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ABSTRACT 

At Oslo airport, Gardermoen, Norway, large quantities of propylene glycol (PG) are used as de-

icing fluid during winter, causing high loads of this chemical to infiltrate in surrounding soil during 

snow melt and increasing concentrations of soluble manganese (Mn2+) and ferrous iron (Fe2+) in 

the groundwater. Previous studies have suggested that anaerobic microbial Mn and Fe reduction 

fuelled by PG in deeper soil layers is the primary reason for the observed increase of Mn2+ and 

Fe2+ and proposed nitrate (NO3
-) fertilization as a mitigation measure. However, laboratory and 

field experiments with NO3
- addition have yielded inconsistent, partly adverse results.  

To better understand the effect PG has on Mn2+ and Fe2+ release in the Gardermoen soil system, in 

the presence or absence of moderate NO3
- concentrations, a series of batch incubation experiments 

was carried out with non-contaminated top and subsoil sampled at a research site close to Oslo 

airport. Microbial activity was measured as O2, CO2, NO, N2O and N2 kinetics, while the release 

of Fe2+ and Mn2+ was monitored by subsampling the soil solution through microrhizones. After 26 

days of incubation, 16S-rDNA was extracted and sequenced to study the effect of PG and N on 

microbial community composition.  

Both, top- and subsoil released Mn2+ and Fe2+ in untreated controls but release rates were larger in 

the presence of PG. Top soil released on average 100 to 1000 times more Mn2+ than subsoil, which 

was attributed to a larger abundance of Mn(IV) reducing bacteria in the topsoil. Unlike in top soil, 

moderate NH4NO3 addition to the subsoil triggered additional Mn2+ release, apparently by 

relieving N limitation of microbial growth. The comparison of 16S rRNA-based taxonomic 

abundances before and after incubation of subsoil with PG and NO3
- revealed that the 

metabolically versatile families Comamonadaceae, Oxalobacteraceae and Pseudomonadaceae 

increased in relative abundance, likely dominating PG metabolism and Mn and Fe reduction 

observed at the end of the incubation. Therefore, NO3
-
 addition, although providing an alternative 

electron acceptor, cannot be recommended for mitigation of metal release, as it poses the risk to 

increase microbial Mn and Fe reduction in the subsoil. In contrast, measures that lead to a better 

aeration of the top layer, particularly during wet periods, appear to be the more promising approach 

to avoid Mn2+ and Fe2+ release.  
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INTRODUCTION 

 

Oslo airport is located at the Gardermoen glacial-contact delta, approximately 40 km north of Oslo 

in southeastern Norway. The delta forms an aquifer composed of sand with beds of gravel underlain 

by silty glaciomarine deposits (Jørgensen & Østmo 1990; Tuttle 1997). It is the largest rainfed 

aquifer in Norway. More than half of the aquifer recharge occurs during snow melt in the spring 

(Jørgensen & Østmo 1990).  

Several chemicals are released during the airport’s operations that potentially affect soils and 

groundwater locally. During the winter months October-April, large amounts of de-icing 

chemicals, typically glycols, are used to defrost planes, in addition to acetate or formate salts which 

are used to keep the runways ice-free (Ferguson et al. 2008). 

When it was decided that Oslo’s new main airport was to be built at Gardermoen, concerns were 

raised about the impact it would have on the groundwater and studies on the transport and 

degradation of de-icing fluids were initiated before the airport started operating in 1998 (French et 

al. 1994). The most urgent question, whether de-icing fluids would contaminate the groundwater 

directly or if it would be broken down in the soil profile, was quickly answered when de-icing 

fluids were detected in the groundwater already in the first year of operation 

(Samferdselsdepartementet 1999). This led to investment in specialized de-icing platforms 

designed to collect de-icing fluids from the 1999-2000 winter season onwards (Avinor 2000). 

Today, Oslo airport collects approximately 80% of fluids used for de-icing airplanes, while the 

remaining 20% are spread over the area alongside the runways or carried further by the aircraft 

(Wennberg et al. 2015; Øvstedal & Wejden 2007). 

Monitoring of the dispersion of de-icing chemicals at Oslo airport has shown that the largest load 

occurs close to the runway edge, 400 to 1000 m after the start position for take-off. The total load 

of propylene glycol (PG) deposited on surrounding soils is 100 - 200 tons per winter. This is a 

major reduction from the 2 800 tons spread prior to establishing the collection platforms in the 

winter season of 1998-1999 (Avinor 2000). Still, snow in the area close to the runway can contain 

up to 6000 ppm of PG, and the cumulative load can be up to 1.8 kg/m2 in one winter season 

(Øvstedal & Wejden 2007). 
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By limiting the use of de-icing fluids, the airport operator mostly complies with the release permit 

given by the Norwegian Environment Agency. However, concentrations of Mn2+ in the 

groundwater closest to the runway are clearly larger than in the surrounding areas, and 

concentrations have slightly increased since the start of monitoring in 1999. Likewise, elevated 

Fe2+ concentrations have been reported from groundwater close to the runway, starting to increase 

in 2006. Mn2+ and Fe2+ peak concentrations have been observed to occur especially during the 

summer months (Avinor 2016). 

The aquifer underlying Oslo airport is currently not used as a source for drinking water, but there 

is a general interest to preserve the aquifer as a future resource, which makes avoidance of 

contamination urgent. Dissolved manganese and iron are generally undesirable in drinking water, 

as they cause a bad taste and colour as well as precipitates in pipelines, potentially causing pressure 

build-up and increased maintenance costs (Solheim et al. 2008). Hence, in-depth understanding of 

the conditions supporting Mn/Fe release from the soil to the groundwater and the role of de-icing 

chemicals therein are crucial for evaluating whether the use of de-icing fluids in its present form is 

environmentally justified or whether measures to avoid Mn/Fe release should be taken, preferably 

without compromising the desirable biological degradation of de-icing substances in the 

unsaturated zone. 

 

1.1 The Moreppen research station and the Gardermoen soil system 

The Moreppen research station was established in 1992 as a 2.4 m deep lysimeter trench to monitor 

environmental data in soil representative for the surroundings of Oslo airport and to perform 

transport studies with de-icing chemicals (Figure 1.1, French et al. 1994). Soils in the unsaturated 

zone of Moreppen are predominately coarse to medium-sized sands, containing a decreasing 

amount of gravel with depth, occasional pockets of silt and a layer of fine or laminated sand at the 

bottom of the profile. The trench and the surrounding area have been used for numerous studies 

organized in long-term research programs, such as “The environment of the subsurface - Part I: 

The Gardermoen Project 1992-95” and “Soil Contamination: Advanced integrated characterisation 

and time lapse Monitoring (SoilCAM) 2008-2012.” 
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The Gardermoen project stated that the Moreppen soil system has a relatively large degradation 

capacity for different pollutants connected to the airport (French et al. 2001) which, however, 

depends on the residence time of the chemicals in the unsaturated zone. Model studies on meltwater 

flow suggest that the degradation capacity is additionally controlled by soil heterogeneity (French 

1999, Figure 0.1), permeability and micro-topography of the ground surface (Kitterød 2007; French 

et al. 2002).  

 

Figure 0.1: Heterogeneity of soils as assessed along the walls of the Moreppen lysimeter trench. From 

French et al. (1994). The North, West and South walls are equipped with various instrumentation, whereas 

the East wall was kept as an undisturbed reference profile and was used for soil sample collection in the 

present study. 

De-icing chemicals are typically used during the winter months, allowing the chemicals to mix 

with the snow alongside the runways. Since de-icing chemicals are liquid at temperatures below 

0ºC, they readily infiltrate into the frozen soil. Studies at Moreppen have demonstrated infiltration 

of melt water with elevated concentrations of de-icing chemicals during the first part of the melting 

period (French et al. 1996). The same study showed that de-icing chemicals accelerated snow melt 
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relative to snow without de-icing chemicals, resulting in a larger and earlier flush of contaminated 

melt water infiltrating the soil. 

The ground water table at Moreppen before the snowmelt season of 2001 was 3.3 meter below the 

surface and rose to 2.8 m during snowmelt from early April to early May, despite the temperature 

in the upper one meter of soil being only between -0.5 and 1ºC, increasing to 2 - 4ºC not before 

late in April. Concentrations of sodium bromide (NaBr) along the profile, applied as tracer, 

indicated preferential flow, mediating rapid infiltration of melt water down to 1.5 m depth (French 

et al. 2002; Kitterød 2007). Simultaneously to the preferential flow, melt water distributed laterally 

in the surface layers, which became particularly apparent when the ground started to thaw. This 

infiltration pattern, and the observation that the majority of the de-icing chemicals are infiltrated 

during the “first flush” of melt water (French et al. 1996; French & Binley 2004) suggests that in 

addition to some infiltration in the upper layers, PG is transported to deeper soil layers bypassing 

the top soil. Moreover, propylene glycol does not adsorb to the soil particles (French 1999), so that 

water transport in the profile is the prime factor determining its residence time in the unsaturated 

zone. 

Previous field experiments and airport monitoring found increased concentrations of manganese in 

the pore water and groundwater during the summer period, when degradation of propylene glycol 

was fastest (French et al. 2001; Avinor 2016). Although not measured, iron was likely also 

released, as it precipitated as iron oxides in the sampling bottles (French pers. comm.). Since iron 

and manganese are only mobile in their reduced form (2+), i.e. in the absence of oxygen which 

quickly oxidize Fe and Mn to immobile forms, this was a strong indication that anaerobic 

conditions were present during summer also in the unsaturated zone, possible triggered by the high 

oxygen demand of biological PG degradation. Degradation processes were studied further in the 

SoilCAM project focusing on degradation products, redox conditions and possible remediation 

techniques such as adding nitrate (Toscano et al. 2014; Lissner et al. 2014). Nitrate addition was 

tested in 1 m long cores with soil from PG-affected areas at Oslo airport. Nitrate addition did not 

reduce Fe and Mn release nor did it increase PG degradation, and it was  concluded that nitrate 

does not work as an alternative electron acceptor (Lissner et al. 2014). However, testing the 

addition of nitrate to an anaerobic soil slurry of a subsoil (-4 m) from Oslo airport inhibited Mn2+ 

and Fe2+ formation and increased PG degradation (Toscano et al. 2014). 
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1.2 Respiration and electron acceptors 

All living organisms rely on energy-yielding metabolism for maintenance and growth. Unlike 

eukaryotes, prokaryotes show a wide metabolic versatility with respect to their substrates and a 

stunning ability to use widely different electron acceptors for energy conservation. Energy 

conservation in bacteria is commonly coupled to oxidation-reduction (short: red-ox) reactions, 

where oxidation is defined as the removal of an electron from a substrate (the “electron donor”), 

while reduction is defined as the addition of an electron to another substrate (the “electron 

acceptor”). In aerobic respiration, oxygen is the electron acceptor, being reduced to water  

(Madigan et al. 2014), whereas in anoxic respiration various electron acceptors can be used.  

Prokaryotes utilize a large variety of substrates as electron donors, both inorganic and organic ones. 

Heterotrophs or chemoorganotrophs oxidise organic compounds, ranging from simple 3-carbon 

compounds such as glycols (Willetts 1979; Child & Willetts 1978) to more complex molecules 

such as polyaromatic hydrocarbons (Cerniglia 1984; Johnsen et al. 2005). Chemolithotrophs, in 

contrast, oxidize reduced inorganic compounds, such as H2, NH4
+, CH4, H2S (Schmidt et al. 2002; 

Arp & Stein 2003; Francis et al. 2007) or Fe2+ (Weber et al. 2006). 

To yield energy, organisms couple an electron donor to an electron acceptor via metabolic 

pathways. As mentioned above, in aerobic respiration, O2 is the terminal electron acceptor. In 

anoxic respiration, other electron acceptors must be utilized as terminal electron acceptors, such as 

NO3
-, Mn(IV), Fe(III), SO4

- and CO2 (Madigan et al. 2014). 

Another option for energy generation is using an organic compound simultaneously as electron 

donor and electron acceptor, as in fermentation. Fermentation creates energy through substrate-

level phosphorylation, a process where ATP is synthesized by phosphorylation of ADP directly 

from energy-rich intermediates during steps in the catabolism of the substrate being fermented. In 

respiration, ATP is synthesized from a proton motive force generated from the electron transport 

chain of a redox reaction, causing an energized membrane that can drive phosphorylation of ADP 

to ATP. 

Some microorganisms, termed aerobes, are only capable of aerobic respiration, while others, 

termed anaerobes, are only capable of fermentation or anaerobic respiration. However, some 
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microorganisms, termed facultative aerobes, are able to switch between different types of energy-

yielding metabolism based on environmental conditions, such as denitrifiers (Madigan et al. 2014). 

Theoretically, the type of prevailing microbial metabolism depends on the organism present, the 

type and availability of electron donors and acceptors and the achievable energy yield from the 

metabolic reactions. The “redox tower” (Figure 0.2) is a way to visualize the variety of red-ox 

reactions that can be utilized for microbial respiration. The listed red-ox couples can be 

conceptualized as chemical half reactions, which must be combined for a metabolic reaction to 

occur. When two half reactions are combined, the “tower” predicts metabolism supported by 

oxidation of the couple with the highest E0’-value and reduction of the couple with the lowest E0’. 

For example the NO3
-/NO2

- (0.42 V) couple combined with the CO2/glucose (-0.43 V) couple 

yields the following reaction: 

12NO3
- + C6H12O6   12NO2

- + 6H2O + 6CO2  

In this case, NO3
- is reduced, since it has the highest E0’ value, and glucose is oxidized, since 

CO2/glucose has the lowest E0’ value (-0.43 V). In total, 12 × 2 electrons are transferred from 

glucose to NO3
-. For a given electron donor, metabolism should be favored involving the electron 

acceptor yielding the most energy, as predicted from the difference between the two E0’-values. 

From the redox tower (Figure 0.2) it can be seen that the O2/H2O couple yields the most energy, 

with an E0’ value of 0.82 V. Thus, when oxygen is present as electron acceptor, aerobic respiration 

is favoured. 

In denitrification, the complete reduction of nitrate to molecular nitrogen gas has an E0’ value of 

0.74 V, which comes close to the energy yield in oxic respiration. Dissimilatory nitrate reduction 

to N2 should thus be the preferred metabolic pathway under anaerobic condition as long as NO3
- is 

present. However, not all denitrifiers possess the ability to induce enzymes that can reduce NO3
- 

all the way to N2 via the intermediates NO2
-, NO and N2O and truncated metabolic pathways with 

less energy yield exist Apart from denitrification, many bacteria can perform nitrate respiration, 

i.e. reduce NO3
- to NO2

- (E0’ value for NO3
-/NO2

- couple: 0.42 V). 
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Figure 0.2: The Redox Tower. Redox couples with their corresponding reduction potential at standard 

conditions (E0’) are listed in descending order, at pH 7 unless otherwise stated. The direction of the 

electron flow is visualized by the arrow on the left. In theory, any reaction at the bottom of the redox 

tower can be coupled to the reactions listed on the top of the redox tower, with the amount of energy 

available from the full reaction (ΔG’, proportional to ΔE0’) given as the difference between the two 

reactions. Modified from Madigan et al. (2014), Hinks et al. (2017) and Weber et al. (2006). 
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For the Mn(IV)/Mn(II) couple, the E0’ potential is 0.47V, which is larger than that of nitrate 

reduction to nitrite. However, the E0’ assumes Mn(IV) is readily available in solution, which is not 

often the case, as Mn(IV) is primarily present as oxides, such as MnO2, which has a low solubility. 

The same is the case for the reduction of ferric iron (Fe(III)) to ferrous iron (Fe(II)). Even though 

the Fe(III)/Fe(II) couple at pH 2 has an E0 value close to the value of  the O2/H2O couple (0.77 and 

0.81, respectively), Fe(III) exists typically as polymorphic oxide or hydroxide, such as akageneite 

or magnetite (Hinks et al. 2017). Thus, low solubility limits the availability of metal oxides as 

electron acceptors, as compared with O2 or NO3
-, which are readily soluble and can diffuse through 

soil and into cells. The solid character of Mn(IV) and Fe(III) is likely the reason why the ability 

for dissimilatory (energy-yielding) iron and manganese reduction is less ubiquitous than nitrate 

reduction. 

Dissimilatory iron and manganese reduction by cultured organisms was first reported in 1988 for 

an isolate of Alteromonas putrefaciens (now named Shewanella putrefaciens, Myers & Nealson 

(1988a) and Geobacter metallireducens (first isolated strain named GS-15 by Lovley & Phillips 

(1988b). To facilitate electron transfer between microorganisms and solid Fe(III) oxide surfaces, 

three mechanisms have been proposed (Weber et al. 2006): i) direct contact between the organism 

and the oxide surface through conductive extracellular appendages, called 'nanowires' as 

demonstrated for Geobacter sp. (Reguera et al. 2005), ii) molecules that serve as electron shuttles 

produced either endogenously or exogenously (Lovley et al. 1996; Newman & Kolter 2000; Turick 

et al. 2002; Hernandez et al. 2004) and ii) excretion of complexing ligands that make Fe(III) more 

soluble, hence more easily available for the microorganism, as demonstrated for Geothrix sp. 

(Nevin & Lovley 2002). 

As many bacteria, both anaerobes and facultative aerobes, are able to utilize a range of electron 

acceptors, the electron acceptor with the highest reduction potential is believed to inhibit the use 

of electron acceptors with lower reduction potentials (Madigan et al. 2014).  Consequently, soils 

may quickly turn anoxic when abundant electron donors with a low reduction potential (high 

oxidation potential) are added, such as in fresh organic matter (simplified as CH2O in Figure 0.2) 

or de-icing fluids. Saturated conditions, such as in unconfined groundwater, with large inputs of 

dissolved organic carbon , are particularly susceptible to anoxia as the oxygen may be respired 

before it diffuses from the surface into deeper soil layers. If other electron acceptors are present, 
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anaerobic respiration will occur, first depleting nitrate, potentially releasing gaseous denitrification 

products, before reducing available Mn(IV)/Fe(III) to water soluble Mn(II) and Fe(II), and 

eventually sulphate and CO2, to H2S and CH4, respectively (Madigan et al. 2014). 

