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Sammendrag 

Dyr må ta avgjørelser basert på begrenset informasjon og under tidspress. All tid som brukes 

på å utforske muligheter og innhente informasjon, er tid tapt som kunne vært brukt til å tilegne 

seg resurser. En realistisk modellering av dyr og deres adferd må ta høyde for at dyrene ikke 

treffer optimale avgjørelser, men er påvirket av lokale faktorer som lysforhold og konkurranse 

samt dyrenes egen tilstand, som sult og frykt.   

En annen ting som har betydning for hvilke valg dyr tar i ulike situasjoner er deres personlighet. 

Relativt stabile trekk har blitt observert i en rekke arter. Et trekk som ser ut til å spille en viktig 

rolle i dyrenes håndtering av stressende situasjoner er adferds fleksibilitet, eller til hvilken grad 

de responderer på enderinger i miljøet.   

I denne oppgaven har jeg tatt for meg en datamodell for beslutningstagning i fisk og studert 

hvordan vi kan skape variasjon i trekket adferds fleksibilitet hos individene i modellen. Adferds 

fleksibilitet ble målt etter hvor tilbøyelige fiskene var til å endre sin interne tilstand, eller 

«global organismic state» (GOS). Undersøkelsen ble gjort ved å justere på to parametere. Den 

første av disse parameterne kontrollerer hvor raskt motivasjonen synker etter å ha blitt aktivert 

(f.eks. av å oppdage et rovdyr). Den andre kontrollerer hvor mye informasjon som filtreres bort 

når fiskene er svært motiverte. Disse kalles henholdsvis «arousal dissipation factor» (ADF) og 

«attention modulation factor» (AMF).  

Resultatene viser at både ADF og AMF er med å påvirke adferds fleksibiliteten hos fiskene. 

ADF påvirker hvor ofte fiskene revurderer sin nåværende tilstand, i lys av den tilgjengelige 

informasjonen. Fisker som revurderte oftere, var også mer tilbøyelige til å endre sin GOS. Selv 

om ADF i seg selv var tilstrekkelig for å skape variasjon i fleksibilitet, var filtrering av 

informasjon (AMF) avgjørende for at fiskene skulle vise spesielt rigid adferd, dvs. sjeldent 

endre sin indre tilstand.  
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Abstract 

Animals must make decisions based on limited information and during a limited amount of 

time. The time spent exploring possibilities and sampling environmental information, means 

less time spent at actually gathering and securing recourses. A realistic modelling of animals 

and their behaviour must include organisms that do not make optimal decisions. Instead, they 

are constrained by local factors like illumination and conspecifics, as well as the animal’s own 

state like hungry or afraid.  

The animal’s personality must also be taken into account when discussing decision-making. 

Relative stabile traits have been observed in many species, and allow us to predict to a certain 

extent, their behaviour in the future. In the context of coping with stressful situations, behaviour 

flexibility (or to what degree the animals react to environmental information) seems to be an 

important trait.   

In this thesis, I have explored a computer model for decision-making in fish and studied how 

behaviour flexibility can be generated in the agents. Behaviour flexibility was measured as the 

fish’ propensity to change their internal state, called the global organismic state (GOS). The 

study was done by adjusting two parameters. The first of these control the rate at which 

motivation declines, after first being elevated (e.g. by seeing a predator). The second parameter 

controls the filtration of irrelevant information, when the agent is highly motivated. These are 

called arousal dissipation factor (ADF) and attention modulation factor (AMF), respectively.  

The results show that both factors affects behaviour flexibility in the fish. ADF influences how 

often the fish re-evaluate their current state, in light of the available information. Fish that re-

evaluates more often were more likely to change their GOS. Even though the ADF was 

sufficient to generate variation in flexibility, information filtering (AMF) was required to 

generate particularly rigid behaviour, i.e. rarely changing their internal state.  
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1. Introduction 

1.1. Animal Personality  

Studies of animal behaviour have revealed that, for many species (e.g. birds, rodents, fish (Wolf, 

van Doorn, & Weissing, 2008)) there are inter-individual differences in behaviour that are 

relatively stable over time and across situations (Coppens, de Boer, & Koolhaas, 2010). The 

behavioural differences are often interpreted in terms of internal physiological or psychological 

mechanisms (e.g. fearfulness and aggression). These differences are thought to represent an 

analogue of human personality (Culum Brown, Krause, & Laland, 2011), as such we sometimes 

refer to them as animal personality. The term personality can be applied to a wide range of 

species (theoretically even to bacteria), if we define it as “a broad domain of behavioural 

individuality involving the widest range of consistent and enduring behavioural traits” (Culum 

Brown et al., 2011). Depending on the context and traits that are being investigated, the term 

can also appear as the shyness-boldness continuum (Wilson, Clark, Coleman, & Dearstyne, 

1994), behaviour syndromes (Sih, Bell, & Johnson, 2004) or coping styles (Coppens et al., 

2010).  

The observed behaviour correlation in animals likely reflects specific genetic and physiological 

mechanisms that put a constraint on behaviour variability (Culum Brown et al., 2011). This 

would indicate that personality also has a heritable component (Bell, 2005) that is subject to 

natural selection. For instance, tropical poeciliid fish, Brachyraphis episcopi, drawn from a 

high-predation population exhibited bolder behaviour , than fish from a population where 

predation pressures were low, even when they were raised in laboratory environments (C. 

Brown, Burgess, & Braithwaite, 2007). Findings like these encourage motivates the search for 

genetic and physiological explanations of personality differences.   

Research into individual differences in fish have often focused on their response to stress 

(Culum Brown et al., 2011). For instance, bold individuals (e.g. early explorers of novel objects) 

also exhibit reduced stress responses, which may express a link between personality traits and 

hormones such as cortisol (Culum Brown et al., 2011). This correlation has also been observed 

in other species of fish (e.g. Koolhaas et al., 1999; Overli, Winberg, & Pottinger, 2005; 

Schjolden, Stoskhus, & Winberg, 2005). The authors also point out that there is a relationship 

between stress responses and coping styles in carp (Huntingford et al., 2010).   
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Given that much of the behavioural differences found in fish have been observed in a stressful 

environment, coping styles is a well-suited framework for investigating these differences 

further. Indeed, a coping style is defined as a “suite of behavioural and physiological responses 

of an individual that characterises its reactions to a range of stressful situations” (Dingemanse, 

Kazem, Reale, & Wright, 2010).  

1.2. Coping Styles, Behaviour Flexibility and Decision-making   

The variation in coping styles falls on a continuum between what is often termed proactive 

coping and reactive coping (Coppens et al., 2010). Proactive individuals are characterized by 

high scores1 on routine formation (Benus, Dendaas, Koolhaas, & Vanoortmerssen, 1990) and 

a low scores on behaviour flexibility (Bohus et al., 1987). As such, proactive individuals are 

less responsive to environmental stimuli. Instead, they rely on previously formed habits or 

routines. The reverse is true of reactive individuals, who are considered more flexible, relying 

more on environmental information in their decision-making. Other points of difference are 

attack latency, active avoidance, defensive burying, nest building, cue dependency and 

conditioned immobility (Koolhaas et al., 1999).  

The different coping styles have an evolutionary history that has helped the individuals to form 

adaptive response patterns to the stressors in their natural habitat (Koolhaas et al., 1999). 

Therefore, the mechanisms for such coping styles should have a physiological basis that is, at 

least in part, heritable (Castanheira et al., 2017).  

Behaviour flexibility is defined in Coppens et al. (2010) as “the ability of an individual to 

directly respond and adjust its behaviour to environmental stimuli”.  The authors propose that 

behaviour flexibility is an important underlying factor that might explain the consistency of 

coping styles across situations. Thus, understanding individual differences of the proximate 

mechanisms that control this trait, could give us greater insight into how animal behaviour and 

coping styles emerges. The meaning of the term behaviour flexibility can vary slightly from 

paper to paper. For instance, in Wolf et al. (2008) behaviour flexibility points to an organism 

that displays different behaviour when confronted with the same environment repeatedly. The 

propensity to adjust its behaviour to the prevailing conditions is then referred to as 

                                            

1 Referring to the behavioural assessment made by human observers 
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responsiveness (Wolf et al., 2008). Here, I will use the term behaviour flexibility as defined by 

Coppens et al. (2010). 

Whenever an animal is presented with new information, it can either respond to it or not. 

Striking the right balance between reacting to, and ignoring information is important. 

Redirecting attention to new stimuli may disrupt important task and reduce efficiency, while 

ignoring too much information can result in the animal not detecting important cues, such as 

the presence of a predator. The act of either reacting to or ignoring information can be viewed 

as a form of decision-making, albeit unconscious in many instances. Next, we turn to a brief 

review of some of the biological underpinnings that are involved in this kind of decision-

making.     

1.3. Survival Circuits, Arousal and Attention 

Joseph LeDoux proposed to use the term survival circuits to describe the mechanism that allow 

organisms to make near optimal decisions, i.e. detect and respond to threats and opportunities 

in the environment, and thereby facilitating survival. “Survival circuits help organisms survive 

and thrive by organising brain functions. When activated, specific kinds of responses rise in 

priority, other activities are inhibited, the brain and body are aroused, attention is focused on 

relevant environmental and internal stimuli, motivation systems are engaged, learning occurs, 

and memories are formed” (LeDoux, 2012). 

According to LeDoux (2012), the ultimate origins of survival circuits, can be found in early 

forms of life. Even single-celled bacteria are known to take in information (e.g. accept 

chemicals that have nutritional value) and outputs a motor response (e.g. retract from harmful 

chemicals). In more complex, multi-cellular organisms such survival capacities have increased 

in complexity and sophistication. Survival circuits involve defence, maintenance of energy and 

nutritional balance, thermoregulation and reproduction, as a minimum. (LeDoux, 2012).  

A key feature of survival circuits is that they constantly interact in a shifting environment so as 

to best meet the challenges and opportunities face by the organism (LeDoux, 2012). Some 

circuits monopolize the brains resources, while others are actively suppressed. As LeDoux puts 

it, over time the need for energy rises in priority and will outweigh the threat of a predator if 

the need for food is ignored long enough. Survival circuit activation can be reduced in two 
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ways: actively suppressed by a different circuit, or the goal of the survival circuit is reached 

and the innate responses terminate the activation (e.g. food is eaten or safety is reached).  

Survival circuit activation leads to a rise in arousal from the central nervous system, as well as 

the motivational systems which lead to goal directed behaviours. All this activation in the body 

leads to a state “in which brain resources are coordinated and monopolized for the purpose of 

enhancing the organism’s ability to cope with the challenges and/or benefit from 

opportunities”. This is referred to as a Global Organismic State (GOS) (LeDoux, 2012). The 

GOS makes the organism more attentive and sensitive to stimuli that are relevant for the 

situation, as well as activating relevant memories and previously learned instrumental 

responses.  

The GOS does not cause arousal activation directly, but rather coordinates the arousal towards 

a unified goal. As such, the GOS can be viewed as the qualitative component of motivations 

(the direction). The quantitative component of motivation (the magnitude) is a matter of 

arousal.   

Weil, Zhang, Hornung, Blizard, and Pfaff (2010) have proposed that the vertebrate nervous 

system has a function that initiates behavioural activation of large numbers of responses. This 

function has been termed generalized arousal. “General arousal is higher in an animal or 

human being who is: (S) more alert to sensory stimuli of all sorts, and (M) more motorically 

active, and (E) more reactive emotionally” (Pfaff, 2006). As such, it seems fair to suggest that 

general arousal is higher in highly motivated individuals. Neurons involved in generalized 

arousal mechanisms receive sensory inputs from both the external environment, as well as the 

internal condition of the organism, and rapidly activates arousal states within the animal. This 

activation, in turn, facilitates more specific, motivated behavioural responses (Weil et al., 2010).     

Pfaff (2006) propose that brain arousal is promoted by unexpected events. For instance, the 

nucleus accumbens in humans (which is involved in reward appraisal) shows a greater 

activation when the rewarding stimuli where unpredicted (Pagnoni, Zink, Montague, & Berns, 

2002). Similarly, in a monotonous environment animals lose arousal and become less alert 

(Pfaff, 2006). As such, Pfaff seems to propose a kind of feedback loop in which relatively 

unexpected events leads to an increase the general arousal, which in turn increases sensory 

alertness to all stimuli (see definition of generalized arousal). This highlights the dynamic 

interaction between arousal and attention in how information is perceived and responded to.   
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According to the feature integration theory of attention (Treisman & Gelade, 1980), our 

attention system can process general features quickly and automatically, but we need deliberate 

focus in order to identify objects. The fact that we cannot process objects automatically and 

instantaneous, has important and fitness-related consequences, as almost all of the important 

(visual) cues are objects, e.g. predators, prey or pieces of food, conspecifics etc. Moving our 

focal point around our field of view takes time. Time is a limited resource, especially in a life-

or-death situation. Thus, it is important to be able to focus on the right kind of information, 

while ignoring other kinds (Lavie, 2005). This process is referred to as selective attention 

(Moran & Desimone, 1985).     

1.4. Behaviour control in a proximate architecture framework 

Early attempts to model animal behaviour assume that animals arrive at optimal solutions (e.g., 

Fisher, 1930; Lotka, 1925)  to environmental challenges without considering potential 

constraints (Andersen, Jorgensen, Eliassen, & Giske, 2016). Andersen et al. (2016) point out 

that animal’s decision-making is “limited by imperfect information, imperfect ability to analyse 

it, imperfect ability to foresee consequences of the alternative behavioural options, as well as 

time constraints”. Thus, they argue that the decision-making process, instead of being optimal, 

follows a flexible architecture which they sum up in the following way:  

Sensory information is monitored, both externally and internally. The information is used to 

rank order different tasks (e.g. feeding, escaping). The strongest task is set as the dominant 

global organismic state, causing the individual to restrict its attention to mostly task- relevant 

information. This results in a more effective decision-making, because the organism is now 

using a narrower subset of relevant information. 

The term Proximate architecture for decision-making was introduced by Eliassen et al (2016) 

to emphasise that the architecture involves connections between several kinds of information, 

which results in behavioural and physiological responses. Behaviour models based on an 

architectural approach places much weight on the “chain of events from immediate perceptions 

to instrumental behaviour” (Eliassen, Andersen, Jorgensen, & Giske, 2016). The proximal 

architecture framework is based on qualitative architecture of danger avoidance in LeDoux 

(2012, 2015) as well as Giske et al. (2013); (2014), but with some additions that will be 

explained below. As in Giske et al. (2014), the agent’s perception, neuronal responses and 

developmental modulation are influenced by the genome. The sum of these factors determine 
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the global organismic state, resulting in attention restriction (Mendl, 1999) to other stimuli and 

limits the range of behavioural responses.  

