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III. Abstract 

Due to its habitats near offshore oil platforms, petroleum recovery facilities, as well as 

coastal industries and municipal wastewater treatment plants, Atlantic cod (Gadus 

morhua) must cope with both legacy and emerging environmental contaminants. 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription 

factors. Upon activation by either endogenous ligands (e.g., fatty acids and lipid 

derivatives) or contaminants of certain structures, PPARs control the expression of 

genes involved in lipid- and carbohydrate metabolism. By studying how the Atlantic 

cod PPARs can bind and become activated by contaminants, especially by the 

emerging and far less documented ones, the main objective of this thesis was to 

contribute with new baseline data that can give insight into how the regulation of the 

energy metabolism in Atlantic cod can be modulated by environmental pollutants. 

The Atlantic cod PPARx hinge+LBDs were cloned from cod tissue using standard 

molecular techniques, and further subcloned into eukaryotic expression vectors. In 

silico sequence and phylogenetic analyses confirmed the Atlantic cod PPAR identities. 

The ligand-binding characteristics of Atlantic cod PPARs were examined by 

establishing in vitro UAS/Gal4-DBD based luciferase reporter gene assays in a COS-7 

cell line. WY14643 and GW501516 are well-established model compounds that act as 

strong agonists of mammalian PPARα and PPARβ/δ, respectively. Similarly, 

WY14643 elicited a maximum activation of 126-fold on the Atlantic cod PPARαa 

construct at 125 μM (EC50 = 41 μM), and 128-fold on the PPARαb construct at 41 

μM (EC50 = 26 μM). GW501516 elicited a maximum activation of 126-fold on the 

Atlantic cod PPARβ/δ construct at 11.3 μM (EC50 = 2 μM). But then, none of the 

typical mammalian PPARγ agonists actived the Atlantic cod PPARγ construct. 

However, expression of the Gal4-PPARγ construct in COS-7 cells was confirmed with 

Western Blotting using Gal-4 antibodies. Among fifteen pollutants tested, representing 

a structurally diverse group of ligands, perfluorooctanoic acid (PFOA) and 

perfluorononanoic acid (PFNA) were able to activate of the PPARαb construct with a 

maximum activation of 8-fold at 150 μM and 3-fold at 154 μM, respectively. The 

other ligands tested did not activate any of the Atlantic cod PPAR constructs. Thus, 

exposure of Atlantic cod to compounds with long carbon-backbones that harbors a 

carboxyl-group, could potentially modulate the lipid- and carbohydrate metabolism 

through directly interfering with at least one PPAR subtype. 
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1 INTRODUCTION 

1.1 The Big Picture 

Like many of the world’s oceans the Northeast (NE) Atlantic suffers from increased 

pressure of pollutants originating from various human activities. This includes marine- 

and coastal industries, such as offshore oil platforms and petroleum recovery facilities, 

as well as municipal effluent discharges (Bakke et al., 2013). Furthermore, long-range 

transportation via air and ocean currents enable pollutants released by inland 

industries to be transported to the most remote parts of the oceans, leaving few if any 

pristine areas on the globe (Julshamn et al., 2013b; Julshamn et al., 2013c). Pollutants 

present in the environment are often persistent and highly lipid-soluble, and tend to 

accumulate in lipid-rich biota. When within an organism, some pollutants can 

function as endocrine disruptors by either mimicking naturally occurring hormones or 

blocking their actions. The result of such an event could lead to alternation of 

hormone production or hormone signaling. Long-term exposure to chemicals 

possessing metabolic and endocrine disrupting abilities can lead to negative biological 

effects, such as impaired growth, reduced reproductive success, and ultimately 

reduced survival of a species (Foekema et al., 2012; Rigaud et al., 2013; Westerlund et 

al., 2000). Atlantic cod (Gadus morhua) in the NE Atlantic is of both commercial and 

ecological importance, as Norwegian fisheries are dependent on cod, and the 

Northeast arctic cod population influences the structure and function of the arctic 

ecosystem (Link et al., 2009). Thus, Atlantic cod is a highly relevant species, and the 

sequencing of the Atlantic cod genome in 2011 has made it a promising model-species 

that is becoming more frequently used in toxicological contexts (Bizarro et al., 2016; 

De Laender et al., 2011; Eide et al., 2014; Enerstvedt et al., 2017; Goksøyr et al., 

1987; Karlsen et al., 2011; Star et al., 2011; Yadetie et al., 2016; Yadetie et al., 2014; 

Yadetie et al., 2013; Yadetie et al., 2017; Yin et al., 2016). Considering the amount of 

anthropogenic chemicals present in the environment, our knowledge is still scarce 

regarding how contaminants, alone or in mixtures, affect the biology of the Atlantic 

cod. This thesis addresses potential effects on the lipid homeostasis in Atlantic cod by 

focusing on the peroxisome proliferator-activated receptors (PPARs), which are 

ligand-activated transcription factors that control the expression of genes involved in 

lipid- and carbohydrate metabolism. By studying how PPARs can bind and become 
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activated by contaminants, especially by the emerging and far less documented ones, 

we aim to provide new insight into how the lipid metabolism in Atlantic cod can be 

modulated by environmental pollutants. 

1.2 Contaminants in the Marine Environment 

1.2.1 Legacy Environmental Contaminants 

Persistent organic pollutants (POPs) are environmental contaminants that exhibit 

resistance against physical, chemical, and biochemical degradation. These properties 

make them reside in the environment for long periods of time. POPs are also prone to 

undertake long-range transportation via air mass movements (i.e., grasshopper effect), 

or through water and ocean currents, to areas far from the source of their release 

(Macdonald et al., 2000; Rigét et al., 2010; Shen and Wania, 2005). Most POPs are 

also highly lipophilic. This property makes these compounds accumulate in biota, and 

specifically in lipid-rich tissues. POPs may bioaccumulate over time if the organisms 

detoxification system is not able to metabolize and excrete the compound faster than 

they are absorbed from the environment (Bryan et al., 1979) (Fig 1). When 

accumulated inside an organism, the characteristics of the compound will also decide 

how much of the compound that will become bioavailable i.e., the amount able to 

reach its site of action (e.g., receptor activation) and potentially cause adverse toxic 

effects. In addition, if the organisms that bioaccumulate such compounds are at the 

lower trophic levels, the compound may biomagnify up through the food web causing 

predators at higher trophic levels to contain a high burden of pollutants (Suedel et al., 

1994) (Fig 1). 
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Figure 1. Schematic illustration of bioaccumulation and biomagnification of lipophilic 
environmental contaminants in organisms. Illustration source: modified version from 
Alexander Klevedal Madsen 2016. 

There are many POPs (e.g., Aldrin, Mirex, DDT, Dioxins, and PCBs etc.) that after 

decades of commercial use were shown to cause averse toxic effects to organisms 

(including humans) by being either carcinogenetic, teratogenic, or exhibiting 

endocrine disrupting properties that cause damage to the immune-, nervous-, or 

reproduction systems (Bertazzi et al., 1998; Casals-Casas and Desvergne, 2011; 

Darnerud, 2003; Fisher, 1999; Fonnum et al., 2006; Fry, 1995; Organization, 2010; 

Tanabe, 2002; Tocher, 2003). Even though the production and use of several known 

toxic POPs have been banned or phased out, many of them can still be found in the 

environment today (Karl and Lahrssen-Wiederholt, 2009). Examples of such legacy 

POPs are “the dirty dozen” (Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, 

Hexachlorobenzene, Mirex, Toxaphene, PCB, Dioxin, and Furans) that were defined 

for global elimination or strict regulations by the Stockholm Convection on Persistent 

Organic Pollutants in 2004 (UNEP, 2001). In 2009, additional POPs were added to 

the Stockholm Convection’s list of elimination or strict regulation, “the nasty nine” 
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(Alpha-hexachlorocyclohexane, Beta-hexachlorocyclohexane, Lindane, Chlordecone, 

HEXAbronobiphenyl (HBB), Octabromodiphenyl ether (OBDE), Pentabromodi- 

phenyl eter (PBDE), Pentachlorobenzene (PeCB), and perfluorooctanesulfonic acid 

(PFOS)), followed by the addition of “Evil endosulfan” to the list in 2011 (UNEP, 

2011). Another agreement aiming to prevent dumping of pollution from offshore and 

land-based sources into the marine environment is the Convention for the Protection 

of the Marine Environment of the NE Atlantic (OSPAR Convention), which was 

ratified in 1998.  

 

Perfluorinated compounds (PFCs) such as PFOS, as well as perfluorooctanoic acid 

(PFOA, currently under review by the Stockholm convention) are of high interest in 

this thesis due to their properties and characteristics. PFCs consist of hydrophobic 

fluorinated carbon backbones of different lengths and a hydrophilic functional group 

(Surma and Zieliński, 2015). The high-energy bonds between the carbons and 

fluorines make them resistant against abiotic and biotic degradation (Poothong et al., 

2012). Martin et al. (2004) found that mammals and fish at higher trophic levels in the 

Canadian arctic food web contained higher concentrations of the fluorosurfactant 

PFOS than mammals feeding at lower trophic levels. Even though the PFOS 

concentrations of mammals living in the arctic were not as high as in the same species 

living at mid-latitude regions of USA, PFOS concentrations in arctic mammals were 

still measurable. Thus, showing that PFOS is a contaminant that both bioaccumulate 

and biomagnifies, and that somehow have ended up in remote arctic areas far from its 

source of release. It is difficult to assess how much PFOS that is directly released to the 

environment since PFOS can also result from degradation of several precursors and 

PFOS-related compounds (Lau et al., 2007; Moore et al., 2003). Due to the low 

volatility of PFOS and PFOAs, long-range transport in their gas phase via air is 

unlikely (Lau et al., 2007; Martin et al., 2002). It is hypothesized that precursors and 

perfluorinated-related compounds exhibiting higher volatility are undertaking long-

range transport, and when deposited, they are broken down into PFOS and PFOA 

through abiotic (e.g., hydrolysis and photolysis) and biotic (e.g., microorganisms) 

degradation (Lau et al., 2007; Renner, 2001; Wallington et al., 2006). PFCs have been 

detected in the blood of Baltic cod, and liver of Atlantic cod along the Norwegian 

coast (Falandysz et al., 2006; Falandysz et al., 2007; Valdersnes et al., 2017).  
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1.2.2 Emerging Environmental Contaminants 

International regulations and measures taken to lower the production and release of 

POPs have reduced their presence in biota in and around the NE Atlantic, especially 

in Polar and Arctic regions (Vorkamp and Rigét, 2014). However, it is continuously 

being produced new chemicals, where many are intended as substitutes for chemicals 

that have been banned after proven toxic to organisms. Unfortunately, many of these 

new chemicals exhibit similar characteristics as those found in other POPs. Currently, 

both new and previously undetected chemicals are emerging in environmental 

compartments in concerning concentrations (Bao et al., 2015; Vorkamp and Rigét, 

2014), including in Atlantic cod (Herzke et al., 2013; Warner et al., 2014). 

Importantly, the toxicological data we possess of these emerging and far less 

characterized contaminants is still incomplete (e.g., transport potential, persistence, 

and toxicity) (Vorkamp and Rigét, 2014). Many of the emerging contaminates are still 

produced and utilized today and can be found in currently used pesticides (e.g., 

chlorpyrifos), flame retardants (e.g., 2,3-bibromopropyl-2,4,6-tribromophenyl ether 

(DPTE)), and “down the drain chemicals” such as pharmaceuticals and compounds 

found in personal care products (e.g., siloxanes and phthalates). Many anthropogenic 

chemical ends up in aquatic environments (Clark et al., 1989), so to assume that 

species living in, or close to, marine and limnic habitats are suffering increased risk of 

exposure is not farfetched. This demands for research to bridge the gap in knowledge 

needed to guide regulatory authorities to where action is needed, and where strict 

regulation of certain chemicals are reqired in order to protect marine nature and 

wildlife. Choosing Atlantic cod as a model species is a stratedgic choise. Its position in 

the trophic levels makes it highly ecologically relevant; both as a marine top predator, 

and at the same time a pray in the marine/terrestrial food web where it’s prayed upon 

by marine mammals and birds (Fig 1).  

1.3 Atlantic Cod as a Model Species  

Atlantic cod is a common teleost in the North Atlantic Ocean with several populations 

distributed from east to west (Fig 2). The Norwegian fisheries are dependent on the 

cod stocks inhabiting the NE Atlantic. These stocks are separated according to their 

geographic distribution with 1) the Northeast arctic cod residing within the Barents 

Sea, 2) the North Sea cod residing in the North Sea, Skagerrak, and the eastern part 

of the English channel, and 3) the costal cod inhabiting costal areas of the Norwegian 
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Sea and along Norwegian fjords, where the environmental heterogeneity has given 

rise to several local subpopulations along the coastline. The Northeast arctic cod is the 

worlds largest cod population and influences the structure and function of the arctic 

ecosystem. In the Barents Sea it is one of the main piscivores predating on both 

capelin and herring, in addition it is also prayed upon by harp seals (Pagophilus 

groenlandicus) and minke whales (Balaenoptera acutorostrata) (Link et al., 2009).  

 

Atlantic cod is used as a bioindicator species to monitor the presence of pollutants in 

the environment (OSPAR). In addition to legacy contaminants such as arsenic (As), 

mercury (Hg), cadmium (Cd), led (Pb), dioxins, PCBs, alkylphenols (AP) and 

polyaromatic hydrocarbons (PAH) (Bakke et al., 2013; Julshamn et al., 2013a; 

Julshamn et al., 2013b; Julshamn et al., 2013c), there is found an increasing number 

of structurally diverse emerging environmental contaminants in the liver tissue of 

Atlantic cod, including polybrominate diphenyl ethers (PBDEs) (Julshamn et al., 

2013a), perfluorinated alkylated substances (PFASs), brominated flame retardants 

(BFRs), chlorinated paraffins (CPs) (Herzke et al., 2013), siloxanes (Schlabach et al., 

2007; Warner et al., 2010), phthalates, and organophosphorus flame retardants 

(PFRs) (Evenset, 2009; Green et al., 2015), as well as ingestion of microplastics (Bråte 

et al., 2016).  

 

Atlantic cod distribution 

Figure 2. Geographic distribution of Atlantic cod throughout the Atlantic Ocean. Map 
source: modified version from Aquamaps (2015). 
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As in other vertebrates, the detoxification of xenobiotics (such as pollutants) in 

Atlantic cod occurs mainly in the liver through three phases in the biotransformation 

pathway. Phase I contributes to make the xenobiotics more hydrophilic by 

introducing or revealing a hydrophilic group (-OH, - NH2, -SH, or -COOH) through 

oxidation, hydrolysis, or reduction. If phase I modifications are not sufficient to allow 

elimination of the xenobiotic compound, phase II reactions further increases the 

polarity of the xenobiotic by adding a larger polar group through conjugation 

reactions with specific enzymes (e.g. attachment of glutathione by glutathione S-

transferase). Phase III is the final step in the biotransformation pathway, were the 

metabolites of the xenobiotics are transported out of the cell by membrane bound 

efflux transporter proteins. Cytochrome P-450 mono-oxygenase enzymes are crucial 

in phase I reactions, and have to some extent been characterized in Atlantic cod 

(Goksøyr, 1985; Goksøyr, 1995; Goksøyr et al., 1987; Goksøyr and Husøy, 1998; 

Goksøyr et al., 1986; Karlsen et al., 2012). However, the knowledge of how each 

contaminant alone, and in mixtures, affects the biology of the Atlantic cod is far from 

completely understood. The publishing of the Atlantic cod genome in 2011 (Star et 

al., 2011) made it possible to conduct large-scale toxicogenomic studies. Genomic and 

proteomic studies have been initiated where the ultimate goal is to obtain 

comprehensive data on toxicological responses to toxic compounds in Atlantic cod. 

(Bizarro et al., 2016; Eide et al., 2014; Karlsen et al., 2011; Yadetie et al., 2016; 

Yadetie et al., 2014; Yadetie et al., 2013; Yadetie et al., 2017). 

1.4 Peroxisome Proliferator-Activated Receptors Role in Lipid 

Metabolism 

1.4.1 Peroxisome Proliferator-Activated Receptors 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription 

factors that are members of the superfamily of nuclear receptors (NRs). Their 

longwinded name originates from the first discovery of a PPAR in rodents, 

demonstrating its regulation of peroxisome proliferation when activated by industrial 

chemicals. However, this was later found not to be the case for PPARs present in 

humans and primates, but still the transcription factors have kept their name despite 

being somewhat misleading and outdated. In humans and primates, it was later found 

that one of the main functions of PPARs is to regulate lipid homeostasis by controlling 

the expression of genes involved in the fatty acid utilization and storage (Colliar et al., 
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2011; Desvergne and Wahli, 1999; Georgiadi and Kersten, 2012; Kliewer et al., 

1997). In addition, it has also been shown that PPARs are involved in other cellular 

processes as well, such as glucose utilization, cell proliferation and differentiation, 

inflammatory processes, adipogenesis etc (Ferré, 2004).  

 

The varying functions of PPARs are associated to the presence of several subtypes, 

and in mammals three PPAR paralogs have been described; PPARα, PPARβ/δ, and 

PPARγ (Desvergne and Wahli, 1999). In teleosts, one ortholog of the human 

PPARβ/δ and PPARγ subtypes has been identified. However, two orthologs of the 

human PPARα subtype (i.e., PPARαa and PPARαb) appear to be present in some 

teleosts, e.g. in Japanese puffer (Fugu rubripes) (Maglich et al., 2003), green spotted 

puffer (Tetraodon nigroviridis) (Metpally et al., 2007), zebrafish (Danio rerio) (Bertrand et 

al., 2007; Tseng et al., 2011), turbot (Scophthalmus maximus) (Urbatzka et al., 2013), and 

Atlantic cod (Star et al., 2011) (Eide, 2016. The Atlantic cod (Gadus morhua) chemical 

defensome lacks a pregnane x receptor, and the phylogeny of pxr loss in fishes. 

Manuscript in prep). Allthough encoded by different genes, the PPAR subtypes share 

a high degree of sequence similarity (Desvergne and Wahli, 1999). The PPAR 

subtypes differ by their tissue distribution, ligand specificity and target genes in a 

species-specific manner. The different PPAR subtypes seem to predominate in tissues 

that reflect their different physiological functions. In mammals, PPARα is highly 

expressed in liver, heart, and muscle tissue (Ferré, 2004; Georgiadi and Kersten, 2012) 

where they are mainly, but not exclusively, involved in releasing stored energy 

through peroxisomal and mitochondrial FA catabolism (Hihi et al., 2002) (Fig 3). 

Although less studied, mammalian PPARβ/δ tissue expression appears to be 

ubiquitous (Ferré, 2004; Georgiadi and Kersten, 2012). PPARβ/δ is believed to be 

involved in balancing energy homeostasis and building muscles by e.g. releasing 

energy stored as fat in muscles while initiating fat synthesis in the liver (Wagner and 

Wagner, 2010) (Fig 3). Mammalian PPARγ is highly expressed in adipose tissue 

(Ferré, 2004; Georgiadi and Kersten, 2012) where their main role are to promote 

energy storage by lipid accumulation and adipogenesis (Hihi et al., 2002) (Fig 3). 
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Functional Domain Organization 

PPARs exhibit four distinct functional domains that are shared by nearly all nuclear 

receptors. Starting at the N-terminal region, there is a ligand-independent domain 

with transcriptional activation function (AF-1), followed by a DNA binding domain 

(DBD), a hinge region providing flexibility between the functional parts of the protein, 

and finally a ligand binding domain (LBD) that includes a dimerization interface for 

retinoid X receptor (RXR) and a ligand-dependent activation function (AF-2) at its C-

terminal region (Desvergne and Wahli, 1999; Ferré, 2004; Kota et al., 2005) (Fig 4). 

Figure 3. PPARs as metabolic regulators. Lipid and glucose homeostasis is maintained by the 
interacting roles of the three PPAR subtypes. The role of PPARγ is to regulate lipid storage and insulin 
sensitivity, while PPARα and PPARδ/β counteract by regulating the lipid utilization and distribution. 
Picture source (Nelson et al., 2008) 
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1.4.1.1 Ligand Binding and Activation of PPARs 

PPARs bind to DNA as obligate heterodimers with the RXR (Desvergne and Wahli, 

1999), and the heterodimerization is ligand-independent (Chandra et al., 2008) (Fig 

5). The PPAR:RXR heterodimer is attached to specific DNA regulatory elements 

located in the promoter region of its target genes, denoted peroxisome proliferator 

response elements (PPREs). These response elements consist of two direct repeats of 

AGGTCA spaced with a single nucleotide (Ferré, 2004). While unbound to ligands, 

PPAR:RXR bound to PPREs will repress gene transcription because corepressors are 

associatied  to the heterodimer (Den Broeder et al., 2015). Upon binding of an 

endogenous or dietary PPAR agonist (e.g., fatty acids, fatty acid derivatives, 

phospholipids, eicosanoids, and prostaglandin) or RXR agonist (9-cis-retinoic acid) a 

conformational change occur in the PPAR:RXR heterodimer causing the 

corepressors to be released and coactivators to be recruited, further facilitating the 

docking of RNA polymerase and subsequent gene transcription of target genes (Fig 5) 

(Den Broeder et al., 2015; Ferré, 2004) . 

  

Figure 4. Schematic representation of a peroxisome proliferator-activated receptor 
(PPAR). General domain organization of a nuclear receptor is indicated. Illustration made by Sofie 
Söderström. 
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Figure 5. Peroxisome proliferator-activated receptors (PPARs) regulate transcriptional 
gene activation through heterodimerization with retinoid X receptor (RXR). The 
PPAR:RXR heterodimer binds at specific DNA regulatory elements called peroxisome proliferator 
response elements (PPREs) located in the promoter region of target genes. While unbound to ligands, 
PPAR:RXR heterodimers bound to PPREs will repress transcription due to the presence of 
corepressors. The PPAR:RXR heterodimer is permissive, i.e. either a PPAR agonists (L) or RXR 
agonist (R) can activate the PPAR:RXR complex, or by both ligands simultaneously. Ligand binding 
will cause corepressors to be released and coactivators to be recruited, allowing the transcription of the 
target genes. Illustration made by Sofie Söderström. 

 

1.4.1.2 Endogenous and Dietary PPAR Ligands 
Fatty acids are not only energy storing molecules but they also regulate metabolic 

processes through hormone-like signaling for transcription factors acting as lipid 

sensors, such as PPARs (Desvergne and Wahli, 1999; Kliewer et al., 1997; Varga et 

al., 2011). The shared structure for all fatty acids are the long carbon chains having a 

methyl group at one end and a carboxyl group at the other end of the molecule (one 

carboxyl group in monocarboxylic acids and two carboxyl groups in dicarboxylic 

acids). The most common saturated fatty acids have a chain length of 12-22 carbon 

atoms (often an even number), while monounsaturated fatty acids (MUFAs) have a 

chain length of 16-22 carbon atoms (Rustan and Drevon, 2005). Polyunsaturated fatty 
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acids (PUFAs) such as omega-3- and omega-6 fatty acids have a chain length of 18-22 

carbon atoms (Holub, 2002) (Fig 6).  

 

 

Due to their relatively large ligand binding pockets, PPARs are promiscuous 

compared to many other nuclear receptors as numerous ligands can bind with 

relatively low affinity (Kliewer et al., 2000; Varga et al., 2011). Endogenous and 

dietary fatty acids, fatty acid derivatives, phospholipids, eicosanoids (e.g. 

prostaglandin) are examples of endogenous ligands for PPARs (Chakravarthy et al., 

2005; Delerive et al., 2000; Kliewer et al., 1997). MUFAs and PUFAs are more potent 

PPAR ligands than saturated FAs (Forman et al., 1997; Kliewer et al., 1997; Krey et 

al., 1997; Varga et al., 2011). Examples of eicosanoids, derived from 20 carbon long 

PUFA precursors, that are considered selective or potent agonists for human PPARs 

are 8(S)-hydroxyeicosatetraenoic acid (8(S)-HETE) for PPARα (Choi and Bothwell, 

2012; Ferré, 2004; Forman et al., 1997; Kliewer et al., 1997), 15-

hydroxyeicosatetraenoic acid (15-HETE) for PPARβ/δ (Choi and Bothwell, 2012; 

Naruhn et al., 2010), and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) for PPARγ 

(Choi and Bothwell, 2012; Diab et al., 2002; Forman et al., 1995a; Kliewer et al., 

1997; Sauer, 2015). Through in vitro transactivation assays with synthetic ligands, well-

established agonists for the different mammalian PPAR subtypes have been identified, 

including WY14643 for PPARα (Ip et al., 2004; Varga et al., 2011), GW501516 for 

PPARβ/δ (Barroso et al., 2011; Varga et al., 2011), and thiazolidinedione’s (TZDs) 

Figure 6. Fatty acids. 
Schematic illustration of 
saturated-, 
monounsaturated-, and 
polyunsaturated fatty acids.  

Picture originating from 
http://ketogenic.com/wp-
content/uploads/2017/01/Fat-
Graphic.jpg. 
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such as rosiglitazone (Rosi) for PPARγ (Higgins and DePaoli, 2010; Lehmann et al., 

1995; Sauer, 2015; Varga et al., 2011) 

1.4.1.3 Exogenous PPAR Ligands 
PPARs are normally activated by their natural ligands mentioned above. Although, in 

vitro transactivation assays have shown that several environmental contaminants are 

able to activate mammalian PPARs, such as phthalates and PFCs (Bility et al., 2004; 

Heuvel et al., 2006; Hurst and Waxman, 2003; Lapinskas et al., 2005; Shipley et al., 

2004; Takacs and Abbott, 2007; Zhang et al., 2014). Mammalian PPARs have been 

studied quite extensively, however less information is currently available about teleost 

PPARs. This study will therefore test a set of structurally diverse contaminants 

comprised of both legacy- and emerging contaminants for agonistic effects on the 

Atlantic cod PPAR receptors. Contaminants have been selected according to 

relevance in regard to their presence in the marine environment and their structural 

characteristics. Environmental contaminants resembling fatty acids could be potential 

PPAR activators, for example both PFCs and phthalate molecules contain long 

carbon chains. One study has previously shown that human PPARγ activation of 

perfluorinated carboxylic acids (PFCAs) increased with increasing carbon number up 

till C11 (Zhang et al., 2014). Another study showed mouse- and human PPARα and 

PPARγ activation of phthalates increased with increasing side-chain length of the 

molecules (Bility et al., 2004). Phthalates are not persistent in the environment and 

organisms rapidly metabolize them, however they are extensive and worldwide use in 

plastics and every day products (e.g., industrial paints, solvents, cosmetics, perfumes, 

medicines etc.), causing their continuous release and thus their prominent presence in 

the environment (Frederiksen et al., 2007). Acute or chronic exposure to exogenous 

ligands can cause an abnormal activation of the PPARs, where metabolic- or 

endocrine disruptions are possible consequences (Casals-Casas et al., 2008). For 

example, modulation of PPAR activation could disturb the regulation of their target 

genes and thus impact the lipid homeostasis.  
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1.5 Gene Reporter Assays to Study Ligand Binding and Transcriptional 

Activation 

1.5.1 Luciferase Reporter Assay (LRA) 

Luciferase reporter gene assays are established in vitro systems commonly used to study 

the function of different nuclear receptors (Bainy et al., 2013; Sotoca et al., 2010), 

including PPARs (Bility et al., 2004; Hurst and Waxman, 2003; Routti et al., 2016). 

