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Research on stable marriage problems has a long
and mathematically rigorous history, while that of ex-
ploiting greedy matchings in combinatorial scientific
computing is a younger and less developed research
field. We consider the relationships between these two
areas. In particular we show that several problems re-
lated to computing greedy matchings can be formulated
as stable marriage problems and as a consequence sev-
eral recently proposed algorithms for computing greedy
matchings are in fact special cases of well known algo-
rithms for the stable marriage problem.

However, in terms of implementations and practi-
cal scalable solutions on modern hardware, work on
computing greedy matchings has made considerable
progress. We show that due to this strong relationship
many of these results are also applicable for solving sta-
ble marriage problems. This is further demonstrated by
designing and testing efficient multicore as well as GPU
algorithms for the stable marriage problem.

1 Introduction

In 1962 Gale and Shapley formally defined the stable
marriage problem and gave their classical algorithm for
its solution [5]. Since then this field has grown tremen-
dously with numerous applications both in mathematics
and in economics. For a recent overview see the book by
Manlowe [16]. Graph matching is a related area where
the object is also to find pairs of entities satisfying var-
ious optimality criteria. These problems find a large
number of applications. For an overview motivated from
combinatorial scientific computing see [21].

While research on stable marriage problems has
mainly focused on theory and mathematical rigor, work
on graph matching in scientific applications has a larger
practical component concerned with implementing and
testing code on various computer architectures with the
intent of developing fast scalable algorithms.

In this paper we investigate the connection between
one type of matching problems, namely those of com-
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puting greedy weighted matchings, and algorithms for
solving stable marriage problems. Although there exist
exact algorithms for solving various weighted matching
problems these tend to have running times that typi-
cally involve the product of the number of vertices and
the number of edges. As large graph instances can con-
tain tens of millions of vertices and billions of edges it
is clear that such algorithms can easily become infea-
sible. For this reason there has been a strong interest
in developing fast approximation algorithms and also in
parallelizing these, see [18] and the references therein.
Although such algorithms typically only guarantee an
approximation factor of 0.5 compared to the optimal
one, practical experiments have shown that they are
very often only within a few percent from optimal. One
such algorithm is the classical greedy algorithm applied
to an edge weighted graph. Here edges are considered by
decreasing weight and an edge is included in the match-
ing if it is not adjacent to an already included edge.

The main contributions of this paper are as follows.
Initially we consider implementation issues when design-
ing efficient algorithms for the stable marriage prob-
lem. Next, we show that several recently published al-
gorithms for computing greedy matchings are in fact
special cases of classical algorithms for stable marriage
problems. This also includes a generalization of the
matching problem known as b-matching where a ver-
tex can be matched with several other vertices in the
final solution. Due to the strong similarities between
the stable marriage problem and greedy matching, we
show that one can apply recent results on designing scal-
able greedy matching algorithms to the computation of
stable marriage solutions. This is verified by present-
ing efficient parallel implementations of various types of
Gale-Shapley type algorithms for both multithreaded
computers as well as for GPUs.

The remainder of the paper is organized as follows.
In Section 2 we review the Gale-Shapley algorithm and
consider implementation issues related to this. Next, in
Section 3 we show that the computation of a greedy
matching can be reformulated as a stable marriage
problem. In Section 4 we give parallel implementations
of the Gale-Shapley and McVitie-Wilson algorithms and
show their scalability, before concluding in Section 5.
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2 The Stable Marriage Problem

In the following we review the stable marriage (SM)
problem and how it can be solved using the Gale-
Shapley algorithm and consider some implementation
issues. Finally, we review some generalizations of the
SM problem.

The SM problem is defined as follows. Let L and
R be two equal sized sets L = {l1, l2, . . . , ln} and
R = {r1, r2, . . . , rn}. The entries in L are typically
referred to as “men”, while the entries in R are referred
to as “women”. Every man and woman has a total
ranking of all the members of the opposite sex. These
give the “desirability” for each participant to match
with a member of the other set. The object is to find a
complete matching M (i.e. a paring) between the entries
in L and R such that no two li ∈ L and rj ∈ R both
would obtain a higher ranked partner if they were to
abandon their current partner in M and rematch with
each other. Any solution satisfying this is stable.

Gale and Shapley [5] defined the stable marriage
problem and also proposed the first algorithm for solv-
ing it. The algorithm operates in rounds as follows.
In the first round each man in L proposes to his most
preferred woman in R. Each woman will then reject all
proposals except the one she has ranked highest. In sub-
sequent rounds each man that was rejected in the previ-
ous round will again propose to the woman which he has
ranked highest, but now disregarding any woman that
he has already proposed to in previous rounds. Gale and
Shapley showed that this process will terminate with
each man in L being matched to a woman in R and
that this solution is stable. Although an SM instance
can have many stable solutions, the Gale-Shapley algo-
rithm will always produce the same one.

