
  

at the University of Bergen

Thesis for the degree of philosophiae doctor (PhD)





To My Parents





Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Fredrik Manne, for
giving me the opportunity to be his PhD student. He has always been encouraging
and optimistic while guiding me through my studies. His enthusiasm and patience
for countless discussions helped me significantly to finish my PhD projects. His
door has always been open to discuss practical issues that I faced during my stay
in Bergen. Last but not least, thank you for your patience in reading my thesis
meticulously to correct my bad writing. I am deeply indebted to you for your
time, encouragement and generosity.

Second, thanks to my colleagues at the department who created a friendly
and welcoming environment. In particular, I would like to thank my officemates
Torstein Strømme and Paloma Lima for a lively office. Thanks go to current and
former master students at the algorithms group.

I want to thank my coauthors Antonino Tumeo, H̊akon Lerring, Johannes
Langguth and Mahantesh Halappanavar. Thanks to Jan Arne and Markus Fane-
bust Dregi for their valuable feedback after my presentations at the algorithms
seminar.

Thanks to Antonino Tumeo and Mahantesh Halappanavar for inviting me
at Pacific Northwest National Laboratory, USA, where I spent two wonderful
summers. It was a great environment to learn from other researchers and make
friends. Special thanks to Antonino and Johannes for giving me access to their
parallel computers.

I would like to thank the administrative staff, Eli Ertresvaag, Ida Rosenlund,
Liljan Myhr, Liv Rebecca A Aae, Maria Marta Lopez, Tor M. Bastiansen, and the
former members who always helped in practical issues since I moved to Bergen.

Finally, thanks to my parents, siblings, friends and relatives for their continued
support and patience.

Bergen, April 2017
Md. Naim

iii



iv



Contents

Acknowledgements iii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Shared Memory Programming . . . . . . . . . . . . . . . . 5
2.2 Distributed Memory Programming . . . . . . . . . . . . . 5
2.3 Heterogeneous Computing . . . . . . . . . . . . . . . . . . 6

3 GPUs For General Purpose Computing . . . . . . . . . . . . . . 6
3.1 The GPU Architecture and Programming Model . . . . . . 9

4 Generic Graph Analytics on GPUs . . . . . . . . . . . . . . . . . 15
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Paper I I

Paper II II

Paper III III

Paper IV IV

v





1

1 Introduction

Combinatorial scientific computing (CSC) is an interdisciplinary field that deals
with discrete algorithms involved in the efficient solutions of problems arising in
computational science and engineering (CSE). Even though combinatorial algo-
rithms have long played a crucial rule in CSE, the field formally came to be known
as combinatorial scientific computing in 2002 [14]. The focus includes, but is not
limited to, efficient parallelization and balanced load distribution of computa-
tional problems on large computing systems, optimization, fast implementation
of sparse matrix routines, algorithmic differentiation for numerical computations,
as well as combinatorial applications to analyze large-scale social networks [48].

Very often, computational models that are used to solve problems in science
and engineering are expressed in terms of continuous mathematics. To solve
these problems efficiently, research in CSC aims to identify and solve combinato-
rial subproblems of the models. The solution process often involves the design,
analysis and implementation of graph or hypergraph algorithms to produce high
performance software [8, 58]. Such algorithms must be able to solve the com-
binatorial subproblems efficiently or else these might become bottlenecks in the
solution process. Since the involved datasets are often very large, a quadratic
running time could be too slow to be useful. In such cases an approximation or a
heuristic might be a better choice to provide a fast and sufficiently good solution.
In addition, it is also often important that the solution method is amendable to
parallelization as a sequential algorithm could dominate the overall computation
even if it runs in subquadratic time.

Problems arising in scientific computing can be dauntingly large and often too
compute intensive to be solved by a single processor. For this reason scientific
computations has been one of the leading forces in developing ever larger and
more powerful computing systems. But today it is not only supercomputers
that offer parallel processing, this is now something that almost all computers
and computing systems are capable of. However, in order to take advantage of
multiple processing units, it is necessary to invest sufficient effort in developing
code that can run in parallel. As a consequence there exists a long tradition
within the scientific community for developing parallel methods and programs
that can utilize these resources.

To minimize the overall execution time of a parallel program, a problem needs
to be evenly subdivided among the available processors and with as little data
dependencies as possible. In this way one can achieve an even load balance,
while minimizing the amount of time spent on communication. Other important
issues that must be considered are to maximize data locality and to reduce the
number of cache misses. For dense and well structured problems much of this
is well understood, but when solving sparse and more unstructured problems
there are other additional concerns that must be addressed. Sparse matrices and
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graphs are harder to partition evenly and dependencies between different parts
of computations are typically more irregular. For these reasons it often becomes
more challenging to obtain a balanced partitioning that preserves data locality.

Many of the involved problems in designing efficient parallel algorithms for
sparse problems are combinatorial by nature. Mapping these to new types of
hardware with massive computational power has over the last decade been one
of the factors that has maintained and elevated the importance of CSC in the
scientific community [14, 48].

Even though there has been a tremendous increase in compute power dur-
ing the last decades, the fundamental way in which parallel systems are pro-
grammed has been fairly static. The two most commonly used programming
models, MPI and OpenMP, have both been available for at least 20 years, and
even though they have evolved over time, the underlying conceptual layout of
shared and distributed memory computers has not changed much. However, one
thing that has changed is that dedicated co-processors have become common in
large scale systems. These processors are used by the central processing units
(CPUs) to offload compute and data intensive parts for which they are particu-
larly well suited. Graphic processing units (GPUs) are by far the most common
co-processors. They are fundamentally different from traditional CPUs in that
they can process up to thousands of independent threads simultaneously. Pro-
gramming GPUs is challenging for several reasons. For instance, the hardware
only supports synchronization between a limited numbers of threads and also in-
troduces new issues related to memory usage. But due to the massive parallelism
and compute power offered by GPUs, there has been a substantial interest in
porting and also in developing new solutions onto such systems.

This thesis studies graph algorithms to solve some well known combinatorial
problems on GPUs. In particular we study matching problems and the related
stable marriage problem, both in which the object is to pair together vertices
according to similarity measures. As a generalization of these problems we also
study the Louvain clustering method [7]. For all of these problems we develop
efficient GPU algorithms and show that this gives significant performance gains
using fairly inexpensive hardware. For all considered problems we study issues
related to resource utilization, synchronization and load balancing. The thesis
consists of following four papers:

I. Md Naim, Fredrik Manne, Mahantesh Halappanavar, Antonino Tumeo and
Johannes Langguth. Optimizing Approximate Weighted Matching on Nvidia
Kepler K40 In proceedings of the IEEE International Conference on High
Performance Computing (HiPC), 2015.

II. Md Naim and Fredrik Manne. Scalable b-matching on GPUs, Submitted,
2017.
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III. Md Naim, Fredrik Manne, Mahantesh Halappanavar and Antonino Tumeo.
Community Detection on the GPU. Accepted for presentation at the IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2017.

IV. Fredrik Manne, Md Naim, H̊akon Lerring and Mahantesh Halappanavar.
On Stable Marriages and Greedy Matching, In proceedings of the Seventh
SIAM Workshop on Combinatorial Scientific Computing (CSC), 2016. Best
paper award.

Paper I presents a redesign and GPU implementation of a practical algorithm
for the 1

2
-approximate edge weighted matching problem. The main focus is to

address key challenges when implementing graph algorithms on modern GPU
architectures. Through extensive experiments the paper documents the impact
of synchronization and load balancing on the overall running time.

Paper II presents a new greedy algorithm for the maximum edge weighted
b-matching problem. This is a generalization of the problem studied in Paper
I. The algorithm is highly efficient for solving the problem on a single GPU.
It also extends the implementation to multiple GPUs to handle large inputs.
The algorithm avoids dynamic load balancing in order to reduce the burden of
synchronization and also to increase the independence between threads.

Paper III presents a new GPU algorithm based on the Louvain method for
community detection. To maximize the utilization of resources, the presented
algorithm parallelizes the access to individual edges rather than vertices. This
provides an extra level of parallelism compared to previous implementations. In
addition, the GPU algorithm scales the number of threads assigned to a vertex
based on its degree. This helps to achieve a fine grained task distribution among
the threads.

Paper IV focuses mainly on relating greedy matching with the well known
stable matching problem. It shows that several practical matching problems can
be formulated as stable marriage problems. In turn, algorithms for the stable
marriage problem, can be parallelized using techniques developed for greedy al-
gorithms for matching problems. The paper presents and tests efficient algorithms
for the stable marriage problem both on shared memory computers and GPUs.

The remainder of this thesis consists of the following parts: Section 2 provides
a short overview of parallel computing systems. Graphics processors are presented
in Section 3. This section covers both the evolution of GPUs and also how current
systems are designed and programmed. Section 4 contains a short introduction
to generic graph libraries for solving graph problems on GPUs. Finally, Section
5 summarizes the main results of the thesis, before papers I-IV are presented.
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2 Parallel Computing

High Performance Computing (HPC) generally refers to the use of multiple pro-
cessors to solve large and complex computational problems. But it’s not limited
to the use of multiple processors. In addition HPC also encompasses hardware
systems, computing platforms, parallel programming tools, along with various
other essential components that help tackle large compute and data intensive
problems. To satiate the ever-growing demand for more computational power
to solve larger problems in a reasonable amount of time, new technologies keep
emerging which in turn change the concepts of HPC [62].

In the last three decades the clock speed of consumer processors has increased
by a factor of 1000, from a few MHz in 1970s to a few GHz today. Even though it
is not only the clock speed that has boosted the computational power, it has been
one of the important contributors to performance, along with optimized execution
and faster and larger system memory and caches. But in the last decade increased
clock speed has not contributed much to extract more performance. This is due to
various fundamental limitations such as power consumption and heat production.
Since the introduction of Power4 [70], the worlds first multicore processor [59],
the core count has increased from one to around ten to circumvent the need to
operate at higher frequencies. Sophisticated instruction pipelining and multilevel
cache hierarchies have become commonplace- altogether converting a consumer
processor into a parallel processor [26, 62, 68].

Supercomputers and data centers have also obtained massive performance
gains with improved processors. But most of the performance gain has come
from the use of multiple processors, each with multiple cores. Parallel computer
architectures are typically classified in two categories depending on their memory
organization. In distributed memory systems, processors with local memory are
connected through a network and communicate with each other by sending and
receiving data. In shared memory systems, a multi-processor generally consists
of one or more processing units that share the same system memory. Each such
processing unit is normally composed of multiple physical cores. A processing
unit can also have hardware capabilities to time-share the cores [12].

Recently, multiprocessors with significant higher number of cores (up to a few
hundreds) have become available. These are known asmany-core multiprocessors.
Typically large systems are built by combining shared memory multiprocessors
using a message passing network. These are known as hybrid systems. The
current most powerful supercomputer in the world (as of November 2016), the
Sunway TaihuLight [19], is built using a network of around fifty thousand many-
core processors each with 260 cores [74].
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2.1 Shared Memory Programming

In a shared memory computing system, multiple cores belonging to one or more
processing units (CPUs) share the same system resources. The most commonly
used programming and execution model for such systems is the multi-threading
model (and it’s different variants) where each thread has its own private pro-
gram counter and stack area while all threads share the same address space and
system memory. Having common system memory where each thread has read
and write access makes it easier to divide and assign the computational prob-
lem to participating threads based on their runtime IDs. Even though threads
can communicate with each other through the shared memory, concurrent ac-
cess from multiple threads to a memory location can cause data races when two
or more threads access the same memory location. Depending on the chrono-
logical ordering of the operations performed on the location, the output of the
computation can differ from run to run. Race conditions can be avoided using
mutual exclusion, synchronization or locks that are implemented based on special
hardware instructions. Similar kinds of techniques are used to protect memory
locations and guide the execution flow to achieve correct computation results.
Erroneous usage of mutual exclusions and barriers can cause a deadlock among a
subset of participating threads and hence demands special attention while writing
programs for multiple threads.

Different application program interfaces (APIs) that provide threading ab-
stractions makes it easier to write programs for shared memory computers. One
of the most common abstractions is OpenMP [17] which consists of compiler direc-
tives and runtime library routines. Using compiler directives, a programmer can
specify parallel work sharing regions, mutual exclusions, locks, synchronization
barriers, etc. The runtime library of OpenMP creates a thread pool consisting of
a specified number of threads that are assigned with tasks created according to
compiler directives in parallel work sharing regions.

2.2 Distributed Memory Programming

Large problem instances might not fit in the limited memory of a single multi-
processor. It could also demand more computational power than that available
on a single processor for the results to serve practical purposes. In such cases, a
computational problem can be distributed across a network of multi-processors
(i.e. a distributed memory system) connected using some type of interconnection
network. In this computing paradigm, each independent unit of logical execution
is referred to as a process. Typically one process is designated to read and then
distribute the original problem to each participating process. It is also possible
for each process to independently load its data at the start of the computation.
During the course of execution, a process explicitly sends and receives data from
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other processes using either point-to-point or collective operations [66]. Any
synchronization among the processes is achieved by the means of message passing.
MPI is the most commonly used library for communication [23].

2.3 Heterogeneous Computing

Shared memory, distributed memory and hybrid systems typically use processors
with the same instruction set architecture and are therefore referred to as homoge-
neous systems. However, different architectures are often well suited for different
kinds of tasks and hence employing a particular processor for particular compu-
tations can improve the overall performance in terms of time, power consumption
and cost of hardware. The usage of processors with different instruction set ar-
chitectures is known as heterogeneous computing. A heterogeneous system can
consist of any combination of architectures, like CPUs, GPUs, field programmable
gate arrays (FPGAs), digital signal processors (DSPs), many-core processors such
as Xeon Phi and many others [9, 29, 31, 50]. After the emergence of GPUs for
general purpose computations, a typical heterogeneous system consists of several
CPUs and GPUs [11] where the GPUs are connected to the CPUs using tech-
nologies such as a PCI-Express bus [12, 51] or NV-Link [54, 15]. In this setting, a
CPU is labeled as a host and a GPU as a device. The part of the application code
that executes on the CPU is called host code while the part that executes on the
GPU is called device code. The memory belonging to the host and the device are
referred to as host memory and device memory, respectively. The relationship
between the host and the device is typically a master-slave model, where the host
initializes a heterogeneous application, allocates and manages data for the device
and offloads highly parallel tasks on the device along with the associated data.
The next section describes the CPU-GPU heterogeneous systems in more detail.

3 GPUs For General Purpose Computing

The introduction of CPU-GPU heterogeneous systems has been a major change
in the landscape of HPC in the last decade. Starting from the early 2000s, graph-
ics processing units have evolved to become programmable and highly parallel
processors with tremendous computational power.

In recent years, graphics processing units (GPUs) have played a major role
both in supercomputers and in personal computers to speed up compute and
bandwidth intensive applications across many areas of science including engi-
neering, medicine, finance and others. Application developers and researchers
have successfully used GPUs to solve problems that demand high throughput in
the field of computer vision [18, 21, 28, 32, 36, 60, 65], machine learning [1, 5,
13, 32, 36, 65], computational fluid dynamics [6, 30, 37, 38, 73], ocean geography,
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seismic analysis [20, 35], signal processing [25, 45, 79], climate modeling [3, 22,
39, 40] as well as other areas. The significant speedups that have been achieved
with relatively low cost GPUs has lead to a sharply increasing trend of using
more GPUs in supercomputers and data centers.

In order to understand how GPUs offer high computational throughput, it is
helpful to know their evolution over time and how they have developed into their
current forms.

Graphics processors were originally designed to perform bitmap operations to
accelerate the display for graphical operating systems. In 1992, OpenGL [63, 64]
was introduced with the intention of writing 3D graphics programs using platform
independent library methods [49]. But it was not until the mid-1990s that the
graphics processors had the capability to process 3D graphics.

In computer graphics, various stages of computations are performed to trans-
form three dimensional object models into pixel values that are displayed on a
computer screen. These stages are collectively known as the graphics pipeline.
A typical set of stages includes transformation of geometry, triangulation, frag-
mentation of triangles and shading of fragments. The stages of the graphics
pipeline that are responsible for the transformation of geometry and the shading
of fragments are called vertex shaders [41] and pixel shaders [41], respectively.
The vertex shaders typically transform vertices of graphics primitives into screen
space while the pixel shaders compute color and other interpolated attribute val-
ues belonging to the interior of such primitives.

Until 1997, all of the stages of the graphics pipeline, except vertex shaders,
were implemented inside the CPU. However, in the late 1990s, several improve-
ments made it possible to implement more stages inside a graphics processor.
For instance, in 1999 Nvidia introduced the GeForce 256, the first GPU with the
capability to perform transformation and lighting [43]. This marked the start
of moving the entire graphics pipeline inside GPU hardware. One of the most
significant innovations from a programmers viewpoint was the introduction of
programmable vertex and pixel shaders [77] by Nvidia in the GeForce 3 GPU
in 2001 [43, 53]. This gave programmers more control of the computations in
their display accelerators. Along with the graphics data, programmers could send
programs (i.e. a set of instructions to perform on the data) to the GPUs.

With the advent of programmable shaders [51, 57, 61, 77] it became possi-
ble to perform general purpose computations on GPUs rather than just graphics
rendering. However, the process was initially a bit tricky. The programmable
pixel shaders were originally designed to compute the color values and other at-
tributes of each pixel using input information like coordinate, color, texture and
so on [71]. But these input values could be any numerical data and programmers
could control how the computations were performed. As the standard graph-
ics APIs were the only ways to program GPUs, programmers had to disguise
their computational problems as rendering tasks. They had to reformulate com-
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putations using graphics primitives provided by APIs like OpenGL [64, 49] and
DirectX [42]. Since then this trend has been known as General-Purpose computa-
tion on Graphics Processing Units (GPGPU) within the scientific community [55,
69].

By the early 2000s, different stages of the graphics pipeline were performed
by fixed purpose units of the graphics processors. These hardware units were
composed of several simple (i.e. without complicated control flow circuities) but
independent processing elements (i.e. cores), which gave them the capability to
process multiple inputs (e.g. vertices and pixels) in parallel. Since the vertices
and pixels have no dependencies among them, a graphics processor used all of
its independent processing elements inside a fixed purpose unit. In addition,
different fixed purpose units simultaneously processed different sets of vertices
and pixels.

Even though very early programmable GPUs offered significant computational
power over then-existing CPUs, writing general purpose programs was much more
involved. Limited input options, missing capabilities for random memory access
and lack of convenient ways to debug made it difficult to program such devices.
On top of this, one not only had to learn OpenGL or DirectX, knowledge of
graphics-only shading language [34] was also necessary to program shaders. Al-
together, these restrictions limited the popularity and use of GPUs for general
purpose computations [62]. To overcome these limitations several general purpose
programming languages and APIs such as Sh [69], RapidMind [44] and Brook [10]
were developed.

