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Summary. In this work we present a finite volume discretization of an elliptic
boundary value problem on adaptively refined meshes. This problem is important in
many practical applications, e.g. porous media flow. We propose an error indicator
functional which is used to select elements that should be refined. Two numerical
examples are provided to demonstrate the potential of the proposed refinement
strategy.

1 Introduction

Finite volume [6] and finite element [2, 3, 4] are widely used methods for
discretizing partial differential equations. Behaviour of finite element methods
on adaptive meshes is well understood and studied, e.g., [2, 3, 4], whereas finite
volume method seems to be less studied. In this paper, we will consider a cell
centered finite volume method also known as control volume finite difference
method (CVFD) [6, 9]. Finite volume methods are popular for example in
the porous media community since they are based on conservation principles
and honour the continuity of fluxes. There are different ways of expressing the
fluxes through the boundaries of a cell which give rise to different formulations
like the two point flux approximation methods (TPFA) and the multi point
flux approximation methods (MPFA), [1, 6]. In this work, we will use a TPFA
method. Consider the numerical solution of the following elliptic boundary
value problem using adaptive meshes:

−∇ · (K ∇p) = f(x, y) in Ω, (1)

p(x, y) = pD on ∂Ω. (2)

Here, Ω is a polyhedral domain in IR2, the source function f is assumed to be
in L2(Ω), and K is symmetric and uniformly positive definite tensor which
may depend on the spatial coordinate. In porous media flow, the unknown
function p = p(x, y) represents the pressure of a single fluid, and K is the



2 S. K. Khattri, G. E. Fladmark and H. K. Dahle

permeability of the porous medium Ω. The rest of the paper is organised as
follows: In Section 2, a simple criterion for adaptive refinement is proposed,
and an algorithm for an adaptive meshing strategy is given. In Section 3,
we give two numerical examples. In the first example, the permeability K is
constant while the source exhibits a huge variability. In the second example,
the medium properties represented by the permeability K are discontinuous.
In both cases an analytic solution is known and the error for the discrete
solutions on adaptively and uniformly refined meshes can be computed. These
errors are then compared for meshes that possess the same degree of freedom
(DOF). Finally in Section 4, we provide some concluding remarks.

2 Adaptive Criteria and Adaptive Algorithm

Adaptive refinement are feed-back based discretizations (Solve → Estimate
→ Refine/Coarse). Thus we need criterion for selecting finite volumes/cells
in the mesh for further refinement. Ultimately these methods construct a
sequence of meshes that may converge to an optimal mesh (the most accurate
solution at a fixed cost or lowest computational effort for a given accuracy).
Generally most of the error occurs in areas where the solution exhibits large
gradients, varying curvature or high source variability [2, 3, 4]. Based on these
heuristics we propose the following error indicator for a cell i in the mesh:

ηi = α ‖ph‖L2(Ωi) + αG ηG + αF ηF + αS ηS . (3)

Here, α, αG, αF and αS are weights belonging to the interval [0, 1], and ηG,
ηF and ηS are given as follows:

ηG := ‖∇ph‖L2(Ωi), (4)

ηF := ‖(K ∇ph) · n̂‖L2(∂Ωi), (5)

ηS := ‖f‖L2(Ωi). (6)

In these formulas, we will use least square fitting to approximate the gradient,
∇ph, of the discrete pressure ph. An error error indicator need not to represent
the error very accurately [3], they just need to select the elements for further
refinement. An element i in the mesh will be refined if ηi

maxj ηj
≥ δ (0 ≤ δ ≤ 1).

Thus, δ = 0 means a uniform refinement and δ = 1 means that the algorithm
will refine a single element per iteration. None of these end point values may be
optimal. A trade off between uniform refinement and refining a single element
at a time is obtained by choosing δ = 0.5. This value has also been suggested
in the literature, e.g., [4]. In general the choice of an optimal set of parameters
δ, α, αG, αF and αS is a difficult task. In this work, we have chosen these
parameters based on experience with the specific problems. Optimal choice of
these numbers will be investigated in future research. It should be noted that
if αS and αF are equal to zero then the indicator (3) is similar to the indicator
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proposed in [4] for an Adaptive Discontinuous Galerikin Method, whereas if α
and αG is equal to zero then the indicator is similar to the one given in [2, 3]
for an adaptive finite element method. The overall algorithm we are using is
presented in Algorithm 1. This adaptive algorithm works on the principle of
equally distributing the adaptivity index over all cells in the mesh. For a cell
centered finite volume method the degrees of freedom (DOF) are equal to the
number of cells in the mesh. In Algorithm 1, the refinement is stopped at a
fixed maximum DOFs. In general an a posteriori error estimator should be
added as a stopping criterion, (cf. [4, 7, 10]).

