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Molecular evidence has established that king crabs (Lithodinae) are gigantic hermit 

crabs without a gastropod shell to protect their abdomen. Secondarily, the abdomen 

has become calcified and flexed, in a crab-like manner. As a result, king crabs are 

superficially resembling brachyuran (true) crabs. Both king crabs and hermit crabs 

are parasitized by parasitic barnacles (Rhizocephala), which are an exclusively 

parasitic taxon belonging to the Cirripedia. Rhizocephalans are highly adapted to 

their parasitic lifestyle. Being irreversibly bound to their host, the parasites have 

extremely intimate relationships with their host taxa. In this thesis, the coevolutionary 

interplay between king crabs and parasitic barnacles has been investigated, to test, if 

the fascinating evolutionary origin of king crabs from a hermit crab ancestor can also 

be traced via the coevolution with their parasitic barnacles.  

To resolve the exact placement of king crabs within the hermit crabs and identify the 

closest extant relatives to the Lithodinae, a phylogenetic tree of hermit crabs and king 

crabs was constructed via Bayesian Inference and Maximum Likelihood analyses. To 

achieve this goal, multiple molecular markers of mitochondrial and nuclear ribosomal 

genes were utilized in combination with extensive taxon sampling. Further, a 

molecular phylogenetic tree of parasitic barnacles from numerous hermit crabs and 

king crabs was produced. The phylogeny of parasitic barnacles was subsequently 

linked to the phylogenetic tree of hermit crabs and king crabs, via individual host-

parasite associations. Cophylogeny analyses of the dataset revealed that the parasites 

closely followed their hosts in a coevolutionary manner, where the speciation of a 

host lineage is accompanied by a parallel diversification of the parasite lineage. The 

evolution of king crabs was accompanied by two independent parasite lineages which 

followed the evolution of king crabs from a hermit crab ancestor. The host-parasite 

cophylogeny analyses strongly corroborated the phylogenetic placement of king crabs 

within the hermit crab family Paguridae.  
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Hermit crabs were known to host a number of parasitic barnacle species, but only one 

species had been reported as a parasite of king crabs prior to this study. This parasite 

was supposed to parasitize a wide range of species, with a global distribution 

spanning all oceans. Detailed investigation of rhizocephalan parasites of king crabs 

revealed that the previously recognized single species constitutes of a rather large 

complex of cryptic species, each specialized to only one or few hosts. These cryptic 

species, of which two species new to science were described in this thesis, however, 

are difficult, or even impossible, to distinguish by morphology alone.  

Rhizocephala solely rely on their host for nutrition. Due to their parasitic lifestyle 

they have evolved a highly modified morphology compared to other crustaceans, 

lacking almost all arthropod features like segmentation, a centralized nervous system, 

any alimentary tract, or appendages. The adult morphology of the female parasite can 

be divided into two distinct parts: a sac-shaped reproductive body which is attached 

to the outside of the host, called the externa; and a trophic part situated inside the 

host, the interna, which has a root-like appearance. The interna infiltrates the inner 

organs as a complicated mycelia-like structure that spreads throughout the body of 

the host. Its location, hidden inside the host’s body, and highly structured 

morphology, makes this part of the organism difficult to study. Using state of the art 

X-ray micro computer tomography (MicroCT) and computer-aided 3D-

reconstruction, the spatial organization of this root system inside the intact host was 

documented for parasites of king crabs and hermit crabs to investigate the parasite’s 

adaption to a highly changed morphology in their hosts, due to the process of 

carcinization in the Lithodinae. 

Results of this thesis are further used to evaluate the potential danger of the Northeast 

Atlantic red king crab population to become parasitized by a rhizocephalan parasite, 

with potential damaging effects for the fisheries industry. The red king crab, 

Paralithodes camtschaticus, is frequently parasitized by rhizocephalans in its native 

range, the North Pacific, but the introduced red king crab stock in the North Atlantic 

is rhizocephalan-free. The parasite grows an extensive system of green rootlets inside 

the crab, making infested king crabs unusable for marketing. The parasite further 
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sterilizes its host, with a potential highly negative effect on population size and 

significant economic impact on the king crab fisheries.  
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Lithodinae, which include the large king crabs (Fig. 1d), are anomuran crustaceans 

with a crab-like body, that superficially resembles that of brachyuran (true) crabs 

(Fig. 1i). Molecular evidence has established that king crabs, which are found in 

Norwegian waters as the prominent invasive red king crab, Paralithodes 

camtschaticus (Fig. 2k), and the smaller native species, Lithodes maja (Fig. 2j), 

derived from an asymmetrical hermit crab ancestor, that abandoned the use of empty 

gastropod shells for protection (Cunningham, Blackstone, & Buss, 1992; Tsang et al., 

2011; Bracken-Grissom et al., 2013). Secondarily, the abdomen has become calcified 

and folded under the cephalothorax, resulting in a crab-like morphology. 

Additionally, molecular studies suggest, that king crabs actually originated within the 

hermit crab genus Pagurus (Cunningham et al., 1992), which is represented in 

Norwegian waters by several species.  

The origin of king crabs from an asymmetrical hermit crab ancestor had already been 

proposed in the late 19th century (Boas, 1880a,b; Bouvier, 1894), and regained 

considerate attention after Cunningham et al. (1992) confirmed the position of king 

crabs within the hermit crab family Paguridae in the first molecular phylogeny on the 

taxon, based on the mitochondrial 16S rRNA subunit. Numerous following molecular 

studies that touched the issue received corresponding results (Zaklan, 2002; Morrison 

et al., 2002; Tsang et al., 2008; Ahyong, Schnabel, & Maas, 2009; Bracken et al., 

2009; Chu et al., 2009). But despite the increasing evidence of a hermit crab ancestry 

of the taxon, some of the leading taxonomist in anomuran crustaceans strongly 

rejected this evolutionary scenario (Mclaughlin & Lemaitre, 1997; McLaughlin & 

Lemaitre, 2000; Mclaughlin, Lemaitre, & Tudge, 2004; McLaughlin, Lemaitre, & 

Sorhannus, 2007; Lemaitre & McLaughlin, 2009). These authors proposed a rather 

reverse evolutionary scenario, in which the lithodid crab-like body form gave rise to 

the hermit crab body form through calcium loss, habitat change and consequential 
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morphological adaptions. Therefore, at the beginning of this PhD project, the 

evolution of king crabs was heartily debated, and coevolutionary evidence from a 

host-parasite system promised to provide further evidence to remove the remaining 

doubts. Soon after, further molecular studies (Schnabel, Ahyong, & Maas, 2011; 

Tsang et al., 2011; Bracken-Grissom et al., 2013), as well as a phylogeny based on 

the morphology of the foregut in Anomura (Reimann, Richter, & Scholtz, 2011), 

solidified the phylogenetic position of lithodid crabs within the hermit crab family 

Paguridae.  

The overall body shape of lithodid crabs is highly altered from its hermit crab 

ancestor and superficially rather resembles that of brachyuran crabs (Fig. 1). 

However, clear morphological traces of the taxon’s origin from an asymmetric 

pagurid hermit crab ancestor can still be found. The most obvious trace of this origin 

is found in their asymmetric pleon (Fig. 1f-h). While male lithodids have a fairly 

symmetric pleon (Fig. 1h), females typically exhibit a clear asymmetric, dextrally 

offset abdomen (Duguid, 2010) regarding both the pleopods, which are used to carry 

the eggs and are only developed on the left side, as well as the tergal plates (Fig. 1e, 

g) (Mclaughlin & Lemaitre, 1997; McLaughlin & Lemaitre, 2000; Mclaughlin et al., 

2004). Asymmetrical hermit crabs are highly adapted to the use of dextrally coiled 

gastropod housing for protection (Fig. 1a-c). Here, bearing of the egg mass on the left 

body side is highly advantageous, since the egg mass only occupies the free space to 

the outer wall of the shell, while the right side of the pleon is twisted around the 

shells columella (Mclaughlin & Lemaitre, 1997). Dextral gastropod shells 

undoubtedly influence the direction of hermit crab asymmetries (Palmer, 2004) which 

are still retained in lithodid crabs. 
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Lithodids typically also exhibit asymmetries of their chelae, with distinctive larger 

claws on the right body side (Fig. 2). This right-handedness is also found in pagurid 

hermit crabs (Fig. 1a-c) with high consistency (McLaughlin, 2003). This consistent 

pattern is somewhat surprising, since hermit crabs of the family Diogenidae, which 

also inhabit dextral housings, show the opposite pattern with a strong left-

handedness. This indicates that, other than pleon asymmetry, there is not a strong 

selective pressure towards either left or right asymmetry regarding handedness in 

gastropod inhabiting hermits, but right-handedness appears to be genetically deeply 

implemented in the Paguridae, which has also been retained in the free living 

lithodids. Right-handedness in lithodids must be regarded as clear trace of their 

pagurid origin, with this character being homologous between lithodid crabs and 

pagurid hermit crabs (Tsang et al., 2011). In hermit crabs the gonads and the 

hepatopancreas are located in the pleon, where these organs constitute the major 

volume of this body region (Mclaughlin & Lemaitre, 1997; Keiler, Richter, & 

Wirkner, 2013). This is also found in lithodids, while in other carcinized decapod 

taxa, which developed from ancestors with a muscular pleon used for classical 

locomotion, the viscera remain in the cephalothorax (Anker & Paulay, 2013). In 

shell-inhabiting hermit crabs, however, only little muscle tissue is situated in the 

pleon, used to fasten and retract the animal in its housing. The reduction of muscle 

mass in the pleon made space available for the voluminous hepatopancreas, which 

usually occupies a large volume of the cephalothorax. While the pleon in lithodid 

crabs is reduced, it still contains large parts of the hepatopancreas as a further 

heritage of their ancestry (Anker & Paulay, 2013; Keiler, Richter, & Wirkner, 2015). 

Further traces of the pagurid origin can for example be found in the mouthparts 

(Boas, 1924; Jaszkowiak et al., 2015), the setation (Keiler & Richter, 2011), or the 

vascular system (Keiler et al., 2013, 2015). 
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Lithodid crabs also have non hermit crab-like characters, resembling those of 

ancestral anomurans (Richter & Scholtz, 1994), which are related to a secondary 

change towards a free-living habit. A calcified body substitutes a protective housing 

(Fig. 2), while the 4th and 5th pereiopods lost their function of retaining the animal in 

the former, and re-adapted to their original function as walking- and gill-cleaning 

appendages. Probably the most remarkable of these features is the morphology of the 

4th pereiopods. In hermit crabs these legs are developed as specialized rasp-bearing 

appendages, to retaining the animal inside its housing, much shorter than the two 

anterior pairs (Fig. 1a-c). In lithodids, not only are the 4th pereiopods developed as 

walking legs, but resemble the 2nd and 3rd pairs even by their spine arrangement (Fig. 

1d, 2). This has led to the suggestion, that this re-development of a standard walking 

leg is related to the expression of hox genes (Richter & Scholtz, 1994). Also the 5th 

pair of thoracopods is used to retain hermit crabs in their housings, but in lithodids 

those are permanently hidden under the cephalothorax (Fig. 1d), where they serve as 

gill cleaning devices.  