Until 2005 display accelerators had separate hardware units for vertex shaders
and pixel shaders which led to under utilization and load imbalance in many cir-
cumstances [46]. In 2005 ATI Technologies introduced a GPU-unified shader
architecture on the Xenos GPU [56] used in the Xbox 360 game console [2]
allowing vertices and pixels to be processed on the same hardware unit. This
was subsequently adopted by ATI Technologies’s TeraScale and Nvidia’s Tesla
family of GPU micro-architectures as well as many other display accelerator
manufacturers. Along with several other architectural enhancements, GeForce
8800 GTX had capabilities to perform general computations including single pre-
cision floating point arithmetics and scatter read-write access to memory [41].
In the GPU-unified shader architectures, vertex shaders, pixel shaders and other
shaders are simply multi-threaded programs running on the same hardware cores.
Nvidia’s GPUs with the capability of running different shaders on the same cores
are known as Compute Unified Device Architecture (CUDA)-enabled GPUs.

AMD released its GPU programming system CTM (Close To Metal) in 2006 [27,
56], providing a low-level hardware abstraction layer for several ATI GPUs. Sub-
sequently, Nvidia released the CUDA [16] parallel computing platform and pro-
gramming model that enabled application developers to write programs in C to
utilize the massive computational power of CUDA-enabled GPUs [41]. Since then
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the field has grown dramatically and successfully attracted developers from many
domains of science and engineering with its advanced and easy to use libraries
and tools. The current CUDA platform also supports other popular programming
languages and open programming standard for parallel computing such as Ope-
nACC [76]. This consists of compiler directives to use accelerators such as GPUs
and other many-core processors to speed up the processing of loops and other
parts of source code. In recent years, higher level of abstractions and frameworks
such as OpenCL [47, 67] have become popular to harness the power of GPUs as
well as other types of processors.

3.1 The GPU Architecture and Programming Model

Historically GPUs have been composed of independent but similar components
for parallel processing of graphics rendering, with more transistors allocated to
arithmetic logic units (ALUs) compared to control logic and caching circuitries.
The same set of operations is performed in parallel on each data element without
any dependencies among them. This is what has made GPUs into an attractive
hardware platform for data parallel applications with large data sets.

In recent years, Nvidia’s GPUs have had a dominant position in HPC and big
data applications. For this reason we now give a more detailed presentation of
their current GPU hardware and computing platform. All work in this thesis has
been conducted on Nvidia GPUs using the CUDA computing platform.

Nvidia has developed families of GPU hardware targeting different systems
(e.g. GeFore for personal computers, Tesla for data centers and supercomputers,
Tegra for mobile and embedded devices), but the architectural features are shared
among the product families to accelerate compute intensive tasks.

The Tesla product family has since its introduction undergone significant
changes. The code-names for the Tesla GPU micro-architectures are Tesla (same
as the product family), Fermi, Kepler, Maxwell and Pascal (in chronological or-
der). For problems presented in this thesis, we have used Kepler and Pascal
GPUs and hence we focus on architecture features of these two. To highlight the
architectural improvements, we sketch some relevant comparisons.

GPUs are mainly composed of several independent components called stream-
ing multiprocessors (SMs). The number and configuration of the SMs differ from
GPU to GPU.

A block diagram of the Pascal GPU is shown in Figure 1. It mainly contains
an array of SMs, memory controllers, L2 cache, global memory and a scheduler.
Each memory controller is connected to part of the L2 cache (even though it’s
not shown in the figure) and is used to control global memory [15]. The config-
uration of a single Pascal SM is depicted in Figure 2. For clarity, only half of the
SM is shown. Each SM consists of a set of cores, register file, different types of
caches and other resources. Each of the cores on the SM supports single precision
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Figure 1: Block diagram of a Pascal GPU

Figure 2: Block diagram of a Pascal SM

(32-bit) arithmetics. Double precision (64-bit) arithmetics are served by double
precision units (DP)s while special function units (SFU)s execute intrinsic func-
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tions. Load and store units (LD/ST) calculate source and destination addresses
of the operands belonging to an instruction. The register file contains a set of
registers.

As mentioned earlier, the CUDA programming model was developed to use the
unified shader architecture for general purpose computing. It is used to program a
heterogeneous system consisting of a host and one or more devices where both the
host and the device has their own separate memory. In the model, the functions
that are invoked from the host to be executed on the GPU are called kernels.
The number of threads that execute in a kernel is specified during the kernel call.
These threads are divided into thread blocks, each with a common shape. All the
thread blocks belonging to a kernel call constitute a grid. Modern GPUs have
the capability to run multiple grids concurrently which provides task parallelism
to the programmer. As the kernels execute on device memory, the runtime of the
CUDA programming model provides functions to allocate, copy and deallocate
device memory. It also provides functions to transfer data between host memory
and device memory [16, 52].

Threads are scheduled on the SMs as independent thread blocks. After a
thread block has been scheduled on an SM, threads belonging to the thread block
are executed in groups of 32. Such groups are called warps, while the hardware
units that are responsible to schedule warps to cores are called warp schedulers.
Once a warp scheduler selects a warp, instructions belonging to the warp are sent
to the cores of the SM by the dispatch units.

One important feature of the SMs is the programmable memory. This is fast
memory that can be used by the threads as random access memory. Threads
within a thread block share this memory and hence it is called shared memory.
Both the shared memory and the register file are located on the GPU chip and are
therefore called on-chip memory. In the Kepler GPU, the programmable memory
is partitioned between the shared memory and L1 cache. In the Pascal GPU,
there is separate memory for L1 cache that also caches texture data.

Each SM can run multiple concurrent thread blocks at the same time. A
thread block is scheduled on only one SM and stays there until all the member
threads of the thread block are done with the designated computations. As the
thread blocks are completely independent and scheduled without any particular
order, they can be scaled to a GPU with any number of SMs. The scalability
of GPUs with varying number of SMs is shown in Figure 3. In the figure, two
possible scenarios for the execution of a grid consisting of eight thread blocks is
shown, when the grid is executed on a GPU with 2 SMs and on a GPU with
4 SMs. It is assumed that only one thread block can fit on an SM at a time
and each of the thread blocks takes the same amount of time to execute. The
execution time on a GPU with 4 SMs is then half the time of that on a GPU
with 2 SMs.

Once a thread block is scheduled on an SM, on-chip resources such as registers
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Figure 3: Scalability of CUDA program

and shared memory from the SM are allocated to it. A warp scheduler on the
SM selects a warp when there are at least 32 idle cores on the SM and all the
arguments to the current instruction to be executed are ready [12, 52]. The
logical view of execution flow for a thread block is shown in Figure 4 where the
thread block is divided into groups of 32 threads before being scheduled by the
warp schedulers to the cores. If a warp is not ready (e.g. waiting for data), it
is put into a stall state and other warps gets the opportunity to use the cores.
One important point to note is that threads belonging to a stalled warp does not
release their on-chip resources until the end of execution. This makes context
switching faster than in traditional multi-threaded programming.

The threads within a warp execute the same instruction at the same time in
a SIMD fashion, but each thread can have an independent execution path using
a private instruction address counter [12, 41, 52].

The memory hierarchy of the CUDA programming model is shown in Figure
5. Only one SM with two concurrent thread blocks, each with two threads is
shown in the figure. Registers are allocated per thread while shared memory is
allocated to an entire thread block. The amount of registers and shared memory
on the SM limits how many concurrent thread blocks and warps can run on it.
Automatic variables and arrays that are indexed with constant expressions are
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Figure 4: Mapping of a thread block to physical cores

eligible to be stored in registers. If a thread needs more registers than what is
allocated to it, the corresponding data will be stored as private memory of the
thread in the global memory of the GPU. This is referred to as local memory of
the thread. Large private arrays and automatic variables that don’t fit in registers
are allocated in the local memory.

The amount of shared memory requested by thread blocks is specified during
the kernel call. In the CUDA programming model, this amount has to be the
same for all thread blocks. Based on the requested amount, the on-chip shared
memory of an SM is partitioned among the active thread blocks on the SM [52].
The shared memory of a thread block can be logically divided to its warps or
to its threads. If a thread block of a program needs more shared memory than
what is available in an SM, the program cannot run on the GPU. Threads within
a thread block can cooperate by sharing data in the shared memory. Access to
shared memory must be synchronized to avoid race conditions, something which
the CUDA API has support for. It is important to note that threads within
a thread block can be synchronized but there is no mechanism for inter-thread
block synchronization.

The largest and slowest memory of a GPU is the global memory. Each and
every thread belonging to any thread block has access to the global memory.
Global memory is normally used to store application data and results. As shown
in Figure 5, each SM has its private L1 cache while all SMs inside a GPU share
L2 cache. Memory loads from the global memory are cached while memory stores
are not [12]. For simplicity, other forms of memory like texture memory and
constant cache have been omitted from the figure.

When the threads in a warp are mapped to the cores of an SM, they can
share data between themselves using separate store and load operations in shared
memory. Starting from Kepler, subsequent GPUs implement shuffle instructions
that makes it possible for the threads within a warp to share data without going
through shared memory. The shuffle instructions enable a thread to read from
any other thread in the same warp. We found this instruction to be quite useful
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Figure 5: The memory hierarchy on the Pascal GPU

in many of our implementations. A typical scenario would be when each thread
within a warp had a separate value that needs to be reduced to a single value using
an operator such as sum or min. The use of shuffle instructions helps to reduce the
amount of shared memory required per thread and offers improved performance
as store-and-load operations are carried out in a single step [15]. When multiple
warps inside a thread block are involved in a reduction, the threads inside each
warp of the thread block can use shuffle instructions to find a local reduced value
and then write this to the shared memory of the thread block. Finally, the values
written by the warps can be reduced to a single value.

Atomic operations are important for concurrent programming where multiple
threads read and write shared data structures without any predefined order. To
ensure a correct result, it is essential that the modification of the same mem-
ory location by multiple threads does not lead to different outcomes depending
on the order in which these operations are carried out. Fermi and Kepler sup-
ports atomic operations that are implemented using a lock-update-unlock pattern
while Maxwell and Pascal come with native hardware support for shared memory
atomics [15]. Atomic operations are supported both in global and shared mem-
ory. For our implementations we used atomic-compare-and-swap (atomicCAS)
and atomic add.

Multiple independent SMs inside a GPU, multiple thread blocks inside an SM
and multiple threads inside a thread block- this kind of hierarchy directs to split
a computational problem into coarse-grained and independent sub-problems that
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can be processed in parallel by thread blocks, and each such sub-problem into fine-
grained parts that can be processed in coordination by all threads within a thread
block [16, 52]. All together, a high number of cores and hardware level parallelism
by the means of independent SM units enables modern GPUs to achieve compu-
tational throughput for data parallel applications that is competitive compared
to traditional shared memory and distributed memory multiprocessors.

Parallel computing systems containing multiple GPUs is already a common
trend in HPC. The current way of designing multi-GPU systems is either to
have separate GPUs with the same host or to have multiple hosts, each with
their own GPU(s) with communication between the hosts handled using MPI.
In 2016, Nvidia released their DGX-1 server, a standalone computing node that
uses 8 Pascal GPUs connected via fast interconnections to provide up to 85 Tera
flops in single precision. This has successfully been used in machine learning and
computer vision to reduce the training time to build neural networks [1, 24, 15,
72]. The advantage of the training process is that it mainly involves matrix-vector
multiplications and computation of intrinsic functions, something which the GPU
architecture has support for.

4 Generic Graph Analytics on GPUs

There has been a substantial effort to develop graph algorithms for GPUs. This
has mostly been done for systems with only one GPU, but also for multi-GPU
systems. Popular problems that have been studied include breadth-first search
(BFS), single-source shortest path (SSSP), betweenness centrality (BC),
PageRank (PR) and connected components (CC). Common to all of these is
that they can be implemented as some type of graph traversal. When performing
a graph traversal there are some common operations that are needed.

• Advance Move from one set of vertices to their neighbors.

• Filtering Remove specific elements from a set of vertices or edges based on
some condition.

• Compute A compute operator defines an operation on all vertices or edges
in the current input frontier.

As these operations occur in many graph algorithms there has been several
efforts to develop generic packages that implement these on GPUs. The intention
is then that it will become easier to construct new graph algorithms on GPUs.
Medusa was one of the first such generic systems for operating on graphs [80].
It has been tried on PR, BFS, SSSP and maximal bipartite matching. This
system can use multiple GPUs connected to the same host. When using multiple
GPUs it is advisable to use some kind of graph partitioning software to reduce
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the amount of inter GPU communication. Gunrock is a more recent library for
developing graph algorithms on a single GPU [75]. This uses a bulk synchronous
programming model (BSP) where one performs iterative computational steps
interleaved with communication. This has been tried on BFS, SSSP, BC, PR,
CC and triangle counting. The BSP model requires synchronization between the
computational steps something that might cause threads to idle. To overcome
this, the Groute system was developed to support an asynchronous multi-GPU
programming environment [4]. In this system the user first sets up a dataflow
graph that defines how data is to be moved between the computational devices.
During execution the system will then transfer data between these as directed by
this graph. Experiments on BFS, SSSP, PR and CC show that it scales on some
instances when using up to 8 GPUs connected to a single host. Finally we note
the GBTL-CUDA package [78]. This is part of the GraphBLAS effort that aims
to reformulate graph problems in the language of linear algebra [33]. It has so far
been used to implement BFS and SSSP on a single GPU. This work is a proof of
concept that has not yet been optimized for speed.

We note that the algorithms considered in the papers of this thesis do not
follow the graph traversal style of programming. One common operation in the
considered matching and marriage algorithms is to repeatedly find the current
best neighbor for every vertex to match with using a reduction operation. In
our work on community detection we also perform a reduction operation on the
neighbors of each vertex. But here the neighbors are first reduced to multiple
values depending on which community they belong to and then from the set of
neighboring communities we pick the best one. It is also important for perfor-
mance that these operations can be done in an asynchronous fashion while still
achieving a deterministic result. Although it might have been possible to imple-
ment some of the operations in our algorithms using existing packages, we do not
believe that this would have resulted in efficient algorithms.

5 Conclusion

The main focus of this thesis is on developing efficient algorithms on GPUs for cer-
tain matching and clustering problems. Through extensive experiments we show
that sparse and unstructured problems can benefit greatly from using GPUs as
long as the algorithms are carefully designed. Even though none of the presented
algorithms are fundamentally new, they still require significant redesign to make
them efficient on GPUs. Common to all the developed algorithms is that they
emphasis achieving an even load balance and high degree of parallelism, while at
the same time avoiding the use of time consuming synchronization operations.
Through extensive experiments we verify the performance of the suggested algo-
rithms. In some cases, even a single GPU can outperform tens of multiprocessors
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on a state-of-the-art supercomputer.
The area of computing using GPU enhanced systems is changing rapidly. This

is especially true for memory management. For instance, simultaneous access to
the same memory by a host and a device was not possible until it was recently
introduced in the Pascal GPU [15]. However, starting from the early unified
shader architecture, the fundamental architectural features of GPUs have not
undergone radical changes. Instead what has happened is that features have
been added in an incremental fashion while the speed and size of the device has
increased gradually. Based on this observation we believe that algorithms that
are developed for GPUs today will also be relevant in the near future.

Although the presented algorithms in this thesis can be viewed as proof of
concept that carefully designed GPU algorithms for certain graph problems can
compete with implementations on traditional parallel supercomputers, it is not
to be underestimated that doing so requires substantial effort. For this to become
possible on a more regular basis there is a need to continue and further develop
higher level abstractions for graph analytics on GPUs. As an example, we believe
that the strategy used in Paper III where vertices were grouped according to their
degree before being allocated to different thread blocks, is one such technique that
could benefit other applications. Also, the use of various reduction operations
could be candidates for generic implementation.

It seems clear that GPUs will play a major role in the future of HPC, with
large systems containing several interconnected ones. Designing efficient graph
algorithms for such systems is still only starting and likely to generate much in-
teresting work in the future. Just like the distinction between traditional shared
and distributed algorithms, we believe that one will see a similar division be-
tween different GPU algorithms depending on how the underlying devices are
interconnected.
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Abstract

Matching is a fundamental graph problem with numerous applications
in science and engineering. While algorithms for computing optimal match-
ings are difficult to parallelize, approximation algorithms on the other hand
generally compute high quality solutions and are amenable to paralleliza-
tion. In this paper, we present efficient implementations of the current
best algorithm for half-approximate weighted matching, the Suitor algo-
rithm, on Nvidia Kepler K-40 platform. We develop four variants of the
algorithm that exploit hardware features to address key challenges for a
GPU implementation. We also experiment with different combinations of
work assigned to a warp. Using an exhaustive set of 269 inputs, we demon-
strate that the new implementation outperforms the previous best GPU
algorithm by 10 to 100× for over 100 instances, and from 100 to 1000×
for 15 instances. We also demonstrate up to 20× speedup relative to 2
threads, and up to 5× relative to 16 threads on Intel Xeon platform with
16 cores for the same algorithm. The new algorithms and implementations
provided in this paper will have a direct impact on several applications
that repeatedly use matching as a key compute kernel. Further, algorithm
designs and insights provided in this paper will benefit other researchers
implementing graph algorithms on modern GPU architectures.
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1 Introduction

Given a graph G = (V,E) with vertex set V , edge set E and a weight function
w : E → R+, a matching M is a subset of edges such that no two edges in M
are incident on the same vertex. A maximum matching maximizes the number
of matched edges (cardinality) in M . The objective for a maximum weighted
matching is to maximize the sum of the weights of the matched edges. Further,
the solutions can be optimal or approximate. In this paper, we only consider
half-approximate weighted matching algorithms that guarantee a solution that
is at least half of an optimal solution in terms of the cardinality and weight of
the matching. We present and compare two main algorithms, Locally-Dominant
and Suitor, on two types of architectures, CPUs and GPUs. We also study four
variants of the Suitor algorithm on GPUs. The algorithms are listed in Table 1,
and are described in Sections 2 and 4.

Table 1: A list of matching algorithms and variants presented and studied in this
paper.
Algorithm Description

OMP-LD Active vertices are stored in a shared queue.
Presented in Algorithm 1.

OMP-Suitor Uses locks for synchronization. Presented in
Algorithm 3.

GPU-LD Thread-per-vertex based implementation of
OMP-LD.