An important variant of this problem is when each
participant has only ranked a subset of the opposing
participants. This is known as the stable marriage
problem with incomplete lists (SMI). Any solution M to
an SMI instance must then in addition to being stable,
also consists of mutually ranked pairs (li, rj). The
SMI problem is solved by the Gale-Shapley algorithm,
but the solution might not be complete leaving some
participants unmarried [5]. There exists a number of
variants of the SM problem, for two comprehensive
surveys see the books [9, 16]. In the following we will
only consider the classical SM and SMI problems.

The original Gale-Shapley algorithm is described
as operating in rounds, where only the men who were
rejected in round t will propose in round t+ 1. It is not
stated in which order the proposals in a round should
be made or what kind of data structures to use. If one
traverses the men in L in their original order in each
round and lets each rejected man propose once it is

discovered, then the men always propose in the same
relative order in each round. The running time of such
a scheme is Θ(n2) even for an instance of SMI. If one
is willing to forgo the requirement that the proposals
in each round must be made in the same relative order
then it is not hard to design an implementation of the
Gale-Shapley algorithm with running time proportional
to the number of actual proposals made. To do this
one maintains a queue Q of men waiting to make their
proposals. Initially Q = L and in each step of the
algorithm the man at the front of the queue gets to
propose to his current best candidate rj ∈ R, and any
rejected li is inserted at the end of the queue. This will
ensure that all men rejected in round t gets to propose
before any man rejected in round t+ 1, but the relative
order among the men might not always be the same.
The algorithm terminates when the queue is empty.

One simple enhancement of the Gale-Shapley algo-
rithm is that no li ∈ L should propose to an rj ∈ R who
already has a proposal from someone whom rj ranks
higher than li, as such a proposal will be rejected. Thus
each li should propose to his most preferred rj where
li has not already been rejected and where rj ranks li
higher than her current best proposal (if any). This
means that it is sufficient to only maintain the current
best proposal for each rj . When the algorithm termi-
nates these proposals will make up the solution. We
give our complete implementation of the Gale-Shapley
algorithm in Algorithm 1.

In Algorithm 1 each rj has a variable suitor(rj)
initialized to NULL that holds her current best pro-
posal. Similarly, ranking(rj , li) returns rj ’s ranking
of li (as a number in the range 1 through n). We
define ranking(rj , NULL) = n + 1 to ensure that
any proposal is better than no proposal. The func-
tion nextCandidate(li) will initially return li’s highest
ranked woman and then for successive calls return the
next highest ranked one following the last one retrieved.

For an SM instance it is straight forward to precom-
pute the values of ranking() in O(n2) time. However,
for an SMI instance maintaining a complete ranking()
table would require O(n2) space and also proportional
time to initialize it. In this case it is more efficient to
store the value of ranking(ri, lj) together with ri in lj ’s
ranking list so that it can be fetched in O(1) time when
needed. These values can be precomputed in time pro-
portional to the sum of the lengths of the ranking lists.
To do this one first traverses the women’s lists build-
ing up lists for each man lj with the women that have
ranked him along with in what position. Then using an
array position() of length n initially set to 0, the list of
each man lj is processed as follows. For each woman ri
that has ranked lj we store the value lj along with in
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what position ri has ranked lj in position(ri). We next
traverse lj ’s priority list and for each ri in the list we
look up position(ri) and see if it contains lj . If so, we
fetch ri’s ranking of lj and store it together with lj ’s
ranking of ri. At the same time any ri that has not
ranked lj but which lj has ranked can be purged from
the priority list of lj .

Algorithm 1 The Gale-Shapley algorithm using a
queue

1: Q = L
2: while Q 6= ∅ do
3: u = Q.dequeue()
4: partner = nextCandidate(u)
5: while ranking(partner, u) >

ranking(partner, suitor(partner)) do
6: partner = nextCandidate(u)
7: if suitor(partner) 6= NULL then
8: Q.enqueue(suitor(partner))
9: suitor(partner) = u

McVitie and Wilson [4] gave a recursive implemen-
tation of the Gale-Shapley algorithm. This algorithm
also iterates over the men, allowing each one to make a
proposal to his most preferred woman. But if this pro-
posal is rejected or if it results in an existing suitor being
rejected then the just rejected man recursively makes a
new proposal to his best remaining candidate. The re-
cursion continues until a proposal is made such that no
man is rejected (because the last proposed to woman did
not already have a suitor). At this point the algorithm
will continue with the outer loop and process the next
man. When all men have been processed the algorithm
is finished. It is shown in [4] that the McVitie-Wilson
algorithm gives the same solution as the Gale-Shapley
algorithm. We note that similarly to the Gale-Shapley
algorithm it is possible to avoid proposals that are des-
tined to be rejected because the proposed to woman
already has a better offer.

