: If we have groups

X, G and H and a pair of morphisms f1 : X → G and f2 : X → H, then we know that we can

define a function f1 × f2 : X → G × H. Conversely, if we define a function f : X → G × H we

can obtain a pair of functions f1 : X → G and f2 : X → H. There is no choice involved when we

jump between these interpretations. Also, when we do translate twice, we end up with the same

(two) morphism(s) we started with. In other words, we have found a construction that compresses

information about a pair of morphism from a fixed object into one morphism from that object.

This is a special example of what a limit is, namely a single object that “contains the information”

of a collection of related or unrelated objects. The following discussion is about making this precise,

culminating in the definition of a limit. We need some preliminary definitions to develop a sufficient

language:

An initial object is an object, ι ∈ C, such that for any object, x ∈ C, there exists a unique

morphism fx : ι → x. A terminal object is an object, η ∈ C, such that for any object, y ∈ C,
there exists a unique morphism gy : y → η.

Let J be a (small) category, meaning that both OJ and AJ should be sets (as opposed to some-

thing “bigger”). We define a diagram of shape J in the category C to be a functor F : J → C.
Diagrams are often visualized as actual diagrams whenever the shape of the diagram, J , consists

of a small number of objects/morphisms. One of the most common examples, a commuting square,

is a diagram where the shape is given by four objects and five morphism (the sides of the rectangle

and an “invisible” diagonal morphism, forcing commutativity).

The diagonal functor, ∆(−) : C → CJ sends:

• An object a ∈ C to the constant functor ∆(a) : J → C. The constant functor a sends, as

its name suggest, every object of J to a and every morphism in J to the identity of a (that

this is a functor is clear from the definition).

17



• A morphism f : a→ b in C is sent to the natural transformation that assigns to every object

X ∈ J the same morphism: f : a→ b.

Finally, a cone over a diagram, F ∈ CJ , is a natural transformation from ∆(a) to the functor F .

It is not hard to construct a finite category in which a specific diagram does not have any cone.

Definition 1.2.12. Let F be a fixed diagram, F ∈ CJ . Then the limit of F , lim←−F is defined

to be the terminal object in the category of cones over F . Written out, lim←−F is a cone over F ,

∆(t) : J → F , in the category HomCat(∆(−), CJ ), where for all other cones, ∆(s) : J → C there

exists an unique natural transformation ξ : ∆(s)→ ∆(t).

Colimits are defined similarly to limits. We define a cocone under a diagram, F ∈ CJ , to be a

natural transformation to ∆(a) from the functor F .

Definition 1.2.13. Let F be a fixed diagram, F ∈ CJ . Then the colimit of F , lim−→F is defined to

be the initial object in the category of cocones under F . Written out, lim−→F is a cocone over F ,

∆(i) : J → F , in the category HomCat(CJ ,∆(−)), where for all other cocones, ∆(j) : J → C there

exists an unique natural transformation ξ′ : ∆(i)→ ∆(j).

If the reader has never heard of (co)limits before, an internet search for examples and graphical

illustration might be helpful at this point. There is an abundance of examples available, and these

are important to get the feel of the subject.

Limits and colimits need not exist (again, it is easy to construct categories in which there are

counter-examples). A (co)limit is said to be small if the shape J consists of a set of objects and

a set of morphisms (as opposed to classes or something larger). A category in which all small

limits exists is called a complete category, a category where all small colimits exists is called a

cocomplete category and a complete cocomplete category is called a bicomplete category.

Example 1.2.14. Limits and colimits are common in mathematics. For instance, whenever some

construction is called a “product”, it is likely a limit of a diagram in which J is the category

of two objects and two (identity) morphisms. The limit of this diagram in the category of sets,

rings, groups, monoids, R-algebras and topological spaces can all be shown to be the product (see

[Mac Lane, 1971]). The colimits of this kind of diagram have varying names, i.e. it is the direct

sum in the category of groups and monoids, it is the disjoint union in the case of sets and in the

case of commutative R-algebras it is the tensor product of the two objects over R. For proofs and

more examples, see [Mac Lane, 1971].

Initial/terminal objects (if they exist in a given category) can be expressed respectively as the

colimit/limit of the diagram in the shape of the empty category (no objects, no morphisms). This

follows from the definitions above, though it might be challenging to see this immediately

Lemma 1.2.15. Right adjoint functors preserve limits and left adjoint functors preserve colimits.

In detail, if we let F be a diagram of shape J in the category C, and let X be a right adjoint

functor X : C → D and Y be a left adjoint functor Y : C → D. Then if lim←−F exists, there is a

natural isomorphism:

X(lim←−F ) ∼= lim←−(X ◦ F )

Correspondingly, if lim−→F exists, there is a natural isomorphism:

Y (lim−→F ) ∼= lim−→(Y ◦ F )

Proof. For a proof of this lemma, see [Mac Lane, 1971].
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1.3 Homological Algebra

In this section we present a short review of the homological algebra that we will need later on. The

main topics to be covered are chain complexes, homology, resolutions and the Tor functor. We use

[Mac Lane, 1967] as a general reference for this section.

1.3.1 Chain Complexes & Homology

Definition 1.3.1. A chain complex of R-modules is a sequence of R-modules, Cn, and of R-linear

maps, d : Cn → Cn−1, with n ∈ Z. The d’s are called the boundary maps of the chain complex,

and they all have to have the property that d2 = d ◦ d = 0. We often use the notation C∗ or D∗
when referring to arbitrary chain complexes.

A chain complex, C∗, is commonly visualized by writing it in the following way:

. . .
d−→ Cn+1

d−→ Cn
d−→ Cn−1

d−→ . . .
d−→ C2

d−→ C1
d−→ C0

d−→ C−1
d−→ . . .

We call the elements of the R-module Cn of a chain complex C∗ for the n-chains of the complex.

An element of Cn is said to have dimension n. The chain complexes we use will always be non-

negative, by which we mean that all the C−n = 0 when n is a positive integer different from zero.

We visualize non-negative chain complexes by writing

. . .
d−→ Cn

d−→ Cn−1
d−→ . . .

d−→ C2
d−→ C1

d−→ C0
d−→ 0

Here, we have omitted the infinite trail of zero modules following C0. From this point onwards, we

suppress the “non-negative” in “non-negative chain complex”, and refer to them simply as chain

complexes.

Definition 1.3.2. The morphisms in the category of chain complex f∗ : C∗ → D∗ are called

chain homomorphisms. A chain homomorphism is a collection of R-module homomorphisms,

{fn : Cn → Dn}, such that d ◦ fn = fn−1 ◦ d for all n ∈ N∗. In other words, all the squares in the

diagram below should commute:

. . .
d // Cn+1

d //

fn+1

��

Cn

fn
��

d // Cn−1

fn−1

��

d // . . .

. . .
d
// Dn+1

d
// Dn

d
// Dn−1

d
// . . .

The composition of two chain homomorphisms is defined by composing the homomorphisms in each

dimension. We verify that the result is a chain homomorphism by writing out the composition

g∗ ◦ f∗ : C∗ → E∗, where f∗ : C∗ → D∗ and g∗ : D∗ → E∗.

. . .
d // Cn+1

d //

fn+1

��

Cn

fn
��

d // Cn−1

fn−1

��

d // . . .

. . .
d′ // Dn+1

d′ //

gn+1

��

Dn

gn

��

d′ // Dn−1

gn−1

��

d′ // . . .

. . .
d′′ // En+1

d′′ // En
d′′
// En−1

d′′ // . . .
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We know that all the smallest squares of this diagram commutes by definition, and so all the rect-

angles in the diagrams with edges d, d
′′
, gn◦fn and gn−1◦fn−1 commutes. The collection of identity

homomorphisms {IdCn : Cn → Cn} defines a chain homomorphism. We write IdC∗ : C∗ → C∗ for

this chain homomorphism. It is now easy to see that we have the category of chain complexes

of R-modules, for which we use the notation Ch(R-Mod).

Definition 1.3.3. The n-th homology group of the chain complex C∗, for which we write

Hn(C∗), is defined as the quotient:

Hn(C∗) =
ker(d : Cn → Cn−1)

im(d : Cn+1 → Cn)

Homology groups are well-defined, since d2 is always the zero map, and so im(d : Cn+1 → Cn) ⊂
ker(d : Cn → Cn−1). We usually refer to elements of the kernel of d : Cn → Cn−1 as n-cycles and

the elements of the image of d : Cn+1 → Cn as n-boundaries. The elements [x] ∈ Hn(C∗) will be

called homology classes of degree n. Notice that if the homology groups Hn(C∗) are all zero,

we get that im(d : Cn+1 → Cn) = ker(d : Cn → Cn−1) for all n. This is the definition of an exact

sequence, so the homology groups can be thought of as a measure of how close a chain complex is

to be an exact sequence.

Proposition 1.3.4. Homology is a functor from the category of chain complexes to the category

of R-modules, Hn(−) : Ch(R-Mod) −→ R-Mod. A chain homomorphism f∗ : C∗ → D∗ induces

the R-module homomorphism given by:

fn : Hn(C∗) −→ Hn(D∗)

[x] 7−→ [fn(x)]

Proof. Let x be an n-cycle of Cn, so that dx = 0. We then have that df(x) = f(dx) = f(0) = 0, so

every n-cycle C∗ is sent to an n-cycle of D∗. To see that this homomorphism induces a function on

the quotient group, let y be an n-boundary of Cn, meaning that y = dz for some some z ∈ Cn+1.

Then we have that f(y) = f(dz) = d(fz). Hence f sends boundaries to boundaries, and so the

morphism f∗ is well-defined.

Definition 1.3.5. Let C∗ and D∗ be chain complexes. We say that the two chain homomorphisms

f∗, g∗ : C∗ → D∗ are chain homotopic if there exists a chain homotopy from f∗ to g∗, meaning

a collection of maps {hn : Cn → Dn+1 | n ∈ N0} such that fn − gn = dhn + hn−1d for all n. We

write f∗ ' g∗ to indicate that f∗ and g∗ are chain homotopic.

Lemma 1.3.6. Let C∗ and D∗ be chain complexes and let f∗, g∗ : C∗ → D∗ be chain homomor-

phisms that are chain homotopic. Then fn = gn : Hn(C∗)→ Hn(D∗) for all n ∈ N0

Proof. Let hn : f∗ → g∗ be the chain homotopy. Then we now that fn − gn = dhn + hn−1 or

equivalently that fn = dhn+hn−1d+gn. By definition, fn : Hn(C∗)→ Hn(D∗) sends [x] to [fn(x)].

We see that this means that

fn([x]) = [fn(x)] = [(dhn + hn−1d+ gn)(x)]

= [dhn(x) + hn−1d(x) + gn(x)]

= [dhn(x)] + [hn−1d(x)] + [gn(x)]

= [0] + [hn−1(0)] + [gn(x)] = [0] + [0] + [gn(x)] = [gn(x)] = gn([x])
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where dx = 0 since x ∈ ker(d : Cn → Cn−1) and dhn(x) is in the same equivalence class as 0 since,

dhn(x) ∈ im(d : Cn+1 → Cn)

Let C∗ and D∗ be chain complexes. We say that C∗ and D∗ are homotopy equivalent if there are

chain homomorphisms f∗ : C∗ → D∗ and g∗ : D∗ → C∗ such that g∗ ◦ f∗ ' IdC∗ and f∗ ◦ g∗ ' IdD∗ .

We call the f∗ and g∗ for homotopy equivalences.

Corollary 1.3.7. Let C∗ and D∗ be homotopy equivalent chain complexes with homotopy equiv-

alences as in the text above. Then the induced fn : Hn(C∗) → Hn(D∗) is an isomorphism with

inverse gn : Hn(D∗)→ Hn(C∗).

Proof. The previous Lemma implies gn ◦ fn = gn ◦ fn = IdHn(C∗) and fn ◦ gn = fn ◦ gn = IdHn(D∗)

for all n, and so fn and gn are inverses to each other as claimed.

1.3.2 The Tor Functor

Definition 1.3.8. Let M be an R-module. A resolution of M is an exact sequence of R-modules

C∗ : . . .
d−→ Cn

d−→ Cn−1
d−→ . . .

d−→ C2
d−→ C1

d−→ C0

together with a morphism ε : C0 → M , called the augmentation map. This augmentation map

should cause the sequence of morphisms below to become a chain complex where the zeroth ho-

mology group is equal to zero, which is equivalent to requiring that the same sequence is exact.

. . .
d−→ Cn

d−→ Cn−1
d−→ . . .

d−→ C2
d−→ C1

d−→ C0
ε−→M

We will usually write ε : C∗ →M to indicate that C∗ is a resolution of M . In the next proposition

we will give the product of the Ae-module X by the Be-module Y the (A×B)e-module structure

induced by the ring homomorphism:

p : (A×B)⊗ (A×B)op −→ A⊗Aop ×B ⊗Bop

(a1, b1)⊗ (a2, b2) 7−→ (a1 ⊗ a2, b1 ⊗ b2)

This implies that that for (a, b)⊗(a′, b′) ∈ (A×B)e and (x, y) ∈ X×Y we get a scalar multiplication

defined as:

((a, b)⊗ (a′, b′)) · (x, y) = (a · x · a′, b · y · b′)

Proposition 1.3.9. Assume A and B to be R-algebras and assume there to be resolutions of

Ae-modules and Be-modules respectively, given as below:

ε : C∗ 7−→M

δ : D∗ 7−→ N

Then we have that the degreewise product of these resolutions, ε × δ : C∗ × D∗ → M × N , is an

(A × B)e-module resolution of M ×N . We use the (A × B)e-module structure as described above

on each Cn ×Dn and we let the boundary maps be d× d′ : Cn ×Dn → Cn−1 ×Dn−1.
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Proof. It only requires some simple calculations to check that we have well-defined module struc-

tures and that the maps are (A × B)e-linear with respect to these structures. We have therefore

only to show that the sequence ε× δ : C∗ ×D∗ →M ×N is exact. This follows immediately, since

we know that ker(d × d′) = ker(d) × ker(d′) = im(d) × im(d′) = im(d × d′) for all the boundary

maps d and d′.

The Tor functor is a construction that produces a sequence of homology groups to any R-module

M . We give its construction and state some of its properties.

Definition 1.3.10. Let X be a ring, not necessarily commutative, and let A be a right X-module

and B be a left X-module. TorXn (A,B) is the group constructed by the following three steps: First,

choose an projective resolution of A, meaning a resolution

· · · → P2 → P1 → P0 → A

where all the X-modules, Pi, are projective. Then remove the “A” term, and tensor the above

exact sequence by B to get the chain complex:

· · · → P2 ⊗X B → P1 ⊗X B → P0 ⊗X B

Finally, take n-th homology of this chain complex. This is by definition TorXn (A,B).

We now paraphrase [Mac Lane, 1967, p. 160] Theorem 8.1, which states that the Tor groups above

does not depend on the projective resolution chosen. We have changed the name of the variables

in the original theorem.

Theorem 1.3.11. For a resolution ε : P∗ → A of the module AX and a module XB, there is a

homomorphism

ω : TorXn (A,B) −→ Hn(P∗ ⊗X A), n = 0, 1 . . . ,

natural in B. If P∗ is a projective resolution, ω is an isomorphism natural in A and B

1.3.3 Tensor Products of Chain Complexes

In this last section about homology we introduce the definition of the tensor product of chain

complex. We also state the Künneth theorem for general chain complex, which explain how the

homology groups of the tensor product of chain complex relates to the tensor product of the

homology groups of the same chain complexes.

Definition 1.3.12. Let C∗ and D∗ be two chain complexes of R-modules. Then their tensor

product, denoted sometimes as C∗ ⊗ D∗ and sometimes as (C ⊗ D)∗, is defined to be the chain

complex where:

(C ⊗D)n =
⊕
p+q=n

Cp ⊗Dq

The boundary map of the tensor product of chain complexes is the homomorphism

δ :=
⊕
p+q=n

δp,q :
⊕
p+q=n

Cp ⊗Dq →
⊕

p+q=n−1

Cp ⊗Dq

where the maps δp,q are given as:

δp,q : Cp ⊗Dq −→ Cp−1 ⊗Dq ⊕ Cp ⊗Dq−1

δp,q : c⊗ d 7−→ δ(c)⊗ d+ (−1)pc⊗ δ(d)
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The Künneth formula gives us a relationship between the homology of a pair of chain complexes

and the homology of their tensor product.

Theorem 1.3.13 (The Künneth Theorem). Let C∗ and D∗ be chain complexes of R-modules.

If both the module of cycles and the module of boundaries of Cn are flat for all n, we have the

following natural short exact sequence:

0→
⊕
p+q=n

Hp(C∗)⊗Hq(D∗)→ Hn((C ⊗D)∗)→
⊕

p+q=n−1

TorR1 (Hp(C∗),Hq(D∗))→ 0

Under the stronger assumption that Cn and Hn(C∗) are flat for all n, there is an isomorphism:⊕
p+q=n

Hp(C∗)⊗Hq(D∗) ∼= Hn((C ⊗D)∗)

In particular, if R is a field, we will always have the isomorphism above, since all modules over

fields are free [Lang, 2002].

Proof. See Theorem 10.2. on page 166 of [Mac Lane, 1967].

Remark 1.3.14. We will at times be in a situation where we wish calculate the tensor product

of two chain complexes, C∗ and D∗, where C∗ itself does not satisfy the conditions of the Künneth

Theorem in any obvious way. A trick that sometimes work in these cases is to search for another

chain complex, C ′∗, which does satisfy the criteria and is homotopy equivalent to C∗. If there

exists such a C ′∗, we can use the Künneth theorem on C ′∗ ⊗D∗. Since we have that C ′∗ ' C∗, we

have natural isomorphisms Hn(C ′∗)
∼= Hn(C∗) and Hn(C ′∗ ⊗D∗) ∼= Hn(C∗ ⊗D∗), where the latter

isomorphism is due to the fact that we can construct a homotopy equivalence C∗ ⊗D∗ ' C ′∗ ⊗D∗.
To be precise, if f∗ : C∗ ' C ′∗ is the homotopy equivalence then (f ⊗ Id)n : (C ⊗D)n ' (C ′ ⊗D)n
where (f ⊗ Id)n is defined as the map:⊕

p+q=n

fp ⊗ Idq :
⊕
p+q=n

Cp ⊗Dq −→
⊕
p+q=n

C ′p ⊗Dq

The homotopy equivalence the other way is defined in a similar fashion. This means that if g∗ : C ′∗ '
C∗ is the other homotopy equivalence, we have that⊕

p+q=n

gp ⊗ Idq :
⊕
p+q=n

C ′p ⊗Dq −→
⊕
p+q=n

Cp ⊗Dq

is the “inverse” homotopy equivalence (g ⊗ Id)n : (C ′ ⊗ D)n ' (C ⊗ D)n. Now, we let the first

chain homotopy be denoted h∗ : g∗f∗ ' IdC∗ . Then we can see that (h ⊗ IdD∗)∗ given by the

homomorphisms given degreewise by:⊕
p+q=n

hp ⊗ Idq :
⊕
p+q=n

Cp ⊗Dq −→
⊕

p+q=n+1

Cp+1 ⊗Dq

We can verify that (h ⊗ IdD∗)∗ : (g ⊗ IdD∗)∗ ◦ (f ⊗ IdD∗)∗ ' (IdC∗ ⊗ IdD∗)∗ by writing out the

definitions. The equivalent procedure can clearly be applied to the other homotopy, h′∗ : f∗g∗ ' Id∗.

