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Abstract 

 

The aim of this thesis has been to improve the general scientific understanding of the 

marine inorganic carbon cycle of the Red Sea. The region houses an exceptional range 

of ecosystems and it is considered the most important repository of biodiversity in the 

world with vast calcification areas rich in coral reefs. Therefore, it is important to 

understand the interaction between biogeochemical processes and the Red Sea 

ecosystem. In spite of this fact, the area is poorly studied, and this is particularly true 

for the marine inorganic carbon cycle.  

Prior to this work, no systematic sampling of biogeochemical variables had been done 

off the coast of Sudan. As part of this work, a new biogeochemical time series from the 

Sudanese coastal waters has been established, which represents the very first data on 

hydrography and inorganic carbon from this part of the Red Sea. The sampling site has 

been operated since 2007, and here is presented data over a period of 8 years, from 

2007 to 2015. Consequently, there now exists a comprehensive dataset allowing the 

quantification of interannual to seasonal variations in biogeochemical variables, and 

identify important processes that control these changes. The establishment of such a 

baseline is important to compare future changes caused by climate and environmental 

changes when approaching the high CO2 world. 

The three papers in this thesis improve and renew our understanding of the Red Sea 

hydrography, the inorganic carbon cycle, how the variation goes, and what drives the 

observed changes.  

A common assumption has been that the temperature and salinity variations in the Red 

Sea is solely a function of local heat and mass flux. However, results from the current 

work evidence that advection of temperature and salinity gradients also plays a role for 

establishing the temperature and salinity maxima in the area (Paper I). The finding of 

this paper also show that the annual temperature range is approximately 6 C, with 
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highest temperatures during summer and autumn. Changes in salinity lag that of 

temperature with about 3 months.  

The inorganic carbonate measurements (Paper II) document for the very first time the 

seasonal as well as interannual variability of dissolved inorganic carbon (DIC) and total 

alkalinity (AT) in this part of the ocean. This pristine dataset has been used to construct 

a baseline for the inorganic carbon cycle and constitutes an important reference for 

years to come. Higher AT and DIC is measured during winter compared to the summer 

with an annual change of approximately 40 μmol kg-1 for AT and 32 μmol kg-1 for DIC. 

AT is mainly driven by physical processes such as advection and local evaporation 

(through salinity changes) as well as calcification, while changes in DIC are mainly a 

result of air-sea exchange and likely biological activity, and to a smaller degree along 

shore advection.  

The Red Sea, which is situated in the sub-tropical and tropical area, has previously 

been regarded as a net annual source for atmospheric CO2, but this view has to be 

revised. Paper III shows that pCO2 is high during summer and autumn and low during 

spring and winter, with a seasonal amplitude of about 60 μatm. Consequently, the 

Sudanese coastal area acts as a source for atmospheric CO2 during summer and autumn, 

while during winter and spring, the area is a sink for atmospheric CO2. Over an annual 

cycle, the area is a net sink of atmospheric CO2 of size 24.4 mmol CO2 m-2 y-1. The 

change from being a net annual source for atmospheric CO2 to becoming a net sink 

likely occurred in the 2000s.   
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1. Aim of the study 

 

The main goal of this thesis has been to achieve a better understanding of the inorganic 

carbon cycle at the western Red Sea through unravelling the biogeochemical setting 

and examining the spatiotemporal variation of hydrography and carbon parameters. 

The environmental settings for the Red Sea is extreme in terms of biogeochemistry. 

The sea is considered an important calcification area with numerous coral reefs and 

thus its coastline is very vulnerable, but despite of this fact, there is a limited amount 

of scientific surveys in the area, which has resulted in a poorly understanding of the 

marine inorganic carbon cycle, in particular. The lack of data hinders adequate analyses 

of the interactions between the biogeochemical processes and the inorganic carbon 

cycle in the area. This is critical in light with the ongoing global warming, exemplified 

in a temperature increase in the Red Sea of 0.7 °C from 1985 to 2007 (Raitsos et al., 

2011), expanding oxygen–minimum zones in the tropical regions (Stramma et al., 

2008), and the increasing atmospheric CO2 (Le Quéré et al., 2016). 

With help of a pristine time series of hydrography and inorganic carbon data, the aim 

is to develop new and improved knowledge regarding the inorganic carbon cycle in 

this area.  
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2. The marine carbon system 

2.1 Introduction  

Due to the carbon emissions produced by the combustion of fossil fuels, production of 

cement, and land-use change, the atmospheric carbon dioxide (CO2) concentration has 

increased exponentially from approximately 277 parts per million (ppm) at the 

beginning of industrial revolution in 1750 to 402 ppm in 2016. According to Le Quéré 

et al. (2016), combustion of fossil fuels globally emitted an amount of 9.3 ± 0.5 GtC y-

1 into the atmosphere while land-use change contributed 1.0 ± 0.5 GtC y-1 during the 

period between 2006 and 2015. Ocean takes up about a quarter of the annual carbon 

emissions (2.6 ± 0.5 GtC y-1) and the global residual terrestrial CO2 sink is 3.1 ± 0.9 

GtC y-1. The growth rate of atmospheric CO2 concentration for the same period is 4.5 

± 0.1 GtC y-1 (Le Quéré et al., 2016) (see Fig.2.1).  

 

Fig. 2.1 The global carbon dioxide budget with reservoirs (in GtC y-1) for the period between 
2006 and 2015. 1 GtC equals 1015 g C. Figure from Le Quéré et al. (2016).    
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The CO2 continuously cycles between the atmosphere, land, and ocean, but the amount 

of CO2 is not evenly distributed, and e.g. the ocean stores about 50 times more CO2 

than the atmosphere (Field and Raupach, 2004; Zeebe and Wolf-Gladrow, 2001). The 

CO2 exchange between the surface ocean and atmosphere is faster than the exchange 

between the surface layer and deep layer of the ocean. The latter one takes from several 

hundreds to thousands of years because it is driven by slower processes such as deep-

water formation and the marine biological production (Emerson and Hedges, 2008).  

 

2.2 The carbon chemistry  

When CO2 is dissolved in seawater, it is converted to aqueous CO2 and aqueous 

carbonic acid (H2CO3). This weak acid is dissociated in two steps producing one proton 

(H+) and bicarbonate ion (HCO3-) in the first step and two protons and carbonate (CO32-

) ion in the second step (see Eq. 2.1): 

 

CO2 + H2O               H2CO3*              H+ + HCO3-              2H+ + CO32-             (2.1) 

where K0 is Henry’s constant for CO2, and K1 and K2 are the first and the second 

dissociation constants of carbonic acid. All constants depend on temperature, salinity, 

and pressure of seawater (Lueker et al., 2000; Mehrbach et al., 1973). The star (*) 

indicate aquatic solution. Additional CO2 dissolved in seawater generates more H+ ions 

which drive more CO32- to react with H+ and produce HCO3-; known as the buffer 

reaction: 

                CO2 + CO32- + H2O               2HCO3-                                                     (2.2) 

CO32- is also used to form calcium carbonate (CaCO3), which is a building block for 

skeleton and shells of some marine organisms. The CaCO3 saturation state describes if 

the water is supersaturated or under saturated with respect to CO32-. 

K0 K1 K2 
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The marine carbon system is described by four carbon variables; total dissolved 

inorganic carbon (DIC), total alkalinity (AT), pH, and fugacity of carbon (fCO2). If two 

of the carbon variables are known in addition to the equilibrium constants, the other 

two variables can be calculated. The total dissolved inorganic carbon (DIC), sometimes 

called TCO2, CT, or ∑CO2, is defined as the sum of inorganic carbon components 

(Dickson and Goyet, 1994):    

                               2
33

*
2 COHCOCODIC                                                  (2.3) 

where [CO2]* is the sum of aquatic CO2 and H2CO3.  

The AT is defined by Dickson (1981) as "the number of moles of hydrogen ion 

equivalent to the excess of proton acceptors over proton donors in one kilogram of 

sample":   

434343

3
4

2
44

2
33 2)(2

POHHFHSOHHSNHSiOH

POHPOOHOHBCOHCOA

F

T                         (2.4)                    

where [H+]F is the free concentration of H+ ions. The major parts of total alkalinity in 

seawater is: 

                FT HOHOHBCOHCOA 4
2
33 )(2                               (2.5)                           

The thermodynamic state of the acid-base system is described by the pH, which is 

defined as the negative logarithm of hydrogen ions concentration in gram atoms per 

liter:    

                  HpH log                                                                                        (2.6) 

The ocean can be considered as a natural buffer system and seawater at normal 

conditions is slightly basic (≈ 8.1) (Zeebe, 2012). At this pH, HCO3- is the major 

component of DIC (88.6%) followed by CO32- (10.9%) while [CO2]* only takes about 

0.5% (Fig. 2.2). 
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Fig. 2.2 Concentrations of the different inorganic carbon components as a function of pH. The 
dissociation constants of Eq. 2.1 are presented in the figure. [H2CO3]* equals [CO2]*, which is 
mentioned in the text. Figure from Sarmiento and Gruber (2006).    
 

   

The partial pressure of CO2 (pCO2) is describing the amount of CO2 in gas phase that 

is in equilibrium with seawater. According to Sarmiento and Gruber (2006), Eq. 2.1 

and its dissociation constants can be reformulated to express the pCO2 as:   

                                                                                    (2.7)                        

The fugacity of CO2 (fCO2) differs from pCO2 by taking into account the non-ideal 

behavior of CO2 and the difference between them is less than 0.5% (Dickson and 

Goyet, 1994). Zeebe and Wolf-Gladrow (2001) has described the relation between 

pCO2 and fCO2 as:   

                         )2exp(22 RT
BPpCOfCO                                                           (2.8)   
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where P is the total atmospheric pressure, B is the first virial coefficient of CO2, δ is 

the cross virial coefficient, R is the gas constant, and T is absolute temperature. The 

unit for these parameters are: fCO2 and pCO2 in μatm, P in Pa (1 atm =101325 Pa), B 

and δ are in m3 mol-1, R = 8.314 J K-1mol-1, and T in Kelvin. According to Weiss (1974), 

B and δ can be determined, respectively, as:  

63522 10)1016528.31027957.30408.1275.1636( TTTB                      (2.9)       

 610)118.07.57( T                                                                                            (2.10)   

The buffer capacity reflects the capacity of seawater to buffer changes in pH occurring 

because CO2 is absorbed in the sea, and it can be quantified through the Revelle factor 

(γ). γ describes how fCO2 changes for a given change in DIC when AT is constant:   

                                                                                                     (2.11)                   

According to Takahashi et al. (1993), the Revelle factor is high (approximately 14) in 

cold polar and subpolar surface water and low (ca. 8) in warm surface water in tropical 

and subtropical areas. A global Revelle factor of 10 indicates that 1% change in DIC 

will drive the surface fCO2 to change by about 10%. The current γ values are higher by 

one unit compared to the values prior to the industrial revolution (Sabine et al., 2004). 

Increasing surface fCO2 drives the γ values to increase, thus the surface ocean has 

become less able to absorb additional CO2.  

 

2.3 The main processes controlling the marine carbon cycle 

In general, the processes described below have been assessed and make up the 

theoretical basis in the general carbon cycle for the three papers presented in this thesis. 
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2.3.1 Solubility pump  

The solubility of any gas in seawater depends on temperature and salinity (Gordon and 

Jones, 1973).  Therefore, cold water at high latitudes contain more CO2 in equilibrium 

with the atmosphere than warm water at lower latitudes. By help of the global 

thermohaline circulation (Broecker, 1991), dissolved CO2 sinks towards deep layers 

through deep-water formation at high latitudes, while at low latitudes, upwelling brings 

carbon rich deep water to the surface, which is warm and has low gas solubility, and 

thus, CO2 is emitted into the atmosphere. This physical process (called solubility pump) 

takes long time (hundreds of years) and constantly exchange CO2 between ocean and 

atmosphere.  

 

2.3.2 Biological pump 

The biological pump can be split into two parts: organic carbon pump and calcium 

carbonate counter pump.  

The organic carbon pump is described through the primary production taking place in 

the surface water and remineralization of organic matter which occurs in sub-surface 

and deep waters. During primary production, the phytoplankton use aquatic CO2 from 

the surface water and transform it into organic matter through photosynthesis:  

243163106243322 138)()(16122106 OPOHNHOCHPOHHNOOHCO sunlight    (2.12) 

A minor part of the sinking organic particles is trapped in the sediment, while most of 

the organic matter is remineralized by bacteria and regenerated into CO2 and nutrients. 

Upwelling of deep water brings water rich in carbon and nutrients into the surface (Fig. 

2.3).    
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Fig. 2.3 The solubility and biological CO2 pumps in the ocean (Heinze et al., 1991). 
 

 

The calcium carbonate counter pump is described through the production of calcium 

carbonate in the surface layer and dissolution in the deep waters. The coral reefs and 

many planktonic organisms such as Coccolithophorids uses CaCO3 to form their shells 

and skeletons according to 

                          OHCOCaCOHCOCa 2233
2 2                                      (2.13) 

In the deep water, where the conditions are more acidic, the CaCO3 shells are 

dissolved: 

              3
2
3

2
3 )()( HCOHaqCOaqCaCaCOH                             (2.14) 

Photosynthesis will decrease DIC, and fCO2, while pH increases. AT is only affected 

to a minor degree, by a small increase due to nutrient consumption (Fig.2.4). On the 

other hand, calcium carbonate formation decreases AT by two units and DIC by one 
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unit, and only to a minor degree decreases pH and increases fCO2 (Fig.2.4) (Zeebe and 

Wolf-Gladrow, 2001).  

 

 

 
 
Fig. 2.4 Effects of the different processes on DIC, AT, pH, and [CO2] (from Zeebe and Wolf-
Gladrow, 2001). 
 