GPU-Suitor Warp-based implementation of OMP-Suitor.
Synchronization and load balancing are not
used. Presented in Algorithm 4.

GPU-Suitor-SyncLB Synchronization and load balancing employed
among participating warps.

GPU-Suitor-SyncNoLB Synchronization, but no load balancing among
warps.

GPU-Suitor-Hybrid Synchronize and load balance only for the first
few iterations of the Suitor algorithm.

Matching is a fundamental combinatorial problem with many applications in
scientific computing, optimization and data analytics. In scientific computing,
matchings are used in the solution of sparse linear systems to place large matrix
elements on or close to the diagonal [4]; computation of sparse basis for the null
space or column space of under-determined matrices [16]; computation of block-
triangular form of a matrix [17]. Approximate weighted matchings are used in
multi-level graph algorithms for partitioning and clustering during the coarsening
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phase [10]; network alignment [11] and community detection [18]. These applica-
tions drive the need for efficient parallel implementations of matching algorithms
on emerging multicore and manycore architectures. Many of these applications
repeatedly compute matchings several hundreds of times during their execution.
Therefore, small improvements in matching performance can lead to large gains
in the performance of these applications [11].

An important class of manycore architectures are general purpose graphics
programming units (GP-GPUs, or simply GPUs) that are not only powerful but
also ubiquitous. The Nvidia Kepler K40 presented in Section 3 is currently one of
the best manycore platforms for scientific computing. While many significant per-
formance gains for compute intensive applications with regular and predictable
memory access patterns have been demonstrated using GPUs, the efficient im-
plementation of irregular applications such as graph algorithms remains a chal-
lenge [21]. Highly irregular degree distributions, poor locality in memory accesses,
and minimal computation on accessed data make efficient utilization of compute
resources challenging. Using approximate weighted matching as a case study for
irregular applications, we introduce several algorithmic ideas that can also be
adapted for other graph algorithms.

1.1 Contributions

We make the following contributions in this paper:

• Develop new parallel implementations of a weighted matching algorithm
(GPU-Suitor) on the Nvidia Kepler architecture. We present four variants
of the algorithm and several combinations of threads-per-block and vertices-
per-warp.

• Present detailed experimental results using 269 test cases representing di-
verse applications and sparsity patterns (graph structures).

• Demonstrate the superiority of our algorithms over the previous best algo-
rithm (GPU-LD) on GPUs [7], as well as shared-memory (OpenMP) imple-
mentations. We show that the new implementation outperforms GPU-LD
by 10 to 100× for over 100 instances, and by 100 to 1000× for 15 in-
stances. We also demonstrate up to 20× speedup relative to 2 threads, and
up to 20× relative to 16 threads on Intel Xeon platform with 16 cores for
the same algorithm.

We organize the presentation in this paper as follows. We first present mul-
tithreaded matching algorithms targeting shared-memory architectures in Sec-
tion 2. The Nvidia Kepler K40 is introduced in Section 3, followed by a discus-
sion on the key challenges and our approaches to overcome them. GPU-Suitor,
along with its four variants, are presented in Section 4. Experimental results and
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analysis are presented in Section 5, followed by a discussion of related work in
Section 6, and our conclusions in Section 7.

2 Parallel Weighted Matching

Matching is a classical topic in combinatorial optimization and has been studied
extensively [12, 19, 15]. While many variants of the problem exist, we focus on
approximate weighted matching for general graphs. In particular, we focus on
the work of Halappanavar et al. on the Locally-Dominant Algorithm [7], and the
work of Manne and Halappanavar on the Suitor Algorithm [13]. Their work itself
was built on the pioneering work of many other researchers in the area, whose
parallel algorithms systematically evolved from efficient serial algorithms. Due
to space restrictions, we only present these two approximation algorithms in this
section. We refer you to the respective papers for details.

2.1 The Locally-Dominant (LD) Algorithm

A half-approx weighted matching can be simply computed by considering the
edges in a non-increasing order of weights, and by adding all edges that do not
violate the matching condition. However, such an approach imposes a serial order
on execution. Therefore, the main idea of the LD Algorithm is to identify and
match locally-dominant edges in parallel. An edge that is heavier than all the
edges incident on its end points is called a locally-dominant edge. Algorithm 1
implements this approach. It takes a graph G = (V,E) as input and returns a
matching M as output. The algorithm starts by making a call to Procedure Pro-
cessVertex(v) for each vertex (Lines 6 and 7). In Procedure ProcessVertex,
for a given vertex, all its neighbors are scanned to find the current heaviest neigh-
bor that has not been matched already. It is important to break ties (duplicate
weight) consistently to prevent deadlocks. For this purpose we use vertex indices,
which are guaranteed to be unique (Line 5). The identity of the heaviest neighbor
for each vertex is then stored in a vector (candidate). After setting the candidate
mate for vertex s, say to vertex t, we check if the candidate mate for t is also set
to s: candidate[candidate[s]] = s (Line 9). If this is true, we have found a locally-
dominant edge es,t. We add this edge to M , and the two vertices s and t to the
queue (Line 12). Some of the vertices might end up not having any candidates
available to match with.

The second part of the execution begins when every vertex has been processed
and matched vertices have been added to the queue QC . In this part, we iterate
until the queue becomes empty (Line 8 in Algorithm 1). Note that at least one
edge (the heaviest edge) would get matched in the first loop, and therefore, QC is
nonempty if M is nonempty. During each iteration of the while loop on Line 8,
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Algorithm 1 Parallel Locally-Dominant Algorithm. Input: graph G = (V,E).
Output: A matchingM represented in vector mate. Data structures: a queue, QC ,
listing vertices for processing in current step, and a queue, QN , listing vertices to
be processed in the next step – both the queues list matched vertices; a vector
candidate of size |V | that contains the id of the current heaviest neighbor of each
vertex.
1: procedure Locally-Dominant(G(V,E), mate)
2: for each v ∈ V in parallel do
3: mate[v] ← ∅
4: candidate[v] ← ∅
5: QC ← ∅;QN ← ∅
6: for each v ∈ V in parallel do
7: ProcessVertex(v,QC)
8: while QC �= ∅ do
9: for each u ∈ QC in parallel do
10: for each v ∈ adj (u) do
11: if candidate[v] = u then
12: ProcessVertex(v,QN )
13: Swap(QC , QN ) � Swap the two queues

Algorithm 2 ProcessVertex
1: procedure ProcessVertex(s, Q)
2: max wt ← −∞
3: max wt id ← ∅
4: for each t ∈ adj (s) do
5: if (mate[t] = ∅) AND (max wt < w(es,t)) then
6: max wt ← w(es,t)
7: max wt id ← t
8: candidate[s] ← max wt id
9: if candidate[candidate[s]] = s then

10: mate[s] ← candidate[s]
11: mate[candidate[s]] ← s
12: Q ← Q ∪ {s, candidate[s]}

we process vertices matched in the previous iterations while adding new vertices
to the queue QN that become eligible as edges get matched. Note that we only
need to process vertices for which the candidate was set to one of the matched
vertices (Line 12). This is achieved by adding the newly matched vertices to
the queue and checking if any of their unmatched neighbors point to them. If so,
those neighbors will have to find new candidates for matching. The algorithm will
terminate when the queue becomes empty. The matching is stored in a vector,
mate.

The running time of Algorithm 1 is given by O(|V | + |E|Δ), where Δ is the



6

maximum degree in G. The worst case happens when a vertex points to all
of its neighbors unsuccessfully, and in order to determine the current heaviest
neighbor it needs to check the entire list. However, the runtime can be improved
to Θ(|V |+ |E|) if the adjacency list for each vertex is provided in a non-increasing
order of edge weights. Under this assumption, the current heaviest neighbor
of a vertex can be computed in constant time. The amount of parallelism is
determined by the number of vertices in QC during each iteration of the while
loop (Line 8). We use the compressed row storage format (CSR) for storing
graphs in memory and therefore benefit from caching effects on adjacency lists
on platforms with cache hierarchies. On the x86 platforms we use an intrinsic
atomic operation sync fetch and add() to add vertices to the tail of the queue.

2.2 The Suitor Algorithm

We now present the Suitor algorithm, the currently best performing half-approx
algorithm for weighted matching [13]. An important distinction of the Suitor
algorithm relative to the Locally-Dominant algorithm is the absence of a central
queue for active vertices that need to be considered for matching in a given
iteration. Elimination of the queue makes the algorithm better suited for parallel
implementation. Further, by paying careful attention to the vertex that is being
processed, the Suitor algorithm proactively avoids unnecessary work. Similar
to the Locally-Dominant algorithm, we again use vertex identities to break ties
consistently. We also use the notion of locally-dominant edges in order to find
candidate edges for matching. The Suitor algorithm is detailed in Algorithm 3.

Parallelism is achieved by distributing the executions of the outer for loop
(Line 6 in Algorithm 3) among the threads. Multiple threads will concurrently
process different vertices, and attempt to find a suitable candidate for each. Since
two variables, mate and ws, are shared among the participating threads, there is
a need for explicit synchronization among the threads. We use OpenMP locks for
synchronization. To prevent conflicts, we define a lock for each vertex (Line 5) and
then require that a thread must acquire a partner’s lock before executing lines
20 through 29, at which point the lock is released. Immediately after acquiring
the lock we test if heaviest > ws[partner] is still true as it is possible that some
other thread might have increased the value of ws[partner] after partner was
determined to be the best match for current. If this is not the case, then current
cannot be the suitor of partner and we must continue the search for next best
candidate (lines 26 to 28). If a given vertex v ends up replacing another vertex w
as the mate, then the thread processing vertex v becomes responsible for finding
a suitable mate for w. This is shown in lines 21 to 23. The algorithm terminates
when all the vertices have been processed. We note that there is no strict order
in which the vertices need to be processed.

The running time of the serial Suitor algorithm isO(Σu∈V |adj(u)|2) = O(|E|Δ)
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Algorithm 3 Parallel Suitor algorithm. Input: graph G = (V,E). Output: A
matching M represented in vector mate. Data structures: a vector ws of size |V |
that stores the weight of the current heaviest neighbor of each vertex.
1: procedure OMP-Suitor(G(V,E), mate)
2: for each u ∈ V in parallel do
3: mate[u] ← NULL
4: ws[u] ← 0
5: omp init lock[u] � Initialize the lock for each vertex
6: for each u ∈ V in parallel do
7: current ← u
8: done ← False
9: while (done = False) do
10: partner ← mate[current]
11: heaviest ← ws[current]
12: next ← ∅
13: for each v ∈ adj(current) do � For all neighbors of current
14: if w(current, v) > heaviest and w(current, v) > ws(v) then
15: partner ← v
16: heaviest ← w(current, v) � Weight of edge (current, v)
17: done ← True
18: if heaviest �= NULL then � True only if there is a candidate to match

with
19: omp set lock[partner] � Lock the partner
20: if heaviest > ws[partner] then
21: if mate[partner] �= NULL then � Check if partner had a

previous offer
22: next ← mate[partner]
23: done ← False
24: mate[partner] ← current
25: ws[partner] ← heaviest
26: else
27: done ← False � The partner already has a better offer
28: next ← u
29: omp unset lock[partner] � Release the lock for partner
30: if done = False then
31: current ← next � Continue the search for next best candidate

as a node u might have to traverse its neighbor list |adj(u)| times to find a new
partner. Note that Δ is the maximum degree in G.
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3 Architecture and Challenges

The NVIDIA Tesla K40, based on the Kepler architecture, is currently the most
powerful single chip GPU board for scientific computing. There exists a dual
chip board, Tesla K80, which trades off some of the peak performance of each
chip to obtain higher combined performance and has better compute-to-shared-
memory and register ratios, but requires multi-gpu programming techniques for
effective utilization. The new GPUs based on the Maxwell architecture are more
power efficient, but they are primarily targeted for single-precision computation
and gaming applications. Their double precision performance is 1

32
of the single

precision performance.

The Tesla K40 features the GK110B GPU with 15 streaming multiprocessors
(SMX). Each SMX integrates 192 single precision units, 64 double precision units
and 32 special function units. Each SMX is equipped with 48 KB of read-only
cache, as well as 64 KB of on-chip storage, configurable in splits of 48/16, 32/32
and 16/48 KB between L1 cache or shared-memory. The shared-memory is a
directly addressable scratchpad memory. K40 also includes 1.5 MB of L2 cache
shared among the 15 SMXes. The board provides 12 GB of GDDR5 memory
with a datarate of 6 GHz, and all accesses to this memory are cached in L2 au-
tomatically. With a core clock of 745 MHz (and turbo clocks up to 875 MHz),
the K40 has a theoretical peak performance of 4.29 TFLOPS (5 with turbo) in
single-precision and 1.43 TFLOPS (1.66 with turbo) in double precision. Its peak
memory bandwidth is 288 GB/s. Applications can reach about 80% of the peak
bandwidth on the Kepler architecture [5]. Thus, in throughput oriented comput-
ing, it is significantly more powerful than current CPUs both for bandwidth- and
compute-bound problems. However, its memory is limited to 12 GB, and even
if K40 employs PCI-E v. 3.0 with bandwidths up to 16 GB/s, transfer rates be-
tween host and GPU memory are still an order-of-magnitude smaller than those
between the GPU and its memory.

The GPU uses the Single Instruction Multiple Thread (SIMT) model, where
threads are issued in warps (groups of 32 threads). A warp executes the same
instruction at the same time for all its threads. Warps are further grouped into
thread-blocks, which are sets of threads scheduled on the same SMX that can
share data through the shared-memory. Finally, thread-blocks are organized in a
grid, which comprises all threads launched in an application kernel. Since this is
an important parameter, we provide results using several values of threads-per-
block in Section 5.3.

3.1 Challenges in parallelization

The main challenges that limit performance on current GPU architectures are:
(i) un-coalesced memory accesses, (ii) thread divergence, and (iii) load imbalance
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among participating threads. The Kepler architecture somewhat mitigates the
performance problems of un-coalesced memory accesses due to a better cache
architecture. Memory accesses from the same warp that use the read-only cache
can obtain maximum memory bandwidth independent of the thread ordering.
Furthermore, shared memory can be used to coalesce other memory accesses.

Threads in the same warp are considered divergent if they take different paths
in a branching statement. Because of their lockstep execution, all threads in a
warp have to wait until threads that have taken different directions completes.
Load imbalance among threads keeps warps executing longer on an SMX, thus
wasting resources if only a handful of threads are still computing.

Therefore, efficient implementations on GPUs should address all of these chal-
lenges in a systematic manner. With reference to the previous implementation
of approximate matching, we address these challenges by implementing the algo-
rithm from the perspective of a warp processing a set of vertices instead of one
thread processing a set of vertices. We will now briefly explain how we address
the challenges in order to build towards the detailed presentation in Section 4.

Un-coalesced accesses in the previous (Locally-Dominant) implementation re-
sulted from a thread-based approach where threads in a warp accessed neigh-
borhoods of different vertices simultaneously, leading to poor locality of memory
accesses and under-utilization of data caches. In our implementation, coalesced
memory accesses are achieved by exploring the neighborhood of a vertex in par-
allel using the threads in a warp.

The performance of the previous implementation was also adversely impacted
by thread divergence resulting from variations in the size of neighborhoods and
vertex-specific decisions. Using the warp-based approach we minimize the im-
pact of thread divergence. In our implementation, thread divergence is caused
by threads in a warp attempting to set the suitor for the vertices that they
are responsible for. For example, the availability of locks associated with the
candidate-vertices that are chosen for a set of vertices in the warp, the branch-
ing of if statements based on the weights, and the replacement of one vertex
by another vertex that needs to be processed further. While thread divergence
is hard to eliminate, we tackle this challenge by exploring several combinations
of vertices-per-warp. As presented in Section 5.3, best performance is observed
with 8 vertices-per-warp. We note here that all the threads in a warp process
the neighborhood of a vertex in tandem. Each vertex in a warp is processed in a
sequential order. This is described in Section 4.

Variations in the sizes of the neighborhood (vertex degree) is a major source
of load imbalance for approximate matching. This issue was not addressed in
the previous implementation. For example, the slowest thread in a warp de-
termined the speed of the warp. However, by using the warp-based approach to
process the neighborhood of a vertex, load imbalance from varying vertex-degrees
is minimized. We further address load imbalance by redistributing work among
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participating warps of a thread block. The impact of this approach is presented
in Section 5.3.

4 Weighted Matching on the GPUs

We now present the GPU implementations of the Suitor Algorithm. We build on
the presentation of Suitor in Section 2. The GPU implementation of the Locally-
Dominant Algorithm is a straight-forward adaptation of the multithreaded
(OpenMP) algorithm, where a single thread processes the entire neighborhood of
a vertex. In contrast, the GPU implementation of the Suitor Algorithm utilizes
all the threads of a warp to processes the neighborhood of a vertex. Consequently,
the vertices themselves are processed in serial on a given warp. In this section, we
only present the GPU implementation of the Suitor Algorithm. We refer to Ha-
lappanavar et al. for details on the GPU implementation of the Locally-Dominant
Algorithm [7].

The GPU implementation of the Suitor Algorithm utilizes the nested parallel
structure of a GPU – where several warps run in parallel, and in turn each warp
consists of parallel threads. Consequently, the fundamental difference between
the OpenMP and GPU implementations arise from this nested structure. As an
illustration, observe that in Algorithm 3 vertices are processed in parallel (Line
6). In contrast, chunks of vertices are assigned to concurrent warps (Line 2) for
parallel execution in Algorithm 4. Each warp processes these vertices in serial
(Line 5), but the neighborhood of a vertex is processed in parallel (Line 6). In
the following discussion, we present intuition and details of the GPU adaptation
of the Suitor Algorithm designed to maximize the nested parallelism of a GPU.

Algorithm 4 GPU-Suitor Algorithm. Input: graph G = (V,E). Output: A
matching M represented in vector mate. Variables: Vi represents a chunk of
vertices based on vertices-per-warp processed on warp i.
1: procedure GPU-Suitor(G(V,E), mate)
2: Determine the number of warps required based on |V |, vertices-per-warp and

threads-per-block
3: while (there are vertices to process) do
4: for each Vi in parallel do � Across warps
5: for each v ∈ Vi do
6: Process adj(v) in parallel � In a warp
7: Determine best candidate for v in parallel

8: Set suitor for each candidate of Vi in parallel

9: Store self or displaced vertices � Within a warp
10: Synchronize across warps; load balance (optional)

We present the overall structure of the GPU-Suitor in Algorithm 4. The
details are provided in the following discussion, where we also present the intuition
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and differences among the four variants of GPU-Suitor. For ease of presentation,
we present the algorithm in two phases: (i) Initial phase, and (ii) Recurrent
phase.