Algorithm 1: Adaptive Algorithm.

Mesh the domain;
while DOF < DOFmax do

Discretize the PDE over the mesh by the CVFD;
Solve the discrete system;
forall elements j in the mesh do

if ηj/ maxi ηi ≥ δ then
Refine the element j in the mesh;

end

end

Form a new mesh;
end

3 Numerical Examples

Let pk denotes the exact solution for the pressure at the center of cell k, and
pk

h denotes the discrete pressure obtained by the finite volume approximation
for the same location. Then the discrete error e in the L2 norm for a mesh
can be expressed as:

‖e‖L2
:=

(

∑

cells

[

pk(x) − pk
h(x)

]2
Ωk

)1/2

. (7)

Here, the summation is to be taken over all the cells/finite volumes in the
mesh. The CVFD approximation of the equation (1) subject to the boundary
condition (2) using a two point flux approximation (TPFA) leads to symmetric
positive definite linear systems. To solve these systems, we are using the ILU
preconditioned conjugate gradient (CG) solver with a tolerance of 1× 10−10.

3.1 Example 1

Let the domain be Ω = (0, 1) × (0, 1), and the permeability be the identity
tensor K = I . We enforce the source term f = f(x, y) such that the analytical
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solution to Equation (1) is given by

u(x, y) = 0.0005 [x (x − 1) y (y − 1) ]2 e10 (x2+y2). (8)

Note that this solution is consistent with the zero Dirichlet boundary condi-
tion (2). Furtheremore, taking the Laplacian of (8) shows that the source term
exhibits a huge variability inside the domain and even within the cells. For this
problem we found that δ = 0.5, α = 0.0, αG = 0.10, αF = 0.90 and αS = 1.0
was a good choice of parameters for the indicator functional (3). However,
other choices may work even better. Figures 3 reports the outcome of a nu-
merical experiment comparing the discrete solutions on an adaptively refined
mesh and a uniform mesh. The degrees of freedom (DOF) associated with the
meshes depicted in these figures are approximately the same. However, the
L2 errors in the solutions on adaptive and uniform meshes are 8.91 × 10−4

and 3.7× 10−3, respectively. Thus, the error of the solution on the adaptively
refined mesh is much smaller compared to the solution on the uniform grid.
In Figure 3.1, we have plotted the error versus DOF for solutions on adap-
tively refined meshes and for uniform meshes. From this plot we get that ‖e‖

∼ DOF−p/2 with p ≈ 2 on the adaptive meshes, which is quasi optimal in
the sense of [7, 10]. Since the solution is smooth, we expect the advantage
of adaptive refinement to be largest for coarser grids, while this advantage
should be reduced compared to a uniform refinement for finer grids. This is
indeed what can be observed in Figure 3.1.
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Fig. 1. (Example 3.1) Exact solution.
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Fig. 2. (Example 3.1) L2 error vs degrees
of freedom for adaptively generated meshes
and uniform meshes.
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Fig. 3. (Example 3.1) Discrete solution on adaptive and uniform meshes. DOF
for the adaptive mesh is 601, and DOF for uniform refinement is 625. L2 error on
adaptive mesh is 8.91 × 10−4 while on uniform mesh it is 3.7 × 10−3.