 
 
2.3.3 Air-sea gas exchange 

Air-sea gas exchange affects the DIC and pH (Fig. 2.4), and the direction of CO2 fluxes 

between air and sea depends on differences in CO2 concentration (fCO2 or pCO2) 

between atmosphere and surface ocean, as well as the wind at sea surface, the 

temperature and to a small degree the salinity. The CO2 flux is determined as 

                                    )( 22
atmosphereseawater fCOfCOSKF                                     (2.15) 

where S is solubility of CO2 in seawater (mol kg-1atm-1), which depends on temperature 

and salinity of the surface water (Weiss, 1974). K is the gas transfer velocity, which 

depends on the molecular diffusivity, kinematic viscosity, and turbulence at the air-
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water interface. K is commonly parameterized as a function of wind speed because the 

wind speed is important for the turbulence.  

There are numerous relationships of K in the literature (Liss and Merlivat, 1986; 

Wanninkhof, 1992; Wanninkhof and McGillis, 1999; Nightingale et al., 2000; 

Sweeney et al., 2007), and in this thesis, the one from Nightingale et al. (2000) is used: 

 

                  
2/1

10
2
10 660

333.0222.0 ScUUK                                                     (2.16) 

where U10 is wind speed at 10 m above the sea surface, and Sc is the Schmidt number, 

which show the ratio between kinematic viscosity and molecular diffusivity.  
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3. Description of the study area 

The Red Sea separates the northeastern Africa from the Arabian Peninsula, and linking 

between the tropical and sub-tropical parts of the ocean. It is about 1930 km long, on 

average 200 km wide, and represent an area of approximately 0.46 x 106 km2. The Red 

Sea is connected with the Gulf of Aden and the Indian Ocean through the narrow strait 

of Bab Al Mandab (BAM) (Fig. 3.1). In the northern part, the Red Sea is divided into 

two main branches; Gulf of Aqaba and Gulf of Suez, the latter is linked with the 

Mediterranean Sea via the Suez Canal. The bottom topography of the Red Sea is 

naturally wedge shaped with relatively large maximum depth (2920 m) in the central 

of the basin. The average depth of Bab Al Mandab strait is about 300 m while the Gulf 

of Suez has a relatively flat bottom with depth about 60 m. The Gulf of Aqaba is a deep 

basin with narrow shelves and a mean depression depth of about 1200 m (Morcos, 

1970; Patzert, 1974; Edwards, 1987; Maillard and Soliman, 1986). 

The climate of the Red Sea is influenced by two wind regimes (Fig. 3.1). North of 19° 

N the north-northwesterly wind (NNW), which is controlled by eastern Mediterranean 

weather systems, is active throughout the year. During the summer, the NNW wind 

extends as far south as the BAM Strait. The area south of 14°N is influenced by Indian 

Monsoon system, which switches between south-southeasterly wind (SSE) during 

winter and NNW during summer. The area between 14°N and 19°N is characterized as 

a convergent zone for the wind field for most of the year, see Fig. 3.1 (Morcos, 1970; 

Pedgley, 1974; Patzert, 1974). 

The average sea surface temperature of the Red Sea is about 26°C in the north and 

30°C in the south during summer, while during winter, the temperature is 2-4°C lower. 

The highest surface temperatures (28°C - 34°C) are found in the south-central parts of 

the Red Sea where the wind field is convergent and thus weak for most of the year 

(Sofianos and Johns, 2003). Because of high evaporation, low precipitation, and supply 

of relative fresh water from the south, the surface salinity of the Red Sea is increasing 

from approximately 36.5 psu in the south to more than 41.0 psu in the north. Deeper 
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than about 300 m, the temperature is about 21.5°C and salinity about 40.5 psu all the 

way to the bottom (Edwards, 1987). 

 

 
 

Fig. 3.1 Map showing the location and bathymetry of the Red Sea. Bab Al Mandab Strait 
(BAM), Gulf of Suez (GS), and Gulf of Aqaba (GA) are indicated in the figure. Arrows refer 
to wind directions: NNW wind = yellow arrows; SSE wind = red arrows.  Arrows to the right 
in the figure indicate summer situation, while those to the left are winter situation. Locations 
of cyclonic and anticyclonic gyres are also indicated. 

 

 

There are four dominant water masses in the Red Sea, all affected by two major masses 

in the Gulf of Aden. During wintertime, the Gulf of Aden Surface Water (GASW) 

enters the Red Sea through the BAM Strait as a result of southeasterly winds (Morcos, 

1970; Pedgley, 1974; Patzert, 1974; Quadfasel and Baudner, 1993). At deeper layers, 

the Red Sea Overflow Water (RSOW), which is a mixture of Red Sea Intermediate 

Water (RSIW) and Red Sea Deep Water (RSDW), is observed to flow out of the Red 

Sea throughout the year (Sofianos and Johns, 2003; Yao et al., 2014 a; b). During 
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summer, when northwesterly winds extend as far south as the BAM Strait, an outflow 

of Red Sea Surface Water (RSSW) is induced while south of the BAM Strait, 

southwesterly winds provoke an upwelling of Gulf of Aden Intermediate Water 

(GAIW), as it moves towards the Red Sea (Morcos, 1970; Patzert, 1974; Smeed, 1997). 

The overall circulation of the Red Sea is influenced by the monsoon winds. Surface 

currents during winter flow from the Indian Ocean northwards throughout the Red Sea 

while the direction of currents during summer, is reversed i.e. flowing southwards to 

the Indian Ocean as deep currents. The surface circulation in the south (around 15°N) 

is featured by anticylonic rotation during winter and cyclonic rotation during summer. 

Serval cyclonic and anticyclonic gyres are distributed along the north-south axis of the 

Red Sea, and the strength, size and location of these gyres vary with time (Fig.3.1) 

(Morcos and Soliman, 1974; Quadfasel and Bauner, 1993; Yao et al., 2014 a; b). 
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4. Objectives 

The main objective of this thesis is to explore the inorganic carbon cycle of the Red 

Sea, which is poorly known with respect to seasonal and interannual variability. The 

main objectives has been to: 

-establish and maintain a time series to document seasonal and interannual changes. 

-understand the coastal physical oceanographic setting.  

-determine the drivers of biogeochemical variability at multiple time scales.    

The thesis is divided into three topics, which are covered in separate papers. The three 

papers are based upon the new time series of discrete and continuous data collected in 

the Sudanese coastal waters off Port Sudan during the period 2007-2015.  

Generally, there are few studies focusing on temporal variations of temperature or 

salinity within the Red Sea, and more specific, there is no study, which fully has dealt 

with the dynamics responsible for the observed temperature and salinity variations. 

Paper I aims towards getting a better understanding on the temporal variability of 

ocean physics based on temperature and salinity as well as pointing at the mechanisms 

responsible for these variations. Paper II aims to unravel the seasonality of the marine 

inorganic carbon cycle, represented by DIC and AT, the relationship with the 

hydrography, and the drivers causing the observed variability of DIC and AT. 

Paper III focus on how to determine the air-sea flux of CO2 over an annual cycle using 

continuous atmospheric and oceanic pCO2 measurements of moored autonomous 

sensors deployed in our study area. Further, the seasonal variations and drivers of the 

oceanic pCO2 variability have been identified.  
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5. Summary 

Combined, the three papers in this thesis improve and renew our understanding of the 

Red Sea inorganic carbon cycle, the hydrography, how it varies, and what drives the 

observed changes.  

A new time-series of discrete and continuous data from the Sudanese coast shows that, 

in contradiction to previous knowledge, advection in addition to local heat and mass 

flux drive the temperature and salinity variability (Paper I). The surface temperature 

(SST) is at the highest value during summer and autumn and at lowest during winter, 

with a seasonal amplitude of approximately 6°C. The salinity lagged temperature with 

about 3 months, and the seasonal amplitude was about 1.1 psu. Validated satellite-

derived SST data confirmed the above temperature findings, which was also confirmed 

by computed T arrived from the local heat flux when taking into account the adjustment 

for advection and mixing. The impact of alongshore advection on seasonal distribution 

of temperature and salinity has been estimated using a simple model based on gradient 

features of temperature, salinity and geostrophic surface velocity. The geostrophic 

surface velocity is computed from sea level anomaly field. SSS increases from south 

to north and the maximum SST zone is located south of the area of study, in the central 

Red Sea. The geostrophic current directs form south to north during spring and summer 

introducing relatively warm and fresh water from the south. During autumn and winter, 

the geostrophic current reverses and brings waters, which is cold and more saline 

towards the study area. The close match between estimated and observed seasonal 

temperature and salinity supports the conclusion that the observed seasonal T and S 

signals off Port Sudan are largely the product of local heat and mass flux and 

alongshore advection. 

A study of the seasonal variations of AT and DIC off the Sudanese coast (Paper II) 

shows that AT and DIC are high during winter and low during summer with an average 

annual variability of 40 μmol kg-1 for AT and 32 μmol kg-1 for DIC. The seasonal signals 

are associated with the maxima and minima of salinity described in Paper I. Advection 

of water, and thus changing salinity is an important factor controlling AT variations, 
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while the observed change in DIC is primarily controlled by air-sea gas exchange, 

through change in temperature, and, very likely, by biological production. The 

remaining changes of DIC are caused by alongshore advection during autumn and 

winter (Paper I). Seasonality for DIC and AT have been reconstructed using the 

observed DIC-SST and AT-SSS relationships together with SST satellite data and SSS-

advection from Paper I. The calculated results fit the observed variability of DIC and 

AT. The interannual change of the surface AT were twice as high as the seasonal 

variation whereas for surface DIC, the interannual changes were found to be less than 

the seasonal changes. 

An annual cycle of oceanic pCO2 between October 2014 and October 2015 is presented 

in Paper III. The highest values occur during summer-autumn and lowest during 

winter-spring, with a seasonal amplitude of approximately 60 μatm overlaid a high 

frequency signal of about 10 μatm. More than half of the variability of oceanic pCO2 

is driven by SST changes, which is in line with findings in Paper II that half of the 

observed change in DIC is due to temperature driven air-sea CO2 exchange. The pCO2-

SST relationship throughout a year has an elliptical shape, which confirms that beside 

the temperature influence, other processes also contribute in controlling pCO2 changes, 

e.g. along-coast advection described in Paper I. Based on oceanic pCO2 and 

atmospheric data, the area is a net annual sink for atmospheric CO2 of size 24.4 mmol 

CO2 m-2 y-1.  During summer and autumn, the area act as a source for atmospheric CO2, 

while during winter and spring the area is a sink for atmospheric CO2. The air-sea gas 

exchange was examined for the period between 1977-2015. It shows that the area most 

likely switched from being a net annual source area for atmospheric CO2 to becoming 

a net annual sink during the 2000s. 

Most of the work done is pristine and for this reason important, and a useful baseline 

is made for a region with extreme condition in term of physical, chemical, and 

ecological properties. Through this baseline, future changes in climate and 

environment and their predicted trends and impacts can be documented and assessed. 

In this regard, sustaining the coastal time series initiated by this study will be of extreme 

importance. 
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6. Future plans 

In light of the vulnerable environment of the Red Sea as well as its natural extreme 

environmental settings, there are several topics, which are important and interesting to 

explore in the future. Multiple stressors, e.g. increasing temperature, deoxygenation, 

and rising atmospheric CO2 concentration, affect the ocean and its ecosystems. 

Warming of the ocean will e.g. decrease the gas solubility, and thus, reduce oceanic 

oxygen concentration, which has been observed at several locations (Shepherd et al., 

2017, and references therein). However, the current understanding and implications of 

such a deoxygenation is not yet resolved.  

Further, exploration of precipitation and dissolution of calcium carbonate, CaCO3, has 

not been sufficiently discussed in this thesis due to lack of time and data scarceness. 

The Red Sea is a region with high CaCO3 production, and recent studies by Takahashi 

et al. (2014), Steiner et al. (2014), and Elageed et al. (“Oxygen and alkalinity utilization 

rates in the Red Sea”, manuscript in preparation) show that such a production affects 

AT through calcification within the pelagic layer and by corals.  

At present, ocean acidification is not an imminent threat for the Red Sea. The area is 

super saturated with respect to calcium carbonate, and thus has relatively high 

resistance to Ocean Acidification (Elageed, 2010; Omer, 2010). However, this might 

change in the future, and continuous monitoring of the marine carbon cycle is 

important. 
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Abstract: 
The temporal variations of temperature and salinity in the Sudanese coast of the Red Sea have 

been studied based on new time series acquired over 2009-2015 from a mooring and from survey 

cruises. The observations show that temporal variations in temperature and salinity above the 

main pycnocline are dominated by seasonal signals. Highest temperature of approximately 32°C 

occur during summer and early autumn and lowest temperature of roughly 26°C are seen in 

winter. The seasonal salinity signal lags that of temperature by roughly 3 months, and varies from 

approximately 38.5 psu in late spring and early summer to 39-40 psu in late autumn and early 

winter. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients 

derived from a number of sources, we determined that the observed seasonal temperature and 

salinity could not be the product of local heat and mass flux alone, but also due to advection of 

alongshore temperature and salinity gradients.

Keywords
Coastal Red Sea; temperature; salinity; time series; seasonality; alongshore advection   
   
1. Introduction  
Encompassing a highly diverse ecosystem, the Red Sea ranks as one of the warmest and most 

saline of the world’s seas. Fluctuations in near-surface temperature and salinity within Red Sea 

coastal waters can have profound ecological consequences, particularly for the numerous reef 

systems that fringe the Red Sea basin. It is well established that the growth rate and overall health 



of coral communities are highly sensitive to changes in temperature and affected to a lesser 

degree by variations in salinity (e.g., Ferrier-Pages et al., 1999; Furby et al., 2013; Kuanui et al., 

2015). It is also well established that changes in temperature and salinity affect the inorganic 

carbon cycle; e.g. warmer water reduces the gas solubility and thus increases the flux of carbon 

dioxide from the surface water into the atmosphere, and changes in alkalinity are tightly 

connected to changes in salinity (e.g. Sarmiento and Gruber, 2006, and references therein).  