The competition for dominance over the organism’s phenotype follows a “winner-takes-all” 

format (Eliassen et al., 2016) without a compromise in attention between states or within the 

same state. According to Andersen et al. (2016) attention restriction may be more gradual. They 

point to studies involving graded attention in three-spine sticklebacks. Sticklebacks showed a 

change in prey-density preference when they moved from a starved state towards a satiated 

state (Heller & Milinski, 1979). The starved sticklebacks preferred dense swarms of Daphnia, 

but changed to lower densities as their motivation for feeding decreased (they became less 

hungry). This was attributed to the attention cost imposed by feeding on a dense population. A 

strong demand on attention leaves little to be spared for other tasks like predator detection 

(Andersen et al., 2016). Similarly, when a shadow in the shape of a predator where introduced 

at the beginning of the experiment, the sticklebacks preferred low prey-density, even when 

hungry (Heller & Milinski, 1979). In the current AHA model, agents do not alter their foraging 

strategies in face of potential predators, meaning that there is no state for a “cautious” forager. 

Instead, the agents can mitigate a high-risk situation by quickly switching state, e.g. from 

foraging to escaping. The agents switch states more readily when they perceive the environment 

as “risky” compared to a “safe” environment.  

1.5. Aim 

The animal’s responsiveness to new environmental information (behaviour flexibility) has 

implications for their decision-making process. The Adaptive Heuristic and Architecture 

(AHA) model that is presented in this thesis, use a proximate architecture framework to study 

animal decision-making. This means that the agents in the model make decisions based on the 

limited information that is available, rather than acting as omniscient beings as has been the 

case in many previous behaviour models. For the simulation experiments, the aim was to use 

the model study how interactions between arousal and attention can lead to individual 

differences in behaviour flexibility.  

In this context, behaviour flexibility was measured as the propensity to change ones internal 

state in response to new environmental information. Arousal is here considered a qualitative 

measure of motivation in which high arousal corresponds to a strong motivation. In the model, 

arousal spontaneously dissipates with a rate that is dependent on a parameter called the arousal 
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dissipation factor (ADF). Furthermore, attention allows the agents to place more weight on 

certain kinds of stimuli than others. This kind of selective attention is controlled by the 

parameter attention modulation factor (AMF).  

The goal for this thesis is to investigate how 1) the arousal dissipation factor and 2) the attention 

modulation factor interact to produce individual differences behaviour flexibility, in the AHA 

model.  
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2. Material and Methods 

2.1. Introducing the new AHA Model 

The simulations for this thesis were done using a new version of the Adapted Heuristics and 

Architecture (AHA) model presented in Giske et al. (2013). The model has since then been 

modified, but not published in any academic paper. First, I present a general overview of the 

new AHA model. Next, the model in Giske et al. (2013) is presented and some relevant 

differences and similarities are pointed out. 

The AHA model is a multilayer modelling framework focusing on animal decision making and 

adaptive behaviour. The organisms in the model have a genome, rudimentary physiology, a 

hormonal system, a cognitive architecture and behavioural repertoire. The organisms navigate 

in a stochastically spatial explicit environment that includes a host of variables such as light 

conditions, predators, food and conspecifics to name a few.  

Central to this thesis is the cognitive architecture, which is based on a set of motivational 

systems. These systems act as a common currency for decision-making. The organisms make 

decisions based on a predictive assessment of external and internal stimuli, which interact with 

the agent’s motivational state at any given moment. The assessment is subjective to each agent, 

and the organism selects behaviours from the available repertoire in an effort to reduce its 

motivational arousal. Thus, decision-making is based on predicting one’s own internal state as 

a consequence of the choice that is made.  

The virtual population of organisms can evolve as only individuals that survive and reproduce 

will leave descendants in the next generation, with new variants introduced by potential 

mutation of the parents’ genome. As such, this modelling machinery can aid our understanding 

of the evolution of decision-making mechanisms, personality, emotion and behavioural 

plasticity within a realistic and fully controllable ecological and evolutionary framework. The 

ultimate aim of the AHA model is to create a complex and extensible virtual (in silico) digital 

lab for studying adaptation and evolution. For more details see: (Weblink, 2017a) 
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Perceptions, P 

The basis for the organism’s decision-making is the perception of internal and external stimuli 

(Fig.1). Stimuli signals can vary in strength, rather than being binary (e.g. a predator in close 

proximity evoke a stronger stimulus signal than a distant predator). The fish takes in three types 

of perception: 1) external spatial perception objects (depending on the visual range), 2) internal 

perception objects (depending on the body) and 3) light  and depth perception (which get its 

environmental factor directly) (Budaev, 2017). The external spatial perception objects such as 

food items, conspecifics and predators are truly “local” and proximate, meaning that the 

perception of such items depend on individual visual range (Budaev, 2017). Thus, the agents 

not only have local perception limited by their perceptual capacities and the local environment, 

(e.g. the visual range is reduced at low illumination), but their knowledge (memory) is limited 

Figure 1: A generalized example of the proximate architecture for decision-making. Stimuli feeds 
into all neurobiological states simultaneously. Although only two states are presented here, the current 
AHA model includes four states: Hunger, Escape, Freeze and Reproduction.  Stimuli are converted to 
neuronal responses, R, and modulated by modulation factors, D. Each stimuli can feed into several 
states. The most dominant GOS “wins” the competition for control of the agent’s physiological and 
behavioural priorities. There is no graded response within a state or between states (i.e. a winner-takes-
all fashion, without compromise with other states). From Giske et al. (2013) 
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by the local contexts and environments they experienced before. In this regard, the AHA model 

is different from traditional simple models, which usually assumes that individuals are 

omniscient.   

Neuronal responses, R 

The stimuli signals are fed into neuronal response functions and converted to neuronal 

responses, R. The response depend on the strength of the stimulus, S, and two heritable genes, 

x and y.  

𝑅 =  
(𝑆/𝑦)𝑥

1+ (𝑆/𝑦)𝑥
           [1] 

In the new model, the genes can take integer values from 1 to 10000 which constitutes as 

different alleles2. Genes are arranged into arrays that represent chromosomes. These 

chromosomes are further split into pairs that represents homologue chromosomes. As such, the 

genome is diploid (polyploid genomes can also be modelled). There is a fixed correspondence 

between a gene and each specific trait that are set by the Boolean genotype to phenotype 

matrices3. The response functions allow for graded responses to weak signals and saturation of 

strong signals (Giske et al., 2013). In the new model, [1] can be extended to capture multigene 

inheritance with arbitrary number of additive genetic components4 

Developmental Modulation, D 

Modulation genes also regulate the strength of the neuronal response. The modulatory system 

can up- or down regulate the signal strength throughout the agent’s life, making it more likely 

or less likely that a specific GOS will prevail (Giske et al., 2013). For example, organisms might 

prioritize feeding and growth early in life until they reach a certain body mass, then they might 

favour reproduction.  

 

                                            

2 Link in references: (Weblink, 2017b) 

3 Link in references: (Weblink, 2017c) 

4 Link in references: (Weblink, 2017d) 
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Neurobiological states 

After a signal has passed the attention modulation, converted to the neuronal response function 

[1] and modulated by the relevant modulation systems, the signal is passed through to a 

neurobiological state (NBS). In Giske et al. (2013) (Fig.1), two such states are presented: 

hunger and fear. The strongest of these neurobiological states dictates which Global 

Organismic State (GOS) to adopt – hungry or frightened (Fig.1).  

Here, the new model deviates from Giske et al. (2013) as the “fear” neurobiological state is 

represented as two separate neurobiological states in the new model: active avoidance (fleeing 

behaviour) and passive avoidance (freezing behaviour). Additionally, the new model also 

includes a neurobiological state - Reproduction. Consequently, there are also four Global 

Organismic States, rather than two. The names of the GOS’ are the same as the name of the 

corresponding neurobiological states: active avoidance, passive avoidance, hunger and 

reproduction. This is because the new model has been reformulated in terms of proximate 

behaviours rather than high level “decisions”. The agents perform specific behavioural 

responses (e.g. walking, eating etc.) like real organisms.   

In the new model, the strength of the neurobiological states is expressed in terms of arousal, a. 

Each of the four neurobiological states is associated with its own distinct arousal level that is 

recalculated for every time step. The arousal level of the various neurobiological states does 

not have a “memory” or “inertia” in the sense that the arousal level of a given step influences 

the arousal level in the next. Instead, arousal level is based on the retrieved and processed 

information at that point. Collectively, the arousal level of the neurobiological states is referred 

to as the NBS arousal, aNBS. Any single stimulus can simultaneously generate more than one 

neuronal response for each GOS component.   

Changing Global Organismic States 

In Giske et al. (2013) the organism adopts the Global Organismic State, GOS that receive the 

strongest signal from the neurobiological state. The current GOS always corresponds to the 

strongest neurobiological state at any given time. Consequently, the organisms are prone to 

shifting back and forth between two states, when confronted with equally salient or distracting 

stimuli. This does not constitute a realistic, nor adaptive solution to conflicting needs. Rather, 

organisms should (and do) try to complete one task before taking on a new in turn.  This problem 
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is addressed in the new model with the introduction of a new function: the dynamic threshold 

(see details below).  

In the new AHA model, the current GOS is associated with its own arousal level, called the 

GOS arousal, aGOS. To be clear, GOS arousal is not the same as the NBS arousal. While the 

NBS arousal fluctuates independently from one time step to the next, the GOS arousal can 

sometimes depend on the previous time step. As such, the GOS arousal sometimes exhibits an 

“inertia-like” property that influences how fast the arousal level declines. This is explained in 

more detail later. The GOS arousal can be viewed as a quantitative expression of the current 

motivation while the specific GOS is a qualitative expression of motivation. For instance, a 

hungry individual can be either peckish (low GOS arousal) or starving (high GOS arousal) 

within the same specific GOS (hunger). In both cases, the organism is motivated for finding 

food, but the strength of the motivation is different.  

For every time step, the GOS arousal is compared to each of the NBS arousals. To avoid 

constant shifting of GOS the model requires that that the difference between the NBS arousal 

and the GOS arousal exceeds a threshold value. If not, the old GOS is retained and the minor 

fluctuations are ignored. The threshold is a function that is inversely related to the absolute 

value of GOS arousal (Fig.2), which makes it dynamic rather than static. It is therefore called 

the Dynamic Threshold (DT). The individual will switch GOS if: 

𝑎NBS − 𝑎GOS > 𝑡(𝑎GOS)          [2] 

Here aNBS is the strongest of the four NBS’, aGOS is the current GOS arousal and t(aGOS) is the 

dynamic threshold as a function of the GOS arousal (Fig.2). If the dynamic threshold is reached, 

there are two possible outcomes: a switch or a re-election. A switch occurs when the strongest 

NBS is different from the current GOS. As such, a switch entails a shift in the motivational 

goal. A re-election occurs when the strongest NBS is of the same type as the current GOS. In 

this case, the agent’s goal is unchanged. In both cases, the GOS arousal increases to the level 

of the NBS arousal.     
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Switching from one GOS to a different kind, entails a qualitative shift in motivation that moves 

the organism towards other goals. The new goal is likely to activate a new set of behavioural 

responses. A re-election does not cause a change in the quality of motivation, but it does alter 

the strength of the motivation. Since the organism can re-elect the same kind of GOS 

successively, there is theoretically no upper limit to how long the organism can remain 

motivated for the same goal.  

On the other hand, a strong motivation must never be able to “seize control” of the organism, 

even if the current level of arousal is high. The prevailing motivational state spontaneously 

dissipate over time, which in natural neurobiological systems corresponds to exhaustion of 

neurotransmitters, cost of long-term neuronal excitation and stimulus habituation. The 

conditions that leads to high motivation and specific GOS (e.g. hunger based on starvation) can 

however, last for a long time and recur multiple times.  

I will refer to switches and re-elections collectively as re-evaluations.   The term re-evaluations 

are meant to emphasise that deciding to remain focused on a certain goal is an active decision, 

Figure 2: The Dynamic Threshold, DT, is a function of GOS arousal. The dynamic threshold 
dictates the level of arousal that is required for switching GOS (scale is 0:1). The function t(aGOS) gives 
a higher threshold (DT1) when GOS arousal is low (A1), and a lower threshold (DT2) when GOS arousal 
is high (A2). (Budaev, S. unpublished)  

GOS Arousal 
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rather than being an expression of apathy or faulty sensory systems. The process of periodically 

re-evaluating priorities without necessarily changing those priorities, can be considered 

analogous to the concept vigilance in e.g. J. S. Brown (1999) in the sense that the organism is 

periodically sampling information from the environment and that such sampling can represent 

a trade-off between feeding efficiency and predator detection. Here, he also points out that 

hungry salmon where more willing to take risks than well-fed salmon. This phenomena is 

replicated in the model, in that some fish are willing to forgo detection of threat signals in order 

to reduce distraction from feeding. This is explained further in the result section.      

So far, we have considered what happens in a time step when the DT is reached - the GOS is 

either switched or re-elected. There is also a third option, that the dynamic threshold is not 

reached. In this case, the organism repeats the same GOS in the next time step, we call a GOS 

repetition, rGOS. In a GOS repetition, the specific GOS is retained (similar to a re-election), but 

the GOS arousal does not increase, rather it decreases (see next section). The GOS repetition is 

1 after a new GOS has been adopted and as long as the switching criteria is not reached [2], 

increases by one each time step.     

Reducing the GOS arousal 

In the new model, the strength of an organism’s motivation is fluctuating every time step, 

reflecting the constantly changing stochastic stimulus environment. Processes involved in 

increasing GOS arousal (i.e. the motivation strength) has already been presented (Fig.1). Here 

we discuss the two ways GOS arousal decrease.  

The first and most intuitive way is by reaching the goal set forth by the global organismic state, 

e.g. obtaining food.  The agents in the model are programmed to choose the option that provides 

the greatest reduction in arousal. This means that when confronted with two food items, the fish 

chooses the item that is thought to result in the greatest reduction in hunger-related arousal. 

This approach is inspired by Drive-reduction theory, in which an excitatory state such as hunger 

is seen as a “homeostatic disturbance” that must be balanced (Seward, 1956).      

The second way of reducing arousal involves a spontaneous reduction in the GOS arousal. As 

explained earlier, reducing the agents’ GOS arousal is necessary to allow for re-evaluations and 

changes in GOS when arousal is initially high. In the AHA model, GOS arousal is reduced by 

the Arousal Dissipation Factor, (ADF) (See appendix A2). The ADF controls the rate of arousal 

dissipation according to the following equation: 
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𝑎GOS(𝑛 + 1) =  𝑑a × 𝑎GOS(𝑛)        [3] 

Here aGOS(n) is GOS arousals as functions of time steps n, the ADF has symbol da and is always 

a real number from 0 to 1, ensuring that the arousal aGOS is reduced over time 

The organism’s individual genome, physiology and current state interact to produce arousal 

fluctuations. So far, we have looked at processes for increasing and decreasing arousal (i.e. 

neurobiological states and arousal dissipation factor), in response to situational cues. Next, we 

turn to one of the psychological consequences that are linked to a high arousal level – attention 

restriction.   