Initial Phase

The algorithm starts by moving vertex indices from global memory of the GPU
to the local (logical) shared-memory of each warp for a given chunk of vertices
assigned to that warp (Line 2). Once a warp has read the indices of the neighbor
lists for all vertices of its chunk into shared memory, it finds the best available
candidate for each vertex v in the chunk consecutively. All the 32 threads in a
warp collectively read the neighbor list of a vertex v (Line 6), and decide the best
candidate using a butterfly reduction on the local best read by each thread in the
warp (Line 7). As a result of this reduction, each thread of the warp discovers
the best candidate and the weight of the corresponding edge. These values are
saved in an intermediate buffer in the global memory or registers. After finding
and storing all the candidates, the entire warp reads the intermediate buffer
containing the stored candidates and corresponding edge weights in a coalesced
manner. Each member thread is responsible for setting one vertex as the suitor
of its corresponding candidate (Line 8). As detailed in Algorithm 3, a thread in a
warp succeeds in setting its vertex as the mate of its candidate vertex if it has a
heavier edge (ties resolved consistently). Similar toOMP-Suitor, locks are used
in determining the current highest offer for a candidate stored in ws[partner].

If a thread fails to set a particular vertex v as the suitor of its best candidate
c, or it succeeds in replacing a previously assigned vertex u, then we consider
those vertices as unsuccessful. The threads of a warp collectively gather all the
unsuccessful vertices in consecutive location of shared memory using parallel pre-
fix sum. This is the same part of the memory that was initially used for storing
vertex indices assigned to that warp.

The number of vertices assigned to a warp plays a critical role in determining
the overall performance. We therefore use different values for vertices-per-warp
and show the impact on performance in Section 5.3.

Recurrent Phase

Once a warp completes processing all the vertices in its chunk, it knows how
many vertices need to be processed next (Line 9). Processing of these vertices
can potentially lead to other vertices becoming eligible for processing in the next
iteration. The warp keeps iterating over the recurrent phase until all of its vertices
either obtain suitors or cannot be matched (no candidates are available). It is
important to note that while each member thread in a warp can try for a different
vertex in parallel, only one thread is allowed to set the suitor of the same vertex
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at the same time. In order to avoid race conditions arising from this, we use
atomic memory operations.

Synchronization and Load Balancing

Synchronization between warps can be avoided in a warp-based implementation,
which can lead to minimization of the idle time of the multiprocessors. However,
this can lead to an imbalanced load distribution among the warps of a block. For
many inputs, we observed that most of the warps finish after a few iterations in
the recurrent phase, while a few warps perform a significant number of iterations.
To examine these effects further, we implemented intra-block load distribution
among participating warps of a thread block. This distribution incurs a cost from
synchronization between the warps of a block, and movement of unsuccessful
vertices from the shared memory (logical) of one warp to the shared memory of
other warp(s). Finding imbalances in load further requires atomic operations and
logarithmic to linear operations to find warps with load deficiencies.

Depending on synchronization and load balancing, we have four variations
of GPU-Suitor as described below. The differences in performance and their
analysis is provided in Section 5.3.

1. NoSync: A thread block is not synchronized at all. Each warp works
independently to match all of its vertices. This approach has both advan-
tages and limitations. While most of the warps complete their work after
a few iterations, only a few warps require tens to hundreds of iterations
to complete. These numbers determine the overall performance of the ker-
nel. Thus, load imbalance among the warps of a thread block has a large
impact on overall performance. For inputs where most of the warps have
approximately the same amount of work, the NoSync approach benefits
immensely from avoiding thread synchronization within the blocks, which
is an expensive operation on the GPU.

2. SyncLB: To alleviate problems arising from load imbalance in NoSync,
this approach redistributes load among warps of a thread block during the
first k iterations of the recurrent phase, which entails synchronization of all
warps and thus of all threads. Here, k is either a predefined number or it
is determined based on the number of vertices that haven’t been the suitor
for other vertices yet. As a result, all warps of a particular thread block
are guaranteed to perform more or less the same work for these iterations.
For subsequent iterations, warps of a block are synchronized in order to
decide on termination of the block without any redistribution of the load.
For our implementation, we allow a 25% deviation from the average load
when redistributing work during the first k iterations.
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3. SyncNoLB: In order to examine the impact of synchronization on execu-
tion time, this implementation synchronizes warps of a particular block in
each iteration, but without balancing the load among them.

4. Hybrid: In preliminary experiments, we noticed that after first few iter-
ations with load distribution, subsequent iterations takes more time with
synchronization and load distribution than without any synchronization or
load balancing. This variant performs load balancing only during the early
phases of the execution.

5 Experimental Results and Analysis

We provide the experimental results and analysis in this section. In particular,
we demonstrate significant speedup of the new algorithm and implementations
relative to the previous best algorithm. We also demonstrate the speedup of
GPU implementations relative to CPU (OpenMP) implementations. We further
provide results on performance differences between different variants of the GPU
implementation. Since we summarize the information in this section, we make the
entire result set available at this website: http://hpc.pnl.gov/people/hala/

suitor.html. The source code is available upon request.

5.1 Hardware Platforms and Dataset

All the experiments are conducted on a server with Intel CPUs and NVIDIA
GPUs. The system integrates two sockets and 64 GB of DDR3-1600 memory.
Each socket is equipped with an hyperthreaded 8-core Intel Xeon E5-2687W
(Sandy Bridge) running at 3.10 GHz (turbo up to 3.8 GHz), thus amounting to
a total of 16 cores and 32 threads. Each core has two L1 caches of 32 KB (for
instructions and data, respectively) and a private 256 KB L2 cache. Cores in
each processor share 20 MB of L3 cache. Each processor has 4 memory channels
and a peak memory bandwidth of 51.2 GB/s. We used GCC 4.9.2 to compile our
OpenMP implementation of the algorithms. We also used GOMP CPU AFFINITY

to request thread pinning in a scatter fashion, and numactl for NUMA-aware
memory allocation. The GPU is a Tesla K40 system, as described in Section 3,
consisting of a GK110B GPU with 15 SMXes (2880 streaming processors) at 745
MHz (turbo up to 875 Mhz) and 12 GB of GDDR5 at 6 GHz. We compiled the
code using CUDA version 7.0.

Dataset: We experimented with a large dataset of 269 instances (matrices)
downloaded from the University of Florida Sparse Matrix Collection [2]. We
downloaded matrices that are symmetric and converted the negative nonzero
values to positive. For matrices without weights, weights were added uniformly
at random between zero and one, and zero-weight edges were discarded. Given a
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matrix A of size m × n, we represent each diagonal entry as a vertex. Each off-
diagonal entry is represented as an edge between the vertices representing the row
and column of that nonzero entry. The nonzero value is set as the weight of that
edge. The diagonal entries are ignored. Thus, the graph representing A has |m|
vertices, and the number of edges match the number of nonzeros with diagonal
entries ignored. In this paper, we present results only for inputs above a million
but less than a billion edges. The number of vertices vary based on the sparsity
structure of the matrices. We summarize the size distribution in Figure 1. We
also experimented with over 300 problems ranging from hundred thousand to a
million edges with similar run time behavior. This large set of inputs represents
a wide variety of applications and sparsity patterns. Accordingly, we see a wide
variation in run time for different algorithms and their variants. For each input,
we run each algorithm at least ten times and capture the minimum time among
these runs.

Figure 1: Summary of the sizes of input problems arranged in a non-increasing
order of the number of edges. The dataset consists of 269 problems ranging from
a million to a billion edges.

5.2 Scaling Comparisons

The two main variants are the Suitor and the Locally-Dominant (LD) algorithms.
We implement each algorithm on CPUs using OpenMP (OMP) and on GPUs
using CUDA. Thus, we have four main variants to compare: GPU-Suitor, OMP-
Suitor, GPU-LD, and OMP-LD. Furthermore, for GPU-Suitor we experiment
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with different numbers of threads-per-block and vertices-per-warp as discussed in
Section 4. For performance comparisons, we only consider the GPU-Suitor runs
with 128 threads-per-block and 8 vertices-per-warp. The impact from variations
in these parameters is presented in Section 5.3. Among the four variants presented
in Section 4, we present results only for the variant NoSync, the variant with
no synchronization and no load balancing. The relative performance of different
variants is presented in Section 5.3.

In order to highlight the superior performance of GPU-Suitor, we first present
the compute time of GPU and OMP versions of the Suitor and LD algorithms in
Figure 2. The run times in milliseconds are presented in log scale on the Y -axis.
The times are ordered based on the times of GPU-Suitor. It can be observed that
GPU-Suitor outperforms the run time of other variants for most of the problem
instances. The OMP run times are for two threads. We present the speedups
relative to Suitor and LD algorithms next. The speedup of GPU-Suitor relative

Figure 2: Run time in milliseconds for the two algorithms on two platforms in
log scale. The problem instances are shown in non-increasing order of the run
times of GPU-Suitor. The OMP times are for two threads.

to GPU-LD and OMP-LD (2 and 16 threads) is presented in Figure 3 on the
left, and to OMP-Suitor (2 and 16 threads) on the right. Each speedup curve
is ordered individually in non-increasing order of speedup. While we observe
positive speedups for GPU-Suitor on a large fraction of the problems against all
other algorithms, the largest gains are against GPU-LD. Relative to GPU-LD,
the speedups are in the range of 1 to 10× for 115 problems; 10 to 100× for about
100 problems; and above 100× for 15 problems. We run each algorithm for each
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input multiple times and pick the minimum time observed among these runs. The
experiments were also performed on multiple platforms and we observed similar
results. With respect to OMP-Suitor, the best known multithreaded algorithm

Figure 3: Speedup of GPU-Suitor relative to GPU-LD and OMP-LD on the left,
and OMP-Suitor on the right. The speedups are ordered individually for each
curve in non-increasing order.

for shared-memory platforms, we observe speedups of up to 20× with two threads
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and up to 5× with 16 threads. The speedups with respect to OMP-LD are much
higher – up to 40× with two threads and up to 16× with 16 threads.

5.3 Relative Performance

We now present the relative performance of the four variants of GPU-Suitor for
different combinations of threads-per-block and vertices-per-warp in this section.
The relative performance of variants is presented in Figure 4 in the form of a
performance profile. Along the Y -axis we present the fraction of input problems,
and along the X-axis we present the relative performance (log2) to the best
variant. For example, we observe that NoSync is the best performing algorithm
for about 90% of the problems. However, for about 10% of the problems, NoSync
can be up to 4× worse relative to the best variant. We observe that whileNoSync
stands out as the best variant, the other three variants are similar in performance.
The cost of synchronization outweighs the benefits of load balancing.

During the execution of the kernel, most of the blocks finish their work in a few
iterations while a few blocks need a significant number of iterations, which in turn
determines the overall kernel execution time. If this behavior can be improved
without necessitating a large synchronization overhead, GPU-Suitor can perform
significantly better.

The second source of difference comes from the variation of threads-per-block
and vertices-per-warp. We again present these results in the form of a perfor-
mance profile captured in Figure 5. We can observe that vertices-per-warp has
a large impact on performance, and the threads-per-block has a relatively minor
impact. The best performance is obtained with 8 threads-per-warp, and the worst
performance is obtained with 256 threads-per-warp, where performance degrada-
tion is as high as 30× relative to the best combination. The performance also
got worse when less than 8 vertices-per-warp were used.

6 Related Work

Graph algorithm in general, and matching algorithms in particular, are studied
extensively. In this section, we present related work that is most relevant to our
work. As discussed in Section 2, our work builds on the on multithreaded approx-
imation matching (Locally-Dominant Algorithm) by Halappanavar et al. [7], and
the Manne and Halappanavar (Suitor Algorithm) [13]. The GPU implementa-
tion of Halappanavar et al. maintained the general algorithmic structure similar
to the implementations on multicore (Intel Xeon) and massively multithreaded
(Cray XMT) architectures. In their implementation, the CPU initiates the kernel
call considering the number of eligible vertices enqueued in a queue data struc-
ture. The actual computation of finding a locally-dominant edge and subsequent
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Figure 4: Performance profile depicting the relative performance obtained by
different variants of GPU-Suitor. Fraction of input problems are plotted on the
Y -axis, and the performance (log2 scale) relative to the best algorithm are plotted
along the X-axis.

matching is done on the GPUs. Matched vertices are concurrently enqueued in a
queue for processing in the next iteration. As reported in [8], the increased per-
formance of atomic operations in Fermi-based GPUs provided significant speed
ups with respect to a previous generation of hardware. In contrast to the work
of Halappanavar et al., we adapt the algorithm of Manne and Halappanavar in
this work, which is superior in performance [13]. Further, we consider different
combinations of vertices-per-warp and threads-per-block for four variants of the
algorithm. The utilization of shared memory is also new in our implementation.

Vasconcelos and Rosenhahn presented GPU adaptation of Bersekas’s auction-
based algorithm in [20]. However, their implementation is adapted for maximum
(unweighted) matching and is limited to bipartite graphs. Fagginger Auer and
Bisseling adapt the work of Vasconcelos and Rosenhahn to general graphs by im-
plicitly finding a bipartite graph based on randomly coloring the eligible vertices
blue or red [6]. While the blue vertices try to match with one of the neighboring
red vertices by bidding, the red vertices select only one bid from the received bids.
There are several limitations to this approach, which is not suitable for weighted
matching. In our experiments, we found that the quality (in terms of the weight)
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Figure 5: Performance profile depicting the relative performance obtained by
different combination of threads-per-block (128, 192, 256) and vertices-per-warp
(8, 16, 32, 64, 128, 256). Fraction of input problems are plotted on the Y -axis, and
the performance (log2 scale) relative to the best algorithm are plotted along the
X-axis.

of the matching computed with this approach was significantly lower relative to
our algorithms. We also note that the algorithm of Auer and Bisseling repeatedly
considers all the vertices and is therefore not (work) efficient, but scales better.
Xu et al. use the algorithm of Auer and Bisseling, along with several other graph
algorithms [21]. We address some of the performance issues raised by them in
our work. In a similar vein, Devici et al. also present adaptation of maximum
matching on GPUs [3].

A recent unpublished work of Cohen et al. is also relevant to our work [1].
Using a hand-shaking approach, Cohen et al. identify locally-dominant edges
similar to the approach used in Halappanavar et al. They further adapt this
algorithm by enabling k-way handshake that builds a subgraph by restricting the
maximum degree of any vertex to k (k top neighbors of a vertex). However, the
performance gain from this extension is not observed in all the inputs. Further,
their implementation is specific to bipartite graphs.

Our work benefited from the work of Hong et al. that introduced the notion
of utilizing the threads of a warp to process the neighborhood of a vertex [9]. As
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discussed in several parts of this paper, we present the benefits of this approach
over the thread-per-vertex approach of Halappanavar et al. Considerable amount
of literature exists on implementations of other graph kernels such as breadth-first
search, single-source shortest-path, graph coloring and betweenness centrality on
modern GPU platforms. We again refer to the work of Xu et al. on this topic. An
important area of relevant work is on multi-GPUs. While we restricted our focus
on a single GPU in this work, we plan to explore multi-GPU implementations in
the near future. We refer the work of Mastrostefano and Bernaschi on distributed
multi-GPU implementations of the breadth-first algorithm [14].

We conclude this section by noting that to the best of our efforts, this is
the first extensive work on implementing the current best approximate matching
algorithm of the current best GPU platform using an exhaustive set of variations
and input problems.

7 Conclusions

Using weighted matching as a case study, we presented different strategies to ex-
ploit GPU architectures such as coaleased memory access, minimizing thread di-
vergence and load balancing. Supported by experimental results we demonstrated
not only excellent scaling on the Nvidia Kepler K-40 platform, but also compet-
itive performance relative to traditional multi-core architectures. We demon-
strated speedups relative to previous best GPU algorithm by 10 to 100× for over
100 instances, and from 100 to 1000× for 15 instances. We also demonstrated
up to 20× speedup relative to 2 threads, and up to 5× relative to 16 threads on
Intel Xeon platform with 16 cores for the same algorithm. We showed the impact
of algorithmic variations such as synchronization and load balancing on perfor-
mance. We also showed the impact of different combinations of threads-per-block
and vertices-per-warp on performance.

We conclude this paper by observing that as power limitations impose severe
restrictions on architecture design, driving future systems toward larger num-
bers of weaker cores, this work on a prototypical irregular application (graph
algorithm) demonstrates promise of better performance on future low-power ar-
chitectures. We believe that the algorithmic ideas presented in this paper that
exploit architectural features will benefit other researchers implementing their
applications on manycore architectures, and that the lessons learned will be ap-
plicable to future generations of architectures and other graph algorithms.
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Community Detection on the GPU
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Abstract

We present and evaluate a new GPU algorithm based on the Louvain method

for community detection. Our algorithm is the first for this problem that par-

allelizes the access to individual edges. In this way we can fine tune the load

balance when processing networks with nodes of highly varying degrees. This

is achieved by scaling the number of threads assigned to each node according to

its degree. Extensive experiments show that we obtain speedups up to a factor

of 270 compared to the sequential algorithm. The algorithm consistently out-

performs other recent shared memory implementations and is only one order of

magnitude slower than the current fastest parallel Louvain method running on a

Blue Gene/Q supercomputer using more than 500K threads.

1 Introduction
Community detection is the problem of classifying nodes in a network into sets such

that those within each set have more in common than what they share with nodes in

other sets. Although there is no standard mathematical definition for what makes up

a community, the modularity metric proposed by Newman and Girvan is often used

[19]. This is a measurement of the density of links within communities as compared to

how connected they would be, on average, in a suitably defined random network. For

an overview of different algorithms and metrics for detecting communities see [10].

The Louvain method [1] is one of the more popular strategies for community detec-

tion. It uses a greedy approach that optimizes modularity by iteratively moving nodes

between communities. Once a sufficiently stable solution is obtained the communities

are agglomerated to form a new network on which the process is repeated. Thus the
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method computes a multilevel clustering hierarchy of the original network and has ap-

plications in several diverse areas such as analyzing social networks [15, 23], mapping

of human brain networks [17, 28], and classification of scientific journals [25].

Although the basic Louvain method is relatively fast, computing on large networks

that can contain billions of nodes still takes significant time or might not be possible

due to memory constraints. Timing issues can also be critical in areas such as dynamic

network analytics where the input data changes continuously [6]. For these reasons

there has been an interest in developing fast parallel versions of the Louvain method.