There are currently few published studies of the temporal variations of temperature or 

salinity within the Red Sea. Churchill et al. (2014) examined temperature fluctuations waters of 

the coastal zone of the central Red Sea off the Saudi Arabian coast using data acquired from 

moorings deployed at ~50 m depth. They showed that near-surface (upper 15 m) temperature 

variations span a range of order 8oC and are predominately due to a seasonal signal with a range 

of order 6oC. A seasonal near-surface temperature signal with a similar range was reported by 

Sultan and Ahmad (1991) based on sea surface measurements acquired off of Jeddah Saudi 

Arabia, by Berman et al. (2003) based on hydrographic data acquired in summer and winter, and 

by Davis et al. (2011) based on temperature sensors placed on platform reef tops. Published 

reports of temporal salinity variations in the Red Sea are very rare. Churchill et al. (2014) briefly 

discussed salinity records from the moorings references above but showed no time series. Sultan 

and Ahmad (1991) presented an 8-year record of monthly-averaged surface salinities acquired off 

of Jeddah Saudi Arabia that span a range of order 1 psu, but noted that the salinities may have 

been affected by discharge from the Jeddah desalinization facility. 

It is notable that all of the studies reviewed above utilized data from the coastal zone of 

the central Red Sea west of the Saudi Arabian coast and so may not be representative of 

temperature and salinity variations over the full Red Sea. Furthermore, no study has dealt fully 

with the dynamics responsible for the observed temperature and salinity variations. While some 

studies have related temperature variations to surface heat flux (Sultan and Ahmad, 1991; 

Berman et al., 2003; Churchill et al., 2014), the manner in which temperature and salinity 

variations are influenced by water mass transport has not yet been assessed. 

 The work reported here is aimed at furthering the understanding of temperature and 

salinity variations in the coastal Red Sea. Using data from moored instruments and hydrographic 

surveys, we describe the temporal variations in temperature and salinity within near-surface 

coastal waters off of Port Sudan, Sudan (Fig. 1). With the aid of reanalysis and satellite-derived 



data, we examine the mechanisms responsible for these variations, concentrating on the relative 

importance of local processes (surface heat and mass flux) and water mass advection. Our focus 

is on the seasonal signal of temperature and salinity.  As noted above, previous observations have 

shown that the range of near-surface temperature variation in the central Red Sea is primarily due 

to the seasonal signal. 

In the following sections, we first describe the data sets and methodology employed 

(Section 2). We then detail the temperature and salinity variations in the coastal zone off of Port 

Sudan (Section 3.1) and examine the dominant mechanisms responsible for these variations 

(Section 3.2). We conclude with a summary of our findings and a discussion of how they relate to 

prior work on the dynamics of the Red Sea system (Section 4).         

2. Data and Methods  
Our analysis employed six datasets. Three were used to describe the seasonal variation of 

temperature, salinity and potential density (σθ) off of Port Sudan, and three were employed in 

assessing the mechanisms responsible for the seasonal variation of these properties. Below, we 

detail these data sets and present our methods for estimating near-surface temperature and salinity 

change. 

2.1 Measurements of coastal temperature and salinity 

2.1.1 Cruise data   

Our study employed cruise measurements of temperature and salinity acquired at two set of 

stations (Fig. 1): near-shore stations in the area of Port Sudan Harbour (PSH), and stations 

situated along a transect between Port Sudan and the Sanganeb atoll reef (30 km northeast of Port 

Sudan) (the SPS stations). The data acquired at all stations were from a SAIV A/S model 204 

CTD, deployed using a hand winch and equipped with an inductive cell conductivity sensor 

(resolution 0.01 mS cm−1, accuracy ± 0.02 mS cm−1), a temperature sensor (resolution 0.001, 

accuracy ± 0.01°C), and a pressure sensor (resolution 0.01 mbar, accuracy ± 0.02%).  

The salinity was computed to a resolution of 0.01 psu and to an accuracy of ± 0.02 psu 

(Operating Manual for SAIV CTD model 204, 2006). Calibration of the salinity measurements 

was done using water samples acquired during a subset of the CTD casts by a Hydrobios 2-liter 



water sampler. The bottle salinity was determined using the Guildline Portasal Salinometer 

(model 8410A) to an accuracy of ± 0.003 psu (Datasheet for Guildline 8410A Portasal, 2002). 

Measurements at the PSH stations encompassed the period of 2010-2013 and extended 

vertically from near the surface to roughly 150 m depth. Measurements from the SPS transect 

were from 2009-2013 and vertically extended to roughly 200 m. Both sets of data resolved the 

seasonal signal of temperature and salinity (Fig. 2). The SPS data were taken at a quarterly 

interval (collected roughly during October, February, April, and July), whereas the PSH data 

interval was shorter but varied considerably.  

2.1.2 Mooring data   

Additional temperature and salinity time series data of our study were acquired from a Sea Bird 

CTD (SBE 37-SM MICROCAT, SN 3939) affixed to a mooring deployed on 1 October 2014 at 

station 4 (37.395°E, 19.720°N; Fig. 1) of SPS transect. The bottom depth at the mooring location 

was ~800 m, and the CTD, which was positioned at a nominal depth of 37 m, was set to record at 

hourly intervals. The mooring was recovered on 15 October 2015. The CTD was equipped with 

conductivity (resolution 0.0001, accuracy ± 0.003 mS cm−1), temperature (resolution 0.0001, 

accuracy ± 0.002°C), and pressure (resolution 0.002%, accuracy ± 0.1%) sensors. The salinity 

measurements were calibrated using bottle salinity measurements determined as described above. 

2.1.3 Satellite-derived sea surface temperature  

The sea surface temperature (SST) data used in this study were from the NOAA High-resolution 

Blended Analysis of Daily SST (Version 2) dataset. Formulated by combining observations from 

different platforms (satellites, ships, buoys) (Reynolds et al., 2007), the dataset is comprised of 

daily temperatures specified on a 0.25° latitude by 0.25° longitude global grid.    

2.2 Data used to compute heat and salt fluxes 

2.2.1 The Simple Ocean Data Assimilation (SODA) dataset 

The SODA dataset is comprised of data produced by an ocean general circulation model with an 

average resolution of 0.25° latitude by 0.4° longitude, and 40 vertical levels. Direct 

contemporaneous observations are continuously used to correct the model error of the generated 

ocean variables (Carton et. al., 2008). We employed SODA data to estimate horizontal salinity 



and temperature gradients, which were used in the computation of heat and salt fluxes due to 

horizontal advection. 

2.2.2 NCEP datasets  

We extracted data from the National Centers for Environmental Prediction (NCEP) / National 

Center for Atmospheric Research (NCAR) dataset to estimate the surface wind stress as well as 

surface heat and mass flux in our study region. All data were from a 2° latitude by 2° longitude 

cell centered at 37.50°E, 20.00°N. The wind stress was computed from 10 m NCEP Reanalysis-2 

wind velocities according to the formulae of Large and Pond (1981). 

To compute the surface heat flux, we downloaded individual surface heat flux 

components: net shortwave radiation ( ), net longwave radiation ( ), latent heat flux ( )

and sensible heat flux ( ). Net surface heat flux ( ) was determined according to (Wallcraft 

et al., 2008):  

                                                                             (1) 

Net surface mass flux (m s-1) was computed as:   

                                                            M = E – P                                                                      (2) 

where E is the evaporation rate and P is the precipitation rate. P was computed from the NCEP 

Reanalysis-2 precipitation rate (PR, kg m-2 s-1) according to: 

                                                                                                                  (3) 

where  is the fresh water density.  E was computed from the latent heat flux according to 

(Sumner and Belaineh, 2005): 

                                                                                                                                      (4) 

where  is latent heat of vaporization of water (2.3x106 J kg−1).  

To assess the NCEP heat flux estimates, we compared the net heat flux series determined using 

measurement from an air–sea interaction buoy maintained in the central Red Sea (at 38o 30.1 E; 

22o 9.6 N) over 2008-2010 (Farrar et al., 2009; Bower and Farrar, 2015) with a net heat flux time 

series determined from NCEP data for the cell which included the buoy location. The two series 



were highly correlated (R2=0.89) and exhibited closely matched seasonal cycles, with net heat 

flux into the ocean over March through September and net heat loss over the rest of the year. The 

net heat transfer over the two years of the comparison (2009-2010) was negative for both series, 

but was slightly larger in magnitude for the buoy-derived series (-1.2 x 109 versus -0.9 x 109 J m-

2).   

2.2.3 Sea Level Anomaly (SLA)  

Estimation of near-surface velocities was done using altimeter-derived sea level anomaly (SLA) 

fields computed with respect to the CLS01 (Centre de Localisation des Satellites) long-term mean 

sea surface height. Downloaded from AVISO (http://www.aviso.oceanobs.com/), the SLA fields 

were determined by combining sea level data from all available satellites and objectively 

mapping SLA on a 0.25° latitude by 0.25° longitude grid. We computed geostrophic surface 

velocity from the gridded SLA field through: 

                                                  ;                                 (5)                

where  is SLA, and  are the east and north components of geostrophic velocity, 

respectively,  is the gravitational acceleration and  is local Coriolis parameter.         

    

2.3 Estimation of near-surface temperature and salinity changes 

With the data described above, we sought to roughly assess the contributions of surface heat and 

mass fluxes and horizontal advection in driving the observed seasonal signal of near-surface 

temperature and salinity in our study region. We did not consider the effects of mixing or vertical 

advection as these were not well suited for study with the available data. Our focus was on 

temperature and salinity changes in the layer above the permanent pycnocline. For simplicity, we 

assumed that this layer extended to a constant depth, h. We also assumed that the advective 

changes in temperature and salinity were principally due to fluxes in the alongshore (roughly N-S 

in the area of Port Sudan) direction.  With these assumptions, the changes in temperature (T) and 

salinity (S) averaged over the surface layer may be approximated as: 

                                                                                               (6) 



                                                                                                    (7) 

where Cp is the specific heat capacity of water (4.2x103 J kg-1), y is the alongshore coordinate, s

is the near-surface density and V is the vertically-averaged alongshore velocity in the layer above 

the main pycnocline.  

Our approach was to determine the near-surface temperature and salinity signal from 

observed starting values of To and S0, respectively. For simplicity, we took the horizontal 

temperature and salinity gradients as constants (determined from the SODA data as explained in 

Section 2.2). With these assumptions, the seasonal temperature and salinity signals were 

estimated from 

                    (8) 

                                                       (9) 

3. Results  
3.1 Seasonal variation  

3.1.1 SPS and PSH   

The measurements from the coastal hydrographic surveys (SPS and PSH) clearly show a seasonal 

signal in near-surface values of temperature, salinity and σθ (Fig. 2). The near-surface 

temperature signal is marked by maxima of close to 32°C during summer and early autumn and 

minima of roughly 26°C in winter. The timing and range of this signal closely match those of the 

seasonal temperature signal shown by Churchill et al. (2014) based on moored measurements 

acquired in the coastal zone of the central Red Sea. In particular, Churchill et al. (2014) show 

highest near-surface temperatures, of roughly 32°C, over July-October contrasting with the 

lowest near-surface temperatures, of roughly 26°C, over January-March (their Fig. 2). The 

seasonal near-surface salinity signal lags the temperature signal by roughly 3 months with 

maxima (39.0-39.5 psu at SPS and 39-40 psu at PSH) in late autumn/early winter and minima 

(approximately 38.5 psu in both areas) in late spring/early summer. The σθ  seasonal signal is 

roughly the inverse of the temperature signal, with the densest water (σθ = 26-27 kg m−3) 



appearing in winter whereas the lowest density water (24-25 kg m−3) is seen in late summer/early 

autumn. The σθ data also reveal a seasonal variation in density vertical stratification over the 

upper 50 m characterized by nearly uniform σθ in winter and stronger stratification over the rest 

of the year. During all seasons, the top of the main pycnocline, roughly marked by the 26 σθ

contour, appears at about 50 m depth (Fig. 2). 

Seasonal θ-S diagrams (Fig. 3a-d) clearly show a yearly progression in vertical 

stratification in the survey region. The σθ range over the vertical extent of the surveys is greatest 

during summer, extending from roughly 23.5 kg m−3 at the surface to 28.45 kg m−3 at 200 m. 

During summer, the density stratification in the upper 50 m, above σθ = 26 kg m−3, is largely due 

to temperature stratification. The σθ range observed during autumn is slightly smaller, 23.9-28.5 

kg m−3. The higher near-surface densities of autumn relative to summer are principally due to the 

higher salinities observed in autumn. At σθ < 26 kg m−3, salinities of the autumn surveys are 

roughly 0.5 psu greater than those of the summer surveys. The near-surface layer of strong 

temperature stratification seen in the summer and autumn surveys is absent during the winter 

surveys. The weak vertical temperature stratification observed in winter results in weak vertical 

density stratification, with σθ varying by about 0.5 kg m−3 in the upper 50 m. Near-surface 

vertical temperature and density gradients are slightly greater during the spring surveys, signaling 

the formation of the seasonal thermocline. It’s noteworthy that during all seasons the largest 

temporal variations in θ, S and σθ occur above the permanent pycnocline (roughly at σθ< 26 kg 

m−3), with much smaller variations of these properties seen in the permanent pycnocline and 

below. 

  

3.1.2 Mooring and SST data   

The temperature and salinity records from the mooring (Fig. 4) show seasonal signals in close 

agreement with those exhibited by the cruise data. In particular, the mooring data show the order 

3-month shift of the seasonal signal of salinity relative to temperature. The shift is particularly 

well defined by the temperature and salinity maxima, which occur, respectively, in late 

September 2015 and mid-December 2014. However, the shift is not as well defined by the 

minima of temperature and salinity. The seasonal decline in temperature occurs over the autumn 

and early winter and terminates in a clear minimum in mid-January 2015. By contrast, the 

seasonal salinity decline occurs over December 2014 - March 2015 and is not followed by a 



clear salinity minimum over the ensuing four months. Nevertheless, both the salinity and 

temperature records show a dominant seasonal signal relative to higher frequency variations. The 

seasonal temperature signal extends over 6°C, roughly from 25 to 31°C, while the higher 

frequency variations are of magnitude 2°C or less. The seasonal salinity signal is approximately 

1.1 psu in magnitude, roughly from 38.7 to 39.8 psu, upon which fluctuations of order 0.4 psu 

are superimposed.   

