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Abstract

The spectral distribution f(w) of a stationary time series {Y;},_, can be used to
1ez» DUL f(w) has
some limitations due to its dependence on the autocovariances (k). For example,
f(w) can not distinguish white i.i.d. noise from GARCH-type models (whose terms
are dependent, but uncorrelated), which implies that f(w) can be an inadequate tool
when {Y,},_,
Asymmetries between the upper and lower tails of a time series can be investi-
gated by means of the local Gaussian autocorrelations p (h) introduced in Tjgs-
theim and Hufthammer (2013), and these local measures of dependence can be
used to construct the local Gaussian spectral density f(w) that is presented in this
paper. A key feature of f,(w) is that it coincides with f(w) for Gaussian time se-
ries, which implies that f,(w) can be used to detect non-Gaussian traits in the time
series under investigation. In particular, if f(w) is flat, then peaks and troughs of
f.(w) can indicate nonlinear traits, which potentially might discover local periodic

phenomena that goes undetected in an ordinary spectral analysis.

investigate whether or not periodic structures are present in {Y,}

contains asymmetries and nonlinear dependencies.

1 Introduction

It is well known that stock returns behave in an asymmetric manner, i.e. that they, as noted
in e.g. Hong et al. (2007), ‘more often move with the market when the market goes down
than when it goes up’. An asymmetry in (Y; o Y;) can not be detected by the autocorrelation
~(h), which renders the corresponding spectral density f(w) an inadequate tool for this kind
of phenomenon. Several generalisations of f(w) have been developed based on the idea that
the second order moment (h) could be replaced with some other measure of dependence (to
be described later on), and this paper uses this approach to define a local Gaussian spectral
density f(w) based on the local Gaussian correlations p (h) from Tjgstheim and Hufthammer
(2013).

If a weakly stationary time series satisfies the additional requirement that the autocovariances
are absolutely summable, then the spectral density f(w) is the Fourier transform of {~(h)}
ie.

hez’

flw) = Zw(h) eIk (1.1)

heZ
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The inverse Fourier transform gives the relation y(h) = [ jﬁg (w) - e*™" dw, which for h = 0
expresses the variance as the integral of f(w). This enables a visual inspection of how much
different frequencies contribute to the variance,' and peaks and troughs in the graph of f(w)
can thus reveal information about periodic properties of the time series {Y,},_,.

The local Gaussian spectral density f,(w) introduced in this paper will be based on a nor-
malisation of {Y,},_,, which implies that the correlation p(h) equals the covariance y(h), and

references later on to f(w) will thus refer to the following rescaled version,

flw) = Zp(h)e'z’”w. (1.2)

heZ

The spectral density may be an inadequate tool when the time series under investigation
contains nonlinear features, like e.g. those present for GARCH-type models, where the terms
of {Y,},., are uncorrelated but not independent. However, f(w) gives a complete description
of Gaussian time series, which motivates the local Gaussian approach presented in this paper,
where the local Gaussian correlations p (h) are used to define the local Gaussian spectral
density f,(w). Note that this approach requires that {Y}},_,
requirement shared with quite a few of the existing global and local extensions of f(w), that

also must be strictly stationary, a

will be briefly reviewed below.

The higher order spectra (global) generalisations of f(w) was introduced by J. W. Tukey. The
bispectrum and trispectrum were the first generalisations of f(w), and these can be considered
as respectively a decomposition of skewness and kurtosis over the frequencies, see Brillinger
(1984, 1991); Tukey (1959). In general, the basic idea is to Fourier transform the higher order
moments or cumulants of (Yt h K) instead of the second order moments y(h).

These higher order generalisations of f(w) often produce formulas that are hard to estimate,
the resulting estimates can be tricky to visualise (e.g. complex-valued), and they can be hard
to interpret. The same problems may also occur for the other global and local generalisations
of f(w), and it is thus advisable to keep in mind the following quote from Akaike (1966) for
all the generalisations of f(w).

The results of analyses of ordinary spectra and cross-spectra can be understood
completely on the basis of linear transformation theory and they suggest the direc-
tion of development of models or theories about the phenomena under observation.
In contrast to this, higher order spectra seem to be still in want of a sufficiently
general theory which gives an overall understandability of them, and their physi-
cal meanings have been understood only where a proper model or theory existed
before the observation.

It is of interest to note that Brillinger (1965, p. 1372) for higher order spectra gave the fol-
lowing argument in favour of using higher order cumulants instead of higher order moments:
“The consideration of the cumulant in this [Gaussian] case is not liable to deceive one into be-
lieving that he has gained some information. In the non-Gaussian case the cumulant provides

I'This is related to the stochastic coefficients that occur when Y, is regressed on sines and cosines, i.e. when Y,
. 172 . . . .
isexpressedas Y, = [ _{ e dZ (w), where Z(w) is the right continuous orthogonal-increment processes

given by the Spectral Representation Theorem, see e.g. Brockwell and Davis (1986, Th. 4.8.2) for details.
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an indication of the non-Gaussianity.” This quote shows that it can be preferable to have a tool
that does not trigger any false alarms when the time series under investigation is Gaussian, and
this is a key property of the local Gaussian spectral density f,(w).

Alternative (global) generalisations of f(w) can be obtained by considering other dependence
measures &, based on the random variables Y, and Y

.+ 1t1s then possible to consider general
spectral densities of the form

W)=Y g, e (1.3)

heZ

As noted in (Van Hecke et al., 2017), generalisations of f(w) of the form given in eq. (1.3) have
been considered in Ahdesmiiki et al. (2005) (Kendall’s 7), Carcea and Serfling (2015) (distance
correlation) and Zhou (2012) (L-moments).

Hong (1999) introduced a generalised function generalisation of f(w), based on the charac-
teristic function. The idea is to transform {Y},_, into a u-indexed family of time series based
on the characteristic functions, i.e. {exp (iuY;)},_,, and then consider the bivariate function
o,(u,v) == Cov(exp (iuY;) ,exp (ivY,_,)). This function will be identical to zero for all u
and v if and only if Y, and Y,_, are independent, and it is thus possible for this tool to inves-
tigate nonlinear time series that are dependent but uncorrelated, like e.g. GARCH-type series.
The Fourier transform of o, (u, v) will exist under some mild regularity assumptions, and it is

then possible to define the generalised spectral density function of {Y,}

IGZ

(w, u, ) Z(I w,v) - eI, (1.4)

heZ

The generalised spectral density is in Hong (1999, 2000) used for hypotheses testing and tests
of serial dependence (for univariate time series), and recent work has extended the techniques
to the case of testing of multivariate time series, see e.g. Li et al. (2016), and a test for condi-
tional independence, see Wang and Hong (2017). This approach has in common with the local
Gaussian approach that it is distribution based, not moment based.