This has resulted in a wide variety of algorithms suitable for different types of parallel

computers. Common to all such implementations is that they are node centered, mean-

ing that only one computational thread is used to process any node of the network. This

strategy can give rise to uneven load balance if the network contains nodes of highly

varying degrees and if a fine grained partitioning is needed. As this is a common prob-

lem in many parallel algorithms operating on sparse graphs and matrices, it has been

suggested that one should divide the network using a link based partitioning algorithm

[3, 24]. In this way the links adjacent to a node will be split across multiple processing

units. However, such partitioning schemes are themselves costly to run and can also

gives rise to more complex parallel algorithms.

In this paper we present a new highly scalable GPU algorithm based on the Louvain

method. Unlike previous GPU implementations we have parallelized all stages of the

method. Compared to all other parallel algorithms we also parallelize the access to

individual edges. This allows us to obtain an even load balance by scaling the number

of threads assigned to each node depending on its degree. This is done by first putting

the nodes in buckets based on their degree. The number of threads assigned to each

vertex then depends on which bucket it is in. This binning technique is important for

efficient utilization of the compute resources on the GPU. Coordination between the

threads operating on the same node is achieved by assigning each node either to threads

in the same warp or to all the threads in a thread block.

The main contributions of this paper are:

• We present the first truly scalable GPU implementation based on the Louvain

method. This is also the first parallel implementation that parallelizes the access

to individual edges, and thus giving a more fine tuned load balance.

• Extensive experiments show that the algorithm gives a speedup of up to a factor

of 270 compared to the original sequential Louvain method, without sacrificing

solution quality. The algorithm outperforms other recent shared memory imple-

mentations, and is only one order of magnitude slower than what is achieved

with state of the art supercomputers.

The rest of the paper is organized as follows. In Section 2 we give definitions

and describe the sequential Louvain method. Next, in Section 3 we review previous

efforts at designing parallel implementations based on the Louvain method. Section
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4 presents our new GPU algorithm including how memory and thread allocation is

performed. Section 5 contains results from experiments using the new algorithm in-

cluding comparisons with other parallel algorithms. Finally, we conclude in Section 6.

It is assumed that the reader has some knowledge of how GPUs work.

2 The Louvain Method
We model a network using a graph G with vertex set V , edge set E, and a positive

weight we on each e ∈ E. Let C define a partitioning of V into k disjoint communities

c1, c2, . . . , ck. We denote the community that vertex i belongs to by C(i). Let further

ki =
∑

j∈N [i]

w(i,j). Thus ki is the sum of the weights of the edges incident on vertex i

including any self-loops. For c ∈ C let ac =
∑
i∈c

ki and let m =
∑
e∈E

we be the sum of

all edge weights. Finally, let ei→C(i) be the sum of the weights of all edges from vertex

i to other vertices in community C(i), that is ei→C(i) =
∑

j∈C(i)

wi,j .

The modularity of a partitioning C measures how much more densely connected

the nodes within each community are compared to how connected they would be, on

average, in a suitably defined random network. It takes on a value between -1 and 1

and is defined as follows [18].

Q =
1

2m

∑

i∈V
ei→C(i) −

∑

c∈C

(ac)
2

4m2
. (1)

Finding the partitioning that gives the highest modularity is an NP-hard problem [2].

The gain in modularity when a vertex i is moved from its current community C(i)
to another community C(j) is given by

ΔQi→C(j) =
ei→C(j) − ei→C(i)\{i}

m
+ ki

aC(i)\{i} − aC(j)

2m2
. (2)

The Louvain method is a multi-stage algorithm for computing a hierarchical clus-

tering of the vertices in G. Each stage consists of two phases. In the first phase, the

algorithm employs an iterative greedy approach to compute a clustering that optimizes

the modularity as given by Eq. 1. In one iteration each vertex is considered in turn and

moved to the community that will give the largest increase in modularity as given by

Eq. 2. If no positive gain can be obtained the vertex will remain in its current com-

munity. The algorithm continues iterating over the vertices until no further gain can

be obtained or if the gain falls below some predefined threshold. At this point the first

phase ends.

In the second phase the graph is aggregated by merging the vertices of each com-

munity into a single new vertex. If there are multiple edges between vertices in two

communities then these are also merged into one edge between the corresponding new
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vertices. Any edges within a particular community are similarly merged into a self-

loop for the corresponding new vertex. The weight of each new edge is set to the sum

of the weights of the individual edges that were merged into it. The new aggregated

graph is then iteratively given as input to the next stage of the algorithm with every

new vertex being a community by itself. This process of a modularity optimization

phase followed by an aggregation phase continues until there is no further change in

modularity, at which point the algorithm terminates.

When considering what community a vertex i should move to, one needs to evalu-

ate Eq. 2 for every community C(j) for which there exists some vertex j ∈ N(i). The

main challenge in doing this is to compute ei→C(j) for every j ∈ N [i]. This is typically

done by iterating through the neighbors of i and for each neighbor j one accumulates

wi,j in a hash table using C(j) as key. The value of each ac can be computed at the start

of a modularity optimization phase and then updated as vertices move between com-

munities, while the values of m and ki will remain unchanged between contractions of

the graph and thus can be computed at the start of modularity optimization phase.

The aggregation phase follows a similar pattern as the modularity optimization.

The main difference is that vertices within the same community c are now treated as

one unit in that neighbors of any vertex in c are hashed into the same table. In this way

one can compute the accumulated weight of all edges from one community to another.

3 Previous work

There has been several previous efforts to parallelize the Louvain method. The main

common source of parallelism in all of these is to perform computations on multiple

vertices concurrently. The computation of the modularity gain is the most time con-

suming part of the algorithm, thus this is also where there is the most to gain.

To parallelize the modularity optimization phase the vertices are partitioned into

disjoint sets which are then processed concurrently and independently. The different

approaches that have been tried can, broadly speaking, be classified depending on the

number of vertices in each set.

In the coarse grained approach each set consists of multiple vertices that are typ-

ically processed using a sequential modularity optimization algorithm. Only when

this algorithm has run to completion on each set, are the results from the different

sets merged to compute the final input to the aggregation phase. The coarse grained

approach is often used for implementations running on parallel computers with dis-

tributed memory. In the fine grained approach each vertex set consists of a single

vertex. One iteration of the modularity optimization is now performed on each vertex

in parallel. As this is done concurrently, the decision of which community a vertex

should belong to is only based on the previous configuration. Once the community

membership of each vertex has been computed, the information is made available to

the other vertices and the process is repeated. This approach is most commonly used
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for parallel computers with shared memory.

Wickramaarachchi et al. [26] presented a coarse grained algorithms based on MPI

for communication. This algorithm gave speedups between 3 and 6 when using up

to 128 processes. Also using a coarse grained algorithm, Zeng and Yu [27] reported

speedups in the range of 2 to 4 when quadrupling the number of cores. The starting

point for these measurements was set to 256, 512, and 1024 cores depending on the

size of the graph.

Cheong et al. [4] presented a hybrid GPU algorithm that uses a coarse grain model

across multiple GPUs, while the execution on each GPU follows a fine grain model

where only the modularity optimization phase had been parallelized. They obtained

speedups in the range of 1.8 to 5 for single GPU performance and between 3 and 17

when using 4 GPUs. We note that unlike other parallel algorithms this algorithm does

not use hashing for computing the modularity gain, but instead sorts each neighbor list

based on the community ID of each neighboring vertex. Recently Forster presented a

GPU algorithm that uses a fine grained distribution [9]. This algorithm is an adaption

of an OpenMP program similar to that in [16] (see below). Compared to the OpenMP

program running on 8 cores, the paper reports speedups on four relatively small graphs

on up to a factor of 12. There is no information about the quality of the solutions in

terms of modularity.

Staudt and Meyerhenke [21] and Lu et al. [16] both presented fine grained imple-

mentations using OpenMP. The algorithm in [21] gave a maximal speedup of 9 when

using 32 threads, while the speedup obtained in [16] ranged from 1.7 to 16 when using

up to 32 threads. Xinyu et al. [20] presented a fine grained implementation running

on a computer with distributed memory. This obtained speedups up to 64 when us-

ing up to 2K threads on medium sized problems, and a processing rate of up to 1.89

giga TEPS for large graphs when using 1K compute nodes each capable of running 32

threads. Here TEPS is the number of traversed edges per second in the first modularity

phase. On a Blue Gene/Q supercomputer with 8192 nodes and 524,288 threads the

algorithm had a maximum processing rate of 1.54 giga TEPS.

We note some further variations that have been suggested in the fine grained ap-

proach as to which vertices are chosen to participate in each round of the modularity

optimization. In [20] only a predetermined fraction of the vertices that gives the high-

est modularity gain are moved in each iteration. This fraction decreases with each

iteration within a phase. In [16] a graph coloring is used to divide the vertices into

independent subsets. The algorithm then performs one iteration of the modularity

optimization step on the vertices in each color class, with any change in community

structure being committed before considering the vertices in the next color class. The

motivation for this approach is to reduce contention for shared resources in a shared

memory environment. This algorithm also uses further mechanisms to control which

vertices participate in the modularity optimization. To prevent neighboring singleton

vertices from simultaneously moving to each others communities, a vertex i which is a

community by itself, can only move to another vertex j which is also a community by
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itself, if C(j) < C(i). In addition, if a vertex i has several possible communities it can

move to, each one giving maximal modularity gain, then i will move to the community

with the lowest index among these. Since the initial modularity optimization phases

are the most costly ones, it can be advantageous if each of these terminate early so

that the graph can be contracted. To achieve this, the algorithm initially uses a higher

threshold for the net gain in modularity that is required to perform further iterations.

Both the fine grained implementations in [20] and [16] report that the obtained

modularity of their algorithms is on par, or even better, than that of the sequential algo-

rithm. However, for both of these algorithms the results depend critically on employing

the aforementioned restrictions as to which vertices will participate in each iteration of

the modularity optimization. For the coarse grained implementations the multi-GPU

implementation in [4] reports a loss of up to 9% in modularity, while [27] and [26]

reports results on par with the sequential algorithm.

4 The GPU algorithm

In the following we describe our fine grained GPU implementation based on the Lou-

vain method. The main difference compared to previous parallel implementations is

that we also parallelize the hashing of individual edges both in the modularity opti-

mization and also in the aggregation phase. In order to obtain an even load balance we

let the number of threads assigned to a vertex scale with its degree. In the modularity

optimization phase this is achieved by partitioning the vertices into subsets depending

on their degrees. These sets are then processed in turn by computing and updating the

destination community of each vertex in parallel. For each set we use a different num-

ber of threads per vertex. We expand further on memory usage and thread assignment

following the presentation of the algorithm.

All computations are run on the GPU and only when a global synchronization is

needed is the control returned to the host before calling the next kernel. At the start of

the algorithm the graph G = (V,E) is stored in the global memory on the GPU using

neighbor lists.

We denote the weight of an edge (i, j) by w[i, j] and use a global table C such that

for each vertex i the value C[i] gives the ID of the current community that i belongs

to. At the start of each modularity optimization phase C[i] = i. Thus every vertex is a

community by itself.

The algorithm is lock free, and only uses atomic operations and compare-and-swap

(CAS) operations when access to memory location must be sequentialized. In addition,

we use optimized routines from the Nvidia’s Thrust library for collective operations

such as computing prefix sums and for partitioning the vertices according to some

criteria.

Although not explicitly outlined in the pseudo code, we use some of the ideas in

[16] to control the movements of vertices in the modularity optimization phase. In
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particular we only allow a vertex i that is a community by itself to move to another

vertex j that is also a community by itself if C[j] < C[i]. A vertex always moves

to the community with lowest index when there is more than one move that gives a

maximal modularity gain. We also employ the idea of using a higher threshold for the

modularity gain in the initial rounds.

The main algorithm follows the same outline as the sequential one with a loop that

iterates over a modularity optimization phase followed by a graph aggregation phase.

This is repeated until the increase in modularity gain from one iteration to the next is

below some predefined threshold.

The modularity optimization phase is shown in Algorithm 1. Initially the algorithm

computes the values of m and in parallel for each i ∈ V the value of ki (line 2). Note

that initially aC(i) = ki as each vertex starts out as a community by itself. These values

are needed in subsequent evaluations of Eq. (2). The outermost loop then iterates over

the vertices until the accumulated change in modularity during the iteration falls below

a given threshold (lines 3 through 12). For each iteration the vertices are divided into

buckets depending on their degrees. The variable numDBuckets holds the number of

buckets, while the kth bucket contains vertices of degree ranging from bucDSize[k −
1] up to bucDSize[k]. To extract the vertices within a certain degree range we use

the Thrust method partition(). This reorders the elements of an array so that those

elements satisfying the given boolean condition can easily be extracted to an array

vSet (line 5). Here V contains the vertices, while the function deg(i) gives the degree

of vertex i. The selected vertices are then passed in parallel to the computeMove()
method that determines to which community each one should belong (line 7). These

values are returned in the newComm array. Once the computations for a bucket are

completed the community IDs of the associated vertices are updated accordingly (line

9) before ac is recalculated for each community (line 11).

Algorithm 1 Modularity Optimization

1: procedure MODOPT

2: Compute m and for each i ∈ V in parallel: ki;
3: repeat
4: for k = 1 to numDBuckets do
5: vSet = partition(V, bucDSize[k − 1] < deg(i) ≤ bucDSize[k]);
6: for each i ∈ vSet in parallel do
7: computeMove(i);
8: for each i ∈ vSet in parallel do
9: C[i] = newComm[i];

10: for each c ∈ C in parallel do
11: Compute ac;
12: until modularity gain <threshold

The computeMove() method is given in Algorithm 2. This method takes one
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vertex i as argument and computes the community that gives the highest increase in

modularity according to Eq. (2) if i was to join it. The computation is carried out by

first storing a running sum of the weights from i to each neighboring community c
(i.e. ei→c) in a hash table hashWeight. These values are then used in the computation

of Eq. (2) to select which community i should belong to. In addition to the weight, the

algorithm also stores the associated ID of each incident community in a separate hash

table hashComm using the same position as is used for indexing hashWeight. We

use open addressing and double hashing [5] for computing each new index in the hash

tables (line 5) . The search of the hash table runs until either the ID of the sought after

community is discovered (line 6) or until an empty slot is found (line 8). The size of

the hash tables for i is drawn from a list of precomputed prime numbers as the smallest

value larger than 1.5 times the degree of i.

As the neighbors of i are considered in parallel, care must be taken when updating

the hash tables. If the community of a neighbor of i has already been entered into the

hash table then it is sufficient to atomically update the running weight (line 7). This

is done using an atomicAdd() operation that takes the position to be updated and the

value to be added as arguments. However, if an empty slot is found during the search of

the hash table then the community has not been entered into the hash table previously.

One must then claim the current position in the hashComm table for this community.

This is done by writing the ID of the community in this position of hashComm. To

avoid race conditions for empty slots, we do this using a CAS operation that tries to

replace a null value in hashComm with the new community ID (line 9). Only if

this operation is successful will the thread add the edge weight to the corresponding

position in the hashWeight table (line 10), otherwise some other thread claimed this

position first. If another thread did this and entered the sought after community ID,

then the current thread can still add its weight to the hash table (line 12). Otherwise it

will continue searching the hashComm table from the current position.

While processing the neighbors of vertex i, all terms in Eq. (2) are known in ad-

vance except for
ei→C(j)

m
and − ei→C(i)\{i}

m
. But since − ei→C(i)\{i}

m
is identical in each

evaluation of Eq. (2) this does not influence which community i will join. Thus for

each update of the hash table with an edge (i, j), a thread can locally keep track of the

best community it has encountered so far by evaluating the sum of the second term of

Eq. (2) and the current value of
ei→C(j)

m
. Once all neighbors of i has been processed, the

algorithm performs a parallel reduction of these values to determine the best commu-

nity for i (line 14). If this gives a positive modularity gain then the new community ID

is stored in the newComm table, otherwise this value is set to the existing community

of i.

The aggregation phase is shown in Algorithm 3. The actions in this algorithm can

be subdivided into four different tasks: (i) Determine the size of each community. (ii)
Compute a mapping from existing non-empty communities to a consecutive numbering

of the new vertices. (iii) Set up a data structure for the new graph. (iv) Determine the

new edges and their weights.
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Algorithm 2 Compute next move

1: procedure COMPUTEMOVE(i)
2: for each j ∈ N [i] in parallel do
3: it = 0;
4: repeat
5: curPos = hash(C[j], it++);
6: if hashComm[curPos] == C[j] then
7: atomicAdd(hashWeight[curPos], w[i, j]);
8: else if hashComm[curPos] == null then
9: if CAS(hashComm[curPos], null, C[i]) then

10: atomicAdd(hashWeight[curPos], w[i, j]));
11: else if hashComm[curPos] == C[j] then
12: atomicAdd(hashWeight[curPos], w[i, j]);
13: until hashComm[curPos] == C[j]
14: pos = argmaxcurPos{Eq. (2)

using hashWeight[curPos] as input};

15: if Eq. (2) using hashWeight[pos] > 0 then
16: newComm[i] = hashComm[pos];
17: else
18: newComm[i] = C[i];

In the following we describe how we solve each of these tasks. (i) To compute the

size of each community we start by initializing a counter comSize to zero for each

community (line 2). The algorithm then iterates through the vertices in parallel and

for each vertex i it atomically increases the size of the community that i currently

belongs to by one (line 5). The number of vertices in the new graph will then be equal

to the number of non-empty communities in the original graph. (ii) The values in

comSize can then be used to compute a consecutive numbering, starting from zero,

of the vertices in the contracted graph. This is done by first setting a variable newID
for each community to either zero or one, depending on if the community is empty or

not (line 8). An ensuing parallel prefix sum on this value gives a consecutive mapping

between each non-empty community and the corresponding new vertex (line 12). (iii)
In order to set up storage for the edges of the new graph one needs a bound on the

size of each edge list. It is possible to calculate this number exactly, but this would

have required additional time and memory. We therefore chose to use the sum of

the individual vertex degrees of the vertices in each community as an upper bound.

This value is computed in parallel and stored in the table comDegree (line 6). We

copy this table value to edgePos on which we perform a parallel prefix sum to get

a pointer to where the edges of each vertex should be stored in a new edge list (line

14). (iv) Before computing the edge set of the new graph it is convenient to order

the vertices in the original graph according to which community they currently belong
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to. In this way the computation of the neighborhood of each new vertex can more

easily be assigned to one thread block or one warp. This is explained further in Section

4.1. By performing a parallel prefix sum on the size values of each community in a

separate table vertexStart we get a pointer to where the vertices of each community

should be stored (line 16). We then process all vertices in parallel (line 17) and for

each vertex we fetch and increase the pointer of its community using an atomic add

before storing the vertex in the table com. Following this we can start the computation

of the edge set of the contracted graph. Similarly to what was done in the modularity

optimization, we partition the communities based on the expected amount of work to

process each one. To estimate the work we use the already computed upper bound on

the size of the neighborhood of each community stored in comDegree. The variable

numCBuckets holds the number of different buckets, while the table bucCSize gives

the bounds specifying in which bucket each community should be stored (line 20). The

buckets are processed in turn, and for each bucket the communities in it are processed

in parallel using the mergeCommunity() method (line 23).