These types of assays allow high-throughput ligand screening, and exhibit relatively 

low endogenous interference (Paguio et al., 2010). There are several types of reporter 

gene assays, and in this study a UAS/Gal4-DBD based luciferase reporter gene assay 

in a COS-7 simian kidney cell line has been established and utilized (Fig 7). In this 

system, COS-7 cells are co-transfected with a luciferase reporter gene plasmid 

harbouring a Gal4 upstream activation sequence (Gal4-UAS) that control the 

expression of a luciferase-encoding gene (Forman et al., 1995b), a β-galactosidase-

encoding control plasmid (pCMV-β-Gal) that constitutively express β-galactosidase 

(through CMV promoter) (Blumberg et al., 1998), and an effector plasmid. The 

effector plasmid will constitutively express (through CMV promoter) the nuclear 

receptor-LBD of interest fused to the DBD acquired from Gal4; a transcription 

activator protein derived from yeast. When a ligand binds the LBD of the fusion 

protein, the protein will undergo a conformational change and become activated. 

This activation will make the fusion protein bind to the Gal4-UAS on the reporter 

plasmid via the Gal4-DBD. Thereby, the assembly of the transcription complex and 

docking of RNA polymerase will be facilitated, which in turn will initiate the 

transcription of the luciferase-encoding gene. After addition of luciferin, the translated 

luciferase protein will catalyse the oxidation of luciferin into the luminescent product, 

oxyluciferin. Ligand activation can thus be measured as luciferase activity, 

quantifiable as the amount of light (550-570 nm) emitted from the reaction it catalyzes 

(Fig 7).  
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Figure 7. Luciferase reporter gene assay. The assay is performed by co-transfecting an effector 
plasmid containing the Nuclear Receptor (NR)-Ligand Binding Domain (LBD) fused to the Gal4-DNA 
binding domain (DBD) into COS-7 cells, together with a luciferase reporter gene plasmid. Luciferase 
will be expressed when the ligand-NR-LBD-Gal4-DBD fusion protein binds to the Gal4-Upstream 
activation sequence (UAS) in the reporter plasmid. Ligand activation of NR is measured as luciferase 
activity that can be quantified by the amount of light emitted during the conversion of luciferin into 
oxyluciferin (550-570 nm). Illustration source: modified version from Alexander Klevedal Madsen 
2016. 

 

The activity of β-galactosidase, measured at 420 nm, is used to normalize transfection 

efficiency between experimental replicates and experiments. By providing the β-

galactosidase with the substrate ONGP (ortho Nitrophenyl-β-galactoside), it will 

catalyze the hydrolysis of ONGP into galactose and ONP (o-nitrophenol). ONP 

exhibits a yellow color and can be quantified by measuring the absorbance at 420 nm 

(Formula 1). 

 

 

 

 

 
 
  

(1) 

β-galactosidase 

Galactose  +     ONP ONPG 
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1.6 Objectives 

Due to its habitats near offshore oil platforms, petroleum recovery facilities, as well as 

coastal industries and municipal wastewater treatment plants, Atlantic cod must cope 

with both legacy and emerging environmental contaminants. By studying how the 

Atlantic cod PPARs can bind and become activated by contaminants, especially by 

the emerging and far less documented ones, the main objective with this thesis is to 

contribute with new baseline data that can give insight into how the regulation of 

lipid- and carbohydrate metabolism in Atlantic cod can be modulated by 

environmental pollutants. This will be done by: 

 

• Isolate and clone the hinge + ligand-binding domain (LBD) of the genes 

encoding PPARαa, PPARαb, PPARβ/δ, and PPARγ from Atlantic cod. 

• Phylogenetically examine and validate their identity as cod PPAR 

hinge+LBDs by comparison with PPAR-encoding genes from other relevant 

species. 

• Examine Atlantic cod PPAR activation by using a luciferase gene reporter 

assays, i.e. to study their abilities to bind and become activated by a selected 

set of pollutants representing a structurally diverse group of compounds, 

including both legacy and emerging contaminants found in the NE Atlantic. 
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2 MATERIALS 

2.1.1 List of Chemicals 
Table 1. Chemicals and reagents utilized in the thesis.  

Name  CAS # Supplier  

10x Loading buffer  TaKaRa 

2-log DNA Ladder   New England Biolabs  

5-CFDA-AM (5-Carboxyfluorescein Diacetate, 

Acetoxymethyl Ester) 

124412-00-6  Thermo Fisher Scientific  

Acetic acid 64-19-7 Sigma-Aldrich 

Agar Agar  9002-18-0  Merck  

Agarose 9012-36-6 Sigma-Aldrich 

Ampicillin sodium salt 69-52-3 Sigma-Aldrich 

ATP (Adenosine 5'-trifosfat dinatrium salthydrat) 34369-07-8  Sigma-Aldrich  

Boric acid 10043-35-3  Sigma-Aldrich 

Bovine Serum Albumin (BSA) 9048-46-8  Sigma-Aldrich 

CHAPS hydrate 331717-45-4 Sigma-Aldrich 

Chloroform 67-66-3 Sigma-Aldrich 

Coenzyme A  18439-24-2 Fisher Scientific 

Coomassie Brilliant Blue R250 staining solution  Bio-Rad 

D-Luciferin Firefly 115144-35-9 Biosynth® 

DDT (DL-Dithiothreitol) 3483-12-3 Sigma-Aldrich 

DMSO (Dimethyl sulfoxide) 67-68-5 Sigma-Aldrich 

Dulbecco’s Modified Eagle’s Medium  

(high glucose, with phenol red) 

 Sigma-Aldrich 

Dulbecco’s Modified Eagle’s Medium  

(high glucose, without phenol red) 

 Sigma-Aldrich 

EDTA (Ethylenediaminetetraacetic acid disodium 

salt dehydrate) 

6381-92-6 Sigma-Aldrich 

EGTA (Ethylene glycol-bis(2-aminoethylether)-

N,N,N’,N’-tetraacetic acid 

67-42-5 Sigma-Aldrich 

Ethanol 64-17-5 Sigma-Aldrich 

Fetal Bovine Serum (FBS)  Sigma-Aldrich 

GelRed  Botium 

Glycerol 56-81-5 Sigma-Aldrich 

Isooctane 540-84-1 Merck Millipore 
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Isopropanol 67-63-0 Sigma-Aldrich 

L-Glutamine 56-85-9 Sigma-Aldrich 

L-α-Phosphatidylcholine 8002-43-5 Sigma-Aldrich 

Magnesium carbonate hydroxide pentahydrate 56378-72-4 Sigma-Aldrich 

Magnesium chloride hexahydrate 7791-18-6 Sigma-Aldrich 

Magnesium sulfate heptahydrate 10034-99-8 Sigma-Aldrich 

Methanol 67-56-1 Sigma-Aldrich 

ONPG (2-Nitrophenyl β-D-galactopyranoside) 369-07-3 Sigma-Aldrich 

Opti-MEM. I Reduced Serum Medium  Gibco™ 

Penicillin-Streptomycin  Sigma-Aldrich 

Phosphate-buffered saline (PBS) 10X  Sigma-Aldrich 

Pierce™ 660nm Protein Assay Reagent  Thermo scientific 

PMSF (Phenylmethanesulfonyl fluoride) 329-98-6 Sigma-Aldrich 

Potassium chloride 7447-40-7 Sigma-Aldrich 

Precision Plus Protein™ Kaleidoscope™ 

Prestained Protein Standards 

 Bio-Rad 

Resazurin sodium salt 62758-13-8 Sigma-Aldrich 

SOC Outgrowth media   New England Biolabs 

Sodium chloride 7647-14-5 Merck Millipore 

Sodium hydroxide 1310-73-2 Merck Millipore 

Sodium phosphate dibasic dihydrate 10028-24-7 Sigma-Aldrich 

Sodium phosphate monobasic monohydrate 10049-21-5 Merck Millipore 

Sodium pyruvate 113-24-6 Sigma-Aldrich 

TransIT®-LT1  Mirus Bio LLC 

TRI Reagent®  Sigma-Aldrich 

Tricine 5704-04-1 Sigma-Aldrich 

TriReagent (T9424) Sigma-Aldrich 

Triton® X100 9002-93-1 Sigma-Aldrich 

Trizma® base 77-86-1 Sigma-Aldrich 

Trizma® phosphate dibasic 108321-11-5 Sigma-Aldrich 

Trypan Blue solution 0.4%  72-57-1 Sigma-Aldrich 

Trypsin-EDTA Solution 1X  Sigma-Aldrich 

Trypton plus 91079-40-2 Sigma-Aldrich 

Yeast extract  Fluka 

β-Merkaptoethanol 60-24-2  Sigma-Aldrich 
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2.1.2 List of Equipment  
Table 2. Listing of equipment and instruments utilized in the thesis. 

Instrument  Application Supplier  

Bürker haemocytometer Cell counting Marienfeld 

ChemiDocTM XRS+ System  Gel scan Bio-Rad 

DOPPIO Thermal Cycler PCR Thermo Cycler VWR 

EnSpire 2300 Multilabel Reader Plate reader PerkinElmer 

G:BOX Gel doc imaging system Syngene 

HS 501 Digital Platform shaker IKA-Werke 

NanoDrop 1000 Spectrophotometer Thermo Scientific 

PowerPac™ HC High-current power supply Bio-Rad 

Thermomixer compact Heatblock Eppendorf 

Z 216 MK microliter centrifuge Centrifuge Hermle 

 

2.1.3 List of Enzymes 
Table 3. Listing of enzymes utilized in the thesis. 

Enzymes Application Supplier  

BamHI Restriction endonuclease  TaKaRa 

EcoRI Restriction endonuclease  TaKaRa 

PrimeSTAR® GXL DNA polymerase PCR TaKaRa 

SuperScript® III RT cDNA synthesis Invitrogen 

T4 DNA ligase Ligation TaKaRa 

 

2.1.4 List of Kits 
Table 4. SuperSignal West Pico Chemiluminescent Substrate 

Kit Supplier  

NucleoBond® Xtra Midi plasmid purification kit Macherey-Nagel 

NucleoSpin® Gel and PCR Clean-up kit Macherey-Nagel 

NucleoSpin® Plasmid EasyPure ki Macherey-Nagel 

StrataClone Blunt PCR Cloning Kit Agilent 

SuperSignal West Pico Chemiluminescent Substrate Thermo Scientific 

 

  



Materials 

	 20	

2.1.5 List of Primers 
Table 5. Primers designed to amplify and clone the hinge region and ligand binding 
domain (LBD) of Atlantic cod PPARs 

ID Primer name  Sequence (5’ à 3’) 

MT993 PPARa-1 Fwd EcoRI gaattcCAGTCGGAGAAACAGAGGTTGAAG 

MT934 PPARa-1 Rev BamHI ggatccTCAGTACATGTCCCTGTAAATCTCTTGC 

MT935 PPARa-2 Fwd EcoRI gaattcCAGTCGGAGAAGCTGAAGCTGA 

MT936 PPARa-2 Rev BamHI ggatccTCAGTACATGTCACGGTAGATCTCC 

MT937 PPARdb COD Fwd EcoRI gaattcTATGGACGCATGCCTGAAG 

MT938 PPARdb COD Rev BamHI ggatccCTAGTACATGTCTTTGTAGATCTCCTGC 

MT1075 PPARg COD Fwd EcoRI gaattcCTCCTCTACGACTCCTAC 

MT1076 PPARg COD Rev BamHI ggatccCTAATACAAGTCCTTCAGG 
Lowercase indicate the restriction site for EcoRI in forward primer and for BamHI in reverse primer. 
 
Table 6. Plasmid specific primers used for PCR colony screening and sequencing  

ID Primer name  Sequence (5’ à 3’) 

 pSC-B Fwd (T3) AATTAACCCTCACTAAAGGGA 

 pSC-B Rev (T7) GTAATACGACTCACTATAG 

MT1077 pCMX Fwd TGCCGTCACAGATAGATTGG 

MT1078 pCMX Rev ATTCTCTCTAGGTAGTTTGTCCA 
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2.1.6 List of Software and Online Tools 
Table 7. Software and Online Tools utilized in this thesis 

Software  Application Provider 

ApE- A plasmid Editor v 2.0.47 Primer evaluation (Davis, 2012) 

Chromato-vue TM-20 transilluminator Agarose gel visualization UVP, San Gabriel 

Clustal Omega Sequence alignments EMBL-EBI 

Ensembl Genome database (Cunningham et al., 2014) 

Excel 2011 Data treatment and statistics Microsoft 

Jalview2.9.0b2 Visualization of alignments (Waterhouse et al., 2009) 

Maga 6.06 Phylogenetic analyzes (Tamura et al., 2013) 

Multiple Primer Analyzer Primer evaluation ThermoFisher 

OligoEvaluator Primer evaluation Sigma-Aldrich 

PowerPoint  Figures Microsoft 

Prism 6 Figures GraphPad 

UniProt Protein database (Consortium, 2014) 

ExPASy Translate tool Sequence translation SIB Bioinformatics 

Resource Portal 

ExPASy Compute pl/Mw tool Comput. of theoretical Mw SIB Bioinformatics 

Resource Portal 

 

2.1.7 List of Cell Lines  
Table 8.Cell lines utilized in this thesis 

Cell line Application 

COS-7 cells  Eukaryote expression (African green monkey) 

StrataClone Solo Pack competent cells Prokaryote cloning (E. coli) 

 

2.1.8 List of Vectors and Plasmids 
Table 9.Vectors used for cloning and expression 

Vector/ plasmid Application 

pSC-B-amp/kan Prokaryote cloning vector 

pCMX-Gal4-DBD Eukaryote expression vector in LRA 

Mh(100)x4tk luc- Reporter plasmid in LRA 

pCMV-β-Gal Control plasmid in LRA 
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2.1.9 Growth Media 

2.1.9.1 Bacterial Growth Media 
Table 10. Bacterial growth media - Lysogeny broth (LB) 

Component LB-Agar 

(agar plates) 

LB-Media 

Tryptone 10 g/L 10 g/L 

Yeast extract 5 g/L 5 g/L 

Sodium chloride  10 g/L 10 g/L 

Agar-agar 15 g/L - 

Ampicillin i100 mg/L - 
i Added after autoclaving at 121 °C for 30 minutes. 
 

2.1.9.2 Cell Freezing Media 
Table 11. Freezing media for storage of COS-7 cells 

Component Concentration 

Dulbecco's modified Eagle medium (DMEM) with phenol red 1X 

Fetal bovine serum (FBS) 10 % 

L-glutamate 4 mM 

Sodium-pyruvate 1 mM 

Penicillin-Streptomycin  100 U/mL 

Dimethyl sulfoxide (DMSO) 5 % 

 

2.1.9.3 Cell Growth Media/ Cell Growth Media Used During Exposure 
Table 12. Cell growth media/ cell growth media used during exposure of COS-7 cells 

Component Concentration 
iDulbecco's modified Eagle medium (DMEM) 1X 
iiFetal bovine serum (FBS) 10 % 

L-glutamate 4 mM 

Sodium-pyruvate 1 mM 

Penicillin-Streptomycin  100 U/mL 
i Cell growth media: DMEM with phenol red. Cell growth media used during exposure: DMEM without phenol red. 
ii Super stripped FBS was used in the exposure media.  
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2.1.10 Buffers 

2.1.10.1 LRA 
Table 13. Cell lysis buffer (1X) 

Component  Concentration 

Tris-PO4 (pH 7.8) 25 mM 

Glycerol 15 % 

CHAPS 2 % 

L-α-Phosphatidylcholine 1 % 

BSA 1 % 

 
Table 14. β-galaktosidase base buffer (1X) 

Component  Concentration 

Na2HPO4 60 mM 

NaH2PO4 40 mM 

KCl 10 mM 

MgCl2 1 mM 

 
Table 15. Luciferase base buffer (4X, pH 7.8) 

Component  Concentration 

Tricine 80 mM 

(MgCO3)4 • Mg(OH)2 • 5H2O 4.28 mM 

EDTA 0.4 mM 

MgSO4 10.68 mM 

 

2.1.10.2 Cell Viability 
Table 16. Triton lysis buffer 

Component  Concentration 

Tris-HCl (pH 7.4) 25 mM 

NaCl 150 mM 

EDTA 1 mM 

Triton X-100 1 % 

Glycerol 5 % 
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2.1.11 SDS-PAGE 

2.1.11.1 12 % Resolving Gel 
Table 17. Protocol for 10 mL 12 % resolving gel  

Component  Concentration 

Tris-HCl (pH 8.8) 375 mM 

Acrylamide/bisacrylamide 12 % 

SDS 0.1 % 

Ammonium persulfate (APS) 0.1 % 

N,N,N’,N’-Tetramethylethane-1,2-diamine (TEMED) 0.1 % 

 

2.1.11.2 4 % Stacking Gel 
Table 18. Protocol for 5 mL 4 % stacking gel  

Component  Concentration 

Tris-HCl (pH 6.8) 125 mM 

Acrylamide/bisacrylamide 4 % 

SDS 0.1 % 

Ammonium persulfate (APS) 0.1 % 

N,N,N’,N’-Tetramethylethane-1,2-diamine (TEMED) 0.2 % 

 

2.1.11.3 1X SDS-PAGE-Running Buffer 
Table 19. Protocol for 10X running buffer for SDS-PAGE  

Component  Concentration 

Tris 25 mM 

Glycine 192 mM 

SDS 0.1 % 
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2.1.12 Coomassie Brilliant Blue & WB  

2.1.12.1 Staining/Destaining 
Table 20. Coomassie Brilliant Blue R250 staining and destaining solutions 

 Staining solution Destaining solution 

Component  Concentration Concentration 

Ethanol 40 % 40% 

Acetic acid 10 % 10 % 

Coomassie Brilliant Blue R250 0.1 % - 

 

2.1.12.2 1X Blotting Buffer 
Table 21. Protocol for SDS-PAGE blotting buffer  

Component  Concentration 

Tris 25 Mm 

Glycine 192 mM 

Methanol 20 % 

MilliQ - 

 

2.1.12.3 5X Tris Buffer Saline (TBS) (pH 7.5) 
Table 22. Protocol for 5X TBS  

Component  Concentration 

Tris 24 g 

NaCl 292.5 g 

MilliQ 2000 mL 

pH adjusted to 7.5 using 6 M HCl 
 

2.1.12.4 0.05 % TBS-Tween 
Table 23. Protocol for 0.05 % TBS-tween  

Component  Concentration 

5X TBS (Table 14) 1X 

Tween 20 0.05 % 

MilliQ - 
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2.1.12.5 5 % Dry Milk 
Table 24. Protocol for 5 % dry milk  

Component  Concentration 

Dry milk 6.25 g 

TBS-tween (Table 15) 125 mL 

 

2.1.12.6 5X SDS-PAGE Sample Buffer (5XSB) 
Table 25. Protocol for denaturing sample buffer used in SDS-PAGE 

Component  Concentration 

TrisHCl (pH 6.8) 250 mM 

SDS 10 % 

Glycerol 30 % 

β-Merkaptoethanol 5 % 

Bromophenol blue 0.02 % 
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2.1.13 List of Ligands 
Table 26. Ligands tested or used as agonists in this thesis  

Ligand  Class Structure 

PFOA (Perfluorooctanoic acid) Fluorosurfactant 

 

PFNA (Perfluorononanoic acid) Fluorosurfactant 

 

PFUnDA (Perfluoroundecanoic acid) Fluorosurfactant 

 

PFOS (Perfluorooctanesulfonic acid) Fluorosurfactant 

 

PFHxS (Perfluorohexanesulfonic acid) Fluorosurfactant 

 

DEHP (Di-2-ethylhexyl phthalate) Phthalate 

 

DiDP (Di-isodecyl phthalate) Phthalate 
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MBzP (mono-Benzyl phthalate) 

 

Phthalate 

(metabolite) 

 

MBP (mono-Butyl phthalate) 

 

Phthalate 

(metabolite) 

 

Chloropyrifos Pesticide 

 

Endosulfan Pesticide 

 

DPTE (2,3- dibromopropyl-2,4,6-

tribromophenyl ether) 
Brominated flame retardant 

 

D4 (Octamethylcyclotetrasiloxane) PPCPs 

 

D5 (Decamethyl-cyclopentasiloxane) PPCPs 

 

PCB 153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Organochlorine 
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WY14643 PPARα agonist 

 

GW501516 PPARβ/δ agonist 

 

TTA (Tetradecylthioacetic acid) Synthetic fatty acid 

 
 

1-triple-TTA  

(2-(tridec-12-yn-1-ylthio)  acetic acid) 

 

Synthetic fatty acid  

Rosi (Rosiglitazone) PPARγ agonist  

 

TBBPA (Tetrabromobisphenol A) Brominated flame retardant 

 
All ligands were bought from Sigma-Aldrich, apart from TTA and its derivatives that were kindly provided by Haukeland 
University Hospital in Bergen, Norway.  
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3 METHODS 

3.1 Atlantic Cod  

Atlantic cod was acquired from the Institute of Marine Research (IMR)’s research 

station at Austevoll (Bergen, Norway). Cod were kept at ILAB (University of Bergen) 

in a 500 L reservoir with circulating seawater of 8 °C. The light/dark cycle was 12 

hours dark and 12 hours light, and the cod were fed daily. The cod used in this study 

was a female that weighed 466 g. 

3.2 RNA Extraction from Atlantic Cod Tissue 

The cod was put to death by a blow to the head and subsequent severing of the spinal 

cord. Brain, heart, kidney, liver, muscle, and gill tissues were immediately harvested, 

and processed with TRI Reagent® (Sigma-Aldrich) according to the manufactures 

instruction; a liquid-liquid extraction technique revised from the work done by others 

(Aviv and Leder, 1972; Chomczynski, 1993; Chomczynski and Mackey, 1995; 

Louveau et al., 1991). The TRI Reagent contains phenol and guanidinium 

isothiocyanate, causing biological material to dissolve and protein to concurrently 

denaturate, while RNA remains intact through inhibition of RNase activity. Total 

RNA (totRNA) was extracted from the cod tissue by thoroughly homogenizing each 

tissue sample in 1 mL TRI Reagent per 100 mg tissue using a pellet pestle. The 

samples were then phase-separated by addition of chloroform and subsequent 

centrifugation using a Z 216 MK microliter centrifuge (HERMLE), leaving RNA in 

the upper aqueous phase, DNA in the interphase, and proteins in the lower organic 

phase. The aqueous phase containing the RNA could then carefully be recovered with 

a pipette, and further purified by precipitation by adding 0.5 mL 100 % isopropanol 

per 1 mL TRI Reagent used and subsequent centrifugation. The RNA pellet was 

washed with 75 % ethanol three times before air-dried for 10 minutes, and finally 

resuspended in 50 μL DEPC-treated water (0.1 %) and incubated at 60 °C using a 

Thermomixer compact (eppendorf) for 15 minutes. The concentration and purity of 

the extracted totRNA was measured spectrophotometrically (3.3), while the RNA 

integrity was assessed with denaturing RNA gel electrophoresis in TBE agarose gels 

(3.4). 
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3.3 Spectrophotometric Measurements - NanoDrop 

The concentration (ng/μL) and purity (A260/280, A260/230) of RNA and DNA (including 

plasmids) prepared throughout this study were measured spectrophotometrically with 

a NanoDrop 1000 (Thermo Scientific). RNA and DNA have absorbance maximum at 

260 nm, while proteins have an absorbance maximum at 280 nm. The ratio in 

absorbance between these wavelengths is commonly used to assess purity of the 

nucleic acid preparation; where RNA is considered pure at A260/280 ~ 2.0, and DNA 

at A260/280 ~ 1.8. A260/230 is also calculated, since absorbance at 230 nm may indicate 

contamination of salts and certain solvents, e.g. phenol. The sample would be 

considered free from such contamination when A260/230 ~ 2.0-2.2.  

3.4 Agarose Gel Electrophoresis 

Agarose gel electrophoresis (AGE) was used to separate and analyze nucleic acid 

molecules (i.e., RNA, amplicons and plasmids). The current used to create the 

electrical field in the electrophoresis is mainly carried by the ions in the running 

buffer. Since the agarose gel is prepared in the same buffer, current will also run 

through the gel and cause migration of the negatively charged nucleic acid towards 

the anode. The percentage of agarose in the gel will determine its density, and hence 

the surface resistance acting on the migrating nucleic acids. The separation of the 

nucleic acids will therefore depend on their shape and size. Nucleic acid samples that 

were separated and analyzed with AGE in this study were prepared with a 10X 

loading dye before loaded into the wells in the agarose gel. This loading dye contains 

two different dyes i.e., xylene cyanol FF and bromophenol blue. When run on a 0.5X 

TBE agarose gel, bromophenol blue migrates approximately equivalent to an 300 bp 

linear double stranded nucleic acid molecule, and xylene cyanol FF equivalent to an 

4000 bp linear double stranded nucleic acid molecule (Kumar and Garg, 2005), thus 

allowing approximate visual tracking of the nucleic acid’s migration and separation. 