Lithodid crabs display a wide variability of morphological forms, corresponding to 

the large range of habitats and ecological adaptions of these species (Fig. 2). 

Morphological variety in the Lithodinae is largely corresponding to that found in the 

much more species rich Brachyura, the true crabs (Fig. 1i, j). Similar general body 

shapes of both taxa have been highlighted as prime examples for convergent 

evolution (Balss, 1924; Scholtz, 2014). One of these morphological adaptions related 

to habitat use and ecology is found in the box crab, Lopholithodes foraminatus (Fig. 

3). This species can retract its appendages so closely to its body, that it becomes a 

solid box-like structure (Fig. 3a-c). The chelipeds and the first pair of walking legs 

have smooth, semicircular concavities, forming a respiration canal when the animal is 

retracted (Fig. 3b, c) (Jensen, 1995). 
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Several studies have shown that hermit crabs (Paguroidea) are paraphyletic within the 

Anomura, and even independent origins of asymmetrical hermit crabs have been 

indicated (Ahyong et al., 2009; Chu et al., 2009; Tsang et al., 2011; Bracken-

Grissom et al., 2013). Different carcinized, crab-like anomuran lineages have further 

evolved independently from hermit crab ancestors (Ahyong et al., 2009; Bracken et 

al., 2009; Chu et al., 2009; Schnabel et al., 2011; Tsang et al., 2011; Bracken-

Grissom et al., 2013). Therefore, not only the position of lithodid crabs within the 

Paguridae has been under debate, also internal relationships between the major taxa 

within Anomura, or Anomala as preferred by some authors (McLaughlin & Holthuis, 

1985; Reimann et al., 2011), have not reached consensus. The classification of the 

Anomura is in need of revision, due to current classification being largely based on 

superficial body forms (Tsang et al., 2011). The anomuran morphology appears to be 

flexible in an evolutionary perspective, and different general body shapes, like crabs, 

hermit crabs, or squat lobsters have developed multiple times (Morrison et al., 2002; 

Ahyong et al., 2009; Schnabel et al., 2011; Tsang et al., 2011; Bracken-Grissom et 

al., 2013). This morphological flexibility of the anomuran body has led to conflicting 

topologies within the Anomura, largely depending on whether molecular or 

morphological data is used in phylogenetic analyses. Phylogenies based on 

morphological characters used to investigate the internal relationships of Anomura, 

including the phylogenetic position of lithodid crabs, tended to include large amounts 

of characters directly linked to the general habitus and the process of carcinization 

(e.g. Dixon, Ahyong, & Schram, 2003; McLaughlin et al., 2007; Mclaughlin & 

Lemaitre, 1997) and are thus biased towards joining superficially similar taxa. 

Flexible morphological characters, often reflecting the lifestyle rather than the 

phylogenetic relationships between the taxa, are likely to give conflicting results to 

more independent molecular data. Dixon et al.’s (2003) results, for example, might 

have been influenced by what the authors considered to be the remarkably derived 

form of lithodid crabs. Also when molecular data is analysed in combination with 

morphological data sets, tree topologies tend to be shifted towards a more classical 

topology (Ahyong & O’Meally, 2004; Schnabel et al., 2011; Bracken-Grissom et al., 
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2013). A morphological study based on characters unaffected by the general body 

shape, on the other hand, has confirmed molecular genetic results (Reimann et al., 

2011), showing that morphological data is not necessarily contradicting molecular 

results, if characters included are not affected by the process of carcinization. 

Not only are lithodid crabs nested within the hermit crab family Paguridae, but the 

latter might further be nested within the hermit crab family Diogenidae. This was first 

indicated when Morrison et al. (2002) included the diogenid Paguristes turgidus in 

their analyses. This species was resolved as sister taxon to Paguridae, outside of the 

remaining Diogenidae. Paguristes also stands out from other Diogenidae by its 

distinct mitochondrial genome arrangements (Morrison et al., 2002) and morphology 

of the foregut (Reimann et al., 2011). Paguridae were also later found in a sister 

relationship to Paguristes and its close allied genus Areopaguristes within the 

Diogenidae based on molecular data (Bracken-Grissom et al., 2013). However, the 

relationships changed when morphological data was added to the analyses, rendering 

Paguridae (including lithodids) as sister group to the entire Diogenidae. A 

paraphyletic pattern of the Diogenidae is also found regarding the terrestrial hermit 

crab family Coenobitidae, which is nested within this taxon (Morrison et al., 2002; 

Tsang et al., 2008, 2011; Schnabel et al., 2011; Reimann et al., 2011; Bracken-

Grissom et al., 2013). 

Carcinization, a morphological transformation that involves a broadening and 

calcification of the carapace, and reduction and underfolding of the pleon (Borradaile, 

1916), is a widespread phenomenon in the Anomura, and developed independently 

several times in this taxon (Morrison et al., 2002; Tsang et al., 2011). Outside the 

Anomura carcinization only is present in the Brachyura, which forms the sister group 

to the Anomura. In the brachyuran crabs, carcinization has reached its most 

sophisticated form, and the high diversity of this group clearly illustrates the potential 

advantages of developing such a morphology (Morrison et al., 2002; Tsang et al., 

2014). The process of carcinization from an asymmetrical hermit crab is more 

complex than in other anomuran taxa, since beside the broadening of the 
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cephalothorax, and reduction and subfolding of the pleon, it also involves 

reorganisation and sclerotisation as the protective housing becomes abandoned 

(Anker & Paulay, 2013). The term “carcinization” was created by Borradaile (1916) 

with reference to crab-like modifications in the hermit crab genus 

Porcellanopagurus. However, the concept of carcinization originates with Boas’ 

hypothesis (Boas 1880a, 1880b) that king crabs represent highly derived, heavily 

calcified, shell-less hermit crabs (Anker & Paulay, 2013). For a critical review on the 

concept of carcinization see Scholtz (2014). While carcinization is widespread in the 

Anomura (Tsang et al., 2011), king crabs represent one of the most striking example 

for this morphological transformation, almost resembling the degree found in 

brachyuran crabs. In lithodids even the uropods are lacking on the telson (Fig. 1e-h), 

which are retained in other carcinized anomuran taxa, making lithodids even more 

similar to brachyuran crabs (Fig. 1j). Most hermit crabs possess a soft and elongated 

pleon, which is usual protected by a gastropod shell (Fig. 1a-c). However, there are a 

number of cases of carcinization in hermit crabs. The most advanced example of 

carcinization in the Paguridae, beside lithodid crabs, is found in the recently 

described Patagurus rex. This species has a fully calcified carapace and only carries 

small shells to protect a greatly reduced pleon (Anker & Paulay, 2013). 

Only a single fossil record exists for the Lithodinae. This species, Paralomis 

debodeorum, has been dated to the mid to late Miocene of New Zealand (Feldmann, 

1998). The fossil record of hermit crabs is also relatively poor (Feldmann, 1998; Jagt 

et al., 2006), and fossil hermit crabs are usually described only by body fractions, 

most importantly the chelipeds (Garassino, Angeli, & Pasini, 2009; Fraaije et al., 

2015). Lithodinae secondary evolved a free-living mode of life, via abandoning the 

inhabitation of foreign housings. But how did the shell-inhabiting lifestyle of hermit 

crabs evolve in the first place? Modern hermit crabs protect their soft pleon in a 

housing, which usually are gastropod shells, but also scaphopod shells, polychaete 

tubes, or bivalve shells are used by some species (Anker & Paulay, 2013). The oldest 

in situ fossils of a hermit crab, however, was found in an ammonite shell (Fraaije, 
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2003; Jagt et al., 2006). This indicates that ammonites were used as housings before 

hermit crabs turned to gastropod shells in the late Cretaceous, when the gastropods 

diversified. Possibly this diversification, leading to new sources of protective 

housings and thus ecological niches, was subsequently followed by the diversification 

of the asymmetrical hermit crab lineages. Gastropods might have been used as shelter 

since sthe early Jurassic, but ammonites were much more frequent then. The 

morphology of modern asymmetrical hermit crabs is clearly adapted for inhabiting 

conical coiled gastropod shells. In planar-coiled ammonite shells only the outer, 

living chamber could be inhabited; whereas the entire coiled housing is inhabited in 

dextral gastropod shells. Further, ammonites were lacking a free columella to which 

the pleon, and in particular the telson, could be clinched to secure the animal inside 

the housing. As a result of their abundance, the strength and shape of their shells, and 

subsequent absence of ammonites, gastropods became much better suited for post-

mortem occupation and transport by hermit crabs (Fraaije, 2003). Recent studies 

showed that the diversity of hermit crabs was already relatively high in the Jurassic 

(van Bakel et al., 2008; Fraaije et al., 2012b,a, 2013; Fraaije, 2014). From the early 

Cretaceous onwards, hermit crabs, and members of the families Diogenidae and 

Paguridae in particular, radiated across the globe (Fraaije et al., 2015). 

Rhizocephala, or parasitic barnacles, are parasites of other crustaceans, mainly 

Decapoda. The taxon belongs to the Cirripedia, in which they form the sister group to 

the Thoracica. Thoracican barnacles, which for example contain the well-known rock 

barnacles from the intertidal, or the stalked goose barnacles that drift on flotsam, are 

suspension feeding. But rhizocephalans solely rely on their host for nutrition. Due to 

their parasitic lifestyle they have evolved a highly modified adult morphology 

compared to other crustaceans, lacking almost all arthropod features like 

segmentation, a centralized nervous system, any alimentary tract, or appendages 

(Høeg & Lützen, 1995; Walker, 2001; Glenner & Hebsgaard, 2006). The adult 
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morphology of the female parasite can be divided into two distinct parts: a sac-shaped 

reproductive body which is attached to the outside of the host, usually on the pleon, 

called the externa (Fig. 4c-k); and a trophic part situated inside the host, the interna, 

which has a root-like appearance. The externa is lined with a cuticular mantle and 

consists of a mantle cavity, in which the eggs are breed, and a visceral mass, which 

contains the ovaries, colleteric glands, and usually a pair of receptacles in which the 

male larvae settle and subsequently serve as functional testes (Høeg & Lützen, 1995; 

Walker, 2001). 

While the adult organism cannot be identified as crustacean, or even arthropod, by its 

morphology, the affiliation to the Cirripedia was already discovered in the description 

of the first species, Sacculina carcini, since the characteristic nauplius larvae (Fig. 

4a) were observed (Thompson, 1836). These closely resemble those of conventional 

barnacles. Interestingly, the second described species, Peltogaster paguri, was 

described as a worm (Rathke, 1842), since no larvae were observed and the author 

was apparently not aware of the description of S. carcini. However, the understanding 

of the rhizocephalan morphology, life cycle, as well as the impact on their hosts, was 

puzzling biologists for much longer (Høeg & Lützen, 1995; Walker, 2001). Even the 

interna, which is a crucial part for the understanding of the parasites biology, was 

only discovered almost two decades after the discovery of the taxon (Anderson, 

1858). The interna of the Rhizocephala is a unique organ in Arthropoda. Similar 

structures are only found in the thoracican barnacles Anelasma, parasitic on lantern 

sharks, and Rhizolepas, parasitic on polychaetes (Day, 1939; Rees et al., 2014), as 

well as in some parasitic copepods (Boxshall and Harrison, 1988). 