Once the edge lists have been computed for all communities in a bucket, these lists

are compressed to fill consecutive slots in global memory. This entails a parallel prefix

sum on the actual size of each edge list before the edges are moved in place. This code

is not shown in Algorithm 3.

The mergeCommunity method is similar to computeMove and therefore not

shown separately. The method starts by hashing vertices into a table similarly as is

done in the for loop in line 2 of computMove. The main difference is that

mergeCommunity hashes the neighbors of all vertices in a community c and not

just those of one vertex. When this is done, the entries in the hash table contains the

set of edges and associated weights that will be incident on the new vertex replacing

c. The method then moves these edges from the hash table to the compressed edge list

that will be used for the new graph. While doing so it replaces the ID of each neigh-

boring community nc with the new ID of the vertex that will replace nc (as stored in

newID in Algorithm 3). To do the movement of edges efficiently, each threads marks

and counts the edges it processed that gave rise to a new entry in the hash table. By

performing a prefix sum across all threads on the number of such entries, each thread

can look up where in the compressed edge lists it should store the edges it initialized in

the hash table. With this knowledge, the movement of edges from the hash table to the

global edge lists can be performed in parallel without updating any shared variables.

4.1 Thread and memory allocation

In the following we describe how we allocate tasks to threads and also how memory

management is carried out. Due to the relatively complex structure of a GPU these

issues are important when it comes to achieving high performance.

The input graph is initially transferred to the device memory. All processing is then

carried out on the device. Control is only returned to the host for calling new kernels
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Algorithm 3 Aggregation phase

1: procedure CONTRACT

2: comSize[1 : n] = 0;
3: commDegree[1 : n] = 0;
4: for i ∈ V in parallel do
5: atomicAdd(comSize[c[i]], 1);
6: atomicAdd(comDegree[c[i]], degree[i]);
7: for each community c in parallel do
8: if comSize[c] == 0 then
9: newID[c] = 0;

10: else
11: newID[c] = 1;
12: prefixSum(newID);
13: edgePos = comDegree;
14: prefixSum(edgePos);
15: vertexStart = comSize;
16: prefixSum(vertexStart);
17: for i ∈ V in parallel do
18: res = atomicAdd(vertexStart[c[i]], 1);
19: com[res] = i;
20: for k = 1 to numCBuckets do
21: comSet = partition(V, bucCSize[k−1] < comDegree[i] ≤ bucCSize[k]);
22: for each c ∈ comSet in parallel do
23: mergeCommunity(c);
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and Thrust library routines. Graphs are stored using compressed neighbor lists. Thus

the structure of a graph G(V,E) is represented using two arrays vertices and edges
of size |V |+ 1 and 2|E| respectively. The neighbors of vertex i are stored in positions

vertices[i] up to position vertices[i + 1]. In addition there is an array weights also

of length 2|E| containing the weight of the corresponding edge in edges. These arrays

are always stored in global memory due to their size. During the execution of the

algorithm the threads use shared memory as far as possible due to speed, but for some

computations where there is a large memory requirement, the global memory is used.

Also, reading of data from memory is as far as possible done in a coalesced fashion.

This is particularly true when reading the neighbor lists of vertices. Due to lack of

memory the program only outputs the final modularity, and does not save intermediate

clustering information.

The algorithm is centered around the processing of a vertex or a set of vertices.

This has implications for how we assign tasks to threads. Since it is not possible

to synchronize a subset of thread blocks or a subset of warps within a thread block,

we either use a full thread block or a fraction of one physical warp as our unit when

assigning tasks to threads. When assigning a task to a fraction of a warp we divide

each physical warp into equal sized thread groups containing 2k threads each, where

k ∈ [2, 3, 4, 5]. Throughout the computation we use four physical warps of 32 threads

each per thread block.

In the modularity optimization phase the main task is to compute to which com-

munity each vertex should belong using the computeMove method, while in the ag-

gregation phase the main task is to compute the neighborhood of each community and

the structure of the ensuing new graph using the mergeCommunity method. Thus the

execution of each of these routines is never subdivided across multiple thread blocks.

Instead each such call is assigned either to a thread block or to a group of threads be-

longing to the same warp. As shown in algorithms 1 and 3 this is done in batches to

allow the number of threads allocated to each task to scale with the expected amount

of work.

In computeMove we divide the vertices into seven different groups that are pro-

cessed one after another. The first six groups contain all vertices with degrees in

the range [1, 4], [5, 8], [9, 16], [17, 32], [33, 84], and [85, 319] respectively, while the last

group contains all vertices with degree higher than 319. For groups k = 1 through 4
we assign 2k+1 threads to each vertex. All threads assigned to the same vertex will then

belong to the same warp. Together with each vertex we also allocate sufficient space

for the hash tables in shared memory. In this way each thread is assigned at most one

edge which it has to store in the hash table according to the community membership

of the neighboring vertex. A vertex in group five is allocated to all the threads of one

warp and with hash table in shared memory, but now each thread has the responsibility

for hashing between one and three edges. These are distributed to the threads in an

interleaved fashion. For each vertex in group six and seven we assign all the threads

(128) of one thread block. The difference between the groups is that in group six the
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hash table is stored in shared memory while for vertices in group seven the hash table

is stored in global memory. Another difference is that for group seven we might need

to assign multiple vertices to each thread block since the size of the global memory is

fixed. These will then be processed sequentially, while reusing the same memory lo-

cation. To ensure a good load balance between the thread blocks, the vertices in group

seven are initially sorted by degree before the vertices are assigned to thread blocks in

an interleaved fashion.

The allocation of threads to tasks in the aggregation phase is carried out in a similar

way as in the modularity optimization phase. But as communities tend to have larger

neighborhoods than their individual vertex members, we only subdivide the communi-

ties into three different groups depending on if the sum of the degrees of its members

are in the range [1, 127], [128, 479], or larger than 479. Each community in the first

group is handled by one warp, while communities in the second group are assigned

to one thread block, both using shared memory to store the hash table. Finally, the

last group is also assigned to one thread block but now storing the hash table in global

memory. Similarly as in the modularity optimization, we assign multiple threads to

each community. Note that each thread is only assigned to one community in the two

first groups, while each thread might participate in processing several communities in

the final group. When processing the vertices of one community, all threads participate

in the processing of each vertex. Thus vertices within each community are processed

sequentially.

5 Experiments

In the following we describe experiments performed to evaluate our implementation

based on the Louvain method as described in the previous section. The algorithm

was implemented using CUDA C++ and was run on a Tesla K40m GPU with 12 GB

of memory, 2880 cores running at 745 MHz, and with CUDA compute capability

3.5. For all sequential experiments we used the original code from [1] running on

a 3.30 GHz Intel Xeon i5-6600 processor with 16 Gbytes of memory. For the OpenMP

comparisons we used a computer equipped with two Intel Xeon Processor E5-2680

processors. Each processor has 10 cores and can run 20 threads using hyper-threading

for a total of 40 threads.

For the experiments we picked 44 graphs from the Florida sparse matrix collec-

tion [7] chosen as a representative set among graphs for which the sequential Louvain

method required at least 10 seconds to execute, and which gave a relative high mod-

ularity. In addition we included 6 graphs from the Snap collection [13] and 5 graphs

from the Koblenz collection [12]. Finally, the graph coPapersDBLP was included as it

is frequently used in other studies. The first four columns of Table 1 lists the names,

number of vertices, number of edges, and sequential running time in seconds respec-

tively of the chosen graphs. The graphs are ordered by decreasing average vertex
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degree.

Our first set of experiments was performed to test the effect of changing the thresh-

old value used in Algorithm 1 for determining when an iteration of the modularity

optimization should end. As explained in Section 4 we use a larger threshold value

tbin when the graph size is above a predetermined limit and a smaller one tfinal when

it is below this limit. Similar to what was done in [16] this limit was set to 100, 000
vertices. We ran the algorithm with all combinations of threshold values (tbin, tfinal)
on the form (10k, 10l) where k varied from -1 to -4 and l from -3 to -7.

Figure 1 shows the average modularity over all graphs for each pair of values for

thfinal and thbin compared to the modularity given by the sequential algorithm. As

can be seen from the figure the relative modularity of the GPU algorithm decreases

when the thresholds increases. Still, the average modularity of the GPU algorithm is

never more than 2% lower than that given by the sequential algorithm. In Figure 2 we

show the relative speedup compared to the best speedup that was obtained when the

threshold values were varied. These numbers were obtained by first computing the best

speedup for each graph across all possible threshold configurations. For each threshold

configuration we then computed the relative distance from the best speedup for each

graph. Finally, we plot the average of these numbers for each threshold configuration.

It is clear from Figure 2 that the speedup is critically dependent on the value of

thbin, with higher values giving better speedup. However, this must be compared to

the corresponding decrease in modularity. Based on these observations we chose to

use a value of 10−6 for thfinal and 10−2 for thbin. With these choices we still have an

average modularity of over 99% compared to the sequential algorithm and an average

speedup of about 63% compared to the best one. The fifth column of Table 1 shows the

running time of the GPU algorithm using these parameters. The speedup of the GPU

algorithm relative to the sequential one is plotted in Figure 3. The speedup ranges from

approximately 2.7 up to 312 with an average of 41.7. However, these results depend on

using a higher value for thbin in the GPU algorithm. This value can also be used in the

sequential algorithm. In Figure 4 we show the speedup when the sequential algorithm

has been modified in this way.

The effect of doing this is that the running time of the sequential algorithm de-

creases significantly giving an average speedup of 7.3 compared to the original one.

The average modularity of the final solution only drops by a factor of 0.13% compared

to that of the original algorithm. The obtained speedup of the GPU algorithm is now

in the range from just over 1 up to 27 with an average of 6.7.

Next, we consider how the time is spent in the GPU algorithm. In figures 5 and 6

we show the breakdown of the running time over the different stages for the road usa

and nlpkkt200 graphs respectively. For each stage the time is further divided into the

time spent in the modularity optimization phase and in the aggregation phase.

Figure 5 gives the typical behaviour we experienced, with the first stage being the

most time consuming followed by a tail of less expensive stages. On a few graphs

this tail could go on up to a few hundred stages. On average the algorithm spends
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Graph #V #E Time Time
sequential GPU

out.actor-collaboration 382,220 33,115,812 6.81 2.53

hollywood-2009 1,139,905 56,375,711 17.49 4.69

audikw 1 943,695 38,354,076 42.42 1.90

dielFilterV3real 1,102,824 44,101,598 21.99 1.54

F1 343,791 13,246,661 9.81 0.75

com-orkut 3,072,627 117,185,083 197.98 16.83

Flan 1565 1,564,794 57,920,625 115.55 3.39

inline 1 503,712 18,156,315 9.07 1.29

bone010 986,703 35,339,811 58.14 0.94

boneS10 914,898 27,276,762 24.48 0.97

Long Coup dt6 1,470,152 42,809,420 41.51 1.40

Cube Coup dt0 2,164,760 62,520,692 68.84 2.70

Cube Coup dt6 2,164,760 62,520,692 67.35 2.69

coPapersDBLP 540,486 15,245,729 3.33 0.73

Serena 1,391,349 31,570,176 38.15 0.76

Emilia 923 923,136 20,041,035 22.39 0.57

Si87H76 240,369 5,210,631 2.60 0.77

Geo 1438 1,437,960 30,859,365 40.94 1.09

dielFilterV2real 1,157,456 23,690,748 39.60 0.62

Hook 1498 1,498,023 29,709,711 36.49 0.71

soc-pokec-relationships 1,632,803 30,622,562 36.61 4.52

gsm 106857 589,446 10,584,739 8.48 0.34

uk-2002 18,520,486 292,243,663 385.34 8.21

soc-LiveJournal1 4,847,571 68,475,391 117.61 8.15

nlpkkt200 16,240,000 215,992,816 327.42 26.11

nlpkkt160 8,345,600 110,586,256 168.56 11.54

nlpkkt120 3,542,400 46,651,696 78.08 3.97

bone010 M 986,703 11,451,036 63.50 0.52

cnr-2000 325,557 3,128,710 2.27 0.26

boneS10 M 914,898 8,787,288 27.42 0.52

out.flickr-links 1,715,256 15,551,249 9.25 2.64

channel-500x100x100-b050 4,802,000 42,681,372 934.17 6.67

com-lj 4,036,538 34,681,189 78.09 5.25

packing-500x100x100-b050 2,145,852 17,488,243 360.42 1.19

rgg n 2 24 s0 16,777,216 132,557,200 132.87 4.95

offshore 259,789 1,991,442 13.14 0.15

rgg n 2 23 s0 8,388,608 63,501,393 60.44 2.42

rgg n 2 22 s0 4,194,304 30,359,198 30.48 1.20

StocF-1465 1,465,137 9,770,126 177.86 0.57

out.flixster 2,523,387 7,918,801 16.90 2.11

delaunay n24 16,777,216 50,331,601 95.60 1.60

out.youtube-u-growth 3,223,585 9,375,369 18.46 2.62

com-youtube 1,157,828 2,987,624 4.58 1.00

com-dblp 425,957 1,049,866 2.40 0.22

com-amazon 548,552 925,872 2.53 0.26

hugetrace-00020 16,002,413 23,998,813 101.84 1.43

hugebubbles-00020 21,198,119 31,790,179 126.79 2.01

hugebubbles-00010 19,458,087 29,179,764 116.90 1.87

hugebubbles-00000 18,318,143 27,470,081 115.88 1.60

road usa 23,947,347 28,854,312 132.38 1.93

germany osm 11,548,845 12,369,181 42.48 1.64

asia osm 11,950,757 12,711,603 42.86 7.22

europe osm 50,912,018 54,054,660 197.07 22.21

italy osm 6,686,493 7,013,978 24.33 4.82

out.livejournal-links 5,204,175 2,516,088 25.33 1.39

Table 1: Graphs used for the experiments
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Figure 1: Relative modularity for different threshold values

about 70% of the total time in the optimization phase and 30% in the aggregation

phase. Thus the algorithm is spending most of the time in the optimization phase even

though this part has been more carefully tuned to utilize GPU resources compared to

the aggregation phase. It follows that further fine tuning of the load balance in the

aggregation phase would most likely only give a limited effect.

The behaviour shown in Figure 6 occurred only in the channel-500 graph and the

three nlpkkt graphs. For all of these graphs we observed that in the first few stages

the graph size did not decrease significantly. We then get a time consuming modular-

ity optimization phase where the largest remaining community is up to two orders of

magnitude larger than what was seen in the previous stages. Following this stage the

size of the graph decreases considerably. We note that this effect happens while we are

still using the tbin threshold value. We suspect that this effect might occur on graphs

that lack a natural initial community structure.
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Figure 2: Relative speedup for different threshold values

In shared memory implementations such as those in [16] and [21] a thread is re-

sponsible for determining the next community for several vertices in the modularity

optimization phase. Once a new community has been computed for a vertex, it is im-

mediately moved to it. In this way each thread has knowledge about the progress of

other threads through the shared memory. At the other end of the scale, a pure fine

grained implementation would compute the next community of each vertex only based

on the previous configuration and then move all vertices simultaneously. Our algorithm

operates somewhere in between these two models by updating the global community

information following the processing of the vertices in each bin. A natural question

is then how the algorithm is affected by this strategy. To test this we ran experiments

where we only updated the community information of each vertex at the end of each it-

eration in the optimization phase. We label this as the “relaxed” approach. The results

showed that the average difference in modularity was less than 0.13% between the two

strategies. However, the running time would in some cases increase by as much as a
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Figure 3: Speedup of the GPU algorithm compared to the sequential algorithm

factor of ten when using the relaxed strategy. This was typically due to the optimiza-

tion phase immediately following the switch from tbin to tfinal. One other observed

difference was that the number of phases was in some instances significantly smaller

with the relaxed strategy, although this did not result in a clear trend in how the running

time was affected. In several cases the reduced number of iterations would be offset

by the algorithm spending more time in each iteration.

To see how our algorithm compares to other parallel implementations we have

compared our results with those of the parallel Louvain method (PLM) by Staudt and

Meyerhenke [21] using 32 threads. Our test sets contains four common graphs, coPa-

perDBLP, soc-LiveJournal1, europe osm, and uk-2002. On these graphs the average
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Figure 4: Speedup compared to the adaptive sequential algorithm

modularity of the methods differed by less than 0.2%. The running time of coPaperD-

BLP in [21] was less than one second, while the other graphs all required more than 10

seconds each. On the three largest graphs our algorithm gave speedups ranging from a

factor of 1.3 to 4.6 with an average of 2.7 compared to [21].

We have also compared our results with the OpenMP code from [16]. Out of our

test set in Table 1 we were able to run 30 graphs on the computer equipped with two

Intel Xeon E5-2680 processors using 20 threads. For these tests we used NUMA aware

thread allocation and ”scatter mode” for thread pinning. Figure 7 gives the relative per-

formance of our GPU implementation compared to the OpenMP code on these graphs.
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Our GPU implementation gave a speedup ranging from 1.1 to 27.0 with an average of

6.1. Note that both algorithms are using the same threshold values (10−2, 10−6) in the

modularity optimization phase.

To investigate what is causing this speedup, we have measured how much time both

algorithms are spending on the initial processing of each vertex in the first iteration of

the modularity optimization. In this part both algorithms are hashing exactly 2|E|
edges. The results show that the GPU code is on average 9 times faster than the code

from [16]. There are several possible explanations for this. The OpenMP code uses

locks in the preprocessing and the contraction phase, while the GPU code uses CAS

and atomic operations. Moreover, the GPU code is doing most of the hashing in shared

memory which is as fast as L1 cache. We also believe that the code from [16] could

execute faster if it employed better storage strategies for the hashing.

The GPU code has been profiled to see how it is utilizing the hardware resources

and how much parallelism is available. On UK-2002, on average 62.5% of the threads
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in a warp are active whenever the warp is selected for execution. The four schedulers

of each streaming multiprocessor has on average 3.4 eligible warps per cycle to choose

from for execution. Thus, despite the divergence introduced by varying vertex degrees

and memory latency, this indicate that we achieve sufficient parallelism to keep the

device occupied.