In addition, the loading dye also contains glycerol that will increase the density of the 

nucleic acid samples and thereby reduce dispersion. In this study, all gels were made 

with 0.7 % agarose and 0.5X TBE, and nucleic acids were stained with GelRed 

(Biotium). A 2-log DNA Ladder was used as a molecular weight standard, and the 

running conditions were set to 110 V for 25 minutes using a PowerPac™ HC (Bio-

Rad). The nucleic acids separated on the gels were visualized with UV-light and 

photographed using a G:BOX (Syngene). 
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3.4.1 Denaturing RNA Electrophoresis in TBE Agarose Gels 

The highest percentage (>80 %) of purified totRNA is comprised of ribosomal RNA 

(rRNA), predominantly the 28S and 18S rRNA subunits (in a ~2:1 ratio). Messenger 

RNA (mRNA) species only makes out approx. 1-3 % of the totRNA and is thus 

difficult to visualize on agarose gels. Instead, distinct bands representing the 28S and 

18S rRNA after separation of total RNA on agarose gels are conventionally 

considered to reflect the integrity of mRNA species as well. Thus, RNA quality of 

each sample were assessed by separating 200 ng of totRNA with 0.5X TBE agarose 

gel electrophoresis (3.4) under denaturing conditions, i.e. secondary structures 

(internal hairpin loops) were disrupted by chemical (formamide, 50 % v/v) and 

thermal (65 °C, 5 minutes) denaturation prior to the electrophoresis. RNA samples 

were thereafter stored at -80 °C until further use. 

3.5 Synthesis of Complementary DNA from Total RNA - Reverse 

Transcription 

Single stranded complementary DNA (cDNA) was synthesized from the previously 

extracted totRNA, using SuperScript® III RT (Invitrogen). This reverse transcriptase 

(RT) enzyme uses mRNA transcripts as templates, and together with suitable 

oligonucleotide primers, it synthesizes cDNA strands. The Oligo(dT) primers used 

were 12-18 deoxy-thymine nucleotides long; they hybridizes to the 3’ poly(A) tail of 

the mRNA transcripts, and thereby facilitating full-length cDNA synthesis. Secondary 

structures on the mRNA template could potentially lead to interruption of the 

transcription. Therefore, random hexamer primers were used in addition to 

oligo(dT)’s. Random hexamers are shorter oligonucleotides (six nucleotids long with 

random base sequences), which will bind un-specifically to the mRNA transcripts 

giving a more even coverage of the entire mRNA template. RNA/primer mixtures 

were prepared according to Table 27: 
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Table 27. RNA/primer mixture for reverse transcription 

Component  Concentration/amount 

totRNA 2 μg 

Oligo (dT)12-18 500 ng 

Random hexamers 50 pmol 

Deoxynucleosid triphosphates (dNTPs) mixture 0.5 mM 

DEPC-treated MilliQ water - 

 

The RNA/primer mixture were denatured at 65 °C for 5 minutes using a Thermo 

Cycler (DOPPIO Thermal Cycler with dual 48 well blocks, VWR). The samples were 

subsequently placed on ice for 1 minute, allowing the primers to anneal to the RNA 

templates. The RNA/primer mixtures were then supplemented with a cDNA 

synthesis mix, which was prepared in the following order (Table 28): 

 
Table 28. cDNA synthesis mix for reverse transcription 

Component  Concentration/amount 

First strand buffer (incl. MgCl2) 1X 

DDT 5 mM 

RNaseOUT™ 2 U/μL 

SuperScript III RT 10 U/μL 

 

The RNA/primer/cDNA synthesis mixtures were then further incubated in the 

Thermo Cycler at 50 °C for 50 minutes. The reaction was then terminated at 80 °C 

for 5 minutes. The mixtures were cooled on ice, before Ribonuclease H (RNase H) 

(0.1 U/ μL) was added and further incubated an additional 20 minutes at 37 °C to 

remove any excess mRNA from the mixtures and avoid RNA:DNA hybridization. 

The cDNA was then stored at -25 °C until further downstream applications. 

3.6 Isolation and Amplification of the Atlantic Cod PPARs 

Polymerase chain reaction (PCR) is an in vitro method used to isolate and amplify 

specific DNA sequences (Mullis, 1990). In this case PCR was used to isolate and 

amplify fragments of the genes encoding the four different subtypes of Atlantic cod 

PPARs, specifically the hinge region and the ligand-binding domain. This was 

achieved by using the synthesized cDNA as template and the thermostable 

PrimeSTAR® GXL DNA polymerase (TaKaRa), which is a proofreading DNA 
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polymerase producing blunt-end PCR products. The amplification reaction was 

prepared according to the manufacturers instruction (Table 29): 

 
Table 29. Reaction mixture for PCR using PrimeSTAR® GXL DNA polymerase 

Component Concentration/ amount 

cDNA as template  2 μL 

PrimeSTAR GXL buffer (with Mg2+) 1X 

dNTPs 200 μM of each 
iForward (fwd) primer 0.2 μM 
iReverse (rev) primer 0.2 μM 

PrimeSTAR® GXL DNA polymerase 1.25 U 

MilliQ water (Up to 25 μL total volume) 
iSynthetic oligonucleotide primer sequences that had been designed to amplify the Atlantic cod PPARx hinge+LBD 
(see 3.6.1 bellow). 
 

The PCR was run in thermal cycles (Table 30) using a Thermo Cycler (DOPPIO 

Thermal Cycler with dual 48 well blocks, VWR). Each cycle included three 

temperature shifts allowing three events to occur: 1) Denaturation: the temperature 

was increased to 98 °C to disrupt any hydrogen bonds between base pairs. 2) 

Annealing: the temperature were lowered to allow the primers to anneal to the 

template strands by forming hydrogen bonds, and thus specifying the location of the 

segment of interest. 3) Extension: the temperature was raised to the temperature 

optimum of the DNA polymerase, where the primer sequences facilitated the starting 

point of where the dNTPs should be assembled by the DNA polymerase, i.e. the 

primers became part of the newly synthesized strands, also allowing restriction sites to 

be introduced to the amplified Atlantic cod PPARx-hinge+LBD. 

 
Table 30. PCR thermal cycle program 

Cycle  Temperature Duration 

2 

Denaturation 98 °C 10 seconds 

Annealing 50 °C 15 seconds 

Extension 68 °C 1 minute/kb 

28 

Denaturation 98 °C 10 seconds 

Annealing i55 °C 15 seconds 

Extension 68 °C 1 minute/kb 
i Annealing temperature increased after 2 cycles to 55 °C, due to the introduction of the restriction sites in the primer ends 
increased their Tm after the 2 first cycles.  
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3.6.1 Primer Design 

The primers used to amplify the Atlantic cod PPARx-hinge+LBD was based on the 

predicted PPAR gene-encoding sequences available in the Ensembl cod genome 

database: PPARαa ENSGMOG00000005934; PPARαb ENSGMOG00000001060; 

PPARβ/δ ENSGMOG00000008225; and PPARγ ENSGMOG00000001375. 

However, the PPARγ-encoding sequence deposited in the Ensembl database was 

lacking the 3´-end of the gene-encoding sequence, and therefore had to be 

supplemented with new sequencing data provided by collaborators at CEES – Centre 

for Ecological and Evolutionary Synthesis, University in Oslo. To achive proper 

primer function, primers should be designed to meet a few favorable criteria. This 

includes: 1) Sufficient length to allow specificity to the DNA segment of interest, 

though still short enough to be able to anneal the DNA strand at annealing 

temperature. 2) In order for the temperature cycling program to work on both fwd 

and rev primer simultaneously, their guanine (G) and cytosine (C) content needs to be 

fairly similar and evenly distributed along the primers since it will affect their melting 

temperature (Tm). 3) To make the annealing of the primer to the cDNA template 

more robust, it is an advantage to give the 3’-end of the primer a GC clamp, as the 

bond between G-C is stronger than A-T. 4) To avoid formation of primer-dimers and 

hairpin structures, fwd and rev primers should exhibit low complimentary sequence to 

each other as well as not being self-complimentary. Primer-dimers and secondary 

structures may reduce the number of active primers in the amplification reaction. 

Thus, the primers designed to amplify the Atlantic cod PPARx-hinge+LBD were 

between 24-34 nucleotids long, exhibited a GC content between 47-52 %, had a Tm 

that did not differ more than 3 °C between primer-pairs, and contained one to two 

guanine or cysteine-nucleotides for clamping the 3’-ends. For constructing the Gal4-

DBD-PPARx-hinge+LBD fusion proteins, the PPARx-hinge+LBD had to be 

restriction enzyme digested from a cloning vector, and ligated into an expression 

vector. Introducing an EcoRI-restriction site to the 5’-end of the fwd primers, and a 

BamHI-restriction site to the 5’-end of the rev primers facilitated the translocation of 

the PPARx-hinge+LBD into the eukaryotic expression vector, which contained the 

same restriction sites within its multiple cloning site (MCS). The primers tendency to 

form secondary structures was assessed in silico, using the online programs 

OligoEvaluator (Sigma-Aldrich), Multiple Primer Analyzer (ThermoFisher), and ApE 

(v.2.0.47). The designed primers were ordered from Sigma-Aldrich (Table 5)  
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3.6.2 Purification of PCR Products Through Gel Extraction 

The PCR products were analyzed and separated with AGE (3.4). The DNA 

fragments were only briefly visualized with UV-light using a chromato-vue TM-20 

transilluminator (UVP, San Gabriel) to reduce the risk of causing damage to the 

DNA. The DNA fragments that corresponded to the expected sizes of the PPARx-

hinge+LBD were excised from the gel, and purified using NucleoSpin® Gel and PCR 

Clean-up kit (MACHEREY-NAGEL) according the manufacturers instructions. The 

excised gel slices were dissolved in a buffer with high ionic strength at 50 °C for 10 

minutes before centrifuged through a silica-based column in a Z 216 MK microliter 

centrifuge (HERMLE). The DNA fragments bound to the column. The column-

bound DNA was washed with an ethanolic buffer to remove impurities, and 

subsequently centrifuged dry from any residual ethanol. Purified DNA was then 

eluted in 25 μL of a slightly alkaline elution buffer with low ionic strength. The 

concentration of the gel extracted DNA was measured spectrophotometrically with a 

NanoDrop 1000 (3.3) 

3.7 Molecular Cloning 

A plasmids ability to replicate separately from bacterial chromosomal DNA was 

exploited by transforming recombinant DNA (rDNA) into a prokaryotic host cell and 

allowing it to be replicated in large amounts in vivo. rDNA was constructed in vitro by 

recombining the blunt PCR product with a blunt cloning vector, using the 

StrataClone Blunt PCR Cloning Kit (Agilent), according to a modified version of the 

manufacturers protocol. 

3.7.1 Ligation 

The PPARx-hinge+LBD was ligated into a linearized StrataClone Blunt PCR 

Cloning Vector (pSC-B-amp/kan) by forming phosphodiester bonds through 

Topoisomerase I ligase activity, creating a linear vectorori-PPARx-hinge+LBD-

vectoramp/kan (Fig 8). 
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Preparation of the ligation mixtures were made accordingly (Table 31):  

 
Table 31. Ligation mixture - StrataClone Blunt PCR Cloning Kit 

Component Volume 

StrataClone Blunt Cloning Buffer 1.5 μL 

Purified PCR product 2 μL 

StrataClone Blunt Vector Mix amp/kan 0.5 μL 

The components were added from top to bottom order, and incubated at room temperature (RT) for 5 minutes before put on 
ice. 
 

3.7.2 Transformation 

The ligation mixture containing the linear vectorori-PPARx-hinge+LBD-vectoramp/kan 

prepared in the previous step was transformed by the heat-shock procedure into 

StrataClone Solo Pack competent E. coli cells. These competent cells are transiently 

expressing Cre recombinase. The activity of this enzyme mediates the recombination 

of the linear vectorori-PPARx-hinge+LBD-vectoramp/kan into a circular plasmid (Fig 9), 

which can then be transcribed, translated, and expressed by E. coli. Transformation 

mixtures were prepared by adding 3 μL ligation mixture to 25 μL competent E. coli 

cells. To achieve an abrupt temperature change, the transfection mixtures were kept 

on ice for 20 minutes prior to the heat-shock. The heat-shock was carried out in a 42 

°C warm water bath (GD100, Grant), and the transformation was allowed to occur 

for 45 seconds before putting the transfection mixtures back on ice for 5 minutes. 

 

 

Figure 8. Linear StrataClone Blunt PCR Cloning Vector (pSC-B-amp/kan). The PCR 
products (amplicons of Atlantic cod PPARx-hinge+LBD) are ligated into the multiple cloning site 
(MCS) of the cloning vector. Source: StrataClone Blunt PCR Cloning Kit (Agilent) (MANUAL) 
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3.7.3 Plating of Transformed E. coli 

Positive transformants, i.e. E. coli that has acquired recombinant plasmid-DNA from 

the previous step, were selected for by their ampicillin (amp)-resistance provided by 

the “amp-gene” in the cloning vector. The heat-shocked cells were added 475 μL 

SOC-media and allowed an outgrowth period of 1 hour, at 37 °C and 300 rpm, 

before plated onto petri dishes with lysogeny broth (LB)-agar containing amp (0.1 

mg/mL) and incubated over night (ON) at 37 °C. 

3.8 Identifying Positive Transformants By PCR Colony Screening 

Selection of positive transformants only by ampicillin resistance does not guarantee 

that the plasmids taken up by the E. coli cells contain the insert of interest. For 

instance, the vector could have re-ligated without the insert, or have become 

contaminated with some other unwanted DNA. Single colonies of positive 

transformants were screened through colony PCR, using vector specific primers and a 

DreamTaq DNA polymerase (Thermo Scientific) to establish if the inserts are of the 

expected lengths corresponding to the PPARx-hinge+LBD. The colony PCR reaction 

mixtures were prepared according to Table 32:  

 

  

Figure 9. Circular StrataClone Blunt PCR Cloning Vector (pSC-B-amp/kan). Source: 
StrataClone Blunt PCR Cloning Kit (Agilent) (MANUAL) 
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Table 32. Reaction mixture for colony PCR using DreamTaq DNA polymerase 

Component Concentration/ amount 

Positive transformants as template  2 μL 

Taq Green Buffer 1X 

dNTPs 200 μM 

Vector specific fwd primer 0.5 μM 

Vector specific rev primer 0.5 μM 

DreamTaq DNA polymerase 0.0125 U/μL 

MilliQ water (Up to 10 μL total volume) 

 

The colony PCR was run in thermal cycles (Table 33) using a Thermo Cycler 
(DOPPIO Thermal Cycler with dual 48 well blocks, VWR). 
 
Table 33. Colony PCR thermal cycle program 

Cycle  Temperature Duration 

 Initial denaturation 95 °C 2 minutes 

35 

Denaturation 95 °C 30 seconds 

Annealing 55 °C 30 seconds 

Extension 72 °C 1 minute/kb 

 

The colony PCR products were evaluated with AGE (3.4). Positive transformants of 

interest were then inoculated under selective conditions, and plasmids were purified 

(3.9.1). The inserts of the plasmids were verified through sequencing (3.10). 

3.9 Plasmid Purification 

Depending on the requirement of downstream applications, cloning vectors were 

purified with different yields and purity levels. Minipreparation (mini-prep) is a fast 

way to purify a small amount of cloning vectors, and was used when the purpose was 

to determine if the vectors contained the PPARx-hinge+LBD insert of interest. When 

the PPARx-hinge+LBD insert was confirmed, midipreparations (midi-prep) were 

made to purify larger amounts of receptor plasmids, as well as effector- and control 

plasmids used in ligand activation analyses. In addition to providing a larger yield, 

midi-preps also generates purer preparations in contrast to mini-preps. However, the 

principles of the two isolation techniques are the same. Transformed E. coli was 

inoculated in LB-media under selective conditions (amp) ON. ON cultures were 

centrifuged the next day, and the resulting pellets were resuspended in resuspension 
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buffer containing RNase. RNaseA will, after lysis, prevent co-purification of bacterial 

RNA. The cells in the resuspension buffer were lysed by sodium dodecyl sulfate (SDS) 

/ sodium hydroxide (NaOH) lysis. SDS, which is an ionic detergent, will disrupt cell 

membranes and destabilize hydrophobic interactions, thereby preventing bacterial 

cells to keep their integrity and promote lysis. The high alkaline pH caused by NaOH 

will make some ionizable groups of protein and DNA to ionize and other to deionize, 

thus causing the DNA to denature into single strands. Hence, denatured 

chromosomal DNA, RNA and proteins together with plasmid DNA will be released 

from the cells into the supernatant (Vennison, 2010). A neutralization buffer, 

containing potassium acetate (KOAc), was added to the cell lysate. KOAc lowers the 

pH of the solution sufficiently for allowing plasmid DNA to renature. Because plasmid 

DNA is small, circular, tightly supercoiled, and topologically intertwined, it will not 

fully separate during high pH; hydrogen bonding between base pairs will be 

disrupted, though the plasmid DNA will manage to renature correctly when pH is 

lowered again, if intensity and duration of the high pH condition is not too high. 

Proteins and the larger bacterial chromosomes on the other hand, will not be able to 

renature properly. Instead, denatured bacterial chromosomal DNA, proteins, and cell 

wall debris will form hydrophobic, ionic, and hydrogen bonds with each other 

creating large aggregates that will precipitate from the solution together with 

potassium dodecyl sulfate (KDS) (Vennison, 2010), thus allowing it to be pelleted and 

removed by centrifugation. The supernatant from the cell lysate was then bound to a 

silica-based column under high ionic conditions through either centrifugation in the 

mini-prep, or by gravity flow filtration in the midi-prep. The column-bound plasmid 

DNA was then washed with a buffer supplemented with ethanol (EtOH), removing 

residual lysate and impurities from the column. DNA molecules are negatively 

charged due to their backbone phosphates; hence they are highly soluble in water but 

insoluble in organic solvents, i.e., the wanted plasmid DNA was precipitated from the 

supernatant by adding EtOH to the supernatant solutions. After an additional EtOH 

wash, the pellets were dried at RT before dissolved in an elution buffer. 

3.9.1 Mini-Prep 

Small-scale plasmid purification was done prior to sequencing of cloned DNA 

fragments. E. coli colonies that showed promise to contain the recombinant plasmid of 

interest after colony screening (cloning plasmid: pSC-B-PPARx-hinge+LBD, effector 
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plasmid: pCMX-Gal4-DBD-PPARx-hinge+LBD), were inoculated in 3 mL of LB 

media containing ampicillin (0.1 mg/mL). The bacteria cultures were incubated ON 

at 37 °C with shaking (250 rpm). Using a NucleoSpin® Plasmid EasyPure kit 

(Macherey-Nagel), plasmid DNA from ON cultures was isolated, purified, and eluted 

in a slightly alkaline elution buffer under low ionic condition. The yield was 

determined spectrophotometrically using a NanoDrop 1000 (3.3). 

3.9.2 Midi-Prep 

Medium-scale plasmid purification was done for preparation of effector plasmids 

(pCMX-Gal4-DBD-PPARx-hinge+LBD), in addition to receptor- and control 

plasmids, used for ligand activation analysis (LRA). E. coli colonies, transfected with 

the LRA plasmids, were inoculated in 200 mL of LB media containing ampicillin (0.1 

mg/mL). The inoculation was incubated ON at 37 °C and 250 rpm shaking. Plasmid 

DNA from the ON culture was isolated and purified using the NucleoBond® Xtra 

Midi plasmid purification kit (Macherey-Nagel), according to manufactures 

instruction with the exceptions: starter cultures were omitted, the OD was not 

measured, and purified plasmid DNA was reconstituted in an elution buffer (Omega) 

under high ionic condition by a shift from acidic to alkaline pH. The eluted DNA 

from the midi-prep was then further purified by isopropanol precipitation. The yield 

was determined spectrophotometrically using a NanoDrop 1000 (3.3).  

3.10 DNA Sequencing 

Sequencing of cloned DNA fragments was performed by the sequencing facility at the 

Department of Molecular Biology, University of Bergen, which uses automated 

Sanger DNA Sequencing with a 3730XL Analyzer (Applied Biosystems™). In Sanger 

DNA sequencing, a DNA polymerase carries out amplification of the DNA as normal 

using regular deoxynucleotides (dNTPs). However, in addition to the dNTPs, four 

fluorescently labeled dideoxynucleotides (ddNTP) (conjugated with different 

chromophores for each of the four ddNTPs) are added to the amplification-reaction. 

The ddNTPs are lacking a 3’-hydroxyl group, which thus prevents the formation of 

phosphodiester bonds to other nucleotides. Thus, if the DNA polymerase incorporates 

a ddNTP it will cause the elongation of the DNA strand to terminate, leaving the 

corresponding fluorescently conjugated ddNTP at the 3’-end of the extension product. 

The incorporation of a ddNTPs instead of a dNTPs will be random (due to a specific 

ratio between ddNTPs and dNTPs in the reaction mixture), resulting in DNA 
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fragments of all possible fragment lengths. These extension products are then 

separated by capillary electrophoresis that resolves them according to molecular 

weight by the precision of one nucleotide in difference. When eluted from the 

capillary, the separated and fluorescently labeled extension products are subjected to a 

laser beam that makes them fluorescent. Each of the four ddNTPs emits light at its 

specific wavelength (due to the different cunjugated chromophores), producing a 

chromatogram that allows specific identification of the four bases and deduction of the 

DNA sequence. The sequencing reactions was prepared according to the BigDye 

terminator v 3.1 protocol (Table 34) and run in thermal cycles (Table 35) using a 

Thermo Cycler (DOPPIO Thermal Cycler with dual 48 well blocks, VWR). 

 
Table 34. BigDye terminator v 3.1 protocol for DNA sequencing 

Component Concentration/ amount 

Plasmid DNA as template 200 ng 

BigDye sequencing buffer 1X 

Plasmid specific primer 3.2 pmol 

Big-Dye version 3.1 1μL 

MilliQ water (Up to 10 μL total volume) 

 
 
Table 35. Thermal cycle program for DNA sequencing 

Cycle  Temperature Duration 

1 Initial denaturation 96 °C 5 minutes 

25 

Denaturation 96 °C 10 seconds 

Annealing 50 °C 5 seconds 

Extension 60 °C 4 minutes 

Each reaction was diluted with an additional 10 μL MilliQ (total volume 20 μL) after terminated thermal cycle program.  
 

3.11 Effector Plasmids Construction  

Effector plasmids to be used in the ligand activation analysis were constructed by 

fusing the Atlantic cod PPARx-hinge+LBD into a pCMX-Gal4-DBD vector. This 

was done by restriction digestion, dephosphorylation, and ligation. The effector 

plasmids (pCMX-Gal4-DBD-PPARx-hinge+LBD) will thereby encode a fusion 

protein of the Gal4-DBD and the PPARx-hinge+LBD that becomes functional in the 

LRA.  
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3.11.1 Restriction Digestion 

First, the PPARx-hinge+LBD had to be digested out from the cloning vector (pSC-B- 

PPARx-hinge+LBD), before they could be subcloned into the effector plasmid 

backbone (pCMX-Gal4-DBD). Restriction endonucleases are enzymes that are able 

to recognize restriction sites (or recognition sequences) in DNA, and they catalyze the 

hydrolysis of phosphodiester bonds, hence cleaving the DNA into smaller fragments. 

Here, the restriction sites, BamHI and EcoRI, added to the PPAR-LBDs are also 

present in the MCS of the pCMX-Gal4-DBD vector. Thus, digestions with the same 

restriction enzymes allow the PPARx-hinge+LBD and the pCMX-Gal4-DBD vector 

to get compatible ends allowing them to be joint together. Five different restriction 

digestion reactions were prepared according to Table 36: 

 
Table 36. Protocol for restriction digestion reactions 

 pCMX PPARαa PPARαb PPARβ/δ PPARγ 

DNA 10 μg 1 μg 1 μg 1 μg 1 μg 

EcoRI 0.5 U/μL 0.5 U/μL 0.5 U/μL 0.5 U/μL 0.5 U/μL 

BamHI 0.5 U/μL 0.5 U/μL 0.5 U/μL 0.5 U/μL 0.5 U/μL 

BSA 0.01% 0.01% 0.01% 0.01% 0.01% 

K-buffer 1X 1X 1X 1X 1X 

MilliQ up to 60 μL up to 60 μL up to 60 μL up to 60 μL up to 60 μL 

 

The reactions were incubated at 37 °C for 1.5 hours, and the resulting DNA 

fragments were separated using AGE (method AGE). The linearized DNA fragments 

corresponding to the expected lengths of the pCMX vector and the four PPAR-

hinge+LBDs, were purified through gel extraction using NucleoSpin® Gel and PCR 

Clean-up (Macherey-Nagel) (3.6.2), and eluted in 20 μL elution buffer. The 

concentration of the purified pCMX-Gal4-DBD vector and PPARx-hinge+LBD were 

measured spectrophotometrically using a NanoDrop 1000 (3.3). 

3.11.2 Dephosphorylation 

Dephosphorylation by Shrimp Alkaline Phosphatase (SAP) was used to prevent re-

ligation of the linearized pCMX vector. SAP removes the 5’-end phosphate group on 

the pCMX-Gal4-DBD vector, which are exposed after the restriction digestion. The 

dephosphorylation reaction was prepared as described in Table 37, where the volume 

needed for 1 pmol DNA ends was calculated using (Formula 2). The reaction mixture 
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was incubated at 37 °C for 45 minutes, before SAP was inactivated at 65 °C for 15 

minutes. 

 
Table 37. Dephosphorylation protocol using SAP 

Component Concentration/ amount 

Gel extracted pCMX-Gal4-DBD vector 1 pmol DNA ends 

SAP Buffer 1X 

SAP 1 U 

MilliQ water (Up to 20 μL total volume) 

 

 

µg	DNA	× pmol
660pg×

10/pg
1µg × 1N×2×

kb
1000bp = pmol	DNA	ends 

 

 

3.11.3 Ligation 

The effector plasmids, pCMX-Gal4-DBD-PPARx-hinge+LBD, were finalized by 

ligating the purified PPARx-hinge+LBD fragment into the linearized and purified 

pCMX-Gal4-DBD vector using a T4 DNA ligase (TaKaRa). The ligation occurs in 

three main steps. First, adenylation of the T4 DNA ligase will occur when it reacts 

with free ATP, forming a ligase-AMP intermediate. Second, the AMP, which still is 

attached to the T4 DNA ligase, will then be transferred onto the DNA strand with a 

free 5’-phosphate group forming a DNA-adenylate bridge structure. Finally, the T4 

DNA ligase will then catalyse the phosphodiester bond formation between the 5’-

phosphate group of the DNA-adenylate bridge structure and the 3’-hydroxyl group of 

the nearby DNA strand, and thus the AMP is released from the T4 DNA ligase. Four 

different ligation reactions were prepared, one for each PPARx-hinge+LBD, as 

described in Table 38. The reactions were incubated at 12 °C for 16 hours, before the 

T4 DNA ligase was inactivated at 65 °C for 15 min.  
 
  

N is the number of nucleotides (in kb), 660 pg/pmol is the average molecula weight of a single nucleotide pair, 2 is the 
number of ends in a linear DNA molecule, kb/1000bp is a conversion factor for kilobases to base pairs. 