The life cycle of rhizocepalans includes planktonic larvae of separate sexes. These 

lecitotrophic larvae are released from the mantle cavity of the externa, where the eggs 

are bred. The planktonic phase consists of a series of nauplii stages (Fig. 4a), which 

transform into a cypris larva (Fig. 4b). These larvae are typical for the entire 

Cirripedia. 
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The female cypris has to find a suitable host, to which it attaches. At the settlement 

site, which is depending on the species, usually on the base of a seta or on the gills, 

the cypris moulds into a further larval stage, the kentrogon (Høeg, 1995). This 

kentrogon is the injection stage of the parasite, which penetrates the hosts cuticle with 

a hollow stylet and inserts parasite material into the host. The early internal phase is a 

discrete vermiform body, called the vermigon (Glenner & Høeg, 1995; Glenner et al., 

2000; Glenner, 2001). The internal phase grows to an extensive root system, which is 

ramifying the hosts body. Eventually the externa emerges through the hosts 

integument. Once the juvenile externa is in contact with the seawater, it has to attract 

a male cypris larva before the parasite can proceed to mature (Høeg, 1995). The male 

cypris larva settles on the mantle opening of the juvenile externa, where it moulds 

into a motile trichogon larva, homologous to the female kentrogon. The trichogon 

migrates into one of the female receptacles, where it sheds its spiny, outer cuticle, 

that serves as a plug, enabling further male larvae to enter (Høeg, 1987; Glenner & 

Høeg, 1994). The males, once implanted in the female externa, serve as functional 

testes of the parasite (Høeg & Lützen, 1995). 

Due to the only very few morphological features of the adult parasites, the internal 

phylogeny of the Rhizocephala has long been ambiguous. While the phylogeny of the 

taxon is still not fully resolved, molecular methods have yet significantly increased 

our understanding of the evolution of this highly diverged group of crustaceans. The 

Rhizocephala have been divided into two orders: Kentrogonida and Akentrogonida. 

Members of the Akentrogonida, which are lacking both the kentrogon and trichogon 

stages, have long been seen as the basal rhizocephalan taxon. However, molecular 

phylogenies showed that akentrogonids are the most derived members of the 

Rhizocephala, and that the presence of the kentrogon is the plesiomorphic state in 

Rhizocephala. The molecules further showed that the Akentrogonida are nested 

within the Kentrogonida, and here even within the family Sacculinidae (Glenner, 

Lützen, & Takahashi, 2003; Glenner et al., 2010; Glenner & Hebsgaard, 2006). In the 

Akentrogonida various modifications in the life cycle occur. Such are the larvae not 

released as nauplii, but at the cypris stage from the mantle cavity. The receptacles in 

some akentrogonids are completely lacking, and the male cypris injects 
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spermatogenetic cells directly into the female externa (Høeg, 1990; Høeg & Lützen, 

1995). 

Rhizocephalans are exerting both physiological and morphological effects on their 

hosts, and can also induce behaviour changes (e.g. Høeg, 1995; Kristensen et al., 

2012; Li et al., 2014; Rasmussen, 1959; Sloan, 1984). Rhizocephalans can sterilize 

their hosts, feminize the morphology of male hosts, and arrest the hosts moulting 

cycle (Høeg, 1995), however, not all species induce all of these effects. Further, some 

species induce behavioural changes in their hosts, resulting in the host taking care of 

the parasites externa, as if it was its own offspring (Rasmussen, 1959; Ritchie & 

Høeg, 1981). The externa is in most species situated in the same location where the 

female host carries its own eggs. The parasite thereby mimics a brood of eggs, and 

parasitized hosts do not damage the externa, even if they have the potential to do so. 

Instead, the hosts may show brood caring behaviour, which seems vital to some 

species. It has also been observed that the host performs its natural spawning 

behaviour, which assists the dispersal of parasite larvae (Ritchie & Høeg, 1981; 

Høeg, 1995).  

Rhizocephalans have extremely intimate relationships with their hosts. They have 

adapted to such a level that they can grow an extensive trophic structure inside their 

host without being attacked by the hosts immune system. Not surprisingly, most 

rhizocephalan species display a high host specificity. However, many species have 

been reported on more than one host species (Høeg & Lützen, 1985; Høeg & 

Rybakov, 1992; McDermott, Williams, & Boyko, 2010; Hirose, Hirose, & Yoshida, 

2014). But only for few rhizocephalans, species identities of parasites from different 

host species have been investigated using molecular markers (Gurney, Grewe, & 

Thresher, 2006; Yoshida et al., 2012; Kruse, Hare, & Hines, 2012; Hirose et al., 

2014). Rhizocephalan taxonomy, and in particular species delimitation, relies heavily 

on very crude morphological characters, and species records from different hosts 
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might often represent cryptic species, which cannot be distinguished by morphology 

alone (Høeg, 1995). Cryptic species, which are defined as a group of species 

previously identified as one, can constitute an important part of biodiversity 

(Bickford et al., 2007; Nygren, 2014). Species delimitation by morphological means 

is not always sufficient, since speciation is not necessarily accompanied by 

morphological change (Bickford et al., 2007), which must be considered of special 

importance for Rhizocephala, considering the near absence of proper morphological 

characters in this taxon.  

Host taxa highly differ between the larger taxonomic groups within the Rhizocephala. 

The families Peltogastridae (Fig. 4j) and Lernaeodiscidae (Fig. 4c-e, k) are 

exclusively parasitic on anomuran crustaceans, like hermit crabs, squat lobsters, or 

porcelain crabs (Boyko & Williams, 2009). Members of the family Sacculinidae (Fig. 

4f, i) are usually parasitic on brachyuran crabs (Lützen et al., 2016), and the family 

Parthenopeidae is parasitic on mud shrimp (Upogebiidae) (Rybakov & Høeg, 2013). 

All hitherto mentioned families are members of the rhizocephalan order 

Kentrogonida. The other order, Akentrogonida (Fig. 4g, h), on the other hand 

parasitize a broad range of crustaceans. Here, hosts are not restricted to the Decapoda, 

but various crustacean groups, such as Stomatopoda, Anomura, Caridea, Isopoda, and 

Cumacea are parasitized. Species of the akentrogonid family Chthamalophilidae are 

even parasites of other Cirripedia; balanomorph barnacles (Høeg, 1990; Høeg & 

Rybakov, 1992; Lützen & Takahashi, 1996). Host specificity appears not to rest with 

the cyprid stage, since experiments showed that larvae settle and metamorphose on 

species that do not carry externae in the field (Ritchie & Høeg, 1981; Høeg, 1995; 

Høeg & Lützen, 1995). Such normally unsuccessful, fatal host choices might 

occasionally lead to successful establishments of rhizocephalans on new hosts (Høeg, 

1995). 

Hermit crabs are hosts to a number of parasitic barnacle species from different 

genera, but only one genus, Briarosaccus, is a parasite of lithodid crabs. Prior to this 

thesis, the genus had been recognized to consist of only two species: B. callosus, 
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parasitizing the large king crabs, and B. tenellus, which parasitizes the small lithodid 

crab Hapalogaster mertensii (Boschma, 1970; Guzman, Moreno, & Moyano, 2002; 

Lützen, Glenner, & Lörz, 2009). The rhizocephalan B. callosus had been reported to 

parasitize a large number of king crab species on a global scale (Boschma, 1930, 

1962; Haynes & Boschma, 1969; Hawkes, Meyers, & Shirley, 1985; Pohle, 1992a,b; 

Cadien & Martin, 1999; Agnew et al., 2001; Guzman et al., 2002; Shukalyuk et al., 

2005; Ahyong & Dawson, 2006; Watabe, 2007; Lützen et al., 2009; Anosov et al., 

2015). Either B. callosus consist of number of cryptic species, which have not been 

possible to separate by morphological traits, or the species B. callosus demonstrates 

an exceptional broad host specificity and distribution range. Beside a global 

distribution, the single parasite species would consequently have a habitat stretching 

from the shallow subtidal to the deep-sea (Boschma, 1962; Pohle, 1992a; Lovrich, 

Roccatagliata, & Peresan, 2004), including such diverse habitats as kelp forests 

(Cárdenas et al., 2007) and hydrothermal vent systems (Lützen et al., 2009).  

Briarosaccus grows an extensive root system of green colour throughout the internal 

tissue of the king crab host. Not only does the parasite make the crab unsuitable for 

commercial marketing, but the crab is also irreversible sterilized (Boschma, 1970; 

Sloan, 1984b; Sparks & Morado, 1986; Hoggarth, 1990; Shukalyuk et al., 2005). In 

some king crab populations, the prevalence of the parasite reaches over 50%, greatly 

impacting the fishery (Sloan, 1984a; Hawkes et al., 1986b; Watabe, 2007). 

The evolution of parasites is highly influenced by that of their host taxa. Co-

speciation between host and parasite occurs when the divergence and diversification 

of a host lineage triggers a parallel divergence of the parasite lineage. If strictly 

followed, this scenario would lead to mirroring phylogenies of both hosts and 

parasites, known as the Farenholz’s rule (Hafner & Nadler, 1988; Klassen, 1992). 

However, several other factors have to be considered in these coevolutionary 

scenarios, such as host-switching, failure of a parasite to diverge together with its 

host, speciation of a parasite within a host species, or parasite loss (Paterson & 

Poulin, 1999; Paterson, Wallis, & Lise, 2000; Desdevises, 2007). The association 
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between host and parasite taxa is thus the result of an interplay of processes, and a 

coevolutionary signal can be disrupted by these factors (Paterson & Poulin, 1999). 

Analyses of such coevolutionary relationships are extremely difficult due to the 

complex interplay of events (Paterson & Banks, 2001). Programs have been 

developed to test for these coevolutionary events, comparing host and parasite 

phylogenies and their associations (Page, 1994; Conow et al., 2010). These programs 

reconcile host and parasite phylogenetic trees via event-cost methods to test if the 

number of co-speciation events is higher than expected by chance.  

Many host-parasite systems only show weak signals of cophylogeny, since other 

evolutionary pathways, like host switches, are predominant (Caira & Jensen, 2001; 

Desdevises et al., 2002; Summers & Rouse, 2014). Further, evidence for 

cophylogeny is more likely found in parasites with restricted hosts (Boyko et al., 

2013). Most host-parasite cophylogeny studies have been conducted on mites and 

parasitic insects of vertebrates (e.g. Banks, Palma, & Paterson, 2006; Demastes et al., 

2012; Hafner et al., 1994; Hendricks, Flannery, & Spicer, 2013; Štefka, Hoeck, 

Keller, & Smith, 2011; Weckstein, 2004), and only few systems have been closely 

investigated in a marine environment (Paterson & Poulin, 1999; Hoberg & Klassen, 

2002; Lanterbecq, Rouse, & Eeckhaut, 2010). Cophylogeny studies have the potential 

to support evolutionary theories of host relationships. Cestoda, for example, sustained 

the independent lineages of sharks and rays (Olson et al., 2010). Høeg (1995) noted 

that rhizocephalan parasites sometimes seems to have followed the host through an 

evolutionary specialization. As an example, Høeg (1995) stated that Briarosaccus 

parasitizes exclusively lithodids, while most peltogastrids occur on true hermit crabs. 