Many local spectral density approaches have been based on the Fourier transform of local
dependency measures. Some examples of local replacements for the autocovariances ~(h) can
e.g. be found in Dette et al. (2015), where different cross-covariance kernels are defined. In
particular, the Laplace cross-covariance kernel and copula cross-covariance kernel are defined
respectively as

V(2. 3,) = Cov(1{Y,,, <z}, 1{Y, <a,}), (z,,z,) € R?, (1.52)
¥, (7' 7,) = Cov(1{U,,, <7}, 1{U, < 7,}), (1,,7,) € (0,17, (1.5b)
where 1{-} is the indicator function and where knowledge of the marginal distribution G is
necessary in order to construct U, := G(Y,). Under the assumptions that {7, (z,,z,)},_, and
{7/ (7,,7,)},, are absolutely summable, Dette et al. (2015) define the Laplace and copula
spectral density kernels as the corresponding Fourier transformed entities. A rank based Laplace
periodogram kernel is also defined.
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These spectral density kernels are closely related to the concept of quantile regression, intro-
duced in Koenker and Bassett Jr (1978), see also Koenker (2005). Several other alternatives to
f(w) have been developed based on this concept, like e.g. the quantilogram from Linton and
Whang (2007), for which the interested reader might consult Han et al. (2016) for more details
and additional references. Quantile-based approaches can also be found in Li (2008, 2010a,b,c,
2012a,b, 2014)), and in Hagemann (2011). Note that not all of these approaches result in a local
tool of the form given in eq. (1.3), see e.g. the quantile periodogram from Li (2012c).

The local Gaussian approach to spectral analysis is based on the idea from eq. (1.3), with
the variation that ¢, will be a local measure of (K o K) that depends on a point v = (v,, v,),
where the coordinates v, and v, corresponds to quantiles of the time series under investigation.
The local measure used in this approach is the local Gaussian autocorrelations p,(h) from
Tjgstheim and Hufthammer (2013), which by construction coincide with the ordinary auto-
correlations p(h) for Gaussian time series. This implies that the local Gaussian generalisation
of f(w) by construction will coincide with f(w) for Gaussian time series. The local Gaussian
spectral density f,(w) can thus be used to detect non-Gaussianity in the time series under inves-
tigation. This enables an investigation of how different strata of the time series {Y,},_, interact,
and for points on the diagonal, i.e. v, = v,, it might then be possible to pick up local periodic
phenomena at different scales of the time series, and it could also be used to detect asymmetric
behaviour in the lower and upper tails of a time series.

An overview of the paper is as follows: Section 2 defines the local Gaussian spectral density
f.(w) more precisely and sets up the asymptotic theory for the estimators (the main bulk of the
technical details are covered in the appendices). The real and simulated examples in section 3
shows that estimates of f,(w) can be used to detect and investigate nonlinear structures in non-
Gaussian white noise, and in particular that f,(w) can detect local periodic phenomena that go
undetected in an ordinary spectral analysis. Note that the scripts needed for the reproduction
of these examples are contained in the R-package localgaussSpec,” where it in addition is
possible to use an interactive solution to see how adjustments of the input parameters (used in
the estimation algorithms) influence the estimates of f,(w). A discussion is given in section 4,
and section 5 presents conclusions.

2 Local Gaussian spectral densities

The local Gaussian correlation (LGC) was introduced in Tjgstheim and Hufthammer (2013),
with theory that showed how it could be used to estimate the local Gaussian autocorrelations
for a time series (see also Lacal and Tjgstheim (2017)), and with a comment that these local
Gaussian autocorrelations could be used to define a local Gaussian versions of the spectral
density from eq. (1.2).

The present section will give a brief summary of the local Gaussian autocorrelations, use
these to define the local Gaussian spectral density for strictly” stationary univariate time series
{Y,},.. and give estimators with a corresponding asymptotic theory.

2Usedevtools::install_github("LAJordanger/localgaussSpec") to install the package. See the doc-
umentation of the function LG_extract_scripts for further details.
3Strict stationarity is necessary in order for the machinery of the local Gaussian approximations to be feasible,

since Gaussian pdfs will be used to locally approximate the pdfs corresponding to the bivariate pairs (K hs K) .
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2.1 The local Gaussian correlations

The present investigation considers the original concept of the local Gaussian correlation that
was given in Tjgstheim and Hufthammer (2013), and it does in addition discuss some modi-
fications of the original definition that will be used later on. Details related to the estimation
regime, and asymptotic properties, can be found in appendix B.1.2. Note that other approaches
to the concept of local Gaussian correlation also have been investigated, cf. Berentsen et al.
(2017) for details.

2.1.1 Local Gaussian correlation, general version
The LGC-definition from Tjgstheim and Hufthammer (2013) will now be outlined for the case
of a bivariate random variable W = (W,, W,) with joint cdf G(w) and joint pdf g(w). For a
specified point v := (v,, v,), the main idea is to find the bivariate Gaussian distribution whose
density function best approximates g(w) in a neighbourhood of the point of interest. The LGC
will then be defined to be the correlation of this local Gaussian approximation.

For the purpose of this investigation, the vector containing the five parameters p,, 1, 7,, 0,
and p will be denoted by 8," and the bivariate Gaussian density function will be denoted 1 (w; 6),
ie.

210,054/ 1—p? 20703 (1-p?)

It is natural to require that the following equations are satisfied in order for ¢ (w; @) to be
considered a good approximation of g(w) in a neighbourhood of the point v,

[T2 wy— M 27 g, 0. wy,— M Wo— L (T2 Weo— L >
N I SSK LS A

i1/)('w; 0)

OT%Q(U) = dw,

o) = vwio), . 2 0 ' 0

(?Tulg(v) = %Qﬁ(’w;@) .

1

w=v

2.2)

i.e. g and ¢ should coincide at v and they should have coinciding tangent planes there.

It is easy to verify that a solution @ can be found for any point v where g(w) is smooth —
but these solutions are not unique: 1(w; @) and ¥(w;@') can have coinciding first order lin-
earisation around the point v, without @ being identical to 8'. It is possible to extend eq. (2.2)
to also include similar requirements for the second order partial derivatives, but the system of
equations will then in general have no solution.

To properly account for the higher order terms of ¢ (w; 6) at the point v, the approximation
method needs to include a neighbourhood around v. Applying the approach used when esti-
mating densities in Hjort and Jones (1996), one can consider a b — 0% limit of parameters 6,
that minimise the penalty function

0= / K, (w — v) [1)(w; 8) — g(w) log (1/(w; 8))] dw, 2.3)

where K, (w — v) is a kernel function with bandwidth b. As explained in (Hjort and Jones,
1996, Section 2.1), this can be interpreted as a locally weighted Kullback-Leibler distance be-
tween the targeted density g(w) and the approximating density ¢ (w; 8). An optimal parameter

“4The vector  is a function of the point v, but this will be suppressed in the notation.



36 Papers

configuration 8, for eq. (2.3) should solve the vector equation
/Kb(w —v) u(w; 0) [Y(w;0) — g(w)]dw = 0, 2.4

where u(w; 0) = 2 log (¢/(w; 6)) is the score function of the approximating density ¢’ (w; 6).
There will, under suitable assumptions, be a unique limiting solution of eq. (2.4), i.e.

6, = lim 6, (2.5)

b—0t

will be well-defined, and the p-part of the 6,-vector can be used to define a LGC at the point v.

Remark 2.1. In the special case where W is a bivariate normal distributions, i.e. when

2
W~ Ndul} 7 [ a; Ulffjpb 7 2.6)
/”Ll 0102p 02

then, for any point v and any bandwidth b, the parameters 8, that gives the optimal solution of
eq. (2.4) will be the parameters given in eq. (2.6). The limit 8, in eq. (2.5) will thus of course
also be these parameters, which implies that the LGC coincides with the global parameter p at
all points in the Gaussian case. The interested reader should consult Tjgstheim and Hufthammer
(2013, p. 33) for further details/remarks that motivates the use of the LGC.