(2) 
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Table 38. Ligation protocol using T4 DNA ligase 

 PPARαa PPARαb PPARβ/δ PPARγ 

pCMX-Gal4-DBD 25 ng 25 ng 25 ng 25 ng 

PPARx insert  i i i i 

T4 buffer 1X 1X 1X 1X 

T4 DNA ligase 17.5 U/μL 17.5 U/μL 17.5 U/μL 17.5 U/μL 

MilliQ up to 10 μL up to 10 μL up to 10 μL up to 10 μL 
irequired mass insert (ng) = desired insert/vector molar ratio (i.e., 3:1) x mass of vector (ng) x ratio of insert to vector 
length. 
 

The ligation products were transfected into StrataClone Solo Pack competent cells 

(Agilent). This was followed by mini-prep (3.9.1), colony screening (3.8), and 

sequencing (3.10) to verify the presence of the PPARx-hinge+LBD in the pCMX-

Gal4-DBD vector, and that the PPARx-LBD was in correct reading frame allowing 

the Gal4-DBD-PPARx-hinge+LBD fusion protein to be expressed. When this was 

confirmed, the effector plasmids were purified with midi-prep (3.9.2), and stored at -

25 °C until further downstream applications.  

3.12 Ligand Activation Analysis  

3.12.1 Luciferase Reporter Gene Assay (LRA) 

The ability of the Atlantic cod PPARx-hinge+LBD construct to bind and become 

activated by environmental pollutants was tested in vitro with a UAS/Gal4-DBD based 

luciferase reporter gene assay in a COS-7 simian kidney cell line. COS-7 cells were 

co-transfected with: 1) the constructed effector plasmids encoding the Gal4-DBD- 

PPARx-hinge+LBD fusion protein, 2) luciferase reporter gene plasmids (mh(100)x4tk 

luc), and 3) β-galactosidase-encoding control plasmids (pCMV-β-Gal). Ligand 

activation of the Atlantic cod PPAR constructs was measured as luciferase activity, 

quantifiable by the amount of light (550-570 nm) emitted during the oxidation of 

luciferin into oxyluciferin. The activity of β-galactosidase, measured at 420 nm, was 

used to normalize transfection efficiency between experiments. 

3.12.2 Reporter and Control Plasmids 

Reporter plasmids (mh(100)x4tk luc) and control plasmids (pCMV-β-Gal) were 

prepared from glycerol stock solutions (kept at -80 °C) of previously transformed E. 
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coli cells. Overnight cultures were made, and plasmids purified the next day through 

midi-prep (3.9.2). 

3.12.3 Control of LRA Plasmids Integrity 

The conformation of the three LRA plasmids (effector-, receptor-, and control 

plasmids) was controlled with AGE (3.4), assuring that most of the plasmids exhibited 

a supercoiled conformation. The migration of a plasmid through a gel will differ 

depending on its current conformation, e.g. if supercoiled (fully intact) the plasmid 

DNA will exhibit rather high mobility due to its compact packing, whilst if linearized 

i.e., both DNA strands cut at one site, the plasmid DNA will migrate slower than if 

supercoiled. Even slower migration will be observed if the plasmid DNA is nicked i.e., 

only one strand is cut, resulting in an open circular conformation of the DNA 

molecule with relatively low mobility. 

3.12.4 COS-7 Cell Culturing 

COS-7 cells are adherent cells and grow as a monolayer in petri dishes. The COS-7 

cells were stored in freezing media (Table 11) in a liquid nitrogen tank. Aliquots were 

thawed and added 10 mL fresh cell growth media (Table 12). The suspended cells 

were collected by centrifugation at 500 x g for 5 minutes, and the supernatant 

containing DMSO from the freezing media was removed. The cell pellet was re-

suspended in fresh growth media and seeded in a 10 cm diameter petri dish. COS-7 

cells were kept at 37 °C in an atmosphere containing 5 % CO2. 100 U/mL of 

penicillin and streptomycin was added to the growth media to avoid microbial 

contamination. The growth media was changed 2-3 times per week, and when the 

cells reached a confluidity of 80-95% they were subcultured. The passaging of the 

cells was done by removing the old growth media and washing the cells with 1X PBS 

(pH 7.4) two times before enzymatically dissociating the cells from the petri dish 

through trypsinization (1.5 mL trypsin-EDTA (trypsin (0.05 %, EDTA 0.02 %)) for 30 

seconds at RT. The excess of trypsin-EDTA was removed and cells incubated an 

additional 5 minutes at 37 °C and 5 % CO2. The cells were then aspired in 10 mL 

fresh growth media, and aliquoted into a new petri dish at desired ratio and incubated 

further. All handling of the COS-7 cell cultures were done implementing sterile 

techniques. 
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3.12.5 Seeding of COS-7 for LRA 

COS-7 cells were harvested at 80-90 % confluidity through trypsinization (as 

described above), and aspired in 10 mL fresh growth media. A mix of cell suspension 

(50 μL) and trypan blue (50 μL) was loaded onto a Bürker haemocytometer 

(Marienfeld) and the cell density was determined with a microscope (Leica DM IL 

inverted microscope). COS-7 cells were seeded in 96 well plates in 100 μL growth 

media with a density of 5000 cells per well, and subsequently incubated at 37 °C and 

5 % CO2 for 24 hours.  

3.12.6 Transient Transfection of COS-7 Cells 

Transient transfection is the introduction of exogenous DNA into a eukaryotic cell. 

However, the introduced DNA is not incorporated into the cells genome, and will 

thus be expelled from the cells after a few days. The LRA was therefore terminated on 

the 2nd day post-transfection. 24 hours after seeding of the COS-7 cells, old growth 

medium was removed and the cells were transfected using TransIT®LT-1 transfection 

kit (Mirus Bio) according the manufactures instruction. Transfection mixtures were 

prepared for each of the four Atlantic cod PPAR subtypes according to Table 39. The 

transfection mixtures were then added to the COS-7 cells (tot 101.3 μL/ well), and 

incubated at 37 °C and 5 % CO2 for 24 hours.  

 
Table 39. Transfection mixture protocol using TransIT-LT1 

Component Amount per well (96 well plate) 

Opti-MEM I 9 μL 

Plasmid mix [1000 ng/μL] 0.1 μL  

TransIT-LT1 0.2 μL 
iCell growth media (Table 12) 92 μL 
iCell growth media was added after 30 minutes incubation at room temperature 
 

3.12.7 Exposure to Ligands 

The transfection was terminated after 24 hours by replacing the transfection mixture 

with 200 μL exposure mixture. The exposure mixture consisted of ligands that had 

been dissolved in DMSO and serial diluted to desired concentrations in cell growth 

media adapted for exposure (Table 12) (Table 40). The DMSO concentration was 

always < 1 %, and kept at the same concentration through the serial dilution. Cell 

growth media (Table 12) only containing DMSO was used as negative control in 
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exposure experiments (solvent control). The COS-7 cells were incubated with the 

ligand exposure mixtures at 37 °C and 5 % CO2 for 24 hours. 

 
Table 40. Ligands tested in vivo for agonistic effects on Atlantic cod PPAR constructs  

Ligand Highest conc [μM] Lowest conc [μM] Dilution factor 

PFOA 200 41 1.3 

PFNA 200 41 1.3 

PFUnDA 200 41 1.3 

PFOS 200 41 1.3 

PFHxS 200 41 1.3 

DEHP 200 3 2 

DiDP 200 3 2 

MBzP 200 3 2 

MBP 200 3 2 

Chlorpyrifos 100 1 10 

Enosulfan 100 1 10 

DPTE 100 // 25 1 // 0.4 10 // 2 

D4 100 1 10 

D5 100 1 10 

PCB 153 100 1 10 

 

3.12.8 Cell Lysis and Measurement of Luciferase- and β-galactosidase 

Activity 

The ligand exposure was terminated after 24 hours by removing the media, and the 

COS-7 cells were incubated in 125 μL of a non-denaturing lysis reagent (Table 41) for 

30 minutes at RT with continuously shaking using a platform shaker (HS 501 Digital, 

IKA-Werke).  

 
Table 41. Lysis reagent 

Component  Concentration 

Cell lysis buffer (Table 13) 1X 

EGTA 4 mM 

MgCl2 8 mM 

PMFS 0.4 mM 

DTT 1 mM 
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The lysis treatment releases the expressed luciferase and β-galactosidase enzymes from 

the cells. Measurements of β-galactosidase activity were prepared by transferring half 

of the cell lysate (50 μL) from each well to a transparent 96 well plate (NuncTM). The 

cell lysate was then added 100 μL of β-galactosidase reagent (Table 42) and allowed to 

incubate for approximately 20 minutes; until the yellow color of the produced ONP 

became visible. Absorbance was measured at 420 nm using an EnSpire 2300 

Multilabel Reader (PerkinElmer). 

 
Table 42. β-galactosidase reagent 

Component  Concentration 

β-galactosidase base buffer (Table 14) 1X 

β-mercaptoethanol 52.9 mM 

ONPG (substrate) 8.6 mM 

 

Measurements of luciferase activity were prepared by transferring the remaining 50 

μL of cell lysate from each well to a white 96 well plate (NuncTM) designated for 

luminescence measurements. The luciferase reagent (Table 43) was added to one plate 

at the time (100 μL/ well), and measurements at 560 nm were carried out 

immediately using an EnSpire 2300 Multilabel Reader (PerkinElmer). 

 
Table 43. Luciferase reagent 

Component  Concentration 

Luciferase base buffer (pH 7.8) (Table 15) 1X 

ATP 0.5 mM 

DTT 5 mM 

MilliQ - 
iCoenzyme A 0.2 mM 
iD-luciferine 0.5 mM 
iAdded right before use. 
 

3.13 Cell Viability Assays 

A combination of two fluorometric assays, i.e. alamarBlue® (resazurin) (Page et al., 

1993) and 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) (O'connor 

et al., 1991), were used to assess if the ligands used in the LRA trails were cytotoxic to 

the COS-7 and thus affected their viability. The nontoxic resazurin and CFDA-AM 
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are cell permeable, non-fluorescent, indicator dyes that when entering viable and 

metabolically active cells becomes enzymatically converted to fluorescent metabolites. 

Resazurin becomes reduced to fluorescent resorufin by oxidoreductases and the 

mitochondrial electron transport chain, while CFDA-AM becomes hydrolyzed by 

intracellular esterases to fluorescent 5-carboxyfluorescein. Thus, the conversion of 

resazurin and CFDA-AM is quantifiable by their metabolite’s fluorescence, where the 

production of resorufin conventionally reflects metabolic activity, while the 

production and retention of 5-carboxyfluorescein indirectly confirms the plasma 

membrane integrity (O'connor et al., 1991; Page et al., 1993; Schirmer et al., 1997; 

Schreer et al., 2005). COS-7 cells were seeded in 96 well plates (3.12.5) and incubated 

at 37 °C and 5 % CO2 for 48 hours. Subsequent exposures (3.12.7) were carried out 

for 24 hours at 37 °C and 5 % CO2, using the three highest concentrations used of 

control agonists and ligands, in addition to the highest concentrations used of solvent 

(1 % DMSO) as control. 0.1 % and 1 % Triton X-100, diluted in exposure media, 

were also included as positive controls for impaird viability and cell death. When 

terminating the exposure, the COS-7 cells were washed with 1X PBS (pH 7.4). The 

cells were then added a reaction solution (100 μL/ well) (Table 44) and allowed to 

incubate in dark at 37 °C and 5 % CO2 for 1 hour. 

 
Table 44. Reaction solution used for measuring cell viability. 

Component  Concentration 

Resazurine 10 % 

CFDA-AM 1 % 

DMEM Up to 100 % 

 

Eight empty wells per plate were similarly added the reaction solution, allowing the 

determination of the background signal. Thereafter, the fluorescence signals were 

measured for resazurine (excitation: 530 nm/ emission: 590 nm) and for CFDA-AM 

(excitation: 485 nm/ emission: 530 nm) using an EnSpire 2300 Multilabel Reader 

(PerkinElmer). The background signal was subtracted from the fluorescence values. 
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3.14 Testing for Presence of Expressed Fusion Proteins in COS-7 Cells 

3.14.1 Protein Sample Preparation 

3.14.1.1 Seeding 

COS-7 cells were harvested at 80-90 % confluidity through trypsinization (3.12.4) and 

aspired in 10 mL fresh growth media. A mix of cell suspension (50 μL) and trypan 

blue (50 μL) was loaded onto a Bürker haemocytometer (Marienfeld), and the cell 

density was calculated. COS-7 cells were seeded on 6 well plates in 2.5 mL growth 

media with a density of 600000 cells per well, and incubated at 37 °C and 5 % CO2 

for 24 hours.  

3.14.1.2 Transfection 

On the second day, the cells were transfected with the effector plasmids encoding the 

Gal4-DBD-PPARx-hinge+LBD fusion proteins, using the TransIT®LT-1 transfection 

kit (Mirus Bio) according the manufactures instruction. Transfection mixtures, done in 

experimental duplicates (Table 10) were prepared according to Table 45. The 

mixtures were then added to the COS-7 cells (2.8 mL/ well), and allowed to incubate 

at 7 °C and 5 % CO2 for 24 hours. Two wells of COS-7 cells were kept untransfected 

as a negative control for downstream applications. 

 

 

 

 

  

Figure 10. Overview of transfection setup. COS-7 cells were transfected in experimental 
duplicates with effector plasmids encoding the Gal4-DBD-PPARx-hinge+LBD fusion proteins using 
the TransIT®LT-1 transfection kit (Mirus Bio). 
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Table 45. Transfection mixture protocol using TransIT-LT1 

Component Amount per well (6 well plate) 

Opti-MEM I 250 μL 

Plasmid mix [1000 ng/μL] 2.5 μL  

TransIT-LT1 5 μL 
iCell growth media (Table 12) 2.5 mL 
iCell growth media was added after 30 minutes incubation at room temperature 
 

3.14.1.3 Cell Harvesting 
On the third day, the transfected COS-7 cells were harvested through trypsinization 

(3.12.4) using 500 μL of RT trypsin-EDTA per well. The cells were then resuspended 

in 1 mL growth media and centrifuged at 100 x g for 10 minutes at 4 °C using a Z 

216 MK microliter centrifuge (HERMLE). The supernatant (media) was removed 

and the pellets were washed in 1X PBS (pH 7.4) before centrifuged again at 100 x g 

for 10 minutes at 4 °C. The supernatant (PBS and media residue) was removed and 

the cell pellets were stored at -80 °C until further downstream applications. 

3.14.1.4 Lysis 
The pellets were lysed in 50 μL Triton lysis buffer (Table 16), and vortexed at 

maximum speed for 15 seconds. Cells were kept on ice for 10 minutes before 

centrifuged at 22000 x g for 5 minutes at 4 °C using a Z 216 MK microliter centrifuge 

(HERMLE). Aliquots of the cell lysate were stored at -80 °C until further downstream 

applications. 

3.14.1.5 Protein Concentration Measurement - Pierce 660 nm Protein 

Assay 

The protein concentrations of the prepared cell lysates were determined by creating a 

standard curve of bovine serum albumin (BSA). Six serial dilutions of BSA in 

triplicates with final concentrations of 1000, 500, 250, 125, and 62.5 μg/mL were 

prepared. Each BSA standard, cell lysates, and blanks (Triton lysis buffer) were 

pipetted onto a 96 well plate in triplicates (10 μL/ well), and then added the protein 

assay reagent Pierce 660 (Thermo scientific) (150 μL/ well). The plates were covered 

in tin foil and mixed on a platform shaker (HS 501 Digital, IKA-Werke) at medium 

speed for 1 minute, and then allowed to incubate at RT for 5 minutes before the 

absorbance was measured at 660 nm using an EnSpire 2300 Multilabel Reader 
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(PerkinElmer). The average A660-values of the blanks (Triton lysis buffer) were 

subtracted from the average A660-value of each BSA standard and cell lysate samples. 

The corrected BSA A660-values were then plotted against their corresponding 

concentration in Excel (Appendix VII), from where a linear equation could be derived 

(Formula 3, R2 = 0.9997). By incorporating the average A660 of the cell lysates as y-

value in the equation, then x (representing the protein concentration) could be solved. 

 
8 = −1: − 07<= + 0.0005< − 0.015					(3) 

 

3.14.2 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) and Sample Preparation 

Denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), 

allows proteins to be separated according their molecular weight (Mw). Prior to the 

SDS-PAGE, the protein samples were boiled together with a denaturing 5X SDS-

PAGE sample buffer (5XSB) containing both the detergent sodium dodecyl sulfate 

(SDS) and the reducing agent β-mercaptoethanol (BME). SDS is an anionic detergent 

that will denature proteins and its hydrophobic backbone will bind to proteins with a 

ratio of 1.4 g SDS per g of protein, thereby masking the proteins native charge and 

giving it an overall negative charge (Farrell and Taylor, 2005). The reducing agent 

BME will break both inter- and intradisulphide bonds between and within proteins, 

respectively (Lee, 1990). Thus, the denaturing sample buffer will brake down 

polymeric proteins into their individual subunits and hence cause all proteins to 

obtain the same random coil configuration with equal charge-to-mass ratios. Proteins 

can then be separated solely according to their molecular weight. The denaturing 

sample buffer contains: 1) glycerol; that will increase the density of the sample and 

thereby aiding the gel loading, and 2) a loading dye, often being bromophenol blue; a 

small and negatively charged molecule that will migrate faster than the proteins being 

separated, and functions as a marker that visualize the electrophoresis while running 

the SDS-PAGE. Discontinuous gels were used to acquire high-resolution separation 

when performing the SDS-PAGE, consisting of one 12 % resolving gel with pH 8.5, 

and one 4 % stacking gel on top with pH 6.5. The purpose of using discontinuous gels 

is that proteins will migrate faster in the stacking gel due to its lower polyacrylamide 

concentration, but when they meet the border of the resolving gel with higher 
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polyacrylamide concentration they will slow down, causing the proteins to become 

concentrated in one band when entering the separation gel, making them more 

distinguishable. The resolving gel will then separate the proteins according to their 

size where small proteins will migrate faster. The change in pH will also affect the 

charge of the compounds causing differences in voltage to occur within zones pushing 

proteins together even further (Farrell and Taylor, 2005). Here, SDS-PAGE was used 

to separate the four expected Gal4-DBD-PPARx-hinge+LBD fusion proteins.  

 

The SDS-PA gels were casted 0.75 mm thick and ran using a Mini-PROTEAN® 

Tetra Cell casting and electrophoresis system (Bio-Rad). A 12 % resolving gel was 

prepared with a final volume of 10 mL, enough to create two separate gels (Table 17). 

A 4 % stacking gel mix was prepared with a final volume of 5 mL, enough to cover 

the two resolving gels (Table 18). The two resolving gels were poured into the spacer 

plates of the casting unit up to a point located about 1 cm bellow the gel combs. 

Subsequently, 70 % ethanol was added on top of the resolving gels to remove the 

surface tension and thus acquiring a sharp horizontal upper edge. When the resolving 

gels were completely polymerized the ethanol was removed, and the stacking gels 

were poured on top, filling up the remaining space between the spacer plates. 0.75 

mm thick gel combs were immediately inserted. When the two SDS-PA gels were 

completely polymerized, they were transferred from the casting unit into the 

electrophoresis chamber and lowered into the electrophoresis tank. Gel combs were 

thereafter removed. 1X SDS-PAGE-running buffer (Table 19) was used to completely 

fill up electrophoresis tank. One of the gels was designated for Western Blotting and 

the other one for Coomassie Brilliant Blue staining. Both gels were loaded with 10 μg 

of each protein sample. A Precision Plus Protein™ Kaleidoscope™ Prestained Protein 

Standards (Bio-Rad) (5 μL) was also loaded onto the gels as an Mw reference. The 

SDS-PAGE was run at 200 V until (approximately 45 min) the dye front had reached 

the bottom of the gel. 

3.14.3 Coomassie Brilliant Blue Staining 

The SDS-PA gel designated for detection of the total protein content was stained with 

Coomassie Brilliant Blue R250 staining solution (Table 20) and allowed to incubate 

several hours on a platform shaker (HS 501 Digital, IKA-Werke). Then, after 

removing the staining solution, a destaining solution (Table 20) was added to the 
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SDS-PA gel and allowed to further incubate for a few hours until the protein bands 

were clearly visual. The gel was scanned using a ChemiDocTM XRS+ System with a 

charged-coupled (CCD) camera (Bio-Rad). 

3.14.4 Western Blotting 

After the proteins from the COS-7 cell lysate had been separated according to their 

Mw with SDS-PAGE, Western blotting was used to analyze the proteins further by 

first transferring (or blotting) the separated and fixated proteins from the SDS-PA gel 

onto a polyvinylidene difluoride (PVDF) membrane by wet electrotransfer, creating a 

replica of the protein pattern that is more ridged and easier to handle. A 0.45 μm 

PVDF membrane (6x9 cm) was initially equilibrated by fist being submerged in 

methanol for 20 seconds, then rinsed with MilliQ, before submerged into blotting 

buffer (Table 21) for 30 minutes, together with two fiber pads and two filter papers 

(8x10 cm). The SDS-PA gel was also allowed to equilibrate in blotting buffer for 10 

minutes. The blotting sandwich was assembled in the gel holder cassette by placing 

the first fiber pad bottommost in the open cassette, followed by the first filter paper 

and then the membrane. The gel was than placed on top of the membrane followed 

by the second filter paper, and lastly the second fiber pad. After assuring that no air 

bubbles had been trapped between the layers, the cassette was closed and placed in a 

Mini Trans-Blot Cell electrode unit (Bio-Rad). The electrode unit was thereafter 

lowered into the buffer tank, and the tank was filled up with blotting buffer and run at 

100 V for 1 hour. The membrane was blocked with 5 % dry milk (Table 24) and 

incubated ON on a platform shaker (HS 501 Digital, IKA-Werke) at 4 °C; By 

blocking areas on the membrane that have not been bound by proteins prevents non-

specific binding of the antibodies in downstream steps.  

 

Next day, the membrane was rinsed with 0.05 % TBS-tween (Table 23) two times for 

5 minutes each (all washing steps done are to minimize background interference later 

on), before adding the primary mouse-anti Gal4 antibody diluted 1:500 in TBS-

tween, and subsequently allowed to incubate for 1 hour on a platform shaker at RT. 

Excess mouse-anti Gal4 antibody that were not bound to epitopes, was then washed 

away with TBS-tween two times for 5 minutes, before the membrane was incubated 

with the sheep-anti-mouse IgG (immunoglobulin G) secondary antibody conjugated 

to horseradish peroxidase (HRP), diluted 1:2000 in TBS-tween, and allowed to 



Methods 

	 56	

incubate for 1 hour on a platform shaker at RT. Excess secondary antibodies were 

washed away with TBS-tween two times for 5 minutes, and then washed with MilliQ 

for 5 minutes. The protein-primary-antibody-secondary antibody complex was 

visualized using a chemiluminisence detection system suitable for HRP-tagged 

secondary antibodies, in this case SuperSignal West Pico Chemiluminescent Substrate 

(Thermo Scientific). The membrane was drained of access MilliQ and added a 

substrate solution for HRP containing equal volumes (300 μL + 300 μL) of luminol 

enhancer and stable peroxide buffer. The membrane was then allowed to incubate for 

about 3 minutes at RT. The antigen-antibodies complexes could then be visualized 

and documented using a ChemiDocTM XRS+ System with a charged-coupled (CCD) 

camera (Bio-Rad). 

 

After the detection of Gal4, the membrane was rinsed with TBS-tween two times for 5 

minutes, before the membrane was incubated with a 2nd primary antibody, i.e. mouse-

anti beta actin antibody diluted 1:1000 in TBS-tween. The membrane was 

subsequently allowed to incubate for 1 hour on a platform shaker at RT. Excess 

mouse-anti beta actin antibody was then washed away with TBS-tween two times for 

5 minutes, before the membrane was incubated with the secondary antibody HRP 

sheep-anti-mouse IgG diluted 1:2000 in TBS-tween, and allowed to incubate for 1 

hour on a platform shaker at RT. Excess secondary antibodies were washed away 

with TBS-tween X2 for 5 minutes, and then washed with MilliQ for 5 minutes before 

the signal was measured as described above. 

3.15 Data Treatment and Statistics  

Microsoft Excel 2011 was used to initially process the LRA readings retrieved by the 

EnSpire 2300 Multilabel Reader (PerkinElmer). First, the ligand induced luciferase 

activity in each well was normalized against any differences in transfection efficiency 

by dividing each luciferase reading by the corresponding β-galactosidase reading. The 

normalized luciferase values from each well were then divided by the control averages 

(containing only vehicle solution) within each experiment, and the resulting values 

could then be denoted as fold induction in ligand-induced luciferase activity compared 

to the solvent control. GraphPad Prism v.6 was used to produce graphs displaying the 

average fold induction in luciferase activity caused by each ligand tested at different 

concentrations, including standard error of mean (SEM). A One-way ANOVA and 
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Dunnet’s test was used to calculate signicicant fold induction in the means of the 

different test concentrations over the control means. 

3.16 In Silico Sequence Analyses 

After the Atlantic cod PPARx hinge+LBDs had been cloned and sequenced, the 

nucleotide (nt) sequenceswere translated in silico into protein sequences using the 

online ExPASy translating tool (SIB Bioinformatics Resource Portal). Even though the 

Atlantic cod genome was sequenced already in 2011 (Star et al., 2011), the PPAR-

encoding genes are only gene predictions and have still have to be manually curated. 

Thus, comparisons between in silico translated protein sequences of the sequenced 

Atlantic cod PPARx hinge+LBDs and the predicted PPARx hinge+LBDs retrieved 

from the Ensembl Cod genome database, was done by pairwise alignments using the 

online tool Clustal Omega (EMBL-EBI). The alignments were then visualized and 

examined using Jalview v.2.9.0b2, were the alignments were colored according to 

percentage identity and the domains were denoted on the sequences.  

 

Phylogenetic relationships between the amino acid sequences of the Atlantic cod 

PPARx hinge+LBD and PPARx hinge+LBDs from other relevant species were made 

in silico. Protein sequences from other species were retrieved from the UniProtKB 

database. A multiple protein sequence alignment was made in Clustal Omega 

(EMBL-EBI), and the alignment was imported into MEGA6 (v 6.06) were 

phylogenetig relationships were inferred using the Neighbor-Joining method (Saitou 

and Nei, 1987). The percentage of replicate trees in which the associated species 

specific PPAR-subtypes clustered together were calculated using a bootstrap test set to 

1000 replicates. Evolutionary distances, denoted as units of number amino acid 

substitutions per site, were computed using the JTT matrix-based model (Jones et al., 

1992). The rate variation among sites was modeled with a gamma distribution where 

the shape parameter was set to 5. The analysis involved 47 amino acid sequences. All 

positions containing gaps and missing data were eliminated. 
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4 RESULTS 

Before being able to study ligand activation of the four Atlantic cod PPARx 

hinge+LBD constructs with LRA, several preparatory steps had to be carried out (Fig 

11). Quality control of the products from each preparatory step was performed before 

continuing with downstream applications. 