The distribution of θ-S derived from the mooring data (Fig. 3f) show a seasonal 

progression of near-surface density related to the seasonal variation of temperature and salinity. 

The increase in near-surface density from its minimum in October to its maximum in January is 

largely the product of declining temperatures, while the subsequent decline in near-surface 

density over January-April is principally due to a decrease in near-surface salinity. Completing 

the cycle, the May-October decrease in density is primarily the result of rising near-surface 

temperatures. 

Comparing the moored temperature record with the satellite-derived SST record from the 

0.25o latitude by 0.25o longitude cell encompassing the mooring indicates predominately well-

mixed or weakly stratified conditions above the moored CTD (Fig. 4a). Significant temperature 

stratification above the mooring (indicated by a difference between the SST and mooring 

temperature) is confined to the period of early-May through mid-August. However, the near-

surface stratification is eroded on a number of occasions during this period (i.e. in mid-May, 

early-June, and mid-July 2015). These mixing events appear to be at least partly due to the action 

of the surface wind stress and they correspond to peaks in the surface wind stress record derived 

from the NCEP winds (Fig. 4c).   

The long-term (6-year) record of SST from the cell encompassing the mooring (Fig. 5a) 

very clearly shows the dominance of the seasonal signal over higher frequency variations. The 

seasonal SST signal spans a range of roughly 6oC, between minima and maxima of 25 and 31oC, 

whereas the magnitude of the higher frequency SST variations is at most 1oC.   

3.2 Factors controlling the seasonal signals 

The observations reviewed above clearly show that the temporal variations of temperature and 

salinity above the permanent pycnocline in the near-shore region off of Port Sudan are 

dominated by seasonal signals that differ in phase by roughly 3 months (with the seasonal 



temperature signal leading). We now consider the extent to which these seasonal signals may be 

due to surface mass and heat flux (local processes) and to the effect of alongshore advection. We 

focus first on the impact of local processes on the seasonal signals.   

3.2.1 Local processes 

The change in mean temperature and salinity above the main pycnocline was estimated by 

evaluating Eq. 8 and 9 with inclusion of only the first term in the integral of each equation. The 

depth of the layer above the main pycnocline, h, was approximated as 50 m based on the 

contoured temperature and salinity fields derived from survey data (Fig. 2).    

The computed temperature driven by local heat flux exhibits a seasonal signal similar to 

observed temperature fields but with the minima and maxima occurring 1-2 months later (Figs. 

4a and 5a). In addition the computed temperature series shows a long-term decline (of roughly 

0.8oC yr-1) that is not matched by the observations (Fig. 5a). This trend in the computed 

temperature cannot be attributed to the omission of vertical mixing, as mixing with the cooler 

water below the main pycnocline (Fig. 2) would tend to reduce near-surface temperatures even 

further. 

Reflecting the dominance of evaporation over precipitation, the computed salinity series 

driven only by surface mass flux shows a steady increase with time and no vestige of a seasonal 

signal (Figs. 4b and 5b). Altering this trend to match the salinity observations requires both a 

long-term delivery of lower salinity near-surface water to the region as well as a mechanism to 

produce the observed seasonal oscillations.    

3.2.2 The effect of alongshore advection 

Evaluating the impact of alongshore advection on the seasonal temperature and salinity signals 

from Eq. 8 and 9 required estimates of V(t), dS/dy, and dT/dy. In estimating the latter two 

properties, we used SODA temperature and salinity data from 2009-2010. These data show that 

near-surface temperatures (averaged over the upper 50 m) tend to decline going northward over 

the central and northern Red Sea (Fig. 6a). A similar trend has been observed based on analysis 

of SST data (Raitsos et al., 2013) and hydrographic survey measurements (Neumann and McGill, 

a tendency for the near-surface salinity to increase going northward over the entire Red Sea (Fig. 



dS/dy and dT/dy in our 

study area, we used temperature and salinity data from SODA grid cells extending between 18 

and 22.5oN and arranged in roughly the alongshore direction (Figs. 6a and b). Averages (over the 

upper 50 m) of near-surface temperature and salinity from these cells show alongshore gradients 

that do not appear to vary appreciably with season (Figs. 6c and d). Based on these averages, we 

assigned values to dT/dy and dS/dy of -0.2/111 C km−1  and 0.35/111 psu km−1, respectively (i.e., 

0.2  decrease and a 0.35 psu increase over a degree of latitude). 

In specifying V(t), we assumed that the velocity signal impacting the seasonal 

temperature and salinity signals varied on a similar time scale as these signals and can be 

expressed as 

                                                                        (10) 

where  is the sinusoidal flow amplitude, P is the period of 1 year,  is the long-term mean flow 

and  is a phase relative to the beginning of each year. Surface geostrophic velocities determined 

from the SLA data tend to support this form of a seasonal velocity signal in that they show a 

tendency for alongshore velocity to be directed northward over winter-spring and southward 

over summer-autumn (Figs. 4d and 5c). To assign the required parameters in Eq. 10, we used a 

6-year (2009-2014) series of alongshore (N-S) geostrophic velocity determined from SLA data in 

the vicinity of our study area (19-20.5o 37.5-38oE). Applying a nonlinear least-squares 

regression technique (with MATLAB function nlinfit) to fit Eq. 10 to this time series gave 

estimates of   = 0.047 m s-1,  = 0.017 m s−1 and = 0.136 (zero crossings at June 23 and 

December 23). 

Inclusion of the advection terms in Eqs. 8 and 9 has two principal effects on the 

computed temperature and salinity series.  One is that the mean influx of warmer and less saline 

water from the  south, carried by the steady northward flow, counteracts the long-term trend of 

declining temperatures and rising salinities seen in the series computed with only the local 

surface flux terms (Figs. 4 and 5).  These trends are not apparent in the series computed with the 

addition of the advection term. The second effect is produced by the yearly oscillation in 

alongshore velocity and most profoundly affects the computed salinity signal, which acquires a 

seasonal variation with the inclusion of the advection term (Figs. 4b and 4d).   



It is unrealistic to expect a close match between the observed and computed temperature 

and salinity series as our crude calculation omits many factors that may influence near-surface 

temperature and salinity.  These include, but are not limited to, mixing of water across the main 

pycnocline, temporal variations in the alongshore temperature and salinity gradients, differences 

between the actual flows and our representation of the alongshore velocity signal and the effect 

of across-shore advection.  Nevertheless, the seasonal signals of the temperature and salinity 

series computed with the inclusion of the advection terms exhibit many of the features of the 

observed seasonal signals.  In close agreement with observed temperatures, the computed 

temperature series has a seasonal signal spanning a range of roughly 6oC, with minima close to 

26oC in late-winter/early spring and maxima near 32oC predominately occurring in late autumn 

(Figs. 4a and 5a).  The seasonal signal of the computed salinity series resembles observed 

salinity signal in that it extends over a range of roughly 1.2 psu, with maxima winter and minima 

in early summer (Figs. 4b and 5b).  Notably, the observed 3-month phase difference between the 

observed seasonal temperature and salinity series (with temperature leading) is reproduced by 

the computed series (Fig. 5). 

 However there are differences between the computed and observed seasonal temperature 

and salinity signals worth noting. The seasonal variation of the computed temperature series is 

somewhat smaller (by ~ 1oC) than the range of the observed temperatures (Figs. 4a and 5a). The 

seasonal signal of the computed salinity series roughly matches that observed at the mooring, but 

does not show the abrupt decline in salinity observed in February 2015 (Fig. 4b). The long-term 

salinity signal determined from the SPS survey data is roughly in phase with the computed 

salinity signal, but varies over a much smaller range (Fig. 5b). We can offer no clear reason as to 

why the range of the survey-averaged salinities is smaller than the range of the salinities derived 

from the computations and the mooring data. One possibility is that the survey-derived salinities, 

which are essentially point measurements, do not capture the full range of the seasonal signal as 

they are aliased by salinity variations on time scales shorter than that of the seasonal signal. 

4. Discussion and Conclusions 
As noted in Section 3.1.1, our observation is not the first of a dominant seasonal signal in near-

surface temperature records from the Red Sea, as this was previously reported by Churchill et al. 

(2014). The similarity of the seasonal oscillations of near-surface temperature observed in our 



study with those detected further to the north and on the opposite side of the Red Sea by 

Churchill et al. (2014) suggests that such oscillations may be a ubiquitous over the central Red 

Sea. Our analysis has revealed that these oscillations cannot be solely ascribed to local surface 

heat exchange, as this would produce a long-term heat loss and a multiyear decline in near-

surface temperature. According to the results of our simple heat-flux model, the long-term trend 

of heat loss through surface exchange near Port Sudan is largely balanced by the advection of 

warmer water from the south. In our model, this advection is the product of a long-term mean 

northward flow, inferred from analysis of SLA fields, and a tendency for temperatures to increase 

going southward from Port Sudan, as deduced from SODA data. Presently, there are no published 

long-term velocity records to verify the existence of a long-term mean northward flow off of Port 

Sudan. It is noteworthy, however, that such a flow often appears in the results of hydrodynamic 

models of the Red Sea, taking the form of a western boundary current flowing northward over the 

southern and central Red Sea (Sofianos and Johns, 2003; Yao et al., 2014b; Zhai et al., 2015). 

The alongshore temperature gradient inferred from the SODA data is associated with a near-

surface temperature maximum in the central/southern Red Sea south of Port Sudan. As noted in a 

review by Morcos (1970), this feature of the Red Sea surface temperature field has been 

recognized since the early twentieth century. More recently, it has appeared in large-scale survey 

data (Maillard and Soliman, 1986; Sofianos and Johns, 2007), SST fields derived from satellite 

measurements (Raitsos et al., 2013) and hydrodynamic model results (Sofianos and Johns, 2003). 

In interpreting their model results, Sofianos and Johns (2003) ascribe the surface temperature 

maximum to relatively weak winds in the central Red Sea area of wind convergence.  

Our observations show that near-surface salinity variations off of Port Sudan are also 

dominated by a seasonal signal. Because of the dominance of evaporation over precipitation in 

the Red Sea, the observed oscillations in near-surface salinity cannot be attributed to local mass 

flux at the surface, as this would produce a nearly steady increase in near-surface salinity. Our 

simple salt-flux model indicates that this tendency for salinity to increase due to local evaporation 

is largely balanced by a northward flux of less saline water from the south. The trend of 

increasing near-surface salinity going northward over the Red Sea is commonly seen in both 

observations and model results (Morcos, 1970; Clifford et al., 1997; Sofianos and Johns, 2003, 

2007; Yao et al., 2014a,b). This northward salinity increase has largely been attributed to the 

influx of relatively low salinity water into the southern Red Sea through the Strait of Bab al-



Mandeb. It is well documented that this influx takes two forms. During summer and early 

autumn, low-salinity water, commonly referred to as Gulf of Aden Intermediate Water, enters the 

Red Sea in sub-surface (30-120 m) layer (Patzert, 1974; Murray and Johns, 1997). During the rest 

of the year, low salinity water, commonly referred to as Gulf of Aden Surface Water, enters the 

Red Sea over a surface layer of order 50 m depth (Murray and Johns, 1997; Smeed, 2004).   

Our analysis indicates that the yearly oscillations in near-surface salinity off of Port Sudan 

may be largely due to the advection of the alongshore salinity gradient by yearly oscillations of 

the alongshore velocity. As noted by Sofianos and Johns (2003), seasonal variations in Red Sea 

flow patterns are likely as in the Red Sea ‘both wind and thermohaline forcing are highly variable 

at the seasonal timescales’. Seasonal averages of their modeled flows in the Port Sudan area are 

consistent with the alongshore velocity component derived from the SLA data (Fig. 5), directed 

northward over winter (September-May) and southward over the summer (June-August) (Figs. 4 

and 5 of Sofianos and Johns, 2003). 

 Prominent among the flux terms not included in our analysis are those associated with 

vertical mixing and across-shore advection. Although we cannot estimate vertical mixing with the 

data used in our study, we can assert that vertical mixing through the main pycnocline would not 

counteract the long-term trend of declining temperatures and rising salinity associated with local 

heat and mass exchange through the surface. Because cooler and more saline water is found 

below the pycnocline, vertical mixing through the pycnocline would tend to further reduce 

temperature and increase salinity in near surface waters.    

 Given the prevalence of basin-scale eddies within the central Red Sea (Zhan et al., 2014), 

it is likely that eddies may frequently cause exchange of near-shore and basin water within the 

central Red Sea. However, because the eddy lifespan is typically 6 weeks (Zhan et al., 2014), this 

exchange is likely to produce temperature and salinity changes at intervals relatively short 

compared with the observed seasonal signals of temperature and salinity.   

 Although our study has provided new insight into the character and dynamics of seasonal 

temperature and salinity changes in the Red Sea, it has been based on limited data from a small 

region and has not specifically dealt with the full suite of dynamics that may influence seasonal 

temperature and salinity changes. For example, it remains unclear to what extent vertical mixing 

may influence the observed yearly oscillations of temperature and salinity. It is uncertain to what 

degree our findings are applicable to other areas of the Red Sea, which may experience different 



seasonal currents and conditions of heat and mass exchange than in the region near Port Sudan. 