Attention restriction 

Attention restriction is also included in the model in Giske et al. (2013). The organism’s GOS 

determine the motivational goals as well as the behavioural response, thus, for any given GOS, 

stimuli can regarded as relevant or irrelevant depending on the context (e.g. food items can be 

ignored when the motivation for escaping predators is strong). A realistic view of decision-

making recognizes that sampling time and processing speed are important constraints that 

prevent organisms from making optimal decisions (Andersen et al., 2016).  

In the new model, attention restriction is implemented by multiplying all stimuli irrelevant for 

the current GOS with the Attention Modulation Factor, (AMF) (Fig.3). The term “irrelevant” 

does not point to the survival value of the stimuli, rather it is in reference to the current 

motivational state (GOS). As such, ignoring “irrelevant” information can be a mistake in terms 

of survival. The AMF uses the symbol ma and is normally a function of the GOS arousal. The 

signal strength of irrelevant stimulus, si, is affected by the AMF according to:  

𝑠r = 𝑠i × 𝑚a(𝑎GOS)          [4] 

The restricted stimulus, sr is fed into the neuronal response function (Fig.1). Since ma(aGOS) is 

a number between 0 and 1, the numerical value of si is either reduced or unchanged, depending 

on aGOS. During high arousal, the strength of irrelevant stimuli is almost completely diminished 

(Fig.3). This makes switching unlikely to happen during highly aroused situations.  

.  
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Figure 3: The Standard attention restriction curve in the new AHA model. The attention modulation 
factor (AMF) is a function of GOS arousal.  In a relaxed context (ρ1) the GOS arousal is low and attention 
restriction is minimal. During times of high motivation (ρ2), irrelevant perceptions are restricted by as 
much as 90 % in this example. (Budaev, S. unpublished) 
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2.2. Exploring interaction between arousal dissipation and selective attention 

The subroutine 

Exploring the interactions between arousal dissipation and selective attention was done using a 

separate subroutine5 that used a subset of the AHA modelling framework. For every time step, 

the agents perceive new stimuli through the process described earlier (Fig.1), the agents also 

moved in space in a random direction and of a random length (varying around a Gaussian 

curve). This approach provided a simplistic standardized experimental situation, without 

depending on consistent or long-term changes in motivation or overall condition of the agents, 

e.g. success in finding food and linked level of hunger, behaviour and growth with further 

complex cascade effects.   

The environment 

When we consider an agent’s responsiveness to stimuli, it is instructive to know how the virtual 

environment is changing. The environment in the AHA model changes each time step as the 

agents move through it (spatially and temporally). New food items, conspecifics6 and 

occasional predator can appear and illumination level changes as the agents move up or down 

in the water column. In the simulations considered here, the environment remained constant as 

all the food items, conspecifics and predators were uniformly distributed and the simulations 

were too short for any environmental fluctuations (e.g. diurnal change in the illumination) to 

occur.   

Data collection 

In this thesis, I chose to measure behaviour flexibility by using the frequency of GOS switching 

as a proxy. Behaviour flexibility in this context points to the animal’s ability to respond and 

adjust to environmental signals. Although I am not recording any change in behaviour directly, 

I expect the internal GOS “competition” to reflect the agent’s responsiveness to environmental 

signals. See discussion for more.     

                                            

5 The subroutine was written and added by Sergey Budaev. See appendix A1 for the complete code. 

6 The maximum population size is 10 000 in the AHA model 
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A switch is defined here as a GOS shift that also entails a shift in the motivational goal, and is 

presented as the probability of switching GOS in any given time step. An organism that shows 

high behaviour flexibility is more likely to switch GOS than an organism with low behaviour 

flexibility. The probability of switching GOS was collected in both Part I and Part II.  In 

addition, I also recorded the probability of re-evaluating the GOS in a given time step. A re-

evaluation occurs when the arousal level of a neurobiological state crosses the dynamic 

threshold (Fig.2), but because it points towards the same motivational goal as the current GOS, 

there is no change in the organism’s motivation.  

In Part I, I also collected data for longest GOS chain. This is defined here as the longest duration 

an organism retains the same GOS. As such, re-electing the same GOS over and over does not 

“break the chain”. This type of data was added to gain some additional insight into the 

relationship between the arousal dissipation factor and behaviour flexibility. 

Part I: Exploring the effect of the Arousal Dissipation Factor 

In the new AHA model, there are two ways of implementing the arousal dissipation factor 

(ADF). In Part I, both of these were tested to see if the measurements of behaviour flexibility 

were very different for the two types.  

First, I let the ADF be a constant between 0 and 1 (da = constant), which means that the agent’s 

GOS arousal drops off at a constant rate over time. A lower ADF translates to a faster reduction 

in GOS arousal. To explore the range of behaviour flexibility in this condition, I performed 10 

simulations using 10 different ADF constants. The number of GOS switches, number of re-

evaluations and the longest GOS chain was recorded.  For the data for the longest GOS chain 

only, this process was repeated, and the mean results from the two sets of simulations were 

used. This was done to reduce the role of random “noise” in the data set. The GOS chain data 

were analysed using statistical analysis7 of the standard deviation of residuals and Akaike 

Information Criterion (see appendix A4 for R script). 

  

                                            

7 The analysis was done by Sergey Budaev.  
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Second, I let the ADF be a function of GOS repetitions (Fig.4). In this case, GOS arousal is 

reduced at an accelerating rate with increasing number of GOS repetitions (Table 2). All agents 

in a single simulation had identical ADF functions controlling their rate of dissipation. See 

Figure 4 for a graphical representation of the three functions. The three functions represent a 

slow, intermediate and fast rate of dissipation. I performed one simulation for each of the three 

ADF functions (in later versions of the AHA model, the ADF will be implemented as individual 

genes inherited from parents). For each of these simulations, I recorded the probability of 

switching GOS and the probability of re-evaluating.   

 

  

Figure 4: Arousal Dissipation Factor as a function of GOS repetitions. Arousal dissipation 
factor (ADF) controls the rate of dissipation. The functions are labeled according to their rate of 
dissipation: slow, intermediate and fast. A high ADF corresponds to a slow rate of dissipation. GOS 
repetitions equals the number of time steps that an individual has spent in the same global 
organismic state (Table 2). Instead of inputting a formula, the AHA model uses specified y- values 
for a predetermined set of x-values (shown here as empty circles), to represent the functions. 
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Part II: Exploring the effect of the Attention Modulation Factor 

The attention modulation factor (AMF) controls the agent’s attention restriction. The effect of 

the AMF was explored by simulating different combinations of the ADF and the AMF. The 

combinations are presented as experimental conditions in Table 1, and will be referred to 

throughout this section. 

The ADF constants 0.20, 0.85 and 0.95 were chosen as representative values for fast, 

intermediate and slow (Table 1). The three candidates provide the base point for further testing 

of the “constant-option” of the ADF and makes comparison with the “function-option” easier.   

The function presented in Figure 3 represents the standard AMF, here referred to as the standard 

attention restriction. In Part I, all simulations included this AMF. In Part II, the effect of 

different AMFs was explored by changing the model in two ways. First, I looked at the effect 

of no attention restriction (ma = 1), where all sensory information is recorded equally 

independent of the current global organismic state (GOS). Second, I used a linear attention 

restriction, where the AMF was a negative linear function (ma = 1- aGOS) (Fig.5). For the 

different combinations of ADF and AMF in Table 1, I recorded the probability of switching 

GOS and probability of re-election for each of the three ADF candidates: slow, intermediate 

and fast. Each simulation included 10 individuals, selected at random.  

  

Figure 5: Linear attention restriction as a function of GOS arousal. Attention modulation factor 
controls the restriction of attention. GOS arousal is a quantitative measure of motivation (Table 2). A 
high GOS arousal corresponds to a strong motivation.    
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Table 1: Overview of all experimental conditions with different representation of the attention 
restriction factor (ADF) and attention modulation factor (AMF). Condition 1 and 2 explores the 
arousal dissipation factor for the standard AMF (Part I), while condition 3, 4, 5 and 6 explores other 
attention modulation factors (Part II see text for details). For every condition, I recorded the probability 
of GOS switching and probability of GOS re-electing. Additionally, I recorded the longest GOS chain in 
condition 1 (see text).  

 

Table 2: List of central concepts 

Name Description 

Agent The individuals in the simulation are referred to as agents. The agents 

in the new AHA model are not based on any particular species of fish. 

AHA! Model (The)  The name of the model. The abbreviation stands for Adaptive 

Heuristics and Architecture. The model is Individual Based.  

Arousal Dissipation 

Factor (ADF) 

A variable that controls the rate of GOS arousal dissipation. The ADF 

can be expressed as a constant or as a function of time. Both 

alternatives are explored here.  

Attention 

Modulation Factor 

(AMF) 

The numerical weight (within the range 0:1) given to the perception 

values to control their overall impact on the motivation and GOS. 

During times of high GOS arousal, attention is restricted to primarily 

situation-relevant stimuli. The latter are given the weights equal to 1.0 

whereas irrelevant stimuli, i.e. those that contribute to different GOS’, 

 

AMF 

Standard attention 

restriction 

No attention 

restriction 

Linear attention 

restriction 

ADF 

Constant 

Slow 
Condition 

1 

Condition 

3 

Condition 

5 
Int. 

Fast 

Function 

Slow 
Condition 

2 

Condition 

4 

Condition 

6 
Int. 

Fast 
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are given smaller weights (e.g. 0.5). The restriction is controlled by 

the AMF.  

Behavioural 

responses 

The agents can choose from a repertoire of six different behaviours to 

operate in its environment: eating food, accelerate, decelerate, freeze, 

move up in depth and move down in depth.  

Conspecifics  Other stochastic agents of the same species.    

Dynamic 

Threshold, DT 

A variable that is inversely dependent on GOS arousal. The dynamic 

threshold prevents the organism from erratic back-and-forth switching 

between goals. Only relatively major changes in the stimuli can bring 

about a GOS switch.   

Global Organismic 

State (GOS) 

The agent is always in one of four global organismic states that guides 

motivation and behaviour. The dominant GOS will dictate which 

behaviour is executed and which information is worth paying attention 

to.  

GOS arousal The quantitative expression of motivation in the model. Technically, 

the agents seek to reduce their arousal level and make decisions based 

on the perceived reduction of arousal that will follow as a consequence 

of that decision.    

GOS repetition If the dominant GOS is not switched or re-elected, this parameter 

increases by 1. The arousal dissipation function depends on GOS step 

repetition.  

GOS Switch A shift from one GOS to a different GOS. This is accompanied by an 

increase in GOS arousal and the resetting of the GOS repetition 

counter.   
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Neurobiological 

state (NBS) 

These are survival circuits that fluctuates in arousal based on incoming 

stimuli. If the arousal level of a NBS becomes sufficiently high, it will 

reorganize the organisms global organismic state to address the 

survival function related to the NBS.   

Re-election An instance in which the GOS arousal level increases, and the GOS 

repetition counter is reset, but the GOS remains the same. As such, a 

re-election acts as a GOS switch back to itself.   

Re-evaluation The sum of GOS switches and re-evaluations. A re-evaluation is 

always accompanied by an elevation in GOS arousal.  

Time step In the simulation the lifetime of the organisms is divided into discrete 

time steps. All experiments this thesis spanned only 100 steps 

(corresponding to 1 h 12 min in the simulation)  
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2.3. Programs and language 

The model runs on Fortran 2003 programming language. The code for the subroutine that I 

worked with is available in the appendix A1 (the complete code contains about 60 000 lines 

and hence is not included). The following software was used in various parts of this project:   

 Gfortran – A free GNU compiler for the Fortran language.  

 Tortoise SVN 1.7.10.23359 (64 bit) – This gives access to the subversion-based 

repository of the code. Code can be regularly updated whenever changes are made in 

the model. It is also possible to commit your own changes to the main model if you want 

to keep them.  

 ConEmu 161206.x64 – A terminal. The model is ran from the terminal using command 

line interface.  

 Far Manager 3 x64 – This plugin to ConEmu makes the interface easier to handle.  

 Code::Blocks version: svn build rev 10905 – This Integrated Development Environment 

(IDE) was used to make changes in the code in the experimental phase of the project.  

 Evince 2.32.0 – This is a graphic program used to view PostScript graphs and histograms 

that are generated by the model. 

 R for Windows 3.3.2 - Were used for statistical analysis.  
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3. Results  

3.1. Part I: The role of the arousal dissipation factor 

In Part I, the goal was to explore the effects of two different implementations of the arousal 

dissipation factor (ADF) on behaviour flexibility, recorded as the probability of switching 

global organismic state (GOS). As illustrated in Figure 6, the probability of switching GOS 

decreases with higher ADF constants. Each black dot or box in Figure 6 represents the average 

of 10 fish, each of which has their own randomly generated “genome”. Since there is no 

environmental gradient in these simulations and no systematic differences in the fish’ genome, 

the observed changes in GOS switching probability can be attributed to the agent’s ADF value.     

 

  

Figure 6: The effect of constant arousal dissipation factor (ADF) on the probability of switching 
global organismic state (GOS). The probability of switching GOS is a measure of behaviour flexibility. 
A high ADF corresponds to a slow rate of arousal dissipation. The black boxes highlight three ADF 
constants (0.20, 0.85 and 0.95) which represent a slow, intermediate and fast rate of dissipation 
respectively. The grey shading illustrates the total variation for the 10 simulations, while the black line 
represents the average probability of switching.   
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The probability of GOS switching also changes for the different ADF functional relationship 

(Fig.4) as seen in Table 3. Agents with a slow dissipation rate (Fig.4) were also the least likely 

to switch GOS during the simulations. The ADF function for intermediate dissipation rate 

seems to produce organisms that are somewhat more similar to the slow organisms, than the 

fast ones (Table 3). 

 

Table 3: The effect of arousal dissipation factor (ADF) on probability of switching GOS. The rate 
of dissipation corresponds to the three functions in Figure 4. Probability of switching GOS is a measure 
of behaviour flexibility, with high switch-probability corresponds to a flexible behaviour. 

 

 

 

 

 

 

 

 

Rate of dissipation (ADF function) Probability of switching GOS (%) 

Slow 3.3  

Intermediate 8.8 

Fast 30.0 
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The data from the longest GOS chain (Fig.7) show that a two-linear-component breakdown 

model provided a better fit than a single line model based on the Akaike Information Criterion8. 

This means that the data from the longest GOS chain support the notion of two types of 

behaviour: flexible and rigid. The breakpoint marks the best fit for a threshold between flexible 

and rigid behaviour.  As seen in Figure 7, an arousal dissipation factor of 0.65 provides the 

lowest deviation of the residuals. As such, this data set (longest GOS chain) suggests that 

individuals with an ADF of 0.65 has intermediate behaviour flexibility, which is somewhat 

lower than the intermediate ADF value indicated in Figure 6 (ADF = 0.85).  