2.1.2 Local Gaussian correlation, normalised version

The algorithm that estimates the LGC can run into problems if the data under investigation
contains outliers — i.e. the numerical convergence might not succeed for points v in the periph-
ery of the data. It is possible to counter this problem by removing the most extreme outliers,
but that approach might trigger other problems when used on time dependent observations. An
alternative strategy based upon normalisation will thus be applied instead.

The key observation is that the numerical estimation problem does not occur when the marginal
distributions are standard normal - which motivates an adjusted strategy similar to the copula-
concept from Sklar (1959). Sklar’s theorem gives the existence of a copula C'(u,, u,) such that
the joint cdf G(w) can be expressed as C(G, (w,), G,(w,)), with G,(w,) the marginal cdf cor-
responding to I¥,. This copula C' contains all the interdependence information between the two
marginal random variables 17/, and W, it will be unique when the two margins are continuous,
and it will then be invariant under strictly increasing transformations of the margins.” Under
this continuity assumption, the random variable W = (W,, W,) will have the same copula as
the transformed random variable Z = (&~ '(G,(W,)) , @ (G,(WV,))), where @ is the cdf of
the standard normal distribution — whose corresponding pdf as usual will be denoted by ¢.° This
transformed version of W has standard normal margins, so the LGC-estimation algorithm will
not run into numerical problems for this case — which motivates the following alternative ap-
proach to the definition of LGC: Instead of finding a Gaussian approximating of the pdf g(w)
(of the original random variable W) at a point v, find a Gaussian approximation of the pdf

SFor a proof of this statement, see e.g. Nelsen (2006, Theorem 2.4.3).
6See Berentsen et al. (2014b) for an approach where this is used to construct a canonical local Gaussian corre-
lation for the copula C'.
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g z) of the transformed random variable Z at a transformed point v,. Expressed relative to
the pdf c of the copula C, this means that the strategy in eq. (2.7b) will be used instead of the
strategy in eq. (2.7a).

g(w) = c(G,(w,), G, (w,)) g,(w,) g,(w,) approximate at v = (v,,v,) , (2.7a)
92(2) = c(2(2), ®(2,)) () 6(2,) approximate at v, = (®7'(G,(v,)), @7(G,(v,))) -
(2.7b)

The normalised version of the LGC will return values that differ from those obtained from
the general LGC-version introduced in section 2.1.1, but the two versions coincide when the
random variable W is bivariate Gaussian. The transformed random variable Z corresponding
to the W from eq. (2.6) will thenbe Z = (W, — p,) /o,, (W, — u,) /o,), which implies

es(( )

so the normalised LGC will thus also coincide with the global parameter p at all points.

2.1.3 Local Gaussian correlation, simplified normalised version

The numerical estimation of the normalised LGC, based on eq. (2.7b), avoids by construction
the numerical convergence problems that can occur for the estimates of the general version in
eq. (2.7a). The analysis of the convergence rate of the normalised LGC must take into account
that there is an additional normalise the margins step, but this does not affect the convergence
rate, see remark 2.7, page 10 for further details and references.

The convergence rate for the estimates is rather slow for the LGC cases discussed above (it

s v/n(b,b,)"), and that is due to the kernel function K, in eq. (2.3). Briefly summarised, the
5 x 5 covariance matrix of the estimate 517 will have the form V,7'W, V7", the presence of the
kernel K, means that the matrices V, and W, have rank one in the limit b — 0%, and this slows
down the convergence rate, cf. Tjgstheim and Hufthammer (2013, Th. 3) for the details.

The property that the limiting matrices have rank one does not pose a problem when only
one parameter is estimated,’ and the convergence rate would then be much faster (i.e. \/nb,b,).
Inspired by the fact that the transformed random variable Z have standard normal margins, it
has been introduced a simplified normalised version of the LGC where only the p-parameter
should be estimated when using the approximation approach from eq. (2.7b), i.e. the values of
I, [, are taken to be 0, whereas o7 and o7 are taken to be 1. This simplified approach has been
applied successfully with regard to density estimation® in Otneim and Tjgstheim (2016, 2017),
and it thus seems natural to also include this approach in this paper too.

The algorithm used to find the optimal value for the single parameter p follows the same recipe
as the one used when five parameters are present, so the theoretical framework is unchanged.
Moreover, from the discussion around eq. (2.8), it is clear that the simplified LGC version
also gives the correct answer when the random variable W itself is Gaussian. However, the
simplified LGC will in general deviate from the normalised LGC-version in section 2.1.2 —

"The matrices then becomes 1 x 1, so the singularity problems does not occur.
8Note that it is not the local Gaussian correlation that is the target of interest when this simplified approach is
used for density estimation, as will be discussed in more detail in appendix C.6.
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and in fact, it might be regions where none of the desired properties listed in eq. (2.2) holds
when the simplified version is used. The geometric intuition from the general case can thus not
be applied when working with the simplified approach, cf. appendix C.6 for a more detailed
discussion.

2.2 The local Gaussian spectral densities

An extension of eq. (1.2) can in principle be based on any of the three LGC that was encoun-
tered in sections 2.1.1 to 2.1.3, but (in order to avoid the aforementioned numerical convergence
problems) only the latter two of them will be considered here, i.e. the time series will be nor-
malised before local Gaussian autocorrelations are computed.

Definition 2.1. The local Gaussian spectral density (LGSD), at a point v = (v,,v,), for a
strictly stationary univariate time series {Y,},_, is constructed in the following manner.
(a) With G the univariate marginal cumulative distribution of {Y,},_,, and ® the cumulative

distribution of the standard normal distribution, define a normalised version {Z,},_, of
{K}zez by

{2,= (G}, 2.9)

t

t+h? t)’
a local Gaussian autocorrelation p,, (h) can be computed, where the p specifies if the

(b) For a given point v = (v,,v,) and for each lag h # 0 bivariate pair Z, , = (Z

correlations stems from a one or five parameter approximation of the bivariate marginal
density of Z,., at (v,,v,). The convention p, (0) = 1 is used when h = 0, since no bi-
variate density is present for this case.

(c) When ), ., }pv‘p(h)| < 00, the local Gaussian spectral density at the point v is de-
fined as

Fop@) =" py,(h) - e, (2.10)

h=—00

Remark 2.2. The requirement Y., |p,,(h)| < coin definition 2.1(c) implies that the concept
of local Gaussian spectral density in general might not be well defined for all stationary time
series {Y,} __ and all points v € R*.

teL

The following definition of time reversible time series, from Tong (1990, def. 4.6), is needed
in lemma 2.3(c).

Definition 2.2. A stationary time series {Y,},_, is time reversible if for every positive integer n

) and (Y—m thz e thn) have the

teEL
and every t,,t,,...,t, € Z, the vectors <Y;1, Y, ...V

t’ﬂ,

same joint distributions.

Lemma 2.3. The following properties holds for f, (w).
(a) f,,(w) coincides with f(w) for all v € R* when {Y,}
when {Y,},_, consists of i.i.d. observations.

7 Gaussian time series, and
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(b) The following holds when © = (v,,v,) is the diagonal reflection of v = (v,,v,);

Fop@) =1+ py () e 3" p () e, 2.11a)
h=1 h=1
L) = f,(w). (2.11b)

(c) When {Y,},_, is time reversible, then f, (w) is real valued for all v € R?, i.e.

f(w) =142 "p, (h) - cos(2rwh). (2.12)
h=1

(d) f,,(w)will in general be complex-valued, but it will always be real valued when the point
v lies on the diagonal, i.e. when v, = v,. Equation (2.12) will hold in this diagonal case
too.