Thus we have the Künneth Theorem holds for C∗ as well under the circumstances described.
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1.4 Simplicial Methods

We present here the basics of simplicial methods. Rather than taking a more minimalistic ap-

proach, we have chosen to start our exposition from scratch and include some material on the

simplex category. The three main notions that we want to take with us from this section is what a

simplicial module is, how a simplicial module gives rise to a chain complex and what the Eilenberg-

Zilber Theorem (Theorem 1.4.9) is. The following exposition is largely based on Chapter 8.5 in

[Mac Lane, 1967], and have an algebraic flavour. For a more geometrically flavoured (and very

intuitive) introduction to simplicial objects, the reader might like to have look at [Friedman, 2012].

1.4.1 The Simplex Category

The “engine” in the theory of simplicial objects is the category ∆, varyingly referred to as the sim-

plex category, the simplicial category or the category of non-negative ordinal numbers.

The category of non-negative ordinal numbers is the name that best describes our definition of ∆:

Definition 1.4.1. Let p be a non-negative integer. The category ∆ has objects of the form

[p] := {0, 1, 2, . . . , p}

as objects. We give [p] the usual ordering (i.e. 0 < 1 < 2 < · · · < p) and define the morphisms

in the category to be all (non-strict) order-preserving maps, i.e. functions ψ : [p] → [q] such that

i ≤ j ⇒ ψ(i) ≤ ψ(j).

The morphisms in the category of ordinal numbers turns out to be generated by two important

classes of morphisms.

• The first type of morphism, for which we will usually write δi : [p]→ [p+ 1], is defined for all

non-negative integers p and all 0 ≤ i ≤ p + 1. δi : [p] → [p + 1] is defined to be the (weakly)

order-preserving injective function that fails to “hit” the i-th coordinate. In other words, if

we have j and k such that 0 ≤ j < i ≤ k ≤ p then δi(j) = j and δi(k) = k + 1.

• The second type of morphism, for which we will write σi : [p + 1] → [p], is defined for all

non-negative integers p and all 0 ≤ i ≤ p. σi : [p + 1] → [p] is defined to be the (weakly)

order-preserving surjective function that “hits” the i-th coordinate twice. In other words, if

we have j and k such that 0 ≤ j ≤ i < k ≤ p+ 1 then δi(j) = j and δi(k) = k − 1.

As a short example, δ2 : [4]→ [5] and σ1 : [4]→ [3] is defined on elements as:

δ2 : 0 7→ 0 δ2 : 1 7→ 1 δ2 : 2 7→ 3 δ2 : 3 7→ 4 δ2 : 4 7→ 5

σ1 : 0 7→ 0 σ1 : 1 7→ 1 σ1 : 2 7→ 1 σ1 : 3 7→ 2 σ1 : 4 7→ 3

There are “commutativity relations” that holds for every allowed composition of pairs δi’s and σj ’s.

We state them here for easy reference, since these are going to be used extensively later on in the

thesis:

Proposition 1.4.2. Let ∆op be the opposite category of ∆. We write d for δop and s for σop.

In the category ∆, the δ’s and σ’s satisfy the relations to the left whenever the compositions are
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defined. By duality, the morphisms d and s in ∆op satisfy the relations to the right whenever those

compositions are defined.

δjδi = δiδj−1 didj = dj−1di if i < j

σjσi = σiσj+1 sisj = sj+1si if i ≤ j
σjδi = δiσj−1 disj = sj−1di if i < j

σjδi = 1 disj = 1 if i = j, or if i = j + 1

σjδi = δi−1σj disj = sjdi−1 if i > j + 1

Proof. We omit the proof, since it consists of some rather tedious case-checking.

Lemma 1.4.3. Every morphism f : [p] → [q] in the category ∆ of non-negative ordinal numbers

has a unique factorization in terms of δi’s and σj’s:

f = δi1δi2δi3 . . . δisσj1σj2σj3 . . . σjt

where we have p ≥ i1 ≥ i2 ≥ i3 ≥ · · · ≥ is ≥ 0 and 0 ≤ j1 ≤ j2 ≤ j3 ≤ · · · ≤ jt ≤ q and q+s− t = p

Proof. A different (shorter) proof of the statement is given for Lemma 5.1 of [Mac Lane, 1967] on

page 234. Our proof is constructive, hence for any monotonically increasing function f : [p] → [q]

we want to compose δ’s and σ’s so that we obtain f . We do this by induction on the set, [p]. First

consider the base case: If f sends 0 to 0 we let f = Id, which is the empty composition. If f sends

0 to n, we start with the function σ0σ1 · · ·σn−1. Then we have the inductive step: Assume that we

have constructed a function ψj−1 that sends i to f(i) for all i < j. If f : j 7→ f(i) we can compose

on the left by dj−1. If f : j 7→ f(j−1)+1 we compose with the identity and if f : j 7→ f(j−1)+1+n

then we compose by σjσj+1σj+n−1. After we have done this for all j ∈ [p], we have a function

ψp : [p] → [q − s] for some s = q − f(p). We compose with σ(p+1)σ(p+2) · · ·σ(q) on the right of ψq.

We call the new function ψ, and it is equal to f by its construction.

We have showed that δ’ and σ’ are generators for ∆, but it still remains to show that there is a unique

factorization of the form f = δi1δi2δi3 . . . δisσj1σj2σj3 . . . σjt where p ≥ i1 ≥ i2 ≥ i3 ≥ · · · ≥ is ≥ 0

and 0 ≤ j1 ≤ j2 ≤ j3 ≤ · · · ≤ jt ≤ q. To see this, notice that any random composition of δ’s σ’s

that is well-defined can be rearranged so that it is of the required form using the properties listed

in Proposition 1.4.2. Two different compositions of this form can not result in the same function,

as can be seen by the definition of δ and σ, and so we have completed our proof.

1.4.2 Simplicial Objects

We are now going to demonstrate the usefulness of simplicial methods through studying the case

of simplicial R-modules. These will play an important role throughout the thesis.

Definition 1.4.4. A simplicial object in the category C is a functor F : ∆op → C. A simplicial

map from F : ∆→ C to G : ∆→ C is natural transformation η : F → G.

Our focus of interest will be in the cases where the objects of C have some algebraic structure.

To be precise, C will be one of the following categories: the category of commutative monoids,

commutative rings, R-modules or A-algebras. The following proposition gives an easier way of

defining simplicial objects.
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Proposition 1.4.5. Assume there to be an object Cq ∈ C together with collections of two families

of morphisms, the class of face maps, di : Cq → Cq−1 ∈ C, and the class of degeneracy maps,

sj : Cq → Cq+1, for every q ∈ N0. Further more, assume the maps di and sj satisfy the relations

(to the right) in Proposition 1.4.2. Then there is a simplicial objects given by the contravariant

functor, F : ∆→ C which sends objects [q] to Cq and morphisms:

F :
[
σi : [q + 1]→ [q]

]
7→
[
si : Cq → Cq+1

]
F :
[
δi : [q − 1]→ [q]

]
7→
[
di : Cq → Cq−1

]
Proof. We need to show that F is a contravariant functor, but this is nearly a corollary of Lemma

1.4.3. Recall that every map f ∈ ∆ has a unique decomposition into generators δi’s and σj ’s. These

maps are sent contravariantly to di and sj , and these are maps that by assumption must satisfy

the dual relations on the δi’s and σj ’s which makes the functor well-defined.

For the rest of the chapter, let us take the view that C is the category of R-modules. These

simplicial objects will be called simplicial R-modules. To make things more tangible and to

link this material to chain complexes, we shall begin to use notation like C• rather than F when

something is a simplicial module. We will also write Cq for the object F ([q]), di : Cq+1 → Cq for

the map F (δi) : Cq → Cq+1 and sj : Cq+1 → Cq for the map F (σj) : Cq+1 → Cq.

Lemma 1.4.6. There is a functorial way of associating a chain complex to every simplicial R-

module, C•. This chain complex is given the notation K(C•) or C∗, depending on which of these

is the least confusing in a given setting. The chain complex is defined by letting the n-chains of

C∗ be the module in the n-th simplicial degree of C• and by letting the boundary maps, b, be the

alternating sum of face maps:

b :=
n∑
i=0

(−1)idi

Proof. We need only show that for the map b above, b ◦ b is the zero map. To see this, we use the

linearity of the face maps together with the relations of Proposition 1.4.2 and get:

b ◦ b = b ◦
( n∑
j=0

(−1)jdj

)
=

n∑
j=0

(−1)jb ◦ dj =
n∑
j=0

(−1)j
n−1∑
i=0

(−1)idi ◦ dj =

n∑
j=0

n−1∑
i=0

(−1)i(−1)jdi ◦ dj

=
n∑
j=0

n−1∑
i=0

(−1)i+jdi ◦ dj =

i<j=n∑
i=0

(−1)i+jdi ◦ dj +

j≤i=n−1∑
j=0

(−1)i+jdi ◦ dj

=

i<j=n∑
i=0,j=1

(−1)i+jdj−1 ◦ di +

j≤i=n−1∑
i,j=0

(−1)i+jdi ◦ dj

=

i≤j′=n−1∑
i,j′=0

(−1)i+j+1dj′ ◦ di +

j≤i=n−1∑
j=0

(−1)i+jdi ◦ dj = 0

One can often use properties of the simplicial maps in a simplicial module to make deductions

about the associated chain complex. Here is one example of this:
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Lemma 1.4.7. Let C• be a simplicial module with facemaps dj and let there be homomorphisms

c : Cq → Cq+1 for each q ∈ N0, such that d0c = IdCq and dic = cdi−1 for all 1 ≤ i ≤ q − 1. Then

Hn(C∗) = 0 for all n ∈ N0

Proof. The conditions in the lemma means that there is a chain homotopy IdCq ' 0 since we have

bc+ cb = (

q−1∑
i=0

di) ◦ c+ c ◦ (

q−1∑
i=0

di−1) =

q−1∑
i=0

(dic+ cdi−1) = IdCq = IdCq −0

Hence we must have that the identity map IdHq(C∗) : Hq(C∗)→ Hq(C∗) is the zero map, since the

above calculation gives IdHq(C∗) = IdCq = 0 = 0. This completes the proof.

1.4.3 The Eilenberg-Zilber’s Theorem

We are now going to discuss how “tensor products” of simplicial modules (called Cartesian products)

correlates to the tensor product of their associated chain complexes.

Definition 1.4.8. The Cartesian product of two simplicial R-modules, C• and D• is denoted

by (C ⊗ D)• or C• ⊗ D•. Here we let (C ⊗ D)n be is defined to be Cn ⊗ Dn while the face and

degeneracy maps are given respectively by:

si : (C ×D)n −→ (C ×D)n+1 di : (C ×D)n −→ (C ×D)n−1

si : c⊗ d 7−→ si(c)⊗ si(d) di : c⊗ d 7−→ di(c)⊗ di(d)

It is important to be aware of the similarity in notation of Cartesian product, (C ⊗D)•, and the

tensor product of chain complex, (C⊗D)∗. The chain complex associated to (C⊗D)•, K((C⊗D)•),

is seldom equal to the chain complex (K(C•) ⊗ K(D•))∗, but these chain complexes are always

chain equivalent. This is the Eilenberg-Zilber theorem:

Theorem 1.4.9 (The Eilenberg-Zilber Theorem). Let C• and D• be simplicial modules. Then

there exists natural chain equivalences f and g:

f : K((C ⊗D)•) −→ (K(C•)⊗K(D•))∗

g : (K(C•)⊗K(D•)) −→ K((C ⊗D)•)

Meaning that f and g are chain homomorphisms such that fg ' Id and gf ' Id

Proof. We refer the reader to Theorem 8.1 on page 239 of [Mac Lane, 1967]

1.4.4 Limits and Colimits of Simplicial Objects

As the final topic of the preliminaries, we will discuss general limits and colimits of simplicial

objects. We need the following abstract-nonsense theorem from [Mac Lane, 1971] to do so, with

the statement summarized in the remark below.

Theorem 1.4.10. Let X and P and J be categories and let F : J → XP be a functor from J
into the category of functors F : P → X. For an object p ∈ P , we let Ep : XP → X be the functor

that sends every functor g ∈ XP to g(p). Assume the composite functor Ep ◦ F : P → X have a

limit Lp with a limit cone τp : Lp → Ep ◦ F . Then there is a unique functor L : P → X with object

function p 7→ Lp such that p 7→ τp is a natural transformation τ : ∆(L) = ∆J (L) → S; moreover,

this τ is a limiting cone from the vertex L ∈ XP to the base S : J → XP .
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Proof. See Theorem 1 on page 115 of [Mac Lane, 1971]

Remark 1.4.11. “In a functor category, limits may be calculated pointwise, (provided the point-

wise limits exists)” [Mac Lane, 1971, p. 116].

Remark 1.4.12. The dual statement of the remark above is that in a functor category, colimits

may be calculated pointwise, (provided the pointwise colimits exists).

Though an interesting result, we will only use the Theorem above to obtain the following corollary.

Recall that the category of simplicial objects is by definition a functor category, and so we have

that:

Corollary 1.4.13. Limits and colimits of a simplicial object can be calculated degreewise. In

particular, the pushout of the diagram of simplicial commutative R-algebras below

E•
g• //

f•
��

D•

��
C• // C• ⊗E• D•

is the simplicial commutative R-algebra given in each simplicial degree q as Cq ⊗Eq Dq and the

face/degeneracy maps are given by

di : Cn ⊗En Dn −→ Cn−1 ⊗En−1 Dn−1 si : Cn ⊗En Dn −→ Cn+1 ⊗En+1 Dn+1

x⊗En yn 7−→ d′i(xn)⊗En−1 d
′′
i (yn) x⊗En y 7−→ s′i(x)⊗En+1 s

′′
i (y)

Proof. Use the dual statement of Theorem 1.4.10, where we let the category P be the category ∆op

and X be the category CR-Alg of commutative R-algebras. Then the result is that we obtain the

statement of Corollary 1.4.13.

Remark 1.4.14. Another consequence of the corollary above is that the products and coproducts

can be calculated degreewise. In particular, we see that the cartesian product of simplical commu-

tative R-algebras is the coproduct in this category. In both the category of simplicial R-modules

or simplicial monoids (the latter of which will appear in Chapter 3) the coproduct of C• and D•
is given as the free sum Cq ⊕ Dq in each simplicial degree. Similarily, we have that the product

of C• and D• is Cq × Dq in each simplicial degree. Keeping in line with the convention of not

distinguishing between ⊕ and × for finite products, we will write C• × D• for both the product

and coproduct in these categories. The face and degeneracy maps of the product and coproducts

are of course the same as well. These are maps of the form di × d′i and si × s′i where di is a face

map and si a degeneracy map of C• while d′i is a face map and s′i a degeneracy map of D•. Notice

that the indexes has to be the same here.

1.5 A Technical Lemma and Spectral Sequences

The last subject we want to discuss in this preliminary is Lemma 1.5.1. This is a technical lemma

that will play a small yet vital part in the proof of Theorem 4.2.1, which is one of the main theorems

of this thesis. Unfortunately, the only proof we could come up with is very much in the area of

using a sledgehammer to crack a nut, since we have to apply the quite advanced toolkit of spectral
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sequences. As a consequence, this last part of the preliminaries might be harder to follow than

most of what we have encountered this far.

The reader who finds the following passage disheartening might appreciate knowing that the ac-

companying machinery will not be used elsewhere. Also, the proof does not provide any particular

insight into why the lemma must be true. These two factors makes it possible to take Lemma 1.5.1

for granted or postpone reading it until it is needed. (To make up for some of this scaremongering,

we would like to add that the topic of spectral sequences is quite interesting and we hope that no

aversions regarding the subject has been imposed upon the reader.)

Lemma 1.5.1. Let C•, C
′
•, D• and E• be simplicial commutative R-algebras and let f•, g• and f•

as in the diagram below. Assume that we under these maps

TorEn
q (Cn, Dn) = 0

TorEn
q (C ′n, Dn) = 0

for q > 0, and that there is a simplicial map of commutative R-algebras i• : C• → C ′• such that the

induced map i∗ : C∗
∼−→ C ′∗ is a quasi isomorphism. Then we have that the map induced on the

tensor product by

E•
g• //

=

++
f•

��

D•

��

=

++E•
g• //

f ′•

��

D•

��

C• //

i• ++

C• ⊗E• D•

++
C ′• // C ′• ⊗E• D•

induces an isomorphism on all homology groups:

(i• ⊗Id• Id•)∗ : H∗(C• ⊗E• D•)
∼=−→ H∗(C

′
• ⊗E• D•)

1.5.1 Spectral Sequences

We need some tools from the theory of spectral sequences before we can prove the lemma above,

and so we provide a short introduction below. Here we have used Chapter 11 of [Mac Lane, 1967]

as a general reference.

By definition, a Z-bigraded R-module E is a family of R-modules {Ep,q} indexed over inte-

gers p and q.

Definition 1.5.2. We say that E is a spectral sequence if E is a sequence of Z-bigraded modules

over R, Erp,q, where Erp,q is indexed over r ∈ N, with a family of homomorphisms, drp,q : Erp,q →
Erp−r,q+r−1, for each r which are called the differentials of E. These differentials are subject to

two conditions. First, that the differentials should play the role of a boundary map, meaning that

d ◦ d = 0. Secondly, there should be an isomorphism between Er+1 and the homology groups of

Er, where the homology groups are obtained from the differential d.

29



If this is the readers first time reading about spectral sequences, it might be good to know that it

can be quite instructive to make some drawings of what spectral sequences “looks like”. See page

320 of [Mac Lane, 1967] for how this may be done.

Remark 1.5.3. We write H∗(E
r) for the the homology groups of Er induced by the differential dr,

thus the isomorphism in the definition above can be written more compactly as Er+1 ∼= H∗(E
r).

We can use this isomorphism in the following way. If we start at Es for some index s ∈ N and take

the homology of Es, the result will be a new Z-bigraded R-module, namely H∗(E
r). Normally there

would be no reasonable way of taking the homology here, but since a spectral sequence is equipped

with an isomorphism from these homology groups of Er to Er+1, we can use the differential maps

dr+1 we have in Er+1 calculate homology of the homology of Er. Clearly we have that this process

can be repeated indefinitely.

We will be interested in a spectral sequence, E, that has the property of being a first quadrant

spectral sequences. By this we mean that for every index r, we have that Erp,q = 0 whenever p

or q are negative. If we draw this, we can see that this is the same as saying that only the first

quadrant of each Er is non-zero, hence the name.