Comparing the two algorithms each man will con-
sider exactly the same women before ending up with
his final partner. The only difference is the order in
which this is done. While the Gale-Shapley algorithm
will maintain a list of men that needs to be matched, the
McVitie-Wilson algorithm will always maintain a solu-
tion where each man considered so far is matched before
including a new man in the solution. We note that one
can implement a non-recursive version of the McVitie-
Wilson algorithm simply by replacing the queue Q in
Algorithm 1 by a stack and replacing the dequeue() and
enqueue() operations with pop() and push() operations
respectively. To see that this will result in the McVitie-
Wilson algorithm it is sufficient to first note that the

initial placement of L in Q is equivalent to an outer
loop that processes each man once. Any rejected man
will then be placed at the top of the stack and therefore
be processed immediately, similarly to a recursive call
in the original algorithm.

Wilson [26] showed that for any profile of womens
preferences, if the men’s preferences are random, then
the expected sum of men’s rankings of their mates
as assigned by the Gale-Shapley algorithm is bounded
above by n(1 + 1/2 + ...+ 1/n). Knoblauch [15] showed
that this is also an approximate lower bound in the sense
that the ratio of the expected sum of men’s rankings of
their assigned mates and (n+1)((1+1/2+ ...+1/n)−n)
has limit 1 as n goes to∞. Thus if the men’s preferences
are random then this sum is Θ(n lnn) for large n.
However, it is not hard to design instances where this
sum is Θ(n2). One such case is when the men have
identical preferences.

2.1 Generalizations of SM We next review two
generalizations of the SM problem. The stable room-
mates (SR) problem consists of a set of n persons, each
one with a complete ranking of all the others persons.
The objective is now to pair two and two persons to-
gether, such that there is no pair (x, y) of persons where
x is either unmatched or prefers y to its current part-
ner, while at the same time y is either unmatched or
prefers x to its current partner. Just like for the SM
problem, such a solution is stable. Unlike the SM prob-
lem there might not exist a solution for an SR instance.
If some persons have only ranked a subset of the other
participants we get the stable roommates problem with
incomplete lists (SRI). Irving gave an algorithm for com-
puting a stable solution to an SRI problem or to deter-
mine that no such solution exists [11]. This algorithm
operates in two stages, where the first one is similar to
the Gale-Shapley algorithm where each person makes,
accepts and rejects proposals. The second phase of the
algorithm is slightly more involved but does not change
the running time of O(n2). For more information on the
SR and SRI problems see [9, 16].

In the last generalization each person can be
matched with more than one partner. More formally,
we are looking for a stable solution to an SM, SMI, SR,
or SRI instance where each person vi is matched with at
most b(vi) other persons, where b(vi) ≥ 1. Being stable
again means that no two persons vi and vj would both
obtain a better solution if they were to match with each
other, either by dropping one of their current partners
or if vi has fewer than b(vi) partners or if vj has fewer
than b(vj) partners.

For the SM problem this gives us the many-to-
many stable assignment problem (MMSA), where each
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“man” and “woman” can be matched with several
participants of the opposite sex. This was solved
by Bäıou and Balinski [2] who presented a general
algorithm based on modelling this as a graph searching
problem. Applying the last generalization to an SR
instance, gives the stable fixtures problem [12] for which
Irving and Scott gave an O(n2) algorithm. Similarly
to Irving’s algorithm for SRI, this also consists of two
stages, where the first stage is a natural extension of the
Gale-Shapley algorithm to handle that each person can
participate in multiple matches.

3 Matching Problems

We next explore the relationship between stable mar-
riages and weighted matchings in graphs. A matching
M on a graph G(V,E) is a subset of the edges such that
no two edges in M share a common end point. For an
unweighted graph the object is to compute a matching
of maximum cardinality. For an edge weighted graph a
typical problem is to compute a matching M such that
the sum of the weights of the edges in M is maximum
over all matchings. Another variant could be to com-
pute the maximum weight matching over all matchings
of maximum cardinality.