Proof. Item (a) follows for the Gaussian case since the local Gaussian autocorrelations p,, (h)
by construction coincides with the ordinary (global) autocorrelations p(h) in the Gaussian case.
Similarly, when {Y,} _, consists of i.i.d. observations, then both local and global autocorrela-
tions will be 0 when h # 0, and the local and global spectra both becomes 1. Items (b) to (d) are
trivial consequences of the diagonal folding property from lemma C.1,i.e. p, ,(=h) = p,,(h),
and the definition of time reversibility, see appendices C.1 and C.2 for details. U

teEL

Remark 2.3. For general points v = (v,,v,), the complex valued result of f, (w) might be hard
to investigate and interpret — but, due to lemma 2.3(d), the investigation becomes simpler for
points on the diagonal.” The real valued results J.,(w) for v along the diagonal can be compared
with the result of the ordinary (global) spectral density f(w), as given in eq. (1.2), and this might
detect cases where the times series {Y}},_, deviates from being Gaussian. Furthermore, if the
global spectrum f(w) is flat, then any peaks and troughs of f, (w) might be interpreted as
indicators of e.g. periodicities at a local level. This implies that estimates of f, (w) might be
useful as an exploratory tool, an idea that will be pursued in section 3.

Remark 2.4. Note that the collection of local Gaussian autocorrelations { Pop(R) }}LEZ might not
be non-negative definite. Caution is thus advised if peaks and troughs of f, (w) are attempted
interpreted as they would have been if they had occurred for an ordinary (global) spectral den-

sity f(w). See the discussion in section 4 for further details.

2.3 Estimation

Theoretical and numerical estimates of the ordinary spectral density f(w) is typically investi-
gated by means of the fast Fourier transform (FFT) and techniques related to the periodogram.
This FFT-approach can not be used in the local case since there is no natural factorisation of
terms making up a local estimated covariance, but there does exist a pre-FFT approach for the
estimation of f(w), where a Fourier transform is taken of the estimated autocorrelations after

°A diagonal point corresponds to a situation where observations of the same ‘scale of magnitude’ are compared.
This can in particular be of interest for time series featuring an asymmetric behaviour, since a comparison of
the local Gaussian spectra at points corresponding to e.g. the 10% and 90% quantiles might (as seen in fig. 11)
reveal nonlinear structures which the ordinary spectral density f(w) fails to detect.
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they have been smoothed and truncated by means of some lag-window function — and the pre-
FFT approach can be adapted to deal with the estimates of the local Gaussian spectral densities.

Definition 2.4. For a sample {y,}_ of size n, an m-truncated estimate f"‘ (w) of £,,(w) are
constructed by means of the followmg procedure.

(a) Find an estimate G, of the marginal cumulative distribution function, and compute the

Zyins )} for h=1,...,m, and esti-

mate, both for the point v = (v,,v,) and its diagonal reﬂectlon U= (vz, vl) the local

Gaussian autocorrelations {p, (hlv,)}" and {p,,(h|s, )} , where the {b,}"_ is the

h=1
bandwidths used during the estimation of the local Gaussian autocorrelatlon for the dif-

pseudo-normalised observations {2 =o! (é (yt)) }n that corresponds to {y,}"
(b) Create the lag h pseudo-normalised pairs {(

ferent lags.
(c) Adjust eq. (2.11a) from lemma 2.3(b) with some lag-window function \,(h) to get the

estimate
[ (@) =14+ 3N (h) By, (hln) - e £ 3" (B) - 5, (hlb,) - e7*". (2.13)
h=1 h=1

The selection of bandwidth and truncation level is discussed in sections 4.1 and 4.2.
The following result is an analogue to eq. (2.12) of lemma 2.3(c)

Lemma 2.5. When it is assumed that the sample {y,}_, comes from a time reversible stochastic

process {Y,}, ., the m-truncated estimate f (W) can for all points v € R*? be written as

tez’
(W) =1+2- Z)\ Py (h]b,) - cos(2mwh). (2.14)

Moreover, eq. (2.14) will always hold when the point v lies on the diagonal, i.e. v, = v,.

Proof. This follows from items (c) and (d) of lemma 2.3. [

Remark 2.5. The estimated é in definition 2.4(b) can e.g. be the (rescaled) empirical cu-
mulative distribution function created from the sample {y,}" , or it could be based on some
logspline technique like the one implemented in Otneim and Tjgstheim (2016).

h1?

Remark 2.6. The bandwidths b, = (b,,,b,,) in definition 2.4(b) does not need to be equal for all
the lags h when an estimate f,j";(w) is computed. For the asymptotic investigation it is sufficient
to require that b,, and b,, approach zero at the same rate, i.e. that there exists b = (b,, b,) such
that b,, < b, for i = 1,2 and for all i (that is to say, limb,,/b, = 1).

Remark 2.7. The asymptotic theory for g, (h[b,), given that the required regularity conditions
are satisfied, follows from Otneim and Tjgstheim (2016); Tjgstheim and Hufthammer (2013).
The analysis in (Tjgstheim and Hufthammer, 2013) considered the general case with a p =5

n—h

parameter local Gaussian approximation at the point v for the lag A pairs { (y,,,.,v,) } . i.e. the

original observations {y, }/_, were used instead of the normalised observations {z, .= ®~' (G(y,))},_,

Since the cumulative density function G in general will be unknown, the present asymptotic

10



2.1 Nonlinear spectral analysis via the local Gaussian correlation 41

analysis must work with the pseudo-normalised observations {Z,}" , which makes it neces-

=10
sary to take into account the difference between the true normalised values z, and the esti-
mated pseudo-normalised values z,. The analysis in (Otneim and Tjgstheim, 2016) revealed
that G, (y,) approaches G/(y, ) at a faster rate than the rate of convergence for the estimated local
Gaussian correlation, so the convergence rate of g, (h|b,) will thus not be affected by the dis-
tinction between z, and Z,. The present analysis will not duplicate the arguments related to this
distinction, and the interested reader should consult (Otneim and Tjgstheim, 2016, Section 3)

for the details.

Remark 2.8. The bias-variance balance of the m-truncated estimates fm(w) of the ordinary
spectral density f(w) depends on the size of m relative to n (the size of the sample). The bias-
variance balance for the estimates fm (w) must in addition consider the size of m relative to
both n and the bandwidths {b, })" , i.e. the kernel function reduces the number of observations
that effectively contributes to the computauons of the estimates — and that number of effective
contributors can also depend on the location of the point v, i.e. whether the point v lies at
the center or in the periphery of the pseudo-normalised observations { (Z,,,,%,) } ", Confer
section 3.2 for further details.

Figure 1 shows the effect of the pseudo-normalisation on the dmbp example'® that will be
discussed in section 3.4. The uppermost part shows the original dmbp-series (of length 1974)
whereas the lowermost part shows the pseudo-normalised transformation of it, and it is clear
that the shape of the pseudo-normalised version resembles the shape of the original version.
The effect of the transformation is twofold; it removes the extreme outliers at the same time as
it spreads out the center of the distribution.

3 - original dmbp

o i i W 'W‘W”‘WW ol [,WW i rfifh ,,p i J oo

-1-

E pse‘:fm‘;wa'@“‘bp WM ﬂ J‘W{WM\MW ‘\‘4 T M\H W‘ m WM I {r% i W,\l* "”’?JM (,’

Figure 1: dmbp, original version and pseudo-normalised version.