Perhaps most importantly, further research is required to understand how seasonal variations in 

temperature and salinity may be influenced by a changing climate, and how this may in turn 

affect the flora and fauna of the coastal Red Sea. 
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Figure 1. (A) The Red Sea with our study area enclosed in the black-bordered box.  (B)  
Locations of our observations: the Sanganeb section (SPS; black solid line connecting six CTD 
stations) and Port Sudan Harbour stations (PSH; five CTD stations labelled a-e), and a CTD 
mooring (at the same position of station 4 in SPS).  (C) PSH stations in detail: (a) IMR jetty, (b) 
Abu Hashish lagoon, (c) Khorkilab, (d) Harbour Inlet, and (e) Refinery stations.  
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Figure 3. (a-d) T-S diagrams with seasons: (a) summer, (b) autumn, (c) winter, and (d) spring based on 
data from SPS. The colors indicating the depth of sampling.  (f) a T-S diagram based on mooring data in 
which the colors indicate the month of sampling.
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Abstract 12 

For the first time, the seasonal variations of total alkalinity (AT) and dissolved inorganic carbon 13 

(DIC) in the Sudanese coastal Red Sea have been studied based on a new time series collected 14 

between Port Sudan and Sanganeb reef in 2007-2013. The average surface (4 m) AT is at its 15 

maximum during autumn/winter (2460 μmol kg-1) and at minimum during spring/summer (2420 16 

μmol kg-1). The sub-surface (>10 m) AT varies between 2452 and 2471μmol kg-1, and for both 17 

surface and sub-surface, AT correlate with salinity, which is driven by alongshore advection and 18 

local evaporation. The average DIC concentration at the surface decreases from 2080 μmol kg-1 19 

during winter to 2048 μmol kg-1 during summer, while in the sub-surface water, the change from 20 

winter to summer is much smaller (from 2091 to 2088 μmol kg-1). The DIC change is primarily 21 

driven by air-sea gas exchange caused by temperature changes, and, most likely, biological 22 

activity. The remaining change in DIC was controlled by alongshore advection and, thus, salinity 23 

variation. For surface AT, the interannual changes were twice as much as the seasonal variations 24 

whereas for surface DIC the interannual changes were found to be less than the seasonal changes. 25 

 26 

Keywords  27 

Red Sea; total alkalinity; dissolved inorganic carbon; time series; seasonal variation; Sudanese 28 

coast.  29 

 30 

 31 
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1. Introduction  32 

The ocean covers 71 % of the earth surface and thus plays a significant role in the global carbon 33 

cycle by, for instance, taking up about a quarter of the annual carbon emissions produced by the 34 

combustion of fossil fuels and production of cement (Canadell et al., 2007). The oceanic uptake 35 

of CO2 from the atmosphere occurs primarily at high latitudes whereas in low latitude regions 36 

the ocean releases CO2 into the atmosphere (e.g. Takahashi et al., 2009). On a regional scale, the 37 

picture is more diverse, and it is important to understand the marine carbon cycle and the 38 

processes controlling its variations, to be able to understand the diversity.  39 

The Red Sea is located at tropical and subtropical latitudes between northeast of Africa and 40 

the Arab Peninsula. The area is not very well studied in terms of biogeochemistry and carbon 41 

cycling, and consequently not well understood.  According to Souvermezoglou et al. (1989), the 42 

Gulf of Aden surface and intermediate waters are the main source of dissolved inorganic carbon 43 

(DIC), total alkalinity (AT) and nutrients in the Red Sea. The carbon content is influenced by air-44 

sea gas exchange, which is primarily directed from sea to air (Souvermezoglou et al., 1989; Ali, 45 

2008) and sedimentation of calcium carbonate (Metzl et al., 1989; Souvermezoglou et al., 1989). 46 

Additionally, evaporation, primary production/remineralization of organic matter, and the 47 

formation of coral reefs are assumed to play a role in the Red Sea carbon cycle (Souvermezoglou 48 

et al., 1989), but to what extent is still poorly understood.  49 

In the south, at 12.5°N, the Red Sea links to the Gulf of Aden and Indian Ocean through 50 

Bab Al Mandab Strait. In the north, at 28°N, the sea is divided into two branches; the Gulf of 51 

Aqaba and the Gulf of Suez, which connects the Red Sea to the Mediterranean Sea through the 52 

Suez Canal. The Red Sea is featured by high temperature, high biodiversity, and a well-developed 53 

coral reef system. Due to the high evaporation and lack of fresh water runoff, the Red Sea is 54 

considered one of the saltiest seas in the world. The salinity increases from 36.5 psu in Bab Al 55 

Mandab Strait to about 41 psu in the northern part of the sea. The average surface temperature is 56 

about 29°C and the maximum temperature zone (>30 °C) is located in the center of the Red Sea 57 

as a result of wind convergence (Sofianos and Johns, 2003).  58 

Inorganic carbon data from the Red Sea is relatively scarce and only a few studies are 59 

focusing on carbon cycle in the open Red Sea e.g. Morcos (1970); Poisson et al. (1984); Papaud 60 

and Poisson, (1986); Metzl et al. (1989); Souvermezoglou et al. (1989); Karumgalz et al. (1990); 61 

Steiner et al. (2014); and Rushdi (2014; 2015). None of these shed lights on the temporal 62 
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variability of the carbon cycle, and studies of the carbon cycle in the western coastal regions of 63 

the Red Sea are completely lacking. In this paper, we use new time series data of hydrography 64 

and inorganic carbon collected between 2007 and 2013 in the Sudanese coastal water off of Port 65 

Sudan (Fig. 1). We first determine the seasonal changes of DIC and AT and their relationship to 66 

hydrography followed by an estimate of the interannual changes. Then we discuss the drivers of 67 

the seasonal variability and attempt to reconstruct the complete seasonal cycles for DIC and AT. 68 

 69 

2. Data and Methods  70 

2.1 Data 71 

Two coastal datasets are used in this paper; one consists of summer data from 2007 and the other 72 

consists of seasonal data in the period between 2009 and 2013 (Table 1 and Fig.1). Both datasets 73 

were collected between Port Sudan and Sanganeb atoll reef, which is situated 30 km northeast of 74 

Port Sudan. Samples were collected at 4 m depth from 10 stations in 2007 (SPS1 section; Ali, 75 

2008), while during 2009-2013 (SPS2 section) the samples were collected at 4 m depth from 5 76 

stations and at 4-60 m depth from one station. Usually, the SPS2 section was sampled during 77 

October, February, April, and July. For both datasets, sampling was performed using a Hydro-78 

Bios water sampler (2 liters) with a thermometer attached. Analyses for DIC, AT, salinity (S), 79 

and temperature (T) were performed using standard methods (see Table 1). 80 

 81 
2.2 Data processing 82 

For SPS2 section, spatial variation between the surface stations has been examined with respect 83 

to temperature (SST), salinity (SSS), AT, and DIC, and no systematic biases was found. 84 

Consequently, the average of the surface stations (4 m depth) was calculated to determine the 85 

seasonal and interannual variations.  86 

Further, sub-surface (>10 m) data have been obtained for station 4 in SPS2 section only, 87 

and we assume that the variability measured at this station captures that of the whole section. 88 

The negligible systematic spatial variability observed in the surface as well as in sub-surface 89 

hydrographic data of SPS2 (see Ali et al., 2017) supports this assumption. 90 

The year is divided into four seasons; summer (May to August), fall (September to 91 

November), winter (December to February), and spring (March to April). It might be argued that 92 

the summer season is too extensive; however, the fall season seasons is defined based upon when 93 
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Port Sudan receives major parts of the annual rainfall, which is in September to November (IMR, 94 

2012).  95 

A comparison between seasonal and interannual variations was performed by first 96 

determining the interannual changes as standard deviations (STDs), and then associate it with 97 

annual means of summer data and of winter data, separately. Then, for each season (winter and 98 

summer), we compared the STDs associated with the annual means with the average seasonal 99 

change. The interannual trend of DIC has been briefly examined for the surface and sub-surface 100 

water based on data from both SPS1 and SPS2 sections, and in this calculation the summer season 101 

was chosen due to best data coverage. 102 

 103 

3. Results  104 

3.1 Hydrography  105 

The surface and sub-surface temperature and salinity measurements from station 4 in SPS2 106 

section clearly show a seasonal signal (Fig. 2) in agreement with the more comprehensive coastal 107 

measurements thoroughly described by Ali et al. (2017). The surface temperature reaches its 108 

maxima close to 32 °C during summer and early autumn and minima of roughly 26 °C in winter. 109 

The surface salinity is lower during spring and summer (38.5 psu) compared to autumn and 110 

winter (39.0-39.5 psu), and the salinity lagged temperature with approximately 3 months. The 111 

seasonal density variation is roughly following that of  salinity and is inverse  of  the  temperature  112 

variation,  with  the  densest  water  (26-27 kg m−3) occurring in winter while the lowest density 113 

water (24-25 kg m−3) appears in summer and autumn. During autumn and winter, the pycnocline 114 

was deeper than during summer and spring (Fig. 2c), which indicates a higher mixing during the 115 

first period. 116 

 117 

3.2 Total alkalinity (AT) 118 

Surface AT along the SPS2 section varies with the seasons as shown in Fig. 3a. However, the AT 119 

seasonality is less clear than that observed in hydrography and there is high degree of scatter in 120 

the surface data reflecting spatial variation between the stations. Generally, the surface AT is -at 121 

maximum during autumn and winter and at minimum during spring and summer (∆AT ≈ 40 μmol 122 

kg-1), except for the years 2009 and 2010, when the maximum and minimum in AT occurred 2-3 123 



5 
 

months earlier compared to the rest of the study period. Sub-surface AT values vary similar to 124 

those in the surface layer (Fig. 3b), but the seasonal amplitudes decrease with depth.   125 

Generally, the averaged surface AT are in good agreement with those reported for the open 126 

ocean Red Sea at a similar latitude (19.5-19.9 °N) during the GEOSECS cruise in winter 1977 127 

(2446 μmol kg-1, Weiss et al., 1983) and the MEROU-I cruise in summer 1982 (2436 μmol kg-1, 128 

Beauverger et al., 1984a). 129 

The interannual variation of surface AT (±28 μmol kg-1) is greater by about two times that 130 

of the seasonal surface AT (±15 μmol kg-1), and a similar picture is seen in the sub-surface water, 131 

however, with a smaller rate between interannual and seasonal AT variation. Furthermore, the 132 

interannual variation was larger during summer (±37 μmol kg-1) than during winter (±18 μmol 133 

kg-1).  134 

AT is a semi conservative parameter and therefore generally co-varied directly with S (Figs. 135 

2 and 3). The correlation coefficients of the implied relationship for the area of study has been 136 

determined by linear regression between AT and S, and the result is shown in Table 2. The 137 

regression coefficients for the surface samples are in good agreement with the results of Ali 138 

(2008) who reported a similar relationship between surface AT and SSS (a=28.94, b=1300.2, R2 139 

= 0.92) based on MEROU-II data collected in October 1982 along the central axis of the Red 140 

Sea (Beauverger et al., 1984b).  141 

 142 

3.3 Dissolved Inorganic Carbon (DIC) 143 

Surface DIC along the SPS2 section show a clear seasonal variation, with maximum values 144 

during winter, minimum during summer, and an approximate seasonal amplitude of 32 μmol kg-145 
1 (Fig. 4a). Similar to the surface AT, also surface DIC is scattered reflecting the spatial variation 146 

between the stations. Some seasonality is also seen in the sub-surface DIC shallower than 147 

approximately 40 m, but the seasonal amplitude was lower than observed in the surface. Below 148 

40 m, there is no clear seasonal DIC signals (Fig. 4b). 149 

The interannual variations in the surface is stronger during summer (±6 μmol kg-1) than 150 

winter, but the magnitude is much smaller than the seasonal variation (±20 μmol kg-1). In sub-151 

surface shallower than 40 m, a similar picture is seen but with a smaller rate between interannual 152 

and seasonal amplitude. 153 
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DIC is inversely correlated with SST both in surface water (R2= 0.52), see Fig. 5, and in 154 

the sub-surface (R2=0.6). Further, DIC also correlates with salinity, but these relationships are 155 

weaker: R2=0.16 and 0.26 for surface and sub-surface, respectively. 156 

The interannual trend in surface DIC based on summer values was 2.26 μmol kg-1 y-1 (R2= 157 

0.61), however, this result was not further explored. In sub-surface, no interannual trend was 158 

seen.   159 

 160 

4. Discussion 161 

In the above, we showed that the seasonal changes of DIC and AT are taking place more or less 162 

in concert with variations in temperature and salinity. In the following, these covariations are 163 

explored in detail with the aim to gain insight into the processes that (i) are responsible for the 164 

correlations and (ii) are most influential for the seasonal variations. 165 

 166 

4.1 DIC and AT correlation with salinity 167 

The significant and positive relationship between AT and salinity (Table 2) observed both in 168 

surface and sub-surface, indicate that large part of the changes in AT is driven by salinity 169 

variation. This finding is in agreement with the results of Millero et al., (1998) who reported that, 170 

in subtropical ocean, changes in salinity account for more than 80% of total variability in AT. 171 

The correlation arises because AT variability in the upper ocean is controlled mainly by processes 172 

that drives salinity changes (e.g. precipitation/evaporation) (Millero et al., 1998; Lee et al., 173 

2006). For our data, however, salinity variation explains only about 36% of the AT variations. 174 

This is most likely due to the fact that AT is also impacted by calcium carbonate (CaCO3) 175 

formation through pelagic and coral calcification in the Red Sea which is classified as one of the 176 

oceanic regions with the highest CaCO3 production  (Takahashi et al., 2014; Steiner et al., 2014).  177 

The relationship between surface AT and salinity in our dataset (Table 2) has a much larger 178 

positive intercept and lower slope compared to the Indian Ocean surface AT - salinity relationship 179 

(a=68.8, b=-114) described by Millero et al. (1998). The Indian Ocean surface waters is the 180 

source water for the Red Sea, and Takahashi et al. (2014) suggests that the large intercept in the 181 

Red Sea is due to high salinity associated with CaCO3 production. In addition, the change in AT-182 