Apart from using substrates for growth, microorganisms need certain elements for growth, 

especially nitrogen and phosphorous. Nitrate may be assimilated as a source of nitrogen instead of 

being used as an electron acceptor, however ammonium or urea are usually preferred and inhibit 

assimilatory nitrate reduction (Jansson et al. 1955; Recous et al. 1990; Recous et al. 1992), even 

at low concentrations (Rice & Tiedje 1989).  

 

1.3 Degradation of propylene glycol 

Propylene glycol (PG), also called propane-1,2-diol (Figure 0.3), is a water-miscible 3-carbon 

compound (C3H8O2) with a molar mass of 76.10 g mol-1. The melting point of pure PG is -60 ºC 

(Lide 2008), and it can lower the freezing point of water down to -60 ºC in a 60:40 PG:water 

mixture (DOW 2008). In addition to the use as a de-icing fluid, PG is used for the chemical 

production of polyester resins (Parker & Moffett 1954), as an additive to food and a solvent for 

pharmaceuticals, due to its relatively low toxicity (Zar et al. 2007). 

 

 

Figure 0.3: Structural formula of propane-1,2-diol, C3H8O2. 

 

The compound is generally considered to be easily degradable by microorganisms in both water 

and soil. Assuming first order kinetics, the Agency for Toxic Substances and Disease Registry in 

Canada estimated the half-life of propylene glycol in water to be l to 4 days under aerobic and 3 to 
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5 days under anaerobic conditions, and in soil equal to or shorter than this (Murray & George 

1997). 

In a microcosm study conducted on a sandy loam sampled close to an airport runway in Michigan, 

USA, an initial concentration of 400 ppm PG was not measureable after 8 days incubation at 25 ºC 

or after 12 days incubation at 8 ºC (Klecka et al. 1993). Measured CO2 evolution throughout 34 

days at 8 ºC corresponded to 57% of the theoretical CO2 production assuming complete oxidation 

of the added PG, demonstrating that mineralization occurred. However, a ten-fold higher initial PG 

concentration slowed down the degradation rate from 41 to 20 mg PG kg soil-1 day-1 with 23% of 

the initial PG concentration remaining after 111 days. Degradation of PG at high load was 

demonstrated in the same soil at a temperature as low as -2 ºC, however at a much smaller rate of 

3.5 mg PG kg soil-1 day-1 with 86% remaining after 111 days. 

The main concern associated with propylene glycol release to the environment is its high chemical 

oxygen demand (COD). According to the stoichiometry for the complete oxidation of propylene 

glycol to CO2 by O2 (Table 0.1), 4 mol oxygen are consumed per mol of propylene glycol oxidized, 

corresponding to 1.68 g of O2 per g of PG. Accordingly, Klecka et al. (1993) constantly purged 

their incubation batches with air to keep O2 in excess relative to PG. However, O2 is hardly ever 

available in excess in soils. 

Table 0.1: A selection of catabolic reactions involved in the oxidation or fermentation of propylene glycol 

(C3H8O2). 

Aerobic degradation 

C3H8O2 + 4O2  3CO2 + 4H2O  

Anaerobic, nitrate reduction to N2 

C3H8O2 + 3.2NO3
  3.2H  3CO2 + 5.6H2O + 1.6N2  

Anaerobic, Mn(IV) reducing bacteria  

C3H8O2 + 8MnO2  16H  3CO2 + 12H2O + 8Mn2+  

Anaerobic, Fe(III) reducing bacteria  

C3H8O2 + 8Fe2O3  32H  3CO2 + 20H2O + 16Fe2+  

Anaerobic, fermentative consortia  

C3H8O2   C3H6O2 (propionic acid) + H2 

C3H8O2   0.5C3H6O2 (propionic acid) + 0.5C3H8O (n-propanol) 

Propionic acid and propanol can be degraded further to acetate, hydrogen and carbon dioxide 

Anaerobic, sulphate reducing bacteria  

C3H8O2 + 2SO4
2  4H  3CO2 + 4H2O + 2H2S  
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Methanogenesis (overall stoichiometry)  

C3H8O2  CO2 + 2CH4 

 

Both aerobic and anaerobic degradation of propylene glycol have been reported in the literature. 

Willetts (1979) proposed pathways for aerobic and microaerophilic biodegradation of PG by 

Xanthobacter autotrophicus (previously Flavobacterium sp.) by an inducible diol-oxidase, which 

oxidizes PG to lactaldehyde which is subsequently metabolised to pyruvate that enters the 

tricarboxylic acid cycle (Willetts 1979; Willetts 1983). Under micro-aerophilic conditions, most of 

the PG is metabolized to propionaldehyde by a diol-dehydratase and subsequently reduced to the 

endproduct n-propanol (Willetts 1979)(Figure 0.4). 

 

Figure 0.4: Proposed pathways of aerobic and microaerophilic degradation of propylene glycol (1,2-

Propanediol) by (Willetts 1979). 
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In a previous study on aerobic degradation of PG in soil samples from Oslo airport, 19 different 

strains of Pseudomonas sp. were isolated that could grow on PG as a sole carbon source (Toscano 

et al. 2013). 

PG has also been reported to be degraded anaerobically. Under methanogenic conditions (i.e. in 

the absence of electron acceptors other than CO2), Veltman et al. (1998) proposed that the pathway 

for PG degradation starts with fermentation via propionaldehyde to equimolar amounts of 

propionate and 1-propanol, with 1-propanol being converted to propionate. Propionate is then 

degraded further to acetate, methane and CO2. A fermentative pathway has also been proposed for 

the strain Clostridium glycolicum, in which the initial step to priopionaldehyde is catalysed by a 

membrane bound diol-dehydratase, which is then reduced to n-propanol or further oxidised to 

priopionic acid (Hartmanis & Stadtman 1986). Anaerobic degradation of PG was also studied in 

column experiments with a gravel-rich Bavarian soil (Jaesche et al. 2006), comparing top soil, 

subsoil and the saturated zone (aquifer). The authors observed an accumulation of propionate and 

propanol and the formation of iron(II) and manganese(II) in the soil water. Elevated Mn(II) in soil 

water has also been interpreted as an indirect indicators for PG degradation under field conditions 

at the Moreppen research station (French et al. 2001). 

 

1.4 Analyses of soil microbial communities 

Soil represents a highly complex environment due to its heterogeneity in texture. Nevertheless, the 

soil environment supports a much higher diversity than what can be found in e.g. aquatic or marine 

environments.  In a typical soil sample, the number of prokaryotic cells varies between 108 and 

1010 cells g-1 dry weight soil. Soil is also reported to sustain an immense diversity of microbes, 

much of which still remains unexplored (Torsvik et al. 1990; Torsvik & Øvreås 2002). When 

cultured, microbial organisms can be studied and described in detail, however the minority of 

environmental bacteria are readily cultured.  

By introducing molecular methods in microbial ecology studies it was reported that less than 0.1% 

of the microorganisms from most environments could be cultivated in the laboratory. Therefore, 

cultivation based approaches give an unrepresentative view of microbial communities. This was 

referred to as the “Great Plate Count Anomaly” (Staley & Konopka 1985). 
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A new era in microbial ecology studies was established by introduction of  molecular methods, and 

the use of the small subunit (16S) ribosomal RNA as a phylogenetic marker gene (Schaup et al. 

1972; Woese et al. 1976). By applying a holistic approach, extracting the DNA from the entire soil 

microbial community, downstream DNA analyses can provide a snapshot of the diversity of 

organisms present in the soil microbial community ecosystem at the sampling time. 

During the last 30 – 40 years, several methods for microbial community profiling involving the 

analysis of the 16S rRNA gene have been developed. Initially, fingerprinting methods such as 

Denaturing Gradient Gel Electrophoresis (DGGE, Muyzer et al. 1993; Øvreås et al. 1997), gained 

large interest as a rapid comparison of microbial communities. The advantage of these methods 

was the possibility for simultaneous analyses of multiple samples for comparison purposes and 

monitoring. After the introduction of “high throughput sequencing” approaches such as 

pyrosequencing (454) and Illumina (previously “Solexa”), much larger sequencing depths were 

possible, and a better cover of the diversity present in various environments could be obtained 

(Sogin et al. 2006; Roesch et al. 2007; Caporaso et al. 2011).  

Both these methods require thousands of copies of each DNA molecule to be sequenced, and 

therefore require a polymerase chain reaction (PCR) amplification step as part of the sequencing 

protocol. The PCR method is a very powerful method enabling to multiply the numbers of template 

sequences exponentially, however errors might be introduced in the first rounds of amplification 

and therefore are an important pitfall of the PCR reaction and contributes to lower sequencing 

accuracy (Wintzingerode et al. 1997). 

The last decade’s progress in molecular microbial ecology been enormous, enabling better insight 

into microbial communities in the environment. Such analyses provides information about 

community composition and diversity, but only hints to what processes these organisms are doing 

within the environment. In order to get information about the processes such a snapshot of the 

microbial environment are involved with, a combined approach is necessary. The use of cultivation 

and/or incubation experiments, where different chemical or biological measurement are combined, 

provides a strong basis for the understanding of a microbial community and its role and responses 

in an environment. 
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1.5 Project objective and approach 

The objective of this study was to investigate the effects of propylene glycol (PG), the dominant 

component in de-icing fluids, on the kinetics of Mn2+ and Fe2+ release in soils collected in vicinity 

of Oslo airport, Gardermoen.  In order to obtain information regarding this, 4 specific research 

questions were addressed: 

1. Does propylene glycol increase the amount of Mn2+/Fe2+ released to the soil water under 

anaerobic conditions? 

2. Does Mn2+/Fe2+ release differ between top soil and deeper layers of the soil profile to which 

PG leaches? 

3. Does the addition of a small amount of nitrate affect the release of Mn2+/Fe2+? 

4. How does the microbial community structure in top- and subsoil respond to the addition of 

PG and/or nitrate, and is the observed release of Mn2+/Fe2+ linked to growth of known Mn 

and Fe reducers? 

 

To address these questions, laboratory experiments were set up in which previously unexposed top- 

and subsoil was amended with PG and/or nitrate and incubated over 26 days. PG was provided in 

concentrations relevant to the lower range of measured field conditions ( 1.3 - 85 mM in snowmelt 

water, Øvstedal & Wejden 2007; Greco et al. 2012). Nitrate was provided in small concentrations, 

since the primary goal was not to stimulate PG degradation, but to see how nitrogen affects the 

metabolic activity of the involved microorganisms, including Mn and Fe reducers. Based on the 

stoichiometry for denitrification, 3.2 times the amount of nitrate must be added per mol of PG for 

complete anoxic mineralization (Table 0.1). Mn2+ release was in Gardermoen soil was successfully 

inhibited by this amount of nitrate (Toscano et al. 2014; Greco et al. 2012). In a field study, nitrate 

was added in a lower amount (0.26:1 nitrate:PG) and release of Mn2+/Fe2+ seemed to increase 

(Lissner et al. 2014). 

The soils were incubated in closed, septum-sealed glass bottles and respiration activity was 

measured by monitoring gas exchange semi-continuously (every 5 hours) in an automated, 

temperature controlled incubation system. Soil water Fe2+/Mn2+ concentrations were monitored 

less frequently by sampling soil water through microrhizons which were fitted through the septa of 
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the bottles. At the end of the incubation experiment, each bottle was opened under sterile conditions 

and soil was sampled for sequencing of 16S rRNA genes from extracted DNA. 

The incubations were carried out at 15 ºC and correspond therefore to summer rather than winter 

or snowmelt conditions. Temperatures in 0.4 – 2.4 m depth reported for Oslo airport soils are in 

the range of 10 to 17oC  (French et al. 2001). The soils used in the experiments were sampled from 

a trench, which had never been exposed to de-icing chemicals. In this way, short-term effects of 

PG and/or NO3
- contamination, rather than chronic exposure, could be targeted, which opens for 

exploring direct links between relative taxonomic abundances and microbially driven MnOx/FeOx 

reduction. By contrast, microbial responses to the additions would likely be small in long-term 

exposed soil, as microbial communities might already be adapted to PG as the prevailing carbon 

substrate. 

The study is structured in three parts (Table 0.2); two pilot experiments and one main experiment. 

The first pilot experiment was designed to assess the aerobic and anaerobic metabolic activity of 

the soils through gas sampling and another testing the water sampling set-up, prior to the main 

experiment that combined both sampling approaches and also included molecular microbial 

community analysis. Subsamples for molecular analyses were taken from the original soil and from 

all treatments at the end of the main incubation experiment. The experiments are summarized in 

Table 1.2:  

Table 0.2: Overview of experiments performed with soil from the Moreppen research station. 

Section Objectives 

Pilot 1, 

section 2.88 

To assess the metabolic activities of top- and subsoil and to test the effect of propylene 

glycol and nitrate on aerobic and anaerobic respiration by gas kinetics (O2, CO2, NO, 

N2O, N2) in batch incubations 

Pilot 2, 

section 2.99 

To test repeated soil water sampling during batch incubation by means of microrhizones 

inserted into the packed soil and to determine the blank and sensitivity for determining 

Fe2+ and Mn2+ release 

Main 

experiment, 

section 

2.1010 

To study Fe/Mn kinetics together with metabolic activity under the impact of added 

NH4
+, PG and PG + NH4NO3 and to assess how incubation conditions and amendments 

affect prokaryotic community structure 
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2. MATERIALS AND METHODS 

2.1 Research site 

This research was carried out with soils from the Moreppen research site which is located in close 

vicinity to the Oslo Airport Gardermoen at 60°13'06.60"N, 011°05'16.08"E. The location was 

chosen because of its proximity to the airport and a geology that is comparable to that inside the 

operational area of the airport.  

The research site is situated within a low-productive spruce forest with open patches of grass, 

young birches and small bushes like lingonberry and blueberry in the understory. The mean 

groundwater level is about 4 meter below the surface (French 1999). The soil profile has previously 

been characterized for horizon depth, heterogeneity and soil texture. The subsoil is a medium to 

coarse sand with some gravel and stones, while the top soil is a mixture of root zone soil and coarse 

soil with gravel (French et al. 1994). Chemical properties of the soil have previously been 

characterized at this location. According to Søvik & Aagaard (2003), total organic carbon (TOC) 

in the organic horizon comprises 2.5% of the soil, decreasing to 0.5% at 0.5 m below surface and 

0.2% with increasing depth. At 1.5 m depth, the total organic carbon has previously been analysed 

to 0.2-0.4%. The total P was similar in both soil types at ~450 mg kg-1 soil.  Iron oxides were more 

abundant in the top layer, ranging from 0.2-0.7%. At 1.5 m depth, the relative concentration of iron 

oxides was about 0.2%. 

The soil was sampled at two locations, one representing “subsoil” (SS), which was  sampled in the 

lysimeter trench (Figure 2.1B) and the other representing the “topsoil” (TS), which was sampled 

from a mixture of topsoil lying next to the research trench. This mixture had been excavated in 

2009 (Lißner et al. 2012, Figure 2.2). The topsoil has been previously used for geophysical 

experiments studying transport and degradation of propylene glycol by PhD student Perrine 

Fernandez (Revil et al. 2015). None of the sites had been subjected to de-icing chemicals 

previously.  
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A B 

Figure 2.1: A: The prebuilt research trench at Moreppen research station, located at 

60°13'06.5208"N, 11°05'15.2268"E, photo G. Flatabø September 14th 2016. The door is normally 

closed to prevent precipitation and animals from entering the trench. B: A hole made in the east wall 

of the trench. The cover had fallen off, so some soil had collapsed into the trench. The exposed soil 

was removed prior to sampling. The drawings on the right hand side depicts the geology of the soil 

profile behind the wall. 
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2.2 Sampling of soil 

The soils were sampled on September 14, 2016 together with PhD student Perrine Fernandez. 

Subsoil was taken using a clean spade from 1.5 m depth from the east wall of the research trench 

(Figure 2.1) and topsoil from the pile of excavated soil right next to the trench, representing a 

mixture of soil from 0 - 1 m depth (Figure 2.2). The soils were sampled into clean plastic buckets, 

each covered by a clean, transparent, plastic sheet to prevent evaporation during transport and 

storage at NMBU. Extra samples were taken and transferred to a sterile plastic container for 

Figure 2.2: Sample site for sampling top soil (TS) on September 14th 2016, located at Moreppen, 

Gardermoen, 60°13'05.8188"N, 11°05'16.1160"E. The soil is a mixture of the first one meter of the top 

soil, excavated to add a lysimeter for trials in 2009 (Lißner et al. 2012). 
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microbial community analyses (“SSfield” and “TSfield”). The buckets were stored at 5ºC in a 

cooling room, whereas the sterile plastic containers were frozen to -18°C on the day of sampling. 

 

2.3 Pre-treatment of soil 

Before experimentation, the soils were sieved through a 3.55 mm mesh-size sieve (Retsch), 

removing stones and particles. Soil moisture (Ms) of the sieved soil was determined 

gravimetrically. Maximum water holding capacity (WHCmax) was estimated by saturating known 

volumes of sieved soil in Büchner funnels. 

 

2.4 pH measurements 

Three subsamples of sieved and air dried soil (10 mL) were suspended in 25 mL of a 10 mM CaCl2 

solution, shaken by hand for about 30 seconds and left standing overnight. In the morning, the vials 

were briefly shaken again and left standing to settle for 10 minutes before they were measured by 

a pH-meter (Hach H170). 