We consider the Greedy algorithm for computing a
matching of maximum weight in an edge weighted graph
where all weights are positive. This algorithm considers
edges by decreasing weight. In each step the heaviest
remaining edge (u, v) is included in the matching before
removing any edge incident on either u or v. If the
weights of the edges in G are unique or if a consistent tie
breaking scheme is used then it follows that the solution
given by Greedy is also unique. In the following we will
always assume that this is the case. It is well known that
Greedy guarantees a solution of weight no worse than
0.5 times the weight of an optimal solution. We label
the problem of computing a greedy matching in an edge
weighted graph as the GM problem.

Given an instance G of the GM problem one can
construct an equivalent instance of the SRI problem by
sorting the edges incident on each vertex u by decreasing
weight, and letting this be the ranking of u’s neighbors
in the SRI instance. With this construction a solution to
the GM problem is equivalent to a stable solution of the
corresponding SRI problem. Consider the heaviest edge
(u, v) in the graph. This is included in the GM solution
and the corresponding vertex pair must also be part of
any solution to the SRI instance, otherwise this solution
would not be stable as both u and v would prefer to
match with each other over any other partner. We can
thus include (u, v) in the solutions to both instances and
also remove u and v from further consideration. For
the GM problem this means that any edges incident on

either u or v are removed and for the SRI instance u
and v are removed from all ranking lists. One can then
repeat the argument using the heaviest remaining edge,
and it follows by induction that the two solutions are
identical. It is also clear that the corresponding SRI
instance always has a unique stable solution.

The above construction implies that the solution
given by Greedy is stable in the sense that there does
not exist an edge (u, v) 6∈ M such that the weight
of M would increase if (u, v) was added to M while
removing any edges incident on either u or v from M .
This observation is often stated as that the solution
given by Greedy does not contain any augmenting path
containing three or fewer edges. An augmenting path
of length k is a path containing k edges starting with
an edge in M and then alternating between edges not
in M and edges in M , such that if one was to replace
all the edges on the path that belong to M with those
that are not in M then the weight of the solution would
increase.

We next show that the solution given by
Greedy can also be obtained by solving an associated
SMI (or SM) instance. To the best of our knowledge
this result has not been shown previously.

Given an instance of the GM problem on an edge
weighted graph G(V,E). We define an SMI instance
G′ from G as follows. Let L and R be the sets of
men and women respectively, both of size n = |V |.
Any man li will include exactly those rj in its ranking
where there is an edge (vi, vj) ∈ E. As the edges in G
are not directed, this also means that lj will rank ri.
Similarly, any woman rj will include exactly those li in
her ranking where there is an edge (vi, vj) ∈ E. Both
men and women order their lists by decreasing weight of
the corresponding edges in G. Thus every (vi, vj) ∈ E
gives rise to four rankings in G′. We call the two pairs
(li, rj) and (lj , ri) for the corresponding pairs of (vi, vj).

Lemma 3.1. Given a graph G with SMI instance G′ as
described above and let M be the greedy matching on G.
Then the pairs in G′ corresponding to the edges in M
make up the unique solution to the SMI problem on G′.

Proof. The proof is by induction on the edges of M
considered by decreasing weight. Let (vi, vj) be the
edge of maximum weight in G. Then (vi, vj) ∈ M
and it also follows from the construction of G′ that li
will rank rj highest. Similarly, li will also have the
highest ranking among the men ranked by rj . Thus
(li, rj) must be included in any stable solution of G′. A
similar argument shows that the edge (lj , ri) will also
be included in such a solution.

Assume now that the pairs in G′ corresponding to
the k ≥ 1 heaviest edges in M must be included in
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any stable solution and consider the two pairs (ls, rt)
and (lt, rs) corresponding to the k + 1st heaviest edge
(vs, vt) in M .

It is clear that any solution where ls is matched to
a woman that he has ranked after rt while at the same
time rt is matched to a man that she has ranked after
ls, cannot be stable as both ls and rt would be better of
if they were to match with each other. Thus if (ls, rt)
is not included in a stable solution at least one of ls
and rt must be matched to a partner which he or she
has ranked higher than the other one of {ls, rt}. Assume
therefore that ls is matched to ru and that ls has ranked
ru higher than rt, implying that the weight of (vs, vu)
is greater than the weight of (vs, vt) in G. But since
(vs, vt) ∈M it follows that (vs, vu) 6∈M . Thus vu must
be matched to some other vertex vz in M . And since
(vs, vu) 6∈M the weight of (vu, vz) must be greater than
that of (vs, vu). By the induction hypothesis the pairs in
G′ that correspond to the k heaviest edges in M must
be included in any stable solution in G′. It therefore
follows that lz must be matched to ru in any stable
solution on G′ contradicting that ls is matched to ru.
A similar argument shows that rt cannot be matched
to any man in L to which she gives higher priority than
she gives to ls. Thus the pair (ls, rt) must be in any
stable solution in G′. The argument for why (lt, rs) also
must be included in a stable solution is analogous. It
follows that any pair in G′ corresponding to an edge in
M must be part of a stable marriage in G′.