The potential of parasites, in particular rhizocephalans, to provide phylogenetic 

signals that support or refute hypotheses of decapod evolution has been highlighted 

by Boyko and Williams (2009).  

Rhizocephalans are inducing parasitic sterilization of their hosts (Høeg, 1995), and 

their potential use as biological control agents against introduced marine species has 

been discussed. In particular, the use of Sacculina carcini (Fig. 4i) as a parasitic 
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castrator of the European green crab, Carcinus maenas, has been in focus of research 

(Lafferty & Kuris, 1996; Thresher et al., 2000; Goddard et al., 2005; Kuris et al., 

2007). C. maenas is an invasive species in many regions around the globe and causes 

huge impacts on marine ecosystems (Goddard et al., 2005). But if an introduced 

parasite would, in addition to the target, parasitize native, non-target crab species, the 

introduction of a parasite might have further negative impacts on the ecosystem. 

Therefore, host specificity of the potential control agent is a crucial factor when a 

parasite is considered to be released as such an agent (Thomas & Willis, 1998; Strong 

& Pemberton, 2000). For S. carcini, molecular analyses showed that this parasite is 

indeed parasitizing a rather wide host range in nature (Gurney et al., 2006), and 

experiments indicated that also native crab species outside its distribution might be 

additional suitable hosts when exposed to the parasite (Thresher et al., 2000; Goddard 

et al., 2005). 

But even if a rhizocephalan is host specific to its target species, a successful reduction 

of the targets impact on the ecosystem is uncertain. So far, biological control agents 

have not been used in the marine environment (Lafferty & Kuris, 1996; Kuris et al., 

2007). A key factor of effective host control is that the parasite reduces the 

population size of its host. Rhizocephalans sterilize their hosts, preventing infested 

specimens from reproduction. Rhizocephalans might, therefore, be capable of 

reducing the size of their host population, if this is limited by the total reproductive 

output, via the amount of larvae released into the water. Other factors, like 

intraspecific competition, might however in many cases be the crucial factor for 

upper population limits. Crab populations with high prevalences of rhizocephalan 

infections have shown to be stable (Innocenti & Galil, 2007; Innocenti et al., 2009), 

and the practical use of rhizocephalans as biological control agents is, therefore, 

ambiguous. Further, prevalence levels of parasite infections cannot be controlled in a 

natural environment. 

The king crabs comprise one species, Paralithodes camtschaticus, which is invasive 

in parts of its current distribution range. Other than most invasive species in the 

marine environment, P. camtschaticus was introduced intentionally into the Barents 

Sea during the 1960s by Russian scientists, to establish a target fishery on this species 
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(Orlov & Ivanov, 1978). While native to the North Pacific, the red king crab has since 

established a self-sustaining population in the Northeast Atlantic, including northern 

Norwegian waters (Hjelset, Sundet, & Nilssen, 2009; Sundet & Hoel, 2016). The red 

king crab (Fig. 1d) is a valuable resource for commercial exploitation, but also causes 

impacts on the native benthic fauna (Jørgensen & Primicerio, 2007; Oug et al., 2011; 

Fuhrmann et al., 2015). Therefore, fisheries management of the red king crab in 

Norwegian waters is highly controversial.  

P. camtschaticus is host to Briarosaccus in its native range, the North Pacific 

(Haynes & Boschma, 1969; Hawkes et al., 1986b), but the introduced red king crab 

stock in the North Atlantic is rhizocephalan-free. Approximately 3,800 adult and 

10,700 juvenile P. camtschaticus specimens were introduced into the Barents Sea in 

the 1960s (Zelenina et al., 2008). If these king crab specimens were screened for 

Briarosaccus infections, or if some parasites were introduced together with their 

hosts but could not successfully develop a parasite population, is unknown. 

Since rhizocephalans have been highlighted as potential candidates for biological 

control against invasive species in the marine environment (Lafferty & Kuris, 1996), 

Briarosaccus might have the potential to function as such for the red king crab in its 

non-native range. On the other hand, in the North Pacific, the native range of P. 

camtschaticus, the parasite accounts for a substantial economic loss in king crab 

fisheries (Hawkes, Meyers, & Shirley, 1986a; Shukalyuk et al., 2005). The 

rhizocephalan-free king crab stock in the Northeast Atlantic is, therefore, without a 

doubt the most desired situation for the target fisheries on this species. Risk 

evaluation of the Atlantic red king crab stock becoming exposed to a fishery 

damaging rhizocephalan parasite appears, therefore, of higher relevance in this 

context than the possibility of a rhizocephalan being used as control agent. Results of 

this thesis aims to shed light on both of these questions concerning the introduced red 

king crab. 



 33 

To investigate the coevoluionary relationships of king crabs and hermit crabs with 

their rhizocephalan parasites, in paper I an extensive molecular phylogeny of lithodid 

crabs and pagurid hermit crabs has been constructed to reveal the exact phylogenetic 

position of lithodid crabs within the hermit crabs. The detailed knowledge of 

phylogenetic relationships between host taxa is a crucial factor for the study of host-

parasite cophylogeny. 

In paper II the diversity and host specificity of the king crab rhizocephalan B. 

callosus was investigated in a restricted geographical range, the Northeast Pacific. In 

this paper, two species new to science are described. These species showed a high 

host specificity, and this study indicated that B. callosus may in fact consist of a 

rather large complex of cryptic species on a global scale. 

In paper III, investigation of rhizocephalan parasites is extended on a global scale, 

including parasites from a large number of both hermit crabs and lithodid hosts. A 

molecular phylogeny of these rhizocephalan parasites was produced. Via species 

delimitations of parasitic barnacles and individual host-parasite associations, this 

parasite phylogeny was linked to that of their hosts from paper I, to test for co-

speciation between the taxa. 

In paper IV, the trophic organ of Rhizocephala, the interna, is investigated using X-

ray micro computer tomography (MicroCT) and computer-aided 3D-reconstruction. 

This allowed the visualization of the spatial organization of this highly structured 

organ, which is usually hidden inside the hosts body. Parasites of lithodid crabs and 

hermit crabs were studied, to investigate the morphological response of the parasite to 

a highly altered morphology of king crab hosts. 

 

Main questions of this PhD project were: 

• Where are the king crabs phylogenetically placed within the hermit crabs, and which 

are the closest extant relatives? 

• Are all rhizocephalan parasites of king crab representing only a single species, B. 

callosus, or is this species representing a complex of cryptic species? 
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• How host specific are rhizocephalan parasites of king crabs? 

• Can the evolution of king crabs from a hermit crab ancestor be traced in the evolution 

of their parasites? 

• How did the internal root system of parasitic barnacles adapt to the strong 

morphological transformation of their lithodid hosts? 

• Would rhizocephalans have the potential to serve as a biological control agent against 

invasive king crabs? 

• Is the rhizocephalan-free red king crabs stock in the Northeast Atlantic in danger of 

becoming parasitized by a fisheries-damaging parasite? 

The following section aims to synthesise and provide a holistic view of the major 

results from these publications and address some additional topics that are not 

covered in the publications. Detailed discussions can be found in the respective 

papers.  
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To investigate cophylogeny patterns between host and parasite taxa, solid 

phylogenies of both taxa are crucial (Brooks, 1988). Therefore, as a first step towards 

a cophylogenetic analyses between king crabs and hermit crabs, and their 

rhizocephalan parasites, a molecular phylogeny of the hermit crab family Paguridae 

with the containing lithodid crabs was constructed (paper I). While the descent of 

king crabs from an asymmetrical hermit crab predecessor had already been proposed 

in the late 19th century (Boas, 1880a,b), and became highly supported by molecular 

studies (Cunningham et al., 1992; Morrison et al., 2002; Ahyong et al., 2009), at the 

starting point of this thesis this phylogenetic position had still been under debate 

(Lemaitre & McLaughlin, 2009). And while a pagurid hermit crab origin of the taxon 

became generally accepted in the course of this thesis, due to ever increasing 

evidence from both molecular and morphological studies (Reimann et al., 2011; 

Tsang et al., 2011; Bracken-Grissom et al., 2013), the internal relationships within 

the Paguridae were largely unknown. Key questions included the exact phylogenetic 

position of lithodid crabs within the Paguridae, and which hermit crabs constitute the 

closest extant relatives within the taxon. Also our knowledge about phylogenetic 

relationships within the lithodids were ambiguous, including the status of the two 

subfamilies Lithodinae (Fig. 2f-l) and Hapalogastrinae (Fig. 2a-e). Not only were 

answers to these questions crucial for a cophylogenetic analyses, in which the host 

phylogeny must serves as a solid backbone to that of their parasites. Also for the 

understanding of the underlying factors behind the fascinating body transformation 

from a small sized, shell-inhabiting hermit crab to the gigantic king crabs, detailed 

knowledge about phylogenetic relationships is crucial. To construct a comprehensive, 

species rich phylogeny, we utilized both genetic sequences that were available online, 

at GenBank and the Barcode of Life Data Systems (BOLD), as well as new 
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sequences obtained from fresh collected material and museum collections. Molecular 

markers were chosen in order to correspond to a broad range of previously published 

sequences. Further, included markers should cover a broad range of sequence 

deviations, allowing the resolution of both deep and recent nodes in the phylogenetic 

tree. Sampling of fresh material focused on species from the North Pacific. This 

region harbours a rich fauna of pagurid hermit crabs, and lithodid crabs evidently 

evolved in this region (Hall & Thatje, 2009). Further, beside three lithodid genera that 

have a global distribution via the deep-sea, all other lithodid genera are restricted to 

the North Pacific. As the phylogenetic position of these, often monotypic, genera are 

important to understand the early evolution within the lithodid crabs, efforts were 

taken to include molecular data from those taxa.  

The phylogenetic trees obtained in this study resulted in today’s most comprehensive 

molecular phylogeny of pagurid hermit crabs and lithodid crabs (paper I). The 

lithodids were found deeply nested within the hermit crab family Paguridae. Our 

analyses further revealed a distinct clade of pagurid hermit crabs as closest relatives 

to lithodid crabs within the Paguridae. Hermit crabs included in this clade have a 

predominant shallow water distribution in the North Pacific, agreeing with a proposed 

origin of lithodid crabs in this region. Included in this hermit crab clade, which we 

refer to as “pagurid-lithodid sister (PLS) clade”, are few minor genera, which are 

exclusive to the North Pacific, as well as various species of the genus Pagurus (Fig. 

5).  