3.2 Example 2

In porous media flow, material properties as given by the permeability is often
piecewise constant. The numerical challenges introduced by the discontinuities
in the permeability are difficult to handle by standard formulations, see [4, 5,
1, 6, 9]. In this example, we will investigate the behaviour of our refinement
strategy for a problem with discontinuous permeability. Let Ω = (−1, 1) ×
(−1, 1). We subdivided Ω into four non overlapping subregions Ωi i = 1 . . . , 4
such that Ω = ∪iΩi as shown in Figure 4. For each subregion Ωi we associate
a constant permeability K, and will assume that

K2 = K4 = I and K1 = K3 = R I , (9)

where R is a parameter to be determined. An analytic solution can be con-
structed using the polar representation

p(r, θ) = rγη(θ), (10)

see [7, 10]. Let η(θ) be given by

η(θ) =































cos [(π/2 − σ)γ] cos [(θ − π/2 + ρ)γ] , θ ∈ [0,
π

2
],

cos(ργ) cos [(θ − π + σ)γ] , θ ∈ [
π

2
, π],

cos(σγ) cos [(θ − π − ρ)γ] , θ ∈ [π,
3π

2
],

cos [(π/2 − ρ)γ] cos [(θ − 3π/2− σ)γ] , θ ∈ [
3π

2
, 2π],

(11)

and let the numbers R, γ, ρ and σ satisfy the nonlinear relations:



6 S. K. Khattri, G. E. Fladmark and H. K. Dahle

R = − tan [(π − σ)γ] cot(ργ),
1/R = − tan(ργ) cot(σγ),
R = − tan(σγ) cot [(π/2 − ρ)γ] ,
0 < γ < 2,
max{0, πγ − π} < 2γρ < min{πγ, π},
max{0, π − πγ} < −2γρ < min{π, 2π − πγ}.

(12)

Then it can be shown that (10) satisfies Equation (1) with K given by (9) and
f(x, y) = 0. Boundary conditions need to be chosen consistently with the form
(10). Furthermore, it can be shown that the solution p belongs to the fractional
Sobolev space H1+ξ(Ω) where ξ < γ (cf. [8]). By choosing γ = 0.3, we can
solve the constrained nonlinear relations (12) using Newton’s iteration to get
R = 17.3476, σ = −4.4506 and ρ = 0.7853. We specify the parameters for the
indicator functional to be δ = 0.6, α = 0.0, αG = 0.0, αF = 1.0, αS = 0.0. In
Figure 5, we have plotted the error in the discrete solution against the degrees
of freedom for both adaptive and uniform meshes. Again we observe that the
convergence on adaptive meshes are much better than for uniform refinement.
We also get that ‖e‖L2

∼ DOF−p/2 with p ≈ 2.0 for the solution on adaptive
meshes. Because of the regularity of the solution, this convergence is also
quasi optimal in the sense of [7, 10]. Finally in Figure 6 we plot the number
of CG iterations (without preconditioning) vs. the DOFs for the adaptive and
uniformly refined meshes. The plot shows that the uniformly refined meshes
require approximately twice as many CG iterations as the adaptive refinement.
This suggests that the condition number for the matrix obtained for uniform
refinement is four times the condition number for the matrix obtained for
adaptive refinement.

Ω1 Ω2

Ω3Ω4

Fig. 4. (Example 3.2) Domain with discontinuous medium properties. The perme-
ability is constant over each sub-domains i.e., K=Ki in Ωi.

4 Conclusions

In this work we have given a strategy for adaptive refinement in the setting
of CVFD discretizations of boundary value problems. The mesh refinement is
based on the use of an error indicator functional. We have tested the methods
on two test examples. In both cases the solution has a strong local behaviour
which is clearly captured by our refinement strategy. We have computed the
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Fig. 5. (Ex. 3.2) Pressure convergence in
L2 norm for adaptive and uniform refine-
ment.
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Fig. 6. (Ex. 3.2) Number of CG Iterations
(no preconditioner) vs. DOFs. Star is rep-
resenting uniform refinement while circle is
associated with adaptive refinement.

error in the discrete solution to obtain convergence rates. The numerical ex-
periments suggest that convergence is quasi optimal as the mesh is adap-
tively refined for both the test examples. Furthermore we have compared
CVFD on adaptive and uniform meshes. As expected the solutions obtained
for adaptive meshes are significantly more accurate, and the system matri-
ces are better conditioned when we employ adaptive meshes. Even though
our preliminary investigations show that the proposed CVFD discretization
on adaptive meshes has a great potential, many challenges remain open for
further research. Most importantly we need to find better ways of selecting
parameters for the indicator functional.
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