Remark 1.5.4. Since we have that Er+1 is the homology of Er which is in turn the homology of

Er−1 and so on, we see that there is a tower of submodules

0 ⊂ Bs ⊂ Bs+1 ⊂ Bs+2 ⊂ · · · ⊂ Br ⊂ Br+1 ⊂ · · · ⊂ Zr+1 ⊂ Zr ⊂ · · · ⊂ Zs+2 ⊂ Zs+1 ⊂ Zs ⊂ Es

defined inductively in the following way. First, we let Zs and Bs be the subcomplex of cycles

and the subcomplex boundaries of Es in Es. Since for any r > s, Er is (isomorphic to) the

homology of Er−1, we have that Er ∼= Zr−1/Br−1. We see that under this isomorphism, the map

dr : Zr−1/Br−1 → Zr−1/Br−1 has kernel Zr/Br−1 and image Br/Br−1. If we define Z∞ to be the

intersection
⋂
Zr over all r and similarly define B∞ to be the union

⋃
Br of all r, we get that

B∞ ⊂ Z∞. We are therefore free to define {E∞p,q} as {Z∞p,q/B∞p,q}.

Definition 1.5.5. A morphisms of spectral sequences f : E → E′ is a family of of Z-bigraded

R-module homomorphisms

f r : Er −→ E′r

of bidegree (0, 0) indexed over r ∈ N. The maps f r have to satisfy two properties for all r, the

first that we have commutativity with the differentials f rdr = drf r and the second that the map

f r+1 has to be the same map as we get induced on the homology of Er by f r (here we use the

isomorphism H∗(E
r) ∼= Er+1).

Definition 1.5.6. We say that F = {FpA ⊂ A | p ∈ Z} is a filtration of the R-module A

if F is a family of submodules FpA of A, with the property that for every p ∈ Z we have that

Fp−1A ⊂ FpA. More generally, we can define a filtration of a graded R-module, A = An to be

a family of subgraded R-modules, FpA, that satisfy the same conditions as a filtration of A.

Remark 1.5.7. A filtration F of A has an associated graded module, for which we write GFA.

This is obtained by defining GFA as {(GFA)p | (GFA)p = FpA/Fp−1A}. The associated graded

module of a filtration of a graded R-module A, GFA, gives us a filtration {FpAn} for each n.

Definition 1.5.8. To say that the spectral sequence E = {Er, dr} converges to the graded R-

module A, means that there exists a filtration F of A such that there is an isomorphism of graded

modules E∞p,q
∼= {FpAp+q/Fp−1Ap+q} for each p, with grading over q. We write Esp ⇒ A to indicate

that we have convergence of Er to A.
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We have now covered all relevant definitions to introduce a theorem from [Quillen, 1967]. To be

precise, this is found in Chapter II.6, and it is a combination of spectral sequence (b) of Theorem

6 on page 6.5 and the Corollary on page 6.10.

Theorem 1.5.9. Let E• be a simplicial ring and let C• and D• be respectively right and left

simplicial R-modules. If TorEn
q (Cn, Dn) = 0 for q > 0, then there is a canonical first quadrant

spectral sequence

E2
p,q =

[
TorH∗(E•)

p (H∗(C•),H∗(D•))
]
q
⇒ Hp+q(C• ⊗E• D•)

Remark 1.5.10. In his proof of the previous theorem, D.G. Quillen constructs the spectral

sequence from a filtration of (C• ⊗E• D•)∗ that is convergent above and bounded below (see

[Mac Lane, 1967] Chapter XI section 3 for definitions), a fact that we need in the next theorem.

For a general discussion on how this may be done, we refer the reader to Section 3 on Filtered

Modules in Chapter XI of [Mac Lane, 1967], starting on page 326.

We are now ready to give a proof of the Lemma appearing at the beginning of this section:

Proof of Lemma 1.5.1. By Theorem 1.5.9, we have the existence of two first quadrant spectral

sequences.

E2
p,q =

[
TorH∗(E•)

p (H∗(C•),H∗(D•))
]
q
⇒ Hp+q(C• ⊗E• D•)

E′2p,q =
[
TorH∗(E•)

p (H∗(C
′
•),H∗(D•))

]
q
⇒ Hp+q(C

′
• ⊗E• D•)

Further more, we know that for every combination of integers p and q we have that[
TorH∗(E•)

p (i∗,H∗(D•))
]
q

:
[
TorH∗(E•)

p (H∗(C•),H∗(D•))
]
q

∼=−→
[
TorH∗(E•)

p (H∗(C
′
•),H∗(D•))

]
q

is an isomorphism, since i∗ is an isomorphism. We can use The mapping theorem (see Theorem

3.4 on page 331 of [Mac Lane, 1967]) to prove that this must mean that the map i• induces an

isomorphism on the homology groups. Paraphrasing this theorem, we have that assuming we

are given differentially graded Z-modules A∗ and A′∗ with filtrations that are convergent above and

bounded below and a chain homomorphism, α∗ : A∗ → A′∗ inducing an isomorphism on the spectral

sequences obtained from the filtrations. Then the induced map α∗ : H∗(A) → H∗(A
′) has to be

an isomorphism. If we let the associated chain homomorphism of i• ⊗Id• Id• play the role of α in

the mapping theorem, we see that the conditions have been met due to what we wrote in Remark

1.5.10. We therefore have that the maps induced on the homology groups

i∗ ⊗Id∗ Id∗ : H∗(C• ⊗E• D•)−→H∗(C
′
• ⊗E• D•)

is an isomorphism and so we have finished our proof.
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Chapter 2

Hochschild Homology

We begin this chapter by defining Hochschild homology and the bar construction. Then we move

on to show that Hochschild homology groups and the Tor functor coincide under certain conditions

and finally prove that the Hochschild homology of projective R-algebras sends the direct product

to the direct sum. The conventions adapted in the preliminaries hold in this chapter as well. In

particular, we always assume R to be a commutative ring (with unity). A is always taken to be

a unital and associative R-algebra and whenever we write an unspecified tensor product, ⊗, it is

a shorthand notation for ⊗R. In addition to this, we reserve M as the standard notation for an

A-bimodule this chapter (and in this chapter only). The definitions found in this section comes

from the first chapter of [Loday, 1998], where the mentioned direct sum result occurs as an exercise.

2.1 The Hochschild Complex

Hochschild homology is a homology theory for associative algebras over rings. Its definition involves

the construction of simplicial R-modules from A-bimodules. The chain complex associated to this

simplicial module is called the Hochschild chain complex.

Let M be an A-bimodule. The Hochschild simplicial R-module of M , C•(A,M), is de-

fined to be a simplicial R-module where Cn(A,M) = M ⊗ A⊗n. The face maps of C•(A,M),

dj : M ⊗A⊗n →M ⊗A⊗n−1, are given by

d0 : (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ an) 7−→ (ma1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ an)

di : (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ an) 7−→ (m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an−1 ⊗ an)

dn : (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an−1 ⊗ an) 7−→ (anm⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an−1)

where 0 < i < n. We let the degeneracy maps of C•(A,M), sj : M ⊗A⊗n →M ⊗A⊗n+1 be:

s0 : (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an) 7−→ (m⊗ 1⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an)

si : (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an) 7−→ (m⊗ a1 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an)

sn : (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an) 7−→ (m⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ 1)

where 0 < i < n.
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The corresponding Hochschild boundary map, b : M ⊗ A⊗n → M ⊗ A⊗n−1, is then defined

as the alternating sum of these maps:

b =
n∑
j=0

(−1)jdj

The face and degeneracy maps of a Hochschild simplicial R-module can easily be shown to satisfy

the relations required of a simplicial object, as seen in Propsition 1.4.2, and so there is a justification

for the term Hochschild simplicial R-modules. Further more, by Lemma 1.4.6 in the preliminaries,

b ◦ b = 0, and we obtain the following two definitions:

Definition 2.1.1. The Hochschild complex of the bimodule M over the R-algebra A is defined

as the chain complex:

. . .
b−→M ⊗A⊗n b−→M ⊗A⊗n−1 b−→ . . .

b−→M ⊗A⊗2 b−→M ⊗A b−→M
b−→ 0

Where the b’s are the Hochschild boundary maps as described in the text above. We use the

notation C∗(A,M) in referring to this complex. After this chapter, we will only be interested in

the Hochschild complex created by considering A as a bimodule over itself. In this case, we use the

notation C∗(A), rather than C∗(A,A).

Definition 2.1.2. The Hochschild homology groups of the bimodule M over the R-algebra

A is defined as the homology of the Hochschild chain complex of M over A. Rather than writing

H∗(C∗(A,M)) for the Hochschild homology of M over A, we suppress the “C∗”, and write only

H∗(A,M) instead. We write HH∗(A) rather than H∗(A,A) for the Hochschild homology of A with

its usual A-bimodule structure.

Remark 2.1.3. The reader should be aware that the concepts of C•(A,M), C∗(A,M) and H∗(A,M)

will only be used in the first part of this chapter. Later, we will only care about the cases where

M = A and so we will use the notation C•(A), C∗(A) and HH∗(A). The reader should also be

aware that we will use C•(A,M), C∗(A,M) and H∗(A,M) to denote the log Hochschild simpli-

cal R-algebra, log Hochschild chain complex and log Hochschild homology groups respectively in

Chapter 4.

The zeroth Hochschild homology group is easy to calculate and we have its explicit description

below. This is not the case for the higher homology groups, which are usually much harder to find.

Proposition 2.1.4. Let M be an A-bimodule. Then we have an isomorphism of R-modules:

H0(M,A) =
M

{ma− am | a ∈ A,m ∈M}

In particular,this means that for an R-algebra A we have that HH0(A) ∼= A
[A,A] where [A,A] is the

commutator/center subalgebra of A.

Proof. It is perhaps a bit grand to dignify this as a proposition, since it just involves writing out

definitions. To be painstakingly pedantic about it, we see that the face maps di : C1(M,A) →
C0(M,A) are:

d0 : (m, a) 7−→ m · a d1 : (m, a) 7−→ a ·m
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Hence the boundary map b(m, a) = (d0 − d1)(m, a) = d0(m, a) − d1(m, a) = ma − am and so, by

the definition of homology we have that

H0(M,A) =
ker(b : M −→ 0)

im(b : M ⊗A→M)
=

M

{ma− am | a ∈ A,m ∈M}

An immediate consequence of this is that HH0(A) is zero if and only if A is a commutative R-

algebra.

Example 2.1.5. We let R be a commutative ring, let p ⊂ R be a prime ideal in R and let R(p) be

R localized at p considered as an R-algebra. Then we we can describe C•(R(p)):

Cn(R(p)) = R(p) ⊗R R(p) ⊗R R(p) ⊗R · · · ⊗R R(p)

∼= R(p) ⊗R(p)
R(p) ⊗R(p)

R(p) ⊗R(p)
· · · ⊗R(p)

R(p)

∼= R(p)

We write ιn : R(p)⊗RR(p)⊗RR(p)⊗R · · ·⊗RR(p) → R(p) for the composite isomorphism above, and

it is given by ιn : ( r0s0 ⊗
r1
s1
⊗ · · · ⊗ rn

sn
) 7→ r0r1···rn

s0s1···sn . Under this isomorphism we see that the face and

degeneracy maps become “trivial” in that the diagrams below commute.

Cn(R(p))

dj
��

ιn
∼=

// R(p)

Id

��

Cn(R(p))
ιn
∼=

// R(p)

Cn−1(R(p))
ιn−1

∼=
// R(p) Cn−1(R(p))

sj

OO

ιn−1

∼=
// R(p)

Id

OO

We have by this proved that C•(R(p)) is isomorphic to a simplicial module that we will denote

by (R(p))•. We let (R(p))n = R(p) for all n ≥ 0, and let all the face and degeneracy maps be the

identity. We see that the associated chain complex of (R(p))•, denoted by (R(p))∗, can explicitly

described as

· · · Id−→ R(p)
0−→ R(p)

Id−→ R(p)
0−→ R(p)

Id−→ R(p)
0−→ R(p)

0−→ 0

since the alternating sum of n + 1 identity morphism is 0 or Id depending on if n is odd or even.

It is not hard to calculate the homology groups of (R(p))∗, as it is zero in every degree apart from

in dimension 0, where it is R(p).

Generalizing this, we let S be any multiplicatively closed set and S−1R be the localization of R at

S. We can calculate the Hochschild homology groups, HH∗(S
−1R), of the R-algebra S−1R with

some minor modification to the previous example. We then end up with a chain complex similar

to (R(p))∗, for which we will write (S−1R)∗:

· · · Id−→ S−1R
0−→ S−1R

Id−→ S−1R
0−→ S−1R

Id−→ S−1R
0−→ S−1R

0−→ 0

We have now seen a few examples of a special kind of simplicial module, where the general definition

is:

Definition 2.1.6. Let N be an R-module. The simplicial R-module equalling N in each simplicial

degree and has every face and degeneracy map equal to the identity morphism is called the constant

simplicial module of N . We denote this simplicial module by (N)•. We write (N)∗ for the

associated chain complex to (N)•.
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Proposition 2.1.7. Let R be a commutative ring considered as an R-algebra over itself, R(p) be

the R-algebra from Example 2.1.5 and S−1R be as in the text above. Then there are isomorphisms

of simplicial modules

C•(R) ∼= (R)• C•(R(p)) ∼= (R(p))• C•(S
−1R) ∼= (S−1R)•

where the rightmost case generalizes the first two cases. Also, we have that the Hochschild homology

groups of R, R(p) and S−1R are:

HH0(R) ∼= R HH0(R(p)) ∼= R(p) HH0(S−1R) ∼= S−1R

HHn(R) ∼= 0 for n ≥ 1 HHn(R(p)) ∼= 0 for n ≥ 1 HHn(S−1R) ∼= 0 for n ≥ 1

Proof. For S−1R and R(p), see the discussion above and Example 2.1.5. For the calculation of

HHn(R), recall that we have an isomorphism of R ∼= (1R)−1R, and apply the general case.

The Hochschild homology groups are functorial in several ways. One of these ways is as the functor

H∗(A,−) : A-BiMod → R-Mod, which sends the bimodule homomorphism, f : M → M ′, to the

chain homomorphism which is given on the generators of the n-chains as f : (m⊗a1⊗a2⊗· · ·⊗an) 7→
(f(m)⊗ a1⊗ a2⊗ · · · ⊗ an)). This map in turn induces the map on the homology groups. Another

example is the functor HH∗(−) : R-Alg −→ R-Mod. This functor sends a ring homomorphism

f : A → A′ to the chain homomorphism defined on generators as f : (a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an) 7→
(f(a0) ⊗ f(a1) ⊗ f(a2) ⊗ · · · ⊗ f(an)). As in the first case, this chain homomorphism induces the

homomorphisms on homology groups.

2.2 The Bar Complex

The bar complex/the bar construction is a tool from homological algebra that will turn out to

be quite useful. A key feature of the bar construction is that it produces a concrete resolution of

any R-algebra, A, as an Ae-module. We will show that the bar resolution is Ae-projective if A is

R-projective, and use this to prove there to be an isomorphism Hn(A,M) ∼= TorA
e

n (M,A) whenever

A is R-projective. We have decided to go slightly deeper into the theory behind bar complexes

than what is strictly necessary for this chapter, as this will pay off later.

In the following discussion let A be an R-algebra, X be a right A-module and Y be a left A-

module. We start by defining the simplicial bar construction, B•(X,A, Y ), from which we

obtain the bar complex, B∗(X,A, Y ), as the associated chain complex. We let Bn(X,A, Y ) be

the R-module X⊗A⊗n⊗Y . The face maps of B•(X,A, Y ), dj : X⊗A⊗n⊗Y → X⊗A⊗n−1⊗Y ,

are given given by

d0 : (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y) 7−→ (x · a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y)

di : (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y) 7−→ (x⊗ a1 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an ⊗ y)

dn : (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y) 7−→ (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an · y)

where 0 < i < n, while the degeneracy maps of B•(X,A, Y ), sj : X⊗A⊗n⊗Y → X⊗A⊗n+1⊗Y ,

are given by

s0 : (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y) 7−→ (x⊗ 1⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y)

si : (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y) 7−→ (x⊗ a1 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an ⊗ y)

sn : (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ y) 7−→ (x⊗ a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an ⊗ 1⊗ y)
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where 0 < i < n. These maps are easily seen to satisfy the conditions of Proposition 1.4.2.

The corresponding boundary map of the bar complex, b′ : X ⊗ A⊗n ⊗ Y → X ⊗ A⊗n−1 ⊗ Y ,

is then defined as the alternating sum of these maps:

b =

n∑
j=0

(−1)jdj

where 0 ≤ j ≤ n. For the rest of this chapter we will primarily be interested in the bar complex

B∗(A,A,A). We define an Ae-module structure on Bn(A,A,A) = A⊗(n+2), by letting the scalar

multiplication be the same multiplication that we used in Example 1.1.4 and in Corollary 1.1.10

where

(a⊗ a′) · (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) = (a · a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1 · a′)

Definition 2.2.1. LetA be anR-algebra. The bar complex of A is the chain complexB∗(A,A,A),

where for each n A⊗(n+2) is considered as Ae-modules. We use the notation Cbar∗ (A) for the bar

complex of A, and Cbar∗ (A) is visualized as:

. . .
b′−→ A⊗n+3 b′−→ A⊗n+2 b′−→ A⊗n+1 b′−→ . . .

b′−→ A⊗3 b′−→ A⊗2

The following proposition describes how we can use the bar construction to make an Ae-projective

resolution of R-algebras.

Proposition 2.2.2. Let A be an R-algebra and give A and Cbarn (A) = A⊗n+1 the Ae-module

structure from Example 1.1.4. If we augment the bar complex Cbar∗ (A) by A by the Ae-module

homomorphism µ : A ⊗ A → A sending µ : a ⊗ a′ 7→ a · a′, we get an Ae-resolution of A. We call

the resolution µ : Cbar∗ (A) → A for the bar resolution of A. If A is a projective R-module, then

the bar resolution is a projective resolution as an Ae-module.

Proof. To see that the bar complex is a resolution, we need to show that the chain complex

Cbar∗ (A) is an exact sequence of Ae-modules in degrees above zero. We also need to argue that

µ : H0(Cbar∗ (A))
∼=→ A is an isomorphism.

We prove the exactness of Cbar∗ (A) first. To do so, observe that the homomorphism s : A⊗n →
A⊗n+1, defined by sending generators s : a1 ⊗ · · · ⊗ an 7→ 1 ⊗ a1 ⊗ · · · ⊗ an satisfy the conditions

for being a contracting homotopy, since d0s = Id and dis = sdi−1 for 1 ≤ i ≤ n − 1. By Lemma

1.4.7, we get that b′s+ sb′ = id. Therefore we have that all the homology groups are zero, which is

equivalent to that the chain complex Cbar∗ (A) is an exact sequence of Ae-modules in positive degrees.

To prove that µ : H0(Cbar∗ (A))
∼=→ A is an isomorphism, it is enough to check that µ is well-defined

and that it has an inverse function. By definition we have that:

H0(Cbar∗ (A)) =
A⊗A

〈a0 · a1 ⊗ a2 − a0 ⊗ a1 · a2〉

The representatives of the equivalence class a⊗ b is sent to a · b. If we apply µ to any element in

the generator of the quotient module we see that:

µ(a0 · a1 ⊗ a2 − a0 ⊗ a1 · a2) = µ(a0 · a1 ⊗ a2)− µ(a0 ⊗ a1 · a2) = (a0 · a1 · a2)− (a0 · a1 · a2) = 0
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Thus we have that µ well-defined. To show that µ is an isomorphism, we verify that the function

µ−1 : a 7→ a⊗ 1 is an inverse function:

µ−1(µ(a0 ⊗ a1)) = a0 · a1 ⊗ 1 = a0 ⊗ a1 · 1 = a0 ⊗ a1

To prove the final statement of the proposition, note that Corollary 1.1.10 in the preliminaries

implies that if A is R-projective, then A ⊗ A⊗n ⊗ A is Ae-projective. Hence we have that all the

modules in the resolution are Ae-projective. By definition this means that µ : Cbar∗ (A) → A is an

Ae-projective resolution.