Finally, we note that the implementation in [20] reported a maximum processing

rate of 1.54 giga TEPS in the first modularity optimization phase when using a Blue

Gene/Q supercomputer with 8192 nodes and 524,288 threads. Our largest TEPS rate

was 0.225 giga TEPS obtained for the channel-500 graph. Thus the implementation

on the Blue Gene/Q gave less than a factor of 7 higher TEPS rate than our one using a

single GPU.
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Figure 7: Speedup of the GPU implementation compared to [16]

6 Conclusion

We have developed and implemented the first truly scalable GPU version based on the

Louvain method. This is also the first implementation that parallelizes and load bal-

ances the access to individual edges. In this way our implementation can efficiently

handle nodes of highly varying degrees. Through a number of experiments we have

shown that it obtains solutions with modularity on par with the sequential algorithm.

In terms of performance it consistently outperforms other shared memory implemen-

tations and also compares favourably to a parallel Louvain method running on a super-

computer, especially when comparing the cost of the machines.

The algorithm achieved an even load balance by scaling the number of threads as-
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signed to each vertex depending on its degree. We note that similar techniques have

been used to load balance GPU algorithms for graph coloring [8] and for basic sparse

linear algebra routines [14]. We believe that employing such techniques can have a

broad impact on making GPUs more relevant for sparse graph and matrix computa-

tions, including other community detection algorithms.

We note that the size of the current GPU memory can restrict the problems that

can be solved. Although the memory size of GPUs is expected to increase over time,

this could be mitigated by the use of unified virtual addressing (UVA) to acquire mem-

ory that can be shared between multiple processing units. However, accessing such

memory is expected to be slower than on-card memory. We believe that our algorithm

can also be used as a building block in a distributed memory implementation of the

Louvain method using multi-GPUs. This type of hardware is fairly common in large

scale computers. Currently more than 58% of the 500 most powerful computers in the

world have some kind of GPU co-processors from NVIDIA [22].

Using adaptive threshold values in the modularity optimization phase had a signif-

icant effect on the running time of both the sequential and our parallel algorithm. This

idea could have been expanded further to include even more threshold values for vary-

ing sizes of graphs. It would also have been possible to fine tune the implementation of

the aggregation phase to further speed up the processing. However, as this is currently

not the most time consuming part, the effect of doing this would most likely have been

limited.

Finally, we note that coarse grained approaches seem to consistently produce solu-

tions of high modularity even when using an initial random vertex partitioning. This

could be an indication that the tested graphs do not have a clearly defined community

structure or that the algorithm fails to identify communities smaller than a network

dependent parameter [11].
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On Stable Marriages and Greedy Matchings

Fredrik Manne∗, Md. Naim∗, H̊akon Lerring∗,
and Mahantesh Halappanavar†

Research on stable marriage problems has a long and mathematically rigorous
history, while that of exploiting greedy matchings in combinatorial scientific
computing is a younger and less developed research field. We consider the
relationships between these two areas. In particular we show that several
problems related to computing greedy matchings can be formulated as stable
marriage problems and as a consequence several recently proposed algorithms for
computing greedy matchings are in fact special cases of well known algorithms
for the stable marriage problem.

However, in terms of implementations and practical scalable solutions on
modern hardware, work on computing greedy matchings has made considerable
progress. We show that due to this strong relationship many of these results are
also applicable for solving stable marriage problems. This is further demonstrated
by designing and testing efficient multicore as well as GPU algorithms for the
stable marriage problem.

1 Introduction

In 1962 Gale and Shapley formally defined the stable marriage problem and
gave their classical algorithm for its solution [5]. Since then this field has grown
tremendously with numerous applications both in mathematics and in economics.
For a recent overview see the book by Manlowe [17]. Graph matching is a related
area where the object is also to find pairs of entities satisfying various optimality
criteria. These problems find a large number of applications. For an overview
motivated from combinatorial scientific computing see [22].

While research on stable marriage problems has mainly focused on theory and
mathematical rigor, work on graph matching in scientific applications has a larger
practical component concerned with implementing and testing code on various
computer architectures with the intent of developing fast scalable algorithms.

In this paper we investigate the connection between one type of matching
problems, namely those of computing greedy weighted matchings, and algorithms
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for solving stable marriage problems. Although there exist exact algorithms for
solving various weighted matching problems these tend to have running times
that typically involve the product of the number of vertices and the number
of edges. As large graph instances can contain tens of millions of vertices and
billions of edges it is clear that such algorithms can easily become infeasible.
For this reason there has been a strong interest in developing fast approximation
algorithms and also in parallelizing these, see [19] and the references therein.
Although such algorithms typically only guarantee an approximation factor of
0.5 compared to the optimal one, practical experiments have shown that they
are very often only within a few percent from optimal. One such algorithm is
the classical greedy algorithm applied to an edge weighted graph. Here edges are
considered by decreasing weight and an edge is included in the matching if it is
not adjacent to an already included edge.

The main contributions of this paper are as follows. Initially we consider
implementation issues when designing efficient algorithms for the stable marriage
problem. Next, we show that several recently published algorithms for computing
greedy matchings are in fact special cases of classical algorithms for stable
marriage problems. This also includes a generalization of the matching problem
known as b-matching where a vertex can be matched with several other
vertices in the final solution. Due to the strong similarities between the stable
marriage problem and greedy matching, we show that one can apply recent
results on designing scalable greedy matching algorithms to the computation
of stable marriage solutions. This is verified by presenting efficient parallel
implementations of various types of Gale-Shapley type algorithms for both
multithreaded computers as well as for GPUs.

The remainder of the paper is organized as follows. In Section 2 we review
the Gale-Shapley algorithm and consider implementation issues related to this.
Next, in Section 3 we show that the computation of a greedy matching can
be reformulated as a stable marriage problem. In Section 4 we give parallel
implementations of the Gale-Shapley and McVitie-Wilson algorithms and show
their scalability, before concluding in Section 5.

2 The Stable Marriage Problem

In the following we review the stable marriage (SM) problem and how it can
be solved using the Gale-Shapley algorithm and consider some implementation
issues. Finally, we review some generalizations of the SM problem.

The SM problem is defined as follows. Let L and R be two equal sized sets
L = {l1, l2, . . . , ln} and R = {r1, r2, . . . , rn}. The entries in L are typically referred
to as “men”, while the entries in R are referred to as “women”. Every man and
woman has a total ranking of all the members of the opposite sex. These give the
“desirability” for each participant to match with a member of the other set. The
object is to find a complete matching M (i.e. a paring) between the entries in L
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and R such that no two li ∈ L and rj ∈ R both would obtain a higher ranked
partner if they were to abandon their current partner in M and rematch with
each other. Any solution satisfying this is stable.

Gale and Shapley [5] defined the stable marriage problem and also proposed
the first algorithm for solving it. The algorithm operates in rounds as follows. In
the first round each man in L proposes to his most preferred woman in R. Each
woman will then reject all proposals except the one she has ranked highest. In
subsequent rounds each man that was rejected in the previous round will again
propose to the woman which he has ranked highest, but now disregarding any
woman that he has already proposed to in previous rounds. Gale and Shapley
showed that this process will terminate with each man in L being matched to a
woman in R and that this solution is stable. Although an SM instance can have
many stable solutions, the Gale-Shapley algorithm will always produce the same
one.

An important variant of this problem is when each participant has only ranked
a subset of the opposing participants. This is known as the stable marriage
problem with incomplete lists (SMI). Any solution M to an SMI instance must
then in addition to being stable, also consists of mutually ranked pairs (li, rj). The
SMI problem is solved by the Gale-Shapley algorithm, but the solution might not
be complete leaving some participants unmarried [5]. There exists a number of
variants of the SM problem, for two comprehensive surveys see the books [9, 17].
In the following we will only consider the classical SM and SMI problems.

The original Gale-Shapley algorithm is described as operating in rounds,
where only the men who were rejected in round t will propose in round t+ 1. It
is not stated in which order the proposals in a round should be made or what
kind of data structures to use. If one traverses the men in L in their original
order in each round and lets each rejected man propose once it is discovered,
then the men always propose in the same relative order in each round. The
running time of such a scheme is Θ(n2) even for an instance of SMI. If one is
willing to forgo the requirement that the proposals in each round must be made
in the same relative order then it is not hard to design an implementation of the
Gale-Shapley algorithm with running time proportional to the number of actual
proposals made. To do this one maintains a queue Q of men waiting to make
their proposals. Initially Q = L and in each step of the algorithm the man at
the front of the queue gets to propose to his current best candidate rj ∈ R, and
any rejected li is inserted at the end of the queue. This will ensure that all men
rejected in round t gets to propose before any man rejected in round t + 1, but
the relative order among the men might not always be the same. The algorithm
terminates when the queue is empty.

One simple enhancement of the Gale-Shapley algorithm is that no li ∈ L
should propose to an rj ∈ R who already has a proposal from someone whom
rj ranks higher than li, as such a proposal will be rejected. Thus each li should
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propose to his most preferred rj where li has not already been rejected and where
rj ranks li higher than her current best proposal (if any). This means that it
is sufficient to only maintain the current best proposal for each rj. When the
algorithm terminates these proposals will make up the solution. We give our
complete implementation of the Gale-Shapley algorithm in Algorithm 1.

In Algorithm 1 each rj has a variable suitor(rj) initialized to NULL that
holds her current best proposal. Similarly, ranking(rj, li) returns rj’s ranking
of li (as a number in the range 1 through n). We define ranking(rj, NULL) =
n + 1 to ensure that any proposal is better than no proposal. The function
nextCandidate(li) will initially return li’s highest ranked woman and then for
successive calls return the next highest ranked one following the last one retrieved.

For an SM instance it is straight forward to precompute the values of
ranking() in O(n2) time. However, for an SMI instance maintaining a complete
ranking() table would require O(n2) space and also proportional time to initialize
it. In this case it is more efficient to store the value of ranking(ri, lj) together
with ri in lj’s ranking list so that it can be fetched in O(1) time when needed.
These values can be precomputed in time proportional to the sum of the lengths
of the ranking lists. To do this one first traverses the women’s lists building up
lists for each man lj with the women that have ranked him along with in what
position. Then using an array position() of length n initially set to 0, the list
of each man lj is processed as follows. For each woman ri that has ranked lj we
store the value lj along with in what position ri has ranked lj in position(ri). We
next traverse lj’s priority list and for each ri in the list we look up position(ri)
and see if it contains lj. If so, we fetch ri’s ranking of lj and store it together
with lj’s ranking of ri. At the same time any ri that has not ranked lj but which
lj has ranked can be purged from the priority list of lj.

Algorithm 1 The Gale-Shapley algorithm using a queue

1: Q = L
2: while Q �= ∅ do
3: u = Q.dequeue()
4: partner = nextCandidate(u)
5: while ranking(partner, u) >

ranking(partner, suitor(partner)) do
6: partner = nextCandidate(u)
7: if suitor(partner) �= NULL then
8: Q.enqueue(suitor(partner))
9: suitor(partner) = u

McVitie and Wilson [4] gave a recursive implementation of the Gale-Shapley
algorithm. This algorithm also iterates over the men, allowing each one to make
a proposal to his most preferred woman. But if this proposal is rejected or if it
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results in an existing suitor being rejected then the just rejected man recursively
makes a new proposal to his best remaining candidate. The recursion continues
until a proposal is made such that no man is rejected (because the last proposed
to woman did not already have a suitor). At this point the algorithm will continue
with the outer loop and process the next man. When all men have been processed
the algorithm is finished. It is shown in [4] that the McVitie-Wilson algorithm
gives the same solution as the Gale-Shapley algorithm. We note that similarly to
the Gale-Shapley algorithm it is possible to avoid proposals that are destined to
be rejected because the proposed to woman already has a better offer.

Comparing the two algorithms each man will consider exactly the same women
before ending up with his final partner. The only difference is the order in which
this is done. While the Gale-Shapley algorithm will maintain a list of men
that needs to be matched, the McVitie-Wilson algorithm will always maintain
a solution where each man considered so far is matched before including a new
man in the solution. We note that one can implement a non-recursive version
of the McVitie-Wilson algorithm simply by replacing the queue Q in Algorithm
1 by a stack and replacing the dequeue() and enqueue() operations with pop()
and push() operations respectively. To see that this will result in the McVitie-
Wilson algorithm it is sufficient to first note that the initial placement of L in Q is
equivalent to an outer loop that processes each man once. Any rejected man will
then be placed at the top of the stack and therefore be processed immediately,
similarly to a recursive call in the original algorithm.

Wilson [27] showed that for any profile of womens preferences, if the men’s
preferences are random, then the expected sum of men’s rankings of their mates as
assigned by the Gale-Shapley algorithm is bounded above by n(1+1/2+...+1/n).
Knoblauch [16] showed that this is also an approximate lower bound in the sense
that the ratio of the expected sum of men’s rankings of their assigned mates and
(n+ 1)((1 + 1/2 + ...+ 1/n)− n) has limit 1 as n goes to ∞. Thus if the men’s
preferences are random then this sum is Θ(n lnn) for large n. However, it is not
hard to design instances where this sum is Θ(n2). One such case is when the men
have identical preferences.

2.1 Generalizations of SM We next review two generalizations of the SM
problem. The stable roommates (SR) problem consists of a set of n persons, each
one with a complete ranking of all the others persons. The objective is now to
pair two and two persons together, such that there is no pair (x, y) of persons
where x is either unmatched or prefers y to its current partner, while at the same
time y is either unmatched or prefers x to its current partner. Just like for the
SM problem, such a solution is stable. Unlike the SM problem there might not
exist a solution for an SR instance. If some persons have only ranked a subset of
the other participants we get the stable roommates problem with incomplete lists
(SRI). Irving gave an algorithm for computing a stable solution to an SRI problem
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or to determine that no such solution exists [11]. This algorithm operates in two
stages, where the first one is similar to the Gale-Shapley algorithm where each
person makes, accepts and rejects proposals. The second phase of the algorithm
is slightly more involved but does not change the running time of O(n2). For
more information on the SR and SRI problems see [9, 17].

In the last generalization each person can be matched with more than one
partner. More formally, we are looking for a stable solution to an SM, SMI, SR,
or SRI instance where each person vi is matched with at most b(vi) other persons,
where b(vi) ≥ 1. Being stable again means that no two persons vi and vj would
both obtain a better solution if they were to match with each other, either by
dropping one of their current partners or if vi has fewer than b(vi) partners or if
vj has fewer than b(vj) partners.

For the SM problem this gives us the many-to-many stable assignment
problem (MMSA), where each “man” and “woman” can be matched with several
participants of the opposite sex. This was solved by Bäıou and Balinski [2]
who presented a general algorithm based on modelling this as a graph searching
problem. Applying the last generalization to an SR instance, gives the stable
fixtures problem [12] for which Irving and Scott gave an O(n2) algorithm.
Similarly to Irving’s algorithm for SRI, this also consists of two stages, where
the first stage is a natural extension of the Gale-Shapley algorithm to handle
that each person can participate in multiple matches.

3 Matching Problems

We next explore the relationship between stable marriages and weighted match-
ings in graphs. A matching M on a graph G(V,E) is a subset of the edges such
that no two edges in M share a common end point. For an unweighted graph the
object is to compute a matching of maximum cardinality. For an edge weighted
graph a typical problem is to compute a matching M such that the sum of the
weights of the edges in M is maximum over all matchings. Another variant could
be to compute the maximum weight matching over all matchings of maximum
cardinality.

We consider the Greedy algorithm for computing a matching of maximum
weight in an edge weighted graph where all weights are positive. This algorithm
considers edges by decreasing weight. In each step the heaviest remaining edge
(u, v) is included in the matching before removing any edge incident on either u
or v. If the weights of the edges in G are unique or if a consistent tie breaking
scheme is used then it follows that the solution given by Greedy is also unique.
In the following we will always assume that this is the case. It is well known that
Greedy guarantees a solution of weight no worse than 0.5 times the weight of
an optimal solution. We label the problem of computing a greedy matching in
an edge weighted graph as the GM problem.

Given an instance G of the GM problem one can construct an equivalent
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instance of the SRI problem by sorting the edges incident on each vertex u by
decreasing weight, and letting this be the ranking of u’s neighbors in the SRI
instance. With this construction a solution to the GM problem is equivalent to
a stable solution of the corresponding SRI problem. Consider the heaviest edge
(u, v) in the graph. This is included in the GM solution and the corresponding
vertex pair must also be part of any solution to the SRI instance, otherwise this
solution would not be stable as both u and v would prefer to match with each
other over any other partner. We can thus include (u, v) in the solutions to
both instances and also remove u and v from further consideration. For the GM
problem this means that any edges incident on either u or v are removed and for
the SRI instance u and v are removed from all ranking lists. One can then repeat
the argument using the heaviest remaining edge, and it follows by induction that
the two solutions are identical. It is also clear that the corresponding SRI instance
always has a unique stable solution.

The above construction implies that the solution given by Greedy is stable
in the sense that there does not exist an edge (u, v) �∈ M such that the weight of
M would increase if (u, v) was added to M while removing any edges incident on
either u or v from M . This observation is often stated as that the solution given
by Greedy does not contain any augmenting path containing three or fewer
edges. An augmenting path of length k is a path containing k edges starting with
an edge in M and then alternating between edges not in M and edges in M , such
that if one was to replace all the edges on the path that belong to M with those
that are not in M then the weight of the solution would increase.

We next show that the solution given by Greedy can also be obtained by
solving an associated SMI (or SM) instance. To the best of our knowledge this
result has not been shown previously.

Given an instance of the GM problem on an edge weighted graph G(V,E).
We define an SMI instance G′ from G as follows. Let L and R be the sets of men
and women respectively, both of size n = |V |. Any man li will include exactly
those rj in its ranking where there is an edge (vi, vj) ∈ E. As the edges in G are
not directed, this also means that lj will rank ri. Similarly, any woman rj will
include exactly those li in her ranking where there is an edge (vi, vj) ∈ E. Both
men and women order their lists by decreasing weight of the corresponding edges
in G. Thus every (vi, vj) ∈ E gives rise to four rankings in G′. We call the two
pairs (li, rj) and (lj, ri) for the corresponding pairs of (vi, vj).

Lemma 3.1. Given a graph G with SMI instance G′ as described above and let
M be the greedy matching on G. Then the pairs in G′ corresponding to the edges
in M make up the unique solution to the SMI problem on G′.

Proof. The proof is by induction on the edges of M considered by decreasing
weight. Let (vi, vj) be the edge of maximum weight in G. Then (vi, vj) ∈ M and
it also follows from the construction of G′ that li will rank rj highest. Similarly,
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li will also have the highest ranking among the men ranked by rj. Thus (li, rj)
must be included in any stable solution of G′. A similar argument shows that the
edge (lj, ri) will also be included in such a solution.