 

2.5 Gas measurements 

Metabolic activity was measured as O2 consumption and CO2, N2O and NO production in batch 

incubations using an incubation robot with automatic headspace analysis similar to that described 

by Molstad et al. (2007). The incubations were carried out at the soil biology laboratory of the 

Faculty for Environmental Science and Natural Resource Management of the Norwegian 

University of Life Sciences in Ås, Norway (Fig. 2.4). The setup consists of a temperature controlled 

water bath holding up to 44 serum bottles (120 ml) capped with Butyl septa, which is placed under 

the robotic arm of an autosampler (GC-Pal, CTC). The autosampler periodically pierces the bottles 

with a hypodermic needle connected to a peristaltic pump (Gilson 222 XL) and removes ~2 ml 

which are pumped through dedicated sampling loops of a multi-column GC (Agilent 7890A) and 

a chemoluminescence NO analyser (Teledyne 200). After each measurement, an equivalent amount 

of He 6.0 is pumped back to the bottles by reversing the pump to maintain bottle pressure at ~1 

atm. The GC is equipped with a poraplot Q column to separate CH4, CO2 and N2O from bulk air 

and a molesieve column to separate O2/Ar from N2. CO2, O2/Ar and N2 were measured by a thermal 

conductivity detector (TCD), CH4 by a flame ionization detector (FID) and N2O by an electron 
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capture (ECD). A technical description of the set up and of the chromatographic conditions can be 

found in Molstad et al. (2016). Production and consumption rates of gasses were calculated 

according to Molstad et al. (2007), taking account for dilution by He and dissolution in soil water.  

 

2.6 Nitrate measurements 

Nitrate (NO3
-) was measured photospectrometrically at 540 nm in a microplate reader (Tekan Inf 

F50, Männedorf, Switzerland) by Griess reaction (Keeney & Nelson 1982) after reduction of NO3
- 

to NO2
- by VaCl3 (Doane & Horwáth 2003). Soil pore water samples were amended with Griess 

reagents (sulfanilamide and N-1-napthylethylenediamine dihydrochloride) in a 1:1:5-ratio and 

measured at 540 nm to determine NO2
- concentrations. Thereafter one part of an acid VaCl3 

solution was added and the samples were incubated for 90 minutes at room temperature before 

measuring the NO2
- + NO3

- concentration by absorption at 540 nm. The NO3
- content was calculated 

by subtracting the NO2
- from NO2

- + NO3
- concentration. 

 

2.7 Iron and manganese quantification 

Concentrations of dissolved iron (Fe2+) and manganese (Mn2+) were quantified in water samples. 

Soil water was sampled by applying underpressure to microrhizones (Rhizosphere Research 

Products, Wageningen, NL) inserted into the packed soil (see Ch. 2.9), assuming that only reduced 

species would be in solution. Immediately before analysis, samples were diluted 1:10 with de-

ionized water acidified with 10% HNO3, to dissolve Fe and Mn species that had oxidized during 

sampling or storage. Concentrations were then analysed by inductively coupled plasma mass 

spectrometry (8800 ICP-MS Triple Quad, Agilent Technologies) using Germanium as internal 

standard. All internal solutions like standards and washing liquid were prepared in the same matrix 

of 10% HNO3 in de-ionized water. Measured values were corrected for blanks and dilution caused 

by reinjection of DI water. 
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2.8 First pilot experiment 

To test the metabolic activity of top and subsoil under oxic and anoxic conditions, with and without 

PG and NO3
- addition, a first pilot experiment with batch incubations of top (TS)- and subsoil (SS) 

was undertaken in six different treatments (Table 2.1). No Fe or Mn analyses were performed. 

Fresh soil corresponding to approximately 60 g dry weight (SS: 60 ± 0.11 g, TS: 59 ± 0.25 g) was 

added to 120 mL serum bottles. Amendments were scaled to adjust soil moisture to ~60% of 

WHCmax (see section 2.3). PG and KNO3 was added to final concentrations of 10 and 2 mM in soil 

moisture, respectively. Due to imprecision of the soil moisture estimates, which could not be 

determined before the end of the experiment, some variability in initial PG and KNO3 

concentrations occurred. Table 2.1 gives an overview of the treatments and added concentrations. 

Concentrations are converted to µmol g dryweigh soil-1 for the sake of future comparisons. 
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Table 2.1: Experimental design of the first pilot experiment. PG = propylene glycol. Top- and subsoil were 

sampled from 0-1 and 1.5 m depth, respectively, at the Moreppen research station (Figure 2.1 and 2.2). 

Aerobic bottles were incubated in a He/O2 (80/20) and the anaerobic bottles in a 100% He atmosphere. Each 

batch consisted of approximately 60 g dry weight soil, adjusted to ~60% water holding capacity (~10 mL). 

The nominal PG and KNO3 concentrations and their calculated variability (SD) are given in brackets. 

Subsoil aerobic treatment Bottle # Top soil aerobic treatment Bottle # 

Control (DI water) 1-3 Control (DI water) 19-21 

PG (1.2 ± 0.15 µmol g-1)  4-6 PG (1.7 ± 0.01 µmol g-1)  22-24 

PG (1.5 ± 0.008 µmol g-1) + KNO3 

(0.24 ± 0.029 µmol g-1) 7-9 

PG (1.7 ± 0.10 µmol g-1) + KNO3 

(0.33 ± 0.0012 µmol g-1) 25-27 

Subsoil anaerobic treatment Top soil anaerobic treatment 

Control (DI water) 10-12 Control (DI water) 28-30 

PG (1.6 ± 0.41 µmol g-1) 13-15 PG (1.6 ± 0.03 µmol g-1) 31-33 

PG (1.5 ± 0.002 µmol g-1)  + KNO3 

(0.37 ± 0.083 µmol g-1) 16-18 

PG (1.7 ± 0.06 µmol g-1) + KNO3 

(0.32 ± 0.006 µmol g-1) 34-36 

 

All bottles were incubated at 15°C for two weeks, while monitoring headspace concentrations of 

O2, N2, CO2, N2O and NO four times per day as described in Ch. 2.5. Figure 2.3 gives an overview 

over sample processing in the 1st pilot experiment.  
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Figure 2.3: Scheme of sample processing in the first pilot experiment. (1) A clean glass serum bottle 

of 120 mL is pre-weighed and (2) fresh soil equivalent approximately 60 g dry weight is added, with 

the exact weight noted. (3) DI water, propylene glycol or propylene glycol and KNO3 are added and 

the total weight is noted. (4) The bottle is crimp sealed and (5) He-washed (anaerobic treatment) or 

washed with a 80/20 He/O2 mixture (aerobic treatment), using six cycles of three minutes vacuum and 

20 seconds of He-filling. (6) After releasing the overpressure (resulting from He-washing), the bottles 

are placed in a water bath at 15°C (up to 40 bottles at once) and the headspace is sampled for gases 

four times every day throughout two weeks. (7) After terminating the incubation experiment, the 

bottles is opened and dried at 80°C for at least 48 hours to determine the actual amount of dry weight 

soil in each bottle. 
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2.9 Second pilot experiment 

A second pilot experiment was set up to test the feasibility of analysing Fe2+ and Mn2+ release in 

batch incubations. No gas measurements were performed. Serum bottles were filled with subsoil, 

adjusted to 80% WHCmax and equipped with polymeric microrhizones (Rhizosphere Research 

Products, Wageningen, NL). The increase of water from 60% WHCmax in the first pilot experiment, 

to 80% WHCmax was chosen to reduce water sampling time. The microfiltration membrane has a 

nominal pore size of 0.12 - 0.18 µm and a length of 40 mm with 2.5 mm OD and 1.5-1.6 mm ID. 

The membrane was connected to a 800 mm long PEEK tube (1.6 mm OD, 0.75 mm ID) without 

any metal enforcement, making them well suited for metal research.    

 

Figure 2.4: A microrhizon (Rhizosphere Research Products, Wageningen, NL) used for taking water 

samples directly from the soil. The membrane provides filtration so that water samples can be analysed 

directly on instruments such as ICP-MS (section 2.7). 

After inserting the membrane vertically into the loosely packed soil, the PEEK tubing was 

protruded through the fringe of the septum (Figure 2.5). The bottles were crimp sealed and 

incubated aerobically and anaerobically for 10 days at room temperature, during which soil water 

was sampled periodically from the microrhizones by applying under-pressure with a disposable 

syringe and a blocked plunger. After retrieving 0.8 to 2 mL soil solution, the syringe was detached, 

the amount of sampled water determined by weighing and an equivalent amount of de-ionized 

water reinjected to maintain the water balance throughout the experiment (Figure 2.6). Care was 

taken to avoid intrusion of air into the microrhizones by using two-way stopcocks or tube clamps. 

The sampled water was frozen immediately prior to analysis of NO3
-, Fe2+ and Mn2+ as described 

in Ch. 2.66 and 2.77.  

The subsoil was amended with 100 µL PG or DI water only, in anaerobic or aerobic atmosphere. 

Controls without soil, containing a similar volume of DI water was tested to evaluate input of ions 

from the used water and sampling procedure. The different treatments are outlined in Table 2.2. 
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Figure 2.5: A microrhizon protruded through the butyl rubber septum of the serum bottles, further attached 

to a viton tubing and a two-way stopcock. 

 

Table 2.2:  Experimental design of the 2nd pilot experiment. PG = propylene glycol. Top- and subsoil were 

sampled from 0 - 1 and 1.5 m depth, respectively at the Moreppen research station (Figure 2.1 and 2.2). The 

aerobic treatment was in laboratory air, the anaerobic treatment in He. Each batch consisted of 

approximately 60 g dry weight soil adjusted to ~80% of maximum water holding capacity. Given are the 

amount of PG added and its variation (SD) in brackets. Note that bottle 1-3 contained pure de-ionized water 

in an anaerobic atmosphere (analytical blanks). 

Subsoil anaerobic  Bottle # 

Blank: 50 mL de-ionized water (no soil) 1-3 

Water to 80% WHCmax + PG (104 ± 1.37 µmol)  4-6 

Subsoil aerobic  

Water to 80% WHCmax 7-9 

Water to 80% WHCmax + PG (104 ± 2.24 µmol) 10-12 
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Figure 2.6: Scheme of sample processing in the second pilot experiment. (1) A clean glass serum bottle of 

120 mL is pre-weighed and (2) fresh soil equivalent approximately 60 g dry weight, or DI water equivalent 

to 50 mL is added, with the exact weight noted. (3) DI water, or diluted propylene glycol are added and the 

total weight is noted. (4) The bottle is attached with a microrhizon protruded through the septum and a 

closed three-way stopcock, crimp sealed and some are (5) He-washed (anaerobic treatment), using six cycles 

of three minutes vacuum and 20 seconds of He-filling. (6) the overpressure is released (resulting from He-

washing), and water samples are obtained through underpressure from a 5 mL syringe that fits the attached 

three-way stopcock. (7) The water sampled is replenished with DI water using a syringe. Note that the water 

used to replenish the samples was He-washed to avoid dissolved oxygen. The bottles are incubated at room 

temperature and sampled every day for five days. (8) After terminating the incubation experiment, the 

bottles is opened and dried at 80°C for at least 48 hours to determine the actual amount of dry weight soil 

in each bottle. 
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2.10 Main experiment 

The goal of the main experiment was to measure metabolic activity by gas exchange while 

simultaneously probing the soil pore water for released Fe and Mn. For this, serum bottles were 

filled with soil, equipped with microrhizons as described in chapter 2.9, adjusted to 80% WHCmax 

and placed into the incubation robot (Figure 2.7) with the microrhizone tubings orientated into one 

direction to avoid collision with the autosampler needle. Since the three-way stopcocks were too 

large for the autosampler needle, these were replaced with tube clamps. The syringe was then 

attached directly into the viton tubing for water sampling, as seen in Figure 2.7. Care was taken to 

keep viton tube filled with water up to the clamp to minimize diffusion of air through the tubing. 

 

Figure 2.7: Placement of incubation bottles equipped with microrhizones in the incubator during the main 

experiment. Some of the bottles are being sampled for soil water through attached syringes.  

Amendments were water, NH4Cl, PG or PG + NH4NO3. NH4
+ was chosen, as results from the first 

pilot experiment revealed severe N limitation of subsoil metabolism, both oxic and anoxic. To 

further study this phenomenon, addition of a minor amount NH4
+ (10 µmol bottle-1) was included 

as a treatment of its own and in combination with PG + NO3
-. In the latter treatment, NH4

+ was 

added to avoid immobilization of NO3
- during microbial growth, which would affect electron 

acceptor availability under anoxic conditions. 
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The sample set included controls without any treatment, where only DI water was added. No sterile 

controls were used in this sample set, to control for chemical release of gases or Mn2+ or Fe2+. It is 

assumed that any chemical release would also occur in the control flask and can thus be corrected 

for. However, to account for metal contamination from sampling procedures and glass bottles, 

blanks where the soil was exchanged for DI water were used to evaluate contribution of Mn2+ and 

Fe2+ from the sampling procedures, which was subtracted from the results of Mn2+ and Fe2+ release. 

Details about the experimental setup are given in Table 2.3. 

Table 2.3: Experimental design of main experiment. PG = propylene glycol. Top- and subsoil were sampled 

from 0 - 1 and 1.5 m depth, respectively at the Moreppen research station (Figure 2.1 and 2.2). Each batches 

consisted of approximately 60 g dry weight soil adjusted to ~80% WHCmax. All bottles were initially He-

washed.  

 Symbol Subsoil Top soil 

Treatments in figs. Bottle # Bottle # 

Water (80% WHCmax) H2O 1-3 13-15 

NH4Cl (10 µmol) NH4Cl 4-6 16-18 

PG (100 µmol) PG 7-9, 33 19-21 

PG + NH4NO3 (100 µmol PG, 10 µmol NH4NO3) PGNO3 10-12 22-24 

De-ionized water, 40 mL Blank*  25-27 

* Used for calculation purposes. 

All bottles were made anaerobic by He washing. However, due to the microrhizone tubing being 

protruded through the septum, variable amounts of laboratory air leaked into the bottles, making 

the headspace less strictly anaerobic than in the first pilot experiment (Ch. 2.88). Since the 

measured oxygen only reflected the concentration in the headspace at any given point of time, the 

measured O2/N2 ratio was compared to the known atmospheric O2/N2 ratio to provide a better 

estimate of O2 influx. The O2 influx was then estimated by multiplying the measured concentration 

of N2 with the known atmospheric O2/N2 ratio, equation 2.1: 

[𝑂2𝑡𝑜𝑡] =
[𝑁2ℎ𝑠]×[𝑂2𝑎𝑖𝑟]

[𝑁2𝑎𝑖𝑟]
       (2.1) 

where [N2hs] is the concentration of N2 measured in the headspace, [O2air] and [N2air] are the 

concentrations of O2 and N2 in a standard bottle containing air, all in µmol bottle-1.  
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To evaluate the influence of oxygen leakage on respiration activity, the concentration of oxygen 

respired by the soil [O2resp] at any time point during the incubation was estimated as the 

difference between leaked and measured O2 based on the known atmospheric O2/N2 ratio, 

equation 2.2: 

 

[𝑂2𝑟𝑒𝑠𝑝] =
[𝑁2ℎ𝑠]×[𝑂2𝑎𝑖𝑟]

[𝑁2𝑎𝑖𝑟]
− [𝑂2ℎ𝑠]     (2.2) 

 

where [N2hs] is the concentration of N2 measured in the headspace, [O2air] and [N2air] are the 

concentrations of O2 and N2 in a standard bottle containing air and [O2hs] is the concentration of 

O2 measured in the headspace of each bottle, all in µmol bottle-1.  

. 

2.11 Cell enumeration 

Viable cells were enumerated in the original soils frozen on the day of sampling (Ch. 2.2) and after 

incubating the soils in the main experiment (Ch. 2.10). For this, subsamples of soil were retrieved 

from the incubation bottles, frozen at -20ºC and shipped to the Department of Biology, UiB. At 

UiB, the soil samples were stored at -80ºC. Cell enumeration followed the standard protocol of the 

UiB Marine Microbiology Group, consisting of diluting the soil in distilled and sterile filtered water 

(0.22 µm syringe filter, Whatman FP30) in a 1:10 weight:volume ratio, followed by fixation in a 

25% glutaraldehyde solution, which was incubated for 30 minutes at 4°C. The suspension was 

vortexed, left to stand for a few seconds to sediment the largest particles, before siphoning off the 

supernatant.  10-fold dilutions was made using sterile distilled water and an aliquot of the 10-4 

dilution was filtered through a black polycarbonate filter (0.22 µm, Osmonics Inc) and washed, 

following a standard protocol, in sterile buffered PBS. 

The polycarbonate filters were placed backside down on a drop of SYBR Green dye (2.5 vol%) in 

a petri dish, and incubated at room temperature in the dark, allowing the dye to diffuse through the 

filter and to stain the cells. After one hour, the backside of the filter was washed in a drop of buffer, 

slightly air dried, counter stained with a drop of ethidium homodimer-1 (EthD-1, 0.58 vol%) and 

kept in the dark at room temperature for 30 minutes. The backside of the filter was then rinsed in 
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a drop of buffer, slightly air dried and mounted on a glass slide with a drop of anti-fade solution 

(1:1 glycerol:PBS with 10% p-phenylenediamine). Viable cells were counted using an 

epifluorescence microscope (Zeiss Axio Imager Z.1) with a blue excitation (AF488) filter, while 

dead cells were estimated through a green excitation (DsRed) filter. On each filter, 10 fields were 

counted and extrapolated by equation 2.4:  

[𝐶𝑒𝑙𝑙𝑠] =
𝑁×

𝐴𝑓𝑖𝑙𝑡𝑒𝑟

𝐴𝑐𝑜𝑢𝑛𝑡𝑒𝑑
×𝑑𝑖𝑙

𝑚𝑠𝑜𝑖𝑙
      (2.3) 

 

where [Cells] is the number of cells per g soil, N is the number of cells counted, Afilter is the total 

filter area, Acounted is the total area counted in the microscope, dil is the dilution factor and msoil is 

the dry mass of soil weighed out. The slides were analysed and enumerated within two days of 

preparation, and were otherwise stored in a dark box at 4°C.  