2.2.1 The Tor Functor and Hochschild Homology

We will now show that when A is projective as an R-module, the n-th Hochschild homology groups

of the A-bimodule M becomes isomorphic to TorA
e

n (M,A). In this sense, the Hochschild homology

groups of projective R-algebras is a special case of the homology theory of rings. The proposition is

Proposition 1.1.13 on page 12 of [Loday, 1998], where we have written out the details of the proof.

Proposition 2.2.3. Let M be an A-bimodule and A be a projective R-module. Then there is an

isomorphism of R-modules:

Hn(A,M) ∼= TorA
e

n (M,A)

Proof. By Proposition 2.2.2, the bar resolution is a projective resolution of A as an Ae-module.

Recalling the definition of the Tor functor (Definition 1.3.10), we choose the bar resolution of A as

a projective resolution of A. We now argue that the chain complex M ⊗Ae Cbar∗ (A) is isomorphic

to the chain complex C∗(A,M):

· · ·
IdAe⊗b′ //M ⊗Ae A⊗(n+3)

IdAe⊗b′ //

ψn+1
��

M ⊗Ae A(⊗n+2)
IdAe⊗b′ //

ψn

��

M ⊗Ae A(⊗n+1)
IdAe⊗b′ //

ψn−1
��

· · ·

· · ·
b

//M ⊗A⊗(n+1)
b

//M ⊗A⊗n
b

//M ⊗A⊗(n−1)
b

// · · ·

The degreewise isomorphisms, ψn : M ⊗Ae A⊗(n+2)
∼=−→M ⊗A⊗n, for all n ∈ N0 are defined as the

composition map:

ψn : M ⊗Ae A⊗(n+2) =−→M ⊗Ae A⊗A⊗n ⊗A
∼=−→M ⊗Ae Ae ⊗A⊗n

∼=−→M ⊗A⊗n

Here, the middle morphism is an isomorphism by Proposition 1.1.5, and the last morphism is an

isomorphism by elementary properties of the tensor product. Explicitly, the isomorphism ψn acts

on generators by:

ψn : m⊗ a⊗ a1 ⊗ a2 · · · ⊗ an ⊗ a′ 7−→ ama′ ⊗ a1 ⊗ a2 · · · ⊗ an

The collection of R-algebra isomorphisms, ψn : M ⊗Ae A⊗(n+2)
∼=−→ M ⊗ A⊗n, for n ∈ N0, defines

an isomorphism of the simplicial modules M ⊗Ae Cbar• (A) and C•(A,M). It is easy (although a

bit tedious) to verify that ψn−1 ◦ (IdM ⊗ di) = di ◦ ψn for all 0 ≤ i ≤ n, where the di’s on the left

side of the equality are the face maps of the bar complex, and the di’s on the right side are the

face maps of the Hochschild complex. This implies that that ψn−1 ◦ (IdM ⊗ b′) = b ◦ ψn and that

the chain complexes are isomorphic. By the functoriality of homology, the homology groups are

isomorphic.
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Proposition 2.2.3 allows us to us to calculate the Hochschild homology group following important

example:

Corollary 2.2.4. Recall that R is a commutative ring. We can then calculate the Hochschild

homology of the R-algebra R[x] to be:

HHn(R[x]) =


R[x], for n = 0

R[x], for n = 1

0, for n > 1

Proof. We start by remarking that R[x] is R-projective, since there is an isomorphism of R-modules:

R[X] ∼=
⊕
n∈N0

Rxn

Hence by Proposition 2.2.3, HHn(R[x]) ∼= Tor
R[x]e

n (R[x], R[x]). We calculate this using the following

free R[x]e-resolution of R[x]:

0 −→ R[x]⊗R[y]
q−→ R[x]⊗R[y]

p−→ R[x] −→ 0

In this resolution, q : r · (x⊗ y) 7→ r · (x⊗ 1− 1⊗ y) and p : r · (x⊗ y) 7→ r · (x · y). This resolution

results in the following chain complex for calculating torsion groups:

0 −→ R[z]⊗R[x]⊗R[y] R[x]⊗R[y]
Id⊗q−→ R[z]⊗R[x]⊗R[y] R[x]⊗R[y]

0−→ 0

But the above chain complex is clearly isomorphic to the chain complex:

0 −→ R[z]
0−→ R[z]

0−→ 0

This completes our proof.

2.3 Hochschild Homology of Products and Coproducts

In this section we prove the two mains theorems of this chapter. These explain how the Hochschild

homology behaves with respect to products of R-algebras and coproducts of commutative R-

algebras.

2.3.1 Hochschild Homology of Products

The following theorem appears as Exercise 1.1.1 in [Loday, 1998].

Theorem 2.3.1. Let A and B be R-algebras, such that both are projective as R-modules. Then

there is an isomorphism of homology groups:

HH∗(A×B) ∼= HH∗(A)⊕HH∗(B)

Proof. Using Proposition 2.2.3, we see that it suffices to prove that:

Tor(A×B)e

n (A×B,A×B) ∼= TorA
e

n (A,A)⊕ TorB
e

n (B,B)
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Step 1: We wish to utilize that different choices of projective resolutions in the construction of

the Tor functor yield the same Tor groups. Specifically, we would like to show that we can use

Cbar∗ (A)× Cbar∗ (B) and Cbar∗ (A×B) interchangeably as (A×B)e-projective resolutions of A×B.

By Proposition 1.3.9 we know that Cbar∗ (A) × Cbar∗ (B) is an (A × B)e-resolution of A × B as an

(A×B)e-module, and it only remains to show that Cbarn (A)× Cbarn (B) is (A×B)e-projective.

By assumption we know that A and B are R-projective. We have shown in Corollary 1.1.10

that this means that A⊗n is Ae-projective and that B⊗n is Be-projective when n ≥ 2. Hence there

exist an Ae-module, SA, and a Be-module, SB, such that:

A⊗n ⊕ SA ∼= ⊕
i∈I
Ae

B⊗n ⊕ SB ∼= ⊕
j∈J

Be

We shall now prove that A⊗n×B⊗n is the direct summand of a free (A×B)e-module. The strategy

we will use is to take the direct sum of left (A × B)e-modules three times and see that the the

result is a free (A×B)e-module. We begin by adding the (A×B)e-module (SA × SB):

A⊗n ×B⊗n ⊕ (SA × SB) ∼= (A⊗n ⊕ SA ×B⊗n ⊕ SB) ∼= (⊕
i∈I
Ae)× ( ⊕

j∈J
Be)

The second left (A×B)e-module we want to add is

(( ⊕
j∈J

Aej)× (⊕
i∈I
Be
i ))

We define X to be the disjoint union J tI we see that we get the isomorphisms as described below.

((⊕
i∈I
Ae)× ( ⊕

j∈J
Be))⊕ (( ⊕

j∈J
Ae)× (⊕

i∈I
Be)) ∼= (⊕

i∈I
Ae)⊕ ( ⊕

j∈J
Ae)× ((⊕

i∈I
Be))⊕ ( ⊕

j∈J
Be))

∼= ( ⊕
x∈ItJ

Ae)× ( ⊕
x∈JtI

Be)

= ( ⊕
x∈X

Ae)× ( ⊕
x∈X

Be)

The third and final left (A × B)e-module we want to add is the direct sum of X copies of the

(A×B)e-module (A⊗Bop×B⊗Aop). Scalar multiplication is defined on (A⊗Bop×B⊗Aop) by

(a, b⊗ a′, b′)⊗ (a1 ⊗ b1, b2 ⊗ a2) = (a · a1 ⊗ b1 · b′, b · b2 ⊗ a2 · a′)

The resulting direct sum is isomorphic to the free (Ax×Bx)e-module. The last of the isomorphism

below is explained immediately beneath:

(( ⊕
x∈X

Ae)× ( ⊕
x∈X

Be))⊕ ( ⊕
x∈X

A⊗Bop ×B ⊗Aop) ∼= (( ⊕
x∈X

Ae)× ( ⊕
x∈X

Be))× ( ⊕
x∈X

(A⊗Bop ×B ⊗Aop))

∼= ( ⊕
x∈X

Ae)× ⊕
x∈X

(A⊗Bop ×B ⊗Aop)× ( ⊕
x∈X

Be)

∼= ⊕
x∈X

(Ae × (A⊗Bop ×B ⊗Aop)×Be)

∼= ⊕
x∈X

(A×B)e
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The last isomorphism is perhaps best understood backwards. Under the isomorphisms

(A×B)e = (A×B)⊗ (A×B)op

∼= (A×B)⊗ (Aop ×Bop)

∼= (A⊗Aop ×A⊗Bop ×B ⊗Aop ×B ⊗Bop)

∼= (Ae × (A⊗Bop ×B ⊗Aop)×Be)

we see that the middle term, (A⊗Bop×B⊗Aop), and the remaining part, Ae×Be, both inherits

the (A×B)e-module structure they were given. Hence we have an (A×B)e-module isomorphism

is claimed.

Step 2: We need to show that the remaining part of the construction of Tor
(A×B)e

n (A×B,A×B) is

equivalent to the remaining part of the construction of TorA
e

n (A,A)⊕TorB
e

n (B,B). In other words,

we need to prove that there is an isomorphism:

A⊗n+2 ⊗Ae A×B⊗n+2 ⊗Be B ∼= (A⊗n+2 ×B⊗n+2)⊗(A×B)e (A×B)

To prove this, we show the more general isomorphism

M ⊗Ae A×N ⊗Be B ∼= (M ×N)⊗(A×B)e (A×B)

where M is an Ae-module and N is a Be-module. From left to the right, we define the isomorphism

(f × g) in each coordinate to be:

f : M ⊗Ae A −→ (M ×N)⊗(A×B)e (A×B) g : N ⊗Be B −→ (M ×N)⊗(A×B)e (A×B)

f : m⊗Ae a 7−→ (m, 0)⊗(A×B)e (a, 0) g : n⊗Be b 7−→ (0, n)⊗(A×B)e (0, b)

This is an invertible function, since we have an inverse, (f × g)−1. This is given as the function

induced by the (A×B)e-bilinear map:

(M ×N)× (A×B) −→M ⊗Ae A×N ⊗Be B

(m,n), (a, b) 7−→ (m⊗Ae a, n⊗Be b)

This can be verified to be an inverse, since we have on the generators that:

(f × g)−1
(
(f × g)(m⊗Ae a, n⊗Be b)

)
= (f × g)−1

(
(m, 0)⊗(A×B)e (a, 0) + (0, n)⊗(A×B)e (0, b)

)
= (f × g)−1

(
(m,n)⊗(A×B)e (a, b)

)
=
(
m⊗Ae a, n⊗Be b

)
Step 3: We conclude from the two previous steps that

Cbar∗ (A)⊗AeA×Cbar∗ (B)⊗BeB ∼= (Cbar∗ (A)×Cbar∗ (B))⊗Ae×Be(A×B) '
(
Cbar∗ (A×B)

)
⊗Ae×Be(A×B)

where the first isomorphism is by Step 2 and the second homotopy equivalence follows from Step 1,

combined with the fact that different choice of projective resolution gives isomorphic Tor groups.

Hence, by the chain equivalence above and the definition of Tor, we have proven that under the

conditions in the theorem:

Tor(A×B)e

n (A×B,A×B) ∼= TorA
e

n (A,A)⊕ TorB
e

n (B,B)

Which means that HH∗(A×B) ∼= HH∗(A)×HH∗(B).
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According to [Loday, 1998], the previous theorem can be generalized for the case where A and B

non-projective R-algebras as well, but then with a much modified proof. To be precise, we have

the following;

Corollary 2.3.2. Let A and B be as in Theorem 2.3.1 and let p1 and p2 be the projections

p1 : A×B −→ A

p2 : A×B −→ B

The isomorphism of Theorem 2.3.1 is then equal to the product map:

p1∗ × p2∗ : HH∗(A×B)
'−→ HH∗(A)×HH∗(B)

Proof. We show this by proving that the product of induced maps

p1∗ × p2∗ : Tor(A×B)e

n (A×B,A×B) −→ TorA
e

n (A,A)× TorB
e

n (B,B)

induces an isomorphism. In the proof of the previous theorem we proved in the first step that the

product of the complexes Cbar∗ (A) and Cbar∗ (B) could be chosen as a projective resolution of A×B.

If we now let Cbar∗ (A) and Cbar∗ (B) be projective resolutions of A and B respectively. There is by

definition an isomorphism of Tor
(A×B)e

n (A× B,A× B) and the n-th homology group of the chain

complex

(Cbar∗ (A)× Cbar∗ (B))⊗(A×B)e (A×B)

and there is an isomorphism of TorA
e

n (A,A) × TorB
e

n (B,B) and the n-th homology group of the

chain complex:

(Cbar∗ (A)⊗Ae A)× (Cbar∗ (B)⊗Be B)

we see that the product of the maps p1 and p2 induces chain homomorphisms given in each n by:

p1∗ × p2∗ : (Cbar∗ (A)× Cbar∗ (B))⊗(A×B)e (A×B) −→ (Cbar∗ (A)⊗Ae A)× (Cbar∗ (B)⊗Be B)

(a0 ⊗ · · · ⊗ an+1, b0 ⊗ · · · ⊗ bn+1)⊗(A×B)e (a× b) 7−→ (a0 ⊗ · · · ⊗ an+1 ⊗Ae a, b0 ⊗ · · · ⊗ bn+1 ⊗Be b)

which is an isomorphism by the argument used in Step 2 of the previous theorem. Since homology

is functorial, we have that the map also induces an isomorphism as promised on

p1∗ × p2∗ : Tor(A×B)e

n (A×B,A×B) −→ TorA
e

n (A,A)× TorB
e

n (B,B)

which means that it induces an isomorphism as we promised:

p1∗ × p2∗ : HH∗(A×B)
'−→ HH∗(A)×HH∗(B)
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2.3.2 Hochschild Homology of Coproducts

We have seen what happens to the product of R-algebras when applying Hochschild homology. We

will now investigate how the Hochschild homology behaves with respect to the coproducts in the

category of commutative R-algebras. As is well known, the coproduct of A and B in this category

is given as A ⊗ B. The following theorem is Theorem 4.2.5 on page 124 of [Loday, 1998]. Since

Loday has given references in his book rather than a proof, we present our own proof here.

Theorem 2.3.3. Let A and B be R-algebras. Then, if both the submodule of cycles and the

submodule of boundaries of the Hochschild complex of A are flat for all n, we have the following

natural short exact sequence:

0→
⊕
p+q=n

HHp(A)⊗HHq(B)→ HHn(A⊗B)→
⊕

p+q=n−1

TorR1 (HHp(A),HHq(B))→ 0

If we assume both the cycles and the homology groups of C∗(A) are flat over R, then there is a

natural isomorphism:

HH∗(A⊗B) ∼= HH∗(A)⊗HH∗(B)

Proof. Let us compare the simplicial module C•(A⊗B) and the cartesian product C•(A)⊗C•(B).

It is not hard to see that these are isomorphic simplicial modules, since we have an isomorphism

of each degree, defined on generators as:

ι : Cn(A⊗B) −→ Cn(A)⊗ Cn(B)

(a0 ⊗ b0)⊗ . . . (an ⊗ bn) 7−→ (a0 ⊗ · · · ⊗ an)⊗ (b0 ⊗ · · · ⊗ bn)

Since this map commutes with the face and degeneracy maps, this is an isomorphism of simplicial

R-modules. This gives us the isomorphism below, while the Eilenberg-Zilber theorem (Theorem

1.4.9) gives us the chain equivalence to the right:

K(C•(A⊗B)) ∼= K(C•(A)⊗ C•(B)) ' C∗(A)⊗ C∗(B)

Here, the middle chain complex is the degreewise tensor product, while the rightmost chain complex

is the tensor product of chain complex from Definition 1.3.12. Applying the ordinary Künneth

theorem (Theorem 1.3.13), we obtain the desired result.

Corollary 2.3.4. Let Q be a field, and let A and B be Q-algebras. Then there is a natural

isomorphism:

HH∗(A⊗Q B) ∼= HH∗(A)⊗Q HH∗(B)

Proof. Every module over a field Q is free, and is hence flat.

Remark 2.3.5. We will refer to Theorem 2.3.3 and its accompanying Corollary above as the

Künneth theorem for Hochschild homology.

Corollary 2.3.6. Let A be an R-algebra, and S be a multiplicatively closed subset of R. Then

there is an isomorphism

HH∗(S
−1A) ∼= S−1 HH∗(A)
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Proof. Using the isomorphism S−1A ∼= S−1R ⊗R A we see that HH∗(S
−1A) ∼= HH∗(S

−1R ⊗R A).

From Proposition 2.1.7, we know that Cn(S−1R) ∼= S−1R, which is flat. From the same proposition

we know that HHn(S−1R) is either isomorphic to S−1R or 0, both of which are flat as R-modules.

Hence we can apply Theorem 2.3.3, Proposition 2.1.7 and the definition of the tensor product of

graded algebras to see that we get isomorphisms:

HHn(S−1A) ∼=
⊕
p+q=n

HHp(S
−1R)⊗HHq(A) ∼= S−1R⊗HHn(A) ∼= S−1 HHn(A)

Corollary 2.3.7. Let R be a commutative ring, then the Hochschild homology groups of the R-

algebra R[x1 . . . xn] are isomorphic to:

HHq(R[xi]) =

{
R[xi]

⊕(q
n), for 0 ≤ q ≤ n

0, for q > n

Proof. This is simply noting that HH∗(R[x1 . . . xn]) ∼= HH∗(R[x1]⊗· · ·⊗R[xn]), and so by the fact

that R[x] is R-projective (see Corollary 2.2.4), we have R-projective homology groups and cycles.

We can therefore repeatedly apply Theorem 2.3.3:

HH∗(R[x1]⊗ · · · ⊗R[xn]) ∼= HH∗(R[x1])⊗ · · · ⊗HH∗(R[xn]) =
n⊗
i=1

HH∗(R[xi])

The statement now follows directly from the definition of the tensor products of graded R-algebras

(see Definition 1.3.12), Corollary 2.2.4, and some easy combinatorics.
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Chapter 3

Logarithmic R-Algebras

In this chapter we present the relevant definitions and theory necessary to define and work with

logarithmic Hochschild homology. In addition to presenting the necessary definitions and results

from John Rogne’s article, [Rognes, 2009], we present some of our original work. In particular, we

give an exposition on the limits and colimits in the category of pre-log algebras and give explicit

constructions of products and coproducts and prove the bi-completeness of this category. We will

also do the technical groundwork required before the next chapter, in which the two main theorems

of this thesis are stated and proven.

Throughout this chapter, we let A and B be the standard notation for associative, unital and

commutative R-algebras, while M and N will stand for commutative monoids.