SSS relationship can be explained partially by a loss of inorganic carbon by sedimentation in the 183 

deep water, as suggested by Metzl et al. (1989) and Souvermezoglou et al., (1989). In the deep 184 
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water, AT will further decrease by remineralization of organic matter, which adds nitrate (NO3) 185 

to the water column (Elageed et al., “Oxygen and alkalinity utilization rates in the Red Sea”, 186 

manuscript in preparation). Furthermore, calcium carbonate precipitates may occur and reduce 187 

the deep-water alkalinity even further (Ali, 2008; Rushdi, 2014; 2015). Thus, the observed 188 

relationship between surface AT and SSS is a result of  mixing between fresher surface water that 189 

conform to the Indian Ocean relationship in the southern Red Sea and high salinity/low AT deep 190 

water of the Red Sea (e.g. Ali, 2008; Steiner et al., 2014). 191 

The correlation between DIC and salinity was positive but weaker than for AT, which is as 192 

expected due to the chemical composition of these parameters. As for AT, mixing also influence 193 

DIC but in general, biological activity and air-sea gas exchange are important contributors to the 194 

variability.      195 

AT and DIC were salinity normalized (nAT and nDIC) according to Friis et al. (2003), 196 

where a constant salinity of 39 psu and an intercept of 1160 (based on data in the current study) 197 

were used, see Table 2. The salinity normalization did not change the phase of the seasonal 198 

variation of AT and DIC but it slightly decreased the seasonal amplitudes of AT and DIC. Thus, 199 

even though salinity is an important factor there are also other factors contributing to the 200 

variability in DIC and AT. 201 

 202 

4.2 DIC correlation with SST 203 

We have found a strong anti-correlation between DIC and SST (Fig.6). A combination of 204 

processes can be responsible for the observed correlation. For instance, a decrease/increase in 205 

SST induces an increase/decrease in CO2 solubility and pCO2 difference across air-sea interface, 206 

which enhances/reduces CO2 exchange with the atmosphere. Thus, the higher the SST the lower 207 

the DIC content of the ocean. The theoretical slope of this relationship can be computed for the 208 

tropical ocean (see e.g. Takahashi et al., 1993) according to: 209 

 210 

                                         (1) 211 

 212 

where  R is the Revelle Factor (= 8 for tropical waters), and  is the 213 

observed mean value (= 2060 μmol kg-1). With these values, Equation (1) suggests that DIC 214 
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should decrease by 11 μmol kg-1 for each 1°C temperature increase. However, the observed slope 215 

in our data is only -5.23 μmol kg-1, which is about half of theoretical slope, so approximately 216 

half of the change in DIC can be attributed temperature variation.  217 

Thorough analyses of the reason why we observe only half of the expected temperature 218 

impact on DIC is beyond the data at hand. Nevertheless, one possible explanation for the 219 

discrepancy can be biological production, which is higher in the southern central Red Sea during 220 

the winter than summer due to a strong anti-cyclonic gyre centered at 19.5° N (Raitsos et al., 221 

2013).  The gyre has convergence of water at the surface and downwelling in the center. 222 

Consequently, upwelling of relatively cold sub-surface water and sinking of relatively warm 223 

surface water occur across the basin, both at coastal boundaries and away from them. This results 224 

in low productivity at the core of the gyre and higher productivity at its borders. On the contrary, 225 

low primary production during summer is caused by strong seasonal stratification (Raitsos et al., 226 

2013). Higher primary production during winter would oppose the effect of increasing DIC 227 

expected from the decreasing temperature (see Eq. 1). During summer, primary production is 228 

low and might be surpassed by remineralization of organic matter, which increases DIC and thus 229 

opposes the decreasing DIC from increased SST. Therefore, the overall result of primary 230 

production and remineralization would be to dampen the temperature driven seasonal DIC 231 

amplitude. Therefore, we suggest that the observed DIC-SST relationship is due to air-sea gas 232 

exchange modulated by biological activity.  233 

 234 

4.3 Influential processes for DIC and AT seasonal variations 235 

In the Red Sea, surface salinity, DIC, and AT increase from south to north, while the maximum 236 

temperature zone is located and centered south of our study area (e.g. Ali, 2008). Furthermore, 237 

according to Ali et al. (2017) the geostrophic current in the coastal area off of Port Sudan directs 238 

form south to north during spring and summer bringing relatively warm and fresh water from the 239 

south, and this water is also characterized by a relatively low DIC and AT (Ali, 2008). During 240 

autumn and winter the geostrophic current is reversed and brings waters which is colder, more 241 

saline, and richer in DIC and AT from north. The observed seasonal changes in DIC and AT are 242 

most likely produced by the effect of the alongshore advection superimposed on local responses 243 

to SST and SSS changes as well as biological activity.    244 
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Ali et al. (2017) examined the effect of across-shore advection on the seasonality of 245 

temperature and salinity and they found that at a seasonal time scale, the across-shore 246 

displacement signal has to be small. Based on this finding, we expect that the effect of across-247 

shore advection on the seasonality of DIC and AT is also small, and this is evidenced by a lack 248 

of east- or westward trends in the spatiotemporal variation between SPS1 and SPS2 stations.     249 

    250 

4.4 Reconstruction of complete DIC and AT cycles  251 

Since the most influential processes for seasonal variations of DIC and AT are identified, we 252 

attempt to reconstruct the complete seasonal patterns of DIC and AT during the period 2009 – 253 

2014. As a first step, DIC values (  in Eq. 1) was calculated by applying the DIC-SST 254 

relationship (Fig. 5) and daily satellite-derived SST data ( ; NOAA High-resolution 255 

Blended Analysis of Daily SST, Version 2) extracted from 37.38° E, 19.62°N, close  to the area 256 

of study. The  has the same seasonal amplitude (approximately 6oC) as the observed SST 257 

(Ali et al., 2017; their Fig. 5). The seasonality of daily  has the same shape as the 258 

observed DIC, higher during winter and lower during summer with a similar amplitude (~32 259 

μmol kg-1) but slightly higher values than the observed DIC, especially during summers. The 260 

daily  variations is about 6 μmol kg-1 in magnitude (Fig. 6) and these are a result of 261 

the SST variation of approximately 1oC (Ali et al., 2017). 262 

Next, the effect of the salinity variations on DIC was included by using a multivariate 263 

regression taking into consideration the observed surface DIC, SST, and SSS:  264 

 265 

                                                                                    (2) 266 

 267 

where the multivariate regression coefficients were: a = 6.4814, b = -4.9739, c = 1959, and R2 = 268 

0.54. To study the daily DIC variability we used Eq. 2, , and surface salinity ( ) 269 

computed for the area in this study based on the effect of local evaporation/precipitation and 270 

alongshore advection as described in Ali et al. (2017). The resulting  has similar 271 

amplitudes as  , which was based only on SST (Fig.6).  However, when the regression 272 

was extended by salinity (as for ), the correlation coefficient (R2=0.54) improved slightly 273 

compared to the  relationship (R2= 0.52).  This is partially explained by the observed 274 

phase shift between SSS and SST of approximately 3 months, which will also introduce a slight 275 
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phase shift between  and  (Fig.6) (Ali et al., 2017). It must be emphasized, 276 

however, that comparisons performed by Ali (2017) revealed a good correspondence between 277 

satellite-derived and measured SST whereas the computed showed a higher degree of 278 

mismatch and varied over a much greater range than the measured SSS (Ali et al., 2017; their 279 

Fig. 5). Due to this imperfection of the , we believe that the true potential of using Eq. 1 280 

to estimate DIC in the study area is even greater than has been realized in Fig. 6.  281 

The lack of a “perfect” SSS dataset also hampers the estimation of the daily variability of 282 

AT in the study area. Nevertheless, the AT-SSS relationship (shown in Table 2) was applied on 283 

 to estimate the complete seasonal cycle of surface AT during the period of our survey. 284 

The computed AT has a clear seasonal cycle resembling that observed in surface AT (Fig. 7), high 285 

during winter and low during summer with average amplitude about 40 μmol kg-1. However, as 286 

expected, there is a higher degree of mismatch compared to Fig. 6 and the computed AT vary 287 

over a larger range. Thus, it is likely to produce an improved reconstruction of the seasonal cycle 288 

of AT if daily SSS is used along with Equation 2.      289 

 290 

5. Summary and Conclusion 291 

The seasonal and interannual variations of AT and DIC in the coastal Red Sea have been studied 292 

using a new time series collected between Port Sudan and Sanganeb reef from 2007 to 2013. 293 

Both variables show maximum values during autumn and winter, and minimum during spring 294 

and summer associated with the maxima and minima of salinity. Temperature is at maximum 295 

during summer and at minimum during winter. There are positive linear relationships between 296 

AT and salinity and between DIC and salinity, although the latter is relatively weak, indicating 297 

that salinity is an important driver primarily for AT variations.  298 

The occurrence of high DIC values in winter, when primary production is normally at its 299 

highest, indicates that the consumption of DIC by primary production is less than the increase of 300 

DIC from air-sea gas exchange. The remaining changes of DIC are caused by alongshore 301 

advection during autumn and winter. The geostrophic current directs from north to south bringing 302 

relatively cold and saline water enrich with carbon to the area of study, while during spring and 303 

summer the current is reversed and transports warm and fresh water characterized with relatively 304 

low DIC from the south.   305 
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Interannual variations of AT and DIC have been briefly examined, and for surface AT, these 306 

changes were twice as much as the seasonal variation whereas for surface DIC, the interannual 307 

changes were found to be less than the seasonal changes.   308 

In conclusion, seasonal DIC variations are governed by, in decreasing order, temperature 309 

driven air-sea gas exchange, biological activity, and alongshore advection. Whereas AT 310 

variations are driven mainly by salinity, which is directly controlled by local processes such as 311 

evaporation/precipitation in addition to alongshore advection.   312 

 313 
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 407 
Tables 408 

 409 
 410 
Table 1: Methods of analysis  411 

Parameters Methods Instrument Accuracy 

 T Temperature sensor SAIV CTD model 204 ± 0.01°C 

S Inductive cell conductivity sensor (salinity 

calculated from conductivity) 

 

SAIV CTD model 204 ± 0.02 mS cm-1 

AT 

 

Open potentiometric titration (Dickson et 

al., 2007) 

 

Marianda VINDTA 3S ±1 μmol 

DIC Gas extraction of acidified water samples 

followed by coulometric titration method 

(Johnson et al., 1993; Dickson et al., 2007) 

VINDTA 3C with UIC 

Coulometer (CM5012) 

±0.5μmol* 

 412 
* The accuracy was achieved by using certified reference material (CRM) supplied by prof. Andrew 413 

Dickson of Scripps Institution of Oceanography, USA. 414 

 415 

 416 

 417 

 418 

Table 2: Regression ccoefficients of AT-salinity relationship  419 

AT-S relationship at:  a b R2 

surface   32.9 1160 0.36 

Sub-surface 26.4 1417 0.36 

 420 

 421 
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Figures  422 
 423 

 424 

 425 

Fig. 1: The location of the coastal stations between Port Sudan and Sanganeb atoll reef. The SPS1 426 

section is made up of ten stations (southern line) and the SPS2 section contains 6 stations 427 

(northern line). Station 1 at SPS1 section and station 5 at SPS2 section are located at the same 428 

position. Sampling depth from all stations are 4 m, except for station 4 at SPS2 section (black 429 

solid square), where data were collected from several depths between 4 and 60 m.  430 

 431 

 432 

 433 

 434 

 435 
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 436 

 437 

 438 
 439 
Fig. 2: Seasonal and interannual variations of water column (a) temperature [°C], (b) salinity, 440 

and (c) density [kg m−3]. 441 

 442 

 443 

 444 

 445 

 446 

 447 
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 448 
 449 

Fig. 3: Alkalinity (AT) values [μmol kg-1] (a) in the surface (station 1 to 6) and (b) in the water 450 

column (station 4). The red triangles and the line in Fig.3a indicate averaged values. All data are 451 

from the SPS2 section. 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 
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 463 

 464 

 465 

 466 
 467 

Fig. 4: DIC values [μmol kg-1] (a) in the surface (station 1 to 6) and (b) in the water column 468 

(station 4). The red triangles and the line in Fig.4a indicate averaged values. All data are from 469 

the SPS2 section. 470 

 471 

 472 

 473 

 474 

 475 

 476 
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 477 

 478 

 479 

 480 
Fig. 5: Surface DIC [μmol kg-1] as a function of SST [°C]. All data are from the SPS2 section. 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 
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 495 
 496 
 497 

 498 
 499 

 500 

Fig. 6: The seasonal variation of computed DIC:  (red line) is calculated based on 501 

satellite-derived SST ( ) and  (green line) is calculated based on multivariate 502 

regression coefficients of the SST-SSS-DIC relationship, , and . Blue stars indicate 503 

averaged observed surface DIC along the SPS2 section. 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 
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 516 

 517 

 518 

Fig. 7: The seasonal variation of the computed daily AT (red line) based on . Blue stars 519 

indicate averaged observed surface AT along the SPS2 transect.  520 

 521 
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Abstract  12 

Oceanic partial pressure of carbon dioxide   have been determined for the first time over 13 

a full annual cycle in the coastal Red Sea off Port Sudan. The measurements were obtained between 14 

October 2014 and October 2015 using moored autonomous sensors.  varies throughout the 15 

year with an amplitude of approximately 60 μatm, overlaid a high frequency signal of 10 μatm. 16 

The highest values of about 420 μatm occur during summer-autumn and the lowest values of about 17 

360 μatm occur during winter-spring. The seasonal pCO2
w variation is mainly incurred by 18 

temperature changes and the remaining  change is controlled by along-coast advection. The 19 

area is a net annual sink for CO2 of size 24.4 mmol CO2 m-2 y-1. During summer and autumn, the 20 

area is a source for atmospheric CO2, with CO2 fluxes (FCO2) of 0.1 to 2 mmol CO2 m-2 day-1, while 21 

during winter and spring, the area is a sink for atmospheric CO2 of 0.02 to 5 mmol CO2 m-2 day-1.  22 