Species of the genus Pagurus, which is by far the most species rich genus within the 

Paguridae, are also found outside this PLS clade, and are found widespread 

throughout the phylogenetic tree of the Paguridae. The usage of Pagurus as a lump 

genus for pagurid hermit crabs with a rather standard morphology is thus well 

illustrated in our phylogeny. However, species of the genus are found grouped in 

distinct clades, which generally correspond to previously established informal species 

complexes. 
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In previous studies, closest relatives to king crabs resolved were largely based on 

which pagurid taxa were included in the analyses. Generally, species found in our 

PLS clade were also found as closest relatives in these studies. But with only one or 

few species of this group included in the analyses, previous authors largely based 

their discussion on species that were included in their analyses, e.g. Discorsopagurus 

schmitti (Bracken-Grissom et al., 2013), or the nested position of king crabs within 

the genus Pagurus (Cunningham et al., 1992).  

Our analyses revealed, that instead of only few species being closest relatives to the 

lithodid crabs, the PLS clade is species rich and includes a number of genera and 

several informal Pagurus groupings. Based on the parallel diversification of hermit 

crabs and lithodid crabs in the same region we suggest that the advances of 

abandoning a shell-inhabiting lifestyle, rather than limitations of such shelters, played 

a central role for the origin of the Lithodidae.  

Phylogenetic relationships within the Lithodidae reveal its two subfamilies to be 

polyphyletic. Instead of a division between taxa with a soft pleon, and with a calcified 

pleon, small sized, shallow water taxa are found basal in the phylogenetic tree, while 

an increase in size and following deep-sea distribution occurred later in the evolution 

of the group.  

Recently, lithodid crabs had been proposed to be elevated to the rank of a 

superfamily, Lithodoidea, placed outside the hermit crabs (McLaughlin et al., 2007). 

Contradicting both molecular and morphological evidence, this rendering of the taxon 

caused large taxonomic confusion, since different authors used various taxonomic 

rankings for lithodid crabs following this rendering. This applies especially regarding 

the two lithodid subfamilies, Lithodinae and Hapalogastrinae, which following 

McLaughlin et al. (2007) were elevated to family ranks.  

Due to the apparent polyphyletic status of both Hapalogastrinae, characterized by a 

soft pleon (Fig. 2f, g), and Lithodinae, characterized by a calcified one (Fig. 2e, h, 3l, 

4a), and the nested position of lithodid crabs within the family Paguridae, we suggest 

a different taxonomic rendering of the taxon: here, all lithodid crabs are included in a 

subfamily Lithodinae, placed within the family Paguridae. In this taxonomic 
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hierarchy, which is rather opposite to that of McLaughlin et al. (2007), true 

phylogenetic relationships between the taxa are reflected. 

To investigate the host specificity of parasitic barnacles from king crabs, and a 

possible complex of cryptic species within the single recognized rhizocephalan 

species of king crabs, B. callosus, the next study (paper II) aimed to investigate these 

questions on a regional level, namely the coast of Southeastern Alaska, in the North 

Pacific. In this highly structured coastline, consisting of numerous fjords and islands, 

a high number of lithodid species co-occur, including three king crabs which have 

been target for fisheries: the red king crab (Paralithodes camtschaticus), which has 

been introduced to the Northeast Atlantic, the blue king crab (Paralithodes platypus), 

and the golden king crab (Lithodes aequispinus). All these three species host 

rhizocephalan parasites, which had previously been identified as B. callosus (Haynes 

& Boschma, 1969; Hawkes et al., 1985, 1986b). While the two Paralithodes species 

appear to be closely related, sibling species, L. aequispinus belongs to one of the 

species rich deep-sea lineages, that also includes the native North Atlantic king crab 

species Lithodes maja. The Alaska Department of Fish and Game, which performs 

king crab stock assessment surveys, and in addition has fishery observers on 

commercial vessels, kindly supplied rhizocephalan parasites from these hosts in 

sufficient numbers to investigate both molecular and morphological variations 

between specimens from the different host species. I also had the opportunity to 

participate in one of their red king crab surveys, allowing the study of living 

parasitized crabs. This gave the opportunity to investigate the molecular and 

morphological variation of Briarosaccus specimens from different hosts with a 

sympatric occurrence. Further, this host-parasite system is of high relevance 

regarding the invasive red king crab in the Northeast Atlantic, as host specificity of 

Briarosaccus in the natural distribution range of P. camtschaticus must be identified 
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to enable conclusions about both the risk of the North Atlantic red king crab 

population to become parasitized with a rhizocephalan, as well as the potential of 

Briarosaccus being used as a biological control agent against invasive king crabs. 

Comparing Briarosaccus specimens from three king crab hosts in Southeastern 

Alaska (paper II), no consistent morphological differences could be detected between 

specimens taken from the different hosts, neither using gross morphology, dissection, 

or SEM. The molecular markers, COI and 16S, however, revealed that two distinct 

parasite species were present in the samples. One of the species, which we described 

as Briarosaccus regalis n. sp., parasitizes the two Paralithodes species P. 

camtschaticus and P. platypus. The other species, Briarosaccus auratum n. sp., 

parasitizes Lithodes aequispinus. These two newly described rhizocephalan species 

have a sympatric occurrence, but each species has a distinct host specificity. 

Comparing the morphology of the two described Briarosaccus species to that of B. 

callosus from the original description (Boschma, 1930), a number of significant 

morphological differences were found. This enabled a delimitation of the two new 

species from B. callosus, to which they previously had been assigned to.  

This study revealed that not all rhizocephalan parasites of king crabs can be assigned 

to the single species B. callosus as it previously had been assumed. Instead of having 

a global distribution and utilizing a broad range of king crab hosts, the study 

suggested that B. callosus likely consists of a rather large complex of cryptic species 

on a global scale. 

After investigating the diversity of king crab rhizocephalans on a regional scale 

(paper II), the species delimitation of the previously assumed single rhizocephalan 

species of king crabs, B. callosus, was extended on a global scale, including a 
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considerable number of reported hosts for this parasite (paper III). A molecular 

phylogeny of rhizocephalans parasitic on hermit crabs and king crabs was 

constructed, with an emphasis on the genera Peltogaster and Briarosaccus

All described species of Rhizocephala parasitic on lithodid crabs were included in the 

molecular phylogeny. Parasites previously had been assigned to B. callosus taken 

from various king crab species and a global range were sequenced. These included 

specimens from the type’s host, Neolithodes agassizii. Further, we included the two 

species described in paper II (B. regalis n. sp. and B. auratum n. sp.), as well as B. 

tenellus, parasitic on the small lithodid crab Hapalogaster mertensii, which was 

sampled at spring low tide in Southeastern Alaska.  

Of the genus Peltogaster, which is parasitic on hermit crabs of the family Paguridae 

and Diogenidae (McDermott et al., 2010), we included new sequences from four 

species, of which two were represented by specimens from different hermit crab 

hosts, with the potential to contain cryptic species. The identification of cryptic 

parasite species was a crucial part of the study, since besides solid phylogenies of 

both hosts and parasites, also true associations between species of these two taxa are 

required. Additional sequences from two Peltogaster species were downloaded from 

GenBank, provided by studies from Yoshida et al. (2012, 2015). Special effort was 

taken to include parasites from hermit crabs that were resolved as closest extant 

relatives to the Lithodinae in paper I, and in particular those which had, in addition, 

been forwarded as such in previous studies (Cunningham et al., 1992; Bracken-

Grissom et al., 2013). In a following step, the parasite phylogeny was analysed for 

co-speciation with their hosts (paper III). The host phylogeny utilized for this 

analyses was taken from paper I.

Briarosaccus specimens taken from 11 different lithodid hosts were sequenced, from 

which eight distinct Briarosaccus species were discriminated using the genetic 

markers (paper III). Beside B. tenellus, which parasitizes the small lithodid crab 

Hapalogaster mertensii (former subfamily Hapalogastrinae), all these species had 

been assigned to the single species B. callosus prior to this thesis. As the local study 
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from Southeastern Alaska (paper II) indicated, what was known under B. callosus 

turned out to represent a rather large complex of cryptic species, instead of this 

species having a global distribution and utilizing a broad range of host species. 

Also in the genus Peltogaster, parasitic on hermit crabs, a number of cryptic species 

were identified. Ten Peltogaster species were included in the phylogenetic analyses. 

Of those, four represent cryptic species, of which three had previously been assigned 

to P. paguri, and one had been recognized as P. curvata. 

Identifying species boundaries and host associations was a crucial step to investigate 

coevolutionary pattern between rhizocephalan parasites and their hosts. Resolving 

these cryptic species complexes also indicated, that the species diversity of 

rhizocephalans might be highly underestimated. 

The phylogenetic analyses of rhizocephalan parasites of king crabs and hermit crabs 

revealed some highly interesting patterns. The genera Briarosaccus and Peltogaster, 

which had been recognized as closely related (Boschma, 1930, 1962), together form a 

highly supported clade. Further, Briarosaccus is in fact nested within Peltogaster. 

The genus Briarosaccus in addition is composed of two distinct lineages, each 

containing several of the identified cryptic species that were previously recognized as 

B. callosus. Both of these two Briarosaccus lineages originated independently within 

the genus Peltogaster, which parasitizes hermit crabs. Peltogaster was found 

separated into three distinct genetic lineages, of which to clades formed direct sister 

clades to the two independent Briarosaccus lineages. 

The finding that species of Briarosaccus are nested within the genus Peltogaster 

might be of little surprise, given the absence of distinguishing morphological 

characters between the genera. A polyphyletic Briarosaccus, with two independent 

origins, on the other hand, is quite astonishing. But between the two genetic lineages 

of Briarosaccus, consistent morphological differences can be found, that are also 

present in the respective Peltogaster sister lineages.  

As species of Briarosaccus are found nested within the genus Peltogaster, we 

transferred species assigned to Briarosaccus to the latter genus. This taxonomic 

transformation is not only justified by the molecular evidence, but also by the lack of 

morphological characters to distinguish between the two genera. A distinction of 
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Briarosaccus based on its hosts, namely lithodid crabs, further appears much less 

justified then when it was highlighted by Boschma (1962, 1970), based on current 

phylogenetic knowledge (see paper I). In this thesis, the name Briarosaccus is still 

used throughout, to avoid confusion. 

A reconciliation analyses conducted with the software Jane 4 (Conow et al., 2010) 

resulted in a significant correlation between host and parasite phylogenies, showing 

that coevolution between the two taxa did occur. 

The most significant node, in the context of the evolution of king crabs from hermit 

crabs, is the divergence node between Lithodinae and their closest relatives, the PLS 

clade, within the remaining Paguridae (paper I). This divergence in the host tree is 

accompanied by two cophylogeny events in the parasite tree, each leading to one 

Briarosaccus and one Peltogaster lineage (paper III).  

Each of the Peltogaster clades that represent sister clades to the Briarosaccus 

lineages have hosts that have been identified as closest relatives to the Lithodinae 

within the Paguridae, as members of the PLS clade (paper I), or host which have not 

been included into phylogenetic analyses, but which likely belong to this group. This 

implements, that the last common ancestor (LCA) shared by hermit crabs and lithodid 

crabs within the Paguridae was parasitized by two distinct rhizocephalan species. 