3.1 Commutative Logarithmic Structures

In this first section of the chapter, we define pre-log R-algebras and log R-algebras and make some

elementary observations. We use [Rognes, 2009] as a general reference for definitions and results

in this part of the chapter.

3.1.1 The Generalization from Rings to R-Algebras

In [Rognes, 2009], the theory is phrased so that it concerns itself with (pre-) logarithmic structures

on commutative rings. We wish to work in the more general setting, where we place (pre-) loga-

rithmic structures on commutative R-algebras instead. Therefore, before we start defining (pre-)

log structures, we would like to explain how this generalization works, and how one can translate

back to the special case.

Proposition 3.1.1. The category of commutative R-algebras is isomorphic to the category of mor-

phisms from R into the category of commutative rings:

CR-Alg ∼= R/CRing

Proof. It is easily verified that given an R-algebra structure on A, we get an induced ring homo-

morphism θ : R→ A, defined by θ(r) = r ·1. Conversely, all ring homomorphisms ψ : R→ A define

an R-algebra by letting r · a := ψ(r) · a. This correspondence can be shown to be a bijection, and

so we get a 1-1 correspondence between R-algebras and ring homomorphisms from R to A. We
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also want to have a bijection of morphisms. An R-algebra homomorphism, f : A → B, is a ring

homomorphism such that f(ar) = f(a)r for all a ∈ A and all r ∈ R. This is exactly the same as to

require that the diagram

R
θ

��

θ′

��
A

f
// B

commute. These are precisely the morphisms in the categoryR/CRing. Conversely, a commutative

diagram of commutative rings like the one above induces an R-algebra homomorphisms on its

associated R-algebra, since it means that f(ar) = f(a)r. This finishes the proof.

Proposition 3.1.2. The category of commutative rings is isomorphic to the category of commu-

tative Z-algebras. To be concise: CRing ∼= CZ-Alg

Proof. The isomorphism factors as CRing ∼= Z/CRing ∼= CZ-Alg. The first isomorphism follows

from the fact that Z is the initial object in the category of (commutative) rings, combined with the

fact that i/C ∼= C for any category C, where i is the initial object of C. The second isomorphism is

by Proposition 3.1.1.

3.1.2 Pre-Log R-Algebras

We start by recalling some definitions introduced in [Rognes, 2009], but reformulated to fit in the

new setting of R-algebras.

Definition 3.1.3. Let A be a commutative R-algebra, and let us denote the underlying multiplica-

tive monoid of A by (A, ·). We define a pre-log structure on A to be a pair (M,α) consisting of

a commutative monoid M and a monoid homomorphism

α : M → 〈A, ·〉

A pre-log R-algebra is an algebra with a chosen pre-log structure. We will use the notation

(A,M,α) for the R-algebra A with the pre-log structure (M,α). We will sometimes shorten this

to (A,M) if the map α is known.

Definition 3.1.4. A pair, (f, f b), where f : A→ B is an R-algebra homomorphism and f b : M →
N is a monoid homomorphism is a pre-log homomorphism if the diagram

M

α
��

fb // N

β
��

(A, ·)
(f,·) // (B, ·)

commutes. A pre-log homomorphism is often written as a pair (f, f b) : (A,M,α) → (B,N). The

pre-log homomorphisms are the morphisms in the category PreLog of pre-log R-algebras.

The pre-log homomorphisms have an alternative description which we obtain from using the fact

that we have adjoint functors, R[−] : CMon → CR-Alg and (−, ·) : CR-Alg → CMon. We

discussed adjointness in the preliminaries, just after Example 1.2.11. Explicitly, we have that a pre

log structure (M,α) can be expressed in terms of the ring homomorphism ᾱ : R[M ] → A, where
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ᾱ is the left adjoint to α. A pair of an R-algebra homomorphism and a monoid homomorphism,

(f, f b), defines a pre-log morphism if and only if the diagram underneath commutes.

R[M ]

ᾱ
��

R[f ] // R[N ]

β̄
��

A
f // B

Example 3.1.5. The trivial pre-log R-algebra of A is the pre-log algebra (A, {1}, α : 1 7→ 1).

The trivial pre-log R-algebras are the images of the free functor:

(−, {1}) : CR-Alg −→ PreLog

A 7−→ (A, {1})
[f : A→ B] 7−→ [(f, Id{1}) : (A, {1})→ (B, {1})]

Example 3.1.6. Given a subalgebra, B ⊆ A, we can choose the underlying multiplicative monoid

of B as the monoid of the pre-log structure and the inclusion, i : 〈B, ·〉 → 〈A, ·〉 as monoid ho-

momorphism. More generally, we can consider the inclusion of a submonoid M ⊆ 〈A, ·〉. Special

cases of this includes the pre-log R-algebra (A, 〈A, ·〉, Id), and, under the presumption that the

underlying ring structure of A is an integral domain, (A, 〈A \ {0}, ·〉, i).

Example 3.1.7. Let I be some indexing set, and let {ai | i ∈ I} be a subset of A. We can then

define a monoid homomorphism on the free commutative monoid generated on I to be the monoid

homomorphism induced by the function:

α : I −→ A

i 7−→ ai

This example will occur quite often in different guises. For instance, we will look at special cases

of the pre-log R-algebra (R[x1, . . . xq], 〈x1, . . . xq−p〉, α : xi 7→ xi)

We will primarily be interested in studying the properties of pre-log R-algebras, and will not be

too concerned about log R-algebras. Still, to give closure to those who would else wonder why we

write the the prefix “pre-” constantly, we provide the definition of a log R-algebra below.

Definition 3.1.8. Let (A, ·)∗ ⊂ (A, ·) be the notation for the multiplicative group consisting of

all unit elements in A. We say that the pre-log algebra (A,M,α) is a log algebra if there is an

isomorphism as indicated in the pullback diagram:

α−1((A, ·)∗)

α̃∼=
��

ĩ //M

α

��
(A, ·)∗ i // (A, ·)

In the diagram, both i and ĩ are inclusions, while α̃ is the restriction α|α−1((A,·)∗). We call a

pre-log structure on A that result in a log algebra for a log structure. The log algebras forms a

full subcategory of PreLog, for which we will write Log.
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There is a logification functor, which sends the pre log R-algebra (A,M,α) to (A,M,α)a =

(A,Ma, αa). Here, Ma is the pushout of the following diagram, and αa is the morphism to (A, ·)∗
induced by α and the inclusion i

α−1((A, ·)∗)

α̃
��

ĩ //M

�� α

��

(A, ·)∗ //

i ..

Ma

αa

""
(A, ·)

The following proposition gives the universal property of the logification functor:

Proposition 3.1.9. Let (A,M,α) be a pre-log algebra. Then for all log algebras (B,N, β) and

all pre-log algebra morphisms f = (f, f b) : (Aa,Ma, αa) → (B,N, β) there exists a unique pre-log

algebra morphism f ′ : (A,M,α)→ (B,N, β) such that the diagram below commutes.

(A,M,α) //

f

''

(Aa,Ma, αa)

f ′

��
(B,N, β)

Proof. For a proof see [Rognes, 2009], Remark 2.7 on page 414.

3.2 Limits and Colimits in PreLog

We make a halt in our summary [Rognes, 2009] in order to briefly investigate what the limits and

colimits in PreLog are. It turns out that the calculation of these can be reduced to case of finding

limits and colimits in CR-Alg and CMon (see Lemma 3.2.3 for details). We also give explicit

description of what the products and coproducts in PreLog are.

3.2.1 Products and Coproducts of pre-Log Algebras

We want to investigate what the categorical product and coproduct should be in the category

PreLog. Recall from the general discussion in the preliminaries that we want the product of

two pre-log rings (A,M,α) and (B,N, β) to be an object, (A,M,α)× (B,N, β) together with two

morphisms, p1 : (A,M,α)× (B,N, β)→ (A,M,α) and p2 : (A,M,α)× (B,N, β)→ (B,N, β), such

that for every diagram of pre-log algebras below there exists a unique dashed arrow, f × g, making

the diagram commute.

(C,P, γ)

f×g

��

g

$$

f

zz
(A,M,α) (A,M,α)× (B,N, β)

p1oo p2 // (B,N, β)

(3.1)

The following proposition gives an explicit construction of this product:
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Proposition 3.2.1. The categorical product in the category PreLog of (A,M,α) and (B,N, β),

(A,M,α) × (B,N, β) is isomorphic to (A × B,M ×N,α × β : m × n 7→ α(m) × β(n)). It has the

following projection morphisms:

p1 : (A×B,M ×N,α× β) −→ (A,M,α) p2 : (A×B,M ×N,α× β) −→ (B,N, β)

(a× b,m× n) 7−→ (a,m) (a× b,m× n) 7−→ (b, n)

Proof. It is clear that (A × B,M × N,α × β) is a pre-log algebra. The unique morphisms that

exists for any g and for any f in (3.1) is constructed to be:

f × g := (f × g, f b × gb) : (c, p) 7→ (f(c)× g(c)), (f b(p)× gb(p))

It is easy to check that this is a pre-log algebra homomorphism. It is also clear that p1 ◦ (f ×g) = f

and that p2 ◦ (f × g) = g. The existence of this map makes this a product.

Analogously, we want the coproduct of two pre-log rings (A,M,α) and (B,N, β) to be an object,

(A,M,α) t (B,N, β) together with two morphisms, i1 : (A,M,α) → (A,M,α) t (B,N, β) and

i2 : (B,N, β) → (A,M,α) t (B,N, β) such that for every diagram of pre-log algebras below there

exists a unique dashed arrow, f t g, making the diagram commute

(A,M,α)
i1 //

f

$$

(A,M,α) t (B,N, β)

ftg

��

(B,N, β)

g

zz

i2oo

(C,P, γ)

(3.2)

The following proposition gives an explicit construction of the coproduct. Keep in mind that the

notation does not reflect what would happen for an infinite coproduct of commutative monoids.

Proposition 3.2.2. The categorical coproduct (A,M,α) t (B,N, β) of (A,M,α) and (B,N, β) in

the category PreLog is isomorphic to (A ⊗ B,M ×N,α t β : (m,n) 7→ α(m) ⊗ β(n)). It has the

following coprojection morphisms:

i1 : (A,M,α) −→ (A⊗B,M ×N,α t β) i2 : (B,N, β) −→ (A⊗B,M ×N,α t β)

(a,m) 7−→ (a⊗ 1,m× 1) (b, n) 7−→ (1⊗ b, 1× n)

Proof. It is clear that (A⊗B,M⊕N,αtβ) is a pre-log algebra. The unique morphisms that exists

for any g and for any f in (3.2) is constructed to be:

f t g := (a⊗ b,m⊕ n) 7→ (f(a) · g(b), f b(m) + gb(n))

It is easy to check that this is a pre-log algebra homomorphism. It is also clear that (f t g)◦ i1 = f

and (f t g) ◦ i2 = g. The existence of this map makes this the coproduct.
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3.2.2 General Limits and Colimits of log-Algebras

We are now going to analyse limits and colimits in the category of pre-log algebras. Let J be a

diagram and PreLogJ be the category of diagrams of shape J . Let F ∈ PreLogJ be a fixed

diagram element. Then for any object, j in J , we give F (j) the notation (Aj ,Mj , αj)

Lemma 3.2.3. Let F : J → PreLog be an object in the functor category PreLogJ . Then the

colimit of this diagram lim−→F ∼= (lim−→Aj , lim−→Mj , α
′ : lim−→Mj −→ 〈lim−→Aj , ·〉) Similarly, the limit of

the diagram, lim←−F
∼= (lim←−Aj , lim←−Mj , α

′′ : lim←−Mj −→ 〈lim←−Aj , ·〉) The morphism α′ is described in

Part 1 of the proof, and the map α′′ in Part 2.

Proof. Part 1, Colimits:

Let the maps φj : Aj → lim−→Aj be the coprojection maps associated to the cocone lim−→Aj and let

the maps , φbj : Mj → lim−→Mj , be the coprojection maps of lim−→Mj .

Our first step is to show that there is a monoid homomorphism, α′ : lim−→Mj → 〈lim−→Aj , ·〉, which is

defined in such a way that (lim−→Aj , lim−→Mj , α
′ : lim−→Mj −→ 〈lim−→Aj , ·〉) defines a pre-log R-algebra.

We define α′ to be the unique map induced on lim−→Mj by the collection of monoid homomorphisms

〈φj , ·〉 ◦ αj : Mj → 〈Aj , ·〉 → 〈lim−→Aj , ·〉

We now need to verify that this map constitutes a cone over F . To see this, notice that for any

j ∈ J , the diagram

Mj

αj

��

φbj // lim−→Mj

∃!α′

��
〈Aj , ·〉

〈φj ,·〉// 〈lim−→Aj , ·〉

commute by the definition of α’. As a result, every pair of morphisms (φj , φ
b
j) are all pre-log mor-

phisms, and we have shown that our presumed colimt is a cocone over F .

We shall now prove that (lim−→Aj , lim−→Mj , α
′) is initial among cocones over F . To do this, we

assume that (B,N, β) is another cocone over F , where the maps from (Aj ,Mj , αj) to (B,N, β) are

called (ξj , ξ
b
j) : (Aj ,Mj , αj) → (B,N, β). Then we want to prove that there exists a unique mor-

phism, (ξ, ξb) : (lim−→Aj , lim−→Mj , α
′)→ (B,N, β), such that for all j ∈ J : (ξ, ξb) ◦ (φj , φ

b
j) = (ξj , ξ

b
j).

There is only one possible choice of an R-algebra homomorphism, ξ : lim−→Aj → B, obtained by the

universal property of the colimit. Analogously, there is only one possible choice of morphism ξb

from lim−→M to N . It now only remains to see that these two maps constitute a pre-log morphism.

In other words, does the following diagram commute?

lim−→Mj

α′

��

ξb // N

β

��
〈lim−→Aj , ·〉 〈ξ,·〉)

// 〈B, ·〉

To see that this is the case, note that for all objects j ∈ J there exist morphisms, 〈ξj , ·〉◦αj : Mj →
〈B, ·〉. By the universal property of lim−→Mj , this induces a unique morphism as indicated in the
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diagram

lim−→Mj

α′

��

∃!

%%

ξb // N

β

��
〈lim−→Aj , ·〉 〈ξ,·〉)

// 〈B, ·〉

The fact that the dashed arrow along the diagonal is unique, means that the diagram must com-

mute, which in turn means that (ξ, ξb) is a pre-log morphism.

Part 2, Limits:

By an analogous argument to the one we made in Part 1, we get that there is only one possible

candidate to be our R-algebra and one possible candidate for the monoid in the limit which are

lim←−Aj and lim←−Mj respectively. To see that there exists a map α′′ : lim←−Mj → 〈lim←−Aj , ·〉 we need to

use Lemma 1.2.15. This gives us that there is an isomorphism 〈lim←−Aj , ·〉
∼= lim←−〈Aj , ·〉, since 〈−, ·〉 is

right adjoint. We can now use the fact that for all j ∈ J there is a monoid morphism from Mj to

lim←−〈Aj , ·〉, by factoring through 〈Aj , ·〉. This induces a unique morphism α′′ : lim←−Mj → lim←−〈Aj , ·〉,
and (lim←−Aj , lim←−Mj , α) can be shown to be a cone over F in a similar manner to how we did it for

colimits.

Proving that this cone is universal is also done in a way reminiscent of the colimt case. That is, given

any other cone (C,K, γ) over F , with pre-log morphisms (ηj , η
b
j) : (C,K, γ)→ (Aj ,Mj , αj), we wish

to find a unique pre-log morphism (η, ηb) : (C,K, γ)→ (lim←−Aj , lim←−Mj , α
′′) such that for all j ∈ J :

(ψj , ψ
b
j)◦(η, ηb) = (ηj , η

b
j). Here (ψj , ψ

b
j) are the projection maps from the cone (lim←−Aj , lim←−Mj , α

′′).

The argument giving unique existence of two possible candidates (η, ηb), and showing that the re-

lation (ψj , ψ
b
j) ◦ (η, ηb) = (ηj , η

b
j) holds, is “the same” as the analogous result for colimits in Part

1. Proving that (η, ηb) is a pre-log morphism is also similar but uses 〈lim←−Aj , ·〉
∼= lim←−〈Aj , ·〉 in the

following way when we wish to prove commutativity of the square in the diagram:

K

γ

��

ηb // lim←−Mj

α′′

�� &&
〈C, ·〉

〈η,·〉)
// 〈lim←−Aj , ·〉

∼= // lim←−〈Aj , ·〉

The outer morphism commutes by the fact that there is one unique morphism K → lim←−〈Aj , ·〉
induced by the maps ψj : K → 〈Aj , ·〉, and the triangle commutes by definition. Hence the square

commutes and (η, ηb) is a pre-log morphism. This concludes our proof.

3.3 Replete Homomorphisms

We pick up on our recapitulation of [Rognes, 2009], and resume to use this article as a general

reference for the material we now cover. This section will be spent on introducing and investigating

three subclasses of monoid homomorphism between commutative monoids, namely the virtually

surjective homomorphisms, the exact homomorphisms and the replete homomorphisms. These

kinds of homomorphism feature later on in this thesis, most importantly in the definition of log

Hochschild homology. In the following discussion, we let ε : M → P be standard notation for
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a homomorphism between commutative monoids. The category we work in is the category of

morphisms from a commutative monoid to a fixed commutative monoid, P . We use the notation

CMon/P for this category.

Definition 3.3.1. The monoid homomorphism ε : M → P is said to be virtually surjective if

the map εgp : Mgp → P gp induced by group completion is surjective (see Definition 1.1.13).

We write (CMon/P )vsur for the full subcategory of CMon/P consisting of all the virtually sur-

jective monoid homomorphism.

Proposition 3.3.2. All surjective morphisms ε : M → P are virtually surjective.

Proof. We want to show that εgp hits every element in P gp. Let (p1, p2) ∈ P gp be a representative

of an equivalence class in P gp. Let m1 ∈ ε−1(p1) and m2 ∈ ε−1(p2). We claim that (m1,m2) ∈Mgp

is in the pre-image of (p1, p2) under εgp. This is true, since εgp(m1,m2) = ε(m1) + (−ε(m2)) = p1 +

(−p2) by definition, which in P gp gives us p1 + (−p2) = (p1, 0) + (0, p2) = (p1, p2) by definition.

There are non surjective, virtually surjective morphisms. For example, we see that the inclusion

i : N→ Z, n 7→ n, under group completion results in an isomorphism igp : Ngp ∼= Z

Definition 3.3.3. The monoid homomorphism ε is said to be exact if the commutative diagram

below is a pullback square.

M
γ //

ε
��

Mgp

εgp

��
P γ

// P gp

Proposition 3.3.4. All monoid homomorphisms ε : M → P where M and P are groups are exact

morphisms.

Proof. By the universal property of the group completion (see Lemma 1.1.15), we get that the

relevant pullback diagram becomes isomorphic to the diagram below, which is always a pullback.

H
= //

ε
��

H

ε
��

G
= // G

Definition 3.3.5. We call a monoid homomorphism ε replete if it is both virtually surjective

and exact. The collection of all replete monoid homomorphisms constitutes a subcategory of

(CMon/P )vsur . We use the notation (CMon/P )rep for the category of all replete morphisms.