2.4 Asymptotic theory for fm( )

This section presents asymptotic results for the cases where f " (w) are real-valued functions.
Note that both assumptions and results are stated relative to the orlginal observations instead of

19 This is the Deutschemark/British pound Exchange Rate (dmbp) data from Bollerslev and Ghysels (1996), which
is a common benchmark data set for GARCH-type models, and as such models are among the motivating
factors for the study of the local Gaussian spectral density, it seems natural to test the method on dmbp. The
data plotted here was found in the R-package rugarch, see Ghalanos (2015b), where the following description
was given: ‘The daily percentage nominal returns computed as 100 [In (P;) — In (P, — 1)], where P, is the
bilateral Deutschemark/British pound rate constructed from the corresponding U.S. dollar rates.’

11
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the pseudo-normalised observations. This simplification does not affect the final convergence
rates (see remark 2.7 for details) and it makes the analysis easier. The requirement that the
LGSD should be defined relative to the normalised observations is due to computational issues,
and the theoretical investigation shows that it could just as well have been phrased in terms of
the original observations.

2.4.1 A definition and an assumption for Y,

The assumption to be imposed on the univariate time series {Y,},_, requires components re-
lated to the bivariate lag h pairs that can be constructed from it, whereas the theoretical analysis
of fv";(w) also requires that (m + 1)-variate pairs are considered. Note that item (c) of defini-
tion 2.4 implies that it is sufficient to only consider positive values for h.

tEL

Definition 2.6. For a strictly stationary univariate time series {Y,},_,, withh > 1 and m > 2,

tez’

define bivariate and (m + 1)-variate time series as follows,

Y, = [Y..Y], Y..=[Y

t4+hy Lt t+m) )

Y], (2.15)

and let g,(y,) and g.(y.,) denote the respective probability density functions.

Remark 2.9. The densities g, are those needed when investigating the local Gaussian estimates
for the different lags h. The bivariate densities g, can all be obtained from the (m + 1) variate
density ¢.. by integrating out the m — 1 redundant marginals, which in particular implies that
if an (m + 1)-variate function 7}, (y.) : R™** — R! is the obvious extension''
function 7, (y,) : R* — R', then

of a bivariate

E[n,(Y,)] = B, (Y5,)],  forhe{l,....m}. (2.16)

With the notation from definition 2.6 the following assumption can now be imposed upon Y,.
Note that items (e) to (g) contains references to definitions that first are given in appendix B;
these definitions are related to the estimation of a penalty function — and they are quite technical
so it would impede the flow of the paper to include all the details here. For the present section,
it is sufficient to know that the random variables X7’ . in item (g) in essence are the result that
occurs when the product of the kernel function K.,(y, — v) and the score function of the local

Gaussian approximation ¢ (y, ) is evaluated iny, = Y,,,.

Assumption 2.1. The univariate process {Y,},_,
erties, with v = (v,,v,) in item (d) the point at which the estimate f;! (w) of f, (w) are to be

vlp

will be assumed to satisfy the following prop-

computed.
(@) {Y,},., is strictly stationary.

I'The obvious extension is to consider the function to be a constant with respect to all the new variables that are
introduced.

12



2.1 Nonlinear spectral analysis via the local Gaussian correlation 43

(b) {Y,},., is strongly mixing, with mixing coefficient () satisfying
Zj“ [a(j)] " < oo  forsomev >2anda >1—2/v. (2.17)

(c) Var(Y?) < 0.

The bivariate density functions g, (y,) corresponding to the lag h pairs Y,

... of the univariate
time series {Y,}

5> must satisfy the following requirements for a given point v = (v,,,).

(d) g,(y,) is differentiable at v, such that Taylor’s theorem can be used to write g, (y, ) as

gh(yh,) = gh('v) + gh,(v)/ ['yh, - 'U] + mh(yh,)/ [yh, - ’U] ) (2.18)

and lim ‘R =0,
L] i )

h

where gh(v) = [ai;hgh(yh) v’ g%gh(yh)

Y=
and the same requirement must also hold for the diagonally reflected point © = (v,,v,).

(e) There exists a bandwidth b,, such that there forevery 0 < b < b
0, ., of the penalty function ¢, , defined in eq. (B.4), page 43.

(f) The collection of bandwidths {b,,}
that

.0 18 @ unique minimiser

has a positive infimum, i.e. there exists a b, such

h€eZ

0<b, = }1122 b, (2.19)

which implies that this b, can be used simultaneously for all the lags.

(g) For X' . from definition B.11, page 51, the bivariate, trivariate and tetravariate density
functions must be such that the expectations E[ X7, |, E[| X} |"] and E[ X}, - X7 ] all
are finite.

Remark 2.10. These assumption upon Y, are extensions of those used for the LGC-case in Tjgs-
theim and Hufthammer (2013). Assumption 2.1(b) is a bit more general than the one used in
(Tjgstheim and Hufthammer, 2013), but that is not a problem since the arguments given there
trivially extends to the present case.

Remark 2.11. The a-mixing requirement in item (b) ensures that Y, , and Y, will be asymptot-
ically independent as h — oo, i.e. the bivariate density functions g, (y, ) will for large lags h
approach the product of the marginal densities, and the situation will thus stabilise when A is
large enough. This is in particular of importance for item (f), since it implies that it will be

possible to find a nonzero b, that works for all A.

Remark 2.12. The finiteness requirements in assumption 2.1(g) will be trivially satisfied if the
densities are bounded, i.e. they will then be consequences of properties of the kernel function
K, and the score function of the bivariate Gaussian distribution, see lemma C.6 for details.

13
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2.4.2 An assumption for Y, and the score function u(w;8) of ¢(w; 0)
The score function in eq. (2.4), i.e. u(w; @) = & log (¥(w;H)), plays a central role in the
local density-estimation approach of Hjort and Jones (1996), and it thus also plays a pivotal
role in the local Gaussian correlation theory developed in Tjgstheim and Hufthammer (2013).
In particular, the convergence rate that in Tjgstheim and Hufthammer (2013) is given for
év — 0, does implicitly require that u(v;8,) # 0 in order for the corresponding asymptotic
covariance matrix to be well defined. The investigation of (fv"; (w) — f;‘p(w)) in this paper
builds upon the asymptotic results from Tjgstheim and Hufthammer (2013), and the follow-
ing assumption must thus be satisfied in order for the given convergence rates and asymptotic
variances to be valid. Note that the index p as usual does show whether it is a one or a five
parametric local Gaussian approximation ¢, (w; 6,) that is considered, and that u (w; 8,) here
represent the corresponding score function.

Assumption 2.2. The collection of local Gaussian parameters {Bm(h)} at the point v for the
bivariate probability density functions g, (y, ), must all be such that

(@) u,(v;0,,(h)) # 0 for all finite h.

(b) limu,(v;0,,(h)) # 0.

Remark 2.13. 1t is, for a given time series Y, and a given point v, possible to inspect the p
equations inu, (w; @) = 0in order to see when items () and (b) of assumption 2.2 might fail to
hold true. Itis e.g. possible to find the parameter-configurations 6!, which solve u (v;0,) =0,
and then observe that assumption 2.2(a) will fail if 6], € {GP‘U(h)}. For the case of the
asymptotic requirement in item (b), the key observation is that the strong mixing requirement
from assumption 2.1(b) implies that Y, , and Y, will become independent when h — ooc.
Together with the assumption of normalised marginals, this implies that the limit of 8, (%)
always becomes [,, ft,,0,,0,,p] = [0,0, 1,1, 0], which means that assumption 2.2(b) will

fail for any point v that solves u, (v; [0,0,1,1,0]') = 0.