Assume now that the pairs in G′ corresponding to the k ≥ 1 heaviest edges
in M must be included in any stable solution and consider the two pairs (ls, rt)
and (lt, rs) corresponding to the k + 1st heaviest edge (vs, vt) in M .

It is clear that any solution where ls is matched to a woman that he has ranked
after rt while at the same time rt is matched to a man that she has ranked after
ls, cannot be stable as both ls and rt would be better of if they were to match
with each other. Thus if (ls, rt) is not included in a stable solution at least one of
ls and rt must be matched to a partner which he or she has ranked higher than
the other one of {ls, rt}. Assume therefore that ls is matched to ru and that ls
has ranked ru higher than rt, implying that the weight of (vs, vu) is greater than
the weight of (vs, vt) in G. But since (vs, vt) ∈ M it follows that (vs, vu) �∈ M .
Thus vu must be matched to some other vertex vz in M . And since (vs, vu) �∈ M
the weight of (vu, vz) must be greater than that of (vs, vu). By the induction
hypothesis the pairs in G′ that correspond to the k heaviest edges in M must be
included in any stable solution in G′. It therefore follows that lz must be matched
to ru in any stable solution on G′ contradicting that ls is matched to ru. A similar
argument shows that rt cannot be matched to any man in L to which she gives
higher priority than she gives to ls. Thus the pair (ls, rt) must be in any stable
solution in G′. The argument for why (lt, rs) also must be included in a stable
solution is analogous. It follows that any pair in G′ corresponding to an edge in
M must be part of a stable marriage in G′.

It only remains to show that once the pairs corresponding to the edges in M
have been included in the solution M ′ to G′, then it is not possible to match
any other pairs in G′. If M ′ contains a pair (li, rj) in addition to the pairs
corresponding to the edges in M then (vi, vj) �∈ M and neither vi nor vj can
be matched in M . But since li has ranked rj (and vice versa) it follows that
(vi, vj) ∈ E and that M can be expanded with (vi, vj). This contradicts that M
is maximal and the result follows.

We next consider the b-matching problem which is a generalization of
the regular weighted matching problem similar to the many-to-many stable
assignment problem and the stable fixtures problem. A b-matching on G is a
subset of edges M ⊆ E such that every vertex vi ∈ V has at most b(vi) edges
in M incident on it. The objective is to compute the b-matching of maximum
weight. A 0.5 approximation can again be computed using the greedy algorithm
that selects edges by decreasing weight and whenever b(vi) edges incident on vi
have been selected, the remaining edges incident on vi are removed [20]. Setting
b(vi) = 1 for all vi ∈ V gives a regular (one) matching.

It is straight forward to see that the stable fixtures problem is also a
generalization of greedy b-matching. Given an instance of the greedy b-matching
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problem, one can also construct an equivalent many-to-many stable assignment
instance by setting the bounds b(li) and b(ri) equal to b(vi). A proof similar to
that of Lemma 3.1 shows that these two problems have equivalent solutions.

3.1 Algorithmic Similarities As a consequence of the fact that the solution
given by Greedy can be obtained by either solving a properly designed instance
of SMI or SRI, any algorithm that solves either of these two problems can also be
used to compute a greedy weighted matching. This process can be simplified as it
might be possible to run an SMI or SRI algorithm directly on the original graph.
Let G be an instance of GM and G′ its corresponding SMI instance. Also let
{rs1 , rs2 , . . . , rsf} and {lt1 , lt2 , . . . , ltg} be the ranked lists of li and ri respectively.
Then if follows from the construction of G′ that f = g and that sk = tk for all
k. Thus any proposal made to ri could be handled directly by li as he has the
same information as ri. It follows that one can merge li and ri into one node vi
that handles making, accepting, and rejecting proposals related to li and ri. In
this way both the Gale-Shapley and the McVitie-Wilson algorithm can be used
directly on edge weighted general graphs to compute greedy matchings, but now
using edge weights to rank potential partners. Irving’s algorithm [11] for solving
the SRI problem consists of two stages, of which the first is exactly this algorithm
used on a general graph. If the rankings in an SRI instance are based on edge
weights from a GM instance then the first phase will produce the greedy solution
which is stable, thus making the second phase of the algorithm redundant.

Previous efforts at designing fast parallel greedy matching algorithms have
been based on the notion of dominant edges. These are edges that are heavier
than any of their neighboring edges. Preis showed that an algorithm based on
repeatedly including dominant edges in the matching while removing any edges
incident on these will result in the same solution as Greedy [23]. Based on this
observation Manne and Bisseling developed the pointer algorithm [18], which was
further enhanced by Manne and Halappanavar in the Suitor algorithm [19]. We
note that the Suitor algorithm is identical to the McVitie-Wilson algorithm
applied to a general edge weighted graph, while the pointer algorithm has strong
resemblances to the Gale-Shapley algorithm as outlined in Algorithm 1.

The same type of relationship also holds true between the greedy b-matching
problem and the many-to-many stable assignment problem. The algorithm
presented in [2] can be instantiated to solve the b-matching problem using a
Gale-Shapley type algorithm where a vertex v will accept the b(v) best offers at
any given time. We note that this is the same algorithm as the one presented in [7]
and also [14] for computing a greedy b-matching. In [13] the authors experiment
with what they call delayed versus eager rematching of rejected suitors. The
difference between these two variants is the same as that between a Gale-Shapley
and a McVitie-Wilson style algorithm.
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4 Experiments

As shown in Section 3 much of the theory for greedy matching algorithms are
mainly restricted versions of previous results from the theory of stable marriages.
However, the work on greedy matchings has to a large extent been driven by a
need for developing scalable parallel algorithms for use in scientific applications.
This has lead to the implementation of Gale-Shapley and McVitie-Wilson type
matching algorithms on a large variety of architectures, including distributed
memory machines [3, 18], multicore computers [10, 15, 19], and GPUs [1, 21].

There has been less emphasis on implementations and developing working
code for the stable marriages problem. We believe that much of the work
done on greedy matchings can easily carry over to developing efficient code for
stable marriage problems. To show the feasibility of this we have developed
shared memory implementations of both the Gale-Shapley and McVitie-Wilson
algorithms. We used OpenMP to parallelize the Gale-Shapley algorithm and both
OpenMP and CUDA for parallelizing the McVitie-Wilson algorithm.

In weighted matching both endpoints of an edge (u, v) evaluates the impor-
tance of the edge to the same number, i.e. the weight of the edge. Whereas in the
stable marriage problem both u and v assign their own ranking of the other. Thus
the main difference between greedy matching algorithms such as those presented
in [18, 19] and the Gale-Shapley algorithm is that in the latter, a man who makes
a proposal evaluates his chance of success based on the woman’s ranking, instead
of on a common value. Another difference is that it is typically not assumed
in weighted matching problems that the neighbor list of a vertex is sorted by
decreasing weight. It was shown in [19] that when this is the case, then it both
simplifies the algorithm and also speeds up the execution considerably.

Our parallelization strategy for the McVitie-Wilson algorithm using OpenMP
closely follows that of the Suitor algorithm as presented in [19], while our CUDA
version of the same algorithm is a simplified version of the Suitor algorithm used
in [21]. In both of our OpenMP algorithms the set of men is initially partitioned
among the threads who then each run a local version of the corresponding
algorithm until completion. A thread will first search the list of the current
man to locate the woman he gives highest priority and where the woman also
prefers him to her current suitor (if any). If such a woman is discovered the
thread will use a compare-and-swap (CAS) operation to become the new suitor
of the woman. In this way it is assured that no other thread has changed the
suitor value. If the CAS operation succeeds the previous suitor (if any) is treated
according to the current strategy and is inserted in a local stack (McVitie-Wilson)
or a local queue (Gale-Shapley). If the CAS operation failed because some other
thread had already changed the suitor value, then if the current man can still beat
the new suitor then the thread will retry with a new CAS operation, otherwise it
will continue searching for the next eligible woman.

There is a difference between the algorithms in how they can handle load
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imbalance. For the parallel Gale-Shapley algorithm it is possible to synchronize
the threads after each round of proposals and then redistribute the unmarried men
to the threads before moving on to the next round. However, synchronization
tends to be costly, and experiments done on greedy matching problems indicate
that this is typically not worth the effort. For the McVitie-Wilson algorithm
one can load balance the algorithm by using one of the dynamic load balancing
strategies in OpenMP in the initial assignment of men to threads. This strategy
was used successfully in experiments for the Suitor matching algorithm on
graphs with highly varying vertex degrees [19].

For the McVitie-Wilson CUDA algorithm we assign one thread to each
man.Each thread then executes the algorithm similarly to the OpenMP version
using a CAS operation to assign a man as the suitor of a particular woman. Using
only one thread per man allows for a larger number of thread blocks which the
runtime environment can balance across the device. But as the threads within
one physical warp operate in SIMD, the run time of all threads in the same warp
will be equal to the maximum execution time of any of the threads. Similarly, the
threads within the same thread block will not release resources until all threads
in the block have finished executing. It would have been possible to statically
assign multiple men to each thread or to design a dynamic load balancing scheme
with the aim of evening out the work load. But this would have resulted in a
more complicated algorithm and as our main goal is proof of concept we did not
pursue this.

Implementing the Gale-Shapley algorithm on the GPU presents additional
challenges compared to the McVitie-Wilson algorithm. In a Gale-Shapley
algorithm the threads would have to be grouped so that each thread group
operates on one common queue, where the size of the group could be either
a subset of threads in a warp or all the threads in one thread block. As the
number of free men monotonically decreases between rounds, there should initially
be more men than threads assigned to the same queue, something that would
complicate the algorithm. Also, having several threads operate on one common
queue would require synchronization which can be time consuming on the GPU.
For this reason we chose not to implement the Gale-Shapley algorithm using
CUDA.

As we are not aware of any sufficiently large publicly available data sets for the
stable marriage problem, we have designed two different random data sets. The
first set has been constructed to be relatively easy to solve, whereas the second
set is intended to be more time consuming. We label these sets as easy and hard
respectively. Each instance consists of n men and n women. In the easy data set
each man is assigned a random number ε ∈ [0, 1] and then randomly picks and
ranks (1 + ε) lnn women. Each woman then ranks exactly the men that ranks
her. With this configuration more than 98% of the participants were matched in
every final solution and the total number of proposals is at most 2n lnn with an
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average of n lnn. In the hard data set each man has an identical complete random
ranking of all the women. Similarly, all woman share the same random ranking of
all the men. Thus there will always exist a complete stable solution and the total
number number of considered women will always be n(n+1)/2. Moreover, in the
hard instances there will be contention among the men for obtaining the same
set of women, and thus cause substantial synchronization requirements for the
parallel algorithms. One obvious difference between the datasets is that the easy
instances will require more memory access as each participant has an individual
ranking list, while for the hard instances all rankings are stored in two shared
vectors of length n. For each value of n we have generated 5 instances and for
each of these we run each algorithm 3 times. For all timings we take the average
of these 15 runs.

The OpenMP algorithms are run on a computer with two Intel Xeon E5-2699
processors and 252 Gbytes of memory. Each processor has 18 cores and runs at
2.30GHz. The GPU is a Tesla K40m with 12 GB of memory, 2880 cores running
at 745 MHz and has CUDA compute capability version 3.5. For all parallel
algorithms we measure their speedup against the fastest sequential algorithm run
on the Intel Xeon machine.

In Figure 1 we present results from the easy instances when n varies from 5M
up to 25M in steps of 5M. For the OpenMP algorithms the number of threads
is set to 36. For most of these instances the running time stays well below one
second. It is only for the n =25M instance that the GPU algorithm uses slightly
more time than one second. This is also the largest easy instance that could be
run on the GPU.

For smaller instances the GPU algorithm is the fastest one but as the problem
size increases it is slowing down compared to the OpenMP algorithms. In general
the OpenMP Gales-Shapley algorithm is faster than the OpenMPMcVitie-Wilson
algorithm with as much as 12%. For this setup one would expect that the graph
displaying the time would resemble n lnn as the computing resources is the same
for each instance. This is most true for the OpenMP algorithms where the
time increases close to linearly with n, whereas the time grows faster than n
for the GPU algorithm. This can be seen further in Figure 2 which shows the
speedup of the OpenMP Gale-Shapley algorithm and the GPU McVitie-Wilson
algorithm compared to the sequential Gale-Shapley algorithm. The OpenMP
algorithm gives a constant speedup of about 9, while the speedup of the GPU
algorithm starts out at about 17 but then drops sharply as the size of the instances
increase. Thus this is most likely due to insufficient memory on the GPU. On
these problems the sequential McVitie-Wilson algorithm was on average 27%
slower than the sequential Gale-Shapley algorithm.

Figure 3 shows running times of the OpenMP algorithms using 36 threads as
n increases up to 125M. It can be observed that the tendencies for the smaller
instances still remain true for the larger ones. We note that the worst running
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Figure 1: Running time on the easy dataset

time is only marginally larger than four seconds on the largest instance. Figure 4
shows the speedup of the OpenMP algorithms compared to the sequential Gale-
Shapley algorithm for the three largest instances when using t = 1, 9, 18, 27 and 36
threads. The Gale-Shapley algorithm outperforms the McVitie-Wilson algorithm
in almost all instances and reaches a speedup of almost 14 on the n = 75M
instance.

Figure 5 shows the running time on hard instances where n increases from
100K up to 500K. The OpenMP codes are again run using 36 threads. As the
dataset only consists of two vectors we can run the problems using all three
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Figure 2: Speedup on the easy dataset

codes, the only limiting factor being time. Since the total amount of work grows
as Θ(n2) on these instances, it is to be expected that they will require more
time than the easy ones. From the figure it can be observed that there is little
difference in the running time between the Gale-Shapley OpenMP code and the
McVitie-Wilson GPU code, which both take close to 250 seconds on the largest
instance. However, the McVitie-Wilson OpenMP code performs considerably
better, and is a factor of 5 times faster on the largest instance. This difference
is also displayed in Figure 6 which gives the speedup of the same instances
compared to the sequential McVitie-Wilson algorithm. While the McVitie-Wilson
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algorithm reaches a speedup of close to 22 when running on the 36 threads,
the parallel Gale-Shapley algorithm is never more than a factor of 2.5 faster
than the sequential McVitie-Wilson algorithm. For these instances the sequential
Gale-Shapley algorithm was on average 109% slower than the sequential McVitie-
Wilson algorithm.

We believe that some the difference between the OpenMP algorithms can be
explained by how the algorithms handle the large number of rejections. While the
Gale-Shapley algorithm has to store each rejected man to memory and retrieve
a new one, the McVitie-Wilson algorithm can continue working on the rejected



16

1 9 18 27 36

0

2

4

6

8

10

12

14

Threads

S
p
ee
d
u
p

75M McVitie-Wilson
75M Gale-Shapley
100M McVitie-Wilson
100M Gale-Shapley
125M McVitie-Wilson
125M Gale-Shapley
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man without needing to access relatively slow memory. The poor performance
of the McVitie-Wilson GPU algorithm compared to the OpenMP one is most
likely due to how the machines handle contention for shared resources. The GPU
algorithm utilizes several thousand concurrent threads that, at least initially, will
be competing for matching their man with the same set of women. Synchronizing
this will lead to a much larger strain on the system compared to that of the
relatively low number of threads in the OpenMP algorithm.

Finally, figures 7 and 8 show the number of considered proposals per second for
both easy and hard datasets on the OpenMP algorithms. For each instance this
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number is given as the sum over each man of his ranking of his final partner and
then divided by the total time. In sparse graph algorithms this is often referred to
as the number of traversed edges per second (TEPS) and is, among other things,
used to rank the performance of computers in the Graph500 challenge [8].

For the easy instances the TEPS rate starts out at 10M for one thread and
then increases to somewhere between 100M to 140M for 36 threads. Thus the
efficiency when using 36 threads lies somewhere in the range of 30% to 40%. For
the hard instances the TEPS rate for the McVitie-Wilson algorithm starts out
at about 150M and increases up to 2.75 billion when using 36 threads for an
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Figure 6: Speedup on hard datasets

efficiency rate of about 50%. As already noted the Gale-Shapley algorithm does
not scale well on these instances. Comparing the TEPS rate between the easy
and the hard instances when using the McVitie-Wilson algorithm on the same
number of threads it can be observed that the maximum TEPS rate is more than
a factor of 20 larger for the hard instances. This is most likely because the hard
instances are not limited by access to memory as the whole dataset only consists
of two vectors.
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5 Conclusion

In his book Manlove [17] lists some of the most noteworthy open problems related
to SM. One of these is to determine if the SM problem is in the complexity
class NC or not, that is, to determine whether the problem can be solved by an
algorithm with polylogarithmic running time when using a polynomial number
of processes. Efforts at designing such algorithms has mainly resulted in parallel
algorithms requiring at least n2 processes, and are thus mainly of theoretical
interest [6, 26].

We are only aware of one previous attempt at implementing a parallel version
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of the Gale-Shapley algorithm and this did not result in any speedup [25]. Quinn
[24] argues that one cannot expect a large speedup from a parallel Gale-Shapley
style algorithm in practice as the algorithm cannot run faster than the maximal
number of proposals made by any one man. We note that for a random instance
the average number of proposals made by each man is in fact O(log n).

While the question of developing asymptotically faster parallel algorithms
than those presented in Section 4 is of interest from a theoretical point of view,
we believe that this is less relevant for a practitioner. To begin with the running
time of the Gale-Shapley algorithm is linear in the instance size. Thus moderate
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sized problem can already be solved rapidly. In addition, our current experiments
on the SMI problem as well as previously experiments on GM problems shows
that Gale-Shapley type algorithms scale well. One reason for this is that the size
of the instance n is typically much larger than the number of threads used.

One notable difference between the formulations of the GM and the SMI
problem is that for GM it is not assumed that the neighbor lists are initially
sorted by decreasing weight in the same way as priority lists are ordered in SM.
Thus work on developing parallel algorithms for the GM problem has focused
on how one should search the neighbor lists. Suggested solutions include sorting
the lists initially, searching through the list each time a new candidate is needed,
or something in between. All of these strategies result in a running time that
is superlinear in the input size. However, Preis’s algorithm for GM has linear
running time [23], but is more complicated and not suitable for parallel execution.
We therefore ask if it is possible to design a linear time algorithm for the SM
problem if the priority lists are not sorted, but instead given as real valued
numbers such that pi(j) gives the value that person i assigns to person j of
the opposite sex.
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