By the proof of the previous proposition, one can easily see that ifM and P are groups, the collection

of replete morphisms from M to P are the surjections. For general monoids, this question becomes

more complicated.
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Example 3.3.6. The inclusion of the natural numbers i : N −→ Z was shown to be virtually

surjective above. This morphism is not a replete morphism since the diagram below is not a

pullback.

N γ //

i
��

Z

igp ∼=
��

Z γ

∼=
// Z

The morphism j : N → Z × Z given by n 7→ (n, n) is not a virtual surjection or exact, since the

map induced by group completion is isomorphic to jgp : Z → Z × Z given by z 7→ (z, z) which is

clearly not surjective. If one writes up the relevant diagram, it is also clear that the result is not a

pullback diagram.

Definition 3.3.7. The repletion functor is a functor that sends the category of virtually surjec-

tive morphisms to the category of replete morphisms. We write

(−)rep : (CMon/P )vsur → (CMon/P )rep

for this functor, and it is defined by sending a virtually surjective morphism, ε : M → P , to the

pullback, M rep, in the diagram:

M γ

""
ε

$$

##
M rep

εrep

��

//Mgp

εgp

��
P γ

// P gp

This functor has the following universal property:

Proposition 3.3.8. Let ε : M → P be a virtually surjective morphism. Then for all replete mor-

phisms δ : N → P together with a monoid homomorphism f : M → N such that the diagram

M
f //

ε
��

N

δ
��

P
= // P

commutes, there is a unique morphism f ′ : M rep → N making the diagram below commute.

M
f

  
ε

��

//M rep

εrep

��

f ′

||
N

δ
��

P
= // P P

=oo

Proof. The proof can be found in [Rognes, 2009].
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3.4 Bar Constructions in the Category of Monoids

We present three constructions, all of which are examples of simplicial commutative monoids. The

material used here builds up to the definition of log Hochschild homology, and the results will be

used extensively in Chapter 4, in particular in proving the two main results of this thesis. We still

use [Rognes, 2009] as a general reference, but interspersed with some new observations, such as

Proposition 3.4.15 which we will use to prove the first main theorem of the next chapter.

3.4.1 The Bar Construction

Let M be a commutative monoid. A right action of M on a set, X, is then defined to be a map,

(−) · (−) : X ×M → X, where x · 1 = x and where (x ·m) · n = x · (mn). A left action of M

on a set, Y , is similarily defined as a map, (−) · (−) : M × Y → Y , where 1 · y = y and where

n · (m · y) = (nm)y.

Definition 3.4.1. Let M be a commutative monoid, and X and Y be sets on which a right

(respectively left) M -action has been defined. We then define the bar construction of the triple,

(X,M, Y ), to be the simplical object in the category of sets, for which we write B•(X,M, Y ). In

degree q, we define Bq(X,M, Y ) to be the product:

X × (

q∏
i=1

M)× Y = X ×M ×M × · · · ×M × Y

The face maps, dj : Bq(X,M, Y )→ Bq−1(X,M, Y ), and the degeneracy maps, sj : Bq(X,M, Y )→
Bq+1(X,M, Y ), are:

d0 : (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, y) 7−→ (x ·m1,m2, . . . ,mi,mi+1, . . . ,mq, y)

di : (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, y) 7−→ (x,m1,m2, . . . ,mi ·mi+1, . . . ,mq, y)

dq : (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, y) 7−→ (x,m1,m2, . . . ,mi,mi+1, . . . ,mq · y)

s0 : (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, y) 7−→ (x, 1,m1,m2, . . . ,mi,mi+1, . . . ,mq, y)

si : (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, y) 7−→ (x,m1,m2, . . . ,mi, 1,mi+1, . . . ,mq, y)

sq : (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, y) 7−→ (x,m1,m2, . . . ,mi,mi+1, . . . ,mq, 1, y)

where 0 < i < q. We will mainly be interested in the case where X and Y are one-element sets.

In this case, there is a monoid structure on the B•(X,M, Y ), and we write B•M as a shorthand

notation for the simplicial monoid B•({∗},M, {∗}). We call B•M for the bar construction of

M .

We cannot make B•M into a chain complex directly using Lemma 1.4.6, since B•M is a simplicial

monoid, and not a simplicial module. On the other hand, if we apply the free R-algebra functor,

R[−], degreewise to B•M , the outcome is a simplicial R-module. We will sometimes write R[B•M ]

for this simplicial module and R[B∗M ] for its associated chain complex.

Remark 3.4.2. We can think of the bar construction is a functor from the category of commutative

monoids to the category sCMon of simplicial commutative monoids:

B•(−) : CMon −→ sCMon

M 7−→ B•(M)
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This functor takes a homomorphism f : M → N to the simplicial map define degreewise as the

monoid homomorphism fq : (m1,m2, . . .mq) 7−→ (f(m1), f(m2), . . . f(mq)). The fq map clearly

commutes with the face and degeneracy map.

Proposition 3.4.3. Let X, Y and M be commutative monoids together with monoid homomor-

phisms, f : M → X and g : M → Y . Define M -actions on X and Y via f and g. Then there is an

isomorphism of simplicial R-modules:

R[B•(X,M, Y )] ∼= B•(R[X], R[M ], R[Y ])

Proof. The proof of this is quite simple. Notice that there is an isomorphism in every simplicial

degree

R[X]⊗R[M ]⊗R[M ]⊗ · · · ⊗R[M ]⊗R[Y ] −→ R[X ×M ×M × · · · ×M × Y ]

r0x⊗ r1m1 ⊗ r2m2 ⊗ · · · ⊗ rqmq ⊗ rq+1y −→ (r0 · r1 · r2 . . . rq)[x,m1,m2, . . . ,mq, y]

We see this, either because we know that R[−] is left adjoint, and hence takes “coproducts to

coproducts” by Lemma 1.2.15, or by noting that the inverse of this morphism is the map,

(r0 · r1 · r2 . . . rq)[x,m1,m2, . . . ,mq, y] 7→ (r0 · r1 · r2 . . . rq)(1x⊗ 1m1 ⊗ 1m2 ⊗ · · · ⊗ 1mq ⊗ 1y)

where the right hand side is equal to r0x⊗ r1m1 ⊗ r2m2 ⊗ · · · ⊗ rqmq

This gives us the following corollary:

Corollary 3.4.4. Let M be a commutative monoid. Then there is an isomorphism of R-modules:

Hn(R[B∗M ]) ∼= TorR[M ]
n (R,R)

Proof. To see this, simply notice that R[B•M ] = R[B•({∗},M, {∗})] ∼= B•(R,R[M ], R). Since R

and R[M ] are projective (even free) as R-modules, this chain complex has n-th homology groups

equal to Tor
R[M ]
n (R,R) by the following proof:

We can take µ : B∗(R[M ], R[M ], R)→ R as an R[M ]-projective resolution of R, where

µ : R[M ]⊗R −→ R

rm⊗ r′ 7−→ r · r′

We can verify this as follows: The chain complex B∗(R[M ], R[M ], R) is exact by an argument

similar to the one made in Proposition 2.2.2, and it is R[M ]-projective (since it is the tensor

product of itself in each degree). The map µ can be seen to induce an isomorphism

µ :
R[M ]⊗R

〈(r1m1) · (r2m2)⊗ r3 − r1m1 ⊗ r2 · r3〉
7−→ R

0

by noting that an element rm⊗ r′ ∈ R[M ]⊗R can be seen to be in the same equivalence class as

the element r · 1M ⊗ r′ and noting that 1⊗ r is not in the equivalence class of zero unless r = 0.

Then if we remove the first term and apply the tensor product R ⊗R[M ] (−) in each degree, we
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see that the resulting chain complex (upper chain complex) is isomorphic to the bar construction

B•(R,R[M ], R) (lower chain complex):

. . .
fi // R⊗R[M ] R[M ]⊗q+1 ⊗R

fj //

ιq

��

R⊗R[M ] R[M ]⊗q ⊗R fk //

ιq−1

��

. . .

. . .
di // R⊗R[M ]⊗q ⊗R

dj // R⊗R[M ]⊗q−1 ⊗R dk // . . .

via the isomorphism is the composition along the map

R⊗R[M ] R[M ]⊗q+1 ⊗R ∼= R⊗R[M ] R[M ]⊗R[M ]⊗q ⊗R ∼= R⊗R[M ]⊗q ⊗R

This completes the proof.

3.4.2 The Cyclic Bar Construction

The cyclic bar construction of monoids is similar to the simplical module structure of the Hochschild

complex (see Definition 2.1.1). This similarity is exemplified just after the definition, in Proposition

3.4.7.

Definition 3.4.5. The cyclic bar construction Bcy
• M of the commutative monoid M is the

simplicial commutative monoid with n-simplices:

Bcy
q M :=

q∏
i=0

M = M ×M × · · · ×M

The face maps di′ : BqM → Bq−1M and the degeneracy maps sj′ : BqM → Bq+1M are given to be

di : (m0,m1,m2, . . . ,mi,mi+1, . . . ,mq) 7−→ (m0,m1,m2, . . . ,mimi+1, . . . ,mq−1,mq)

dq : (m0,m1,m2, . . . ,mi,mi+1, . . . ,mq) 7−→ (mqm0,m1,m2, . . . ,mi,mi+1, . . . ,mq−1)

sj : (m0,m1,m2, . . . ,mi,mi+1, . . . ,mq) 7−→ (m0,m1,m2, . . . ,mi, 1,mi+1, . . . ,mq)

sq : (m0,m1,m2, . . . ,mi,mi+1, . . . ,mq) 7−→ (m0,m1,m2, . . . ,mi,mi+1, . . . ,mq, 1)

where 0 ≤ i < q.

As with the bar construction, we can make Bcy
• M into a chain complex by applying R[−] degreewise,

obtaining the chain complex R[Bcy •M ]. We also see that the cyclic bar construction is functorial

in a manner similar to how the bar construction was functorial. To be precise:

Remark 3.4.6. The cyclic bar construction is a functor from the category of commutative monoids

to the category sCMon of simplicial commutative monoids:

B•(−) : CMon −→ sCMon

M 7−→ B•(M)

This functor takes a homomorphism f : M → N to the simplicial map define degreewise as the

monoid homomorphism fq : (m0,m1,m2, . . .mq) 7−→ (f(m0), f(m1), f(m2), . . . f(mq)).
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Proposition 3.4.7. Let M be a commutative monoid. Then the simplicial module R[B•M ] is

isomorphic to the simplicial module C•(R[M ]).

Proof. We define the isomorphism f : R[Bcy
• M ]→ C•(R[M ]) in degree q ∈ N0 by:

fq : R[M ×M × · · · ×M ] −→ R[M ]⊗R[M ]⊗ · · · ⊗R[M ]

fq : r(m0,m1, . . . ,mq) 7−→ r(1R ·m0 ⊗ 1R ·m1 ⊗ · · · ⊗ 1R ·mq)

That this is an isomorphism of R-modules is the same argument as the one used in Proposition

3.4.3. The only thing left is a simple verification to check that these maps commute with the

relevant face and degeneracy maps, which they do.

Proposition 3.4.8. Let M be a monoid. Then there is an isomorphism of R-modules:

Hn(R[Bcy
• M ]) ∼= HHn(R[M ]) ∼= TorR[M ]e

n (R[M ], R[M ])

Proof. By Proposition 3.4.7, we have that the simplicial moduleR[Bcy
• M ] is isomorphic to C•(R[M ]).

As a result, we get that there is an isomorphism of homology groups Hn(R[Bcy
• M ]) ∼= Hn(C•(R[M ])).

Now, Proposition 2.2.3 would give us an isomorphism Hn(C∗(R[M ])) ∼= Tor
R[M ]e

n (R[M ], R[M ]) of

R-modules, if we can prove that R[M ] is projective as an R-module. Recall that the R-algebra,

R[M ], has underlying set equal to the left hand side of the isomorphism below. When we consider

only the R-module structure on R[M ], we see that we have an isomorphism of R-modules

{i=n∑
i=1

ri ·mi | ri ∈ R,mi ∈M,n ∈ N∗
}
∼=
⊕
m∈M

R

The left hand side is clearly free, and hence R[M ] is R-projective as we wanted.

Proposition 3.4.9. The cyclic bar construction sends products to products. Explicitly, there is an

isomorphism of simplicial monoids, Bcy
• (M ×N) ∼= Bcy

• M ×Bcy
• N . This isomorphism is obtained

as the product of the maps induced by the projections

p1 : M ×N −→M p2 : M ×N −→ N

(m,n) 7−→ m (m,n) 7−→ n

Proof. We see that the product of the two projections does indeed define an isomorphism on q-

simplices by(
(m0, n0), . . . , (mi, ni), . . . , (nq,mq)

)
7−→

(
(m0, . . . ,mi, . . . ,mq), (n0, . . . , ni, . . . , nq)

)
Further more, this map can easily seen to commute with the face and degeneracy maps of the

simplicial monoids. The inverse map(
(m0, . . . ,mi, . . . ,mq), (n0, . . . , ni, . . . , nq)

)
7−→

(
(m0, n0), . . . , (mi, ni), . . . , (nq,mq)

)
can be seen to commute with the face and degeneracy maps, and so we have that there is an

isomorphism above as claimed.
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Lemma 3.4.10. There is a functor from the category of pre-log R-algebras to the category of

simplicial pre-log R-algebras

(C(−), Bcy(−)) : PreLog −→ sPreLog

defined in the following manner. Given a pre-log algebra (A,M,α) then there exists a natural pre-

log structure on (C•(A), Bcy
• M), for which we will write (C(A), BcyM,α′). The map α′ is defined

by

α′q : Bcy
q M −→ 〈Cq(A), ·〉

(m0,m1, . . . ,mq) 7−→ (α(m0)⊗ α(m1)⊗, . . . ,⊗α(mq)

where the maps α′ defines as a morphism of simplicial commutative monoids. The simplicial

structure is given by face and degeneracy maps

(di, d
b
i) : (Cq(A), Bcy

q M) −→ (Cq−1(A), Bcy
q−1M)

(si, s
b
i) : (Cq(A), Bcy

q M) −→ (Cq+1(A), Bcy
q+1M)

where di and si are the face/degeneracy maps of C•(A) and dbi and sbi are the face/degeneracy maps

of Bcy
• M

Proof. There is a lot of trivial case checking to be done in order to prove this in detail, but we hope

that the reader understand that the lemma is sound. The functoriality we mentioned is arises from

sending a pre-log R-algebra homomorphism (f, f b) : (A,M)→ (B,N) to the map

fq = (

q∏
i=0

f,

q∏
i=0

f b) : (Cq(A), Bcy
q M) −→ (Cq(B), Bcy

q N)

where the notation
q∏
i=0
gi is meant to indicate the map that is defined as gi in the i-th coordinate.

3.4.3 The Replete Bar Construction

Definition 3.4.11. The replete bar construction of a commutative monoid M is the simplicial

object obtained as the pullback of the diagram,

Brep
• M

εrep

��

// Bcy
• M

gp

εgp

��
M

γ //Mgp

where the map εrep is defined in simplicial degree q as the repletion of ε :
q∏
i=0
M −→M , given by

εq : (m0,m1, . . . ,mq) 7→ m0 ·m1 · · · · ·mq

There is a unique morphism µ : Bcy
• M → Brep

• obtained by the universal property of the pullback. It

is induced on each Bcy
q M by the map ε and the group completion map γ, given by group completing
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in each simplicial degree. The diagram is the following:

Bcy
• M γ

%%

ε

%%

∃!µ $$
Brep
• M

εrep

��

// Bcy
• M

gp

εgp

��
M

γ //Mgp

Remark 3.4.12. As with all the other bar constructions, this last one is also a functor. To see

what a homomorphisms of commutative monoids f : M → N should be sent to, we see that this

map already induces morphisms of simplicial monoids

Brep
• M

++
εrepM

��

// Bcy
• M

gp

++
εgpM

��

Brep
• N

εrepN

��

// Bcy
• N

gp

εgpN

��

M
γM //

++

Mgp

++
N γN

// Ngp

and so by the universal property of pullbacks there exists a unique morphism making the diagram

commute, as indicated by the dotted line.

Proposition 3.4.13. The replete bar construction commutes with products. Explicitly, there is an

isomorphism of simplicial monoids Brep
• (M ×N) ∼= Brep

• M ×Brep
• N .

Proof. By Proposition 1.1.16 we get the two isomorphisms, (M × N)gp ∼= (M)gp × (N)gp and

Bcy
• ((M × N)gp) ∼= Bcy

• (Mgp × Ngp). By Proposition 3.4.9 we have that Bcy
• (Mgp × Ngp) ∼=

Bcy
• (Mgp) × Bcy

• (Ngp). Combining all of this, we see that the right and left pullback diagrams

below are isomorphic:

Brep
• (M ×N) //

εrep

��

Bcy
• (M ×N)

εgp

��

Brep
• M ×Brep

• N //

εrepM ×ε
rep
N

��

Bcy
• M ×Bcy

• N

εgpM×ε
gp
N

��
M ×N γ // (M ×N)gp M ×N γM×γN //Mgp ×Ngp

This finishes the proof.

We now paraphrase half of Lemma 3.17 on page 427 of [Rognes, 2009]. To be precise, this is

Lemma 3.17 of that article. The term “weak equivalence” (which we have not explicitly defined at

this point) can be taken to mean “a map which induces an isomorphism on the associated chain

complexes”.

Lemma 3.4.14. There is a natural isomorphism (εrep, πrep) : Brep
• M ∼= M × B•Mgp of simplicial

commutative monoids, where πrep : Brep
• M → B•M

gp is the degreewise repletion of the projection
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map, π : BqM → BqM
gp, sending π : (m0,m1, . . . ,mq) 7→ (γ(m1), . . . , γ(mq)).

There is a weak equivalence γ : B•M → B•M
gp, which implies that there is a weak equivalence

(εrep, πrep)−1 ◦ (Id, γ) : M ×B•M →M ×B•Mgp ∼= Brep
• M .

The repletion map Bcy
• M → Brep

• M factors as the composition of (ε, πgp) : Bcy
• M → M × B•Mgp

and then the isomorphism above.

Proof. See Lemma 3.17 on page 427 of [Rognes, 2009].

We will need the next proposition in the proof of Theorem 4.2.1.

Proposition 3.4.15. Let M be a commutative monoid. Then the pushout, {1} tBcy
q M Brep

q M is

isomorphic to the trivial monoid for all q ∈ N0.

Proof. The pushout, X = {1} tBcy
q M Brep

q M ∼= {1} tBcy
q M (M ×BqMgp), should have the property

that the dashed arrow exists and is unique for any commutative diagram

Bcy
q M //

��

M ×BqMgp

j1

��

��

{1} //

//

X

%%
N

In particular, any generating element (1, . . . , 1,mi, 1, . . . 1) of Bcy
q M has to be sent to 1 ∈ X, since

it factorise through the trivial monoid along the lower composition map. This means that the

image of (1, . . . , 1,mi, 1, . . . 1) in M × BqMgp also has to be sent to the identity in X. If not, the

diagram

Bcy
q M //

��

M ×BqMgp

j1

�� Id

��

{1} //

..