Remark 2.14. The one parameter local Gaussian approximation ¢, (w; 6, ) is less flexible than
the five parameter approximation ), (w; 6,), and this lack of flexibility can for some time se-
ries Y, imply that assumption 2.2(a) is bound to fail at some points v, see the discussion in
appendix C.6.2 for further details.

2.4.3 Assumptions for n, m and b

For simplicity, the present analysis will use the b = (b,,b,) introduced in remark 2.6, see
page 10, i.e. it will be assumed that the individual bandwidths b, for the different lags h ap-
proach zero at the same rate — and that it for the asymptotic investigation thus can be assumed
that the same bandwidth is used for all the lags. For the present case, where the lag h pairs are
of the form (Yt o Y;) it might also be natural to assume that b, and b, should approach zero at
the same rate, i.e. that b, < b,, but this will not be imposed from the outset.

Assumption 2.3. Let m :=m_ — oo be a sequence of integers denoting the number of lags
to include, and let b := b, — 0" be the bandwidths used when estimating the local Gaussian
correlations for the lags h = 1,..., m (based on n observations). Let b, and b, refer to the two
components of b, and let v, v and a be as introduced in assumption 2.1(b). Let s .= 5, — 00

be a sequence of integers such that s = 0(« /nb,b,/ m) , and let 7 be a positive constant. The

14



2.1 Nonlinear spectral analysis via the local Gaussian correlation 45

following requirements must be satisfied for these entities.'”

(a) logn/n(b,b,’ — 0, (only required for the case p = 5).
(b) nb,b,/m — .

(c) m*(b, vb,) — 0, where § =2V y(”a(ﬁ)llg.

(@ /nm/bb, s als—m+1) — co.

(e) m = o((nb,b,)***77*), for some A € (0,7/(2 + 57)).
) m = o(s).

Remark 2.15. Assumption 2.3(a) is needed for the case p = 5 in order for the asymptotic theory
from Tjgstheim and Hufthammer (2013) to be valid for the estimates p,,;(h).

Remark 2.16. See lemma C.3 for a verification of the internal consistency of the requirements
given in assumption 2.3.

2.5 Convergence theorems for f;"; (w)

Theorem 2.7 (v on diagonal, i.e. v, = v,). The local Gaussian spectral density f, (w) is a
real valued function when the point v lies on the diagonal. Furthermore; when the univariate
time series Y, satisfies assumptions 2.1 and 2.2, and n, m and b = (b,,b,) are as given in
assumption 2.3, then the following asymptotic results holds for the m-truncated estimate ﬁ’fp (w),

V)7 - () = f,(@)) =5 N(0,02,(w)) (2.20)

where the formula

m

2 H 1 2 2 ~2
oy, (W) = 4%13(10 - 2 A (h) - cos®(2mwh) - G, (h) (2.21)

relates the variance o2 (w) to the asymptotic variances 52, (h) of \/n(b,b,)"""*-(p, . (h[s,) — p,,,(h)).

v|p

Proof. The proof is given in appendix A.1. O
A similar result can be stated for time reversible stochastic processes.

Theorem 2.8 (Y, time reversible). The local Gaussian spectral density [, (w) is a real valued
function for all points v when Y, is time reversible (see definition 2.2, page 8). Furthermore
under assumptions 2.1 to 2.3, the same asymptotic results as stated in theorem 2.7 holds for the
m-truncated estimate fv”‘;(w)

Proof. Lemma 2.3(c) states that f, (w) is a real-valued function, and the proof of theorem 2.7
(see appendix A.1) can then be repeated without any modifications. O

12Notational convention: ‘V’ denotes the maximum of two numbers, whereas ‘A’ Denotes the minimum.
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Remark 2.17. The asymptotic normality results in theorems 2.7 and 2.8 does not easily enable
a computation of confidence intervals for the estimated LGSD. Thus, the confidence intervals
later on will either be estimated based on suitable quantiles obtained by repeated sampling from
a known distribution, or they will be based on bootstrapping techniques for those cases where
real data has been investigated. Confer Terésvirta et al. (2010, ch. 7.2.5 and 7.2.6) for further
details with regard to the need for bootstrapping in such situations.

Remark 2.18. The asymptotic result for f;rp(w) complex-valued is given in appendix A.2, where

it can be seen that |/n(b,b,)*"""* /m - (E"j(w) -/ w(w)) then asymptotically approaches a
complex-valued normal distribution instead of a real-valued one.

3 Examples and possible interpretations

This section will investigate if the m-truncated estimates f;rp(w) might have a potential as an
exploratory tool. It will be verified that it does behave as expected for the cases where it is
known what the result should be (i.e. Gaussian time series), that it can detect the presence of
local structures (including periodicities) in a constructed example, and finally, that it enables a
visual aid to see how good a GARCH-type model fitted to the dmbp-data'® seems to match the
result from the data themselves. Note that the discussion of some of the technical details are
postponed to section 4.

Remark 3.1. All the simulated time series investigated in this section have the same length as the
dmbp-series, i.e. they all have length 1974. This common length seems like a natural restriction
to apply for this first investigation of E]"p(w) as an exploratory tool, since different lengths
otherwise could be an explanation for any observed differences. The estimation machinery
does produce similar results for shorter time series too, but it remains to be investigated how
long a time series ought to be in order to avoid that small sample variation distorts the signal
of any local structures that might be present.

Remark 3.2. The same reasoning as in remark 3.1 motivates that the configuration of the input
parameters will be kept the same for the different cases to be investigated, see section 3.1 for
details about the selected values.

v|p
with the corresponding pseudo-normal observations {Z,
of the marginal cumulative density function G is needed. The present analysis has used the

Remark 3.3. The initial step of the computation of 7 (w) is to replace the observations {y,}"

n

cf. definition 2.4, i.e. an estimate

t=1>

rescaled empirical cumulative density function @ for this purpose, but the computations could
also have been based on a logspline-estimate of GG, see remark 2.5. For the time series in-
vestigated in this section, a preliminary investigation indicated that the two normalisation pro-

~

cedures created strikingly similar estimates of f (w), so the computationally faster approach

v|p

based on the rescaled empirical cumulative density-function has been applied for the present
investigation.

Remark 3.4. The estimation of f (w) does also include the selection of p, i.e. whether a

v|p

5-parameter or a 1-parameter local Gaussian approximation should be used. As noted in ap-
pendix C.6, the 1-parameter local Gaussian approximation might be useful when estimating

13See footnote 10 (page 11) for a description of the dmbp-data.
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 47

densities, but the estimated parameters p,,,(h) might not give a good indicator of the local
dependency-structure of the targeted distribution. The 5-parameter estimates p,, (%) have thus
been selected for all of the plots, with the sole exception of fig. 14 where two plots based on
P, (h) have been included to emphasise why it is best to avoid them in this context.

Remark 3.5. The pointwise confidence bands"* shown in the plots later on are all based upon
R = 100 replicates. Repeated independent samples from the known model was used to con-
struct the confidence bands in section 3.3, whereas block-bootstrap was used for the real data
example in section 3.4. The lower and upper limits of the pointwise confidence bands are based
on the 0.05 and 0.95 quantiles of the resulting collection of estimated local Gaussian spectral
densities (truncated at lag m), and thus gives an estimated 90% pointwise confidence band
for f1 (w).