 

2.12  DNA extraction 

DNA was extracted using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Inc.), following 

the manufacturers protocol. A subsample of 0.3 ± 0.07 g from each soil was weighed into provided 

PowerSoil® Bead Tubes using a pre-sterilized spatula. A list of extracted samples is provided in 

the appendix, Table A.1. The bead tubes were used to homogenize the samples on a flat-bed 

vortexer for further extraction of DNA in the supernatant. The DNA was purified by precipitation 

with a salt solution provided in the kit before loading the mixture on silica spin filters for 

centrifugation. The DNA attached to the silica filters was washed using an ethanol solution before 

elution from the silica filter into 100 µL of the provided elution buffer. 

The extracted DNA was analysed on a 0.75% agarose gel and visualised using 0.01% GelRed. The 

DNA concentration of the extracts was quantified photospectrometrically using a QubitTM 

Fluorometer (Invitrogen, USA) together with a high sensitivity dsDNA assay. Extracts were stored 

at 4 ºC before further analysis on the same or the following day, or at -20 ºC when analysed later. 
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2.13 PCR and Illumina sequencing 

To target prokaryotes in the DNA extracts, 16S rRNA genes were amplified in two steps using 

polymerase chain reaction (PCR). To prepare for Illumina sequencing, the first amplification was 

performed using the HotStar PCR Master Mix Kit (Qiagen, Hilden, Germany). A prokaryotic 

primer-pair was included in the reaction, containing Illumina adapters: (FAdapter)-N5- 

519F/(RAdapter) 806RB, and targeting the 16S rRNA V4 region. 

Table 2.4: Primer sequences for relevant primers used for PCR amplification of 16S rRNA genes. 

Primer  Target  Sequence (5′ – 3′)  
Annealing t° 

(°C)  
Reference  

519F 
16S rRNA gene, 

V4 region 
CAGCMGCCGCGGTAA 55 (Øvreås et al. 1997) 

806RB 
16S rRNA gene, 

V4 region 
GGACTACNVGGGTWTCTAAT 55 Appril et al. (2015) 

(M=A/C , N=G/A/T/C , V=A/C/G, W=A/T)  
 

To minimise PCR drift, the first amplification was performed in triplicate. Each sample comprised 

in total 20 µL reaction mixture: 10 µL Qiagen HotStar master mix, 0.5 µL of each of the primers 

(10 µM), 0.5 µL BSA (100%) and 1 or 2 µL DNA, depending on the concentration of the extract, 

ranging from 1 - 10 ng DNA per PCR reaction. The triplicates were pooled and visualized on a 

1.5% agarose gel containing 0.01% GelRed. Pooled triplicate PCR products were cleaned using 

Zymo DNA Clean & Concentrator (Zymo Research Corp, USA) and quantified using a QubitTM 

Fluorometer prior to the second PCR. 

The second amplification targeted the overhanging Illumina adaptors with barcode sequences. Each 

sample was amplified using a unique combination of forward and reverse-primers. For this sample 

set, four different forward primers and 12 different reverse primers were used providing 37 

different combinations. The total reaction volume of 50 µL consisted of 25 µL Qiagen HotStar 

master mix, 1 µL of each of the two barcoded primers (10 µM) and 10 or 20 µL pooled and cleaned 

PCR product from the first PCR, providing 3-16 ng DNA per reaction.  
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The first PCR reaction was initiated by a denaturation step (95°C, 15 min), followed by 25 cycles 

of denaturation (95°C, 20 s), annealing (55°C, 30 s) and extension (72°C, 30 s), with a final 

extension of 7 min at 72°C. The second PCR had the same conditions, except for an annealing 

temperature of 62°C, and 15 cycles (17 of the samples were run using 13 cycles). PCR products 

were subsequently purified using AMPure XP magnetic bead PCR purification protocol 

(AMPureXP, Beckman Coulter), eluted in 25 µL of DNase-free water, before quantifying the 

amount of DNA. The purified samples were then mixed in equimolar amounts and the DNA 

concentration of the mixture was quantified using  a QubitTM Fluorometer, before sending the 

mixture for sequencing analyses by the Illumina ‘MiSeq v2 sequencing system’ (Illumina, USA) 

at the Norwegian High-Throughput Sequencing Centre in Oslo (Norway). 

 

2.14 Statistical and bioinformatical methods 

phiX  internal control was removed using the BBDuk (Decontamination Using Kmers) version 

37.02 tool from the BBTools package (Bushnell 2017). Paired-end reads were merged using the 

BBmerge tool from the same package. Linkers and primers were removed, and merged reads were 

quality trimmed from both the left and right to exclude base calls with PHRED scores below 27.  

Obtained 16S rDNA amplicons were categorized and assigned to operational taxonomic units 

(OTUs) using QIIME (Quantitative Insights into Microbial Ecology; Caporaso et al. 2010) version 

1.9.1, with the pick_de_novo_otus script at 97% sequence identity. The script generated an OTU 

table BIOM file, which was converted to a tab separated text file including taxonomic information 

using the script biom convert with taxonomy classified using the GreenGenes database (DeSantis 

et al. 2006). 

 

Statistical tests were performed using the statistical software environment R (R Core Team 2015). 

Samples of the communities were rarefied to the minimum number of reads obtained in the sample 

set. Rarefaction curves were plotted to evaluate if the number of reads used for rarefaction would 

give a representative subsample of the whole attainable community. To avoid bias from differing 

numbers of reads, the rarefied sample set was used to estimate Shannon diversity index (H) and 

Evar evenness index (Smith & Wilson 1996). To test for significant differences in the prokaryotic 

communities based on the various treatments, permutational multivariate analysis of variance 
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(PerMANOVA) using the function adonis with Bray-Curtis distance matrices and 999 

permutations was performed on the rarefied sample set. Relationships at OTU level between 

different treatments and community structure from the main experiment was assessed by non-

metric multidimensional scaling (NMDS; Kruskal 1964) using the vegan package (Oksanen et al. 

2017) based on Bray-Curtis dissimilatory measure and 999 permutations to two dimensions. 

 

Rates To compare for significant treatment effects on metal dissolution, the continuous rates were 

approximated and subjected to linear models using Tukey Contrasts Multiple Comparisons of 

Means from the multcomp package (Hothorn et al. 2008). To test for correlations between the 

average rates of gas, nitrate and water soluble metals a Pearson's product-moment correlation test 

was used. 
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3. RESULTS 

 

3.1 Soil characteristics 

Both soils sampled for this study were sandy, with only few stones, which were removed by sieving 

the soils through a 3.55 mm sieve. The sieving also removed most of the plant roots contained in 

the top soil. The WHCmax was estimated to be 29±3% and 35±2% for sub- and topsoil, respectively. 

Measured pH after sieving averaged 4.63 for subsoil and 4.40 for topsoil (n=3; Tab. 3.1). The pH 

was also measured in each sample bottle after the main experiment and showed a significant 

decrease all subsoil treatments except PGNO3 (p<0.02) and an insignificant increase in pH for top 

soil. 

 

Table 3.1: Measured pH values from soil suspended in a CaCl2 solution. 

 pH values Subsoil Topsoil 

Before main experiment 4.63 ± 0.061 4.40 ± 0.021 

After main experiment 

H2O1 4.55 4.46 

H2O2 4.17 4.49 

H2O3 4.17 4.45 

NH4Cl1 4.25 4.41 

NH4Cl2 4.24 4.46 

NH4Cl3 4.27 4.44 

PG1 4.34 4.43 

PG2 4.38 4.47 

PG3 4.43 4.49 

PG4 4.46 - 

PGNO31 4.51 4.5 

PGNO32 4.55 4.49 

PGNO33 4.63 4.53 

 

 

3.2 Pilot 1: Oxic and anoxic metabolism of Moreppen soils 

To explore the indigenous and substrate-induced oxic and anoxic metabolic potentials of Moreppen 

top and subsoil, a batch incubation experiment was carried out (Pilot 1, Ch.2.8). Oxic respiration 
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was quantified as the rate of CO2 accumulation in a He/O2 atmosphere and corrected for pH-

dependent bicarbonate dissolution (Molstad et al. 2007). Figure 3.1 shows the maximum inducible 

oxic respiration rates in top and subsoil without amendment or with PG or KNO3 addition.  

 

 

Figure 3.1: A Maximum inducible respiration rates in oxic treatments with and without PG or KNO3 

addition (for details, see tab. 2.3) and B respiratory quotient Rq (mol CO2 released per mol O2 consumed). 

Shown are mean values (n=3). Error bars are SD. 

Without amendments, subsoil had a ~10 lower metabolic activity than topsoil (Fig. 3.1A). PG 

addition increased respiration by 88% in subsoil and by 140% in topsoil, illustrating the greater 

responsiveness to carbon addition in top- than in subsoil. KNO3 addition to subsoil resulted in a 45 

times larger inducible respiration activity while the corresponding increase in topsoil was only 4.3 

fold, resulting in an overall larger inducible respiration in subsoil than topsoil. The respiratory 

quotient (Rq) of maximum inducible topsoil respiration was around 0.6 mol CO2 per mol O2 

consumed, irrespective of amendment. By contrast, the Rq of non-amended subsoil was much 

smaller (~0.2), reflecting more reduced and/or recalcitrant substrates in the subsoil. PG addition to 

subsoil did not increase Rq, whereas KNO3 addition increased the Rq to the level of topsoil (Fig. 

3.1B).   

A severe nitrogen limitation of Moreppen soil was also seen when inspecting the respiration 

kinetics in more detail (Figure 3.2). Non-amended soil (not shown) and soil amended with PG 

showed linear CO2/O2 kinetics for subsoil and quasi-linear kinetics for topsoil (Figure 3.2, left 

panel). In contrast, both soils responded with pronounced exponential kinetics when amended with 

KNO3, indicating a microbial growth response upon relieving N limitation. This response was 

stronger in sub- than in topsoil.     
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Figure 3.2: Respiration kinetics in the first replicate of oxically incubated sub(SS)- and topsoil (TS) with 

PG (left panel) and KNO3 addition (right panel). Regression lines indicate maximum inducible respiration. 

Note different y-axis scaling for sub- and topsoil.    

To study anoxic respiration and denitrification, a subset of bottles was incubated in pure He-

atmosphere. Denitrification activity, i.e. N gas accumulation in subsoil samples was small and 

repeated piercing increasingly compromised N2 measurements due to influx from the atmosphere 

in some bottles. Therefore denitrification activity was estimated from product accumulation during 

the first 100 h of incubation and compared to CO2 production from the same period of incubation. 

Mean CO2 production rates for the different treatments are shown in Figure 3.3A, together with 

estimated rates of total N gas production (Figure 3.3B). 
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Figure 3.3: Initial respiration rates in sub- and topsoil under anoxic conditions with and without PG or 

KNO3 addition (for details, see tab. 2.3), measured as (A) rate of CO2 accumulation and (B) rate of total N 

gas accumulation (for denitrification kinetic, see Fig. 3.6). Shown are mean values (n=3). Error bars are SD. 

 

Anoxic CO2 production was less responsive to PG or NO3
- addition than oxic CO2 production 

(compare Fig. 3.1 and 3.3). Respiration kinetics measured as CO2 accumulation (Figure 3.4) 

showed that only subsoil amended with NO3
- had apparent growth. Unlike under oxic conditions, 

topsoil did not show growth kinetics, irrespective of treatment.    

 

Figure 3.4: Kinetics of CO2 accumulation in subsoil (upper panel) and topsoil (lower panel) without 

amendemnet (left panel), PG addition (middle panel) and NO3
- addition (right panel). Shown are single 

bottle values (n=3) for each treatment. 
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Anoxic respiration reached 19,6% (subsoil ) and 30% (topsoil) of oxic respiration observed in 

untreated control soils (compare Fig. 3.1A and 3.3A). The corresponding values for the PG 

treatment were 15.4% (subsoil) and 14.8% (topsoil) and for the NO3- treatment 5.9% (subsoil) and 

9.0% (topsoil). For the NO3
- treatments, maximum CO2 production rates during exponential growth 

were compared. The small ratios of anoxic over oxic respiration in the NO3
- treatments reflect the 

strong N limitation in both the top- and the subsoil. As oxic growth is faster than anoxic growth, 

the same N addition provoked a relatively larger increase in CO2 production under oxic conditions, 

which was not compensated by the stimulation of denitrification as a respiratory process ion under 

anoxic conditions. Monitoring of CH4 and H2 concentrations in the bottles revealed small 

concentrations in the pico-molar range, but a conspicuous pattern of small H2 production in the 

subsoil in presence of NO3
- and some CH4 production in the top soil.  

 

 

 

Figure 3.5: Kinetics of H2 (upper panel) and CH4 (lower panel) in subsoil (left panel) and top soil (right 

panel) in the 1st pilot experiment. Shown are single values of three replicates for unamended control soil 

(blue), PG amended soil (yellow) and NO3
- amended soil (red). The detection limit of the H2 analyser under 
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the given experimental conditions was app. 500 pmol H2 g soil-1. 1 nmol H2 g-1 corresponds to ~10 ppm H2 

in the headspace. 

Denitrification in unamended and PG-amended soils was short-lived and dominated by N2 

production (not shown), suggesting that native NO3
- concentrations in both sub- and topsoil were 

small. Figure 3.6 shows the denitrification kinetics in three single bottles each for the NO3
- 

treatments of sub- and topsoil. Both soils accumulated NO to small amounts (< 3 nmol g-1 soil) 

which was depleted towards the end of the incubation. In the subsoil, N2O accumulated almost 

linearly, before accelerating towards a sharp peak after 150 – 200 h and being taken down to zero 

rapidly. Although similar in magnitude, N2O accumulation in topsoil was smoother and depleted 

much earlier than in subsoil. All three bottles with subsoil had problems with leakage from 100 h 

into the incubation onwards. Therefore, only the first 100 h of N2 accumulation are shown.  

 

Figure 3.6: Denitrification kinetics in NO3
- treatments of subsoil (SS, upper panel) and topsoil (TS; lower 

panel). Shown are three replicate bottles for each soil and treatment. Note different y-axis scaling for 

unamended/PG and NO3
- amended. 

 

.  
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3.3 Pilot 2: Release of Mn and Fe in soil water 

When setting up the second preliminary experiment (pilot 2), the water content of the soil was 

increased from ~60% to ~80% WHCmax to have enough soil water for sampling ~1 mL for metal 

analysis through the microrhizons within a reasonable time. Sampling times required for ~1 ml soil 

solution ranged from 6 to 138 minutes. No obvious reason for the large range of sampling time was 

observed, but when the soil was packed more tightly around the microrhizones, the sampling time 

seemed to decrease. As the microrhizones have a high “bubble point” (the suction at which air 

enters the lysimeter), they do not sample air with underpressures achieved by a disposable syringe. 

Thus, air inclusion at the interface between microrhizon and soil reduce the contact area for water 

movement and increase the sampling time. For efficient sampling, it is therefore important to pack 

sieved soil slightly. Other factors influencing the sampling time could be clogging, as fine particles 

and possibly precipitated iron oxides were observed on the membrane after the experiment  (Figure 

3.7). 

 

Figure 3.7: Microrhizon after second pilot experiment, with fine particles on the outside of the membrane. 

  

The water samples were analysed for iron, manganese and nitrate. For the anaerobic treatment, 

initial concentration levels of dissolved Mn2+ ranged from from 0.007-0.02 pmol g-1 soil, before 

starting to increase after two days, reaching 0.76 pmol g-1 soil by the end of the experiment. The 

increase in Mn2+ coincided with the depletion in NO3
- (Figure 3.8A). Nitrate concentrations at the 

start of the experiment were between 4 and 7 nmol g-1 soil, and dropped quickly throughout the 

first two days. For the oxic control treatment, the nitrate concentration remained stable between 

0.8 and 1 nmol g-1, before dropping to concentrations below the detection limit at the end of the 

experiment. In PG treatments, both aerobic and anaerobic, NO3
- concentrations dropped to 0 - 0.1 

nmol g-1 soil already after two days, indicating denitrification. In contrast to Mn2+, Fe2+ levels 

seemed to reach a peak after one day in all treatments, with largest values of 0.18 pmol g-1 soil in 

the unamended control (Figure 3.8B). This peak was transient and disappeared after two days, after 
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which Fe2+ in the control slowly declined to zero, while slightly elevated concentration between 

0.04 and 0.1 pmol g-1 soil were observed in the oxic and anoxic PG treatments. 

 

 

Figure 3.8: Dynamics of dissolved Mn (A) and Fe (B) in the different treatments of the second pilot 

experiment. The dynamics of nitrate are shown in both A and B. Symbols indicate treatment, as provided in 

legend and Table 2.2, orange shows nitrate, plotted in the upper panel. Note different scaling of y-axis for 

Mn2+ and Fe2+. 

 

3.4 Main experiment: Metal respiration 

3.4.1 Oxygen  

In the pilot experiment 1, the amount of O2 leaking into the bottles was small and constant enough 

to be corrected for. In the main experiment, the protruding the microrhizones through the septa of 

the bottles resulted in a more variable amount of O2 and N2 entering the bottles, either through the 

septum or through the microrhizon itself, particularly when sampled. The total amount of O2 

entering the individual bottles was estimated from equation 2.1, assuming that biological N2 
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production was negligible, and is plotted in Figure 3.9. There was no obvious trend in O2 influx 

across treatments, since this had to do with factors other than treatment, such as the angle and 

placement of the microrhizone through the septum and crimping of the metal ring. 

 

 

When investigating how much of the total O2 had been used for respiration (eq. 2.2), there was less 

variation between replicates of the same treatment. Figure 3.10 compares the average rates of O2 

influx with the average rates of oxygen respiration. As expected, for most of the bottles, the rate of 

O2 respiration and influx were positively related, i.e. the more O2 leaked into the bottle, the more 

was respired. This was particularly evident for the topsoil with amendments, but did not apply for 

subsoil without PG amendments, obviously because the metabolic activity was limited by electron 

donors (and probably N) and not by the electron acceptor O2. The bottle SSH2O_3 had the largest 

rate of O2 influx among all bottles (18 nmol O2 g
-1 h-1) and the third smallest average rate of O2 

respiration (0.19 nmol g-1 h-1). Only bottles SSH20_1 and SSNH4Cl_3 had smaller rates with 0.17 

and 0.18 nmol O2 g
-1 h-1, respectively. 