 

  

Figure 11. Workflow overview. Atlantic cod tissues were collected and homogenized. RNA was 
extracted and reversly transcribed into cDNA. The PPARx hinge+LBD encoding genes were amplified 
through PCR using cDNA as template. The amplified gene fragments were ligated into a cloning vector and 
cloned by transforming E.coli cells. After confirming that the correct gene fragments had been cloned through 
sequencing, the fragments were ligated into an expression vector (effector plasmid) that were transfected into 
COS-7 cells. The PPARx hinge+LBD constructs could then be analyzed in vitro, to test for PPAR ligand 
activation of different environmental contaminants. A cell viability assay was used to assess if any of the 
ligands tested were cytotoxic at the concentrations used in the ligand activation assay. The presence of 
expressed PPARx hinge+LBD construct in COS-7 cells was examined by Western blotting. 
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4.1 Molecular Cloning of the Ligand Binding Domains of the Atlantic 

Cod PPAR Subtypes 

4.1.1 RNA Extraction from Atlantic Cod Tissue 

Total RNA was extracted from homogenized heart and brain tissues from Atlantic 

cod. The RNA integrity was assessed by agarose gel electrophoresis, which showed 

the presence of the 28S and 18S ribosomal RNA subunits at ~1800 bp and ~1000 bp, 

respectively (Fig 12). The distinct bands representing the two rRNA subunits indicate 

that the integrity of the total RNA was maintained and that RNA-degradation was 

not an issue.  

 

A260 nm/280 nm spectrophotometric measurements of the extracted totRNA from brain 

and heart tissue showed ratios close to 2 (± 0.03) (Table 46), indicating pure RNA 

samples free from contaminating proteins. The A260 nm/230 nm ratios were larger than 

2.19 (Table 46), indicating that the RNA samples were not contaminated by salts and 

solvents. Thus, the RNA samples were of sufficient quality for downstream cDNA 

synthesis.  

 
Table 46. Spectrophotometric measurements of extracted total RNA. 

Sample Concentration (ng/μL) A260/280 A260/230 

Heart 1 2109.6 2.03 2.19 

Heart 2 823.8 2.01 2.37 

Brain 1 685.8 2.01 2.38 

Brain 2 521.7 1.98 2.40 

M 
Heart Brain 

3000 bp 

1000 bp 

28S 

18S 

Figure 12. Assessment of RNA integrity by agarose gel electrophoresis. RNA preparations 
from Atlantic cod heart and brain tissue were separated on a 0.5X TBE 0.7 % agarose gel and stained 
with GelRed. The 28S and 18S ribosomal RNA (rRNA) subunits are indicated. M = 2 μL DNA 
standard (2log DNA Ladder). Heart = 600 ng totRNA derived from heart. Brain = 600 ng totRNA 
derived from brain. 
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4.1.2 cDNA Synthesis, PCR Amplification and Cloning  

Single stranded cDNA was synthesized using total RNA extracted from Atlantic cod 

heart and brain tissue (3.2, 3.5) as template. The cDNA then served as template for 

PCR amplification of the PPARx hinge+LBD-encoding genes. Gene specific primers 

had been designed to amplify the desired gene fragments of each of the four PPAR 

subtypes present in Atlantic cod. The amplicons were analyzed with AGE (3.4) and 

their lengths corresponded well with the expected lengths of the Atlantic cod 

hinge+LBD fragments (Fig 4), which were derived from predicted PPAR encoding 

gene sequences present in the Ensembl cod genome database. PPARαa hinge+LBD 

(Fig 13 A) and PPARγ hinge+LBD (Fig 13 B) were amplified from heart tissue, while 

PPARαb hinge+LBD and PPARβ/δ hinge+LBD were amplified from brain tissue 

(Fig 13 C). Two splice variants of the PPARβ/δ hinge+LBD were amplified. Even 

though the smaller amplicon was more concordant with the expected length of the 

predicted PPARβ/δ hinge+LBD both fragments were gel extracted, cloned, and 

sequenced. 

 

The PPARx hinge+LBD amplicons were ligated into a cloning vector and 

transformed into competent E. coli cells. Positive transformants possessing antibiotic 

resistance were then selected for by seeding the cells on agar plates supplemented with 

ampicillin and incubated over night. 
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Figure 13. Agarose gel electrophoresis of amplicons of Atlantic cod PPAR subtypes. The 
0.5X TBE 0.7 % agarose gel was stained with GelRed for visualization of DNA fragments (expected 
lengths: PPARαa hinge+LBD = 867 bp; PPARαb hinge+LBD = 876 bp; PPARβ/δ hinge+LBD = 
894 bp; PPARγ hinge+LBD = 792 bp). A) M = 2 μL DNA standard (2log DNA Ladder), αa = 2 μL 
PPARαa hinge+LBD amplified from heart-derived cDNA. B) M = 2 μL DNA standard (2log DNA 
Ladder), and γ = 2 μL PPARγ hinge+LBD amplified from heart-derived cDNA. C) αb = 2 μL 
PPARαb hinge+LBD amplified from brain-derived cDNA, and β/δ = 2 μL PPARβ/δ hinge+LBD 
amplified from brain-derived cDNA, M = 2 μL DNA standard (2log DNA Ladder). 
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4.1.3 Colony Screening for Transformants 

PCR with vector specific primers (Table 6) were used to screen single colonies for 

positive transformants harboring the cloning vector with a DNA insert of expected 

length. The colony PCR screening products were separated with AGE, which for 

certain colonies showed the presence of amplified DNA fragments of promising sizes 

in regard to the predicted lengths of the Atlantic cod PPARx hinge+LBD subtypes 

(Fig 14).  
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Figure 14. Screening of positive transformants containing the PPARx hinge+LBDs. 
Colony PCR amplicons were separated on a 0.5X TBE 0.7 % agarose gel and stained with GelRed. 
Expected amplicon lengths: PPARαa hinge+LBD = 867 bp; PPARαb hinge+LBD = 876 bp; 
PPARβ/δ hinge+LBD = 894 bp; PPARγ hinge+LBD = 792 bp. M = 2 μL DNA standard (2log DNA 
Ladder). 2 μL of the amplification reaction was loaded per well.  
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4.1.4 Sequencing and Examination 

The cloning vector was purified from the positive transformants by mini-preps (3.9.1), 

and then sequenced using cloning vector-specific primers to confirm the presence of 

correct insert (3.10). The sequencing showed that PCR products corresponded with 

the predicted Atlantic cod PPAR hinge+LBD’s, derived from the Atlantic cod 

genome database in Ensembl. A pairwise alignment, between the predicted PPAR 

sequences and the cloned sequences, confirmed that the sequenced genes were in fact 

encoding the four different PPAR subtypes. However, the cloned nucleotide 

sequences of the four different Atlantic cod PPARx hinge+LBD differed to some 

extent when compared to the corresponding predicted genes present in the cod 

genome database in Ensembl (Appendix I-IV). These differences were examined 

further by translating all nucleotide sequences in silico to amino acid sequences and 

constructing pairwise alignments for each PPAR subtype. The cloned Atlantic cod 

PPARαa hinge+LBD amino acid sequence differed by having 19 unexpected amino 

acid residues within the hinge region, in addition to 6 differeing amino acids (Fig 15). 

The PPARαb hinge+LBD amino acid sequence differed by having 1 additional 

amino acid residue and 1 differing amino acid within the hinge region, as well as 1 

differing amino acid in the LBD (Fig 15). The PPARβ/δ hinge+LBD amino acid 

sequence differed by 1 amino acid located in the LBD (Fig 15). The PPARγ 

hinge+LBD amino acid sequence differed by having 37 unexpected amino acid 

residues in the hinge region, in addition to 7 differing amino acids (Fig 15). In silico 

investigation of the sequenced Atlantic cod PPARαa hinge+LBD, PPARαb 

hinge+LBD, PPARβ/δ hinge+LBD, and PPARγ hinge+LBD showed that the above-

mentioned differences in gene sequence, in relation to the predicted gene sequence 

from the cod enome database (Ensembl), did not disturb their reading frames. The 

PPARαa hinge+LBD, PPARαb hinge+LBD, PPARβ/δ hinge+LBD, and PPARγ 

hinge+LBD encoding sequence translated into polypeptides of 307, 292, 296, and 300 

amino acids in length, respectively (Fig 15) (Appendix V-VI). 
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Figure 15. Pairwise sequence alignment of Ensembl-derived sequences and cloned Atlantic cod PPARx 
hinge+LBD. Predicted Atlantic cod PPARx hinge+LBD encoding genes were retrieved from the Ensembl cod genome database. 
The cloned Atlantic cod PPARx hinge+LBD encoding genes were sequenced by the sequencing facility at the Department of 
Molecular Biology, University of Bergen. The nucleotid sequences were translated into protein sequences in silico, using ExPASy 
Translate tool, and the protein sequences were then aligned using Clustal Omega (EMBL-EBI). The pairwise alignment was 
depicted in Jalview v 2.9.0b2. The alignments have been colored by percentage identity and conservation. 
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The unexpexted nucleotids found in the hinge-encoding region of PPARαa and 

PPARγ (Appendix IV), can be found in the genome sequence of the Atlantic cod by 

genome mining. Thus, the automatically performed gene prediction has apparently 

failed to include these nucleotids as exons. Furthermore, a blastp (protein BLAST) 

search, using only the additional amino acid residues found in the cod PPARγ hinge 

region (HPSPAVLADNYGVVAGHPA PGYGGLGGLSQGPIGLSH) as query, 

showd a 97 % identity with PPARγ in Polar cod (Boreogadus saida), and 67 % identity 

with PPARγ in European hake (Merluccius merluccius) further strengthening that the 

unexpected nucleotides found in the PPARγ hinge region has not been recognized by 

the automatic gene annotation made by Ensembl. 
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4.1.5 Phylogenetic Analysis 

The identities of the cloned gene segments encoding the Atlantic cod PPARx 

hinge+LBDs were confirmed by constructing a Neighbor-Joining tree. A multiple 

protein sequence alignment between the in silico translated Atlantic cod PPARx 

hinge+LBDs, together with PPARx hinge+LBDs of other teleosts and terrestrial 

vertibrates was made with Clustal Omega (EMBL-EBI). Based on the alignment, an 

additive tree was constructed using PPAR from Ciona intestinalis as an outgroup to root 

the tree. The tree demonstrates that the protein sequences derrived from the cloned 

Atlantic cod PPAR subtypes, clusters nicely together with corresponding PPAR 

subtypes from other teleost species (Fig 16). 

Figure 16. Neighbor-Joining tree of PPARx hinge+LBD-encoding sequences. The analysis 
involved 47 amino acid sequences, and the robustness of the tree is given as percentage of replicate 
trees in which the associated PPAR-subtypes clustered together. Bootstrap values are indicated next to 
the branches (bootstrap test =1 000 replicates). 
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4.1.6 Amino Acids Important for Ligand Binding 

Since PPARs play a crucial role in the regulation of several physiological processes, 

human PPARs have been extensively studied for therapeutic pourposes, i.e. as targets 

for drug design. Certain amino acids have been established as important for binding 

specific ligads. In human, WY14643 is a synthetic and selective PPARα agonist where 

the amino acids S280, Y314, H440, and Y464 have shown to be important for agonist 

recognisation and binding (Bernardes et al., 2013; Narala et al., 2010). For the human 

PPARβ/δ, GW501516 is a potent and selective agonist where amino acids W228, 

H287, V298, V312, I328, H413, and Y437 are important for binding and ligand 

docking (Wu et al., 2017). Rosiglitazone (Rosi), a selective and potent PPARγ agonists 

that is used as an antidiabetic agent in humans. PPARγ has been extensivly examined, 

and the amino acids that are recurringly identified as important for binding Rosi are 

C285, R288, S289, H323, Y327, L330, L333, V339, I341, H449, and Y473 

(Annapurna et al., 2013; Chandra et al., 2008; Liberato et al., 2012; Nolte et al., 

1998). To examine if the same functional important amino acids are also present in 

the Atlantic cod PPAR proteins, pairwise algnments where generated between the 

PPARx hinge+LBD protein sequences from both cod and human in silico. All four 

amino acids important for binding WY14643 in human PPARα were conserved in 

both PPARαa and PPARαb in cod (Fig 17 A). Five out of seven amino acids 

important for binding GW501516 in human PPARβ/δ were conserved in cod 

PPARβ/δ, differing by hV298 -> M and hH413 -> N (Fig 17 B). In cod PPARγ, only 

five out of eleven amino acids important for binding Rosi in human PPARγ were 

conserved, differing by hH323 -> I, hY327 -> T, hL330 -> M, hV339 -> T, hI341 -> 

M, and hY473 -> L (Fig 17 C). 
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Figure 17. Pairwise sequence alignment of Atlantic cod and human PPARx hinge+LBDs. Human PPARx hinge+LBD 
encoding genes were retrieved from the Ensembl human genome database. The cloned Atlantic cod PPARx hinge+LBD encoding 
genes were sequenced by the sequencing facility at the Department of Molecular Biology, University of Bergen. The nucleotide 
sequences were translated into protein sequences in silico using ExPASy Translate tool, and the protein sequences were then aligned 
using Clustal Omega (EMBL-EBI). The pairwise alignments were depicted in Jalview v 2.9.0b2. The alignments has been colored by 
percentage identity and conservation. Conserved amino acids impotant for ligand binding is marked with green boxes, while non-
conserved is marked with red boxes. 
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4.2 Effector Plasmid Construction 

After confirming that the correct PPARx hinge+LBD encoding gene fragments had 

been cloned, the gene fragments could be ligated into effector plasmids required for 

ligand activation analysis with the LRA. Effector plasmids are eukaryotic expression 

plasmids that allow the Atlantic cod PPARx hinge+LBD constructs to be 

constitutively expressed in COS-7 cells. The abilities of the PPARx hinge+LBD 

constructs to bind and become activated by environmental contaminants could then 

be tested in vitro. 

4.2.1 Restriction Digestion and Ligation 

The cloning vectors harboring the Atlantic cod PPARx hinge+LBD-encoding 

fragments (pSC-B-PPARx-LBD) (confirmed by sequencing), as well as the effector 

plasmid (pCMX-Gal4-DBD), were all digested using the BamHI and EcoRI 

restriction endonucleases and subsequently separated with AGE (3.11.1, 3.4). Thus, 

allowing the PPARx hinge+LBD fragments to be purified from the cloning vector 

backbones through gel extraction. Similarly, could the effector plasmid backbones be 

linearized and purified through gel extraction. Small aliquots of each sample were 

loaded and separated on an agarose gel to monitor the process (Fig 18). 

 

The gel-extracted Atlantic cod PPAR hinge+LBDs and pCMX-Gal4-DBD vector 

backbones could then be ligated together creating the pCMX-Gal4-DBD-PPARx-

LBD effector plasmids. 

   

pCMX αa αb β/δ γ M 

10000 pb 
3000 pb 
1000 pb 

pSC-B 
PPARx hinge+LBDs 

Figure 18. Restriction enzyme digestion of expression vectors and cloning vectors. The 
pCMX-Gal4-DBD expression vector and the cloning vectors containing the PPARx hinge-LBDs were 
linearized through digestion using the BamHI and EcoRI restriction endonucleases. The resulting 
fragments were separated on 0.5X TBE 0.7 % agarose gel electrophoresis and stained with GelRed. 
pCMX = 2 μL of the effector plasmid backbones pCMX-Gal4-DBD. M = 2 μL DNA standard (2log 
DNA Ladder). αa= 2 μL of pSC-B-PPARαa-LBD. αb= 2 μL of pSC-B-PPARαb-LBD. β/δ = 2 μL of 
pSC-B-PPARβ/δ -LBD. γ= 2 μL of pSC-B-PPARγ-LBD. 
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4.2.2 Colony Screening for Positive Transformants 

The effector plasmids were transformed into competent E. coli cells and selected for by 

amp-resistance on agar plates. Positive transformants were then screened for inserts by 

colony PCR, using expression vector specific primers. The colony PCR screening 

products were separated with AGE, which showed the presence and amplification of 

fragments of expected lengths in regard to each of the Gal4-DBD-PPARx-LBD fusion 

protein encoding genes (Fig 19). 

 

The effector plasmids were subsequently purified from the positive transformants 

through mini-preps. Sequencing, using expression vector specific primers, verified that 

the nucleotide (nt) sequences of the PCR screening products corresponded with the 

fragments encoding the Gal4-DBD-PPARx-hinge+LBD fusion protein, and that the 

fusion proteins were in the correct reading frame (Appendix V-VI). 
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Figure 19. PCR screening for positive transformants containing the Gal4-DBD-PPARx-
LBD encoding fragment. Colony PCR screening products were separated with 0.5X TBE 0.7 % 
agarose gel electrophoresis. The gel was stained with GelRed to visualize the fragments. Expected 
lengths: Gal4-DBD-PPARαa-hinge+LBD = 1374 bp; Gal4-DBD-PPARαb-hinge+LBD = 1329 bp; 
Gal4-DBD-PPARβ/δ-hinge+LBD = 1344 bp; Gal4-DBD-PPARγ-hinge+LBD = 1353 bp). M = 2 μL 
DNA standard (2log DNA Ladder). 2 μL of amplification reaction was loaded per well. 
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4.2.3 LRA Plasmids and Integrity Control 

Purity and configuration of the plasmids used in the LRA were assessed prior to 

ligand activation analysis. Hence, after the constructed effector plasmids had been 

confirmed through sequencing they were, in addition to reporter and control 

plasmids, replicated in E. coli cell cultures and purified through midi-preps. The purity 

and concentrations of the LRA plasmids were assessed spectrophotometrically, and 

A260/280 and A260/230 ratios were measured (Table 47). The obtained values indicated 

little or no protein contamination and thereby sufficient quality for use with LRA. 

 
Table 47. Spectrophotometric measurements of midi-prepped LRA plasmids. 

Sample Concentration (ng/μL) A260/280 A260/230 

PPARαa 1616.1 1.86 2.35 

PPARαb 1748.5 1.87 2.36 

PPARβδ 1783,9 1.86 2.22 

PPARγ 1675.8 1.87 2.35 

Luciferase 1372.0 1.91 2.20 

β-gal 2219.6 1.86 2.26 

 

The integrity of the three types of LRA plasmids (effector-, receptor-, and control 

plasmids) was verified with AGE, showing that the majority of the plasmids exhibited 

the supercoiled conformation needed for efficient transfection into the COS-7 cells 

(Fig 20).  

 

10000 bp 
 
 

3000 bp 

M αa αb βδ γ Luc β-gal M 

Figure 20. Analyses of integrity and conformation of effector-, reporter-, and control 
plasmids used in the LRA. PPARαa, PPARαb, PPARβ/δ, and PPARγ effector plasmids, as well as the 
luciferase reporter and β-gal control plasmids were separated on a 0.5X TBE 0.7 % agarose gel and stained 
with GelRed. M = 2 μL DNA standard (2log DNA Ladder). αa = 2 μL of pCMX-Gal4-DBD-PPARαa-
hinhe+LBD. αb = 2 μL of pCMX-Gal4-DBD-PPARαb-hinge+LBD. β/δ = 2 μL of pCMX-Gal4-DBD-
PPARβ/δ-hinge+LBD. γ = 2 μL of pCMX-Gal4-DBD-PPARγ-hinge+LBD. Luc = 2 μL of the reporter 
plasmid ((mh100) x4tk luc). β-gal = 2 μL of the control plasmid (pCMV-β-gal). 
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4.3 Luciferase Reporter Gene Assay 

After completing the cloning and subcloning of the PPARx-hinge+LBD fragments, 

the Atlantic cod PPAR constructs were ready to be tested in the LRA assay in vitro by 

exposing them to different environmental contaminants. Before conducting full-scale 

LRA trials, agonists that could be used as positive controls for ligand activation had to 

be established. The LRA system also needed to be optimized in regard to receptor- 

reporter plasmid ratios. From here on, ligand activation of the PPAR receptors is 

denoted as fold induction in luciferase activity in cells exposed to the test compound 

compared to cells exposed to solvent, in this case DMSO. 

4.3.1 Establishing Positive Controls for Ligand Activation of Atlantic 

Cod PPAR Constructs 

To establish positive controls for ligand activation for each of the four Gal4-DBD-

PPARx-hinge+LBD constructs, the abilities of mammalian model PPAR agonists in 

activating the Atlantic cod orthologs were initially assessed. WY14643, a known 

mammalian PPARα agonist, was tested on the PPARαa hinge+LBD and PPARαb 

hinge+LBD constructs. On the PPARαa hinge+LBD construct, WY14643 was able 

to elicit a maximum activation of 126-fold at 125 μM (Fig 21 A, 0-125 μM). While on 

the PPARαb hinge+LBD construct, WY14643 was able to elicit a maximum 

activation of 128-fold at 41 μM (Fig 21 B, 0-80 μM). The lowest and highest 

concentration of WY14643 that elicited significant minimum and maximum fold 

induction and EC50 are summarized in table Table 48. 
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Figure 21. Establishing a positive control for ligand activation of Atlantic cod PPARαa- 
and PPARαb hinge+LBD constructs. Each measured point shows WY14643-induced activation 
of the PPARαx constructs as mean fold induction derived from 12 experimental replicates. Standard 
error for mean (SEM) is indicated A) COS-7 cells transfected with the PPARαa construct were exposed 
to WY14643 with concentrations ranging between 0-125 μM. B) COS-7 cells transfected with the 
PPARαa construct were exposed to WY14643 with concentrations ranging between 0-80 μM. Non-
linear regression was implemented in the software PRISM (GraphPad) to fit a dose-response curve. 
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GW501516, a known mammalian PPARβ/δ agonist, was tested with LRA on the 

PPARβ/δ hinge+LBD construct. This compound was able to elicit a maximum 

activation of 126-fold at 11.3 μM of GW501516 (Fig 22 C, 0-18 μM). The lowest and 

highest concentration of GW501516 that produced significant minimum and 

maximum fold induction and EC50 is summarized in table Table 48. 

 

 

 
Table 48. Lowest and highest concentrations of control agonists used to achieve 
significant minimum and maximum fold induction of PPARx hinge+LBD constructs. 
Ligand activation in cells exposed to the test compound over cells exposed to solvent after 24 hours. n = 
9. The effect concentration (EC50) was calculated in PRISM (GraphPad). 

  Lowest fold induction  Highest fold induction   

Receptor-

subtype 

Agonist Conc. 

(μM) 

fold ± SEM p-value  Conc. 

(μM) 

fold ± SEM p-value  EC50 

(μM) 

PPARαa WY14643 16 4 ± 0.4 <0.0001  125 126 ± 16.2 <0.0001  41 

PPARαb WY14643 10 8 ± 1.3 <0.0001  41 128 ± 30.0 <0.0001  26 
PPARβ/δ GW501516 0.4 6 ± 1.0 <0.0001  11.3 126 ± 8.8 <0.0001  2 

PPARγ Rosi - - -  - - -   
PPARγ TBBPA - - -  - - -   

PPARγ TTA - - -  - - -   
PPARγ 1-triple-TTA - - -  - - -   

PPARγ 2-triple-TTA - - -  - - -   
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Figure 22. Establishing a positive control for ligand activation of Atlantic cod PPARβ/δ 
hinge+LBD construct. Each measured point shows GW501516-induced activation of the PPARβ/δ 
construct as mean fold induction derived from 12 experimental replicates. Standard error for mean 
(SEM) is indicated. The transfected COS-7 cells were exposed to GW501516 with a concentration 
ranging between 0-18 μM. Non-linear regression was implemented in the software PRISM (GraphPad) 
to fit a dose-response curve. 
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Five compounds that in mammalian models have shown to activate the PPARγ 

reseptor (i.e. rosiglitazone (Rosi), tetrabromobisphenol A (TBBPA) tetradecyl 

thioacetic acid (TTA), 1-triple-TTA, 2-triple-TTA) were tested in the LRA assay with 

the Atlantic cod PPARγ. However, none of the typical PPARγ agonists were able to 

activate the PPARγ hinge+LBD construct (Fig 23). 
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Figure 23. Assessment of five mammalian PPARγ agonists as positive controls for 
ligand activation of the Atlantic cod PPARγ hinge+LBD construct. Each measured point 
is based on 3 experimental replicates that include three technical replicates each (n=9), and shows 
standard error for mean (SEM). COS-7 cells transfected with the PPARγ hinge+LBD construct 
were exposed to A) Rosiglitazone (Rosi) with concentrations ranging between 0-0.1 μM, B) Rosi 
with concentrations ranging between 0-60μM, C) Tetrabromobisphenol A (TBBPA) with 
concentrations of 1,10, and 100 μM, D) Tetradecyl Thioacetic Acid (TTA), 1-Triple-TTA, and 2-
Triple-TTA with concentrations ranging between 0-200 μM. 
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4.3.2 Optimization of Receptor- Reporter Plasmid Ratio in LRA 

To optimize the LRA system, COS-7 cells were transfected with four different rations 

between receptor- and reporter plasmids to assess which ratio that produced the best 

LRA sensitivity. Since we were not able to activate the Atlantic cod PPARγ receptor 

in vitro, the following experiments were limited to the PPARαa, PPARαb, and 

PPARβ/δ receptors. In these experiments, the total amount of transfected plasmids 

were kept constant at 100 ng/well, while varying only the ratio between receptor- and 

reporter plasmids from 1:2, 1:5, 1:10, and 1:20 (the β-gal control plasmid was always 

added in the same amount as the reporter plasmid). COS-7 cells transfected with 

effector plasmids harboring a PPARx hinge+LBD construct were then exposed to the 

above-established control agonists. The measurements are based on three 

experimental replicates for each PPAR subtype, and the trials were repeated two 

times. By assessing the data from the two trials (Fig 24 A-C) and specifically looking at 

the significant minimum and maximum fold induction between the different ratios, 

the two higher ratios, i.e. 1:10 and 1:20, more frequently resulted in higher maximum 

fold induction in luciferase activity at lower agonist concentrations compared to the 

two lower ratios of 1:2 and 1:5. For PPARαa, no clear difference between 1:10 and 

1:20 could be established. Thus, the 1:10 ratio between receptor- and reporter 

plasmid was chosen for downstream LRA experiments for PPARαa, PPARαb, and 

PPARβ/δ, respectively 
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Figure 24. Optimization of receptor-reporter plasmid ratios for LRA trials. COS-7 cells 
were transfected with four different rations (1:2, 1:5, 1:10, and 1:20) between receptor- (PPARαa, -αb, 
and -β/δ respectively) and reporter- (luciferase) plasmids. A) PPARαa- and B) PPARαb-transfected cells 
were exposed to WY14643, while C) PPARβ/δ-transfected cells were exposed to GW501516, for 24 
hours. Each measured point is derived from three experimental replicates of two separate trials that 
include three technical replicates (n=6), and shows ligand activation of the three different PPARx 
hinge+LBD constructs at the four different plasmid ratios. Activation is denoted as fold induction in 
luciferase activity in transfected COS-7 cells exposed to the control agonists over cells exposed to the 
solvent DMSO (measured point with lowest x-value) with standard error for mean (SEM). 