3.1 Setting the input parameters

Several input parameters must be selected before an estimate of ﬁrp(w) can be obtained. The
main parameters that must be taken into account are listed below, with the values that will
be used for the examples later on. A further discussion of some of these items are given in
section 4.

1. v, the points to investigate, will for the present investigation be diagonal points whose
coordinates corresponds to the 10%, 50% and 90% percentiles of the standard normal
distribution, i.e. the values are -1.28, 0 and 1.28. Information about the point of inves-
tigation is contained in the upper right corner of the relevant plots, where it is marked
as 10%: : 10%, and so on. The corresponding coordinates are (—1.28, —1.28), (0,0) and
(1.28,1.28), and these will often be referred to as lower tail, center and upper tail when
discussed in the text.

2. w, the frequencies to investigate. Values between 0 and %

3. b= (b,,b,), the bandwidth-vector to be used when computing the local Gaussian au-
tocorrelations. Most of the plots shown in this section have used b = (.5,.5), with the
exception of fig. 6, where plots basedon b = (.75,.75) and b = (1, 1) have been included
for comparison.

4. m, the truncation level, i.e. the number of lags to include in the estimate of ]?Jl";(w) The
value m = 10 has been used in this investigation, and this number is by default given in
the upper left corner of the relevant plots.

5. A, (h), the weighting function to be used for the smoothing of the different lags. The
Tukey-Hanning lag-window kernel has been used for all the present examples, i.e.

1o +cos(m-2)) |n<m,

A (h) = "
) {0 |h] > m.

Remark 3.6. The R-package localgaussSpec can be used for the estimation of fm (w) for a

vlp
16

wide combination of alternatives for the parameters, ® and it allows an integrated interactive

14The pointwise confidence band gives for each frequency w a confidence interval for the value of for(w).

151t is natural to require b, = b, since both of the components in the lag h pseudo-normalised pairs comes from
the same univariate time series.

16See footnote 2 (page 4) for details about installation of the 1localgaussSpec-package.
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investigation of the results by means of a shiny-application.!” Note that the R-package contains
all the scripts needed for the exact recreation of the plots included in this section.

Remark 3.7. The R-package localgauss, see Berentsen et al. (2014a), was used for the esti-
mation of the local Gaussian auto-correlations for the p = 5 case. These estimates are returned
with an indicator (named ef1ag) that reveals whether or not the estimation algorithm converged
numerically to the estimate, and this numerical convergence-information has then been added
to the relevant plots in their lower left corner. In particular, ‘NC = 0K’ will be used to show
that all the required estimates had a successful numerical convergence. Contrary, ‘NC = FAIL’
will represent that problems did occur during the estimation algorithm. It should be noted that
convergence-problems hardly occurs when the computations are based on pseudo-normalised
observations.

Remark 3.8. It has to be admitted upfront that there is an unresolved issue with regard to the
selection of the blocklength for the bootstrapping of the dmbp-example shown in fig. 11, see
the discussion in section 4 for further details.

3.2 Estimation aspects for the given parameter configuration

The estimation of ﬁ%(w) for a point v = (v,, v,) that lies on the diagonal, i.e. v, = v,, will be
based on the estimates of p,,(h) for h = 1,...,m. Itis thus of interest to investigate how the
estimates p,, ;(h) depends on the parameter-configuration given in section 3.1.

First of all, note that the combination of point v and bandwidth b influences how many of
the h-lagged pairs that effectively contributes to the computation of p,, (/). This is shown in
fig. 2 where the pseudo-normalised dmbp-data (of length 1974) has been used as an example.
In the plot of the pseudo-normalised time series, the three horizontal dashed lines represent the
levels which corresponds to the coordinates of the three points v, whereas the horizontal strips
centered at those lines shows which observations that lies within a distance of b = 0.5 from the
respective lines. The three plots at the bottom shows the corresponding 1-lagged pairs, each
with a bandwidth-square (of width 2b) centered at one of the selected points v.

Remark 3.9. In fig. 2, the bandwidth-strip at the center of the trajectory plot contains 756 obser-
vations, whereas the two other strips both contains 355 observations. Note that the bandwidth-
strips for the tails must contain the same number of observations due to the symmetry enforced
by the pseudo-normalisation, and furthermore note that all time series of this particular length
will end up with pseudo-normalised trajectories that (for the given combination of points v and
bandwidth b) must have the exact same number of observations inside of their bandwidth-strips
as those encountered here.

~

Remark 3.10. In order for an h-lagged pseudo-normalised pair (zL o

lag h bandwidth-square (centered at a diagonal point v), it is necessary that both Z,
inside the corresponding bandwidth-strip. For the case i = 1, shown at the bottom of fig. 2,
the number of points inside the three bandwidth-squares thus counts how many neighbouring
pseudo-normalised observations that occurred in the respective bandwidth-strips. The number
or observations captured in the three h = 1 cases are respectively 75, 359 and 66, and several
comments can be based on these numbers. First of all, these numbers indicates that there might

Z,) to occur within a
and Z, lie

17 See Chang et al. (2017) for details about shiny.
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pseduo—normal dmbp ‘
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Figure 2: dmbp (pseudo-normalised version), levels and bandwidth-bands (top) and lag I
bandwidth-squares (bottom).

be an asymmetry between the lower and upper tails of the dmbp-data. Furthermore, as the bias-

~

variance properties of the estimates (%) depends on the number of points that effectively
contributes during the computation, it is clear that the variance will increase for points v that
lie farther out in the tails. The selection of which tail-points to investigate must thus take into

account the number of available observations for the lags to be included.

Remark 3.11. An important detail with regard to the estimation of f, (w) is the selection of
the truncation level m, since that value (in addition to the value of the bandwidth b) influences
the bias-variance properties of the estimate :’l';(w) It would be preferable if some data driven
method could be used to identify an optimal range of values within which m should lie, or at
least have some rule of thumb that could be used during an investigation. An initial approach
might be to apply some existing rule of thumb used for the selection of m for the m-truncated
estimates of the ordinary spectral density f(w), but it remains to be investigated whether or not

that would give a reasonable truncation level when estimating f, .(w).

Remark 3.12. If the truncation level m is too large, the interconnection between m and b could
create a situation (for points v in the periphery of the data) where the number of lag h pseudo-
normalised observations used to estimate p,, . (/) might become too small to give a reasonable
estimate. It seems likely that it will be a difficult task to construct a general selection method for
the truncation level m, but it is not hard to investigate (before any estimates are produced) how
many pseudo-normalised lag h pairs that for a given combination of h, v and b lies inside of the
corresponding bandwidth-square. For the dmbp-example it can e.g. be noted that the number
of lag h pseudo-normalised pairs that occurs inside a given bandwidth-square will fluctuate a
bit as h increases, but that it obviously must decrease as i grows larger (since the total number
of lag h pairs decreases linearly). The numbers of such pseudo-normalised pairs that occurs
within the bandwidth-squares for the h = 200 version of fig. 2 are respectively 70, 263 and 63,
which for this particular case does not seem to represent a drastic decrease in the number of
pseudo-normalised observations that are available in the tails. This does of course not imply

19



50 Papers

that an estimate of f, ;(w) based on a truncation level of m = 200 will necessarily make sense
in the dmbp-case (for the present points of interest), but it could be used as an indicator that a
higher truncation level could have been applied than the one used later on.