It only remains to show that once the pairs corre-
sponding to the edges in M have been included in the
solution M ′ to G′, then it is not possible to match any
other pairs in G′. If M ′ contains a pair (li, rj) in addi-
tion to the pairs corresponding to the edges in M then
(vi, vj) 6∈ M and neither vi nor vj can be matched in
M . But since li has ranked rj (and vice versa) it fol-
lows that (vi, vj) ∈ E and that M can be expanded
with (vi, vj). This contradicts that M is maximal and
the result follows.

We next consider the b-matching problem which
is a generalization of the regular weighted matching
problem similar to the many-to-many stable assignment
problem and the stable fixtures problem. A b-matching
on G is a subset of edges M ⊆ E such that every
vertex vi ∈ V has at most b(vi) edges in M incident
on it. The objective is to compute the b-matching of
maximum weight. A 0.5 approximation can again be
computed using the greedy algorithm that selects edges
by decreasing weight and whenever b(vi) edges incident
on vi have been selected, the remaining edges incident
on vi are removed [19]. Setting b(vi) = 1 for all vi ∈ V
gives a regular (one) matching.

It is straight forward to see that the stable fixtures

problem is also a generalization of greedy b-matching.
Given an instance of the greedy b-matching problem,
one can also construct an equivalent many-to-many
stable assignment instance by setting the bounds b(li)
and b(ri) equal to b(vi). A proof similar to that
of Lemma 3.1 shows that these two problems have
equivalent solutions.

3.1 Algorithmic Similarities As a consequence of
the fact that the solution given by Greedy can be
obtained by either solving a properly designed instance
of SMI or SRI, any algorithm that solves either of these
two problems can also be used to compute a greedy
weighted matching. This process can be simplified as
it might be possible to run an SMI or SRI algorithm
directly on the original graph. Let G be an instance
of GM and G′ its corresponding SMI instance. Also
let {rs1 , rs2 , . . . , rsf } and {lt1 , lt2 , . . . , ltg} be the ranked
lists of li and ri respectively. Then if follows from the
construction of G′ that f = g and that sk = tk for
all k. Thus any proposal made to ri could be handled
directly by li as he has the same information as ri. It
follows that one can merge li and ri into one node vi
that handles making, accepting, and rejecting proposals
related to li and ri. In this way both the Gale-Shapley
and the McVitie-Wilson algorithm can be used directly
on edge weighted general graphs to compute greedy
matchings, but now using edge weights to rank potential
partners. Irving’s algorithm [11] for solving the SRI
problem consists of two stages, of which the first is
exactly this algorithm used on a general graph. If the
rankings in an SRI instance are based on edge weights
from a GM instance then the first phase will produce the
greedy solution which is stable, thus making the second
phase of the algorithm redundant.

Previous efforts at designing fast parallel greedy
matching algorithms have been based on the notion of
dominant edges. These are edges that are heavier than
any of their neighboring edges. Preis showed that an al-
gorithm based on repeatedly including dominant edges
in the matching while removing any edges incident on
these will result in the same solution as Greedy [22].
Based on this observation Manne and Bisseling devel-
oped the pointer algorithm [17], which was further en-
hanced by Manne and Halappanavar in the Suitor al-
gorithm [18]. We note that the Suitor algorithm is
identical to the McVitie-Wilson algorithm applied to
a general edge weighted graph, while the pointer al-
gorithm has strong resemblances to the Gale-Shapley
algorithm as outlined in Algorithm 1.

The same type of relationship also holds true be-
tween the greedy b-matching problem and the many-
to-many stable assignment problem. The algorithm pre-
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sented in [2] can be instantiated to solve the b-matching
problem using a Gale-Shapley type algorithm where a
vertex v will accept the b(v) best offers at any given
time. We note that this is the same algorithm as the
one presented in [7] and also [13] for computing a greedy
b-matching. In [13] the authors experiment with what
they call delayed versus eager rematching of rejected
suitors. The difference between these two variants is
the same as that between a Gale-Shapley and a McVitie-
Wilson style algorithm.