 

 

Concentrations of the agonists WY146643 and GW501516 eliciting a significant 

lowest and highest fold induction of their PPARx hinge+LBD construct are 

summarized in Table 49. 
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Table 49. Lowest and highest fold induction of PPARx hinge+LBD constructs using four 
different receptor- reporter plasmid ratios. 

  Lowest fold induction  Highest fold induction 
Receptor-
subtype 

Plasmid 
ratio 

Conc. 
(μM) 

fold ± SEM p-value  Conc. 
(μM) 

fold ± SEM p-value 

PPARαa 

1:2 19 2.8 ± 0.6 <0.0001  100 62.1 ± 7.8 <0.0001 
1:5 19 2.8 ± 0.5 <0.0001  100 59.4 ± 2.5 <0.0001 
1:10 19 2.5 ± 0.7 <0.0001  100 68.4 ± 8.5 <0.0001 
1:20 19 2.5 ± 0.2 0.0007  100 78.6 ± 3.9 <0.0001 

PPARαb 

1:2 8 2.6 ± 0.4 0.0001  60 85.8 ± 2.9 <0.0001 
1:5 12 2.7 ± 0.4 <0.0001  60 61.5 ± 0.9 <0.0001 
1:10 5 2.9 ± 0.4 <0.0001  60 189.0 ± 11.9 <0.0001 
1:20 12 4.2 ± 0.7 <0.0001  60 138.3 ± 27.0 <0.0001 

PPARβ/δ 

1:2 0.4 3.2 ± 0.6 <0.0001  25 63.3 ± 4.8 <0.0001 
1:5 0.4 3.0 ± 0.6 <0.0001  6.3 76.0 ± 30.4 <0.0001 
1:10 0.4 5.1 ± 0.4 <0.0001  12.5 100.9 ± 14.1 <0.0001 
1:20 0.4 6.0 ± 1.4 <0.0001  12.5 88.6 ± 13.8 <0.0001 

PPARαa and PPARαb are exposed to control agonist WY14643. PPARβ/δ is expose to control agonist GW501516. 
SEM = Standard error of mean. 
 

Since none of the tested control agonists for the Atlantic cod PPARγ hinge+LBD 

construct was able to induce activation, this construct was excluded from most of the 

following downstream LRA’s. However, based on the results of the other three 

PPARx hinge+LBD receptor-constructs, a 1:10 ratio was selected for the PPARγ 

hinge+LBD construct in order to make LRA trials of a few selected pollutants to 

explore if any of them could activate of the PPARγ hinge+LBD construct. 

4.3.3 Ligand Activation Assay 

The ability of the Atlantic cod PPARx hinge+LBD constructs to bind and become 

activated by various environmental pollutants was explored in vitro. COS-7 cells were 

co-transfected with the constructed effector plasmids encoding the Gal4-DBD-

PPARx-hinge+LBD fusion proteins, together with the luciferase reporter gene 

plasmid and the β-galactosidase encoding control plasmid, with a 1:10 receptor-

reporter plasmid ratio. The transfected COS-7 cells were then exposed to fifteen 

different pollutants, comprising both legacy- and emerging environmental 

contaminants  (Table 50)  
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Table 50.  Overview of environmental contaminants tested for agonistic effects on 
Atlantic cod PPARs. 

Class Compounds 

Fluorosurfactants PFOA, PFNA, PFUnDA, PFOS, PFHxS 

Phthalates DEHP, DiDP, MBzP, MBP 

Pesticides Chlorpyrifos, Endosulfan 

Brominated flame retardant DPTE 

Pharmaceuticals and personal care products D4, D5 (Siloxanes) 

Organochlorine PCB 153 

 

A consistent 2-fold induction in luciferase activity was set as a minimum requirement 

before considering the Atlantic cod PPARx hinge+LBD constructs to be significantly 

activated by the ligands. Out of the fifteen ligands tested, PFOA and PFNA were able 

to activate the PPARαb hinge+LBD construct (Fig 26). PFOA elicited a significant 

fold induction at a lower concentration, as well as a higher maximal fold induction 

compared to PFNA (Fig 26). Concentrations of PFOA and PFNA eliciting a 

significant lowest and highest fold induction of the PPARαb hinge+LBD construct are 

summarized in Table 51. 

 
Table 51. Concentrations resulting in a significant lowest and highest fold induction of 
the PPARαb hinge+LBD construct. 

  Lowest fold induction  Highest fold induction 

Receptor-

subtype 

Ligand Conc. 

(μM) 

fold ± SEM p-value  Conc. 

(μM) 

fold ± SEM p-value 

PPARαb PFOA 70 2.2 ± 0.3 0.0003  150 8.2 ± 0.5 <0.0001 

PPARαb PFNA 118 2.1 ± 0.5 <0.0001  154 3.2 ± 0.6 <0.0001 

 

Exposure to the remaining fluorosurfactants did not result in any measurable 

induction of the PPARαb hinge+LBD construct, nor did the phthalates or the other 

environmental pollutants tested (Fig 26). None of the pollutants tested were able to 

activate the PPARαa-, PPARβ/δ-, and PPARγ hinge+LBD constructs under the 

experimental conditions used during these LRA trials (Fig 25, Fig 27, Fig 28). The 

highest concentration used (100 μM) of endosulfan, D5, and PCB 153 caused a 

decrease (close to zero) in background luciferase activity for all four PPARx 

hinge+LBD constructs (Fig 25, Fig 26, Fig 27, Fig 28).   
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Figure 25. Ligand activation of Atlantic cod PPARαa hinge+LBD construct exposed to 
fifteen different pollutants. Dose-response-curves were fitted by non-linear regression (GraphPad, 
Prism) on average fold induction ± standard error of the mean (SEM). The data is based on three 
experimental replicates, and the trials were repeated three times (except for D4 which was only 
repeated once). 
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Figure 26. Ligand activation of Atlantic cod PPARαb hinge+LBD construct exposed to 
fifteen different pollutants. Dose-response-curves were fitted by non-linear regression (GraphPad, 
Prism) on average fold induction ± standard error of mean (SEM). The data is based on three 
experimental replicates, and the trials were repeated three times (except for D4 which was only 
repeated once). 
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Figure 27. Ligand activation of Atlantic cod PPARβ/δ hinge+LBD construct exposed to 
fifteen different pollutants. Dose-response-curves were fitted by non-linear regression (GraphPad, 
Prism) on average fold induction ± standard error of mean (SEM). The data is based on three 
experimental replicates, and the trials were repeated three times (except for D4 which was only 
repeated once). 
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Figure 28. Ligand activation of Atlantic cod PPARγ hinge+LBD construct exposed to 
seven different pollutants. Dose-response-curves were fitted by non-linear regression (GraphPad, 
Prism) on average fold induction ± standard error of mean (SEM). The data is based on three 
experimental replicates, and the trials were repeated three times (except for D4 which was only 
repeated once). 
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4.4 Cell Viability Assays 

The control agonists and all ligands used in the LRA trials were tested for cytotoxic 

effects on the COS-7 cells using a cell viability assay with two indicator dyes, resazurin 

and CFDA-AM. Resazurin was used to measure metabolic activity, while CFDA-AM 

was used to assess plasma membrane integrity. In viable and metabolically active 

COS-7 cells, resazurin and CFDA-AM become enzymatically converted to their 

fluorescent metabolites that can be recorded and quantified using an EnSpire 2300 

Multilabel Reader (PerkinElmer). Cytotoxicity was defined as a reduction in the 

fluorescent signal, here denoted as % relative fluorescence, in relation to the solvent 

control (1 % DMSO) set as 100 %. The cell viability assay showed a significantly 

reduced fluorescence signal of the resazurin metabolite (reduction from 100% to 60  

%) in COS-7 cells exposed to the highest concentration of TTA (200 μM) (Fig 29, 

control agonists). On the contrary, the remaining compounds tested showed a 

significantly increased resazurin signal, except for the highest consentrtion of 2-triple-

TTA (Fig 29, control agonists). An increased resazurin signal was also observed for the 

fluorosurfactants PFOA at 154 and 118 μM, PFNA at at 154 and 118 μM, PFUnDA 

at 118 μM, PFOS at all concentrations, and PFHxS at 154 and 118 μM (Fig 29, 

fluorosurfactant). Increased resazurin signal was also observed for the phthalates 

DEHP, DiDP, and MBP at all concentrations, respectively, as well as for at the two 

lowest concentrations of MBzP (100 and 50 μM) (Fig 29, phthalates). This was seen 

also for the POPs chlorpyriphos at 100 μM, DPTE at all concentrations, and for PCB 

153 at all concentrations (Fig 29, POPs). None of the lignads tested showed any 

significant decreasing effect on fluorescence signal of the CFDA-AM metabolite, 

however a significant increase in the signal was observed for the control agonists TTA 

at 50 μM, and TBBPA at 1 μM (Fig 30, control agonists). This was also observed for 

the fluorosurfactant PFNA at 118 μM (Fig 30, fluorosurfactant), as wel as for one 

POP, DPTE, at 1 μM (Fig 30, POPs). Although not significant, 2-triple-TTA, 

chlorpyrifos, endosulfan, D4, D5, and PCB 153 showed a trend of reduced 

fluorescence signal of the CFDA-AM metabolite, at the least in the highest 

concentration (Fig 30).  
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Figure 29. Assessing metabolic activity in COS-7 cells after exposure. COS-7 cells were exposed to the three highest concentrations of each 
compound used in the LRA experiments while incubated at 37 °C and 5 % CO2 for 24 hours. “No cells” shows background signal. 0.1 % and 1 % Triton 
X-100 acts as positive controls for impared cell viability and cell death. Cytotoxicity is indicated by a reduction in the fluorescent signal (denoted as % 
relative fluorescence) in relation to the solvent control (1 % DMSO, dotted line) set to 100 %. Significance is denoted as * = p ≤ 0.05, * *= p ≤ 0.01, *** 
= p ≤ 0.001, **** = p ≤ 0.0001, n = 4 (n = 3 for D4, D5, and PCB 153). 
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Figure 30. Assessing plasma membrane integrity of COS-7 cells after exposure. COS-7 cells were exposed to the three highest 
concentrations of each compound used in the LRA experiments while incubated at 37 °C and 5 % CO2 for 24 hours. “No cells” shows background 
signal. 0.1 % and 1 % Triton X-100 acts as positive controls for impared cell viability and cell death. Cytotoxicity is indicated by a reduction in the 
fluorescent signal (denoted as % relative fluorescence) in relation to the solvent control (1 % DMSO, dotted line) set to 100 %. Significance is denoted as 
* = p ≤ 0.05, * *= p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001, n = 4 (n = 3 for D4, D5, and PCB 153). 
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4.5 Examining the Presence of Expressed Fusion Proteins in COS-7 

Cells 

4.5.1 Protein Concentration Measurements 

COS-7 cells, transfected with the effector plasmids encoding the Gal4-DBD-PPARx-

hinge+LBD fusion proteins, were harvested and pelleted before lysed in a Triton X-

100 lysis buffer. The protein concentrations of the prepared cell lysates were 

determined with the protein assay reagent Pierce 660 (Thermo scientific), using a 

standard curve of bovine serum albumin (BSA) (Appendix VII) (Table 52). 

 
Table 52.  Protein concentrations in COS-7 cell lysates. 

 

 

 

  

PPAR-subtype Concentration (μg/mL) 

αa A 8386 

αa B 5457 

αb A 4315 

αb B 5023 

β/δ A 4640 

β/δ B 4782 

γ A 4407 

γ B 4715 

COS-7 A 4715 

COS-7 B 2482 
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4.5.2 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 

The protein samples were separated according their Mw with SDS-PAGE. Two SDS-

PA gels were made, one designated for detection of total protein content through 

Coomassie Brilliant Blue staining, and one for detecting the Gal-4-DBD-PPARx-

hinge+LBD fusion proteins with Western blotting. Both gels were loaded with 10 μg 

of protein per well from each of the COS-7 cell lysate samples. The Coomassie 

Brilliant Blue-stained PA-gel showed that the proteins in the COS-7 cell lysates had 

been successfully separated during the SDS-PAGE and that the total amount of 

protein between cell lysate samples was of similar quantity (Fig 31).  

 

 

 

  

Figure 31. Protein separation of transiently transfected COS-7 cell lysates with SDS-
PAGE. Protein samples of lysed COS-7 cells transiently transfected with plasmids encoding the Gal4-
DBD-PPARx-hinge+LBD fusion proteins were separated with 12 % SDS-PAGE and stained with 
Coomassie Brilliant Blue. Lanes αa (PPARαa), αb (PPARαb), β/δ (PPARβ/δ), γ (PPARγ), and N.T 
(non-transfected cells) were loaded with approx.10 μg of protein. Lane M was loaded with 5 μL of 
Precision Plus Protein™ Kaleidoscope™ Prestained Protein Standards from Bio-Rad. A ChemiDocTM 
XRS+ System with a charged-coupled (CCD) camera (Bio-Rad) was use to scanned the Coomassie-
stained SDS-PA gel. 
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4.5.3 Western Blotting 

Western blotting was carried out to identify and assess the expression levels of the 

Gal4-DBD-PPARx-hinge+LBD fusion proteins from the COS-7 cell lysate. The 

proteins on a SDS-PA gel were blotted onto a PVDF membrane by electrotransfer, 

and available binding seats on the membrane were blocked with 5% dry milk ON. 

The membrane was first probed with mouse-anti Gal4 antibodies (Fig 32 A), followed 

by mouse-anti beta actin antibodies that were used as a loading control for protein 

quantities between the protein samples on the membrane (Fig 32 B). The secondary 

antibody sheep-anti-mouse IgG was used to visualize the primary antibodies. The 

Gal4-PPAR fusion proteins were detected as specific bands around the size of 50 kDa 

in the lanes with cell lysate (CL) from transfected COS-7 cells, while absent in the 

non-transfected cells (Fig 32 A). The intergroup size distribution of the bands from 

largest to smallest was lane αa > γ > β/δ > αb. This corresponds well to the predicted 

Mw’s of the Gal4-DBD-PPARx-hinge+LBD fusion proteins, predicted to be (αa) 51.5, 

(γ) 50.9, (β/δ) 50.8, and (αb) 50.2 kDa. The Mw of the Gal4-DBD-PPARx-

hinge+LBD fusion proteins were computed in silico using the online ExPASy Compute 

pl/Mw tool (SIB Bioinformatics Resource Portal). Beta actin was detected in all CL 

samples, including the CL from the non-transfected cells, at approximately 48-49 kDa 

(Fig 32 B). 

 

kDa M αa
 

αb


β/δ
 

γN.
T

50

50

A

B

Figure 32.	 Detection of the Gal4-DBD-PPAR-LBD fusion proteins in transiently 
transfected COS-7cells by Western Blotting. Cell lysate from COS-7 cells transiently transfected 
with plasmids encoding the Gal4-DBD-PPARx-hinge+LBD fusion proteins were separated with 12 % -
PAGE and blotted onto a PVDF membrane. A) Membrane probed with primary mouse-anti Gal4 
antibodies diluted 1:500 in TBS-tween. B) The same membrane as shown in A) but additionally probed 
with mouse-anti beta actin antibodies diluted 1:1000 in TBS-tween. The secondary antibody sheep-anti-
mouse IgG conjugated to HRP (diluted 1:2000 in TBS-tween) was used to visualize the primary 
antibodies. Lane N.T (not transfected cells), αa, αb, β/δ, β/δ, and γ (PPAR subtypes) were loaded with 
approx. 10 μg of protein of COS-7 cell lysate. Lane M was loaded with 5 μL of Precision Plus Protein™ 
Kaleidoscope™ Prestained Protein Standards from Bio-Rad, where the 50 kDa marker band has been 
denoted to the left in the figure. The antigen-antibodies complexes were visualized and scanned using a 
ChemiDocTM XRS+ System with a charged-coupled (CCD) camera (Bio-Rad). 
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5 Discussion 

The overall aim of this thesis was to provide new information on how the regulation of 

the lipid metabolism in Atlantic cod can be affected by environmental contaminants 

through interactions with the PPAR receptors. To my knowledge, this is the first time 

the hinge+LBDs from the Atlantic cod PPARαα, PPARαb, PPARβ/δ, and PPARγ 

encoding genes have been successfully cloned. In addition, by using an in vitro 

UAS/Gal4-DBD based luciferase reporter gene assay in a COS-7 cell line, this is also 

the first study that have examined the ligand binding characteristics of these types of 

nuclear receptors from this species. Phylogenetic analyses were carried out to validate 

the cloned gene sequences as Atlantic cod PPARs, and examine their similarity to 

PPARs from other vertebrates, including a variety of teleost species. Pairwise and 

multiple sequence alignments, together with the construction of a Neighbor-Joining 

tree, confirmed the identities of the cloned gene sequences as the hinge+LBD from 

PPARαa, PPARαb, PPARβ/δ, and PPARγ. The results also showed some sequence 

differences in comparison to the predicted PPAR-encoding genes present in the 

Atlantic cod genome database (Ensembl). Studying ligand activation of the cod 

PPARx hinge+LBD constructs in vitro, allowed assessment of both legacy and 

emerging contaminants for their abilities to agonistically activate the PPARx 

hinge+LBD constructs. Out of the fifteen ligands tested, it was found that PFOA and 

PFNA acted as PPARαb agonists, while the other ligands did not activate any of the 

PPARx hinge+LBD constructs. 

5.1 Sequence Analyses 

Sequencing of the cloned PPAR gene segments revealed some differences in 

comparison to the predicted PPAR-encoding genes present in the Atlantic cod 

genome database (Ensembl). Minor differences found between the cloned and 

predicted Atlantic cod PPARs will not be further discussed here. However, the larger 

stretches of amino acid residues found in the hinge region of cod PPARαa and PPARγ 

will be discussed further. The conservation of amino acid residues previously shown to 

be important for ligand binding in mammalian PPAR counterparts will also be 

discussed. 
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PPAR sequence comparisons between Atlantic cod, other teleosts, and terrestrial 

vertebrates suggest that teleost PPARαa and PPARγ in general have longer hinge 

regions than the terrestrial vertebrate counterparts. The Ensembl Automatic Gene 

Annotation System uses algorithms and models to make preliminary gene predictions that 

to a large extent are based on terrestrial vertebrate sequence data (Curwen et al., 

2004). Thus, inaccurate gene predictions are to be expected due to natural gene 

variations between different groups of animal species. It is recognized that the Atlantic 

cod genome still needs to be manually curated, and recently an initiative for a more 

comprehensive annotation of the cod genome were initiated through the ongoing 

dCod 1.0 project (RCN project no. 248840).  

5.1.1.1 PPARαa and PPARαb 

The hinge region in Atlantic cod PPARαa was 19 amino acid residues longer than 

expected from to the predicted PPARαa sequence in Ensembl. Teleosts such as sea 

bass (Dicentrarchus labrax), rabbitfish (Siganus canaliculatus), hake (Merluccius merluccius), 

plaice (Pleuronectes platessa), sea bream (Sparus aurata), and Japanese pufferfish (Takifugu 

rubripes) have also been shown to have longer PPARγ hinge regions (15-21 amino acids 

longer) than its human ortholog (Boukouvala et al., 2004; Kondo et al., 2007; Leaver 

et al., 2005; Raingeard et al., 2009; You et al., 2017). In human PPARα, it has been 

shown that the key amino acids involved in binding WY14643 are S280, Y314, H440, 

and Y464 (Bernardes et al., 2013; Narala et al., 2010). The positions of these four 

amino acids are conserved in both PPARαa and PPARαb in Atlantic cod (Fig 17 A). 

However, there are sequence differences between the two cod PPARα subtypes. 

Atlantic cod PPARαb hinge+LBD and PPARαa hinge+LBD exhibits 65 % and 56 % 

sequence similarity to human PPARα hinge+LBD, respectively. The fact that 

PPARαa has a longer hinge region compared to PPARαb, could potentially cause 

differences in protein folding that may affect the ligand-binding pocket. Thus, the 

Atlantic cod PPARαb may have ligand-binding characteristics that more closely 

resembles the human PPARα. 

5.1.1.2 PPARβ/δ 

The cloned Atlantic cod PPARβ/δ hinge+LBD was of equal length as the predicted 

amino acid sequence present in Ensembl. Similarly, the lengths of PPARβ/δ in other 

teleosts such as brown trout (Salmo trutta) and rabbitfish (Siganus canaliculatus) are equal 

to the length of PPARβ/δ in terrestrial vertebrates (Batista-Pinto et al., 2005; You et 
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al., 2017). In human PPARβ/δ, the key amino acids involved in binding of 

GW501516 are W228, H287, V298, V312, I328, H413, and Y437 (Wu et al., 2017). 

The position of five out of these seven amino acids are conserved in Atlantic cod 

PPARβ/δ (Fig 17 B). The Atlantic cod differed by having a nonpolar methionine (M) 

instead of the human nonpolar valine (V), and by having an asparagine (N) with a 

polar side chain instead of the human histidine (H) with a positively charged side 

chain. Still, the overall sequence similarity between the Atlantic cod PPARβ/δ 

hinge+LBD and the human PPARβ/δ hinge+LBD is 79 %. Despite the rather high 

sequence similarity, the discrepancy of the two amino acids where one possesses very 

different chemical properties compared to the amino acid found in the human 

sequence, might give rise to differences in agonist selectivity and specificity between 

the Atlantic cod PPARβ/δ and the human counterpart. 

5.1.1.3 PPARγ 

The hinge region in Atlantic cod PPARγ was 37 amino acid residues longer than 

expected from to the predicted PPARγ sequence in Ensembl. Teleosts such as brown 

trout, rabbitfish, sea bass, hake, Atlantic salmon (Salmo salar), Japanese pufferfish 

(Takifugu rubripes), Nile tilapia (Oreochromis niloticus), olive flounder (Paralichthys olivaceus), 

and yellow catfish (Pelteobagrus fulvidraco) have also been shown to have longer PPARγ 

hinge regions (9-39 amino acids longer) than its human ortholog (Andersen et al., 

2000; Batista-Pinto et al., 2005; Boukouvala et al., 2004; Cho et al., 2009; He et al., 

2015; Kondo et al., 2007; Raingeard et al., 2009; Wafer et al., 2017; You et al., 2017; 

Zheng et al., 2015). In human PPARγ, the key amino acids for binding Rosi are 

C285, R288, S289, H323, Y327, L330, L333, V339, I341, H449, and Y473 

(Annapurna et al., 2013; Chandra et al., 2008; Liberato et al., 2012; Nolte et al., 

1998). Interestingly, only five amino acid positions out of these eleven are conserved in 

Atlantic cod PPARγ (Fig 17 C), and the overall sequence similarity between the cod 

and human PPARγ hinge+LBD is only 62 %. The lack of conservation of amino 

acids in positions involved in binding of Rosi in the Atlantic cod PPARγ hinge+LBD, 

as well as the low sequence similarity to human PPARγ, strongly suggests that the 

Atlantic cod PPARγ have different ligand-binding properties than the human PPARγ. 

5.2 Ligand Activation Analyses 

Based on work in mammalian models, PPARs have long been considered as lipid 

sensors and master regulators of the energy metabolism (Desvergne and Wahli, 1999; 
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Kliewer et al., 1997; Varga et al., 2011). Naturally occurring fatty acids and 

derivatives control PPAR activation, which in turn induces downstream gene 

transcription and production of proteins important for lipid- and carbohydrate 

metabolism. PFCs with their long carbon backbones resemble fatty acids, e.g. by 

exhibiting the fatty acid octanoic acid structure or octanoic sulfonate structure. 

However, instead of hydrogen atoms, the carbon backbones are either poly- or 

perfluorinated. Thus, their ability to mimic fatty acids has long been suspected 

(Shabalina et al., 2016). Phthalates, similar to PFCs, also carries side-chains that give 

them a molecular structure resembling that of fatty acids. The ligands tested within 

this thesis have been chosen due to the characteristics mentioned above, as well as 

other POP-like properties and presence in the environment at concerning levels. The 

results from the LRA showed that some PFCs were able to elicit activation of the 

Atlantic cod PPARαb hinge+LBD construct, and that the level of receptor induction 

seemed to be correlated to the length of the carbon backbone and functional group of 

the ligand. On the other hand, the phthalates and POPs tested did not significantly 

activate any of the Atlantic cod PPAR constructs. 

5.2.1.1 Why Use LRA as a Method? 

A UAS/Gal4-DBD based luciferase reporter gene assay is a method that allows high 

throughput screening of potential ligands of nuclear receptors, as well as comparison 

of the potency and efficacy between different ligands (Wolf et al., 2008). When doing 

transgenic gene expression in cell lines with a UAS/Gal4-DBD system, it is possible to 

circumvent the requirement of nuclear receptor-specific response elements, in this 

case PPREs. This system can therefore be used to characterize different nuclear 

receptors without the need to clone nuclear receptor-specific response elements and 

construct receptor specific reporter plasmids for each experiment (Wang et al., 2017). 

In vivo, PPARs bind to DNA as obligate permissive heterodimers with the RXR 

(Desvergne and Wahli, 1999; Széles et al., 2010). Thus, in models including RXR, it is 

not possible to distinguish if the heterodimer becomes activated due to ligand-

interaction with the LBD of PPAR, or by ligand-interaction with the LBD of RXR. 

However, PPARγ has also been shown to function as homodimer in in vitro 

experimental systems, with an affinity constant almost equivalent to that of the 

PPAR:RXR heterodimer (Okuno et al., 2001). The COS-7 cell line, commonly used 

to express recombinant proteins, is robust and easy to work with. Importantly, 
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expression of endogenous PPAR and RXR is either low or undetectable in the COS-7 

cells (Herdick et al., 2000; Umemoto and Fujiki, 2012), minimizing interference with 

the ligand activation experiment. Therefore, using a UAS/Gal4-DBD based system in 

COS-7 cells specifically allows assessment of ligand-binding properties of PPARs 

(Colliar et al., 2011; Mukherjee et al., 1998).  