X

((
M ×BqMgp

would not commute. The following elements in X ∼= {1} tBcy
q M (M ×BqMgp) where m,mj ∈M

(1 tm0, 1, 1, . . . , 1), (1 tm1, γ(m1), 1, . . . , 1), . . . , (1 tmi, 1, . . . 1, γ(mi), 1, . . . , 1), . . .

are therefore in the same equivalence class as the identity element. This implies in turn that that

every element (1t 1, 1, . . . 1,mi, 1, . . . , 1) has to be equivalent to the identity element as well, since

an element (1, 1, . . . 1,mi, 1, . . . , 1) in M ×BqMgp

j1
(
(1, 1, . . . 1,mi, 1, . . . , 1)

)
= 1 · j1

(
(1, 1, . . . 1,mi, 1, . . . , 1)

)
= j1

(
(mi, 1, . . . 1, 1, 1, . . . , 1)

)
· j1
(
(1, 1, . . . 1,mi, 1, . . . , 1)

)
= j1

(
(mi, 1, . . . 1,mi, 1, . . . , 1)

)
= 1

59



Having proved that j1
(
(1, 1, . . . 1,m1, 1, . . . , 1)

)
= 1, one can use the usual argument to prove

that j1
(
(1, 1, . . . 1,m−1

1 , 1, . . . , 1)
)

= j1
(
(1, 1, . . . 1,m1, 1, . . . , 1)−1

)
= 1. Thus the pre-image of the

identity under j1, j−1
1 (1), contains the set

{(m, 1, . . . , 1), (1,m1, 1, . . . , 1) . . . (1, 1, . . . 1,mi, 1, . . . , 1) . . . (1, 1, . . . ,mq) | m ∈M,mj ∈Mgp}

which is a generating set for M × BqM
gp. Hence j1 is the trivial map, sending x → 1 for all

elements of M ×BqMgp. From this we conclude that X = {1}.

The following Lemma is a variant of Lemma 4.14, Lemma 4.15 and Proposition 4.16 of Stefano

Piceghello’s master thesis [Piceghello, 2015], in which the usefulness of Lemma 3.4.14 is made even

clearer.

Lemma 3.4.16. Let M be a commutative monoid. Give R[Brep
• M ] the induced simplicial structure

of face maps R[di] and degeneracy maps R[si], where di and si are face and degeneracy maps of

Brep
• M . Then we have a description of the homology groups of the chain complex associated to

R[Brep
• M ] as:

Hn(R[Brep
• M ]) ∼= R[M ]⊗ TorR[Mgp]

n (R,R)

Proof. By Lemma 3.4.14 there is an isomorphism (εrep, πrep) : Brep
• M ∼= M × B•Mgp of simplicial

monoids. This induces isomorphisms of simplicial modules:

Hn(R[Brep
• M ]) ∼= Hn(R[M ×BMgp]) ∼= Hn(R[M ]⊗R[BMgp])

Next we want to prove that Hn(R[M ]⊗R[BMgp
• ]) ∼= R[M ]⊗Hn(R[BMgp]). The simplicial module

structure of R[M ] in R[M ]⊗R[B•M
gp], have the associated chain complex:

. . .
bn+1−→ R[M ]

bn−→ R[M ]
bn−1−→ . . .

b2−→ R[M ]
b1−→ R[M ]

b0−→ 0

The boundary maps bi of this complex are induced by the face maps, R[πrep◦di] = R[IdM ] = IdR[M ].

Hence we have that the boundary maps bi is the identity when i is odd, and zero when i is even.

By the definition of the tensor product of chain complexes, and by the Künneth theorem (Theorem

1.3.13), this means that Hn(R[M ] ⊗ R[B•M
gp]) ∼= R[M ] ⊗ Hn(R[B•M

gp]) as we wanted. Finally,

Proposition 3.4.4 gives us an isomorphism Hn(R[B•M
gp]) ∼= Tor

R[Mgp]
n (R,R), which finishes the

proof.
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Chapter 4

Logarithmic Hochschild Homology

This is in many ways the most important chapter of this thesis. We start by presenting the definition

of log Hochschild homology as given in [Rognes, 2009] and make some elementary observations.

We then proceed to prove two of the main theorems of this thesis. The first result is that the

log Hochschild homology commutes with the product in the category of log-algebras. The second

result is that the log Hochschild homology of coproducts in the category of log-algebras.

4.1 Log Hochschild Homology

When defining log Hochschild homology we keep in mind the remark from [Rognes, 2009]: If A is

flat over R[M ], then C•(A) is flat over C•(R[M ]) = R[Bcy
• M ] in every simplicial degree.

Definition 4.1.1 ([Rognes, 2009]). Let (A,M,α) be a pre-log R-algebra such that A is flat

over R[M ]. Then we define the Hochschild simplicial pre-log R-algebra of (A,M,α) as the

simplicial pre-log R-algebra, (C•(A,M), Brep
• M, ξ), where C•(A,M) is defined to be the pushout

of simplicial R-modules:

R[Bcy
• M ]

R[µ] //

α′

��

R[Brep
• M ]

��
C•(A) // C•(A,M)

Here, µ is the unique map described in the text after Definition 3.4.11, while α′ : R[Bcy
• M ]→ C•(A)

is the adjoint morphism to the pre-log structure induced by (A,M,α) as in Lemma 3.4.10. We

will write C∗(A,M) for the chain complex associated to C•(A,M) and HHn(A,M) for the n-th

homology groups of C•(A,M). We call HHn(A,M) for the n-th log Hochschild Homology

group of (A,M).

Proposition 4.1.2. Let (A, {1}) be the pre-log R-algebra obtained by giving A the trivial pre-log

structure on A, and let (R[M ],M) be the pre-log R-algebra with pre-log structure map sending

m ∈M to 1m ∈ R[M ]. Then there are isomorphisms of simplicial R-algebras:

C•(A, {1}) ∼= C•(A) C•(R[M ],M) ∼= R[Brep
• M ]

Proof. These results are easily proven. First we see that

Cn(A, {1}) = Cn(A)⊗R[Bcy
n {1}] R[Brep

n {1}] ∼= Cn(A)⊗R R ∼= Cn(A)
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proving the leftmost isomorphism. For the second result, recall that from Proposition 3.4.7 that

there is an isomorphism of simplicial R-modules C•(R[M ]) and R[Bcy
• M ], and we obtain the right-

most isomorphism by

C•(R[M ],M) = C•(R[M ])⊗R[Bcy
• M ] R[Brep

• M ] ∼= C•(R[M ])⊗C•(R[M ]) R[Brep
• M ] ∼= R[Brep

• M ]

which concludes our proof.

We generalize Proposition 2.1.4 to log Hochschild homology.

Proposition 4.1.3. Let (A,M,α) be a pre-log R-algebra. Then we have an isomorphism of R-

modules:

HH0(A,M) ∼= A

Proof. By the relevant definitions we have the following R-module isomorphisms:

C0(A,M) ∼= C0(A)⊗R[Bcy
0 M ] R[Brep

0 M ] ∼= A⊗R[M ] R[M ] ∼= A

Similarily, by definition and by Lemma 3.4.14, we have the R-module isomorphism:

C1(A,M) ∼= C1(A)⊗R[Bcy
1 M ] R[Brep

1 M ] ∼= (A⊗A)⊗R[M ]⊗R[M ] (R[M ]⊗R[Mgp])

Under these isomorphisms, the face maps di : C0(A,M)→ C1(A,M) sends:

d0 : (a⊗ a′)⊗R[M ]⊗R[M ] (rm⊗ r′m′) 7−→ (a · a′) · (rα(m) · 1) = a · a′ · r · α(m)

d1 : (a⊗ a′)⊗R[M ]⊗R[M ] (rm⊗ r′m′) 7−→ (a′ · a) · (rα(m) · 1) = a · a′ · r · α(m)

We see that d0 = d1, and so the boundary map of the associated chain complex, b = d0 − d1 =

d0 − d0 = 0, is the zero map. Using this, we have that the zeroth log Hochschild homology group

of (A,M,α) is

HH0(A,M) =
ker(b : C0(A,M)→ 0)

im(b : C1(A,M)→ C0(A,M))
=
A

0
= A

as claimed.

Remark 4.1.4. The log Hochschild simplicial R-module is a functorial in that we can consider it

as a functor from the category of pre-log R-algebras to the category of simplicial R-algebras

C•(−) : PreLog −→ sR-Alg

We define this in a manner similar to how we defined the replete bar construction to be a functor.

As we have seen in the previous chapter, the pre-log homomorphism (f, f b) : (A,M) → (B,N)

induces functoriality a homomorphism on each of the components of the pushout as indicated

below. In this way we obtain the diagram

R[Bcy
• M ]

R[fb• ]

++

��

// R[Brep
• M ]

R[fb• ]

++

��

R[Bcy
• N ]

��

// R[Brep
• N ]

��

C•(A) //

f•

++

C(A,M)
(f,fb)•

++
C•(B) // C(B,N)
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where the dotted arrow is defined by the universal property of the pushout, and let this be the

morphism that (f, f b) : (A,M)→ (B,N) is sent to.

4.2 Log Hochschild Homology of Products

Theorem 4.2.1. Let (A,M,α) and (B,N, β) be pre-log R-algebras and let

(p1, p
b
1) : (A,M)× (B,N)−→(A,M)

(p2, p
b
2) : (A,M)× (B,N)−→(B,N)

be the projection maps of the categorical product of pre-log R-algebras. Then there is an quasi

isomorphism of chain complexes given by the product of maps induced by the projections.

(p1, p
b
1)∗ × (p2, p

b
2)∗ : C∗((A,M)× (B,N))

∼−→ C∗(A,M)× C∗(B,N)

Proof. By Proposition 3.2.1 we know that there is an isomorphism between the categorical product

(A,M,α) × (B,N, β) of the two pre-log R-algebras, (A,M,α) and (B,N, β), and the pre-log R-

algebra defined as
(
A × B,M × N,α × β : (m,n) 7→ (α(m), β(n))

)
. As a consequence of this

isomorphism and the definition of the log Hocschild simplicial module associated to a pre-log R-

algebra, we see that:

C•
(
(A,M)× (B,N)

) ∼= C•(A×B,M ×N) = C•(A×B)⊗R[Bcy
• (M×N)] R[Brep

• (M ×N)]

By Theorem 2.3.1 and Corollary 2.3.2, we know that the projections

p1 : A×B −→ A

p2 : A×B −→ B

induce a quasi isomorphism of the Hochschild chain complexes by the products of the maps induced

by the projections:

p1∗ × p2∗ : C∗(A×B)
∼−→ C∗(A)× C∗(B)

Let us use the notation f• for the simplicial map p1• × p2• : C•(A × B)
∼−→ C•(A) × C•(B). We

want to prove that the simplicial homomorphism f• ⊗R[Id•] R[Id•] :

C•(A×B)⊗R[Bcy
• (M×N)] R[Brep

• (M ×N)] −→
(
C•(A)× C•(B)

)
⊗R[Bcy

• (M×N)] R[Brep
• (M ×N)]

induces an isomorphism on the homology groups. Before we can tackle this problem, we have to

be precise about how the codomain is meant to be a simplicial module. To define this in a precise

way, we have to choose a simplicial ring homomorphism, ψ, from R[Bcy
• (M ×N)] to C•(A)×C•(B)

so that we have a simplical R[Bcy
• (M ×N)]-module structure on C•(A)×C•(B) over which we can

take the tensor product. We keep in mind what the end result we want to have is, and so we define

ψ so that we have commutativity of the digram:

R[Bcy
• (M ×N)]

α′×β′
��

R[Id] // R[Bcy
• (M ×N)

ψ

��
C•(A×B)

p1•×p2•// C•(A)× C•(B)
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There is only one obvious candidate for this map, which is to let ψq = p1q◦(α′q × β′q)×p2q◦(α′q × β′q).
We see that this map is defined on elements as

r
(
(m0, n0)⊗ · · · ⊗ (mq, nq)

)
7−→

(
r(α(m0)⊗ · · · ⊗ α(mq)), r(β(n0)⊗ . . . ,⊗β(nq))

)
Now that the codomain of f• ⊗Id• Id• has been properly defined, we proceed to the proof that this

map is an isomorphism. We shall be using Lemma 1.5.1 for this. We see that all the conditions in

the lemma is satisfied. In particular, the fact that

TorR[Bcy
q (M×N)](Cq(A×B), R[Brep

q (M ×N)]) = 0

TorR[Bcy
q (M×N)](Cq(A)× Cq(B), R[Brep

q (M ×N)]) = 0

is due to the flatness condition in Definition 4.1.1, and the commutativity of the diagram in the

lemma is by the definition of the map ψ given above. The end result is that the homomorphism

below induces an isomorphism on the homology groups.

f• ⊗R[Id•] R[Id•] : C•
(
(A,M)× (B,N)

) ∼−→ C•(A)× C•(B)⊗R[Bcy
• (M×N)] R[Brep

• (M ×N)]

We shall now analyse the right hand side further. By Proposition 3.4.9 we have that there is a

simplicial isomorphism, R[Bcy(M ×N)] ∼= R[BcyM ]⊗R[BcyN ], and by Proposition 3.4.13 we have

a simplicial isomorphism R[Brep(M × N)] ∼= R[BrepM ] ⊗ R[BrepN ]. Put together, this gives us

that: (
C•(A)× C•(B)

)
⊗R[Bcy

• (M×N)] R[Brep
• (M ×N)] ∼=(

C•(A)× C•(B)
)
⊗R[Bcy

• M ]⊗R[Bcy
• N ] R[Brep

• (M ×N)] ∼=(
C•(A)× C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
Recall that the isomorphisms above where both obtained as the product of the map induced by the

two projections. Summarizing what we have done this far, we have that there the simplicial map

of simplicial R-algebras, given by the map

(p1• × p2•)⊗R[pb1•×pb2•]
R[pb1• × pb2•] :

C•
(
(A,M)× (B,N)

)
−→

(
C•(A)× C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
induces an isomorphism on homology groups. The rest of the proof focuses on finding a simplicial

isomorphism(
C•(A)× C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

) ∼=−→ C•(A,M)× C•(B,N)

Our approach will be to show that these simplicial modules are isomorphic in each simplicial degree.

We start by defining an isomorphism(
C•(A)× C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

) ∼=(
C•(A)⊗R×R⊗ C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
We will use this isomorphism as a device for keeping track of how the R-modules C•(A) and C•(B)

are considered to be R[Bcy
• M ]⊗R[Bcy

• N ]-algebras. Concretely, we define the scalar multiplication

64



by generating element (r·m⊗sn) of R[Bcy
q M ]⊗R[Bcy

q N ] by a generating element (a⊗t) ∈ Cq(A)⊗R
and (u⊗ b) ∈ R⊗ Cq(B) respectively as:

(rm⊗ sn) · (a⊗ t) = rα(m) · a⊗ s · t
(rm⊗ sn) · (u⊗ b) = r · u⊗ sβ(n) · b

Observe that this action is compatible with the action we defined as the one we defined by the map

ψ, and also that we can use the distributivity of the tensor product to obtain the isomorphism (that

we have the distributivity of the simplicial module follows from the fact that we have distributivity

in every degree):(
C•(A)⊗R×R⊗ C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
∼=(

C•(A)⊗R
)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
×(

R⊗ C•(B)
)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
As the reader can guess from how we wrote the equations above, the length of our expression has

exceeds the width of the paper. To simplify the notation, we will work exclusively with the first of

factor of the direct product until we have obtained something less space consuming. The obvious

analogue to all the algebraic operations that we perform on the first factor of the simplicial complex

should be performed mentally on the latter factor simultaneously.

We will now do an algebraic trick, where the idea is the following: Assume that we have R-

algebras X, Y , Z, X ′, Y ′ and Z ′ such that we have a Z-module structure on X and Y and a

Z ′-module structure on X ′ and Y ′. Then there is an isomorphism

ι : (X ⊗X ′)⊗Z⊗Z′ (Y ⊗ Y ′) −→ X ⊗Z Y ⊗X ′ ⊗Z′ Y ′

x⊗ x′ ⊗Z⊗Z′ y ⊗ y′ 7−→ x⊗Z y ⊗ x′ ⊗Z′ y′

To see that this is an isomorphis, observe that the map x ⊗ x′ × y ⊗ y′ 7→ x ⊗Z y ⊗ x′ ⊗Z′ y′ is

Z ⊗ Z ′-bilinear and that the map x ⊗Z y × x′ ⊗Z′ y′ 7→ x ⊗ x′ ⊗Z⊗Z′ y ⊗ y′ is R-bilinear. By this

argument we obtain:

ιq :
(
Cq(A)⊗R

)
⊗R[Bcy

q M ]⊗R[Bcy
q N ]

(
R[Brep

q M ]⊗R[Brep
q N ]

)
∼=(

Cq(A)⊗R[Bcy
q M ] R[Brep

q M ]
)
⊗
(
Rq ⊗R[Bcy

q N ] R[Brep
q N ]

)
it is clear that this isomorphism commutes with the face and degeneracy maps, and so it induces

an isomorphism in each simplicial degree:(
C•(A)⊗R

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

) ∼=(
C•(A)⊗R[Bcy

• M ] R[Brep
• M ]

)
⊗
(
R• ⊗R[Bcy

• N ] R[Brep
• N ]

)
=

C•(A,M)⊗
(
R• ⊗R[Bcy

• N ] R[Brep
• N ]

)
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The last line follows by the definition of C•(A,M). Notice that we have endowed the ring R with

a simplicial structure that we have not described yet. To clarify, the structure we give R• is the

constant simplicial R-algebra structure, since this is the simplicial structure that makes the above

map into a simplicial morphism. In fact one can easily check that if A is an R-algebra and C• is a

simplical R-algebra, then there is a simplicial isomorphism A⊗ C• ∼= A• ⊗ C• where A• has been

given the constant simplicial structure. Since the expression we work with is more compact now,

we can write the entire expression again. To be precise, we have the simplicial R-algebra:

C•(A,M)⊗
(
R• ⊗R[Bcy

• N ] R[Brep
• N ]

)
× C•(B,N)⊗

(
R• ⊗R[Bcy

• M ] R[Brep
• M ]

)
Recall that R[−] is a left adjoint functor which therefore preserves colimits (Lemma 1.2.15). Notice

that both of the “rubbish” terms in the expression above have been defined so that they can be

thought of as pushouts in each simplicial degree as indicated below

R[Bcy
q N ]

R[f ]

��

R[g] // R[Brep
q N ]

��

R[Bcy
q N ]

R[f ′]

��

R[g′] // R[Brep
q N ]

��
R[{∗}] // R• ⊗R[Bcy

• N ] R[Brep
• N ] R[{∗}] // R• ⊗R[Bcy

• M ] R[Brep
• M ]

where the map f (respectively f ′) is the map sending every element of M (respectively N) to

the identity element of the trivial monoid. If we use this and Proposition 3.4.15, which says that

{1} tBcy
q N BrepN ∼= {1} we obtain the following isomorphisms in each simplicial degree:

Cq(A,M)⊗ (R⊗R[Bcy
q N ] R[Brep

q N ])×Cq(B,N)⊗ (R⊗R[Bcy
q M ] R[Brep

q M ])