These co-speciated with both the hermit crab and lithodid crab lineages from this 

LCA, leading to duplicate parasite lineages.  

The cophylogeny analyses further suggest that the divergence of the two lineages 

leading to Briarosaccus did occur early in the evolution of the Paguridae. The 

analyses not only confirm the nested position of lithodid crabs within the Paguridae, 

but also strongly support a sister relationship of lithodids with a clade of 

predominantly North Pacific hermit crabs within the Paguridae (paper I). 

As lithodid crabs are nested within the hermit crab family Paguridae, also parasites of 

Lithodinae are nested within parasites of pagurid hermit crabs. The parasite 

phylogeny not only corroborates the position of Lithodinae within the Paguridae with 

one coevolution event, but two independent lineages followed the divergence 

between hermit crabs and lithodid crabs from their LCA.  
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The morphology of the adult female parasite can be divided into two parts: the 

externa and the interna. The externa, which is attached to the outside of the 

crustacean host, is a sac-like structure, which contains the reproductive organs and a 

voluminous cavity in which the eggs are breed until the offspring is released as larvae 

into the water. This structure is generally in focus of taxonomy, and species 

descriptions are largely based on this part of the parasite (Høeg & Lützen, 1985, 

1995). The interna, which is the sole trophic organ of the parasite, is situated inside 

the host, and infiltrates the inner organs as a complicated root-like structure. Its 

location, hidden inside the host’s body, and highly structured morphology, makes this 

part of the organism difficult to study, and only few studies have investigated the 

rhizocephalan interna in detail (Lützen, 1981; Shukalyuk, Baiborodin, & Isaeva, 

2001; Bresciani & Høeg, 2001; Shukalyuk, 2002; Isaeva, Akhmadieva, & Shukalyuk, 

2012).  

The lithodid crabs have undergone a remarkable morphological transformation from 

their hermit crab predecessor, especially regarding the size, shape, and location of the 

pleon. A rhizocephalan parasite, which follows this morphological transformation in 

a coevolutionary manner, must be able to adapt to this changed morphology. This 

adaption accounts not only for the orientation of the externa on the hosts pleon, but in 

particular to the structural organization of the interna.  

To investigate the spatial organization of the rhizocephalan interna of parasites from 

hermit crabs and lithodid hosts, micro-computed tomography (MicroCT) and 

computer-aided 3D-reconstruction was utilized, which produces 3D x-ray imaging of 

the specimens (paper IV). Using this method, the internal parasite can be visualized 

in situ inside the hosts body. We studied various species of the genus Peltogaster, 

from pagurid hermit crab hosts, as well as Briarosaccus tenellus, which due to the 

moderate size of its lithodid host, Hapalogaster mertensii, was suitable for MicroCT. 
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Using MicroCT and computer-aided 3D-reconstruction, we documented the spatial 

organization of the interna inside the intact host and also demonstrated its use for 

morphological examinations of the parasites reproductive part, the externa (paper IV). 

The study was the first that used MicroCT to demonstrate the in situ organization of a 

rhizocephalan interna inside the integument of an intact crustacean host.  

The gross morphology of the internae of Peltogaster spp. observed in paper IV is in 

agreement with the earlier descriptions of Peltogaster paguri (Pérez, 1931, 1937; 

Bresciani & Høeg, 2001). The interna can be divided into a main trunk, situated in the 

pleon of the hermit crab, and a network of irregularly branching rootlets, which are 

spreading between the organs of the cephalothorax. The main trunk, previously 

described as resembling a horse’s tail (Bresciani and Høeg, 2001; Pérez, 1937), has 

numerous side branches, giving the interna a large surface area to absorb nutrition. 

The roots are highly interwoven into the crab’s organs, in particular the tubular 

hepatopancreas, which takes up the main volume of the hermit crabs pleon. The roots 

do not penetrate into the muscles of the hermit crab host. The characteristic horse’s 

tail structure of the Peltogaster interna is not found in Briarosaccus, but also here the 

main volume of the interna is present in the pleon of the host, highly interwoven into 

the tubules of the hepatopancreas, and the interna is not penetrating the muscles. The 

absence of the clear split of the interna of Briarosaccus into an anterior and posterior 

trunk inside the pleon appears to be related to the morphological change of its hosts 

due to the carcinization in the evolution of the Lithodinae, and the subsequent 

reduction of the pleon. As in the hermit crabs, the pleon of king crabs houses the 

main portion of the hepatopancreas (Anker & Paulay, 2013; Keiler et al., 2015). The 

hepatopancreas appears to be the target for the major part of the interna, both in 

Peltogaster and Briarosaccus. The structural organization of the interna between 

these two genera is thus directly comparable and structural differences appear to 

merely reflect the hosts anatomy due to the carcinization of the Lithodinae. 
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B. callosus was described based on one single specimen from the host Neolithodes 

agassizii, sampled from the Atlantic US coast by the United States Fish Commission 

Steamer Albatross. The specimen was collected in May 1886, either on station 2666, 

off Fernandina, Florida, 494 m depth, or on station 2677, off Cape Fear, North 

Carolina, 864 m depth (Boschma, 1930). The specimen was registered under the 

catalogue number 62304 at the Smithsonian National Museum of National History, 

Washington D.C, USA. 

Boschma described this single specimen in detail for the description of B. callosus. In 

course of the morphological investigation of the specimen, the mantle cavity of the 

externa was opened, and the visceral mass detached from the mantle. Parts of the 

visceral mass, containing the receptacles and colleteric glands, were embedded in 

paraffin and thin sectioned on a microtome. Further, parts of the mantle were cut for 

detailed microscopic investigation (Boschma, 1930). Resultantly, the type specimen 

was left largely destroyed following the species description. 

In a later publication, Boschma (1962) reported and illustrated a second specimen of 

Briarosaccus, which was sampled together with the specimen used for the species 

description. This specimen was not mentioned in the original species description, and 

was morphological quite different from the type specimen, especially regarding the 

position and shape of the mantle aperture. 

The remains of the dissected specimen that Boschma based his description on could 

not be located, neither in the Smithsonian National Museum of National History, 

Washington D.C, USA, where Boschma received the specimen from, nor in the 

Naturalis Biodiversity Center, Leiden, the Netherlands, which houses the majority of 

Boschma’s material. 

At the Smithsonian Institution, a note was found in an old ledger under the catalogue 

number of the type specimen that stated “reserved for Boschma, type in his hands” 

(Rafael Lemaitre, pers. com.), and likely the specimen had not been returned. 

But the specimen of the second parasite from the type locality, which was not 

included in the species description, could be found in the Smithsonian collection. 
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This specimen had at some point be dissected and is largely destroyed, but could 

clearly be identified as the specimen illustrated by Boschma (1962). This specimen 

also had a label containing the two possible station data from the type’s lot. A new 

collection number (USNM 1148190) was assigned to this specimen in 2010. The 

specimen also contained a label stating “Rhizocephala reg. no. 329B. H. Boschma”, 

which refers to Boschma’s personal notebook. While the whereabouts of this 

notebook is unknown (Karen van Dorp, pers. com.), the number 329B of the second 

specimen from the type lot suggested that the type specimen had Boschma’s personal 

ID number 329A.  

Boschma’s extensive collection of serial sections are stored in the Naturalis 

Biodiversity Center. These slides are marked with Boschma’s personal ID numbers, 

but are unfortunately lacking other information. Under specimen number 329A I was 

in fact able to find the serial sections made from the type specimen of B. callosus. 

These sections are mounted on 116 individual glass slides, with each slide containing 

9 thin sections (RMNH.CRUS 13377 – 13493). Due to the large size of the parasite, 

only parts of the slides were finally stained and mounted, while the main part 

remained unmounted, and only embedded in paraffin. Also the particular slides from 

which the drawings in the species description are based on could be found 

(RMNH.CRUS 13466 (Box BE 127612)/ RMNH.CRUS 13400 (Box BE 127611)) 

(Fig. 6).  
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Boschma classified all rhizocephalans of king crabs as B. callosus (Boschma, 1970). 

This was largely due to the fact that his samples, which steadily increased over the 

years, showed high morphological variations, but from most hosts only very few 
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specimens were available to him. Lacking modern species delimitation methods, 

Boschma did not find another solution than classifying all records as a single species. 

Following authors had little other choice than following Boschma’s practice when 

new king crab hosts to rhizocephalan parasites were discovered (e.g. Arnaud & Do-

Chi, 1977; Abelló & Macpherson, 1992; Pohle, 1992a; Lützen, Glenner & Lörz, 

2009; Pino et al., 2010). 

To discriminate cryptic species of king crab rhizocephalans that have been classified 

as B. callosus, it was crucial to clearly identify the “true” B. callosus. Therefore, a 

genetic identification of B. callosus s. str. was needed. Naturally, Briarosaccus 

samples for this had to be obtained from the type’s host, N. agassizii. The presence of 

Briarosaccus specimens with two highly deviating morphologies from this host, and 

even from the types sample lot, further requested genetic sequences from both 

morphotypes from this king crab host. 

Neolithodes agassizii is rarely sampled due to its deep-sea habitat and a lack of 

fisheries for this species. I was, therefore, unable to acquire fresh samples of 

Briarosaccus from this host species. It was, however, possible to extract DNA from 

museum material of Briarosaccus taken from this host. The mitochondrial 16S 

marker could be successfully amplified from three specimens parasitic on N. 

agassizii. 

One of these specimens was collected in the Caribbean Sea, off the north coast of 

Colombia at a depth of 1318-1299 meters in 1968. This specimen, which belongs to a 

lot of three externae, was reported and sketched by Boschma (1970), and was located 

at the Naturalis Biodiversity Center (RMNH.CRUS.C.1884). Those specimens were 

of much smaller size then the type specimen, but the external morphology largely 

resembled that of the type. 

I located a further specimen of Briarosaccus in the Naturalis collection, situated on a 

large specimen of N. agassizii (RMNH.CRUS.D.36147) collected off the Bahamas 

Islands at a depth of 1378 meter in 1974. This specimen had a highly similar external 

morphology and size to the type specimen of B. callosus. 
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It was also possible to obtain a genetic sequence from the specimen that was sampled 

together with the type specimen (USNM 1148190). This was quite remarkable, since 

sampled in 1886, this specimen was almost 130 years old! 

Encouraged by the possibility to obtain PCR products from a specimen that was 

sampled together with the type specimen of B. callosus, I also attempted to extract 

DNA from some of the thin sections made by Boschma from the type specimen of B. 

callosus. Only every 5th slide, each containing nine sections, was stained and 

mounted permanently, while the remaining sections were only paraffin embedded and 

uncovered. Samples were taken from five individual sections, each located in the 

middle of an individual glass slide, and DNA extractions were performed following a 

protocol for paraffin embedded tissue. However, the PCR’s were unsuccessful to 

amplify neither 16S nor COI from these samples. 