0

2

4

6

8

10

12

0 200 400 600

O
2

 c
o

n
ce

n
tr

at
io

n
 (

µ
m

o
l/

g 
d

ry
 s

o
il)

Time (hrs)

SSH2O_1

SSH2O_2

SSH2O_3

SSNH4Cl_1

SSNH4Cl_2

SSNH4Cl_3

SSPG_1

SSPG_2

SSPG_3

SSPG_4

SSPGNO3_1

SSPGNO3_2

SSPGNO3_3

0

2

4

6

8

10

12

0 200 400 600

Time (hrs)

TSH2O_1

TSH2O_2

TSH2O_3

TSNH4Cl_1

TSNH4Cl_2

TSNH4Cl_3

TSPG_1

TSPG_2

TSPG_3

TSPGNO3_1

TSPGNO3_2

TSPGNO3_3

Figure 3.9: Net oxygen influx per bottle over time, estimated by linear equation 2.1. Bottles containing 

subsoil (SS, Figure 2.1B) to the left (A), bottles containing top soil (TS, Figure 2.2) to the right (B). H2O = 

soil only added de-ionized water, NH4Cl = soil amended with ammonium chloride, PG = soil amended with 

propylene glycol, PGNO3 = soil amended with propylene glycol and ammonium nitrate. 

A: Subsoil 
B: Top soil 
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Ammonia added to the soils to relieve N limitation did not result in larger respiration rates in 

subsoil, whereas in topsoil, two of three bottles responded positively. In the subsoil, the largest 

average O2 respiration rate with added ammonium was 0.6 nmol O2 g
-1 h-1 (SSNH4Cl_1), while 

the smallest respiration rate estimated for topsoils with ammonium was 0.8 nmol O2 g-1 h-1 

(TSNH4Cl_2). 

 

Figure 3.10: Average rates (nmol g-1 dry soil h-1) of O2 flux into the bottles (blue) and O2 respiration (red) 

during 400 h of initially anoxic incubation. SS = subsoil (Figure 2.1), TS = top soil (Figure 2.2), H2O = 

control, NH4Cl = soil amended with ammonium chloride, PG = soil amended with propylene glycol, 

PGNO3 = soil amended with propylene glycol and ammonium nitrate. 

 

3.4.2 CO2 

Figure 3.11 shows CO2 accumulation over time in subsoil (Figure 3.11A) and topsoil (Figure 

3.11B). In general, subsoil produced less CO2 than topsoil, similar to what was found in pilot 

experiment 1 (Figure 3.1). CO2 accumulation by subsoils after 600 hours was quite variable but 

clearly larger in PG and PG+NO3
- treatments than in control or NH4 treatments, reaching a 

maximum of 1.5 µmol CO2 g
-1. Maximum CO2 accumulation in topsoil was almost twice as large 

(2.6 µmol g-1). Also here, final CO2 accumulation was very variable between replicates of the NH4, 

PG and PG+NO3
- treatments, where one bottle of each treatment reached large values, while the 

other bottles scaled closer together. 
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Based on the initial addition of 300 µmol PG-C bottle-1, a complete mineralization of PG should 

have resulted in a total excess CO2 accumulation (PG treatment minus control treatment, assuming 

no priming takes place) of 5 µmol CO2 g
-1. Because replicate bottles of PG and control treatments 

were exposed to different amounts of O2, the excess CO2 accumulation attributed to PG degradation 

could not be estimated based on treatment averages. To solve this problem, excess CO2 production 

was calculated from single control and treatment bottles that were exposed to approximately equal 

amounts of O2. For the subsoil, the observed excess in CO2 production accounted for a relatively 

small fraction of the theoretical amount of CO2 which would have been generated assuming 

complete PG degradation, with 3-23%  for the PG treatment and 11-25%  for the PG + NO3 

treatment, indicating that PG was not completely mineralized 26 days after the addition. For the 

topsoil, this fraction was in the same order of magnitude with 5-26% for the PG treatment and a 

somewhat lower 13-14% for the PG + NO3 treatment (Figure 3.13). 

Figure 3.11: CO2 accumulation for each bottle in the main experiment normalised to dry weight of soil. (A) 

Bottles containing subsoil (SS) and (B) bottles containing top soil. H2O = control, NH4Cl = with ammonium 

chloride, PG = with propylene glycol, PGNO3 = with propylene glycol and ammonium nitrate. 
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In Figure 3.12, average rates of CO2 accumulation are plotted together with average rates of O2 

respiration, revealing a clear positive relationship with a larger rate of O2 respiration when rates of 

CO2 accumulation in are high.  

 

 

 

 

 

Figure 3.12: Average rates (nmol/g dry soil h-1) of respired O2 in bottle (blue colour, left column) and of 

accumulation of CO2 in bottle headspace (red colour, right column). SS = subsoil (Figure 2.1), TS = top soil 

(Figure 2.2), H2O = soil only added de-ionized water, NH4Cl = soil amended with ammonium chloride, PG 

= soil amended with propylene glycol, PGNO3 = soil amended with propylene glycol and ammonium 

nitrate. 

 

To further visualize the extent of correlation between CO2 and O2, the maximum value of respired 

oxygen was plotted together with the relative degradation of PG (Figure 3.13). The soils which 

respired the most oxygen showed the highest relative degradation of PG. 
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Figure 3.13: The calculated relative degradation of PG (blue bars) and the respired O2 (red line) after end 

of experiment on day 26. Note that samples are sorted by increasing O2 respiration. 

 

3.4.3 Denitrification: N2, N2O, NO and NO3
-  

Because of variable leakage from the atmosphere, contaminating the bottle headspaces with N2, 

total denitrification rates could not be estimated. The cumulative influx of N2-gas into the 

individual bottles can be found in the appendix in section A.A.2 (Figure A.1).  

Unlike the presence of N2, the presence of N2O and NO may be taken as indicators for 

denitrification (section 1.2), as they only occur at trace concentrations in ambient air so that leakage 

does not play a role.  All bottles showed transient N2O and NO accumulation of varying duration 

(Figure 3.14). In treatments with no extra NO3
- or NH4

+ addition, the N2O and NO  peak seemed 

to be controlled by the NO3
- initially present in the soil, which was depleted within <100 hours 

(Fig, 3.8, A, B and E, F). With added ammonium (but also in the subsoil control), N2O 

accumulation was biphasic, with a pronounced initial peak (0 – 100h) and a shoulder of elevated 

N2O persisting throughout the entire incubation (Figure 3.14C, D). This probably suggests that 

added ammonium together with the O2 leaking into the bottles stimulated nitrification including 

N2O production. Nitrification is also supported by the finding of increasing NO3
- concentrations in 

the ammonium treatment. 
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Figure 3.14: Dynamics of NO (blue), N2O (orange) and NO3
- (green) in subsoil (left panel) and  topsoil 

(right panel) in control treatments (A, B), with NH4Cl addition (C, D),  with PG addition (E,F) and with PG 

and NO3
- addition (G, H). Shown are average values with standard deviation as error bars. More details 

about the NO3
- dynamics can be found in the Appendix section A.3. 
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N2O accumulation was most pronounced and more persistent in the NO3
- treatments. Both sub- and 

topsoil accumulated and depleted N2O within 200 h. As in the preliminary experiment (pilot 1, Ch. 

3.2), N2O accumulated somewhat faster and to a larger amount in top- than in subsoil. 

The background concentration of NO3
- in subsoil and topsoil was 90 ± 72 nmol and 160 ± 53 nmol 

g-1, respectively (Table A.2 and Figure 3.14A, B). Initially measured NO2
- was small with 1.8 ± 

1.1 and 1.5 ± 0.61 nmol g-1 soil in the subsoil and top soil, respectively (Table A.3). The high 

standard deviation of the initially measured NO3
- concentration in the soils could indicate that NO3

- 

was initially unevenly distributed within the soils. Measured NO3
- and NO2

- concentrations over 

time are listed in the Appendix, Table A.4. Unamended subsoil accumulated about 2 nmol N2O g-

1 soil (Figure 3.14A), and unamended topsoil about 3 nmol N2O g-1 (Figure 3.14B). This is about 

1/10 of the maximum value compared to that of the NO3- amended soils, which accumulated 25 

and 40 nmol N2O/g soil in the subsoil and top soil, respectively (Figure 3.14G, H). This shows that 

the addition of a relatively small amount of NO3
-(160 nmol g-1 soil) stimulated denitrification 

largely. 

 

3.4.4 Iron and manganese 

 

Fe2+ and Mn2+ concentrations measured in soil water, and recalculated per g dry weight soil  are 

plotted in Figure 3.15 and Figure 3.16 for subsoil and top soil, respectively. In the subsoil, Fe2+ 

release was quite small irrespective of treatment (<0.3 nmol g-1 soil). Peaks of elevated Fe2+ 

concentrations were variable and short-lived, pointing at variable reduction - reoxidation kinetics 

in single bottles. Only in the PG+NO3
- treatment, all three parallels showed a consistent increase 

of Fe2+ towards the end of the incubation (Figure 3.15D). 

Iron release from the top soil was on average ten times larger, reaching a maximum of 2.4 nmol g-

1 in one bottle of the PG treatment (Figure 3.16C). In general, Fe2+ release in the top soil was 

steadier over time in comparison than in subsoil, reaching highest values at the end of the 

incubation. Both PG and PG+NO3
- addition stimulated Fe2+ release, whereas NH4

+ addition did not 

seem to have any effect. 
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As with Fe2+, Mn2+ release from subsoil control or the NH4
+ treatment was small and inconsistent. 

When amended with PG or PG+NO3
-, significant Mn2+ release from subsoil occurred towards the 

end of the incubation. There was one outlier in the latter treatment, reaching an extraordinary large 

value of 15 nmol Mn2+ g-1. 

 

Figure 3.15: Dynamics of released manganese (blue colour) and iron (red colour) measured in water 

samples taken from bottles containing subsoil. Subsoil with only DI water (A), subsoil amended with NH4Cl 

(B), subsoil amended with PG (C) and soil amended with PG and NH4NO3 (D). Solid line and circles 

represent replicate bottle no 1, dashed line and squares represent replicate bottle number 2, dashed lines and 

triangles represent replicate bottle no 3. Notice the difference in scaling of Mn between the two top and the 

two bottom graphs. In D, the last measured Mn-concentration of SSPGNO3_3 (15 nmol g soil
 
-1) is omitted 

for visualization purposes. 

 

Whereas the difference in Fe2+ release between subsoil and topsoil was only 4 to 8 fold, topsoil 

released up to 100-1000 times more Mn2+ than subsoil in the same treatment, and even larger 

differences in the controls. Largest release was observed in the PG treatment. PG + NO3
- addition 
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resulted in only marginally smaller Mn2+ accumulation, whereas control and NH4
+ treatment 

accumulated about half of the Mn2+ found in the PG treatments.   

 

To visualize the impact of O2 availability on Fe2+and Mn2+ release, the average rates of Fe2+ and 

Mn2+accumulation were plotted together with the average rates of oxygen respiration (Figure 3.17). 

From this it becomes clear that the rate of metal release was negatively related to oxygen 

availability, meaning that O2 was chosen over metals as terminal electron acceptor. 
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Figure 3.16: Dynamics of released manganese (blue colour) and iron (red colour) measured in water 

samples taken from bottles containing topsoil. Topsoil with only DI water (A), subsoil amended with 

NH4Cl (B), subsoil amended with PG (C) and soil amended with PG and NH4NO3 (D). Solid line and 

circles represent replicate bottle no 1, dashed line and squares represent replicate bottle number 2, dashed 

lines and triangles represent replicate bottle no 3. 
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3.5 Microbial community analysis 

A total of 37 soil samples was subjected to DNA extraction and analysed for prokaryotic 

community composition using metabarcoding of the 16S rDNA gene. All batches from the main 

experiment were included, providing at least three replicates for each treatment. In addition, three 

replicates of native subsoil and top soil (section 2.2), and three replicates from each of the sieved 

soils directly before distributing them into the flasks were analysed. An overview of the samples is 

given in Appendix 1, Table A.1. 

0

20

40

60

80

100

120

140

160

180

200

0

2

4

6

8

10

12

14

16

TS
N

H
4

C
l_

1

TS
P

G
_1

TS
H

2
O

_
3

TS
H

2
O

_
1

TS
N

H
4

C
l_

3

TS
P

G
N

O
3

_
1

TS
N

H
4

C
l_

2

TS
H

2
O

_
2

TS
P

G
N

O
3

_
3

TS
P

G
N

O
3

_
2

TS
P

G
_2

TS
P

G
_3 R

at
e 

o
f 

M
n

2
+ 

re
le

as
ed

 (
p

m
o

lg
-1

h
-1

)

R
at

e 
o

f 
O

2
re

sp
ir

ed
 (

n
m

o
l g

-1
h

-1
)

0

5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

18

20

SS
N

H
4

C
l_

1

SS
H

2
O

_
3

SS
H

2
O

_
2

SS
H

2
O

_
1

SS
N

H
4

C
l_

2

SS
P

G
_1

SS
P

G
N

O
3

_2

SS
N

H
4

C
l_

3

SS
P

G
_2

SS
P

G
_3

SS
P

G
N

O
3

_1

SS
P

G
_4

SS
P

G
N

O
3

_3 R
at

e 
o

f 
M

n
2+

 re
le

as
ed

 (
p

m
o

lg
-1

h
-1

)

R
at

e 
o

f 
O

2
re

sp
ir

ed
 (

n
m

o
l g

-1
h

-1
)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0

2

4

6

8

10

12

14

16

TS
N

H
4

C
l_

1

TS
P

G
_1

TS
H

2
O

_
3

TS
H

2
O

_
1

TS
N

H
4

C
l_

3

TS
P

G
N

O
3

_
1

TS
N

H
4

C
l_

2

TS
H

2
O

_
2

TS
P

G
N

O
3

_
3

TS
P

G
N

O
3

_
2

TS
P

G
_2

TS
P

G
_3 R

at
e 

o
f 

Fe
2

+ 
re

le
as

ed
 (

p
m

o
lg

-1
h

-1
)

R
at

e 
o

f 
O

2
re

sp
ir

ed
 (

n
m

o
l g

-1
h

-1
)

-0,2

-0,1

0

0,1

0,2

0,3

0,4

-10

-5

0

5

10

15

20

SS
N

H
4

C
l_

1

SS
H

2
O

_
3

SS
H

2
O

_
2

SS
H

2
O

_
1

SS
N

H
4

C
l_

2

SS
P

G
_1

SS
P

G
N

O
3

_2

SS
N

H
4

C
l_

3

SS
P

G
_2

SS
P

G
_3

SS
P

G
N

O
3

_1

SS
P

G
_4

SS
P

G
N

O
3

_3

R
at

e 
o

f 
Fe

2+
 r

el
ea

se
d

 p
m

o
lg

-1
h

-1
)

R
at

e 
o

f 
O

2
re

sp
ir

ed
 (

n
m

o
l g

-1
h

-1
)

Figure 3.17: The average rates of released Mn2+ (blue) and Fe2+ (red) in subsoil (top panels) and 

top soil (lower panels) based on linear regression. The average rates of oxygen respired were included 

(grey line). Note that samples are sorted in order of increasing rates of Mn2+ release. Notice that the 

scaling of the secondary y-axes is different. 

Subsoil 

Topsoil 
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Based on the estimated number of cells, an assumed DNA concentration of 10-15 g per cell (1 Mbp 

chromosome × the average mass of a one base pair), and the measured DNA concentrations after 

extraction from the soil, the DNA yield ranged from 6% to 29% for subsoil, and from 10% to 77% 

for top soil. It is noteworthy that there was a large variability in estimated cell numbers and these 

were only estimated for the native soils (labelled “field”). This might have led to an 

underestimation of the number of cells and thus an overestimation of DNA extraction yield. 

 

3.5.1 Cell enumeration 

The total number of cells estimated by fluorescence microscopy varied from 0.6×109 to 4.1×109 in 

the native subsoil, and 1.8×109 to 9.3×109 in the native top soil from two dilution levels (Table 

3.2). The purpose behind enumerating the cells was to make this study comparable with other 

studies and to approximate the DNA extraction yield, and was therefore not prioritized for the 

entire sample set. The results showed that topsoil harboured approximately double as many cells 

than the subsoil, even though this difference was not statistically significant due to lack of 

replicates. Viable cells were estimated to account for 64 - 92% of cells enumerated in both soil 

types. Note that the “topsoil” is a mix of several horizons of the sand and may contain fewer cells 

than what could be expected for an organic soil horizon. 

Table 3.2: Amount of cells enumerated by fluorescence microscopy in native samples of the subsoil and 

the topsoil. The average numbers are based on two dilutions from the same sample ± standard deviation. 

Soil type 
[Cells] 
g-1 soil 

[Dead cells] 
g-1 soil Fraction live cells (%) 

Subsoil 2.3x109±2.5x109 3.8x108±2.9x108 68-86 % 

Top soil 5.5x109±5.3 x109 6.9x108±0.70x108 64-92 % 

 

3.5.2 Community composition 

Community profiles were analysed by amplification of the 16S rRNA genes using Illumina 

amplitag sequencing. A total of 3 762 904 reads were generated from the entire sample set with an 

average quality phred score of 37. During initial filtering and merging, 405 110 reads were 

removed, and the average quality phred score increased to 40. The number of reads per sample 

ranged from 57 970 to 152 329, and the recovery rate of the reads after merging ranged from 85% 

to 91%. The length of the sequences were 251 base pairs before merging and trimming, and ranged 
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from 200 to 421 base pairs after trimming. Table 3.3 provides an overview of the total sample set, 

while the individual data are listed in Appendix 4, Table A.5. 

Table 3.3: Overview of quality parameters for the sequencing of the total sample set, subsoil and topsoil. 