  

                                            

8 AIC = 64.2 and 87.9 for the best breakdown model and a single line model 
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Figure 7: Breakpoint analysis of the longest GOS chain. The longest GOS chain is a measure of 
behaviour flexibility. A long GOS chain corresponds to a rigid behaviour (Table 2). The arousal 
dissipation factor controls the rate of dissipation. A high ADF corresponds to a slow arousal dissipation. 
An analysis of the standard deviation of residuals is superimposed in the top left corner (histogram). 
See appendix A4 for R-script. 
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The left regression curve (the interval between 0.0 – 0.65) represents organisms with a flexible 

behaviour style. There is relatively little variation among these groups in the longest GOS chain 

as indicated by the almost horizontal regression curve, but we see a drop in the probability of 

switching GOS for higher ADF values (Fig.6). For further analysis, I selected one candidate 

(ADF = 0.20) from this interval. The right regression curve shows a much stronger relationship 

between flexibility and ADF values, and it therefore makes sense to look at two candidates 

(ADF = 0.85 and 0.95) from this interval.  

So far, all simulations have included the standard attention modulation curve (Fig.3). By 

utilizing different constants or different functions for the arousal dissipation factor, we get 

organisms with a flexible or rigid behaviour style.   

3.2. Part II: Exploring the effect of the attention modulation factor 

In Part II of the simulation experiments, the effect of the attention modulation factor (AMF)9 

was explored. As shown in Table 3, I tested both the constant and function version of the ADF 

with different AMF values. Because the slow, intermediate and fast candidates from each 

version (constants and functions) gave similar results, I present only the results from the 

constant version here, but data for both versions are provided in appendix A5.      

First, I consider the probability of GOS switching (Fig.8). The organisms with a standard 

attention restriction (red colour, Fig.8) is the same as the one in Figure 6, and represents a 

baseline which allows us to compare how no attention restriction (blue line, Fig. 8) and linear 

attention restriction (green line, Fig.8) affects the agents in the AHA model.  

 

 

                                            

9 For more explanation of the alternative attention modulation factors that where explored, see section 
2.2 
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When we account for the organism’s rate of arousal dissipation, organisms with no attention 

restriction where more likely to switch GOS than other organisms. For these organisms, all 

stimuli are evaluated independent of what is currently the GOS. This means that the 

neurobiological states (NBS) of an energy-deprived fish with no attention restriction (blue line, 

Fig.8) will not place any extra emphasis on food-related stimuli. Because they show no 

preference for GOS relevant stimuli, the NBS for hunger is no more likely to get “elected” than 

any other.  The linear attention restriction curve (Fig.5) and the standard attention restriction 

curve (Fig.3), differ in how much they suppress signals at moderate (i.e. around 0.5) levels of 

GOS arousal. This distinction turns out to have important implications for the organism’s 

propensity to switch GOS. The green curve (Fig.8) illustrates the effect of a linear attention 

restriction. Compared to organisms with a standard attention restriction (red line) they exhibit 

a reduced propensity to switch from their current global organismic state (Fig.8).  

The attention modulation factor does not seem to play a role in the regulation of re-evaluations, 

as indicated by the overlap of AMFs (Fig.9). This can be explained by the fact that attention 

Figure 8: The effect of the attention modulation factor (AMF) on the probability of switching GOS. 
The probability of switching is a measure of behaviour flexibility. A high switch-probability corresponds 
to a flexible behaviour. The rate of arousal dissipation is controlled by the arousal dissipation factor 
(ADF). A high ADF corresponds to a slow rate of dissipation. As seen in the legend, the colour (blue, 
red and green), represents three different attention modulation factors (AMF). The AMF controls the 
attention restriction.    
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restriction works by suppressing information that is not relevant to the current GOS, while 

leaving relevant information about the current GOS as salient as before [4]. The GOS arousal 

will hence dissipate at a rate corresponding to the ADF and lead to a re-evaluation as the 

dynamic threshold is reached. Organisms that lose GOS arousal at a faster rate (low ADF 

values), will reach the dynamic threshold sooner which leads to more frequent The agent’s 

propensity to re-evaluate its global organismic state (GOS) does, however, seem to correlate 

with the rate of arousal dissipation (Fig.9). Organisms with a faster dissipation rates were more 

prone to re-evaluate their current global organismic state.  

 

When the filtering of stimuli is quite strong at moderate levels of arousal (linear AMF; green 

line Fig. 8,9), while the neurobiological state (NBS) related to the global organismic state 

receives all relevant information, the re-evaluation will be based on a skewed perception of the 

environment. Since attention restriction remains strong at the time of this re-evaluation, 

information related to the current GOS is perceived much more salient, with the result that the 

agent remain in the same GOS after re-evaluation (Fig 8 & 9; green line)  

Figure 9: The probability of re-evaluating as a function of the rate of arousal dissipation. The 
probability of switching is a measure of behaviour flexibility. A high switch-probability corresponds to a 
flexible behaviour. The rate of arousal dissipation is controlled by the arousal dissipation factor (ADF). 
A high ADF corresponds to a slow rate of dissipation . As seen in the legend, the colour (blue, red and 
green), represents three different attention modulation factors (AMF). The AMF controls the attention 
restriction.        
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Although not manipulated directly in this thesis, it is possible to draw some inferences about 

the role of the dynamic threshold (DT) for GOS switching (Fig.2).The most flexible individuals, 

with the highest probability of switching (Fig.9), re-evaluated the situation about half of the 

time, while deciding to switch GOS based on that re-evaluation only one-third of the time 

(Fig.8). As the agents cannot switch GOS more often than they re-evaluate, it looks like the 

maximum probability of switching were just above 55 %, in these simulations. This “upper 

limit” is likely caused by the size of the DT. 

The ADF influences the rate at which the individuals make decisions about their GOS (Fig.9), 

independent of the AMF. Still, the AMF was shown to influence the number of GOS switches. 

This indicates that the AMF controls how many of the re-evaluations that lead to a GOS switch. 

By dividing the number of GOS switches by the number of re-elections, we get a “switch ratio”, 

as illustrated in Figure 10.  With a standard attention restriction, organisms with a slow rate of 

dissipation are less likely to switch GOS when re-evaluating, compared to organism with a fast 

rate of dissipation. Thus, the low probability of GOS switching seen by the slow organisms in 

Figure 8 is partly caused by fewer re-elections than the fast organisms (Fig.9), and partly caused 

by a relative difference in the outcome of a re-election (Fig.10) 

Figure 10: Switch ratios. The switch ratio is a measure of the relative behaviour flexibility when we 
account for the number of re-evaluations. A high switch ratio corresponds to many GOS switches per 
re-evaluation (in other words a high relative flexibility).  The rate of arousal dissipation is controlled by 
the arousal dissipation factor (ADF). A high ADF corresponds to a slow rate of dissipation. As seen in 
the legend, the colour (blue, red and green), represents three different attention modulation factors 
(AMF). The AMF controls the attention restriction. 
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As expected, organisms with a linear attention restriction where even less likely to switch GOS 

(Fig.10). Organisms with no attention restriction seem to choose switching 7 out of every 10 

re-elections. The probability of switching is the same for each re-evaluation and independent 

of the ADF.    
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4. Discussion  

The arousal dissipation factor (ADF) and the attention modulation factor (AMF) both contribute 

to generating individual differences in behaviour flexibility in the organisms. The ADF controls 

the rate at which the arousal level decreases over time. This was found to affect how often the 

fish re-evaluated their current GOS. More frequent re-evaluations lead to a higher behaviour 

flexibility. The AMF controls attention restriction and was found to be important for generating 

rigid behaviour. Although the AMF did not influence the rate of re-evaluations, it did influence 

the outcome of those re-evaluations by making agents more likely to remain focused on their 

current goal.  

The propensity to switch GOS as a measure of behavioural flexibility 

As pointed out in Culum Brown et al. (2011), the descriptive label attached to a measure of 

personality (here: propensity to switch GOS) must correspond to a theoretical concept. In the 

thesis, behaviour flexibility was defined as the individual’s ability to directly respond and adjust 

its behaviour to environmental stimuli (Coppens et al., 2010). Here, I argue that studying 

fluctuations in internal states (GOS) is a reasonable way of measuring behaviour flexibility.  

LeDoux (2012) describes the organism’s global organismic state as resulting from survival 

circuit activation. These survival functions, according to LeDoux, have been achieved through 

behaviour interaction with the environment. Indeed, LeDoux points out the highly conserved 

sensory-motor systems that makes out the foundation of survival circuits, while also adding that 

these systems do not exist in isolation. Instead, they have evolved to negotiate interactions with 

the environment for the purpose of sustaining life. Thus, by focusing on global organismic 

states, we are addressing the organism’s response to its environment.  

One could also argue that focusing on internal states is a better measure of behaviour flexibility, 

than observing external behaviours. Experiments with real fish do not grant us direct insight to 

the subjective motivational states. These can only be inferred from the observed behaviour 

(Culum Brown et al., 2011). This approach is a tedious uncertainty- and error-prone process. 

Consider for example immobility, which can be an expression of the freezing response 

associated with danger, or a hunting strategy. Thus, the very same behaviour response could be 

the result of different stimuli (LeDoux, 2012). It is also the case that specific survival circuits 

have different behavioural responses in different animals. For instance, while humans will 
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escape a threatening situation on two legs, a dog will do it on four legs. Thus, by focusing on 

the function of a circuit, rather than the observable behavioural response, we can set species-

independent criteria for brain systems that are involved in detecting and responding to 

challenges and opportunities posed by the environment (LeDoux, 2012).   

There are several studies that refer to internal processes as behaviour flexibility. For instance, 

Ruiz-Gomez, Huntingford, Overli, Thornqvist, and Hoglund (2011) measured behaviour 

flexibility as post-stress plasma cortisol level in rainbow trout. Here, confinement was used as 

a standardized stressor. In this way, they could select for high-responsive and low-responsive 

teleosts, showing that responsiveness to stress is heritable. In this thesis, the organisms did not 

respond exclusively to stressors, but all environmental cues (e.g. food, conspecifics and 

predators).  

As the AHA model continues to develop, the validity of “propensity to switch GOS” as a 

measure behaviour flexibility could also be determined by converging observations. For 

instance, behavioural traits such as aggressiveness, routine formation and attack latency are 

known to correlate with behaviour flexibility (Koolhaas et al., 1999). These correlated 

behaviours characterises differences in copings styles. As stated earlier, behaviour flexibility 

may be an underlying factor for the consistency of coping styles (Coppens et al., 2010). As 

such, the presented results indicate that coping styles might emerge after several generations, if 

differences in behaviour flexibility proves to have more than one fitness optimum (see 

discussed below).  

Finally, the simulations presented here involved a standardized environment that is stochastic, 

but stationary and homogenous. Any patterns in GOS switching should therefore be caused by 

properties of the agent. The most salient features of behaviour flexibility were reproduced based 

on a very simple mechanistic model: a combination of internal “drive” (GOS) competition, 

arousal and attention restriction. These mechanisms have direct counterparts in neurobiology.  

Fitness related aspects of behavioural flexibility 

In the finalized AHA model, the ADF values will be linked to the genome and hence be 

subjected to a selection process as the organisms live and reproduce. The current version of the 

AHA Model did not allow genetic adaptation of the agents. As such, inferences about the 

organism’s fitness could not be made based on my results. Instead, they illustrate how the joint 
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effect of main mechanisms, competition between motivations and attention restriction, 

mediated by the overall arousal, can produce adaptive goal-directed behaviour. In the finished 

model, individual differences in behaviour flexibility will likely have fitness-related 

implications for the agents. Here, I give a brief outline of some of the fitness- related costs and 

benefits to behaviour flexibility based on prior research.  

Organisms face a fundamental challenge in deciding between maintaining a current goal in the 

face of distraction, or to switch between goals in response to changes (Dreisbach & Goschke, 

2004). Flexibility and rigidity are both potentially adaptive and the fitness consequences of each 

approach is often context dependent (Mittelbach, Ballew, & Kjelvik, 2014).   

During times of urgent need, which corresponds to high level of arousal, it’s reasonable to 

suspect that rigidity is more beneficial. For example, a starved fish runs the risk of dying from 

starvation, thus placing the fish in a highly motivated (aroused) state. The only way to reduce 

arousal is to fixate on foraging, even at the risk of detection from predators or reduced 

reproduction. When an animal is close to dying from starvation, paying attention and 

responding to various stimuli that is not directly associated with reducing hunger must be 

regarded as a distraction. Dreisbach and Goschke (2004) found that there is a positive 

relationship between flexibility and distractibility. However, Lavie (2005) argues that 

distractions can be prevented when the task-relevant stimuli carries a high perceptual load. The 

rationale for this seems to be that when the perception processing capacity is full, distracting 

stimuli is not registered by the sensory system.   

Similarly, if an agent has encountered many predators recently and continues to see them, it 

would be adaptive to fix on predator avoidance and disregard all other stimuli that are not 

directly linked to reducing the fear-state. Switching to a foraging state (i.e. being distracted) at 

this point can be a fatal mistake (Lima & Dill, 1990).   

However, such rigid commitment to a task comes with its own set of costs (Dreisbach & 

Goschke, 2004). Predation risk is not constant and so an adaptive response to fluctuations in 

risk requires that the animal sample information on the presence or absence of predators (Sih, 

1992). For instance, Sih (1992) showed that one hour exposure of a predator was enough to 

keep juvenile notonectids (Notonecta hoffmanni) in refuge during the entire duration of the 

experiment (24 h) in some cases. The results also showed that well fed notonectids were more 

reluctant to come out of hiding, suggesting that their current state was involved in their decision. 
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This study demonstrates the importance of information sampling and risk assessment. 

According to Dall et al. (2005) such information use is key to adaptive behaviour of animals.  

Risk assessment is also discussed in Lima and Dill (1990). Here, they argue that a “false 

positive” is better than a “false negative” when it comes to predator risk assessment. When in 

doubt, it is better to assume the presence of a predator and forgo feeding for a day, than to 

assume the opposite and get eaten. They also point out that vigilance is an important aspect of 

feeding efficiency because it detracts from energy intake. As pointed out earlier, the rate of re-

evaluations in our model can be viewed as a form of vigilance measurement, because organisms 

who frequently re-evaluate their GOS will be more likely notice the approach of a predator, but 

also more likely to get distracted.   

Wolf et al. (2008) also show that investing sampling time to respond more adaptively to 

environmental cues can produce additional payoffs, when we consider the costs (of time and 

energy) of such information sampling. Furthermore, their simple “responsiveness-model” 

illustrated that the benefits of responsiveness were frequency- dependent, which may explain 

why both flexible and rigid individuals are represented in many populations. Frequency-

dependent selection has also been found in previous versions of the AHA model (Giske et al., 

2013). Wolf et al. (2008) also showed that positive-feedback mechanisms could further reduce 

the cost of behaviour flexibility. One such feedback mechanism could reduce cost of sampling 

due to a training effect. If this is the case it might pay to be consistent, rather than alternate 

between a flexible and rigid approach to environmental cues. The relationship between 

flexibility and plasticity is discussed below. 