The 16S marker revealed that the Briarosaccus specimens from N. agassizii are 

actually belonging to two separate species. One of these two species is represented by 

the specimen that was sampled together with the type specimen. The other species by 

the specimens from the Caribbean and the Bahamas Islands. The latter ones are 

morphologically similar to the type specimen, and therefore must be considered to 

represent B. callosus s. str. The other specimen, that is morphologically aberrant to 

the type, represents a further, cryptic species. This is remarkable, since it shows that 

the two Briarosaccus specimens sampled at the type locality of B. callosus are 

belonging to two separate species. The two species from the type locality of B. 

callosus are further found in each of the two distinct Briarosaccus clades (see paper 

III). This rather distant relationship between these species also explains the 

morphological differences between the Briarosaccus specimens from the type 

locality of B. callosus. 

While this finding might surprise at first, it explains why all rhizocephalans of king 

crabs had been considered as a single species, namely B. callosus. While Boschma 

described B. callosus based on one single externa, the sample containing this 

specimen was a lot of two externa. This second externa has, in rhizocephalan terms, a 

striking different morphology, making the morphological differences between the two 

parasite specimens on the type’s host species as large as between the type and any 
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other rhizocephalan found on a king crab. Due to the rarity of two rhizocephalans of 

the same genus parasitizing the same host, the solution that the type’s lot consisted of 

two Briarosaccus species obviously did not appear to Boschma. With very few 

specimens available for comparison, and lacking modern species delimitation 

methods, he had to assume that those belong to a single species.  

This apparently high morphological variation of B. callosus samples taken from the 

same host made parasite specimens from other host species and regions apparently 

fitting into the large morphological variability of B. callosus, as Boschma stated that 

in many instances the variation was more striking between two specimens from one 

host than between two specimens from different hosts (Boschma, 1962). Following, 

all rhizocephalan records on king crabs were classified as a single species; B. callosus 

(Boschma, 1970).  

The most significant morphological difference between the two Briarosaccus species 

from N. agassizii is found in the position and shape of the mantle aperture. In B. 

callosus s. str., this is not exactly located at the anterior pole, but slightly on the right 

side of the median plane (see paper III Fig. 4), resulting in a not fully bilateral 

symmetry of the externa. Only one of the investigated museum specimens of B. 

callosus s. str. was still located in situ on its host. This specimen, from the Bahamas 

Islands (RMNH.CRUS.D.36147), was parasitizing a large female host. The mantle 

aperture of the parasites externa was exactly located at the indentation of the outer 

edge of the hosts pleon, formed at the joint between the left tergal plates of the 3rd and 

4th abdominal somites. While this pattern needs confirmation from additional 

specimens, the shifted position of the mantle aperture in B. callosus s. str. is likely a 

highly specialized adaption to the pleon morphology of its host king crab. Protected 

under the broad abdomen of the female king crab, the exact placement of the 

parasites mantle aperture under the indentation in the hosts pleon, allows an optimal 

supply of fresh, oxygenized water to the voluminous mantle cavity, where the 

parasite breeds its eggs. 
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Hermit crabs are represented in Norwegian waters by seven species belonging to two 

genera of the family Paguridae: Anapagurus and Pagurus. Anapagurus, which can be 

distinguished from the latter genus by the presence of sexual tubes in males 

(McLaughlin, 2003), is present with two species; A. chiroacanthus (Fig. 7g) and A. 

laevis (Fig. 7h). Pagurus is represented by P. cuanensis (Fig. 7f), P. alatus (Fig. 7d), 

P. prideaux (Fig. 7a), P. pubescens (Fig. 7b, e), as well as P. bernhardus (Fig. 7c), 

the type species of the genus. Lithodid crabs are represented in the Norwegian fauna 

by one native king crab species, Lithodes maja (Fig. 7j), which has the Norwegian 

name “trollkrabbe” (troll crab), and the more prominent, introduced red king crab, 

Paralithodes camtschaticus (Fig. 7i), which reaches the largest size of all lithodid 

crabs (Stevens & Lovrich, 2014). A molecular phylogeny of species present in the 

Norwegian fauna was constructed using Bayesian inference analyses, using the same 

markers and methodology as described in paper I (Fig. 8). Part of the data compiled 

for paper I was used for this analyses. 
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Even in this phylogenetic tree, containing a much smaller number of species than in 

paper I, the king crabs are found nested within the pagurid hermit crabs. Further, the 

polyphyly of the genus Pagurus is also found in this dataset, with the lithodids being 

nested within this genus as currently recognized. P. bernhardus and P. pubescens 

were found as sister group to the king crabs. These two species are some of the few 

hermit crabs of the PLS clade that are found outside the North Pacific, where lithodid 

crabs evolved from a hermit crab ancestor (see paper I). Both species have close 

relatives in the North Pacific, belonging to the informal Pagurus morpho-groups 

“bernhardus” and “trigonochirus” respectively. Predecessors of both species must 

have independently entered the Atlantic Ocean through the Bering Strait. The 
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remaining Pagurus species, P. alatus, P. cuanensis, and P. prideaux, which were 

grouped into the informal Pagurus subdivision I by Ingle (1985), form a second, 

distinct Pagurus clade. This small scale phylogeny of Paguridae from Norwegian 

waters illustrates the astonishing pattern, that some hermit crabs have a more recent 

last common ancestor with king crabs than with other hermit crabs, which are 

morphologically so similar that they are assigned to the same genus. While the exact 

phylogenetic position of lithodids within the Paguridae, and answers to the 

evolutionary origin of the taxon required a comprehensive, species-rich phylogeny as 

constructed in paper I, this regional restricted analyses aims to highlight the 

fascinating morphological transformation of king crabs from a hermit crab ancestor.  

One aim of this thesis was to evaluate the potential of using rhizocephalan parasites 

as biological control agents against the invasive red king crab in the Northeast 

Atlantic. Or, depending on the point of view, evaluating the risk of the rhizocephalan-

free red king crab stocks in the introduced range to become parasitized by 

rhizocephalans, and thereby decrease the commercial valuable king crab population 

(see 1.4). 

The red king crab, P. camtschaticus, is commonly parasitized by Briarosaccus in its 

native range, the North Pacific (Haynes & Boschma, 1969; Hawkes et al., 1986b). 

But no rhizocephalan parasites have been recorded from the red king crab in its 

introduced range. Also another king crab species, Lithodes maja, which is native in 

the invasive distribution range of P. camtschaticus, does not host rhizocephalan 

parasites. But while no rhizocephalan has been recorded from lithodids in the 

Northeast Atlantic, Briarosaccus is present in the Northwest Atlantic (Pohle, 

1992a,b), as well as in the Mid-East Atlantic, off the coast of Africa (Abelló & 

Macpherson, 1992).  

Knowledge about host specificity is of crucial importance to provide answers to both 

of these questions. If all rhizocephalans recorded from king crab hosts in fact only 
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represent a single species as previously recognized, red king crabs could potentially 

become infested by parasites transmitted from any kind of king crab species that 

hosts a rhizocephalan. If B. callosus, on the other hand, represents a complex of 

cryptic species, parasite transfer from other, distantly related king crab species would 

be unlikely. Likewise, if a rhizocephalan would be introduced as biological control 

agent against invasive king crabs, native species, represented by L. maja in the 

Northeast Atlantic, would potentially be simultaneously exposed to the parasite, if B. 

callosus has a broad host range. A parasite which only parasitizes P. camtschaticus 

and congeneric species, on the other hand, could more likely be considered as a safe 

agent for the native Northeast Atlantic king crab fauna.  

A further potential threat to the Northeast Atlantic red king crab stocks might also 

come from a rather unexpected source, namely rhizocephalans of hermit crabs. 

Previous molecular studies indicated that king crabs are not only nested within the 

hermit crab family Paguridae, but even within the hermit crab genus Pagurus 

(Cunningham et al., 1992; Bracken-Grissom et al., 2013). Species of this genus are 

host to a number of parasitic barnacles of the genus Peltogaster (McDermott et al., 

2010), which appeared to be closely related to the king crab parasite B. callosus 

(Boschma, 1962). In fact, consistent morphological differences between the two 

genera are lacking, and the genus Briarosaccus has largely been erected due to the 

exceptional large size of the type specimen and its host choice (Boschma, 1930, 

1962). In the light of molecular phylogenies (Cunningham et al., 1992; Morrison et 

al., 2002; Tsang et al., 2011; Bracken-Grissom et al., 2013), host choice (pagurid 

hermit crab vs. lithodid crab) appears to be even less significant that at the time of 

Boschma’s description of B. callosus (Boschma, 1930), even though an evolutionary 

origin of king crabs within the Paguridae had been forwarded much earlier on (Boas, 

1880a,b, 1924; Bouvier, 1897). In the introduced distribution range of P. 

camtschaticus, two species of Peltogaster had been reported to occur: P. paguri and 

P. curvata. Both of these parasites have been reported from a number of hosts, 

including different species of the genus Pagurus (Høeg & Lützen, 1985; Øksnebjerg, 

2000). Hosts to both Peltogaster species are found in different informal Pagurus 

morpho-groups, indicating a rather distant relationship between some of the hosts of a 



 57 

single parasite species (Ingle, 1985; García-Gómez, 1994). If these two species 

indeed have a host range that includes hermit crabs which are more distantly related 

to each other than some are to the king crabs, the surprising conclusion would be, that 

Norwegian waters possess a natural occurring biological control agent against 

invasive king crabs, in the form of rather anonymous parasites of local hermit crabs. 

These parasites may consequently have the potential to extend their host range to the 

red king crab. For the Norwegian target fishery of the red king crab, this would be 

alarmingly news, indicating that there is no need to be on watch for the fishery 

damaging rhizocephalan parasite B. callosus, since the local fauna already includes 

parasitic barnacles with the potential to infest king crabs.  

Prior to this thesis, all rhizocephalans from king crabs were recognized as only a 

single species. This species, namely B. callosus, had been reported from a large range 

of king crab species and with a global distribution (see paper III). To provide answers 

to both the potential use as biological control agent, as well as a risk assessment for 

the king crab fisheries, it is crucial to understand the true host specificity of the 

parasites. To investigate if rhizocephalans of king crabs really consist of only a single 

species, or if they represent various cryptic species with individual higher species 

specificities, we first investigated Briarosaccus specimens from different host king 

crabs from the native range of P. camtschaticus, the North Pacific (paper II). In this 

study, we showed that two sympatric species of Briarosaccus occur on three 

investigated king crab species in this region. One of these two parasites, Briarosaccus 

regalis n. sp., was found parasitizing P. camtschaticus, as well as the congeneric P. 

platypus. The second species, Briarosaccus autatum n. sp., was, however, only 

parasitizing the third investigated host, Lithodes aequispinus. The latter species is 

rather distantly related to P. camtschaticus within the Lithodinae (see paper I), and 

congeneric with the native North Atlantic L. maja. This finding is of high 

significance for the herein discussed questions, since it revealed that instead of one 

Briarosaccus species being parasitic on a wide range of king crabs, the single parasite 

B. callosus, as previously recognized, apparently consists of a cryptic species 

complex with each species having a higher host specificity. As B. regalis was only 

found parasitizing P. camtschaticus and its congeneric species P. platypus, but not 
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the genus Lithodes, this study further indicated that this parasite might be considered 

as a “safe” control agent regarding the native North Atlantic L. maja if being 

introduced to the Northeast Atlantic. 