  
Total 
reads 

Reads 
after 
filtering 

Taxonomically 
assigned 
reads 

16S rRNA 
OTUs 

Sequence 
length 
range (bp) 

Classified 
at Genus 
level 

Classified 
at Class 
level 

16S rRNA 
OTUs after 
rarefaction 

Total 3762904 3357794 3309757 117854 200-421 17 % 96 % 82218 

Subsoil 1905962 1689679 1661829 74404 200-421 18 % 97 % 48784 

Top soil 1856942 1668115 1647946 74977 200-418 16 % 95 % 47658 

 

After analysis, a total of 117 857 operational taxonomic units (OTUs) were picked. Out of the total 

OTUs picked, 31 527 were shared by the two soil types, as illustrated in Figure 3.18. 

 

Figure 3.18: Simple Venn diagram illustrating the distribution of the total picked OTUs between sub- and 

topsoil.  

 

Out of these, 64 742 singletons were observed. The singletons were kept for initial analysis, 

however 35 636 OTUs were removed by rarefaction to the lowest amount of reads. Prior to 

rarefaction analyses, the rarefaction curves of the sample set were inspected (Figure A.4), to decide 

whether the sequencing depth chosen for the rarefaction (52 079 reads) would be sufficient for 

comparison between samples. 

In total, 99% of all reads from tagged 16S rRNA genes could be assigned at the phylum rank and 

96% at the class rank (Appendix 4, Table A.6). The most abundant phyla were Proteobacteria 
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(30%) and Acidobacteria (21%) and the candidate phylum “AD3” (15%), followed by 

Actinobacteria (5.9%), Chloroflexi (4.9%) and Verrucomicrobia (4.6%). 

The relative abundances of all identified phyla assigned to all samples are shown Figure 3.19. In 

the subsoil, the archaeal phyla Euryarchaeota decreased from a relative abundance of 13-15% in 

the native (“field”) samples compared to 0.37-3.6% at the end of the incubation, irrespective of 

treatment. The most obvious difference between incubated samples was the large increase of 

Proteobacteria in the treatments using PG, particularly when applied together with NO3
-. In the 

subsoil, the relative abundance of Proteobacteria increased from 24-28% in the native soil and the 

untreated control to 31-43% in the PG treatment and to 68-81% in PG+NO3 treatment. The increase 

in Proteobacteria was accompanied by a decrease in the relative abundance of Acidobacteria and 

the candidate phyla “AD3”, which ranged from 5-10% and 3-6% in the PG+NO3 treatment 

respectively, while in the native soil and the control treatment these phyla ranged from 22-28%, 

and 12-16%, respectively. 

In the top soil, differences at phylum rank were less obvious than in subsoil. In TSfield1 and 

TSstart1, the relative abundance of Cyanobacteria was at 5% compared to the other TS-samples 

ranging from 0.3 to 1.2%. In the PGNO3 treatments, Proteobacteria seemed to have a higher 

relative abundance (30-33%) than in the control treatment (22-25%), while the PG treatment had 

intermediate abundences (25-29%). However, one replicate of the native soil (TSfield2) and the 

sieved soil (TSstart3) had similar relative abundances of Proteobacteria than the PG+NO3 

treatment (33 and 30%, respectively). 

If the number of reads differ between samples, comparing relative abundances might overestimate 

the value of differences. In this sample set, most of the samples had around 90 000 reads, so when 

directly comparing the OTU richness of the assigned phyla (Figure 3.20), the same pattern can be 

seen: Proteobacteria had a larger OTU richness in PG-treated subsoil samples compared to 

controls, while Acidobacteria had a smaller OTU richness compared to controls. 
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Figure 3.19: The relative abundances of assigned phyla in the different samples ordered by treatment. 

Candidate phyla are denoted by apostrophes. All phyla which contributed <1% in all the samples are 

pooled in the “Other” category. SS = subsoil (Figure 2.1), TS = top soil (Figure 2.2), field = native 

samples (from field), start = soil sampled directly before distributing into flasks, H2O = soil with de-

ionized water, NH4Cl = soil amended with ammonium chloride, PG = soil amended with propylene 

glycol, PGNO3 = soil amended with propylene glycol and ammonium nitrate. 
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Figure 3.20: OTU richness of assigned phyla in the different samples. Candidate phyla denoted by 

apostrohes. All phyla which contributed <1% in any samples are pooled in the category “Other”. SS = 

subsoil (Figure 2.1), TS = top soil (Figure 2.2), field = native samples (from field), start = soil sampled 

directly before distributing into flasks, H2O = soil with de-ionized water, NH4Cl = soil amended with 

ammonium chloride, PG = soil amended with propylene glycol, PGNO3 = soil amended with propylene 

glycol and ammonium nitrate. 

 

Further dividing the Proteobacteria into classes, it was observed that Beta- and 

Gammaproteobacteria were the dominating this phylum in the PG+NO3 of subsoil (combined 62-

79% relative abundance). In the top soil, Alphaproteobacteria were the dominating class in phylum 

Proteobacteria (11-14% relative abundance). 
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From the entire dataset, only 17% of the OTUs could be classified down to genus rank. When 

investigating the 10 most abundant OTUs of the dataset, only two of them could been assigned to 

genus rank, while six of them were classified down to family rank (appendix 4, Table A.7). Upon 

comparison of the relative abundance of these six families, the families Oxalobacteraceae, 

Comamonadaceae and Pseudomonadaceae were found to account most for the increase in 

Proteobacteria in the PG+NO3 of the subsoil. Note that only 52% of the dataset was classified 

down to the Family rank, while 79% were classified at the Order rank. The two orders representing 

the three families mentioned (Burkholderiales and Pseudomanadales) showed the same pattern 

when compared across treatments, thus the low relative abundance of these families in the control 

treatments cannot be explained by a lack of classification at this rank. Combined, these three 

families represented 58-76% of the relative abundance in the SS-PGNO3 treatments, compared to 

1.5-4.9% in the control treatment (Figure 3.21). An increase in the relative abundance of the 

families was also noted in the SSPG and TS-PGNO3 treatments. 

 

Figure 3.21: Relative abundance of the families Comamonadaceae (class Betaproteobacteria), 

Oxalobacteraceae (class Betaproteobacteria) and Pseudomonadaceae (class Gammaproteobacteria). 
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3.5.3 Diversity 

Two diversity indices were calculated to provide information about rarity and commonness of 

species in the various samples. A diversity index is a mathematical measure of species diversity in 

a given community. Species diversity is superior to species richness (i.e., the number of species 

present) when evaluating microbial community structure, as it takes the relative abundances of 

different species into account (e.g. Simpson index 1-D; Simpson (1949)). In communities 

dominated by a few species, the diversity is low, whereas in communities with a more even relative 

abundance of species, even if the number of different species would be the same, diversity is high. 

The Simpson index (1-D) ranges from 0 to 1, where 1 represents perfect evenness. From Figure 

3.22, it can be seen that the diversity and evenness for all treatments was high, with Simpson values 

ranging from 0.97-0.99, with the exception of the PG+NO3 treatment in subsoil, which ranged 

from 0.81 to 0.89. Comparing with the chao1 values of richness (Figure 3.23), the two native 

samples, especially the one from the subsoil (“SSfield”) had a species richness similar to that of 

SS-PGNO3 treatment. However when comparing the two indices, it can be assumed that the SS-

PGNO3 community was more skewed towards a few dominant species than the native sample. 

This aligns well with the observations of a large increase in relative abundance of 

Oxalobacteraceae, Comamonadaceae and Pseudomonadaceae (Figure 3.21) in this treatment. 

The larger species richness in treated samples than in the native soils might be caused by 

contamination and growth of species from the laboratory environment, as the experiment was not 

performed under strictly sterile conditions. However, all taxa dominating after the incubation had 

respective representatives in the native soils, so that it is unlikely that the observed change in 

community composition was due to contamination. Individual for each sample are listed in 

Appendix 4, Table A.5. 
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Figure 3.22: Alpha diversity of the samples, represented by the Simpson index (1-D), which also accounts 

for evenness in the samples. The black line of the box plot shows the median of the samples for each 

treatment (n=3, and n=4 for SSPG), the vertical line shows the distribution of the data, and the end horizontal 

lines shows the minimum and maximum values of the sample set. Indices were calculated from rarefied 

data. 

 

 

Figure 3.23: Extrapolated richness of the samples, given as Chao1 index. The black line of the box plot 

shows the median of the samples for each treatment (n=3, and n=4 for SSPG), the vertical line shows the 
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distribution of the data, and the end horizontal lines shows the minimum and maximum values of the sample 

set. The indices were calculated from rarefied data. 

Comparing the chao1 index with the amount of observed OTUs after rarefaction (Table A.5, not 

plotted), the same pattern by treatment was followed. This suggest that there were similar amounts 

of rare species in all samples so that the chao1 index mirrors the sampled richness using 

extrapolated values. 

To evaluate differences in community structure, a 2D NMDS-plot was constructed, based on the 

distribution of OTUs in the samples after rarefaction (Figure 3.24). The clustering revealed a clear 

difference between the two soil types along MDS 1. In addition, “field” samples were separated 

from incubated samples by MDS2. The most pronounced difference in community structure was 

seen in the PG+NO3 treatment in the subsoil, which clustered far away from other subsoil samples 

along both MDS 1 and 2. 

 

Figure 3.24: NMDS-plot in two dimensions, based on Bray-Curtis distances of OTUs in the dataset after 

rarefaction. Subsoil samples in red, and top soil samples in black. 

 

To further visualize differences in community structure, a dendrogram showing the branching of 

the samples was constructed using the same Bray-Curtis distances as for the NMDS plot. Figure 
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3.25 show that at 50% similarity, three distinct branches form. The subsoil samples amended with 

PG and nitrate (SSPGNO3) are placed on a separate branch, while the rest of the subsoil and the 

topsoil samples are placed on two individual branches each. 

 

 

Figure 3.25: Dendrogram showing clustering of the samples based on Bray-Curtis distances of the OTU 

composition of each sample. At 50% similarity, three distinct clusters are forming, one for the PG and NO3
- 

treated subsoils, one for the rest of the subsoils and one including all the top soil samples. 

 

 

4. DISCUSSION  

4.1 Metabolic activities 

Ex situ incubation of sieved soil is one of several methods commonly employed to study metabolic 

activity in soils, and combined with high-resolution subsampling techniques, it can give a good 

picture of actual and/or inducible microbial activities in a small subsample of a soil taken from the 

field. One of the advantages of bottle experiments over in situ studies is the possibility to 

manipulate conditions and control factors that are difficult to control in field experiments, while at 

the same time holding other parameters constant (e.g. temperature, soil moisture, soil structure). In 
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the present study, batch incubations, i.e. incubation of soil in closed bottles, were employed to 

study the effect of PG and NO3
- on respiration rates, kinetics and prokaryotic community structure. 

In the first preliminary experiment (ch. 2.8), a well-tested standard method was used, which has a 

small, but constant and reproducible leak of O2 and N2 that can be corrected for, thus allowing for 

quantification of denitrification rates (Molstad et al. 2016). 

To allow for simultaneous sub-sampling of soil pore water, this system was modified by equipping 

the bottles with microrhizons which were protruded through the butyl septum. Despite preliminary 

successful tests, this system turned out to suffer from non-reproducible leaks, resulting in variable 

O2 influx into the initially anoxic bottles in the main experiment, so that no strictly anoxic 

conditions could be obtained. Accordingly, a variable part of the observed PG-degradation was 

driven by oxic respiration (Figure 3.13), which in turn depended on O2 influx (Figure 3.11). 

Oxidation of PG with O2 as an electron acceptor is the by far most efficient way of PG degradation, 

as could be seen from comparing CO2 production rates in PG amended soil under oxic and anoxic 

conditions in experiment 1 (Ch. 3.2). Anoxic CO2 production in non-amended subsoil reached only 

~20% of the CO2 production obtained in oxically incubated soils (Figure 3.3). When amended with 

PG, this share decreased further to ~15%, revealing the limited metabolic potential of the subsoil 

for anoxic PG degradation. Nitrogen addition increased respiration after some lag phase both under 

oxic and anoxic conditions (Figure 3.2Figure 3.4), illustrating that the metabolic potential of the 

subsoil is strongly N limited.  

The impact of oxygen on Fe/Mn dynamics was more difficult to assess, as the kinetics of 

Fe(II)/Mn(II) release were more variable. In the main experiment, the initially He-washed soil was 

incubated at ~80% WFPS, leaving only ~20% air-filled pores for O2 diffusion into the soil. Since 

gaseous diffusion in water-filled pores is very slow, it is likely that “anoxic microsites” developed 

throughout the incubation, which acted as “hot spots” for Fe/Mn reduction. A part of the large 

variability in Fe(II)/Mn(II) dynamics across treatment replicates may thus be due to differences in 

the distribution of anoxic microsites resulting from uneven packing of soil or uneven distribution 

of organic matter.   
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4.2 The effect of propylene glycol on Mn2+/Fe2+ release 

The premise of the proposed research question, whether propylene glycol increases the amount of 

Mn2+/Fe2+ released to soil water under anaerobic conditions, was to create anaerobic conditions. 

Even though this goal was not fully reached, Mn2+ and Fe2+ were detected in all treatments. A 

relatively low pH, between 4.4 - 4.6 (Table 3.1), combined with the high saturation level of the 

samples (~80 %WHCmax) might have altered the effective redox potential to be more favourable 

towards iron reduction compared to the standard conditions described by the redox tower (Figure 

0.2). The degradation of PG by Mn(IV) or Fe(III) consumes protons (16 and 32 mol H+ per mol 

PG, respectively, Table 0.1) and  for each unit decrease in pH, the redox potential of the 

Fe(III)/Fe(II) redox couple increases by ~59 mV per the Nernst equation (Levar et al. 2017). 

To evaluate the effect of PG on Mn2+/Fe2+ release, treatment replicates with similar O2 conditions 

had to be compared. For the top soil, the six bottles with the lowest average rate of respired oxygen, 

had the highest rates of Mn2+ release (Figure 3.17). Of these, the four bottles with the highest Mn2+ 

release rate, were treated with PG and the bottle with the highest rate of Mn2+ release more than 

doubled that of the control sample incubated under comparable O2 conditions (179 and 76 pmol g-

1 h-1 for PG3 and H2O_1; Figure 3.17). Ammonium addition did not seem to have any significant 

effect. Among the four PG-treated samples with similar rates of O2 respiration, the two amended 

with nitrate had slightly smaller rates of Mn2+ release, 92-108 and 136-179 pmol g-1 h-1, 

respectively.  Irrespective of O2 respiration, when removing outliers (i.e. the smallest and largest 

metal release rate in each treatment), PG treated samples showed significantly larger Mn2+ and Fe2+ 

release than controls (p=0.04 for Mn2+ , p=0.005 for Fe2+ by Welch Two-Sample t-test). 

For the subsoil, the sample with the highest rate of Mn2+ release was also the one with the lowest 

rate of respired O2, and also for subsoil there was a significant increase in Mn2+ release by PG when 

outliers were removed (p=0.02). Interestingly, when comparing the two bottles with lowest rate of 

respired O2 (Figure 3.17), PGNO3_3 released Mn2+ at a rate almost tenfold (24 pmol g-1 h-1) than 

that of PG4 (2.6 pmol g-1 h-1). The first Pilot expriment had shown that only NO3
- amended subsoils 

showed growth under anaerobic conditions, and the CO2 kinetic of PGNO3_3 (Figure 3.11) showed 

similarity to the results from pilot 1, indicating growth. 

Ultimately, soil samples from the 0-1 m top layer showed a much larger potetial for Mn2+ and Fe2+ 

release than soils from below 1.5 m depth. Mn2+ release from untreated controls throughout the 
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incubation was in the range of 5-48 nmol g-1, while PG treatments released 8-94 nmol g-1 (Fig. 

3.16). Oxygen limited the release of Mn2+, as suggested by the small rates of release in samples 

with large O2 respiration (Figure 3.17). The release of Fe2+ also seemed to be limited by oxygen 

(Figure 3.17), but followed a less clear pattern.  Mn2+ concentration levels measured in the top soil 

were only reached by one subsoil sample belonging to PG+NO3 treatment (~15 nmol g-1; Figure 

3.15D). Both Mn2+ and Fe2+ in this sample increased towards the end of the incubation, probably 

owing N-dependent bacterial growth, similar to that documented in pilot experiment 1. In general, 

the much smaller potential of subsoil than top soil to release Mn2+/Fe2+ can be assumed to be due 

to the low abundance of bacteria in subsoil. Biró et al. (2014) showed decreasing cell abundances 

by two orders of magnitude from surface to 1.5 m subsurface in soil from Oslo airport, by counting 

aerobic and anaerobic colony forming units and measuring a number of different enzyme activities. 

The cell enumeration performed in the present study suggested that there resided at least double as 

many cells in the top- than in the subsoil (Table 3.2).  

 

4.3 Microbial community structure 

 

Change in diversity 

The combined input of PG and NH4NO3 to subsoil decreased microbial diversity in the subsoil. 

This is often observed in hydrocarbon-polluted soils (Madigan et al. 2014), as degraders are able 

to grow, and increase in relative abundance. The diversity in the top soil was not affected by PG 

according to the Simpson index (Figure 3.22). More diverse soil communities are considered to be 

more resilient to inputs of pollution or nutrients (Giller et al. 1997), but according to the Simpson 

index, the top soil was initially not more diverse than the subsoil. 

The calculation of the Simpson index also includes evenness, so even if a sample has fewer species, 

the value increases if their relative abundances are similar. Other indices try to estimate the total 

richness of the community (often called “extrapolated richness”), giving more weight to the number 

of rare species sampled. The Chao1 index (Chao 1987; Chiu et al. 2014) has this intention, thus 

the value of the index is usually greater than the number of species actually sampled. According to 
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this index (Figure 3.23), the richness of top soil was reduced with treatments compared to the start 

soil. 

When comparing the species richness between the samples (Figure 3.23), the native (“field”) 

samples had less diversity than the “start” samples, while the only difference was transport, 

handling and storage. Since the transport, handling and storage was not performed under sterile 

conditions, the increased richness of the starting soil may be because the prokaryotes present in the 

soil responded to these storing conditions. Investigating this in more detail, it was found that about 

5% of the total sample set consisted of OTUs that were not observed in the native samples. 