Responsiveness to environmental change has also been studied in teleost fish. Ruiz-Gomez et 

al. (2008) found that highly responsive rainbow trout where quicker to find and consume 

relocated food, than unresponsive trout. An interesting find was that the unresponsive 

individuals swam over the (clearly visible) relocated food to get to the previously rewarding 

arm of the test-maze. The fact that the trout seemed to ignore visible food on its way to a 

previously rewarding location, highlights that the trout was motivated by food incentives, but 

failed to notice food when it appeared unexpectedly. This ties in well with the presented results, 

as they show that organisms almost completely disregard environmental cues, when attention 

is strongly restricted.  Empirical findings as in Ruiz-Gomez et al. (2008) implies that too much 

attention restriction can have negative, fitness-related consequences for the animal because 
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important information is ignored, when they should be attended to. They also support the role 

of selective attention (AMF) as a mechanism that affects behaviour flexibility.   

Behaviour plasticity      

The scientific literature seems to suggest that flexibility and rigidity both have its merits (Ruiz-

Gomez et al., 2011). This begs the question “why choose?” If flexible and rigid behaviour 

represents different optima in different environments, then animals should be plastic enough to 

exhibit the optimum in both environments (Sih et al., 2004). Again, it might not be that simple 

as there are important constraints to such behavioural plasticity.  

One such constraint is that the underlying components of behaviour are limited in their 

flexibility (Duckworth, 2010). For example, even though the adult human brain can respond to 

experience by increased connectivity of the neurons, such growth and rewiring are slow on a 

scale of weeks to months (Duckworth, 2010). In fish, as well as many other animals, 

responsiveness or behaviour flexibility seems to correlate with hypothalamus-pituitary-adrenal 

(HPA-axis) reactivity (Ruiz-Gomez et al., 2011). This time lag for the physical components to 

change represents an absolute constrain to behavioural plasticity (Jacobs & Wingfield, 2000). 

Another consideration is that even if phenotypes are plastic, but with time lags, the 

unpredictability of the environment makes it likely that the organism will spend some time in 

the wrong phenotype (Sih et al., 2004).  

However, we should note that personality traits are not incompatible with behaviour plasticity. 

While “stability” usually refers to the absolute measure of behaviour, “consistency” refers to 

the predictability of behaviour, when a measurement is repeated at a later time (Culum Brown 

et al., 2011). As such, animals can become more inclined to change its GOS (i.e. be more 

flexible) while its relative flexibility within the population stays the same. The adaptive value 

of certain behaviours can vary throughout the animal’s lifetime (Adriaenssens & Johnsson, 

2016) and so a slow and perhaps energy costly “reconfiguration” of neural circuits that control 

those behaviours might still be adaptive. This is implemented in the AHA model by the use of 

developmental modulation (Fig.1). 

Additionally, there are examples of animals showing temporarily increased risk-taking 

behaviour during mating seasons (Lastein, Hoglund, Mayer, Overli, & Doving, 2008). The 

increased risk of predation is compensated for by increased reproductive success. In the 

terminology of the AHA model, this suggests that animals can temporarily favour a specific 
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GOS, leading to a “GOS-specific-rigidity”.  As of now, this is not implemented in the AHA 

model.  

Finally, we must also consider the unpredictable nature of the animal’s environment. When 

information about the world is uncertain and “noisy”, it may be adaptive to ignore 

environmental cues and behave consistently (Culum Brown et al., 2011). In this case, “adaptive 

coin-flipping” could be a useful strategy (Kaplan & Cooper, 1984). The adaptive coin-flipping 

principle states that, under certain circumstances, there may be a selective advantage to allow 

for some level of random phenotypic expression (Kaplan & Cooper, 1988) . Furthermore, if the 

animal is in a state of high need, it does not pay much to collect additional information, even 

though such information would be valuable. Because uncertainty is an inherent fundamental 

state of the environment, animals can use a range of strategies, which would translate into a 

range of motivation competition threshold or attention restriction parameters.  

Further perspectives 

It’s an interesting theoretical point that whereas previous models have focused on global 

objective characteristics of animals (e.g. body size, age, sex etc.) there is a clear need to focus 

on internal subjective states and experiences like motivation, global organismic state, 

subjective estimations of probability etc. which actually mediate various aspects of decision-

making and can significantly affect fitness. 

The potential of a complex “artificial life” model system such as the AHA model, is that it 

allows us insight into these internal subjective states. It also provides us with the opportunity 

to trace how selection affects specific cognitive mechanisms in a specific group of animals and 

how variability within a population is shaped. Furthermore, the natural selection “in silico” can 

be traced back to the genes, specific allele frequencies and mutations in real life. This kind of 

understanding is not possible with optimisation models, but with a finalized AHA model, it will 

be.  
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A1. The subroutine that was used in the simulations 
  subroutine LARS_TEST_LAB() 

 

    integer :: ind, count_rand_walks, j, i 

    integer :: food_item_selected 

 

    real :: step_rwalk, cost_step 

 

    integer, dimension(proto_parents%population_size) :: 

random_sample_individuals 

 

    !> Lars' variables are prefixed with lars_ 

    !> OUTPUT: Declaring record which has the data values appended for each 

individual 

    character(len=2000) :: lars_file_record_append_data_gos_label 

    character(len=2000) :: lars_file_record_append_data_gos_arousal 

    character(len=2000) :: lars_file_record_append_data_gos_repeated 

 

    !! OUTPUT: Declaring file names as character string variables 

    character(len=:), allocatable :: lars_output_filename_data_gos_label 

    character(len=:), allocatable :: lars_output_filename_data_gos_arousal 

    character(len=:), allocatable :: 

lars_output_filename_data_gos_repeated 

 

    !> OUTPUT: Declaring file units as integer numbers. We need file units 

for 

    !! behind the scene work, even though they are not directly used here. 

    !! All the CSV routines can refer to the file by its name. 

    integer lars_output_fileunit_data_gos_label 

    integer lars_output_fileunit_data_gos_arousal 

    integer lars_output_fileunit_data_gos_repeated 

 

    !> This variable keeps a short description component for the csv output 

    !! file names: 

    character(len=*), parameter :: lars_ADF_File_descript = "pattern_1" 

 

    !> Make an array of random integers that we will use for sampling random 

    !! fish from the whole population 

    random_sample_individuals = 

PERMUTE_RANDOM(proto_parents%population_size) 

 

    

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

    !> OUTPUT: Opening the output file for **gos label**. 

    ! 1. we first set file name: 

    lars_output_filename_data_gos_label = "0000_lars_gos_label_ADF_" //       

& 

                          lars_ADF_File_descript // csv 

    ! 2. second, set internal file unit (we do not use the unit afterwards 

but it is 

    !!   used by fortran internally) 

    lars_output_fileunit_data_gos_label = GET_FREE_FUNIT() ! get file unit 

automatically 

    ! 3. and physically open the output file for writing: 
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    call CSV_OPEN_WRITE ( lars_output_filename_data_gos_label,                

& 

                          lars_output_fileunit_data_gos_label ) 

    ! 4. producing a whole record with column labels using our function 

    !    'do_row_header': VAR_001, VAR_002.... VAR_100 

    lars_file_record_append_data_gos_label = do_row_header(100)  

    ! 5. write this first record that contains column labels 

    call CSV_RECORD_WRITE( record=lars_file_record_append_data_gos_label, 

& 

                           

csv_file_name=lars_output_filename_data_gos_label ) 

 

    !> OUTPUT: Opening the output file for **gos arousal**. 

    lars_output_filename_data_gos_arousal = "0000_lars_gos_arousal_ADF_" 

//   & 

                          lars_ADF_File_descript // csv 

    lars_output_fileunit_data_gos_arousal = GET_FREE_FUNIT() ! get file unit 

automatically 

    call CSV_OPEN_WRITE ( lars_output_filename_data_gos_arousal,              

& 

                          lars_output_fileunit_data_gos_arousal ) 

    !> producing a whole record with column labels 

    lars_file_record_append_data_gos_arousal = do_row_header(100) 

    call CSV_RECORD_WRITE( 

record=lars_file_record_append_data_gos_arousal,   & 

                           

csv_file_name=lars_output_filename_data_gos_arousal ) 

 

    !> OUTPUT: Opening the output file for **gos repeated counter**. 

    lars_output_filename_data_gos_repeated = "0000_lars_gos_repeated_ADF_" 

// & 

                          lars_ADF_File_descript // csv 

    lars_output_fileunit_data_gos_repeated = GET_FREE_FUNIT() ! get file 

unit automatically 

    call CSV_OPEN_WRITE ( lars_output_filename_data_gos_repeated,             

& 

                          lars_output_fileunit_data_gos_repeated ) 

    !> producing a whole record with column labels 

    lars_file_record_append_data_gos_repeated = do_row_header(100) 

    call CSV_RECORD_WRITE( 

record=lars_file_record_append_data_gos_repeated, & 

                           

csv_file_name=lars_output_filename_data_gos_repeated ) 

    

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

    ! First loop through a random sample of 10 fish out from the whole 

population 

    INDS: do j=1, 10 

 

          ! Choose the current individual ID number to work with from the 

random sample. 

          ind = random_sample_individuals(j) 

 

          ! Exclude dead fish. 

          if (proto_parents%individual(ind)%is_dead()) then 
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            call LOG_MSG("WARNING: Found dead agent # " // TOSTR(ind) ) 

            exit INDS 

          end if 

 

          

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

          !> OUTPUT: Make the record an empty string when we start writing 

data 

          !! for each new individual 

          lars_file_record_append_data_gos_label = "" 

          lars_file_record_append_data_gos_arousal = "" 

          lars_file_record_append_data_gos_repeated = "" 

          

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

          ! Start random walks of the fish 

          WALKS: do i=1, 100 

 

            call LOG_DELIMITER(LOG_LEVEL_CHAPTER) 

            call LOG_DBG("Agent walk no=" // TOSTR(i) // " , agent ID " //    

& 

                        TOSTR(proto_parents%individual(ind)%get_id()) //      

& 

                        " (# " // TOSTR(ind) // "), name:"                    

& 

                        // proto_parents%individual(ind)%individ_label() 

//".") 

 

            ! do random walk 

            step_rwalk = dist2step(170.0) 

            call LOG_DBG("  Step size for random walk: " // TOSTR(step_rwalk) 

// & 

                          ", " // TOSTR(step_rwalk / 

proto_parents%individual(ind)%get_length()) // & 

                          " agent's body sizes." ) 

 

            call proto_parents%individual(ind)%rwalk( step_rwalk,0.5, & 

                                                                   

habitat_safe) 

 

            call LOG_DBG("  cycle ind:walk "// TOSTR(ind) // ":"// TOSTR(i) 

// & 

                         

TOSTR(proto_parents%individual(ind)%location(.TRUE.))) 

            call LOG_DBG("            way "//                                 

& 

                                     

TOSTR(proto_parents%individual(ind)%way())) 

 

            cost_step = 

proto_parents%individual(ind)%cost_swim_burst(step_rwalk) 

            call LOG_DBG("  Cost of random walk step: " // TOSTR(cost_step) 

// & 

                          " is " // TOSTR(100.0_SRP * cost_step / 

proto_parents%individual(ind)%body_mass ) // & 

                          "% of agent's body mass." ) 
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            !> Subtract the cost of swimming here: 

            

proto_parents%individual(ind)%body_mass=proto_parents%individual(ind)%bod

y_mass - & 

                                      cost_step 

 

            !=================================================== 

            ! Inner perceptions: stomach, bodymass, energy, age 

            call proto_parents%individual(ind)%perceptions_inner() 

 

            !=================================================== 

            ! Environmental perceptions: light, depth 

            call proto_parents%individual(ind)%perceptions_environ() 

            call LOG_DBG("Environmental perceptions: light " //               

& 

              

TOSTR(proto_parents%individual(ind)%perceive_light%get_current()) // & 

              ", depth " //                                                   

& 

              

TOSTR(proto_parents%individual(ind)%perceive_depth%get_current()) ) 

 

            !=================================================== 

            ! Spatial perceptions food, conspecifics, predators 

            call 

proto_parents%individual(ind)%see_food(habitat_safe%food,1) 

 

            call 

proto_parents%individual(ind)%see_consp(proto_parents%individual,& 

                                   proto_parents%individual%get_length(), 

& 

                                   proto_parents%individual%is_alive() ) 

 

            call 

proto_parents%individual(ind)%see_pred(habitat_safe%predators, & 

                    habitat_safe%predators%get_size()) 

 

            !=================================================== 

            call 

proto_parents%individual(ind)%motivations_percept_components() 

            call proto_parents%individual(ind)%motivations_primary_calc() 

            call proto_parents%individual(ind)%modulation() 

            call proto_parents%individual(ind)%motivations_to_memory() 

            call proto_parents%individual(ind)%gos_find() 

 

            

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

            

!------------------------------------------------------------------- 

            ! OUTPUT: We are to place some code for producing outputs of 

motivational 

            ! variables below here. 

            call CSV_RECORD_APPEND( 

lars_file_record_append_data_gos_label,   & 
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proto_parents%individual(ind)%gos_label() ) 

 

            call CSV_RECORD_APPEND( 

lars_file_record_append_data_gos_arousal,   & 

                                    

proto_parents%individual(ind)%arousal() ) 

 

            call CSV_RECORD_APPEND( 

lars_file_record_append_data_gos_repeated,   & 

                                    

proto_parents%individual(ind)%gos_repeated ) 

            

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

 

            !> Check if the fish has died of starvation 

            if (proto_parents%individual(ind)%starved_death()) then 

              call proto_parents%individual(ind)%dies() 

              call LOG_DELIMITER(LOG_LEVEL_SECTION) 

              call LOG_DBG ("INFO: Agent dies due to starvation, ID: " //     

& 

                                  

TOSTR(proto_parents%individual(ind)%get_id())) 

              call LOG_DBG ("      Body length: " //                          

& 

                    TOSTR(proto_parents%individual(ind)%body_length) //       

& 

                    ", body mass: " //                                        

& 

                    TOSTR(proto_parents%individual(ind)%body_mass) //         

& 

                    ", maximum mass: " //                                     

& 

                    

TOSTR(proto_parents%individual(ind)%body_mass_maximum) // & 

                    ", birth mass : " //                                      

& 

                    TOSTR(proto_parents%individual(ind)%body_mass_birth)     

) 

              call LOG_DBG("       Energy :" //                               

& 

                    TOSTR(proto_parents%individual(ind)%energy_current) 

//    & 

                    ", energy maximum: " //                                   

& 

                    TOSTR(proto_parents%individual(ind)%energy_maximum)    