Based on data from the years 1977 to 2015, it is likely that during the 2000s the focus area 23 

transformed from being a net annual atmospheric source of CO2 to a net annual sink for CO2.  24 

 25 

Keywords  26 

Sea surface pCO2; CO2 flux; coastal Red Sea; seasonality 27 

  28 

 29 

  30 
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1. Introduction  31 

Carbon dioxide (CO2) is released into the atmosphere from burning of fossil fuel and land use 32 

changes. During the last decade (2006-2015) these processes have been responsible for an input to 33 

the atmosphere of 10.3 ± 0.5 Pg C y-1 (Le Quéré et al., 2016), of which the ocean and terrestrial 34 

biosphere have absorbed about 2.6 ± 0.5 and 3.1 ± 0.9 Pg C y-1, respectively (Le Quéré et al., 2016). 35 

The global carbon budget is based on an enormous amount of data from all over the world, but 36 

there is still an ongoing effort to more precisely determine the amount of carbon exchanged 37 

between the different reservoirs.  38 

The Red Sea is one of the under sampled areas of the world ocean. Situated between Africa 39 

and Asia, the Red Sea represents only approximately 0.12% of the world ocean surface area. It is 40 

one of the warmest and saltiest ocean areas in the world, and the biodiversity is rich, with numerous 41 

coral reefs along the coast. The area is exposed to both heavy ship traffic and climatic changes 42 

(IMR, 2012), but in spite of this, only a few studies have been conducted in the Red Sea with the 43 

carbon cycle as the main focus, and this is particularly true for the coastal areas. The GEOSECS 44 

cruise in 1977 (Weiss et al., 1983), the MEROU cruises in 1982 (Beauverger et al., 1984 a;b; 45 

Souvermezoglou et al., 1989; Metzl et al., 1989), and the MINERVE cruises in 1991, 1992, and 46 

1999 (Metzl et al., 1995; 2008) were all conducted along the north-south central axis of the Red 47 

Sea, and all of these reported that the Red Sea was a source of CO2 to the atmosphere. This was 48 

also confirmed by Ali (2008). The only exception to this is Metzl et al. (1995), who reported that 49 

the northern part of the Red Sea appeared to be a sink for CO2 during summer 1991. 50 

However, the central area of the Red Sea might not be representative for the coastal part of 51 

the sea, which is clearly seen from e.g. sea surface height anomalies which varies from coast to 52 

open ocean depending on the time of year (Yao et al., 2014), and spatiotemporal variation of 53 

primary production which is slightly higher along the coast than in the open sea (Raitsos et al., 54 

2013). Yao et al. (2014) also reported that, for parts of the year, the coastal water was slightly 55 

fresher than in the central Red Sea. 56 

In this study, we use new carbon and hydrography data from moored instruments deployed 57 

off the Sudanese coast of the Red Sea. The aim of the work is to determine, for the first time in this 58 

area, the air sea flux of CO2 over a full annual cycle, and further unravel its seasonal variations and 59 

drivers.  60 



3 
 

2. Data and Methods  61 

2.1 Data 62 

The data used in this study are from two moored instruments deployed in October 2014 and 63 

retrieved one year later, in October 2015. The mooring site, (37.395 °E, 19.720 °N), is located 18 64 

km north east of Port Sudan at the Sudanese coast (Fig. 1), located at the same position as one of 65 

the stations (St4) in a time series between Port Sudan and Sanganeb atoll reef presented in Ali et 66 

al. (2017a; 2017b). The moored instruments consisted of a Sea Bird MicoCat temperature 67 

(accuracy ± 0.01°C) and conductivity (accuracy ± 0.02 mS cm−1) sensor (SBE 37-SM), and a 68 

SAMI CO2 instrument (Submersible Autonomous Moored Instrument CO2 sensor, Sunburst 69 

Sensors, accuracy ± 3 μatm). The bottom depth at the mooring site is about 800 m, and the 70 

MicroCat and SAMI-CO2 were parked at 37 and 34 m depth, respectively. Temperature and 71 

conductivity were determined hourly, while the partial pressure of CO2 (pCO2) was measured every 72 

three hours throughout the year of deployment. The pCO2 measurements were calibrated using 73 

discrete duplicate samples of DIC (Dissolved Inorganic carbon), and AT (Total Alkalinity) 74 

collected from 35 and 40 m depth immediately after the mooring deployment. The DIC and AT 75 

samples were conserved using saturated HgCl2 solution, kept cold and dark, and analyzed at the 76 

Geophysical Institute, University of Bergen, Norway. DIC was determined using a VINDTA 3C 77 

with UIC Coulometer (CM5012, accuracy ± 0.5 μmol kg-1) based on gas extraction of acidified 78 

water samples methods followed by coulometric titration (Johnson et al., 1993; Dickson et al., 79 

2007), while AT was analyzed using Marianda VINDTA 3S (accuracy ± 1 μmol kg-1). The accuracy 80 

was achieved by using certified reference material (CRM) supplied by prof. Andrew Dickson, 81 

Scripps Institution of Oceanography, USA. Averages of measured DIC and AT from 35 and 40 m 82 

depth were used to calculate pCO2 through the CO2SYS program (Pierrot et al., 2006) with the 83 

carbon system constants of Merbach et al. (1973) refitted by Dickson and Millero (1987). The 84 

computed pCO2 were compared with the pCO2 measurements and an adjustment of -6 μatm was 85 

applied to the observed pCO2 data.     86 

Atmospheric xCO2 measurements from the nearest station (Sede Boker in Negev desert, 87 

Israel) have been downloaded from NOAA/CMDL (http://cdiac.ornl.gov/trends/co2/cmdl-88 

flask/wis.html), and atmospheric pCO2 values were calculated according to Körtzinger (1999). 89 

The net air-sea CO2 flux (FCO2) was determined using the pCO2 difference between the 90 

seawater and atmosphere: 91 



4 
 

 92 

      )( 222

atmosphereseawater
Co pCOpCOKSF                 (1) 93 

 94 

where K is the gas transfer velocity and S is the solubility of CO2 in the seawater. For low wind 95 

speeds, K relationship do not have a big impact on the calculated fluxes (e.g. Sweeney et al., 2007), 96 

but at wind speeds above approximately 5 m s-1, the deviation between K’s becomes notable. Here, 97 

K from Nightingale et al. (2000) was used, which is relatively similar to that from Sweeney et al. 98 

(2007) for wind speeds below 10 m s-1. The wind at 10 m height above sea surface, U10, was 99 

calculated from daily averaged 6-hourly u- and v-wind velocity components extracted from 100 

NCEP/NCAR reanalysis 2 data at the position 20.00 °N and 37.50 °E. S from Weiss (1974) was 101 

used. 102 

 103 

2.2 Data processing 104 

Ali et al. (2017a) examined in detail the seasonality of the water masses with respect to temperature 105 

and salinity along their sections SPS1 and SPS2 between Port Sudan and Sanganeb atoll reef. They 106 

found that the mixed layer depth (MLD) in the area of study was approximately 40 m deep during 107 

most of the year and deeper during winter mixing. The water shallower than 40 m is part of a 108 

homogeneous surface layer, and thus, the mooring data from 37 m depth in the current study are 109 

defined as surface data.  110 

At a few occasions, the moored instruments were dragged down to larger depths than 37 m, 111 

apparent from the Sea Bird MicroCat pressure values. This happened e.g. in the end of July and 112 

end of September 2015, however, no noticeable change was observed in pCO2 during these times, 113 

and consequently, these data were included in the analyses.                  114 

The summer season is defined as the months May – August while the winter are the months 115 

December – February as in Ali et al. (2017b). The transitions from winter to summer and from 116 

summer to winter are referred to as spring and fall, respectively, and the fall season is when Port 117 

Sudan receive the major parts of the annual rainfall.  118 

 119 

 120 
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3. Results  121 

The temperature and salinity data for the period between October 2014 and October 2015 is shown 122 

in Fig. 2a and 2b and have also been described in detail by Ali et al. (2017a). The seasonal 123 

temperature change was about 6°C while that of salinity was approximately 1.1 psu. The highest 124 

temperatures occurred during autumn and the lowest at the end of January, while the summer was 125 

a transition period with relatively large variations over short time. In mid-May, the temperature 126 

abruptly increased to its average summer value of 28.5°C. The salinity (Fig. 2b) was highest 127 

(around 39.7 psu) during autumn and winter and lowest (around 39.0 psu) during spring and 128 

summer. Several abrupt and large changes in salinity occurred, e.g. in early March and in late 129 

August (Fig. 2b). The seasonal peaks and lows for the salinity lagged those for temperature by 130 

about 3 months, which, according to Ali et al. (2017a) most likely is caused by temperature 131 

variation being governed by air-sea heat exchange in addition to horizontal fluxes associated with 132 

advection of water along the coast. This process partly explain the salinity variation, but in addition, 133 

the salinity is controlled by evaporation/precipitation. However, the fresh water runoff into the Red 134 

Sea is limited and the evaporation dominates over precipitation 135 

The oceanic pCO2 ( ) showed similar seasonal pattern as the temperature (Fig. 2c), with 136 

a seasonal amplitude of approximately 60 μatm, and an induced higher frequency signal of about 137 

10 μatm. The highest  occurred during autumn (400-420 μatm) when the water was warmest 138 

and saltiest, while the lowest was observed in January (ca. 350 μatm) when the water was 139 

coldest. During spring, the pCO2w value was relatively stable as for temperature and to some 140 

degree also salinity. Abrupt changes occurred during mid-May and early of January, where 141 

the latter had character of being an extreme event, possibly connected to both temperature and wind 142 

speed. 143 

The atmospheric pCO2 ( ) (Fig. 2c) was highest during winter and spring and lowest 144 

during summer. The seasonal atmospheric amplitude was about 15 μatm, i.e. 25% of that of  145 

of 60 μatm.  was lower than  during summer and autumn and higher than   146 

during winter and spring. The seasonal cycle of  (Fig. 2d) resembled that of  and 147 

positive  > ) indicates that CO2 was directed from sea to air while negative 148 

values indicates that < .  149 
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The daily CO2 fluxes (FCO2) are shown in Fig. 2f, and in general, the FCO2 values were 150 

relatively low, which was a result of low wind speeds during parts of the year in addition to periods 151 

of nearly CO2 equilibrium between ocean and atmosphere. For the period between October and 152 

November 2014, the ocean was supersaturated with CO2 (  positive) and an amount of up to 153 

1.8 mmol CO2 m-2 day-1 was degassed to the atmosphere. During winter 2015, a significant CO2 154 

undersaturation (  of -20 to -47 μatm) developed and the area was characterized as a sink for 155 

atmospheric CO2 with fluxes of up to -5 mmol CO2 m-2 day-1 during mid-January. The strongest 156 

ingassing occurred during events of high wind speeds (Fig. 2e). From February to April 2015, the 157 

surface water was slightly undersaturated with CO2 (  varied between zero and -20 μatm) 158 

and the FCO2 ranged between -0.02 and -1.2 mmol CO2 m-2 day-1. From mid-May until October 159 

2015, the sea surface again became a source for CO2, of size 0.13 to 1.8 mmol CO2 m-2 day-1, with 160 

peaks related to peaks in the wind speed.   161 

 162 

4. Discussion 163 

The main hydrographic and biogeochemical drivers influencing the annual cycle of pCO2 are 164 

discussed in Section 4.1, while Section 4.2 focuses on the long-term trend in air-sea CO2 exchange 165 

in the Red Sea over a period of nearly four decades from 1977 to 2015.   166 

 167 

4.1 Factors controlling   168 

 is affected by changes in temperature, dissolved inorganic carbon (DIC), alkalinity (AT), 169 

and to a minor degree salinity, whereas biological production affects   through changes in 170 

DIC. The seasonal variability of DIC and AT is thoroughly described in Ali et al. (2017b) where 171 

they used a new coastal time series off Port Sudan to unravel the carbonate system in this area. 172 

They found that DIC variations were mainly governed by temperature driven air-sea gas exchange 173 

modulated by biological activity, while AT was controlled primarily by evaporation/precipitation 174 

driven salinity changes. Most of the remainder of the DIC and AT variations are a result of 175 

advection of water masses along the coast (Ali et al., 2017b). 176 

 177 
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4.1.1 pCO2 versus temperature 178 

Within the range of the observed seasonal temperature change (ca. 6°C), the relationship between 179 

 and temperature is nearly linear. However, a more general exponential expression is used 180 

similar to the thermodynamic relationship of Takahashi et al. (1993). From mooring observations, 181 

daily  versus daily SST gives the relationship 182 

                                                               (2) 183 

The proposed relationship accounts for 60% of the variability between pCO2 and SST, and the 184 

relationship also indicate that  changes by 1.8% per °C. The weekly  versus weekly 185 

SST was also analyzed (not shown) to check if the high frequency  variations overlaid the 186 

 signal did affect the correlation between  and SST. This exercise gave a similar 187 

relationship as in Eq. 2 but with better correlation coefficient (R2= 0.67) most likely due to 188 

smoothening. A theoretical value of the  versus temperature change was also calculated from 189 

typical coastal Red Sea data (SST = 28°C, SSS = 39 psu, DIC = 2065 μmol kg-1, AT = 2440 μmol 190 

kg-1), the software CO2SYS (Pierrot et al., 2006), and constants from Mehrbach et al. (1973) 191 

refitted by Dickson and Millero (1987). From this, an isochemical change of 3.9% in per °C 192 

was estimated. This is more than twice the percentage change based on observed data but, on the 193 

other hand, slightly less than that of Takahashi et al. (1993), who, based on North Atlantic data, 194 

estimated a change in pCO2 of 4.23% per °C at constant DIC, AT, and salinity condition. The above 195 

calculation demonstrates that there are also other processes than temperature, which are influencing 196 

the   in such a way that the   decreases while T increases.  197 

The seasonal change of  versus SST seems to have an elliptical shape, where pCO2 198 

during the months September towards January are below the regression line, while pCO2 during 199 

the months February towards August are, with a few exceptions, above the regression line. The 200 

lowest  and SST is observed in January and highest   in July-August (Fig. 3).  201 

during early April (380-390 μatm), is about 25 μatm higher than the late December value (ca. 360 202 