However, the ten most abundant OTUs were all found to be present in the native samples, and all 

of the most abundant phyla were represented (Figure 3.19), so this did not seem to interfere with 

the observed changes in community composition by treatment. 

Community response to treatments 

The largest response observed in the community composition was the response in subsoil to 

combined propylene glycol and nitrate addition. In the Cluster Dendrogram (Figure 3.25), all 

samples from this treatment formed a separate branch showing more than 50% similarity. 

Statistical testing (PerMANOVA) showed a significant difference between the soil types 

(p=0.001), and statistically significant change in OTU composition by the PG+NH4NO3 treatment 

(p=0.002). Since the subsoil nitrate treatment was clearly distinguished from the other samples, 

this was excluded when testing for significance further. The native samples were found to differ 

significantly from the other controls (p=0.006, SS, p=0.007, TS), so these were also excluded from 

further significance testing. In both the top- and subsoil, PG treated samples had a significantly 

changed OTU composition compared to the controls (p=0.002). 

The most pronounced difference in the community composition was found in the subsoil, in which 

a large increase in the relative abundance of Proteobacteria occurred, increasing from 27% in the 

control sample with the largest relative abundance to 81% in one of the PGNO3 samples (Figure 

3.19). Proteobacteria are often found as dominating groups in hydrocarbon contaminated soils 

(Madigan et al. 2014; Saul et al. 2005; Viñas et al. 2005), as it is a metabolically diverse phylum 

which includes many heterotrophs. The three Proteobacteria families found to represent up to 76% 

of the relative abundance in PG treated soils, Oxalobacteraceae, Comamonadaceae and 
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Pseudomonadaceae (Figure 3.21), all represent aerobic and facultative organotrophs that likely 

degrade PG or its fermentation products. 

The Oxalobacteraceae represent mostly aerobic/microaerophilic species, with a few facultative 

aerobic and one obligate anaerobe genus (Baldani et al. 2014). 

The Comamonadaceae is a highly metabolically diverse family, including aerobic organotrophs, 

anaerobic denitrifiers, Fe3+-reducing bacteria, hydrogen oxidizers, photoautotrophic and 

photoheterotrophic bacteria as well as fermentative bacteria (Willems 2014). The most abundant 

OTU from this family was assigned as Rhodoferax sp. The Rhodoferax genus include three species, 

two facultatively anaerobic photoheterotrophs, while one, Rhodoferax ferrireducens, is classified 

as a facultatively anaerobe, using oxygen, nitrate, Fe(III), Mn(IV) or fumarate as electron acceptors 

while oxidizing fermentation products such as acetate and propionate and is capable of growth at 

temperatures as low as 4 ºC (Finneran et al. 2003). 

The Pseudomonadaceae contain chemoorganotrophs that carry out respiratory metabolisms. All 

species can grow as aerobes, but some are also capable of anaerobic respiration with nitrate as a 

terminal electron acceptor. Reduction of Fe(III) has also been observed for some species within the 

Pseudomonadaceae (Naganuma et al. 2006). Many of the aerobic PG degraders isolated from Oslo 

airport, Gardermoen, were from the genera Pseudomonas (Toscano et al. 2013). 

The largest change by treatment was observed when PG and NH4NO3 were added together. Even 

though nitrate was added only in a small quantity, this seems to have been enough for the 

aforementioned bacterial families to grow. In an anaerobic slurry of a soil sampled close to the 

same location as in the present study (Greco et al. 2012), linear PG degradation kinetics (zero 

order) was measured suggesting maintenance metabolism. When supplied with sufficient KNO3 to 

degrade the amount of PG present, the rate of degradation increased, but no sign of growth was 

observed. The same result was found for an aerobic slurry. With the amendment of ammonium 

chloride, PG degradation changed to first order kinetics, recognized by an initial lag phase, then a 

fast exponential degradation or “growth” phase until PG was depleted. When comparing the CO2 

accumulation kinetics in Figure 3.2 (aerobic, first pilot), Figure 3.4 (anaerobic, first pilot) and 

Figure 3.11 (main experiment), several of these CO2 accumulation curves display zero order 

kinetics when only PG is added, but first order kinetics for NO3
- treatments, implying growth. 
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The growth kinetics displayed in nitrate-amended subsoil in this study indicated nitrate 

assimilation, which could be of either ammonium or nitrate, since both were supplied. The supply 

of ammonium chloride without PG was tested, but did not lead to significant differences in growth 

from untreated controls (Figure 3.11). This suggests that the subsoil is both carbon and nitrogen 

limited. In the study by Greco et al. (2012), nitrate was found to increase the rate of anaerobic PG 

degradation. The influx of oxygen in the main experiment, which gives more energy than nitrate 

as a terminal electron acceptor increased PG degradation yields across all treatments in both soil 

types (Figure 3.13). However, when comparing four top soil samples that were exposed to similar 

rates of oxygen, the PG degradation yields were larger for two nitrate amended samples (13-14%), 

compared to two PG amendment alone (5-6%). Comparing two treated subsoil samples exposed to 

similar rates of oxygen also display larger PG degradation yields in the presence of nitrate (11 and 

3% for NO3 and PG, respectively). This suggests that even small inputs of nitrate can increase PG 

degradation in the unsaturated zone in the depths investigated.  

PG or PG and nitrate addition altered the top soil community composition less than that of the 

subsoil. Statistical testing showed significant differences with addition of PG in number and 

distribution of OTUs. The relative abundance of the previously mentioned families (Figure 3.21) 

also increased in PG treated topsoil, but by far not as much as in the subsoil. 

Euryarchaeota and possible methanogenesis 

In In the subsoil, the archaeal phylum Euryarchaeota decreased from a relative abundance of 13-

15% in the native (“field”) samples compared to the rest of the samples ranging from 0.37 to 3.6%. 

This phylum includes the methanogens, i.e. archaea that are obligate anaerobes (Madigan et al. 

2014). Upon sampling the subsoil, it was exposed to air, which is a probable explanation for the 

decrease in reolative abundance of this phylum in all treated samples. All Euryachaeota 

represented in the sample set belonged to the class Thermoplasmata and order 

Methanomassiliicoccales  (Iino et al. 2013). A few were classified to family, and belonged to the 

family Methanomassiliicoccaceae. Members of this family are described as strictly anaerobic and 

methanol-reducing hydrogenotrophic methanogens. 

Toscano et al. (2014) performed soil slurry experiments under anaerobic conditions with a soil 

sample from 4.5 meter below the surface, close to the groundwater table of Oslo airport. This 
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experiment showed a lag phase of 200 hours before PG started being degraded and propionic acid 

formed. The production of priopionic acid did not match fermentation stoichiometrically (Table 

0.1) and Mn2+ release accounted for only 1% of the electron acceptor demand of observed PG 

degradation. The authors therefore hypothesized that metabolic pathways other than fermentation 

to propionate and Mn reduction may have been involved in PG degradation, such as acetoclastic 

methanogenesis. A similar conclusion was drawn by the same authors from a study on soil samples 

from the Moreppen trench (Greco et al. 2012). However, which specific depth the Moreppen soil 

was taken from (labelled “refill”) was not specified, and it was probably a mixture of the top 1.5 

m. When handling the deep airport soil (Toscano et al. 2014), care was taken to avoid oxygen 

during storage, so the obligate anaerobes, for example native methanogens, should have survived. 

As mentioned, 13-15% relative abundance of Euryarchaeota were found in the native subsoil 

samples in this study, and it is likely that deeper parts of the soil, where even less O2 is available, 

might have similar abundances or larger abundances of methanogens, so methanogenesis is a 

possible pathway that could have reduced PG or its fermentation products (propionic acid, n-

propanol and acetate: Table 0.1) to methane and CO2, with H2 becoming available as an electron 

donor through fermentation by other bacteria. 

The care taken to avoid O2 was not the case for the Moreppen subsoil used by Greco et al. (2012), 

as it was taken from an excavation and further handling and storage details were not provided. Still, 

the natural abundance of methanogens may have survived to a larger degree than what was found 

in this study. If, however, the soil was exposed to air in a similar manner as in this study, the 

methanogens might not have survived and another explanation is needed to explain the observed 

respiration kinetics. Only minor amounts of methane was produced from the experiments of this 

study (Figure 3.5, maximum 0.06 nmol g-1 in TS, approximate rate 0.17 pmol h-1 g-1), so it cannot 

explain degradation of PG. 

Toscano et al. (2014) did not find any release of Fe2+, and this was not mentioned by Greco et al. 

(2012).  However, Fe2+ is very oxygen sensitive, and the procedure used for sample preparation of 

water samples analysed for reduced metal species included centrifugation for 15 minutes and 

filtration, so it is likely that Fe2+ could have oxidized during such a sample preparation. Under 

anaerobic conditions, Fe2+ is reported to be rapidly oxidized by Mn(IV)  oxide (stoichiometry 2:1) 

at neutral pH (Myers & Nealson 1988b; Lovley & Phillips 1988a). When Fe(III) was added to the 
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media of Fe/Mn reducing organism Shewanella putrefaciens together with Mn(IV), no Fe2+ could 

be measured, while the concentration of Mn2+ increased when compared to Mn(IV) alone. This 

makes “re-reduction” of the iron oxides possible, and direct analysis of reduced Fe2+ unreliable. If 

sampling and filtering is performed with minimal contact with oxygen, like by using saturated 

microrhizons, the results are more reliable but probably still underestimated. Thus, reduction of 

Fe/Mn is likely a more important respiration pathway than what was concluded by Toscano et al. 

(2014). 

Analysing microbial community composition using high-throughput sequencing, comprises many 

stages at which errors may occur. Evaluating the composition of a soil system from a 0.5 g 

subsample obviously does not give the complete richness of this system, however by tools such as 

rarefaction (Figure A.4), the sequencing depth can be evaluated, and from richness indices such as 

Chao1, the richness can be estimated and compared between samples. With this sampling design 

we are not able to capture all the specific prokaryotes present in the soil, however this is less 

important, as changes in the community structure still can be assessed from smaller subsamples. 

Amplicon-based community analysis also requires the use of polymerase chain reaction and 

selective primers for DNA amplification, which also might cause errors and biases (Wintzingerode 

et al. 1997). However, since all samples were processed the same way, the amount of errors and 

biases should be equal for all samples, thus the change in the community structure can be assumed 

to essentially be an effect of treatment and incubation conditions. 

When sampling DNA from soil, it has been shown that large amounts of “relic DNA”, from 

organisms no longer active may also be extracted (Carini et al. 2016). This can obscure treatment 

effects and amplify diversity estimates. Taking this into account, only the largest changes in relative 

abundance should be considered as treatment effects. 

 

4.4 Summary and Conclusion 

Propylene glycol (PG) addition to a sandy soil representative for the Gardermoen soil system 

significantly increased the release of Mn2+ and Fe2+ throughout 26 days of incubation under 

variable microaerophilic conditions.  Mn2+ release without amendments was by a factor of 100-

1000 larger in soil from 0-1 m depth (48 µmol kg-1) than in soil sampled below 1.5 m (0.02 µmol 
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kg-1), suggesting that Gardermoen soils hold a high natural potential for Mn2+ release in the upper 

100 cm. Addition of PG to topsoil increased Mn2+ release to a maximum of 94 µmol kg-1 throughout 

24 days. 

Estimated numbers of bacterial cells in the top soil doubled those in the subsoil, and the taxonomic 

composition of the microbial communities differed greatly between top and subsoil, probably 

explaining smaller Mn2+ release rates in the subsoil by differences in microbial abundance and 

functional diversity. A small addition of NH4NO3 together with PG to the subsoil promoted 

community change by triggering growth of metabolically diverse Comamonadaceae, 

Oxalobacteraceae and Pseudomonadaceae, and the release of Mn2+ from the subsoil to 

concentrations comparable to those in unamended top soil (16 µmol kg-1) appeared to be linked to 

this community shift. In comparison, community change in the topsoil and in subsoil incubated 

with PG alone, was negligible.  

Fe2+ release from the subsoil was variable and obviously influenced by re-oxidation with O2 leaking 

into the bottles, while in the topsoil, which likely respired O2 more efficiently, Fe2+ accumulated 

more steadily. Maximum Fe2+ accumulation in unamended top soil roughly doubled that in subsoil, 

but remained at low concentration levels in both soils (0.2 - 0.7 µmol kg-1 soil). PG addition (with 

or without additional NH4NO3) resulted in a tenfold increase of Fe2+ in the top soil with PG 

amendment (~2.3 µmol kg-1). 

In summary, Fe2+/Mn2+ release from the Gardermoen soil system seems to be dominated by upper 

soil layers. The metabolic activity in soil below 1.5 m depth, particularly under strictly anoxic 

conditions as tested in experiment 1, appears to be too small to generate enough electrons for 

fuelling significant Fe2+/Mn2+ release. Leaching of de-icing fluids to lower layers therefore poses 

little risk for Mn2+ release from deeper soil, suggesting that the reported contamination of ground 

water with Mn2+ stems from anoxic metabolism in the top layers during anoxic spells such as during 

snowmelt or after heavy rainfalls.  

Addition of NO3
- as an alternative electron acceptor has been discussed and tested for mitigating 

Fe2+/Mn2+ release in Gardermoen soils. Unlike in soil slurry experiments with well-distributed 

NO3
- in excess of what is necessary for complete PG degradation, a field experiment with NO3

- 

addition could not confirm a mitigation effect but increased Fe2+ and Mn2+ release was found. This 
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thesis confirms that nitrate, when added in low concentrations, does not efficiently lower Fe2+ and 

Mn2+ release in the top 1 m of Gardermoen soil and poses a risk to trigger Fe2+ and Mn2+ release 

in the subsoil through inducing functional community shift. 

Oslo airport is currently testing an aeration scheme for soils being affected by de-icing chemicals. 

This is very positive, as good aeration seems to be crucial to promote PG degradation and avoid 

accumulation of Fe2+ and Mn2+ in the ground water. In this study, aerobic degradation of PG 

outnumbered anaerobic degradation by far, irrespective of soil depth, suggesting that soil aeration 

can lead to a win-win situation, i.e. speeding up PG degradation while preventing Fe2+ and Mn2+ 

release. 

Aeration could make the current fertilization scheme using Ca(NO3)2 redundant, but might be 

continued to avoid nitrogen limitation in the upper part of the soil. In areas where the ground water 

has public interest as a potential source of drinking water, fertilization should be avoided, especially 

during seasons with high water transport to the lower parts of the soil, such as during spring 

conditions. 

In conclusion, as nitrate promotes growth of metabolically versatile bacteria in deeper soil layers, 

the effect as an alternative electron acceptor for Fe2+ and Mn2+ requires a large and continuous 

supply of nitrate to the subsoil, which is not desirable in terms of ground water protection. Aeration 

appears to be the better alternative. 
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Table A.1: Subsoil refers to soil from Moreppen research station at 1.5 meters below surface (Figure 2.1). 

Top soil refers to the top 1 meter of the soil in Moreppen research station (Figure 2.2). Both are described 

in section 2.2. 

Sample  

ID 

Soil 

type Treatment 

Sample 

ID 

Soil 

type Treatment 

Sample 

ID 

Soil 

type Treatment 

1-1 Subsoil Water 13-1 Top soil Water DS-1 Subsoil 

Storage for 56 days at 5 

degrees, sieving at 3.55. 

Original soil source of 

samples 1 through 12 and 33. 

9th of November 2016. 

2-1 Subsoil Water 14-1 Top soil Water TS-1 Top soil 

Storage for 56 days at 5 

degrees, sieving at 3.55. 

Original soil source of 

samples 13 through 24. 9th of 

November 2016. 

3-1 Subsoil Water 15-1 Top soil Water 

Deep soil 

from 

field Subsoil 

Soil directly from field 

location before sampling. 

14th of September 2016. 

Stored at -20C September-

December 2016, and at -80C 

January 2017 until analysis. 

4-1 Subsoil NH4Cl 16-1 Top soil NH4Cl 

Top soil 

from 

field Top soil 

Soil directly from field 

location before sampling. 

14th of September 2016. 

Stored at -20C. September-

December 2016, and at -80C 

January 2017 until analysis. 

5-1 Subsoil NH4Cl 17-1 Top soil NH4Cl    

6-1 Subsoil NH4Cl 18-1 Top soil NH4Cl   

 

7-1 Subsoil PG 19-1 Top soil PG   

8-1 Subsoil PG 20-1 Top soil PG   
9-1 Subsoil PG 21-1 Top soil PG   

10-1 Subsoil 

PG + 

NH4NO3 22-1 Top soil 

PG + 

NH4NO3   

11-1 Subsoil 

PG + 

NH4NO3 23-1 Top soil 

PG + 

NH4NO3   

12-1 Subsoil 

PG + 

NH4NO3 24-1 Top soil 

PG + 

NH4NO3   

33-1 Subsoil PG       
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A.2 Appendix 2 – N2 measurements 

 

 

 

Figure A.1: Nitrogen influx per bottle over time. SS = bottles containing subsoil (Figure 2.1B), TS = bottles 

containing top soil (Figure 2.2). H2O = soil only added de-ionized water, NH4Cl = soil amended with 

ammonium chloride, PG = soil amended with propylene glycol, PGNO3 = soil amended with propylene 

glycol and ammonium nitrate. 
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Figure A.2: N2 influx in three standards without soil. These were added approximately equal volume of DI 

water as the volume the soil took up in the bottles, 40 mL. Scale in nmol/bottle is divided by 60 g to match 

the scale of the soil samples. 
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A.3 Appendix 3 – NO3
- measurements 

 

 

 

Table A.2: Measured initial concentrations of nitrate in the two soil types, and calculated total initial 

concentrations of NO3
- amended soils. Average values with one standard deviation listed (n=3). 

Soil type 

 

[NO3
-]  

(nmol/g dry soil) 

[NO3
-] extra for treatment 

(nmol/g dry soil) 

Total [NO3
-] in NO3

- amended soils 

(nmol/g dry soil) 

Subsoil 90 ± 72 170 ± 0.39 260 ± 72 

Top soil 160 ± 53 170 ± 0.38 320 ± 53 

 

 

Table A.3: Measured initial concentrations of nitrite in the two soil types. Average values with one 

standard deviation listed (n=3). 