) 

              call LOG_DELIMITER(LOG_LEVEL_SECTION) 

              exit WALKS 

            end if 

 

            call LOG_DBG( "GOS is      :" // 

proto_parents%individual(ind)%gos_label() ) 

            call LOG_DBG( "GOS arousal :" // 

TOSTR(proto_parents%individual(ind)%arousal()) ) 
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            call LOG_DBG("**** can see food:  " // 

TOSTR(proto_parents%individual(ind)%perceive_food%get_count())) 

 

            !> Check if there is any food items in proximity (visibility 

range) 

            if ( proto_parents%individual(ind)%has_food() ) then 

               call LOG_DBG("  distance    >" //                              

& 

                               

TOSTR(proto_parents%individual(ind)%perceive_food%foods_distances)) 

               call LOG_DBG("  dist. (d/l) >" //                              

& 

                               

TOSTR(proto_parents%individual(ind)%perceive_food%foods_distances & 

                               / 

proto_parents%individual(ind)%get_length())) 

 

              !=================================================== 

              call LOG_DBG("   +++ Current mass: " // 

TOSTR(proto_parents%individual(ind)%mass()) //  & 

                           ", length: " // 

TOSTR(proto_parents%individual(ind)%length()) //       & 

                           ", energy: " // 

TOSTR(proto_parents%individual(ind)%get_energy())  ) 

              !> Select the optimal food item out from its perception: 

              food_item_selected = 

proto_parents%individual(ind)%food_item_select(rescale_max_motivation=6.0

_SRP) 

 

              !> Try to eat the optimal food item: 

              call 

proto_parents%individual(ind)%food_item_eat(food_item_selected, 

habitat_safe%food) 

 

              call LOG_DBG("**** Tried to eat food item: " // 

TOSTR(food_item_selected)) 

              call LOG_DBG("   +++ Updated mass: " // 

TOSTR(proto_parents%individual(ind)%mass()) //  & 

                           ", length: " // 

TOSTR(proto_parents%individual(ind)%length()) //       & 

                           ", energy: " // 

TOSTR(proto_parents%individual(ind)%get_energy())  ) 

              !stop "EATEN" 

            else 

              !> If no food objects were encountered we still grow with zero 

food gain. 

              call proto_parents%individual(ind)%mass_grow(0.0_SRP) 

              call proto_parents%individual(ind)%len_grow(0.0_SRP) 

            end if 

 

            call LOG_DBG("**** can see consp: " // 

TOSTR(proto_parents%individual(ind)%perceive_consp%get_count() ) ) 

            if ( proto_parents%individual(ind)%has_consp() ) then 

               call LOG_DBG("  coord(1)    >" //                              

& 
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TOSTR(proto_parents%individual(ind)%perceive_consp%conspecifics_seen(1)%l

ocation(.TRUE.))) 

               call LOG_DBG("  iid         >" //                              

& 

                               

TOSTR(proto_parents%individual(ind)%perceive_consp%conspecifics_seen%get_

cid())) 

            end if 

 

            call LOG_DBG("**** can see pred:  " // 

TOSTR(proto_parents%individual(ind)%perceive_predator%get_count() ) ) 

            if ( proto_parents%individual(ind)%has_pred() ) then 

               call LOG_DBG("  coord(1)    =" //                              

& 

                               

TOSTR(proto_parents%individual(ind)%perceive_predator%predators_seen(1)%l

ocation(.TRUE.))) 

               call LOG_DBG("  iid         =" //                              

& 

                               

TOSTR(proto_parents%individual(ind)%perceive_predator%predators_seen(1)%g

et_cid())) 

               call LOG_DBG("  dist        =" //                              

& 

                               

TOSTR(proto_parents%individual(ind)%perceive_predator%predators_seen(1)%g

et_dist())) 

            end if 

 

 

          end do WALKS 

 

          

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

          !> OUTPUT: Physically write the record to the disk 

          call CSV_RECORD_WRITE( 

record=lars_file_record_append_data_gos_label, & 

                                 

csv_file_name=lars_output_filename_data_gos_label ) 

 

          call CSV_RECORD_WRITE( 

record=lars_file_record_append_data_gos_arousal, & 

                                 

csv_file_name=lars_output_filename_data_gos_arousal ) 

 

          call CSV_RECORD_WRITE( 

record=lars_file_record_append_data_gos_repeated, & 

                                 

csv_file_name=lars_output_filename_data_gos_repeated ) 

          

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

 

          call LOG_DBG("INFO: Subtracting cost of living for agent # " //     

& 

                    TOSTR(ind) // " and add weight and length to the 
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history.") 

 

          !> Subtract the cost of living 

          call proto_parents%individual(ind)%subtract_living_cost() 

 

          call 

add_to_history(proto_parents%individual(ind)%body_length_history, & 

                              proto_parents%individual(ind)%body_length) 

 

          call 

add_to_history(proto_parents%individual(ind)%body_mass_history, & 

                              proto_parents%individual(ind)%body_mass) 

 

          if (proto_parents%individual(ind)%starved_death()) then 

              call proto_parents%individual(ind)%dies_debug() 

              call LOG_DELIMITER(LOG_LEVEL_SECTION) 

              call LOG_DBG ("INFO: Agent dies due to starvation, ID: " //     

& 

                                  

TOSTR(proto_parents%individual(ind)%get_id())) 

              call LOG_DBG ("      Body length: " //                          

& 

                    TOSTR(proto_parents%individual(ind)%body_length) //       

& 

                    ", body mass: " //                                        

& 

                    TOSTR(proto_parents%individual(ind)%body_mass) //         

& 

                    ", maximum mass: " //                                     

& 

                    

TOSTR(proto_parents%individual(ind)%body_mass_maximum) // & 

                    ", birth mass : " //                                      

& 

                    TOSTR(proto_parents%individual(ind)%body_mass_birth)     

) 

              call LOG_DBG("       Energy :" //                               

& 

                    TOSTR(proto_parents%individual(ind)%energy_current) 

//    & 

                    ", energy maximum: " //                                   

& 

                    TOSTR(proto_parents%individual(ind)%energy_maximum)    

) 

              call LOG_DELIMITER(LOG_LEVEL_SECTION) 

            end if 

 

    end do INDS 

 

    

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

    !> OUTPUT: Finally, we are closing the output files. 

    call CSV_CLOSE( csv_file_name=lars_output_filename_data_gos_label ) 

    call CSV_CLOSE( csv_file_name=lars_output_filename_data_gos_arousal ) 

    call CSV_CLOSE( csv_file_name=lars_output_filename_data_gos_repeated ) 
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!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

  contains 

 

    

!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

    ! OUTPUT: Produce a whole record with the names of the columns. 

    function do_row_header(n_vars) result (string_record) 

      integer, intent(in) :: n_vars 

      character(len=2000) :: string_record 

 

      !> Local vars 

      integer :: i 

 

      !> producing a whole record with column labels 

      string_record = "" 

      do i=1, n_vars 

        call CSV_RECORD_APPEND( string_record, "VAR_" // TOSTR(i,n_vars) ) 

      end do 

 

    end function do_row_header 

 

  end subroutine LARS_TEST_LAB 
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A2. The Global Organismic State 
 

  !> Find and set the global organismic state (GOS) based on the various 

  !! available motivation  values. 

  !! @note  GOS generation is a little changed in the new generation model. 

  !!        1. We try to avoid constant switching of the GOS by requiring that 

  !!           the difference between motivational components should exceed 

  !!           some threshold value, if it does not, retain old GOS. So minor 

  !!           fluctuations in the stimulus field are ignored. Threshold is 

  !!           a dynamic parameter, so can also be zero. 

  !!        2. The threshold is inversely related to the absolute value of 

the 

  !!           motivations compared, when the motivations are low, the 

  !!           threshold is big, when their values are approaching 1, the 

  !!           threshold approaches zero. So motivations have relatively 

little 

  !!           effects. 

  subroutine gos_find_global_state(this) 

    class(GOS_GLOBAL), intent(inout) :: this 

 

    !> Local variables 

    !> Arousal is the maximum level of motivation among all available new 

    !! incoming motivations ones. But we still have the older/previous 

"current" 

    !! arousal value `%gos_arousal` until it is updated from the newly 

incoming 

    !! perceptions and motivations. 

    real(SRP) :: arousal_new 

 

    !> Dynamic threshold of GOS, the threshold a motivation has to exceed to 

    !! win the competition with the current motivation. 

    real(SRP) :: gos_dthreshold 

 

    !> PROCNAME is the procedure name for logging and debugging (with 

MODNAME). 

    character(len=*), parameter :: PROCNAME = "(gos_find_global_state)" 

 

    !> Arousal is the maximum level among all available motivations (**final** 

    !! motivational components). This is the **new** state depending on all 

    !! the currently incoming perceptions. 

    arousal_new = this%motivations%max_final() 

 

    !> The GOS competition threshold is a function of the current arousal 

    !! level, if it is very low, we need a relatively high competing motivation 

    !! to win competition, if it is high (1) then very small difference is 

    !! enough. But note that this is the relative differences. So if we have 

    !! a low motivation 0.1, we need 0.155 to win (threshold=0.55, 

    !! 0.155=0.1+0.1Ã—0.55 ), but if we have high motivation 0.8, almost any 

    !! exceeding  motivation (>0.808) will win. So we limit the possible 

    !! effects of low motivations. We get the actual value as a nonparametric 

    !! function, currently by nonlinear interpolation of the grid values 

    !! defined by the ̀ MOTIVATION_COMPET_THRESHOLD_CURVE_` parameter arrays. 

    !! @plot `aha_gos_arousal_winthreshold.svg` 

    gos_dthreshold = DDPINTERPOL( 
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MOTIVATION_COMPET_THRESHOLD_CURVE_ABSCISSA, & 

                                  

MOTIVATION_COMPET_THRESHOLD_CURVE_ORDINATE, & 

                                  this%gos_arousal ) 

 

    !> Save the interpolation plot in the debug mode using external command. 

    !! @warning Involves **huge** number of plots, should normally be 

    !!          disabled. 

    call debug_interpolate_plot_save(                                        

& 

            grid_xx=MOTIVATION_COMPET_THRESHOLD_CURVE_ABSCISSA,              

& 

            grid_yy=MOTIVATION_COMPET_THRESHOLD_CURVE_ORDINATE,              

& 

            ipol_value=this%gos_arousal, algstr="DDPINTERPOL",               

& 

            output_file="plot_debug_arousal_gos_threshold_" //               

& 

                        TOSTR(Global_Time_Step_Model_Current) //             

& 

                        TAG_MMDD() // "_a_"// trim(this%individ_label()) //  

& 

                        "_" // RAND_STRING(LABEL_LENGTH, 

LABEL_CST,LABEL_CEN)& 

                        // PS ) 

 

 

    !> Now as we have the dynamic threshold, we can compare the current 

    !! motivation level with the current (previous) arousal. If the motivation 

    !! exceeds the current arousal by more than the threshold, the GOS 

    !! changes to the new motivation. If not, we are still left with the 

    !! previous GOS. 

    AROUSAL_THRESHOLD: if (arousal_new - this%gos_arousal <                   

& 

                                        gos_dthreshold * this%gos_arousal) 

then 

      !> If the maximum current arousal does not exceed the threshold, 

      !! we are left with the old GOS. However, we reduce the current arousal 

      !! spontaneously using a simple linear or some non-linear dissipation 

      !! pattern using the ̀ %gos_repeated` parameter that sets the number of 

      !! repeated occurrences of the same (current) GOS. 

      !! First, increment GOS repeat counter. 

      this%gos_repeated = this%gos_repeated + 1 

      !> And spontaneously decrease, **dissipate**, the current arousal 

level. 

      !! Spontaneous dissipation of arousal is implemented by multiplying the 

      !! current level by a factor within the range [0.0..1.0] that can depend 

      !! on the number of times this GOS is repeated. 

      !! @note Note that the dissipation function is local to this procedure. 

      !!       `arousal_decrease_factor_fixed` = fixed value 

      !!       `arousal_decrease_factor_nonpar` = nonlinear, 

nonparametric, 

      !!       based on nonlinear interpolation. 

      !! @plot `aha_gos_arousal_dissipation.svg` 

      this%gos_arousal = this%gos_arousal *                                   

& 
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arousal_decrease_factor_nonpar(this%gos_repeated) 

    else AROUSAL_THRESHOLD 

      !> If the maximum new arousal exceeds the threshold, we get to a 

      !! **new GOS**. That is, the **highest** among the **new** competing 

      !! motivations defines the new GOS. 

      !! @note Use `associate`construct to set alias for long object 

hierarchy. 

      !! @note Note that `this%gos_repeated` is initialised to 1 at 

`gos_reset`. 

      associate ( MOT => this%motivations ) 

        !> Check **hunger**. 

        GOS_IS_MAX: if (MOT%is_max_final(MOT%hunger)) then 

          !> Reset all motivations to **non-dominant**. 

          call this%gos_reset() 

          !> Set new GOS for hunger... 

          MOT%hunger%dominant_state = .TRUE. 

          this%gos_main = MOT%hunger%label 

          this%gos_arousal = MOT%hunger%motivation_finl 

        !> Check **passive_avoidance**. 

        else if (MOT%is_max_final(MOT%avoid_passive)) then GOS_IS_MAX 

          !> Reset all motivations to **non-dominant**. 

          call this%gos_reset() 

          !> Set new GOS for passive_avoidance... 

          MOT%avoid_passive%dominant_state = .TRUE. 

          this%gos_main = MOT%avoid_passive%label 

          this%gos_arousal = MOT%avoid_passive%motivation_finl 

        !> Check **active_avoidance**. 

        else if (MOT%is_max_final(MOT%avoid_active)) then GOS_IS_MAX 

          !> Reset all motivations to **non-dominant**. 

          call this%gos_reset() 

          !> Set new GOS for active_avoidance... 

          MOT%avoid_active%dominant_state = .TRUE. 

          this%gos_main = MOT%avoid_active%label 

          this%gos_arousal = MOT%avoid_active%motivation_finl 

        !> Check **reproduction**. 

        else if (MOT%is_max_final(MOT%reproduction)) then GOS_IS_MAX 

          !> Reset all motivations to **non-dominant**. 

          call this%gos_reset() 

          !> Set new GOS for reproduction... 

          MOT%reproduction%dominant_state = .TRUE. 

          this%gos_main = MOT%reproduction%label 

          this%gos_arousal = MOT%reproduction%motivation_finl 

        end if GOS_IS_MAX 

      end associate 

 

    end if AROUSAL_THRESHOLD 

 

    !> Add the current GOS parameters to the emotional memory stack 

    !! @note Note that the memory stack arrays are defined in 

    !!       APPRAISAL and cleaned/init in `init_appraisal` 

    !! @note We can use the dedicated procedures. Here disabled so far to avoid 

    !!       speed overhead. 