5.2.1.2 COS-7 Cell Viability 

None of the pollutants that were tested for ligand activation exhibited significantly 

diminishing effects on the metabolic activity of the COS-7 cells, nor on the cell 

membrane integrity, at the concentrations used in this thesis. The control agonist 

TTA, which is a synthetic fatty acid, did exhibit a significant negative effect on the 

metabolic activity of the COS-7 cells at the highest concentration used (Fig 29). This 

compound was only tested on the Atlantic cod PPARγ hinge+LBD construct in order 

to identify a potential PPARγ activator (agonist). However, since TTA did not induce 

any activation it was not used in any further experiments. It has previously been 

shown that high concentrations of fatty acids are cytotoxic to leukaemia and 

melanoma cell lines (de Sousa Andrade et al., 2005; Lima et al., 2002; Otton and 

Curi, 2005). TTA functions as a lipid-lowering agent that cannot be beta-oxidized, 

but is instead incorporated into the phospholipid membranes of cells (Skrede et al., 

1997). In this way, TTA was cytotoxic on glioma cells (Berge et al., 2003). In this 

study, all control agonists (WY14643, GW501516, TTA, 2-triple-TTA, Rosi, and 

TBBPA), except the highest concentration of TTA and 2-triple-TTA, caused a 

varying but significant, increase in the COS-7 cells metabolic activity (Fig 29). This 

was also observed with the lower concentrations of the fluorosurfactants, most 

phthalates (except MBzP 200 μM), and for the POPs chlorpyrifos (at 100 μM), DPTE, 

and PCB 153. It might therefore be possible that these control agonists and pollutants 

in some way stimulated the activity of the COS-7 cells, but further analyses are 

necessary to unveil the mechanisms behind these observations. 

 

5.2.1.3 Control Agonists 

The control agonist WY14643 activated both the Atlantic cod PPARαa- and PPARαb 

hinge+LBD construct, although with different potency. WY14643 caused a significant 

activation of the PPARαa hinge+LBD construct at 16 μM, while 10 μM was the 

lowest concentration needed to significantly activate the PPARαb hinge+LBD 
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construct (Table 48). Even though the highest fold induction was rather similar for 

both PPARα subtypes (between 126 and 128 fold) (Fig 21 A, B), WY14643 elicited the 

highest fold induction in PPARαa at 125 μM. For PPARαb, WY14643 induced the 

highest fold induction already at 41 μM. Apart from being a commonly used agonist 

for mammalian PPARα (Bernardes et al., 2013; Ip et al., 2004; Narala et al., 2010; 

Varga et al., 2011), WY14643 has also been successfully used as a control agonist for 

PPARα-activation in other teleosts (Colliar et al., 2011; Kondo et al., 2007; Leaver et 

al., 2005). The control agonist WY14643 was initially designed to target human 

PPARα. The amino acids that are important for binding WY14643 are all conserved 

in both PPARα subtypes present in Atlantic cod. However, the sequence analyses 

revealed that Atlantic cod PPARαb exhibits an overall higher sequence similarity to 

the human PPARα compared to the Atlantic cod PPARαa. This could explain why 

WY14643 appears to be a more potent agonist for the Atlantic cod PPARαb. That is, 

WY14643 exhibited an EC50 at 11 μM on PPARαb, while for PPARαa EC50 was 

determined to be 41 μM (Table 48). 

 

GW501516 acted as a potent agonist for the Atlantic cod PPARβ/δ hinge+LBD 

construct, and caused a significant fold induction at 0.4 μM, while a highest fold 

activation of 126 fold was elicited at 11.3 μM (Fig 22) (Table 48). This well-known 

mammalian PPARβ/δ agonist, has also been successfully used as an inducer and 

control agonist for PPARβ/δ in Atlantic salmon and in plaice (Colliar et al., 2011; 

Leaver et al., 2007). GW501516 had an EC50 at 2 μM on the Atlantic cod PPARβ/δ 

(Table 48), while in human PPARβ/δ the EC50 have been shown to be as low as 1 nm 

(Oliver et al., 2001). The sequence analysis revealed Atlantic cod PPARβ/δ to only 

possesses five out of seven amino acids shown important for binding GW501516 in 

human PPARβ/δ. Instead of having a histidine (H) with an electrically charged side 

chain, the cod PPARβ/δ has an asparagine (N) with a polar side chain in this position. 

Thus, the different chemical properties of the amino acids might explain the observed 

difference in agonist potency. 

None of the typical mammalian PPARγ agonists (Rosi, TBBPA, TTA, 1-triple TTA, 

and 2-triple TTA) were able to elicit any response in the Atlantic cod PPARγ 

hinge+LBD construct, and neither did any of the other fifteen ligands tested (Fig 23, 

Fig 28). PPARγ in other teleost species such as plaice, sea bream, medaka (Oryias 

latipes), and Japanese pufferfish have also been non-responsive to Rosi, fatty acids, and 
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PUFAs (Colliar et al., 2011; Kondo et al., 2007; Kondo et al., 2010; Leaver et al., 

2005). Leaver et al. (2005) even repeated their experiments using a different cell line to 

make sure no essential factors involved in transcriptional activation were missing, but 

still got the same results. In this thesis, Western blotting with anti-Gal4 antibodies was 

used to confirm that the Gal4-DBD-PPARγ-hinge+LBD fusion protein was produced 

in the transfected COS-7 cells (Fig 32), thus excluding the possibility that the lack in 

activation was due to inefficient synthesis of the fusion protein. The absence of 

PPARγ-activation by mammalian ligands such as Rosi, might be explained by several 

non-conserved amino acid residues in the Atlantic cod LBD that are essential for 

binding Rosi in human PPARγ (Fig 17 C) (Annapurna et al., 2013; Chandra et al., 

2008; Liberato et al., 2012; Nolte et al., 1998). In addition, the overall sequence 

similarity between human and Atlantic cod PPARγ hinge+LBD is only 62 %. It is 

therefore likely that PPARγ in Atlantic cod folds into a different tertiary structure 

compared to the human counterpart, and thus promoting different ligand-binding 

characteristics. It has been suggested that a potential driving mechanism of the 

observed divergence is the energy metabolism of ectothermic teleosts, requiring 

PPARγ to function differently compared to its ortologs in endothermic terrestrial 

vertebrates (He et al., 2015). Another potential explanation is differences in diet 

between teleosts and terrestrial vertebrates. Humans, for example, consume a high 

proportion of carbohydrates to meet their energy demands, while a teleost such as 

Atlantic cod mainly consume protein and fat to meet theirs (Polakof et al., 2012; 

Tocher, 2003). More information about tissue-specific patterns of teleost PPARs 

might help elucidate their functions, especially the function of PPARγ. 

 

Great efforts have been made to map the expression patterns of PPARs in mammals. 

The tissue-specific expression of the different PPAR subtypes is to a large degree 

reflected by their different physiological functions (Ferré, 2004; Georgiadi and 

Kersten, 2012; Hihi et al., 2002; Wagner and Wagner, 2010). Far less studies have 

examined PPAR tissue-specific expression patterns in teleosts. One study on turbot 

found that PPARαa was predominantly expressed in the heart, while PPARαb 

expression was ubiquitous among all tissues (Urbatzka et al., 2013). Two other studies 

reported that teleost PPARα and PPARβ/δ tissue-specific expression patterns 

resemble what is found in terrestrial mammals (Batista-Pinto et al., 2005; Leaver et al., 

2005). Tissue-specific expression of teleost PPARγ on the other hand, appears to be 
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more indistinct. Batista-Pinto et al. (2005) only detected PPARγ from brown trout in 

the trunk kidney and liver, whereas PPARγ dominated in the intestines and adipose 

tissue of sea bream and plaice (Leaver et al., 2005). Contradicting results have also 

been reported regarding the levels of the different PPAR subtypes in different tissues 

in teleosts. Batista-Pinto et al. (2005) found that the expression of PPARβ/δ was 

slightly higher than the expression of PPARα, and that PPARγ was the least expressed 

subtype in brown trout. In sea bream and plaice, on the other hand, Leaver et al. 

(2005) reported equal levels of PPARγ and PPARβ/δ in all tissues tested, 

contradicting also what is found in terrestrial vertebrates (Ferré, 2004; Georgiadi and 

Kersten, 2012; Hihi et al., 2002; Wagner and Wagner, 2010). It is evident that more 

research is needed before we have a clear map over the expression patterns of PPARs 

in teleosts, and potential teleost species-specific differences in PPAR expression. 

5.2.1.4 Fluorosurfactants 

Perfluorinated carboxylic acids (PFCAs) elicited activation of the Atlantic cod 

PPARαb hinge+LBD construct while perfluorinated sulfonic acids (PFSAs) did not. 

The level of activation by the PFCAs decreased with increasing length of the carbon 

backbone from eight to eleven carbon atoms (C8 to C11). The shortest of the 

carboxylates tested, PFOA (C8), exhibited the highest activation potency and elicited 

a significant fold induction of the PPARαb hinge+LBD construct at the lowest 

concentration (70 μM) of all PFCAs (Table 51). PFOA (C8) also prompted the highest 

fold induction (8-fold) at 150 μM (Table 51). The one-carbon longer PFNA (C9) was 

able to elicit a significant fold induction of the PPARαb hinge+LBD construct at 118 

μM, indicating that PFNA is a weaker agonist than PFOA. The highest fold induction 

prompted by PFNA (3-fold) was also lower than that of PFOA (Fig 26). PFUnDA 

(C11) was the longest PFCA tested and were not able to activate the PPARαb 

hinge+LBD construct at any of the concentrations tested Fig 26).  Mammalian models 

have also reported correlation between length of the carbon backbone and activation 

of PPARs using UAS/Gal4-DBD based luciferase reporter gene assays. Wolf et al. 

(2008) showed PFCAs to activate human PPARα in a similar matter as in Atlantic 

cod. The receptor activation increased when exposed to carboxylates with C4 up to 

C9, but at C10 the carboxylate became unable to activate the human PPARα. Buhrke 

et al. (2013) also showed in their study on human PPARs that PFCAs (C<8) activated 

PPARα, and that activation potency decreased with decreasing alkyl chain length, 
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with PFOA being most potent. In addition, PFCAs also weakly activated human 

PPARγ and PPARβ/δ. Similarly, although using other systems than UAS/Gal4-DBD 

based luciferase reporter gene assays, Zhang et al. (2014) showed human PPARγ 

activation of PFCAs to increase with increasing alkyl chain length from C4 up to C11, 

before decreasing with C>11. Leaver et al. (2005) found that PFOA activated both 

plaice and sea bream PPARα:RXR heterodimers. It is very interesting that PFOA 

and PFNA only activated PPARαb and not PPARαa in Atlantic cod. However, even 

though both PPARαa and PPARαb contained all amino acid residues shown to be 

important for binding the control agonist, the longer hinge region of PPARαa, as well 

as other differences in amino acid residues within the ligand-binding domain, might 

affect the ligand specificity and selectivity. The question still remains if PFOA and 

PFNA are able bind to the PPARαa ligand-binding pocket and not activate the 

receptor, but instead act as antagonists. 

 

The sulfonates tested in this thesis, i.e. PFHxS (C6) and PFOS (C8), did not elicit a 

measurable fold induction of any of the Atlantic cod PPARx hinge+LBD constructs. 

In plaice, PFOS was also unable to activate any of the PPAR subtypes (Colliar et al., 

2011). However, several studies have shown sulfonates, such as PFOS, to target 

mammalian PPARα in transactivation assays, although being less potent compared to 

the carboxylates (Heuvel et al., 2006; Shipley et al., 2004; Takacs and Abbott, 2007; 

Wolf et al., 2008). Although PFOS contains the same number of carbon atoms as 

PFOA, PFOS could not significantly activate any of the PPAR subtypes. However, 

the functional group differs with PFOS having a sulfonic group instead of a carboxyl 

group. This difference is most likely what makes PFCAs potent PPARαb activators 

but not PFSAs. 

 

A recent monitoring survey mapped PFCs levels in livers from Atlantic cod that had 

been sampled in fjords and harbors along the Norwegian coast (Valdersnes et al., 

2017). Out of the 16 PFCs analyzed, PFOS dominated in most locations, with the 

highest level measured to 21.8 μg kg-1 wet weight. In general, they found the eastern 

part of the Norwegian coast to be more polluted than the western and nothern parts. 

Still, they concluded that the levels of PFCs in livers of Atlantic cod in Norwegian 

waters are low. In this thesis, it was found that PFOA and PFNA could activate the 

PPARαb construct. However, the concentrations of PFCAs and PFSAs used in this 
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thesis are of course not directly comparable to the levels found in wild-caught Atlantic 

cod. When exposure experiments are carried out in vitro, it is asumed that most of the 

dose will become avalible inside the cells, which is not necessarily true. The 

permeability of the cell membrane might affect the pollutants’ ability to enter the cells 

to some degree. Furthermore, in living organisms there are several factors affecting 

how much of the exposure dose that reaches its target site, i.e., the absorption rate; if 

pre-systemic elimination occurs, if a pollutant is distributed towards or away from the 

target tissue or organ, whether the pollutant is detoxified or activated, and the 

efficiency of the biotransformation, elimination and excretion. The elimination half-

life of PFCs in rats have been reported to be approx. 60 days for females and 43 days 

for males for PFOS, 2-4 hours females and 4-6 days males for PFOA, and 41 days 

females and 31 days males for PFNA (Benskin et al., 2009; Chang et al., 2008; 

Chengelis et al., 2009; Heuvel et al., 1991; Hundley et al., 2006; Lau, 2012; Ohmori 

et al., 2003; Olsen et al., 2009; Tatum-Gibbs et al., 2011). This is in contrast to 

humans, where the elimination half-life of PFCs have been reported to be 8.5 years 

for PFHxS, 5.4 years for PFOS, and 2.3 - 3.8 years for PFOA (Bartell et al., 2010; 

Harada et al., 2005; Lau, 2012; Olsen et al., 2007). The elimination half-life of PFCs 

in Atlantic cod is still unknown, since we don’t know how well Atlantic cod metabolize 

and eliminate PFCs. It is known that PFCs bioaccumulate over time and biomagnifies 

up in higher trophic levels (Martin et al., 2004). Importantly, this study shows that 

PFCAs can activate at least one Atlantic cod PPAR subtype. 

5.2.1.5 Phthalates  

The phthalates tested in this study (i.e., DEHP, DiDP, MBzP, and MBP) did not 

activate any of the Atlantic cod PPAR constructs. Colliar et al. (2011) examined 

activation potency of four phthalates on plaice PPARs; two parent compounds 

(dimethylphthalate (DMP) and benzylbutylphthalate (BzBP)) and two metabolites 

(mono-1-methylhexyl phthalate (MMHP) and mono-benzyl phthalate (MBzP)). None 

of the parent phthalates activated any of the plaice PPAR subtypes. However, at 100 

μM the metabolite MMHP activated PPARα (16-fold), and PPARβ/δ weakly (2-fold). 

Interestingly, they found that the other metabolite, MBzP, also activated both plaice 

PPARα and PPARβ/δ at 100 μM, although only weakly (2-fold). As already stated, 

MBzP did not activate any of the Atlantic cod PPAR subtype constructs in this study. 

It should be noted that, apart from using a fish cell line, Colliar et al. (2011) also used 
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ethanol as their vehicle control and not DMSO as used in this study. Bility et al. 

(2004) reported that phthalate monoesters activated both mouse and human PPARα 

and PPARγ, but mouse PPARs were activated at lower concentrations. In addition, 

they concluded that the longer the side-chains of the phthalates, the more potent and 

efficient activators they became (Bility et al., 2004). It appears as that PPARs 

sensitivity towards activation of phthalates varies greatly between different species.  

 

In a monitoring survey, the phthalates DEHP and DiDP were undetectable in livers 

from Atlantic cod sampled around coastal waters of Norway (Green et al., 2015). 

However, in the Norwegian arctic DEHP was detected in liver samples of Atlantic cod 

in Kongsfjorden, where the highest concentration measured was 203 ng/g wet weight. 

(Warner et al., 2010). As mentioned in the introduction, phthalates are not persistent 

in the environment and organisms can usually metabolize them relatively fast. The 

problem is that they are extensively used worldwide in everyday-products, allowing 

them to be continuously released into the environment (Frederiksen et al., 2007). 

5.2.1.6 POPs  

The remaining POPs tested for ligand activation abilities (i.e., chlorpyrifos, 

endosulfan, DPTE, siloxane D4 and D5, and PCB 153) were unable to activate any of 

the Atlantic cod PPAR constructs. However, at the highest concentration (100 μM), 

endosulfan, siloxane D5, and PCB 153 caused the luciferase activity to decrease below 

the solvent control in all four Atlantic cod PPAR constructs (Fig 25, Fig 26, Fig 27, Fig 

28). This could either be a sign of antagonistic effect of these POPs on the PPARs, or 

that they are cytotoxic to the COS-7 cells at the highest concentrations. However, 

endosulfan, siloxane D5, and PCB 153 did not show any signs of negatively impacting 

COS-7 cell metabolic activity or membrane integrity at the concentrations used (Fig 

29, Fig 30). Although, it is possible that this is a COS-7 cellular response against these 

POPs affecting another endpoint not accounted for in the cell viability assay. In order 

to answer what endpoint is causing this response in the COS-7 cells, the mechanism 

of cytotoxicity of each compound needs to be established (Riss and Moravec, 2004).  

 

Kojima et al. (2010) used a transactivation assay in a CV-1 cell line to screen two 

hundred pesticides (including chlorpyrifos and endosulfan) and found that only three 

activated mouse PPARa and PPARg, namely diclofop-methyl, pyrethrins and 
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imazalil. It seems that most pesticides are not targeting PPARs. Siloxanes have been 

detected in liver samples from Atlantic cod at high concentrations in fjords close to 

large human settlements. D5 was measured to be as high as 1978.5 ng/g wet weight 

in Atlantic cod sampled in Oslofjorden, while the highest concentration of D4 was 

measured to 134.4 ng/g wet weight. (Schlabach et al., 2007). In Kongsfjorden located 

on Svalbard, D4 and D5 were measured at lower concentrations of 3.9 ng/g wet 

weight. Thus, siloxanes appear to be a larger hazard to Atlantic cod living closer to 

densely populated areas. However, based on the findings in this study, siloxanes does 

not appear to target Atlantic cod PPARs, nor does PCB 153 and DPTE. However, 

PCB 153 has been reported to affect the lipid metabolism in Atlantic cod liver 

(Yadetie et al., 2014; Yadetie et al., 2017). PCB 153 is highly bioaccumulative and 

biomagnifying, and has been measured to be as high as 1940 ng/g fresh weight in 

livers from Atlantic cod sampled in Oslofjord in 2014 (Thomas et al., 2015). 

Brominated flame-retardants, such as DPTE, could not be detected in Atlantic cod 

liver during an environmental screening in 2009 (Møskeland, 2010). Importantly, the 

authors state that it was the first study on these types of pollutants and called for more 

studies before concluding that the overall levels in Norway are low.  

5.2.1.7 Potential weaknesses and limitations with the LRA method 

Luciferase reporter gene assays are easy to use, and well established for studying 

nuclear receptor-function (Paguio et al., 2010). Still, a downside is that they are time-

consuming as it takes four days to complete one single experiment. Since the system 

requires a cell line in order to express the receptor- and reporter proteins, cells need to 

be cultured and maintained in special and costly facilities. As with most scientific 

experiments, there is always a degree of between-experiment variations, e.g. cell 

proliferation might be affected by prolonged stress, and reporter plasmid quality can 

vary between midi-preps. Therefore, it is important to minimize this variability by 

using cells that have been subjected to equal handling, and to make a large enough 

reporter plasmid preparation to sustain repeated experiments until completion. The 

UAS/Gal4-DBD based luciferase reporter gene assay is a great system for conducting 

high-throughput ligand screening, and it is possible to test ligand interaction of PPARs 

while excluding RXR from the system, as well as endogenous PPREs. However, it is 

also these advantages that limit how far the results can be extrapolated. This system 

evaluates the ability, efficacy, and potency of a ligand to activate the PPARx 
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hinge+LBD construct and expression of the luciferase reporter gene in vitro. It is a 

simplified model compared to an in vivo situation, where RXR, coactivators, 

corepressors, and PPREs are present and contribute to the full-scale heterodimer 

activation and target gene expression. Although the assay can be used to provide 

knowledge of potential activation of nuclear receptors by numerous ligands, but the 

system does not convey which pathway(s) are affected. Nor does it verify that the 

ligand-interaction produces a toxicological response in the organism (Wolf et al., 

2008). 

5.3 Conclusion 

This thesis has for the first time successfully isolated and cloned the hinge+LBDs from 

Atlantic cod PPARαα, PPARαb, PPARβ/δ, and PPARγ, and further subjected them 

to functional characterization with regard to ligand activation. Sequence analyses and 

phylogenetic reconstruction validated and confirmed the identities of the cloned gene 

sequences from Atlantic cod as the hinge+LBD from PPARαa, PPARαb, PPARβ/δ, 

and PPARγ. The UAS/Gal4-DBD based luciferase reporter gene assay in a COS-7 

cell line was successfully established and a useful system to test the ligand specificity of 

the different PPAR subtypes and make comparisons of ligand-binding properties in 

relation to control agonists, as well as to environmental contaminants. The control 

agonist WY14643 activated both PPARα subtypes in Atlantic cod. The EC50 was 

found to be lower for PPARαb compared to PPARαa. The control agonist 

GW501516 activated PPARβ/δ. Notably, none of the typical mammalian PPARγ 

agonists activated Atlantic cod PPARγ, even though its expression in COS-7 cells was 

confirmed through Western Blotting. Among the pollutants tested, only PFCAs 

between 8 to 9 carbons long activated the PPARαb subtype. The PFSAs, phthalates, 

and POPs that were tested were all unable to activate any of the Atlantic cod PPAR 

subtypes. In conclusion, if Atlantic cod are exposed to compounds with long carbon-

backbones that harbor a carboxyl-group, the lipid metabolism could potentially be 

modulated through direct interference with at least one PPAR subtype. 

5.4 Future work 

This study showed that PFCAs were able to activate PPARαb. However, PFCAs did 

not activate PPARαa, and why did not the PFSAs activate any of the PPARs? Due to 

time limitation, this study did not test the pollutants for antagonistic effects on the 

Atlantic cod PPARs. However, that would be an interesting continuation of this study, 
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especially to test if PFOS and PFOA can bind PPARαa and antagonistically inhibit 

activation induced by a control agonist. In addition, studying ligand-receptor 

interactions in silico doing modeling based on crystallized PPARs from other species 

followed by ligand-docking analyses, could help elucidate which specific amino acids 

in the Atlantic cod PPAR-LBDs that are important for binding these ligands and 

agonists used in this study. Such predictions could then be followed-up by targeted in-

vitro mutagenesis of selected amino acid residues and subsequent ligand activation 

analyses. 

 

In line with the 3R principles (replacement, reduction and refinement), systems like 

the UAS/Gal4-DBD based luciferase reporter gene assay are great for conducting 

initial screening of potential ligands in order to identify hazardous compounds before 

exposing large numbers of living fish, which in addition to an animal welfare issue is 

both costly and time consuming. A way to make the initial screening even more time- 

and cost efficient, allowing an even higher throughput of producing ligand activation 

data, would be to establish a cell line-independent system. An AlphaLISA bead based 

system (PerkinElmer) would be an interesting alternative for studying ligand activation 

of nuclear receptors. Traditionally, AlphaLisa is used to detect and characterize 

interactions between antibodies and antigens (Bielefeld-Sevigny, 2009). A modification 

to the AlphaLISA system, by incorporating the UAS/Gal4-DBD principles, could 

allow interaction between ligands and nuclear receptor-LBDs to be studied. An 

adaption of the AlphaLisa system for this purpose is currently being explored in the 

environmental toxicology laboratory (UiB). 

 

The natural next step of the research presented here would be to test the findings in a 

more realistic setting, by conducting exposure studies ex vivo or in vivo. Studying 

chemical exposure ex vivo, using the established precision-cut liver slices (PCLS) 

method (Eide et al., 2014; Lerche-Langrand and Toutain, 2000), makes it possible to 

examine the response to pollutants in a system where cell-interactions are intact. Still, 

avoiding a full-scale exposure experiment on living fish. From the exposure study 

using PCLS, it would be possible to extract RNA and e.g. perform quantitative real-

time polymerase chain reactions (qPCR) for measuring changes in gene expression. 