Soil type 

 

Initial [NO2
-]  

(nmol/g dry soil) 

Subsoil 1.8 ± 1.1 

Top soil 1.5 ± 0.61 
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Table A.4: Measured concentration of NO2
- and NO3

- in the samples over time. Note that this was 

measured after some time stored frozen, so NO2
-values are unlikely to be close to the true values. 

Sample Time [NO2
-]  [NO3

-]  Sample Time [NO2
-]  [NO3

-]  Sample Time [NO2
-]  [NO3

-]  

  h nmol/g soil   h nmol/g soil   h nmol/g soil 

DS_Water_1 23 0,66 3,7 DS_Water_2 24 0,42 4,0 DS_Water_3 24 0,48 4,5 

DS_Water_1 98 0,027 0,45 DS_Water_2 98 0,083 0,91 DS_Water_3 98 0,074 1,2 

DS_Water_1 146 0,011 0,26 DS_Water_2 146 0,0053 0,32 DS_Water_3 146 0,020 0,52 

DS_Water_1 241 0,0 0,57 DS_Water_2 241 0,020 0,38 DS_Water_3 242 0,0051 0,16 

DS_Water_1 337 0,0 0,63 DS_Water_2 337 0,0 0,57 DS_Water_3 337 0,0 1,4 

DS_Water_1 435 0,0 1,4 DS_Water_2 435 0,011 2,0 DS_Water_3 434 0,0 3,6 

DS_Water_1 580 0,0 1,4 DS_Water_2 580 0,0018 2,2 DS_Water_3 580 0,0 7,5 

DS_NH4_1 24 0,18 3,5 DS_NH4_2 24 0,51 3,9 DS_NH4_3 24 0,23 3,2 

DS_NH4_1 98 0,052 3,5 DS_NH4_2 98 0,02 0,00 DS_NH4_3 99 0,038 0,43 

DS_NH4_1 146 0,030 4,0 DS_NH4_2 146 0,01 0,46 DS_NH4_3 146 0,013 0,27 

DS_NH4_1 242 0,018 8,6 DS_NH4_2 242 0,00 0,00 DS_NH4_3 242 0,013 0,0 

DS_NH4_1 337 0,0 15 DS_NH4_2 337 4,8 6,6 DS_NH4_3 337 0,0 0,40 

DS_NH4_1 435 0,0 23 DS_NH4_2 435 1,4 5,2 DS_NH4_3 435 0,0084 2,6 

DS_NH4_1 580 0,0 34 DS_NH4_2 580 0,00 4,0 DS_NH4_3 580 0,010 0,32 

DS_PG_1 63 0,046 0,27 DS_PG_2 63 0,15 0,85 DS_PG_3 63 0,010 0,10 

DS_PG_1 95 0,0 0,024 DS_PG_2 94 0,049 2,2 DS_PG_3 95 0,0 0,46 

DS_PG_1 143 0,0 0,0 DS_PG_2 143 0,0055 0,0 DS_PG_3 143 0,0 0,0 

DS_PG_1 238 0,0 0,0 DS_PG_2 237 0,029 0,0 DS_PG_3 238 0,0039 0,16 

DS_PG_1 334 0,0 0,0 DS_PG_2 333 0,034 0,028 DS_PG_3 333 0,070 0,80 

DS_PG_1 431 0,0 0,0 DS_PG_2 430 0,048 0,20 DS_PG_3 431 0,010 0,10 
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Figure A.3: NO3
- dynamics in control samples initially amended with 10 µmol ammonia (approximately 160 

nmol/g soil), subsoil to the left and top soil to the right. Initial values are omitted for visualization purposes. 
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DS_PG_1 577 0,019 0,0 DS_PG_2 576 0,040 4,0 DS_PG_3 577 0,0 0,0 

DS_PG_4 59 0,0 0,25         
DS_PG_4 90 0,0 0,32         
DS_PG_4 138 0,012 0,088         
DS_PG_4 233 0,0 0,0         
DS_PG_4 328 0,0 1,2         
DS_PG_4 426 0,0 0,19         
DS_PG_4 572 0,0 0,00         

DS_PG+NO3_1 63 0,45 104 DS_PG+NO3_2 63 6,3 111 DS_PG+NO3_3 64 0,86 96 

DS_PG+NO3_1 96 30 92 DS_PG+NO3_2 95 1,5 104 DS_PG+NO3_3 96 0,22 41 

DS_PG+NO3_1 143 6,1 15 DS_PG+NO3_2 143 3,9 38 DS_PG+NO3_3 143 1,2 18 

DS_PG+NO3_1 239 0,081 0,0 DS_PG+NO3_2 239 0,74 3,8 DS_PG+NO3_3 239 0,22 1,2 

DS_PG+NO3_1 334 0,15 0,0 DS_PG+NO3_2 333 0,20 0,70 DS_PG+NO3_3 333 0,19 0,0 

DS_PG+NO3_1 432 0,056 0,0 DS_PG+NO3_2 432 0,068 0,14 DS_PG+NO3_3 430 0,051 0,0 

DS_PG+NO3_1 577 0,42 0,0 DS_PG+NO3_2 577 0,16 0,0 DS_PG+NO3_3 575 0,48 0,039 

TS_Water_1 63 0,016 0,10 TS_Water_2 63 0,021 0,22 TS_Water_3 63 0,018 0,16 

TS_Water_1 95 0,0 0,80 TS_Water_2 95 0,0 0,41 TS_Water_3 95 0,0 0,50 

TS_Water_1 143 0,0 0,0 TS_Water_2 142 0,0 0,0 TS_Water_3 142 0,0 0,0 

TS_Water_1 238 0,0 0,0 TS_Water_2 238 0,0 0,0 TS_Water_3 238 0,0 0,0 

TS_Water_1 333 0,0 0,55 TS_Water_2 334 0,0 0,0 TS_Water_3 334 0,0 0,37 

TS_Water_1 431 0,0 0,40 TS_Water_2 431 0,0 0,0 TS_Water_3 431 0,0 1,6 

TS_Water_1 577 0,0 0,41 TS_Water_2 577 0,0061 0,0 TS_Water_3 576 0,0 12 

TS_NH4_1 63 0,030 0,18 TS_NH4_2 63 0,0 0,0 TS_NH4_3 64 0,27 2,2 

TS_NH4_1 95 0,0076 2,0 TS_NH4_2 95 0,0 0,55 TS_NH4_3 95 0,040 1,5 

TS_NH4_1 143 0,0 6,4 TS_NH4_2 143 0,0 0,20 TS_NH4_3 143 0,0 0,0 

TS_NH4_1 238 0,0 36 TS_NH4_2 238 0,0 0,0 TS_NH4_3 238 0,0 0,052 

TS_NH4_1 334 0,0 49 TS_NH4_2 334 0,0 2,9 TS_NH4_3 334 0,0 1,2 

TS_NH4_1 430 0,0 62 TS_NH4_2 430 0,0 0,33 TS_NH4_3 430 0,0 1,1 

TS_NH4_1 577 0,0 72 TS_NH4_2 577 0,0 0,0 TS_NH4_3 576 0,0 4,5 

TS_PG_1 63 0,0 0,0 TS_PG_2 62 0,018 0,19 TS_PG_3 63 0,0 0,13 

TS_PG_1 94 0,0 0,0 TS_PG_2 94 0,00082 0,0 TS_PG_3 95 0,0 0,0 

TS_PG_1 142 0,0 0,0 TS_PG_2 142 0,0060 0,17 TS_PG_3 142 0,0 0,0 

TS_PG_1 238 0,0061 0,0 TS_PG_2 237 0,00089 0,0 TS_PG_3 238 0,0028 0,0 

TS_PG_1 333 0,0 0,0 TS_PG_2 333 0,0 0,0 TS_PG_3 333 0,0082 0,0 

TS_PG_1 430 0,0 0,11 TS_PG_2 430 0,016 2,2 TS_PG_3 428 0,0026 0,0 

TS_PG_1 576 0,0 0,0 TS_PG_2 576 0,0019 0,084 TS_PG_3 573 0,040 0,0 

TS_PG+NO3_1 63 0,13 61 TS_PG+NO3_2 63 0,09 91 TS_PG+NO3_3 63 0,13 61 

TS_PG+NO3_1 94 0,69 58 TS_PG+NO3_2 94 0,44 59 TS_PG+NO3_3 94 0,16 57 

TS_PG+NO3_1 142 0,12 12 TS_PG+NO3_2 142 0,79 11 TS_PG+NO3_3 142 0,11 16 

TS_PG+NO3_1 238 0,16 0,68 TS_PG+NO3_2 238 0,38 0,81 TS_PG+NO3_3 238 0,18 1,3 

TS_PG+NO3_1 333 0,28 0,0 TS_PG+NO3_2 333 0,24 0,0 TS_PG+NO3_3 333 0,10 0,0 

TS_PG+NO3_1 430 0,044 0,28 TS_PG+NO3_2 430 0,24 0,0 TS_PG+NO3_3 430 0,42 1,9 

TS_PG+NO3_1 576 0,029 0,21 TS_PG+NO3_2 576 0,16 0,0 TS_PG+NO3_3 576 0,23 0,074 
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A.1 Appendix 4 – Diversity information 

Table A.5: Number of reads before and after processing in QIIME, how many of those assigned to a 

taxonomy, how many different OTUs picked, the sequence length, number of OTUs included from 

rarefaction, Simpson Diversity Index (SDI) and Chao1 species richness for individual samples. 

Sample ID Total reads 
Reads after 

filtering 
Tax. assigned 

reads 
16S rRNA 

OTUs 

Sequence 
length 

range (bp) 

16S rRNA 
OTUs after 
rarefaction SDI1 Chao12 

SSfield1 88304 78798 77247 5909 200-320 4528 0,98 11991 

SSfield2 85556 73753 72464 4915 200-287 4001 0,98 10965 

SSfield3 99795 89802 88241 4929 200-287 3594 0,98 8425 

SSstart1 85116 76412 74976 7467 200-287 5826 0,99 16888 

SSstart2 111087 100508 98680 11707 200-391 7396 0,99 25362 

SSstart3 96522 86069 84452 10634 200-291 7502 0,99 24276 

SSH2O1 107266 95974 94220 7958 200-287 5421 0,99 15162 

SSH2O2 102323 91947 90558 11836 200-354 7882 0,99 26115 

SSH2O3 86653 74569 73629 10022 200-421 7796 0,99 26489 

SSNH4Cl1 90495 80864 79665 10128 200-287 7351 0,98 24894 

SSNH4Cl2 83660 72523 71512 9606 200-419 7653 0,99 25439 

SSNH4Cl3 111186 100220 98747 11886 200-287 7502 0,99 26071 

SSPG1 100826 88765 87670 8417 200-280 5894 0,99 17776 

SSPG2 107673 94995 93645 9583 200-278 6388 0,98 20942 

SSPG3 103816 91620 90434 10539 200-280 7196 0,99 23284 

SSPG4 129628 116487 114757 13248 200-395 7528 0,99 24610 

SSPGNO31 98409 86480 85933 5897 200-277 4308 0,87 11537 

SSPGNO32 104047 93512 92581 7058 200-287 4832 0,89 13021 

SSPGNO33 113600 96381 92409 4109 200-287 2767 0,81 6951 

TSfield1 57970 52079 50718 4493 200-418 4493 0,98 12852 

TSfield2 97375 86738 85568 7057 200-385 5032 0,99 13952 

TSfield3 103370 93075 91793 7888 200-317 5321 0,97 15962 

TSstart1 105937 95534 94170 11972 200-287 7799 0,99 24105 

TSstart2 123930 111426 109544 13799 200-342 8070 0,99 27436 

TSstart3 106015 94392 93160 11742 200-326 7739 0,99 25079 

TSH2O1 103258 93002 91840 11400 200-293 7603 0,98 24585 

TSH2O2 113224 98389 97115 12220 200-293 7884 0,98 26412 

TSH2O3 87802 79634 78710 8557 200-410 6463 0,98 19372 

TSNH4Cl1 152329 138771 137388 12253 200-391 6362 0,98 18648 

TSNH4Cl2 75861 67923 67246 7271 200-391 6065 0,98 17600 

TSNH4Cl3 100207 90762 89913 8614 200-406 5898 0,98 18111 

TSPG1 96504 86925 86057 8349 200-418 6011 0,98 17781 

TSPG2 109094 99226 98411 7675 200-415 5094 0,99 13794 

TSPG3 102271 92121 91053 9408 200-391 6476 0,98 18973 

TSPGNO31 104480 93750 92877 8896 200-290 5994 0,98 17430 

TSPGNO32 111020 99942 98907 10253 200-391 6537 0,99 19070 
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TSPGNO33 106295 94426 93467 10317 200-391 6893 0,99 21120 
1Simpson Diversity index (1-D; Simpson, 1949), calculated using all rRNA OTUS after rarefaction. 
2Chao1 species richness estimator (Chao 1987; Chiu et al. 2014) 

Kdføs 

Table A.6: From the filtered reads, how many were classified at the different taxonomical ranks based on 

the GreenGenes database. 

Sample ID 
Classified at 
Phylum rank 

Classified at 
Class rank 

Classified at 
Order rank 

Classified at 
Family rank 

Classified at 
Genus rank 

Classified at 
Species rank 

SSfield1 98 % 97 % 82 % 36 % 8 % 0,075 % 

SSfield2 98 % 97 % 83 % 38 % 7 % 0,20 % 

SSfield3 98 % 97 % 84 % 40 % 7 % 0,05 % 

SSstart1 98 % 97 % 80 % 45 % 12 % 0,45 % 

SSstart2 98 % 97 % 79 % 43 % 10 % 0,36 % 

SSstart3 98 % 97 % 80 % 49 % 13 % 0,63 % 

SSH2O1 98 % 97 % 80 % 46 % 12 % 0,31 % 

SSH2O2 98 % 97 % 77 % 45 % 11 % 0,40 % 

SSH2O3 99 % 97 % 79 % 45 % 11 % 0,21 % 

SSNH4Cl1 99 % 97 % 80 % 48 % 11 % 0,33 % 

SSNH4Cl2 99 % 97 % 78 % 44 % 11 % 0,28 % 

SSNH4Cl3 99 % 97 % 77 % 45 % 11 % 0,41 % 

SSPG1 99 % 97 % 83 % 52 % 19 % 0,46 % 

SSPG2 99 % 98 % 84 % 57 % 24 % 0,55 % 

SSPG3 99 % 98 % 82 % 52 % 18 % 0,70 % 

SSPG4 99 % 97 % 82 % 50 % 14 % 0,35 % 

SSPGNO31 99 % 99 % 92 % 78 % 54 % 0,16 % 
SSPGNO32 99 % 98 % 91 % 77 % 52 % 0,39 % 

SSPGNO33 96 % 96 % 92 % 85 % 38 % 0,29 % 

TSfield1 97 % 90 % 71 % 48 % 14 % 1,3 % 

TSfield2 99 % 95 % 80 % 58 % 22 % 2,4 % 

TSfield3 99 % 94 % 68 % 37 % 10 % 0,63 % 

TSstart1 99 % 95 % 74 % 48 % 15 % 1,3 % 

TSstart2 98 % 95 % 78 % 51 % 17 % 1,3 % 

TSstart3 99 % 96 % 81 % 55 % 17 % 1,3 % 

TSH2O1 99 % 95 % 72 % 49 % 15 % 1,5 % 

TSH2O2 99 % 95 % 73 % 48 % 15 % 1,1 % 

TSH2O3 99 % 96 % 73 % 50 % 16 % 2,0 % 

TSNH4Cl1 99 % 96 % 76 % 51 % 16 % 1,8 % 

TSNH4Cl2 99 % 96 % 76 % 51 % 15 % 1,5 % 

TSNH4Cl3 99 % 96 % 76 % 52 % 16 % 1,2 % 

TSPG1 99 % 95 % 76 % 53 % 17 % 1,2 % 

TSPG2 99 % 96 % 80 % 55 % 16 % 1,2 % 

TSPG3 99 % 96 % 76 % 52 % 15 % 1,4 % 
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TSPGNO31 99 % 96 % 78 % 56 % 21 % 1,0 % 

TSPGNO32 99 % 96 % 78 % 55 % 15 % 1,1 % 

TSPGNO33 99 % 96 % 79 % 55 % 19 % 1,5 % 

Total sample set 99 % 96 % 79 % 52 % 17 % 0,86 % 

 

 

 

Figure A.4: Rarefaction curves of all samples. The grey line shows the rarefaction cutoff, at 52 079 reads. 

 

 

 

 

 

 

Table A.7 lists the top ten most abundant OTUs and their assigned phylogeny/taxonomy according 

to the GreenGenes database (DeSantis et al. 2006). 

Table A.7: The top 10 OTUs and their phylogeny according to GreenGenes database. 

%*  Phylogeny: Phylum, Class, Order, Family, Genus 

8.1  Acidobacteria,  DA052,  Ellin6513 

2.9  Proteobacteria,  Alphaproteobacteria, Rhizobiales,  Bradyrhizobiaceae 
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2.3  Chloroflexi,  TK10,  B07_WMSP1,  FFCH4570 

1.7  ‘AD3’,  ‘JG37-AG-4’ 

1.7  Proteobacteria,  Betaproteobacteria,  Burkholderiales,  Oxalobacteraceae 

1.6  Proteobacteria,  Betaproteobacteria,  Burkholderiales,  Comamonadaceae,  Rhodoferax 

1.5  Proteobacteria,  Gammaproteobacteria,  Xanthomonadales,  Sinobacteraceae 

1.4 

 Proteobacteria,  Gammaproteobacteria,  Pseudomonadales,  Pseudomonadaceae,  

Pseudomonas 

1.4  ‘AD3’,  ‘ABS-6’ 

1.4  Acidobacteria,  iii1-8,  DS-18 

  * Fraction of total sample set 

 