    !call this%memory_motivations%gos_to_memory(                              

& 

    !                v_gos_label=this%gos_main,                               
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& 

    !                v_gos_arousal= this%gos_arousal,                         

& 

    !                v_gos_repeated=this%gos_repeated  ) 

    call add_to_history(this%memory_motivations%gos_main, this%gos_main) 

    call add_to_history(this%memory_motivations%gos_arousal, 

this%gos_arousal) 

    call add_to_history(this%memory_motivations%gos_repeated, 

this%gos_repeated) 

 

 

    !> Finally recalculate the attention weights for all the states' 

perception 

    !! components. The dominant GOS state will now get its default attention 

    !! weights whereas all non-dominant states will get modulated values, i.e. 

    !! values recalculated from a non-linear interpolation based **attention 

    !! modulation curve**. 

    call this%attention_modulate() 

 

    !! @note  Note that type-bound functions can be used (although this makes 

    !!        sense only outside of this module to avoid a small function-call 

    !!        overhead): `if ( this%motivations%hunger%is_dominant() ) 

then`. For the 

    !!        motivational state label we can use the accessor function 

    !!        `%label_is` : `return_gos = 

this%motivations%hunger%label_is()` (it is 

    !!        **mandatory** outside of this module as label is declared 

    !!        `private`). 

    if (this%motivations%hunger%dominant_state) then 

      return_gos = this%motivations%hunger%label 

    else if (this%motivations%avoid_passive%dominant_state) then 

      return_gos = this%motivations%avoid_passive%label 

    else if (this%motivations%avoid_active%dominant_state) then 

      return_gos = this%motivations%avoid_active%label 

    else if (this%motivations%reproduction%dominant_state) then 

      return_gos = this%motivations%reproduction%label 

    end if 

 

  end function gos_global_get_label 

 

  

!------------------------------------------------------------------------

----- 

  !> Calculate the overall level of arousal. Arousal is the current level 

  !! of the dominant motivation that has brought about the current GOS at the 

  !! previous time step. 

  elemental function gos_get_arousal_level(this) result (arousal_out) 

    class(GOS_GLOBAL), intent(in) :: this 

 

    !> Arousal is the current level of motivation that has brought about GOS. 

    real(SRP) :: arousal_out 

 

    !> It is saved in this GOS-object component. 

    arousal_out = this%gos_arousal 

 

  end function gos_get_arousal_level 
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A3. The Attention Modulation Factor 
 

   

  !> Modulate the attention weights to suppress all perceptions alternative 

  !! to the current GOS. This is done using the attention modulation 

  !! interpolation curve. 

  !! @warning This subroutine is called from within ̀ gos_find` and should not 

  !!          be called separately. 

  subroutine gos_attention_modulate_weights(this) 

    class(GOS_GLOBAL), intent(inout) :: this 

 

    !> Local variable, the weight given to the attention weight components 

    !! of all the non-dominant motivation states. Based on nonlinear 

    !! interpolation. 

    real(SRP) :: percept_w 

 

    !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - 

    !> **First**, we calculate the attention weight given to all non-dominant 

    !! perceptions via nonlinear interpolation. 

    percept_w = DDPINTERPOL( ATTENTION_MODULATION_CURVE_ABSCISSA,            

& 

                            ATTENTION_MODULATION_CURVE_ORDINATE,            

& 

                            this%gos_arousal ) 

 

    !> Save the interpolation plot in the debug mode using external command. 

    !! @warning Involves **huge** number of plots, should normally be 

    !!          disabled. 

    call debug_interpolate_plot_save(                                         

& 

            grid_xx=ATTENTION_MODULATION_CURVE_ABSCISSA,                      

& 

            grid_yy=ATTENTION_MODULATION_CURVE_ORDINATE,                      

& 

            ipol_value=this%gos_arousal, algstr="DDPINTERPOL",                

& 

            output_file="plot_debug_attention_modulation_" //                 

& 

                        TOSTR(Global_Time_Step_Model_Current) //              

& 

                        TAG_MMDD() // "_a_"// trim(this%individ_label()) //   

& 

                        "_" // RAND_STRING(LABEL_LENGTH, 

LABEL_CST,LABEL_CEN) & 

                        // PS ) 

 

    !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - 

    !> **Second**, we reset the attention weights for the **dominant GOS 

    !! state** to their **default** parameter values whereas for all other 

    !! states, to the **recalculated** `percept_w` modulated 

    !! value. 

    !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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- - - 

    !> The **dominant** state is **hunger**: 

    RESET_DOMINANT: if ( this%motivations%hunger%is_dominant() ) then 

 

      !> @note Dominant is **hunger**. 

      call this%motivations%hunger%attention_weight%attention_init            

& 

          (weight_light    = ATTENTION_WEIGHT_HUNGER_LIGHT,                   

& 

           weight_depth    = ATTENTION_WEIGHT_HUNGER_DEPTH,                   

& 

           weight_food_dir = ATTENTION_WEIGHT_HUNGER_FOOD_DIR,                

& 

           weight_food_mem = ATTENTION_WEIGHT_HUNGER_FOOD_MEM,                

& 

           weight_conspec  = ATTENTION_WEIGHT_HUNGER_CONSPEC,                 

& 

           weight_predator = ATTENTION_WEIGHT_HUNGER_PREDATOR,                

& 

           weight_stomach  = ATTENTION_WEIGHT_HUNGER_STOMACH,                 

& 

           weight_bodymass = ATTENTION_WEIGHT_HUNGER_BODYMASS,                

& 

           weight_energy   = ATTENTION_WEIGHT_HUNGER_ENERGY,                  

& 

           weight_age      = ATTENTION_WEIGHT_HUNGER_AGE,                     

& 

           weight_reprfac  = ATTENTION_WEIGHT_HUNGER_REPRFAC ) 

 

      call this%motivations%avoid_passive%attention_weight%attention_init     

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_PASS_LIGHT * 

percept_w,   & 

           weight_depth    = ATTENTION_WEIGHT_AVOID_PASS_DEPTH * 

percept_w,   & 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_PASS_FOOD_DIR * 

percept_w,& 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_PASS_FOOD_MEM * 

percept_w,& 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_PASS_CONSPEC * 

percept_w, & 

           weight_predator = ATTENTION_WEIGHT_AVOID_PASS_PREDATOR * 

percept_w,& 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_PASS_STOMACH * 

percept_w, & 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_PASS_BODYMASS * 

percept_w,& 

           weight_energy   = ATTENTION_WEIGHT_AVOID_PASS_ENERGY * 

percept_w,  & 

           weight_age      = ATTENTION_WEIGHT_AVOID_PASS_AGE * percept_w,     

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_PASS_REPRFAC * 

percept_w ) 

 

      call this%motivations%avoid_active%attention_weight%attention_init      

& 
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          (weight_light    = ATTENTION_WEIGHT_AVOID_ACT_LIGHT * percept_w,    

& 

           weight_depth    = ATTENTION_WEIGHT_AVOID_ACT_DEPTH * percept_w,    

& 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_ACT_FOOD_DIR * 

percept_w, & 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_ACT_FOOD_MEM * 

percept_w, & 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_ACT_CONSPEC * 

percept_w,  & 

           weight_predator = ATTENTION_WEIGHT_AVOID_ACT_PREDATOR * 

percept_w, & 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_ACT_STOMACH * 

percept_w,  & 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_ACT_BODYMASS * 

percept_w, & 

           weight_energy   = ATTENTION_WEIGHT_AVOID_ACT_ENERGY * 

percept_w,   & 

           weight_age      = ATTENTION_WEIGHT_AVOID_ACT_AGE * percept_w,      

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_ACT_REPRFAC * 

percept_w ) 

 

      call this%motivations%reproduction%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_REPRODUCE_LIGHT * percept_w,    

& 

           weight_depth    = ATTENTION_WEIGHT_REPRODUCE_DEPTH * percept_w,    

& 

           weight_food_dir = ATTENTION_WEIGHT_REPRODUCE_FOOD_DIR * 

percept_w, & 

           weight_food_mem = ATTENTION_WEIGHT_REPRODUCE_FOOD_MEM * 

percept_w, & 

           weight_conspec  = ATTENTION_WEIGHT_REPRODUCE_CONSPEC * 

percept_w,  & 

           weight_predator = ATTENTION_WEIGHT_REPRODUCE_PREDATOR * 

percept_w, & 

           weight_stomach  = ATTENTION_WEIGHT_REPRODUCE_STOMACH * 

percept_w,  & 

           weight_bodymass = ATTENTION_WEIGHT_REPRODUCE_BODYMASS * 

percept_w, & 

           weight_energy   = ATTENTION_WEIGHT_REPRODUCE_ENERGY * 

percept_w,   & 

           weight_age      = ATTENTION_WEIGHT_REPRODUCE_AGE * percept_w,      

& 

           weight_reprfac  = ATTENTION_WEIGHT_REPRODUCE_REPRFAC * 

percept_w ) 

 

    !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - 

    !> The **dominant** state is **avoid_passive**: 

    else if ( this%motivations%avoid_passive%is_dominant() ) then 

RESET_DOMINANT 

 

      call this%motivations%hunger%attention_weight%attention_init            

& 
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          (weight_light    = ATTENTION_WEIGHT_HUNGER_LIGHT * percept_w,       

& 

           weight_depth    = ATTENTION_WEIGHT_HUNGER_DEPTH * percept_w,       

& 

           weight_food_dir = ATTENTION_WEIGHT_HUNGER_FOOD_DIR * percept_w,    

& 

           weight_food_mem = ATTENTION_WEIGHT_HUNGER_FOOD_MEM * percept_w,    

& 

           weight_conspec  = ATTENTION_WEIGHT_HUNGER_CONSPEC * percept_w,     

& 

           weight_predator = ATTENTION_WEIGHT_HUNGER_PREDATOR * percept_w,    

& 

           weight_stomach  = ATTENTION_WEIGHT_HUNGER_STOMACH * percept_w,     

& 

           weight_bodymass = ATTENTION_WEIGHT_HUNGER_BODYMASS * percept_w,    

& 

           weight_energy   = ATTENTION_WEIGHT_HUNGER_ENERGY * percept_w,      

& 

           weight_age      = ATTENTION_WEIGHT_HUNGER_AGE * percept_w,         

& 

           weight_reprfac  = ATTENTION_WEIGHT_HUNGER_REPRFAC * percept_w ) 

 

      !> @note Dominant **avoid_passive**. 

      call this%motivations%avoid_passive%attention_weight%attention_init     

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_PASS_LIGHT,               

& 

           weight_depth    = ATTENTION_WEIGHT_AVOID_PASS_DEPTH,               

& 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_PASS_FOOD_DIR,            

& 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_PASS_FOOD_MEM,            

& 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_PASS_CONSPEC,             

& 

           weight_predator = ATTENTION_WEIGHT_AVOID_PASS_PREDATOR,            

& 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_PASS_STOMACH,             

& 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_PASS_BODYMASS,            

& 

           weight_energy   = ATTENTION_WEIGHT_AVOID_PASS_ENERGY,              

& 

           weight_age      = ATTENTION_WEIGHT_AVOID_PASS_AGE,                 

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_PASS_REPRFAC ) 

 

      call this%motivations%avoid_active%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_ACT_LIGHT * percept_w,    

& 

           weight_depth    = ATTENTION_WEIGHT_AVOID_ACT_DEPTH * percept_w,    

& 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_ACT_FOOD_DIR * 

percept_w, & 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_ACT_FOOD_MEM * 
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percept_w, & 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_ACT_CONSPEC * 

percept_w,  & 

           weight_predator = ATTENTION_WEIGHT_AVOID_ACT_PREDATOR * 

percept_w, & 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_ACT_STOMACH * 

percept_w,  & 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_ACT_BODYMASS * 

percept_w, & 

           weight_energy   = ATTENTION_WEIGHT_AVOID_ACT_ENERGY * 

percept_w,   & 

           weight_age      = ATTENTION_WEIGHT_AVOID_ACT_AGE * percept_w,      

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_ACT_REPRFAC * 

percept_w ) 

 

      call this%motivations%reproduction%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_REPRODUCE_LIGHT * percept_w,    

& 

           weight_depth    = ATTENTION_WEIGHT_REPRODUCE_DEPTH * percept_w,    

& 

           weight_food_dir = ATTENTION_WEIGHT_REPRODUCE_FOOD_DIR * 

percept_w, & 

           weight_food_mem = ATTENTION_WEIGHT_REPRODUCE_FOOD_MEM * 

percept_w, & 

           weight_conspec  = ATTENTION_WEIGHT_REPRODUCE_CONSPEC * 

percept_w,  & 

           weight_predator = ATTENTION_WEIGHT_REPRODUCE_PREDATOR * 

percept_w, & 

           weight_stomach  = ATTENTION_WEIGHT_REPRODUCE_STOMACH * 

percept_w,  & 

           weight_bodymass = ATTENTION_WEIGHT_REPRODUCE_BODYMASS * 

percept_w, & 

           weight_energy   = ATTENTION_WEIGHT_REPRODUCE_ENERGY * 

percept_w,   & 

           weight_age      = ATTENTION_WEIGHT_REPRODUCE_AGE * percept_w,      

& 

           weight_reprfac  = ATTENTION_WEIGHT_REPRODUCE_REPRFAC * 

percept_w ) 

 

    !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - 

    !> The **dominant** state is **avoid_active**: 

    else if ( this%motivations%avoid_active%is_dominant() ) then 

RESET_DOMINANT 

 

      call this%motivations%hunger%attention_weight%attention_init            

& 

          (weight_light    = ATTENTION_WEIGHT_HUNGER_LIGHT * percept_w,       

& 

           weight_depth    = ATTENTION_WEIGHT_HUNGER_DEPTH * percept_w,       

& 

           weight_food_dir = ATTENTION_WEIGHT_HUNGER_FOOD_DIR * percept_w,    

& 

           weight_food_mem = ATTENTION_WEIGHT_HUNGER_FOOD_MEM * percept_w,    
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& 

           weight_conspec  = ATTENTION_WEIGHT_HUNGER_CONSPEC * percept_w,     

& 

           weight_predator = ATTENTION_WEIGHT_HUNGER_PREDATOR * percept_w,    

& 

           weight_stomach  = ATTENTION_WEIGHT_HUNGER_STOMACH * percept_w,     

& 

           weight_bodymass = ATTENTION_WEIGHT_HUNGER_BODYMASS * percept_w,    

& 

           weight_energy   = ATTENTION_WEIGHT_HUNGER_ENERGY * percept_w,      

& 

           weight_age      = ATTENTION_WEIGHT_HUNGER_AGE * percept_w,         

& 

           weight_reprfac  = ATTENTION_WEIGHT_HUNGER_REPRFAC * percept_w  

) 