μatm) for the same temperature (approximately 27°C). Salinity varies from approximately 39.8 psu 203 

during the first period to 38.8 psu during the last. We propose that the elliptical shape is a result of 204 

super saturation of surface water CO2 during early summer and autumn, and CO2 is degassed from 205 

the sea into the atmosphere. This leads to decreasing pCO2 during late autumn and early winter, 206 
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although the temperature is still higher. During early April and late December, the averaged wind 207 

values are about the same, and consequently, FCO2, which is directed from atmosphere to sea at 208 

both occasions, is controlled by . In late December, the calculated CO2 flux into the sea is 209 

approximately -1 mmol CO2 m-2 day-1, while in early April this amounts to -0.3 mmol CO2 m-2 210 

day-1. The most likely processes being responsible for this change in pCO2 are (i) the CO2 uptake 211 

by surface sea occurring during December –April (ii) and   along-coast advection. Metzl et al. 212 

(1995) and Ali (2008) used MINERVE data collected in 1991, 1992, and 1999 and found that the 213 

highest surface   values were located in the south central Red Sea similar to the maximum 214 

SST (south of our study area). Ali et al. (2017b) observed that during early February 2015 (their 215 

Fig. 4d) the geostrophic current in the area of study was reversed from southwards along-coast to 216 

northwards, which introduced water with higher pCO2, lower salinity, and relatively higher 217 

temperature into the coastal area.  218 

Similar elliptical shapes of versus SST were also observed in the North Atlantic 219 

subtropical gyre by Lefèvre and Taylor (2002) and in the Caribbean Sea by Wanninkhof et al. 220 

(2007). According to Lefèvre and Tylor (2002), the explanation for the shape is that during 221 

summertime, the sea surface is super saturated with respect to CO2 and will emit CO2 to the 222 

atmosphere, lowering the pCO2 of the water. Thus, during fall and winter, when the water cools, 223 

the pCO2 would decrease towards even lower values than during summer. For the Caribbean Sea, 224 

Wanninkhof et al. (2007) showed that also other processes, like biological production and fresh 225 

water addition, played a role making the ellipsoid form of the pCO2-SST relationship.  226 

 227 

4.1.2 pCO2 versus DIC 228 

There are no concurrent DIC measurements to the mooring pCO2 data, and to examine the 229 

relationship between  and DIC we use a regression relationship developed in Ali et al. 230 

(2017b) based on discrete surface DIC, SST, and SSS from the coastal section SPS2 (see Fig. 1); 231 

DICReg = aSSS + bSST + c (a = 6.4814, b = -4.9739, c = 1959, R2 = 0.54). In the current work, 232 

 is determined by evaluating the above equation using the daily temperature and salinity 233 

from the mooring. Fig. 4 shows the seasonal cycle of the computed . There is a relative 234 

strong negative correlation (R2=0.67) between and  (Fig. 5), and this is a signature 235 
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of CO2 source areas. In such areas, higher pCO2 induce higher efflux of CO2 from sea to air, and 236 

thus the surface water DIC is reduced. On the contrary, the -DIC correlation in sink areas is 237 

positive i.e. pCO2 increases with increasing DIC (Takahashi et al., 1993). According to Ali et al. 238 

(2017b), there is a negative correlation between DIC and temperature at the Sudanese coast, and 239 

this is in line with the observed positive pCO2-SST correlation and estimated negative pCO2-DIC 240 

correlation from the current work. No correlation was found between temperature normalized 241 

 and DIC.  242 

 243 

4.2 Air-sea gas exchange over years 244 

The Red Sea is located in the sub-tropical area, which is characterized globally as a net annual 245 

source area of CO2 (Takahashi et al., 2002). The monthly average of and  for the 246 

period 1977 - 2015 within the area 19 - 20 N, 37 - 39°E is shown in Fig. 6. The figure combines 247 

datasets collected in the open sea (GEOSECS 1977, Weiss et al., 1983; MEROU I&II 1982, 248 

Beauverger et al., 1984a; b; MINERVE 1991; 1992; 1999, Metzl et al. 1995; 2008) with datasets 249 

from the Sudanese coast (time series from 2007 and 2009-2013, Ali et al., 2017b; mooring data in 250 

the current study). DIC values of GEOSECS was extracted from GLODAPv2 database and the data 251 

were adjusted according to the advices on the GLODAPv2 web page (Olsen et al., 2016; Key et 252 

al., 2015). The atmospheric measurements from Sede Boker station in the Negev desert started in 253 

1995, and to estimate an atmospheric value for 1977, we first compared atmospheric  values 254 

from Mauna Loa with the atmospheric data from the Sede Boker station. The amplitude was 255 

slightly larger at the latter station, but in spite of this, the interannual trend was similar at the two 256 

stations. Thus, it is reasonable to assume that the change in xCO2 between 1977 and 1995 at the 257 

Israeli station was similar to the change in xCO2 observed at Mauna Loa during the same period, 258 

i.e. 27 ppm. From this, we can estimate the atmospheric xCO2 value at Sede Boker to be 338 ppm 259 

in 1977, which corresponded to a  value of approximately 323 μatm (Fig. 6). Then, we 260 

could, with confidence, draw a line representing the Red Sea  over the years 1977 - 2015 261 

(Fig. 6). Over these nearly four decades, the atmospheric CO2 content increased by 66 μatm, from 262 

323 μatm in winter 1977 to 389 μatm in winter 2015, which is equivalent to an annual increase of 263 

1.74 μatm y-1.  264 
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The open ocean data were collected during summer and autumn except GEOSECS 1977, 265 

which was collected in December 1977, while the coastal datasets cover the whole year. Fig. 6 266 

shows that, at least since 2009, the Red Sea switches over the year between being a sink and a 267 

source of atmospheric CO2. During summer and autumn,  (open dots) are higher than 268 

 (gray dots), which indicates degassing of CO2 during these seasons. During winter and 269 

spring, although we have few data, the  (black dots) are in general less than the  270 

values, which indicate uptake of atmospheric CO2 during these seasons. Exception to this is in 271 

December 2009 and February 2010 (SPS2 data, current study). Over the year of 2014 to 2015, the 272 

area was a net sink for atmospheric CO2 of size 24.4 mmol CO2 m-2 y-1.  273 

The sub-tropics are considered net annual source areas for atmospheric CO2, (Takahashi et 274 

al., 2002), and at the entrance of the Red Sea CO2 is emitted to the atmosphere during both winter 275 

and summer (Souvermezoglou et al., 1989). Thus, it is reasonable to assume that the Red Sea also 276 

should be considered a net annual source area for atmospheric CO2.  The only data that could prove 277 

such an assumption is the GEOSECS data from winter 1977 (Weiss et al., 1983). We are aware 278 

that the quality of these data is subject for discussion since a relatively large data correction had to 279 

be performed (Olsen et al., 2016; Key et al., 2015). However, if we assume that the GEOSECS 280 

data are acceptable, we can include the winter value of the one central Red Sea station from 1977 281 

in Fig. 6, and further interpolate between all winter and spring pCO2 data available. Based on this, 282 

we speculate that the central Red Sea has been transformed from being a source area for 283 

atmospheric CO2 all year around to becoming an area, which is in CO2 equilibrium with the 284 

atmosphere during parts of the year, and even, at occasions, becomes a sink for atmospheric CO2.   285 

   So, when could such a transformation have occurred? To answer this question, we 286 

compared the interannual  trend lines based on summer-autumn and winter-spring data with 287 

that for the interannual  trend in Fig. 6. It appeared that the line for the winter-spring 288 

trend crossed the  trend line around the year 2002, which is referred to as the time of CO2 289 

equilibrium between atmosphere and ocean. During summer and autumn, the  is increasing 290 

with 1.95 μatm y-1 (not shown), which is larger than the annual change of  of 1.19 μatm y-1. 291 

This indicates that during summer-autumn, the area emits a decreasing amount of CO2 to the 292 

atmosphere from one year to the next. Thus, it is reasonable to assume that in the future, equilibrium 293 

is reached between atmosphere and sea surface also during summer-autumn. The coastal Red Sea 294 

might then be converted to a sink area for CO2 throughout the year. 295 
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As mention, the amount of winter-spring data is low, and the conclusion of the Red Sea being 296 

a CO2 source prior to 2002 must be drawn with care. The historical winter data is from the open 297 

ocean while the coastal data is not present until 2007.  Therefore, it might be that the negative CO2 298 

fluxes are only real in the coastal area and not in the open ocean. However, the main finding from 299 

the coastal data is still valid; that the coastal Red Sea absorbs CO2 during the winter of the last 300 

years. 301 

This finding is compatible with the Mediterranean Sea, which was classified as a source of 302 

CO2 during 1980s, while in the 2000s equilibria between  and  was reached, and at 303 

present the ocean is considered a minor sink of CO2 (Taillandier et al., 2012). The Red Sea is 304 

similar to the Mediterranean Sea in terms of being a semi-closed sea with relatively high 305 

temperature and salinity, and, apparently, following the same transformation from being a source 306 

area for CO2 to becoming sink area. As both seas are being influenced by the same monsoon system 307 

especially during summer, it is reasonable to assume that the same factors driving the 308 

transformation in the Mediterranean Sea are also responsible for the source to sink transformation 309 

in the Red Sea. A similar transformation is seen in the Baltic Sea, which also was characterized as 310 

a source area for CO2 before the industrial revolution, while during the industrialization period, the 311 

Baltic Sea appears to be both a source and a sink area for atmospheric CO2 (Omstedt et al., 2009).   312 

Air-sea CO2 exchange is also influenced by increasing SST as a result of global warming. 313 

Raitsos et al. (2011a) found that the annual mean SST in the Red Sea has increased by about 0.032 314 

°C y-1 for the period between 1985 and 2007. An increasing SST leads to an increase in air-sea CO2 315 

efflux through the changes in CO2 solubility (Yilmaz, 2008). Over time, this will create a loss of 316 

DIC in the Red Sea. The only source for DIC to the Red Sea is from the Gulf of Aden water, and 317 

according to Souvermezoglou et al. (1989), about 21% of the DIC budget that enters into the Red 318 

Sea from the Gulf of Aden is lost by air-sea gas exchange. Thus, an increase of the CO2 flux to the 319 

atmosphere due to warming will increase the percentage of loss by air-sea gas exchange on the 320 

total DIC budget. If the supplied CO2 is not balanced with the consumption, this process will lead 321 

to a larger loss by air-sea gas exchange on the total DIC budget. Quantification of this has not been 322 

further elaborated. 323 

For simplicity, the increasing atmospheric CO2 content from burning of fossil fuel and land 324 

use changes have been neglected in the above assumption. When the increase in atmospheric CO2 325 

content (approximately 1.8 μatm y-1) is taken into account, the picture changes slightly. During 326 
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wintertime, when the Sudanese part of the Red Sea is a sink for atmospheric CO2, the size of the 327 

sink is assumed to increase even more with increasing SST, while during summers, when the sea 328 

is a source for atmospheric CO2, the size of the source will be less than without warming.  329 

Increasing SST will also induce more stratification in the upper ocean, which leads to less 330 

available nutrients and reduced primary production (Behrenfeld et al., 2006; Raitsos et al., 2011b; 331 

Taillandier et al., 2012). Low vertical mixing in CO2 source areas like the Red Sea means less CO2 332 

exported from the deep layer into the surface, and consequently decreasing CO2 levels in the 333 

surface layer. This, in turn, results in CO2 equilibrium with the atmosphere and transformation into 334 

a sink area for atmospheric CO2.    335 

 336 

  5. Summary and conclusion 337 

Using a SAMI-CO2 sensor moored at about 37 m depth in the coastal Red Sea off Port Sudan, the 338 

annual cycle of oceanic pCO2  was studied in the period October 2014 - October 2015. 339 

During summer-autumn, the  values were highest, while winter-spring was the period with 340 

lowest  values, and the annual amplitude of approximately 60 μatm was overlaid a high 341 

frequency fluctuation of about10 μatm. The area of study acted as a source for CO2 during summer 342 

and autumn and a sink for CO2 during winter and spring. 343 

 is relatively strongly correlated with SST (R2 = 0.6), which indicate that the 344 

temperature is the main driver for the changes in . In addition to temperature, along-coast 345 

advection, described in details in Ali et al. (2017a; b), also contribute to the observed variability 346 

in .    347 

The area is a net annual sink for atmospheric CO2 of size 24.4 mmol CO2 m-2 y-1, acting as a 348 

source during summer to fall and a sink during winter to spring. When taking into consideration 349 

data from the period 1977 to 2015, it is likely that the area transformed from being a net annual 350 

source for CO2 to becoming a net annual sink sometimes during the 2000s, when a similar 351 

transformation was seen in the Mediterranean Sea.  352 

In the current study, pCO2 and air-sea gas exchange have been studied in coastal Red Sea. 353 

However, it is beyond doubt that additional coastal and open ocean data would have contributed to 354 

further unravelling of the carbon cycle in this part of the sub-tropical seas.  355 
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Fig.1: The mooring location between Port Sudan and Sanganeb atoll reef. The lines SPS1 and SPS2 
indicate two time series transects described in Ali et al. (2017a; 2017b) and used in the current 
work. Note that the mooring position is the same as that of station 4 in the time series transect 
SPS2.  
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Fig. 3: Monthly averaged  [μatm] as a function of temperature [°C]. The black line 
indicates the annual cycles of the changes. The number represent the month of 
sampling. 
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Fig. 4: The seasonal cycle of computed DIC ( ) calculated based on multivariate regression 
coefficients of the SST-SSS-DIC relationship from Ali et al. (2017b). 
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Fig.5 The relationship between and  
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