4 Experiments

As shown in Section 3 much of the theory for greedy
matching algorithms are mainly restricted versions of
previous results from the theory of stable marriages.
However, the work on greedy matchings has to a large
extent been driven by a need for developing scalable par-
allel algorithms for use in scientific applications. This
has lead to the implementation of Gale-Shapley and
McVitie-Wilson type matching algorithms on a large
variety of architectures, including distributed memory
machines [3, 17], multicore computers [10, 14, 18], and
GPUs [1, 20].

There has been less emphasis on implementations
and developing working code for the stable marriages
problem. We believe that much of the work done on
greedy matchings can easily carry over to developing
efficient code for stable marriage problems. To show
the feasibility of this we have developed shared memory
implementations of both the Gale-Shapley and McVitie-
Wilson algorithms. We used OpenMP to parallelize the
Gale-Shapley algorithm and both OpenMP and CUDA
for parallelizing the McVitie-Wilson algorithm.

In weighted matching both endpoints of an edge
(u, v) evaluates the importance of the edge to the same
number, i.e. the weight of the edge. Whereas in the
stable marriage problem both u and v assign their own
ranking of the other. Thus the main difference between
greedy matching algorithms such as those presented in
[17, 18] and the Gale-Shapley algorithm is that in the
latter, a man who makes a proposal evaluates his chance
of success based on the woman’s ranking, instead of on a
common value. Another difference is that it is typically
not assumed in weighted matching problems that the
neighbor list of a vertex is sorted by decreasing weight.
It was shown in [18] that when this is the case, then
it both simplifies the algorithm and also speeds up the
execution considerably.

Our parallelization strategy for the McVitie-Wilson
algorithm using OpenMP closely follows that of the
Suitor algorithm as presented in [18], while our CUDA
version of the same algorithm is a simplified version
of the Suitor algorithm used in [20]. In both of

our OpenMP algorithms the set of men is initially
partitioned among the threads who then each run a local
version of the corresponding algorithm until completion.
A thread will first search the list of the current man to
locate the woman he gives highest priority and where
the woman also prefers him to her current suitor (if
any). If such a woman is discovered the thread will use a
compare-and-swap (CAS) operation to become the new
suitor of the woman. In this way it is assured that no
other thread has changed the suitor value. If the CAS
operation succeeds the previous suitor (if any) is treated
according to the current strategy and is inserted in a
local stack (McVitie-Wilson) or a local queue (Gale-
Shapley). If the CAS operation failed because some
other thread had already changed the suitor value, then
if the current man can still beat the new suitor then the
thread will retry with a new CAS operation, otherwise
it will continue searching for the next eligible woman.

There is a difference between the algorithms in
how they can handle load imbalance. For the paral-
lel Gale-Shapley algorithm it is possible to synchronize
the threads after each round of proposals and then redis-
tribute the unmarried men to the threads before moving
on to the next round. However, synchronization tends
to be costly, and experiments done on greedy matching
problems indicate that this is typically not worth the
effort. For the McVitie-Wilson algorithm one can load
balance the algorithm by using one of the dynamic load
balancing strategies in OpenMP in the initial assign-
ment of men to threads. This strategy was used success-
fully in experiments for the Suitor matching algorithm
on graphs with highly varying vertex degrees [18].

For the McVitie-Wilson CUDA algorithm we assign
one thread to each man.Each thread then executes the
algorithm similarly to the OpenMP version using a CAS
operation to assign a man as the suitor of a particular
woman. Using only one thread per man allows for
a larger number of thread blocks which the runtime
environment can balance across the device. But as the
threads within one physical warp operate in SIMD, the
run time of all threads in the same warp will be equal
to the maximum execution time of any of the threads.
Similarly, the threads within the same thread block
will not release resources until all threads in the block
have finished executing. It would have been possible
to statically assign multiple men to each thread or to
design a dynamic load balancing scheme with the aim of
evening out the work load. But this would have resulted
in a more complicated algorithm and as our main goal
is proof of concept we did not pursue this.

Implementing the Gale-Shapley algorithm on the
GPU presents additional challenges compared to the
McVitie-Wilson algorithm. In a Gale-Shapley algorithm
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the threads would have to be grouped so that each
thread group operates on one common queue, where
the size of the group could be either a subset of threads
in a warp or all the threads in one thread block.
As the number of free men monotonically decreases
between rounds, there should initially be more men than
threads assigned to the same queue, something that
would complicate the algorithm. Also, having several
threads operate on one common queue would require
synchronization which can be time consuming on the
GPU. For this reason we chose not to implement the
Gale-Shapley algorithm using CUDA.