 

      call this%motivations%avoid_passive%attention_weight%attention_init     

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_PASS_LIGHT * 

percept_w,   & 

           weight_depth    = ATTENTION_WEIGHT_AVOID_PASS_DEPTH * 

percept_w,   & 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_PASS_FOOD_DIR * 

percept_w,& 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_PASS_FOOD_MEM * 

percept_w,& 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_PASS_CONSPEC * 

percept_w, & 

           weight_predator = ATTENTION_WEIGHT_AVOID_PASS_PREDATOR * 

percept_w,& 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_PASS_STOMACH * 

percept_w, & 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_PASS_BODYMASS * 

percept_w,& 

           weight_energy   = ATTENTION_WEIGHT_AVOID_PASS_ENERGY * 

percept_w,  & 

           weight_age      = ATTENTION_WEIGHT_AVOID_PASS_AGE * percept_w,     

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_PASS_REPRFAC * 

percept_w ) 

 

      !> @note Dominant is **avoid_active**. 

      call this%motivations%avoid_active%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_ACT_LIGHT,                

& 

           weight_depth    = ATTENTION_WEIGHT_AVOID_ACT_DEPTH,                

& 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_ACT_FOOD_DIR,             

& 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_ACT_FOOD_MEM,             

& 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_ACT_CONSPEC,              

& 

           weight_predator = ATTENTION_WEIGHT_AVOID_ACT_PREDATOR,             

& 
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           weight_stomach  = ATTENTION_WEIGHT_AVOID_ACT_STOMACH,              

& 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_ACT_BODYMASS,             

& 

           weight_energy   = ATTENTION_WEIGHT_AVOID_ACT_ENERGY,               

& 

           weight_age      = ATTENTION_WEIGHT_AVOID_ACT_AGE,                  

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_ACT_REPRFAC ) 

 

      call this%motivations%reproduction%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_REPRODUCE_LIGHT * percept_w,    

& 

           weight_depth    = ATTENTION_WEIGHT_REPRODUCE_DEPTH * percept_w,    

& 

           weight_food_dir = ATTENTION_WEIGHT_REPRODUCE_FOOD_DIR * 

percept_w, & 

           weight_food_mem = ATTENTION_WEIGHT_REPRODUCE_FOOD_MEM * 

percept_w, & 

           weight_conspec  = ATTENTION_WEIGHT_REPRODUCE_CONSPEC * 

percept_w,  & 

           weight_predator = ATTENTION_WEIGHT_REPRODUCE_PREDATOR * 

percept_w, & 

           weight_stomach  = ATTENTION_WEIGHT_REPRODUCE_STOMACH * 

percept_w,  & 

           weight_bodymass = ATTENTION_WEIGHT_REPRODUCE_BODYMASS * 

percept_w, & 

           weight_energy   = ATTENTION_WEIGHT_REPRODUCE_ENERGY * 

percept_w,   & 

           weight_age      = ATTENTION_WEIGHT_REPRODUCE_AGE * percept_w,      

& 

           weight_reprfac  = ATTENTION_WEIGHT_REPRODUCE_REPRFAC * 

percept_w ) 

 

    !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - 

    !> The **dominant** state is **reproduction**: 

    else if ( this%motivations%reproduction%is_dominant() ) then 

RESET_DOMINANT 

 

      call this%motivations%hunger%attention_weight%attention_init            

& 

          (weight_light    = ATTENTION_WEIGHT_HUNGER_LIGHT * percept_w,       

& 

           weight_depth    = ATTENTION_WEIGHT_HUNGER_DEPTH * percept_w,       

& 

           weight_food_dir = ATTENTION_WEIGHT_HUNGER_FOOD_DIR * percept_w,    

& 

           weight_food_mem = ATTENTION_WEIGHT_HUNGER_FOOD_MEM * percept_w,    

& 

           weight_conspec  = ATTENTION_WEIGHT_HUNGER_CONSPEC * percept_w,     

& 

           weight_predator = ATTENTION_WEIGHT_HUNGER_PREDATOR * percept_w,    

& 

           weight_stomach  = ATTENTION_WEIGHT_HUNGER_STOMACH * percept_w,     



63 

 

& 

           weight_bodymass = ATTENTION_WEIGHT_HUNGER_BODYMASS * percept_w,    

& 

           weight_energy   = ATTENTION_WEIGHT_HUNGER_ENERGY * percept_w,      

& 

           weight_age      = ATTENTION_WEIGHT_HUNGER_AGE * percept_w,         

& 

           weight_reprfac  = ATTENTION_WEIGHT_HUNGER_REPRFAC * percept_w ) 

 

      call this%motivations%avoid_passive%attention_weight%attention_init     

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_PASS_LIGHT * 

percept_w,   & 

           weight_depth    = ATTENTION_WEIGHT_AVOID_PASS_DEPTH * 

percept_w,   & 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_PASS_FOOD_DIR * 

percept_w,& 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_PASS_FOOD_MEM * 

percept_w,& 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_PASS_CONSPEC * 

percept_w, & 

           weight_predator = ATTENTION_WEIGHT_AVOID_PASS_PREDATOR * 

percept_w,& 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_PASS_STOMACH * 

percept_w, & 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_PASS_BODYMASS * 

percept_w,& 

           weight_energy   = ATTENTION_WEIGHT_AVOID_PASS_ENERGY * 

percept_w,  & 

           weight_age      = ATTENTION_WEIGHT_AVOID_PASS_AGE * percept_w,     

& 

           weight_reprfac  = ATTENTION_WEIGHT_AVOID_PASS_REPRFAC * 

percept_w ) 

 

      call this%motivations%avoid_active%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_AVOID_ACT_LIGHT * percept_w,    

& 

           weight_depth    = ATTENTION_WEIGHT_AVOID_ACT_DEPTH * percept_w,    

& 

           weight_food_dir = ATTENTION_WEIGHT_AVOID_ACT_FOOD_DIR * 

percept_w, & 

           weight_food_mem = ATTENTION_WEIGHT_AVOID_ACT_FOOD_MEM * 

percept_w, & 

           weight_conspec  = ATTENTION_WEIGHT_AVOID_ACT_CONSPEC * 

percept_w,  & 

           weight_predator = ATTENTION_WEIGHT_AVOID_ACT_PREDATOR * 

percept_w, & 

           weight_stomach  = ATTENTION_WEIGHT_AVOID_ACT_STOMACH * 

percept_w,  & 

           weight_bodymass = ATTENTION_WEIGHT_AVOID_ACT_BODYMASS * 

percept_w, & 

           weight_energy   = ATTENTION_WEIGHT_AVOID_ACT_ENERGY * 

percept_w,   & 

           weight_age      = ATTENTION_WEIGHT_AVOID_ACT_AGE * percept_w,      

& 
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           weight_reprfac  = ATTENTION_WEIGHT_AVOID_ACT_REPRFAC * 

percept_w ) 

 

      !> @note Dominant **reproduction**. 

      call this%motivations%reproduction%attention_weight%attention_init      

& 

          (weight_light    = ATTENTION_WEIGHT_REPRODUCE_LIGHT,                

& 

           weight_depth    = ATTENTION_WEIGHT_REPRODUCE_DEPTH,                

& 

           weight_food_dir = ATTENTION_WEIGHT_REPRODUCE_FOOD_DIR,             

& 

           weight_food_mem = ATTENTION_WEIGHT_REPRODUCE_FOOD_MEM,             

& 

           weight_conspec  = ATTENTION_WEIGHT_REPRODUCE_CONSPEC,              

& 

           weight_predator = ATTENTION_WEIGHT_REPRODUCE_PREDATOR,             

& 

           weight_stomach  = ATTENTION_WEIGHT_REPRODUCE_STOMACH,              

& 

           weight_bodymass = ATTENTION_WEIGHT_REPRODUCE_BODYMASS,             

& 

           weight_energy   = ATTENTION_WEIGHT_REPRODUCE_ENERGY,               

& 

           weight_age      = ATTENTION_WEIGHT_REPRODUCE_AGE,                  

& 

           weight_reprfac  = ATTENTION_WEIGHT_REPRODUCE_REPRFAC ) 

 

    end if RESET_DOMINANT 

 

  end subroutine gos_attention_modulate_weights 
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A4. R-script for statistical analysis 
 

# Breakpoint linear regression, unconstrained, single breakpoint, 

#   In this model x is ADF, y is AVERAGE GOS streak (average) 

# 

# Based on the method from: 

# 

https://www.r-bloggers.com/r-for-ecologists-putting-together-a-piecew

ise-regression/ 

#--------------------------------------------------------------------

----------- 

# # SVN version info: 

# $Id: script.breakpoint.R 3086 2017-03-20 19:02:56Z sbu062 $ 

#--------------------------------------------------------------------

----------- 

 

#####################################################################

########### 

# Function to perform a breakdown linear model and determine a breakdown 

point. 

# the optimal breakdown is determined using the standard parametric sigma 

# (standard deviation of the residuals) or AIC. 

# NOTE: In the function ADF is the independent variable (x) and 

#       AVERAGE is the dependent variable (y)) 

breakdown.linear.model <- function(ADF, AVERAGE, 

                                   search_min=0.4, search_max=0.99, 

                                   min_sigma=TRUE, 

                                   xlabel= "Predictor", 

                                   ylabel= "Response")                  

{ 

 

  # Make a variable to keep range of breakpoints 

  breaks <- ADF[which(ADF >= search_min & ADF <= search_max)] 

 

  

#--------------------------------------------------------------------

--------- 

  # Iteratively search breakpoints for the model minimize residual MSE 

or AIC 

  mse <- numeric(length(breaks))  # Vector to keep residual MSE 

  aics <- numeric(length(breaks)) # Vector to keep AIC values 

 

  for(i in 1:length(breaks)){ 

   model.piecewise.part <- lm(AVERAGE ~ ADF*(ADF < breaks[i]) 

                                                         + 

ADF*(ADF>=breaks[i])) 

   # Calculate residual standard deviation (sigma) 

   mse[i] <- summary(model.piecewise.part)[6] # obtained from summary 

   #mse[i] <- sigma(model.piecewise.part)     # or 'sigma' function 

   # Calculate AIC, Akaike Information Criterion value 
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   aics[i] <- AIC(model.piecewise.part) 

  } 

 

  # Print actual breakpoint vector to search the optimum within. 

  print("The range of breakpoints to optimise:") 

  print(breaks) 

 

  # MSEs AICs are keept in these vectors 

  mse <- as.numeric(mse) # require it to make mse a vector 

  print("Output all values of 'sigma' and AIC:") 

  print(mse)   # print sigmas 

  print(aics)  # print AIC 

   

  print("Minimum AIC for the broken model:") 

  print(min(aics)) 

 

  # The best model and respectively the optimal breakpoint is that which 

  # minimises the standard deviation of the residuals (MSE) or AIC. 

  min_mse <- breaks[which(mse==min(mse))] 

  min_aics <- breaks[which(aics==min(aics))] 

  print ("ADF Breakpoint based on sigma and AIC:") 

  print(min_mse)   # print these values 

  print(min_aics) 

 

  # The breakpoint can be based either on MSE or AIC 

  if ( min_sigma ) { 

    point <- min_mse 

    print("Optimisation is based on 'sigma'.") 

    } 

  else { 

    point <- min_aics 

    print("Optimisation is based on AIC.") 

    } 

  print("The actual breakpoint value is:") 

  print(point) 

 

  # Run the final model 

  model.piecewise <- lm(AVERAGE ~ ADF*(ADF < point) + ADF*(ADF > point)) 

  print("Final fitted model parameters:") 

  print( summary(model.piecewise) ) 

 

  

#--------------------------------------------------------------------

--------- 

  # Plotting the two-part linear regression 

  # 1. basic scatterplot 

  plot(ADF,AVERAGE, ylim = c(0,30),  pch=16, xlab=xlabel, ylab=ylabel) 

  # 2. first part of the linear curve with parameter estimates from model 

  # summary 

  curve((model.piecewise$coefficients[1] + 

model.piecewise$coefficients[3]) + 

        (model.piecewise$coefficients[2] + 

model.piecewise$coefficients[5]) * x, 
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        add=T, from=0, to=point) 

  # 3. second part of the linear curvem after the breakpoint... 

  curve((model.piecewise$coefficients[1] + 

model.piecewise$coefficients[4]) + 

        model.piecewise$coefficients[2] * x, 

        add=T, from=point, to=max(ADF)) 

  # 4. vertical breakpoint line 

  abline(v=point, lty=3) 

 

  

#--------------------------------------------------------------------

--------- 

  # Also plot the breakpoint minimum as bars of MSE or AIC 

  print(mse) 

  barplot(mse, names.arg = breaks, 

            ylab="Standard deviation of residuals", xlab="Breakpoint") 

  print(aics) 

  barplot(aics, names.arg = breaks, ylab="AIC", xlab="Breakpoint") 

 

} 

#####################################################################

########### 

 

# Data analysis using this function 

 

# Data are obtained from the CSV data file: 

streaks <- read.csv("streaks4_switch.csv") 

 

# Data is saved as 'streaks', attach first 

attach(streaks) 

 

# Do the data analysis: breakdown model 

breakdown.linear.model(ADF, SWITCHES, 0.4, 1.0, FALSE, "ADF", "Number of 

switches") 

 

# Do additional data analysis: single line model 

model.nobroken <- lm(SWITCHES ~ ADF) 

summary(model.nobroken) 

plot (ADF, SWITCHES, ylim=c(0,30), pch=16, ylab="Number of switches") 

abline( summary(model.nobroken)$coefficients[1], 

        summary(model.nobroken)$coefficients[2] ) 

print("AIC for the Single-line model:") 

print(AIC(model.nobroken)) 

 

# Detach the working data frame 

detach(streaks) 
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A5. Complete results  

Probability of switching (%) 
Attention Modulation Factor 

Standard attention restriction No attention restriction Linear attention restriction 

Arousal Dissipation Factor 

Constant 

0,95 4,2 19,5 0 

0,85 16,7 34,7 0 

0,20 30 34,7 8,4 

Function 

Slow 3,3 15,4 0 

Intermediate 8,8 25,3 0 

Fast 30 38,1 0,6 

 

Probability of re-evaluating (%) 
Attention Modulation Factor 

Standard attention restriction No attention restriction Linear attention restriction 

Arousal Dissipation Factor 

Constant 

0,95 26,2 29 28,6 

0,85 44,5 49,2 46,3 

0,20 53 54,2 55,3 

Function 

Slow 20 22,7 21,2 

Intermediate 37 38,5 36,7 

Fast 52,5 54,9 56,1 

 

Switch ratio (switches / re-evaluations) 
Attention Modulation Factor 

Standard attention restriction No attention restriction Linear attention restriction 

Arousal Dissipation Factor 

Constant 

0,95 0,16 0,67 0 

0,85 0,38 0,71 0 

0,20 0,57 0,64 0,15 

Function 

Slow 0,17 0,68 0 

Intermediate 0,24 0,66 0 

Fast 0,57 0,69 0,1 
 