PPAR target genes could thus be analyzed to map which signaling pathways that are 

affected by the exposure. Lastly, conducting in vivo exposure studies on live fish, testing 
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those chemicals that are most likely to have an affect on the organism. Here, it would 

also be interesting to examine tissue-specific expression patterns before and after 

exposure, to help elucidate the still unknown functions of the PPAR subtypes in teleost 

species. 
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7 Appendix I 

 
PPARαa hinge+LBD nt sequence 
 
Predicted (Ensemble) 
CAGTCGGAGAAACAGAGGTTGAAGGTGGAATTTGGGATGGGGGGGAGGAGCGAGGCGGAGCAAACCCTAA
CGCCCCCCGACCACAAGGTCCTGGTGCAGCAGATCCACCAGGCCTACATGAGGAACTTCAGCATGAACAAGGA
CAGGGCCAGACTGATACTGACCGGCAAGACCAGCCGACCGCCATTTGTTATCCACGACATGGAGACCTTCCAG
GCGGCGGAGCAAACCCTGGAGGTGGAGCTCCTGGGAGGGGCCCGGGAGGCAGAGGCCCGGCTGTTCCTCTG
CTGCCAGAGCGCCTCAGTGGAGGCGGTCACAGAGCTGACGGAGTTCGCCAAGAACATCCCTGGCTTTCTCCAC
CTCGACCTCAACGACCAGGTGACCCTGTTGAAGTACGGTGTGTACGAGGCCCTCTTCACCCTCCTTGCCTCCTGC
ATGAATAAAGACGGCCTCCTGGTGGCGCGCGGCGGGGGCTTCATCACCCGTGAGTTCCTGAAAAGTCTGCGGC
GGCCCTTTAGTGACATGATGGAGCCCAAGTTCCAGTTTGCCACGCGCTTCAACGCTCTGCAGCTGGATGACAGC
GACCTGGCGCTGTTCGTCTCTGCAATCATCTGCTGCGGAGATCGTCCAGGGTTAGTGAACGCCTCCCTGGTGGA
GCGACTCCAGGAGAGTGTTGTGCAGGCTCTGCAGCTTCATCTGGTGGCCAACCACCGTGACAATGCCTTCCTCT
TCCCTAAGCTGCTGCAGAAGTTGGCCGACCTGCGAGAGCTGGTCACCGAGCATGCTCAGTTGGTGCAGGACAT
TGAGACGACGGAGGACACGTCTCTCCATCCGCTCCTGCAAGAGATTTACAGGGACATGTACTGA	
 
867 nt 
 
 
Sequenced  
CAGTCGGAGAAACAGAGGTTGAAGGTGGAATTTGGGATGGGGGGGAGGAGCGAGGCGGAGCAAACCCTAA
CGCCCCCCGACCACAAGGTCCTGGTGCAGCAGATCCACCAGGCCTACATGAGGAACTTCAGCATGAACAAGGA
CAGGGCCAGACTGATACTGACCGGCAAGACCAGCCGACCGCCATTTGTTATCCACGACATGGAGACCTTCCAG
GCGGCGGAGCAAACCCTGGAGGTGAGAGGTGCAGCAGGGCCTAGCCCCGGCCCAGTCCAAGGCCTCACAGC
TGGGAAGGAGCTCCTGGTGGAGGGGCCCGGCGAGGCAGAGGCCCGGCTGTTCCTCTGCTGCCAGAGCGCCTC
AGTGGAGGCGGTCACAGAGCTGACGGAGTTCGCCAAGAACATCCCTGGCTTTCTCCACCTCGACCTCAACGACC
AGGTGACCCTGTTGAAGTACGGTGTGTACGAGGCCCTCTTCACCCTCCTTGCCTCCTGCATGAATAAAGACGGC
CTCCTGGTGGCGCGCGGCGGGGGCTTCATCACCCGTGAGTTCCTGAAAAGTCTGCGGCGGCCCTTTAGTGACA
TGATGGAGCCCAAGTTCCAGTTTGCCACGCGCTTCAACGCTCTGCAGCTGGATGACAGCGACCTGGCGCTGTTC
GTCTCTGCAATCATCTGCTGCGGAGATCGTCCAGGGTTAGTGAACGCCTCCCTGGTGGAGCGACTCCAGGAGA
GTGTTGTGCAGGCTCTGCAGCTTCATCTGGTGGCCAACCACCGTGACAATGCCTTCCTCTTCCCTAAGCTGCTGC
AGAAGTTGGCCGACCTGCGAGAGCTGGTCACCGAGCATGCTCAGTTGGTGCAGGACATTGAGACGACGGAGG
ACACGTCTCTCCATCCGCTCCTGCAAGAGATTTACAGGGACATGTACTGA	
 
924 nt 
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8 Appendix II 

 
PPARαb hinge+LBD nt sequence 
 
Predicted (Ensemble) 
CAGTCGGAGAAGCTGAAGCTGAAGGCGGAGCTGGTGACGGGGGAGCTGGAGGTGGAGGACCCCCGTCAGG
CGGACCAGAAGACCCTGGCCCGGCAGATCTACGAGGCCTACCTGAAGAACTTCAACATGAACAAGGCCAAGGC
TCGCACCATCCTCACCGGCAAGACCAGCACCCCCCCCTTCGTCATCCACGACATGGACACCCTGCAGCTGGCCG
AGCAGACCCTGGTGGCCAAGATGGTGGGCACGGGGGGGGCGCTGCTGGACCGCGAGGCGGAGGCCCGCATC
TTCCACTGCTGCCAGTGCACCTCGGTGGAGACGGTGACGGAGCTCACCGAGTTCGCCAAGTCGGTGCCGGGCT
TCGCCGAGCTGGACCTCAACGACCAGGTGACGCTGCTCAAGTACGGTGTGTACGAAGCGCTGTTCGCCATGCT
GGCGTCGTGCATGAACAAGGACGGGCTGCTGGTGGCGTACGGCGCCGGCTTCATCACGCGCGAGTTCCTCAA
GAGCCTGCGGCGGCCCTTCAGCGACATGATGGAGCCCAAGTTCCAGTTCGCCATGAGGTTCAACGCCCTGGAG
CTGGACGACAGTGACCTGGCGCTGTTCGTGGCCGCAATCATCTGCTGTGGAGACCGGCCGGGGCTGGTGAAC
GTGGGTCACATCGAGCGCATGCAGGAGAACATCGTGCAGGTGCTGCGGCTCCACCTGCTGGCCAACCACCAGG
ACGACGCCTTCCTCTTCCCCAAGCTGCTGCAGAAGCTGGCCGACCTGCGGCAGCTGGTCACGGAGCACGCTCA
GCTGGTGCAGGAGATCAAGAAGACGGAGGACGCCTCGCTGCACCCGCTACTGCAGGAGATCTACCGTGACAT
GTACTGA	
 
876 nt 
 
 
Sequenced  
CAGTCGGAGAAGCTGAAGCTGAAGGCGGAGCTGGTGACGGGGGAGCTGGAGGTGGAGGACCCCCGTCAGG
CGGACCAGAAGACCCTGGCCCGGCAGATCTACGAGGCCTACCTGAAGAACTTCAACATGAACAAGGCCAAGGC
TCGCACCATCCTCACCGGCAAGACCAGCACCCCCCCCTTCGTCATCCACGACATGGACACCCTGCAGCTGGCCG
AGCAGACCCTGGTGGCCAAGATGGTGGGCACGGGGGGCGGCGGCCTGCTGGACCGCGAGGCGGAGGCCCGC
ATCTTCCACTGCTGCCAGTGCACCTCGGTGGAGACGGTGACGGAGCTCACCGAGTTCGCCAAGTCGGTGCCGG
GCTTCGCCGAGCTGGACCTCAACGACCAGGTGACGCTGCTCAAGTACGGTGTGTACGAAGCGCTGTTCGCCAT
GCTGGCGTCGTGCATGAACAAGGACGGGCTGCTGGTGGCGTACGGCGCCGGCTTCATCACGCGCGAGTTCCTC
AAGAGCCTGCGGCGGCCCTTCAGCGACATGATGGAGCCCAAGTTCCAGTTCGCCATGAGGTTCAACGCCCTGG
AGCTGGACGACAGTGACCTGGCGCTGTTCGTGGCCGCAATCATCTGCTGTGGAGACCGGCCGGGGCTGGTGA
ACGTGGGTCACATCGAGCGCATGCAGGAGAACATCGTGCAGGTGCTGCGGCTCCACCTGCTGGCCAACCACCA
GGACGACACCTTCCTCTTCCCCAAGCTGCTGCAGAAGCTGGCCGACCTGCGGCAGCTGGTCACGGAGCACGCT
CAGCTGGTGCAGGAGATCAAGAAGACGGAGGACGCCTCGCTGCACCCGCTACTGCAGGAGATCTACCGTGAC
ATGTACTGA	
 
879 nt 
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9 Appendix III 

 
PPARβ/δ hinge+LBD nt sequence 
 
Predicted (Ensemble) 
TATGGACGCATGCCTGAAGCTGAGAAGAAAAAGCTGGTGGCGGGCCTACAGGCAGAGGAACAGAACCTCCG
CAATCCTAAAGGTGCAGACCTCAAGACGCTGGCCAAACAGGTCAACGCAGCCTACTTGAAAAACCTCAGTATG
ACCAAGAAAAAGGCCCGCAGTATCCTCACGGGCAAGACCAACAGCACCTCGCCCTTTGTCATCTATGACATGGA
CACCCTATGGAAAGCGGAGAGCGGTTTAGTATGGAGCCAGTTGGTGCCGGGGGCACCCCTGACCAAGGAGAT
TGGGGTCCATGTGTTCTACCGCTGCCAGTGCACTACAGTGGAGACTGTGAGGGAGCTCACAGAGTTTGCCAAG
TCCATTCCAGGCTTTGTGGACCTCTTCCTCAATGACCAGGTGACTTTGTTGAAGTATGGTGTGCATGAGGCTATT
TTCGCCATGCTCCCCTCGCTCATGAACAAAGATGGACTTTTGGTGGCCAATGGCAAAGGATTTGTGACCAGAGA
GTTCCTGCGAAGTTTAAGGAAGCCCTTCAGTGAGATAATGGAGCCCAAGTTTGAGTTTGCCTTAAAGTTCAATG
CTCTGGAGTTGGACGACAGTGACCTGGCACTGTTTGTTGCAGCCATCATACTCTGTGGAGATCGCCCAGGGCTG
ATAAACGTGAAGCAGGTGGAACAGAGTCAGGACAGGATACTGCAGGCCCTTGATCTGCACCTCCAGACCAACC
ACTCTGACTCGCTCTACCTCTTCCCCAAGCTGCTGCAAAAGATGGCCGACCTCCGACAGCTGGTCACAGAGAAT
GTTCAGCTGGTTCAGAAGATTAAAAAAACTGAGTCTGAGACCTCGCTCCACCCTCTGTTGCAGGAGATCTACAA
AGACATGTACTAG	
 
894 nt 
 
 
Sequenced  
TATGGACGCATGCCTGAAGCTGAGAAGAAAAAGCTGGTGGCGGGCCTACAGGCAGAGGAACAGAACCTCCG
CAATCCTAAAGGTGCAGACCTCAAGACGCTGGCCAAACAGGTCAACGCAGCCTACTTGAAAAACCTCAGTATG
ACCAAGAAAAAGGCCCGCAGTATCCTCACGGGCAAGACCAACAGCACCTCGCCCTTTGTCATCTATGACATGGA
CACCCTATGGAAAGCGGAGAGCGGTTTAGTATGGAGCCAGTTGGTGCCGGGGGCACCCCTGACCAAGGAGAT
TGGGGTCCATGTGTTCTACCGCTGTCAGTGCACTACAGTGGAGACTGTGAGGGAGCTCACAGAGTTTGCCAAG
TCCATTCCAGGCTTTGTGGACCTCTTCCTCAATGACCAGGTGACTTTGTTGAAGTATGGTGTGCATGAGGCTATT
TTCGCCATGCTCCCCTCGCTCATGAACAAAGATGGACTTTTGGTGGCCAATGGCAAAGGATTTGTGACCAGAGA
GTTCCTGCGAAGTTTAAGGAAGCCCTTCAGTGAGATAATGGAGCCCAAGTTTGAGTTTGCCTTAAAGTTCAATG
CTCTGGAGTTGGACGACAGTGACCTGGCACTGTTTGTTGCAGCCATCATACTCTGTGGAGATCGCCCAGGGCTG
ATAAACGTGAAGCAGGTGGAACAGAGTCAGGACAGGATACTGCAGGCCCTTGATCTGCACCTCCAGACCAACC
ACTCTGACTCGCCCTACCTCTTCCCCAAGCTGCTGCAAAAGATGGCCGACCTCCGACAGCTGGTCACAGAGAAT
GTTCAGCTGGTTCAGAAGATTAAAAAAACTGAGTCTGAGACCTCGCTCCACCCTCTGTTGCAGGAGATCTACAA
AGACATGTACTAG	
 
894 nt 
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10 Appendix IV 

 
PPARγ hinge+LBD nt sequence 
 
Predicted (Ensemble) 
CTCCTCTACGACTCCTACGTCAAGCACTTCCCCCTCACCAAGGCCAAGGCCCGAGCCATCCTGTCTGGGAAGAC
CGGGGACAGCTCGCCGTTTATTATCCACGACATGAAGTCTCTGATGGATGGAGAACAGTTGATCAACTGCAAAC
AGATTCGGAAGAGACCAGCATCCGTCCCCACGGAGGGCCTGGAGTTGCGCTTCTTCTACTCCTGCCAGTCCCGC
TCTGCCGAGGCCGTGAGGGAGGTTACGGAGTTCGCCAAGAGCATCCCCGGCTTTGTAGATCTGGATCTCAACG
ACCAGGTGACGTTGCTGAAGTACGGCGTGATAGAGGTGCTGACCCTCAGGATGGCTCCCCTGATGAACAAGGA
CGGCACGCTGATGTCCTACGGCCAGATCTTCATGACGCGGGAGTTCCTCAAGAGCCTACGCAAGCCCTTCTGCC
AGATGCTGGAGCCCAAGTTTGAGTTCTCCGTCAAGTTCAACACCCTGGAGCTGGACGACAGCGACCTGGCTCTG
TTCCTGGCCGTCGTCATCCTCAGCGGCGACCGGCCGGGCCTGCTGAACGTGCGGCCCATCGAGCGGCTCCAGG
AGACGGTGCTCCACTCCCTGGAGCTCCACCTGAAGGTCAACCACCCGGACTCCATGCAGCTGTTCGCCAAGCTG
CTGCAGAAGATGACGGACCTGCGGCAGATCGTGACCGACCACGTGCACCTCATCCAGCTGCTGGACAAGACCG
AGGTGGACATGTGCTTACACCCGCTGCTGCAGGAGATCCTGAAGGACTTGTATTAG	
 
792 nt 
 
	
Sequenced  
CTCCTCTACGACTCCTACGTCAAGCACTTCCCCCTCACCAAGGCCAAGGCCCGGGCCATCCTGTCTGGGAAGAC
CGGGGACAGCTCGCCGTTTATTATCCACGACATGAAGTCTCTGATGGATGGAGAACAGTTGATCAACTGCAAAC
AGATTCCCGGAAGAGACCAGCATCCGTCCCCAGCTGTCCTGGCTGACAACTATGGGGTCGTGGCGGGCCACCC
GGCGCCAGGGTACGGGGGGCTGGGGGGTCTGTCCCAGGGGCCCATCGGGCTCAGTCACCAGGGGCGGACG
GAGGGCCTGGAGTTGCGCTTCTTCTACTCCTGCCAGTCCCGCTCTGCCGAGGCCGTGAGGGAGGTTACGGAGT
TCGCCAAGAGCATCCCCGGCTTTGTAGATCTGGATCTCAACGACCAGGTGACGTTGCTGAAGTACGGCGTGATA
GAGGTGCTGACCCTCAGGATGGCTCCCCTGATGAACAAGGACGGCACGCTGATGTCCTACGGCCAGATCTTCA
TGACGCGGGAGTTCCTCAAGAGCCTACGCAAGCCCTTCTGCCAGATGCTGGAGCCCAAGTTTGAGTTCTCCGTC
AAGTTCAACACCCTGGAGCTGGACGACAGCGACCTGGCTCTGTTCCTGGCCGTCGTCATCCTCAGCGGCGACCG
GCCGGGCCTGCTGAACGTGCGGCCCATCGAGCGGCTCCAGGAGACGGTGCTCCACTCCCTGGAGCTCCACCTG
AAGGTCAACCACCCGGACTCCATGCAGCTGTTCGCCAAGCTGCTGCAGAAGATGACGGACCTGCGGCAGATCG
TGACCGACCACGTGCACCTCATCCAGCTGCTGGACAAGACCGAGGTGGACATGTGCTTACACCCGCTGCTGCA
GGAGATCCTGAAGGACTTGTATTAG	
 
903 nt 
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11 Appendix V 

 
GAL4-DBD-PPARαa-LBD nt sequence 
ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAGTGCTCCAAA
GAAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTACTCTCCCAAAACCAAAAGG
TCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGGCTAGAAAGACTGGAACAGCTATTTCTA
CTGATTTTTCCTCGAGAAGACCTTGACATGATTTTGAAAATGGATTCTTTACAGGATATAAAAGCATTG
TTAACAGGATTATTTGTACAAGATAATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAG
ACTGATATGCCTCTAACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAAC
AAAGGTCAAAGACAGTTGACTGTATCGCCGGAATTCCAGTCGGAGAAACAGAGGTTGAAGGTGGAATTT
GGGATGGGGGGGAGGAGCGAGGCGGAGCAAACCCTAACGCCCCCCGACCACAAGGTCCTGGTGCAGCAG
ATCCACCAGGCCTACATGAGGAACTTCAGCATGAACAAGGACAGGGCCAGACTGATACTGACCGGCAAG
ACCAGCCGACCGCCATTTGTTATCCACGACATGGAGACCTTCCAGGCGGCGGAGCAAACCCTGGAGGTG
AGAGGTGCAGCAGGGCCTAGCCCCGGCCCAGTCCAAGGCCTCACAGCTGGGAAGGAGCTCCTGGTGGAG
GGGCCCGGCGAGGCAGAGGCCCGGCTGTTCCTCTGCTGCCAGAGCGCCTCAGTGGAGGCGGTCACAGAG
CTGACGGAGTTCGCCAAGAACATCCCTGGCTTTCTCCACCTCGACCTCAACGACCAGGTGACCCTGTTG
AAGTACGGTGTGTACGAGGCCCTCTTCACCCTCCTTGCCTCCTGCATGAATAAAGACGGCCTCCTGGTG
GCGCGCGGCGGGGGCTTCATCACCCGTGAGTTCCTGAAAAGTCTGCGGCGGCCCTTTAGTGACATGATG
GAGCCCAAGTTCCAGTTTGCCACGCGCTTCAACGCTCTGCAGCTGGATGACAGCGACCTGGCGCTGTTC
GTCTCTGCAATCATCTGCTGCGGAGATCGTCCAGGGTTAGTGAACGCCTCCCTGGTGGAGCGACTCCAG
GAGAGTGTTGTGCAGGCTCTGCAGCTTCATCTGGTGGCCAACCACCGTGACAATGCCTTCCTCTTCCCT
AAGCTGCTGCAGAAGTTGGCCGACCTGCGAGAGCTGGTCACCGAGCATGCTCAGTTGGTGCAGGACATT
GAGACGACGGAGGACACGTCTCTCCATCCGCTCCTGCAAGAGATTTACAGGGACATGTACTGA 
 
1374 nt 
 
 
GAL4-DBD-PPARαb-LBD nt sequence 
ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAGTGCTCCAAA
GAAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTACTCTCCCAAAACCAAAAGG
TCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGGCTAGAAAGACTGGAACAGCTATTTCTA
CTGATTTTTCCTCGAGAAGACCTTGACATGATTTTGAAAATGGATTCTTTACAGGATATAAAAGCATTG
TTAACAGGATTATTTGTACAAGATAATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAG
ACTGATATGCCTCTAACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAAC
AAAGGTCAAAGACAGTTGACTGTATCGCCGGAATTCCAGTCGGAGAAGCTGAAGCTGAAGGCGGAGCTG
GTGACGGGGGAGCTGGAGGTGGAGGACCCCCGTCAGGCGGACCAGAAGACCCTGGCCCGGCAGATCTAC
GAGGCCTACCTGAAGAACTTCAACATGAACAAGGCCAAGGCTCGCACCATCCTCACCGGCAAGACCAGC
ACCCCCCCCTTCGTCATCCACGACATGGACACCCTGCAGCTGGCCGAGCAGACCCTGGTGGCCAAGATG
GTGGGCACGGGGGGCGGCGGCCTGCTGGACCGCGAGGCGGAGGCCCGCATCTTCCACTGCTGCCAGTGC
ACCTCGGTGGAGACGGTGACGGAGCTCACCGAGTTCGCCAAGTCGGTGCCGGGCTTCGCCGAGCTGGAC
CTCAACGACCAGGTGACGCTGCTCAAGTACGGTGTGTACGAAGCGCTGTTCGCCATGCTGGCGTCGTGC
ATGAACAAGGACGGGCTGCTGGTGGCGTACGGCGCCGGCTTCATCACGCGCGAGTTCCTCAAGAGCCTG
CGGCGGCCCTTCAGCGACATGATGGAGCCCAAGTTCCAGTTCGCCATGAGGTTCAACGCCCTGGAGCTG
GACGACAGTGACCTGGCGCTGTTCGTGGCCGCAATCATCTGCTGTGGAGACCGGCCGGGGCTGGTGAAC
GTGGGTCACATCGAGCGCATGCAGGAGAACATCGTGCAGGTGCTGCGGCTCCACCTGCTGGCCAACCAC
CAGGACGACACCTTCCTCTTCCCCAAGCTGCTGCAGAAGCTGGCCGACCTGCGGCAGCTGGTCACGGAG
CACGCTCAGCTGGTGCAGGAGATCAAGAAGACGGAGGACGCCTCGCTGCACCCGCTACTGCAGGAGATC
TACCGTGACATGTACTGA 
 
1329 nt 
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12 Appendix VI 

 
GAL4-DBD-PPAR β/δ -LBD nt sequence 
ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAGTGCTCCAAA
GAAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTACTCTCCCAAAACCAAAAGG
TCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGGCTAGAAAGACTGGAACAGCTATTTCTA
CTGATTTTTCCTCGAGAAGACCTTGACATGATTTTGAAAATGGATTCTTTACAGGATATAAAAGCATTG
TTAACAGGATTATTTGTACAAGATAATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAG
ACTGATATGCCTCTAACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAAC
AAAGGTCAAAGACAGTTGACTGTATCGCCGGAATTCTATGGACGCATGCCTGAAGCTGAGAAGAAAAAG
CTGGTGGCGGGCCTACAGGCAGAGGAACAGAACCTCCGCAATCCTAAAGGTGCAGACCTCAAGACGCTG
GCCAAACAGGTCAACGCAGCCTACTTGAAAAACCTCAGTATGACCAAGAAAAAGGCCCGCAGTATCCTC
ACGGGCAAGACCAACAGCACCTCGCCCTTTGTCATCTATGACATGGACACCCTATGGAAAGCGGAGAGC
GGTTTAGTATGGAGCCAGTTGGTGCCGGGGGCACCCCTGACCAAGGAGATTGGGGTCCATGTGTTCTAC
CGCTGTCAGTGCACTACAGTGGAGACTGTGAGGGAGCTCACAGAGTTTGCCAAGTCCATTCCAGGCTTT
GTGGACCTCTTCCTCAATGACCAGGTGACTTTGTTGAAGTATGGTGTGCATGAGGCTATTTTCGCCATG
CTCCCCTCGCTCATGAACAAAGATGGACTTTTGGTGGCCAATGGCAAAGGATTTGTGACCAGAGAGTTC
CTGCGAAGTTTAAGGAAGCCCTTCAGTGAGATAATGGAGCCCAAGTTTGAGTTTGCCTTAAAGTTCAAT
GCTCTGGAGTTGGACGACAGTGACCTGGCACTGTTTGTTGCAGCCATCATACTCTGTGGAGATCGCCCA
GGGCTGATAAACGTGAAGCAGGTGGAACAGAGTCAGGACAGGATACTGCAGGCCCTTGATCTGCACCTC
CAGACCAACCACTCTGACTCGCCCTACCTCTTCCCCAAGCTGCTGCAAAAGATGGCCGACCTCCGACAG
CTGGTCACAGAGAATGTTCAGCTGGTTCAGAAGATTAAAAAAACTGAGTCTGAGACCTCGCTCCACCCT
CTGTTGCAGGAGATCTACAAAGACATGTACTAG 
 
1344 nt 
 
 
GAL4-DBD-PPARγ-LBD nt sequence 
ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAGTGCTCCAAA
GAAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTACTCTCCCAAAACCAAAAGG
TCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGGCTAGAAAGACTGGAACAGCTATTTCTA
CTGATTTTTCCTCGAGAAGACCTTGACATGATTTTGAAAATGGATTCTTTACAGGATATAAAAGCATTG
TTAACAGGATTATTTGTACAAGATAATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAG
ACTGATATGCCTCTAACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAAC
AAAGGTCAAAGACAGTTGACTGTATCGCCGGAATTCCTCCTCTACGACTCCTACGTCAAGCACTTCCCC
CTCACCAAGGCCAAGGCCCGGGCCATCCTGTCTGGGAAGACCGGGGACAGCTCGCCGTTTATTATCCAC
GACATGAAGTCTCTGATGGATGGAGAACAGTTGATCAACTGCAAACAGATTCCCGGAAGAGACCAGCAT
CCGTCCCCAGCTGTCCTGGCTGACAACTATGGGGTCGTGGCGGGCCACCCGGCGCCAGGGTACGGGGGG
CTGGGGGGTCTGTCCCAGGGGCCCATCGGGCTCAGTCACCAGGGGCGGACGGAGGGCCTGGAGTTGCGC
TTCTTCTACTCCTGCCAGTCCCGCTCTGCCGAGGCCGTGAGGGAGGTTACGGAGTTCGCCAAGAGCATC
CCCGGCTTTGTAGATCTGGATCTCAACGACCAGGTGACGTTGCTGAAGTACGGCGTGATAGAGGTGCTG
ACCCTCAGGATGGCTCCCCTGATGAACAAGGACGGCACGCTGATGTCCTACGGCCAGATCTTCATGACG
CGGGAGTTCCTCAAGAGCCTACGCAAGCCCTTCTGCCAGATGCTGGAGCCCAAGTTTGAGTTCTCCGTC
AAGTTCAACACCCTGGAGCTGGACGACAGCGACCTGGCTCTGTTCCTGGCCGTCGTCATCCTCAGCGGC
GACCGGCCGGGCCTGCTGAACGTGCGGCCCATCGAGCGGCTCCAGGAGACGGTGCTCCACTCCCTGGAG
CTCCACCTGAAGGTCAACCACCCGGACTCCATGCAGCTGTTCGCCAAGCTGCTGCAGAAGATGACGGAC
CTGCGGCAGATCGTGACCGACCACGTGCACCTCATCCAGCTGCTGGACAAGACCGAGGTGGACATGTGC
TTACACCCGCTGCTGCAGGAGATCCTGAAGGACTTGTATTAG 
 
1353 nt 
 
 
 
  



 

	 120	

13 Appendix VII 

 
Table 53. Standard curve of bovine serum albumin (BSA) for determination of protein 
concentration in COS-7 cell lysate. 

 
 
 
BSA, with a concentration of 10 mg/mL, was prepared and diluted with Triton lysis 

buffer to obtain the concentrations of 62.5, 125, 250, 500, 1000, and 2000 μg/mL. 

BSA samples, blank samples (Triton lysis buffer), and COS-7 cell lysates were made in 

triplicates in 96 wells plates. The plates were added the protein assay reagent Pierce 

660 (Thermo scientific), and Absorbance was measured at 660 nm using an EnSpire 

2300 Multilabel Reader (PerkinElmer). Average absorbance (Abs660) of the blank 

triplicates was calculated and subtracted from the average of the BSA triplicates, 

before plotting the corrected BSA Abs660 against corresponding BSA standard 

concentration. Average Abs660 of the ten different COS-7 cell lysate were incorporated 

into the equation to calculate the unknown protein concentration. 
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R²	=	0,9997
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