As we are not aware of any sufficiently large publicly
available data sets for the stable marriage problem, we
have designed two different random data sets. The
first set has been constructed to be relatively easy to
solve, whereas the second set is intended to be more
time consuming. We label these sets as easy and hard
respectively. Each instance consists of n men and n
women. In the easy data set each man is assigned
a random number ε ∈ [0, 1] and then randomly picks
and ranks (1 + ε) lnn women. Each woman then
ranks exactly the men that ranks her. With this
configuration more than 98% of the participants were
matched in every final solution and the total number
of proposals is at most 2n lnn with an average of
n lnn. In the hard data set each man has an identical
complete random ranking of all the women. Similarly,
all woman share the same random ranking of all the
men. Thus there will always exist a complete stable
solution and the total number number of considered
women will always be n(n + 1)/2. Moreover, in the
hard instances there will be contention among the
men for obtaining the same set of women, and thus
cause substantial synchronization requirements for the
parallel algorithms. One obvious difference between the
datasets is that the easy instances will require more
memory access as each participant has an individual
ranking list, while for the hard instances all rankings
are stored in two shared vectors of length n. For each
value of n we have generated 5 instances and for each
of these we run each algorithm 3 times. For all timings
we take the average of these 15 runs.

The OpenMP algorithms are run on a computer
with two Intel Xeon E5-2699 processors and 252 Gbytes
of memory. Each processor has 18 cores and runs at
2.30GHz. The GPU is a Tesla K40m with 12 GB
of memory, 2880 cores running at 745 MHz and has
CUDA compute capability version 3.5. For all parallel
algorithms we measure their speedup against the fastest
sequential algorithm run on the Intel Xeon machine.

In Figure 1 we present results from the easy in-
stances when n varies from 5M up to 25M in steps of

5M. For the OpenMP algorithms the number of threads
is set to 36. For most of these instances the running time
stays well below one second. It is only for the n =25M
instance that the GPU algorithm uses slightly more time
than one second. This is also the largest easy instance
that could be run on the GPU. For smaller instances the
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1Figure 1: Running time on the easy dataset
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1Figure 2: Speedup on the easy dataset

GPU algorithm is the fastest one but as the problem size
increases it is slowing down compared to the OpenMP
algorithms. In general the OpenMP Gales-Shapley al-
gorithm is faster than the OpenMP McVitie-Wilson al-
gorithm with as much as 12%. For this setup one would
expect that the graph displaying the time would resem-
ble n lnn as the computing resources is the same for
each instance. This is most true for the OpenMP algo-
rithms where the time increases close to linearly with n,
whereas the time grows faster than n for the GPU algo-
rithm. This can be seen further in Figure 2 which shows
the speedup of the OpenMP Gale-Shapley algorithm
and the GPU McVitie-Wilson algorithm compared to
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the sequential Gale-Shapley algorithm. The OpenMP
algorithm gives a constant speedup of about 9, while
the speedup of the GPU algorithm starts out at about
17 but then drops sharply as the size of the instances
increase. Thus this is most likely due to insufficient
memory on the GPU. On these problems the sequential
McVitie-Wilson algorithm was on average 27% slower
than the sequential Gale-Shapley algorithm.

Figure 3 shows running times of the OpenMP
algorithms using 36 threads as n increases up to 125M.
It can be observed that the tendencies for the smaller
instances still remain true for the larger ones. We note
that the worst running time is only marginally larger
than four seconds on the largest instance. Figure 4
shows the speedup of the OpenMP algorithms compared
to the sequential Gale-Shapley algorithm for the three
largest instances when using t = 1, 9, 18, 27 and 36
threads. The Gale-Shapley algorithm outperforms the
McVitie-Wilson algorithm in almost all instances and
reaches a speedup of almost 14 on the n = 75M instance.