In paper III, Briarosaccus specimens from a wider host range and geographical 

distribution were included in a molecular genetic analyses. The pattern indicated in 

paper II, of B. callosus consisting of a large complex of cryptic species, could be 

confirmed on a global scale. Most of these cryptic species showed a high host 

specificity, and only one species was found parasitizing hosts belonging to two 

genera of Lithodinae. The reconciliation analyses indicated a high level of 

cophylogeny between rhizocephalan parasites and their lithodid hosts, where the 

parasites have been passed down through the host’s lineage. However, also host 

switches between distant lithodid lineages happened in the coevolutionary history 

between the taxa. These host switches have likely been triggered by the complex 

global dispersal of king crabs via the deep-sea (Hall & Thatje, 2009). For the 

questions regarding the invasive red king crab population, this further implies that 

only B. regalis n. sp. might be able to parasitize P. camtschaticus, while 

rhizocephalan parasites of other king crab species, including parasites from adjacent 

Atlantic regions, do not represent a direct threat to the commercial important red king 

crab stocks. The cases of host switches, revealed in the reconciliation analyses, on the 

other hand, suggest, that while B. regalis n. sp. apparently does not parasitize the 

genus Lithodes in its natural range, it might eventually be able to include the native L. 

maja in its host range if being introduced to the Northeast Atlantic.  

The second potential threat to the red king crab stocks, represented by rhizocephalan 

parasites of hermit crabs, appeared of even higher significance considering the 

phylogenetic relationships of hermit crabs and lithodid crabs that were found in paper 

I. Here a distinct clade of pagurid hermit crabs, the “PLS-clade”, was found to 

comprise the closest relatives to the lithodids within the Paguridae. Two Peltogaster 

species, parasitic on hermit crabs, had been recognized in the introduced range of the 

red king crab. One of these, P. curvata, only has been reported from hosts that are not 

included in the closest sister group to king crabs. The second one, P. paguri, was 

reported from hermit crabs that are found both included in the PLS-clade and more 
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distantly related to the Lithodinae (Høeg & Lützen, 1985). This apparently broad host 

range of P. paguri, spanning hosts with a more distinct phylogenetic relationship to 

each other than some have to the king crabs, made it plausible that P. paguri might be 

able to utilize P. camtschaticus as an additional host. However, also the species 

identity of both P. paguri and P. curvata had not been investigated using modern 

species delimitation methods, and slight morphological differences of parasites from 

different hosts had been highlighted (Høeg & Lützen, 1985). Similarly to B. callosus 

(paper II), also these two Peltogaster species could, therefore, be consisting of a 

complex of cryptic species. Indeed, we found both recognized Peltogaster species to 

consist of multiple cryptic species with individual higher host specificities (paper III). 

Resultantly, host ranges of the individual cryptic species were not spanning species 

with a phylogenetic range that would include the Lithodinae. Further, the 

cophylogeny analyses showed, that the divergence of lithodid crabs from king crabs 

was accompanied by two cophylogeny events, each leading to one Briarosaccus and 

one Peltogaster lineage. Since this divergence, apparently no host switch of a 

rhizocephalan parasite between hermit crabs and lithodid crabs successfully occurred 

(paper III). Prior to this thesis, the potential danger of king crabs to become 

parasitized by rhizocephalan parasites of hermit crabs was uncertain. Our results 

however show, that these species are not capable of infecting king crabs, and 

therefore do not represent any danger for the commercial king crab fisheries. 
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Rhizocephalan parasites of hermit crabs do not represent a potential danger for the 

currently rhizocephalan-free red king crab stocks in the Northeast Atlantic. Also the 

risk of rhizocephalan parasites of other king crab species, e.g. from adjacent regions 

in the Atlantic, to parasitize P. camtschaticus in its introduced range is generally low, 

since host specificity is much higher than previously assumed. 

Briarosaccus grows an extensive system of green rootlets inside the crab, making 

infested king crabs unusable for marketing (Fig. 9). In case of high prevalence, this 

implies a significant commercial loss. Briarosaccus further has strong negative 

effects on its hosts, including parasitic castration, which have led to concerns about 

the parasite’s impact on the stocks of highly valuable king crabs (Isaeva, Dolganov, 

& Shukalyuk, 2005; Shields, 2012). The potential use of rhizocephalan parasites as 

biological control agent against introduced marine pests has been discussed (Lafferty 

& Kuris, 1996; Thresher et al., 2000; Goddard et al., 2005; Kuris et al., 2007). The 

partial sterility of a king crab population might cause a decline in population size 

(Hawkes .,1986b; Shukalyuk ., 2005). However, the effectiveness of 

rhizocephalans as such agents has not been proven, as even crab populations with 

high levels of parasite infections appear to be stable (Innocenti & Galil, 2007).  

A potential use of rhizocephalans as biological control agent against the red king crab 

in its introduced range appears inappropriate for various reasons. P. camtschaticus is 

an invasive species in Norwegian waters, and its fisheries management is highly 

controversial (Gederaas et al., 2012). But in the native range of P. camtschaticus, its 

parasite B. regalis is regarded as unwanted organism, since it causes substantial 

economic loss for the king crab fisheries (Sparks & Morado, 1986; Hawkes et al., 

1986b). For the Norwegian king crab fishery, a rhizocephalan-free king crab stock is 

highly favourable. As rhizocephalans in general might not be as suitable to control 

the population size of their hosts, as initially presumed by Kuris (1997) (see Innocenti 

& Galil (2007)), also the effectiveness of Briarosaccus to control the invasive red 

king crab population is doubtful. Target fisheries must be considered to be much 

more efficient in reducing the population stocks of these large sized animals, since 

unrestricted fishing west of the North Cape has greatly reduced the spread southwards 
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the Norwegian coast (Gederaas et al., 2012; Sundet & Hoel, 2016). Further, a host 

switch to the native king crab species L. maja cannot be completely excluded, which 

would implement a further negative impact on the native fauna. 
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• King crabs are found deeply nested within the hermit crab family Paguridae. Here, 

they have a sister relationship with a clade of predominantly North Pacific shallow 

water hermit crabs. 

• Phylogenetic analyses revealed the two lithodid subfamilies to be polyphyletic. Small 

sized, shallow water taxa are found basal in the phylogenetic tree, while an increase 

in size and a following deep-sea distribution occurred later in the evolution of the 

group. 

• The hermit crab genus Pagurus is highly polyphyletic, and spans a phylogenetic 

range that even includes the king crabs. Distinct phylogenetic linages, however, 

confirmed several previously established informal morpho-groups of this genus. 

• What had been recognized as only a single parasite of king crabs, B. callosus, turned 

out representing a complex of cryptic species. Even parasites from the type’s locality 

were found to represent two distinct species. 

• Individual species of king crab rhizocephalans showed a much higher host specificity 

that previously assumed, usually restricted to a single species or genus. 

• The rhizocephalan genus Briarosaccus, parasitic on lithodid crabs, is nested within 

the genus Peltogaster, parasitic on hermit crabs. Further, two independent linages of 

Briarosaccus originated within Peltogaster, rendering both genera polyphyletic. 

• Reconciliation analyses showed significant correlation between host and parasite 

phylogenies, indicating that coevolution between the two taxa did occur. The co-

phylogeny of Paguridae and Rhizocephala strongly corroborates the origin of king 

crabs from hermit crabs. 

• MicroCT proofed to be a powerful method for morphological investigations of 

Rhizocephala. Both for visualizing the rhizocephalan root systems in situ inside of 

their crustacean hosts, as well as for the investigation of the parasite’s interna, which 

generally is in focus of taxonomic studies. 

• The overall organisation of the interna of Peltogaster and Briarosaccus is 

comparable, both regarding the location and main target organs. The loss of an 
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elongated main trunk in Briarosaccus must be seen as adaption of the parasite to the 

reduction of the hosts pleon in lithodid crabs, due to the process of carcinization. 

• Rhizocephalan parasites of hermit crabs do not represent a potential danger for king 

crabs. Also the risk of rhizocephalan transfer from other king crab hosts to the 

introduced red king crab in the Northeast Atlantic is generally low. 

• Rhizocephalans are unsuitable as biological control agents against invasive king 

crabs. The effectiveness of rhizocephalans to reduce the population size of a host is 

doubtful, and fisheries appears to be much more efficient in reducing king crab 

populations. 
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Internal relationships within the Paguridae are still far from being fully resolved. 

Such are phylogenetic placements of various hermit crab genera unknown, and 

especially the highly polyphyletic assemblage of the hermit crab genus Pagurus 

causes problems in nomenclature of the Paguridae. We showed, that previously 

established informal species complexes for this genus largely correspond to distinct 

clades resolved by molecular markers (paper I). An increased effort to sequence a 

larger range of species, e.g. via DNA “barcoding” of the mitochondrial COI (Hebert, 

Ratnasingham, & de Waard, 2003), will help to understand internal relationships and 

biogeographical pattern in the Paguridae. This will not only be of importance for the 

hermit crabs, but also for the king crabs. Internal relationships within the species rich 

deep-sea genera are largely unknown, and molecular sequences are only available 

from a fraction of species (see paper I). Detailed phylogenetic investigations of the 

deep-sea lineages Paralomis, Lithodes, and Neolithodes will eventually help to 

understand the complicated, global radiation of these taxa in detail. 

The diversity of Rhizocephala appears to be highly underestimated. Not only are 

rhizocephalans, as parasites in general, overlooked in faunistic studies (Gómez & 

Nichols, 2013). Further, our studies (paper II, III) strongly indicate that 

rhizocephalans are often more host specific than assumed, and species records from 

various hosts represent complexes of cryptic species. The paucity of morphological 

characters in the adult parasite makes species delimitation of closely related species 

difficult, if not impossible, by morphology alone (see paper II, III). Future molecular 

investigations on rhizocephalans might therefore resolve further cryptic species 

groups, and provide information for further examples of coevolutionary scenarios 

between these parasites and their host taxa. 
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We showed that MicroCT is a valuable tool for morphological analyses in 

Rhizocephala. Not only for the spatial analysis of the structural complex interna, 

which is hidden inside the body of the host, but also for the study of the parasites 

externa, which generally is in focus of taxonomy (paper IV). While the investigation 

of the externa usually requires thin sectioning, and thus a destruction of the specimen, 

MicroCT offers a method of non-destructive investigation, and, in addition, enables a 

complete overview of the structural organization of the organs. 

We also showed, that classical dissection, in conjunction with Scanning Electron 

Microscopy, can provide a complete overview of both the structure and location of 

the receptacles (paper II). These organs are located embedded in the visceral mass of 

the parasites externa and are important characters for species descriptions of 

Rhizocephala. 
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