∼= Cq(A,M)⊗R[{1}q tBcy
q N Brep

q N ]×Cq(B,N)⊗R[{1}q tBcy
q M Brep

q M ]

∼= Cq(A,M)⊗R[{1}q]×Cq(B,N)⊗R[{1}q]
∼= C(A,M)⊗Rq×C(B,N)⊗Rq
∼= C(A,M)×C(B,N)

We have have now proven the there exists a simplicial map

h : C•
(
(A,M)× (B,N)

)
−→ C•(A,M)× C•(B,N)

that induces an isomorphism on homology groups. The part of the proof that remains is to check

that this is the map obtained as the product of the maps induced by the projections. We combine

the first and last part of this isomorphism in a diagram:

C•
(
(A,M)× (B,N)

) F //

h

**

(
C•(A)× C•(B)

)
⊗R[Bcy

• M ]⊗R[Bcy
• N ]

(
R[Brep

• M ]⊗R[Brep
• N ]

)
G

��
C•(A,M)× C•(B,N)
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We have some idea of what the maps F and G are, and so we write them out carefully. The map

F is defined degreewise as the following R-algebra homomorphism:

F : Cq(A×B)⊗R[Bcy
q (M×N)] R[Brep

q (M ×N)] −→

−→
(
Cq(A)× Cq(B)

)
⊗R[Bcy

q M ]⊗R[Bcy
q N ]

(
R[Brep

q M ]⊗R[Brep
q N ]

)
(
(a0, b0)⊗ · · · ⊗ (bq, aq)

)
⊗R[Bcy

q (M×N)] r · zrep 7−→

7−→
(
a0 ⊗ · · · ⊗ aq, b0 ⊗ · · · ⊗ bq

)
⊗R[Bcy

q M ]⊗R[Bcy
q N ] r

(
p1q(z

rep)⊗ p2q(z
rep)
)

The map G is defined degreewise as the following R-algebra homomorphism:

G :
(
Cq(A)× Cq(B)

)
⊗R[Bcy

q M ]⊗R[Bcy
q N ]

(
R[Brep

q M ]⊗R[Brep
q N ]

)
−→

−→
(
Cq(A)⊗R[Bcy

q M ] R[Brep
q M ]

)
×
(
Cq(A)⊗R[Bcy

q M ] R[Brep
q N ]

)
(
a0 ⊗ · · · ⊗ aq, b0 ⊗ · · · ⊗ bq

)
⊗R[Bcy

q M ]⊗R[Bcy
q N ]

(
r1x

rep ⊗ r2y
rep
)
7−→

7−→
((
a0 ⊗ · · · ⊗ aq

)
⊗R[Bcy

q M ]

(
r1r2x

rep
)
,
(
b0 ⊗ · · · ⊗ bq

)
⊗R[Bcy

q N ]

(
r1r2y

rep
))

we see that the composition of these two maps gives us that the function is given in the each

coordinate as the maps:

(p1q, p
b
1q) : Cq(A×B)⊗R[Bcy

q (M×N)] R[Brep
q (M ×N)] −→ Cq(A)⊗R[Bcy

q M ] R[Brep
q M ](

(a0, b0)⊗ · · · ⊗ (bq, aq)
)
⊗R[Bcy

q (M×N)] r · zrep 7−→
(
a0 ⊗ · · · ⊗ aq

)
⊗R[Bcy

q M ]

(
r · p1qz

rep
)

(p2q, p
b
2q) : Cq(A×B)⊗R[Bcy

q (M×N)] R[Brep
q (M ×N)] −→

(
Cq(A)⊗R[Bcy

q M ] R[Brep
q N ]

)(
(a0, b0)⊗ · · · ⊗ (bq, aq)

)
⊗R[Bcy

q (M×N)] r · zrep 7−→
(
b0 ⊗ · · · ⊗ bq

)
⊗R[Bcy

q N ]

(
r · p2qz

rep
)

equal to the function (p1q, p
b
1q) in the first coordinate and (p2q, p

b
2q) as we stated in the theorem.

This concludes our proof.

4.3 Log Hochschild Homology of Coproducts

Now that we know how the log Hochschild Homology of products of pre-log R-algebras can be

calculated, we would like to present a similar theorem for the coproduct of pre-log R-algebras. Re-

call that we showed in Proposition 3.2.2 that the coproduct of two pre-log algebras (A,M,α) and

(B,N, α), denoted with (A,M,α) t (B,N, β), is isomorphic to the pre-log R-algebra (A⊗B,M ⊕
N,α t β : m⊕ n 7→ α(m)⊕ β(n)). We adopt the notation (A,M,α)⊗ (B,N, β) for this coproduct

for aesthetic purposes, and refer to it as the tensor product of pre-log R-algebras. We justify this

in that the tensor product of pre-log R-algebras can even be thought of as a generalization of the

tensor product of R-algebras.

By Theorem 2.3.3 we already know that the Hochschild homology of the tensor products of Q-

modules (where Q is a field) is isomorphic to the tensor product of the Hochschild homology of its

factors. The corresponding result, generalized to the setting of log Hochschild homology, consists

in the next theorems.
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Theorem 4.3.1. Let (A,M,α) and (B,N, β) be pre-log R-algebras and let the tensor product, ⊗,

denote the coproduct in the category of pre-log R-algebras. Then there is a simplicial isomorphism

of R-algebras:

C•((A,M)⊗ (B,N)) ∼= C•(A,M)⊗ C•(B,N)

Proof. By definition, C•((A,M) ⊗ (B,N)) is equal to C•(A ⊗ B) ⊗R[Bcy
• (M×N)] R[Brep

• (M × N)].

Using Proposition 3.4.9 and Proposition 3.4.13 as we did in the proof of Theorem 4.2.1, we see that

we have isomorphisms:

C•((A,M)⊗ (B,N)) = C•(A⊗B)⊗R[Bcy
• (M×N)] R[Brep

• (M ×N)]

∼= C•(A⊗B)⊗R[Bcy
• (M×N)] R[Brep

• M ]⊗R[Brep
• N ]

∼= C•(A⊗B)⊗R[Bcy
• M ]⊗R[Bcy

• N ] R[Brep
• M ]⊗R[Brep

• N ]

Recall from the proof of Theorem 4.3.1 that the simplicial module C•(A⊗B) is isomorphic to the

simplicial tensor product/cartesian product of simplicial R-modules, C•(A)⊗C•(B) by rearranging

the terms. Explicitly, this isomorphism is given in each simplicial degree by the isomorphism:

sh : (a0 ⊗ b0)⊗ (a1 ⊗ b1)⊗ · · · ⊗ (aq ⊗ bq) 7→ (a0 ⊗ a1 ⊗ · · · ⊗ aq)⊗ (b0 ⊗ b1 ⊗ · · · ⊗ bq)

We also want to use the same trick that we used in the proof in Theorem 4.2.1, that R-algebras

S, S′, T , T ′, U and U ′ where S and T are U -algebras and S′ and T ′ are U ′-algebras, we have an

isomorphism (S⊗S′)⊗U⊗U ′ (T ⊗T ′) ∼= (S⊗U T )⊗ (S′⊗U ′ T ′). Together this gives us the simplicial

isomorphisms:

C•((A,M)⊗ (B,N)) ∼= C•(A⊗B)⊗R[Bcy
• M ]⊗R[Bcy

• N ] R[Brep
• M ]⊗R[Brep

• N ]

∼= C•(A)⊗ C•(B)⊗R[Bcy
• M ]⊗R[Bcy

• N ] R[Brep
• M ]⊗R[Brep

• N ]

∼=
(
C•(A)⊗R[Bcy

• M ] R[Brep
• M ]

)
⊗
(
C•(B)⊗R[Bcy

• N ] R[Brep
• N ]

)
∼= C•(A,M)⊗ C•(B,N)

We have now constructed a sequence of isomorphisms of simplicial R-modules from C•((A,M) ⊗
(B,N)) to C•(A,M)⊗ C•(B,N), which yields the desired result.

Corollary 4.3.2 (The Eilenberg-Zilber Theorem for Log Hochschild Homology). Let

(A,M,α) and (B,N, β) be pre-log R-algebras. Then there is a chain equivalence of R-algebras:

C∗((A,M)⊗ (B,N)) ∼= C∗(A,M)⊗ C∗(B,N)

Above, we let (A,M) ⊗ (B,N) denote the coproduct in the category of pre-log R-algebras, while

C∗(A,M)⊗ C∗(B,N) denotes the tensor product of chain complexes.

Proof. This is immediate by applying Theorem 1.4.9, (the Eilenberg-Zilber Theorem) to the sim-

plicial isomorphism from Theorem 4.3.1.

In the next corollary, we let Bn(A,N) denote the n-bounadries of the chain complex C∗(A,M) and

let Zn(A,M) denote the n-cycles of the chain complex C∗(A,M).
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Corollary 4.3.3 (A Künneth Formula for Log Hochschild Homology). Let (A,M,α) and

(B,N, β) be pre-log R-algebras and assume that both Zn(A,M) and Bn(A,N) are flat over R for

all n ∈ N0. Then there is a short exact sequence:

0→
⊕
q+r=n

HHq(A,M)⊗HHr(B,N)
p→ HHn((A,M), (B,N))

β→

β→
⊕

q+r=n−1

TorR1 (HHq(A,M),HHr(B,N))→ 0

If Zn(A,M) and HHn(A,M) are flat over R, then the map p is an isomorphism:⊕
q+r=n

HHq(A,M)⊗HHr(B,N)
p∼= HHn((A,M)⊗ (B,N))

If Q is a field and both (A,M) and (B,N) are pre-log Q-algebras, then we always have the isomor-

phism above, since every module under a field is free.

Proof. This corollary follows immediately by applying Theorem 1.3.13 (the Künneth Formula) to

Corollary 4.3.2.

4.3.1 Log Hochschild Homology of Localizations

Definition 4.3.4. Let S be a multiplicatively closed subset of R and let (S−1R, {1}) be the

R-algebra S−1R with the trivial pre-log structure. Then we define the localization of the log

R-algebra (A,M,α) at S to be the pre-log algebra:

S−1(A,M) := (S−1R, {1})⊗ (A,M)

Proposition 4.3.5. Let S be a multiplicatively closed subset of R. A pre-log R-algebra, (S−1A,M,α)

is isomorphic to the localization at S of some pre-log algebra (A,M,α′) if the image of α is contained

in the image of the localization map, φ : A→ S−1A, that sends a to a
1 .

Proof.

Theorem 4.3.6. Let S be a multiplicatively closed subset of R and let S−1(A,M) be the localization

of the pre-log R-algebra (A,M,α). Then there is an isomorphism for all n ∈ N0:

HHn(S−1(A,M)) ∼= S−1 HHn(A,M)

Proof. By Proposition 4.1.2 we have a simplicial isomorphism C•(A, {1}) ∼= C•(A). Using this

together with Theorem 1.4.9 (the Eilenberg-Zilber Theorem) for log Hochschild homology, we have

a homotopy equivalence:

C∗(S
−1(A,M)) ∼= C∗((S

−1R, {1})⊗ (A,M))

' C∗(S−1R, {1})⊗ C∗(A,M))

∼= C∗(S
−1R)⊗ C∗(A,M)

By Proposition 2.1.7 we know that Cn(S−1R) has an R-projective module of cycles and an R-

projective module of. We can therefore use the the Künneth formula for log Hochschild homology,

to obtain the isomorphism we wanted, since

HH∗(S
−1A,M) ∼= HH∗(S

−1R, {1})⊗HH∗(A,M) ∼= HH∗(S
−1R)⊗HH∗(A,M) ∼= S−1 HH∗(A,M)

The last isomorphism in the sequence above is essentially the same as in the proof we gave of

Corollary 2.3.6.
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4.4 Polynomial Algebras

We will now use the Künneth theorem of the previous section to calculate the log Hochschild

homology groups of the pre-log R-algebra (R[xi], 〈xi, yi〉). We begin by making the following rather

elementary remark:

Remark 4.4.1. There is an isomorphism of R-algebras R[〈x〉gp] ∼= R[x, x−1]. To see this, define

a map on the generators of R[〈x〉gp] by rxn 7→ rxn and r(xn)−1 7→ rx−n. This map is clearly an

R-algebra homomorphism and it is also clear that this homomorphism is invertible.

Proposition 4.4.2. The pre-log algebra (R[x], 〈x〉, α : x→ x) has log Hochschild homology groups:

HHn(A,M) =


R[x], for n = 0

R[x], for n = 1

0, for n ≥ 2

Proof. We begin by using Proposition 4.1.2 on C•(R[x], 〈x〉) to see that we can instead calculate

the log Hochschild homology groups of R[Brep
• 〈x〉]. By Lemma 3.4.16 we have an isomorphism of

R-modules:

Hn(R[Brep
• 〈x〉]) ∼= R[〈x〉]⊗ TorR[〈x〉gp]

n (R,R)

We use the following free resolution of R[x, x−1]-modules of R:

0 −→ R[x, x−1]
ρ−→ R[x, x−1]

σ−→ R −→ 0

In this resolution, the homomorphisms ρ and σ are defined as:

ρ : R[x, x−1] −→ R[x, x−1] σ : R[x, x−1] −→ R

p(x) 7−→ (x− 1)p(x) x 7−→ 1

To see that this is a resolution, first notice that σ is surjective, and ρ injective. Furthermore, the

kernel of σ definitely contains the image of ρ, since we have that:

σ(ρ(p(x)) = σ((x− 1)p(x)) = σ(xp(x)− p(x)) = σ(xp(x))− σ(p(x)) = 0

Conversely, the kernel of σ is contained in the image of ρ, since if for

g(x) = rnx
n + · · ·+ r1x

1 + r0x
0 + r−1x

−1 + · · ·+ r−mx
−m

we have that σ(g(x)) = 0, then we see that

g(x) = (x− 1)
(
rnx

n−1 + (rn + rn−1)xn−2 + (rn + rn−1 + rn−2)xn−3 · · ·+
( i=n∑
i=−m

ri
)
x−(m+1)

)
The next step is tensoring this sequence by R⊗R[x,x−1] (−) and removing the first term. The result

is the sequence:

0 −→ R⊗R[x,x−1] R[x, x−1]
Id⊗ρ−→ R⊗R[x,x−1] R[x, x−1] −→ 0
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That becomes isomorphic to the chain complex

0 −→ R
0−→ R −→ 0

under the isomorphism

ι : R⊗R[x,x−1] R[x, x−1] −→ R

r ⊗R[x,x−1] p(x) 7−→ r · p(1)

The map above is the zero map, since for a generator, r ⊗R[x,x−1] p(x) of R⊗R[x,x−1] R[x, x−1], we

have that:

ι(Id⊗R[x,x−1] ρ((r ⊗R[x,x−1] p(x))) = ι(r ⊗R[x,x−1] (x− 1)p(x)) = r · (1p(1)− 1p(1)) = 0

We have therefore calculated Tor
R[〈x〉gp]
n (R,R) to be R if n = 0, 1 and the 0 module if n ≥ 2. The

upshot of this is that by the isomorphism Hn(R[Brep
• 〈x〉]) ∼= R[〈x〉]⊗ Tor

R[〈x〉gp]
n (R,R) we see that

we have

HHn(A,M) =


R[x], for n = 0

R[x], for n = 1

0, for n ≥ 2

as claimed.

Proposition 4.4.3. The pre-log R-algebra

(R[x1, x2, x3, . . . , xn], 〈x1, x2, x3, . . . , xn〉, αi : xi 7→ xi),

for which we write (R[xi], 〈xi〉), has log Hochschild homology groups isomorphic to:

HHq(R[xi], 〈xi〉) =

{
R[xi]

⊕(q
n), for 0 ≤ q ≤ n

0, for q > n

Proof. This result follows easily from the fact that

(R[x1, x2, . . . , xn], 〈x1, x2, . . . , xn〉) ∼= (R[x1, x2, . . . , xn−1], 〈x1, x2, . . . , xn−1〉)⊗ (R[xn], 〈xn〉)

together with some elementary algebra and repeated use of Corollary 4.3.3 to Proposition 4.4.2.

We can generalize the above Proposition even further. If we let (R[x1, . . . , xn, y1, . . . , ym], 〈x1, . . . , xn〉, α)

be the pre-log R-algebra where α is the morphism defined on generators by:

α : 〈x1, . . . , xn〉 −→ 〈R[x1, . . . , xn, y1, . . . , ym], ·〉
xi 7−→ 1 · xi

We will use the notation (R[xi, yj ], 〈xi〉, α) as a more compact way of denoting the pre-log R-algebra

(R[x1, . . . , xn, y1, . . . , ym], 〈x1, . . . , xn〉, α).

Theorem 4.4.4. The log Hochschild homology groups of the pre-log R-algebra (R[xi, yj ], 〈xi〉, α)

are isomorphic to:

HHq(R[xi, yj ], 〈xi〉) =

{
R[xi, yj ]

⊕( q
n+m), for 0 ≤ q ≤ n+m

0, for q > n+m
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Observe that we have isomorphisms of pre-log R algebras as below:

C•(R[x1, . . . , xn, y1, . . . , ym], 〈x1, . . . , xn〉) ∼= C•(R[x1, . . . , xn]⊗R[y1, . . . , ym], 〈x1, . . . , xn〉 × {1})
∼= C•(R[x1, . . . , xn], 〈x1, . . . , xn〉)⊗ C•(R[y1, . . . , ym], {1})

The last isomorphism is by Theorem 2.3.3. By Proposition 4.1.2, the log Hochschild chain com-

plex of (R[y1, . . . , ym], {1}) is isomorphic to the Hochschild chain complex of the R-algebra of

R[y1, . . . , ym] which by the proof of Proposition 4.1.2 was again shown to be isomorphic to the log

Hochschild chain complex of the pre-log R-algebra (R[y1, . . . , ym], 〈y1, . . . , ym〉). Summarizing, this

as simplicial isomorphisms, we get three first lines of isomorphisms below. The fourth isomorphisms

is by Theorem 2.3.3, the fifth is by the definition of the tensor product of pre-log R-algebras and

the last isomorphism is obvious.

C•(R[x1, . . . , xn, y1, . . . , ym],〈x1, . . . , xn〉)
∼= C•(R[x1, . . . , xn], 〈x1, . . . , xn〉)⊗ C•(R[y1, . . . , ym], {1})
∼= C•(R[x1, . . . , xn], 〈x1, . . . , xn〉)⊗ C•(R[y1, . . . , ym])

∼= C•(R[x1, . . . , xn], 〈x1, . . . , xn〉)⊗ C•(R[y1, . . . , ym], 〈y1, . . . , ym〉)
∼= C•

(
(R[x1, . . . , xn], 〈x1, . . . , xn〉)⊗ (R[y1, . . . , ym], 〈y1, . . . , ym〉)

)
∼= C•

(
R[x1, . . . , xn]⊗R[y1, . . . , ym], 〈x1, . . . , xn〉 × 〈y1, . . . , ym〉

)
∼= C•

(
R[x1, . . . , xn, y1, . . . , ym], 〈x1, . . . , xn, y1, . . . , ym〉

)
Applying Proposition 4.4.3 to the last of these lines gives the statement of the theorem.
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