Figure 5 shows the running time on hard instances
where n increases from 100K up to 500K. The OpenMP
codes are again run using 36 threads. As the dataset
only consists of two vectors we can run the problems
using all three codes, the only limiting factor being
time. Since the total amount of work grows as Θ(n2)
on these instances, it is to be expected that they will
require more time than the easy ones. From the fig-
ure it can be observed that there is little difference in
the running time between the Gale-Shapley OpenMP
code and the McVitie-Wilson GPU code, which both
take close to 250 seconds on the largest instance. How-
ever, the McVitie-Wilson OpenMP code performs con-
siderably better, and is a factor of 5 times faster on
the largest instance. This difference is also displayed in
Figure 6 which gives the speedup of the same instances
compared to the sequential McVitie-Wilson algorithm.
While the McVitie-Wilson algorithm reaches a speedup
of close to 22 when running on the 36 threads, the par-
allel Gale-Shapley algorithm is never more than a factor
of 2.5 faster than the sequential McVitie-Wilson algo-
rithm. For these instances the sequential Gale-Shapley
algorithm was on average 109% slower than the sequen-
tial McVitie-Wilson algorithm. We believe that some
the difference between the OpenMP algorithms can be
explained by how the algorithms handle the large num-
ber of rejections. While the Gale-Shapley algorithm has
to store each rejected man to memory and retrieve a
new one, the McVitie-Wilson algorithm can continue
working on the rejected man without needing to ac-
cess relatively slow memory. The poor performance of
the McVitie-Wilson GPU algorithm compared to the
OpenMP one is most likely due to how the machines
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handle contention for shared resources. The GPU algo-
rithm utilizes several thousand concurrent threads that,
at least initially, will be competing for matching their
man with the same set of women. Synchronizing this
will lead to a much larger strain on the system com-
pared to that of the relatively low number of threads in
the OpenMP algorithm.

Finally, figures 7 and 8 show the number of con-
sidered proposals per second for both easy and hard
datasets on the OpenMP algorithms. For each instance
this number is given as the sum over each man of his
ranking of his final partner and then divided by the total
time. In sparse graph algorithms this is often referred
to as the number of traversed edges per second (TEPS)
and is, among other things, used to rank the perfor-
mance of computers in the Graph500 challenge [8].

For the easy instances the TEPS rate starts out at
10M for one thread and then increases to somewhere
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between 100M to 140M for 36 threads. Thus the
efficiency when using 36 threads lies somewhere in the
range of 30% to 40%. For the hard instances the
TEPS rate for the McVitie-Wilson algorithm starts out
at about 150M and increases up to 2.75 billion when
using 36 threads for an efficiency rate of about 50%.
As already noted the Gale-Shapley algorithm does not
scale well on these instances. Comparing the TEPS rate
between the easy and the hard instances when using
the McVitie-Wilson algorithm on the same number of
threads it can be observed that the maximum TEPS
rate is more than a factor of 20 larger for the hard
instances. This is most likely because the hard instances
are not limited by access to memory as the whole
dataset only consists of two vectors.

5 Conclusion

In his book Manlove [16] lists some of the most notewor-
thy open problems related to SM. One of these is to de-
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termine if the SM problem is in the complexity class NC
or not, that is, to determine whether the problem can
be solved by an algorithm with polylogarithmic running
time when using a polynomial number of processes. Ef-
forts at designing such algorithms has mainly resulted
in parallel algorithms requiring at least n2 processes,
and are thus mainly of theoretical interest [6, 25].

We are only aware of one previous attempt at
implementing a parallel version of the Gale-Shapley
algorithm and this did not result in any speedup [24].
Quinn [23] argues that one cannot expect a large
speedup from a parallel Gale-Shapley style algorithm
in practice as the algorithm cannot run faster than the
maximal number of proposals made by any one man.
We note that for a random instance the average number
of proposals made by each man is in fact O(log n).

While the question of developing asymptotically
faster parallel algorithms than those presented in Sec-
tion 4 is of interest from a theoretical point of view,
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we believe that this is less relevant for a practitioner.
To begin with the running time of the Gale-Shapley al-
gorithm is linear in the instance size. Thus moderate
sized problem can already be solved rapidly. In addi-
tion, our current experiments on the SMI problem as
well as previously experiments on GM problems shows
that Gale-Shapley type algorithms scale well. One rea-
son for this is that the size of the instance n is typically
much larger than the number of threads used.

One notable difference between the formulations of
the GM and the SMI problem is that for GM it is
not assumed that the neighbor lists are initially sorted
by decreasing weight in the same way as priority lists
are ordered in SM. Thus work on developing parallel
algorithms for the GM problem has focused on how one
should search the neighbor lists. Suggested solutions
include sorting the lists initially, searching through the
list each time a new candidate is needed, or something
in between. All of these strategies result in a running
time that is superlinear in the input size. However,
Preis’s algorithm for GM has linear running time [22],
but is more complicated and not suitable for parallel
execution. We therefore ask if it is possible to design a
linear time algorithm for the SM problem if the priority
lists are not sorted, but instead given as real valued
numbers such that pi(j) gives the value that person i
assigns to person j of the opposite sex.

References

[1] B. O. Fagginger Auer and R. H. Bisseling. A GPU
algorithm for greedy graph matching. In Facing the
multicore, Challenge II, volume 7174, pages 108–119.
LNCS, 2012.
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