Figure 3 shows how p,, . (h) varies for the three points of interest (when b = (0.5,0.5)). Red
dotted lines shows the truncation level m = 10 (to be used later on), in order to emphasise
which estimates of p,, (/) that will contribute to the estimation of /?v‘” (w). This plot shows that
there is a clear distinction between the center and the two tails. The p, (%) tends to fluctuate
around O at the center, which implies that the corresponding estimated spectral density fjl"s(w)
most likely will be rather flat and close to 1. For the two tails, it seems natural to assumme
that some long-range dependency must be present, and one might also suspect that there is an
asymmetry between the two tails.
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Figure 3: dmbp-data, p,,(h) for b = 1,...,200 (for the three points of interest).

The cumulative sums of the autocorrelations from fig. 3, are presented in fig. 4, and once more
the plot indicates an asymmetry between the two tails. Moreover, since a long initial sequence
of positive values (a bit larger than zero) for p, , (h) automatically implies that the m-truncated
estimated spectral density :j“(w) must have a peak for the frequency w = 0, it follows from
fig. 4 that the local Gaussian spectral densities at the tail-points must have such peaks at w = 0.

These details are easier to see in fig. 11, page 29, where :’”‘5(w) for the dmbp-data are presented.
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Figure 4: dmbp-data, cumulative sum of local Gaussian auto-correlations.

3.3 Some simulations
This section will estimate the local Gaussian spectral densities [, ;(w) for simulated data. It
is known from lemma 2.3(a) that f, . (w) coincides with the ordinary (global) spectral density
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 51

f(w) when the time series under investigation either is i.i.d. or Gaussian. This can be used
to test the sanity of the estimation algorithm, since repeated estimates based on independent
realisations from these models should be distributed around the expected value if the algorithm
works as intended.

The strategy used to create the plots for the simulated data works as follows: First draw a
given number of independent replicates from the specified model, and compute :'l’;(w) and
fm(w) for each of the replicates. Then extract the median of these estimates to get estimates
of the (m-truncations of the) true values, and select suitable upper and lower percentiles of the
estimates to produce an estimate of the pointwise confidence bands. Finally, create plots that
contains estimates and pointwise confidence bands for the m-truncated versions of f, . (w) and
f(w), see the definition below.

Definition 3.1. The m-truncated versions [ (w) and f™(w) of f, ,(w) and f(w), for a specified
weighting function \ (h), is defined by means of

m m

() =14 Y A (R) - () - e N (B) - p, (B) e (3.1a)
h=1 h=1
Frw) = > A(h) - p(h) - e, (3.1b)
h=—m

3.3.1 Gaussian white noise

Figure 5 shows the result when the estimation procedure is used on 100 independent samples
of length 1974 from a standard normal distribution N(0, 1). The computations are based on the
bandwidth b = (0.5, 0.5), and the points (on the diagonal) corresponds to the 0.1, 0.5 and 0.9
quantiles of the standard normal distribution. The top left panel shows the pseudo-normalised
version of the first time series that was sampled from the model, with dashed brown lines at
the levels that corresponds to the above mentioned points. The three other panels contains
information about the m-truncated ordinary spectral density f™(w) (red part, the same for all
the plots) and the m-truncated local Gaussian spectral densities [, (w) for the three points under
investigation (blue part). Information about the truncation level and the points are printed at
the top of each plot.
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Figure 5: i.i.d. Gaussian white noise.
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It can be seen from fig. 5 that the medians of the estimates (the red and blue dashed lines) are
good estimates of f(w) and f;7: (w) (the m-truncations of the true values), which in this case in
fact coincides with f(w) and f, ;(w), i.e. it is known that the true values are identical to 1 both
for the local and global case. Observe that the estimated 90% pointwise confidence bands are
wider for the local Gaussian spectral densities, which is as expected since the bandwidth used
in the estimation of the local Gaussian autocorrelations reduces the number of observations
that effectively contributes to the estimated values, and thus makes the estimates more prone to
small-sample variation. Note also that the confidence bands are wider in the tails, which is a
natural consequence of the reduced number of points in those region, see the discussion related
to fig. 2.

Remark 3.13. The estimation procedure gave good estimates of the true values f(w) and f, . (w)
in the simple example of fig. 5, but it is important to keep in mind that these plots actually shows
estimates of f™(w) and f7(w). It might be necessary to apply a (much) higher truncation level
before f™(w) and f;7.(w) gives decent approximations of the true values f(w) and f, (w). It
thus seems preferable to estimate :T(w) for a range of possible truncation levels m, and then
check if the shape of the estimates for different truncations share the same properties with regard
to the position of any peaks and troughs.

3.3.2 Some trigonometric examples

The Gaussian white noise example in fig. 5 shows that the estimated local Gaussian spectral
density behaved in the anticipated manner for that simple case, but it is of interest to see if
the result looks reasonable for other examples too. However, beyond the realm of Gaussian
time series, it is not known what the true value for the local Gaussian spectral density actually
should be — which poses a problem for such an investigation. This section will thus construct a
local trigonometric time series for which it at least can be reasonably argued what the expected
outcome should be for some specially designated points v (given a suitable bandwidth b). These
artificial time series will in in general not satisfy the requirements needed for the asymptotic
theory (both in the global and local case) to hold true, but they can still be used to investigate if
an exploratory tool based on the local Gaussian spectral density might reveal periodic properties
that the ordinary spectral density fails to detect.

As a prerequisite (and a reference) for the investigation of the local trigonometric time series,
it is necessary to first investigate the result based on independent samples from a time series
of the form Y, = cos(2rat + ¢) + w,, where w, is Gaussian white noise with mean zero and
standard deviation o, and where it in addition is such that « is fixed for all the replicates whereas
the phase-adjustment ¢ is randomly generated for each individual replicate. A realisation with
a = 0.302 and o = 0.75 is shown in fig. 6, where the frequency a has been indicated with a
vertical line in order to show that both the local and global approach in this case have a peak
at the expected position. The plots are based on 100 samples of length 1974, and shows 90%
pointwise confidence intervals. Some useful remarks can be based on fig. 6, before the local
trigonometric case is defined and investigated.

Remark 3.14. All the plots in fig. 6 shows the same point in the lower tail, but they differ with
regard to the bandwidths that have been used. In particular, the upper right plot is based on the
bandwidth b = (.5, .5) (the bandwidth used in all the other examples), whereas the two plots at
the bottom shows the situation for the bandwidths b = (.75, .75) and b = (1, 1), respectively at
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cosine and i.i.d. Gaussian noise 4- m=10 A, 10% :: 10%
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Figure 6: Single cosine and i.i.d. white noise, same point, bandwidths based on 0.5, 0.75 and 1.

the left and right. In this case, the widths of the pointwise confidence-bands are influenced by
the selected bandwidths, but the overall shape seems to be similar. This feature is also present
for the other examples that have been investigated.

Remark 3.15. Based on the width of the pointwise confidence bands in fig. 6, one might wonder
if the bandwidth b = (.5,.5) is too small, and that it perhaps would be better to use a larger
bandwidth. However, it is important to keep in mind that the bandwidth is used in a kernel
function K, that estimates p,,, (%), and when the bandwidth grows this estimate will converge
to the estimate of the ordinary global autocorrelation — which would make it impossible to
detect any local effects.

Remark 3.16. For the example in fig. 6, it will be a large difference in the plots when more lags
are included, i.e. the peaks will grow taller and narrower. However, the position of the peaks
will not move, and that indicates that these plots (even for rather low truncation values) might
reveal some properties of the underlying structure. Again, this feature is shared with the other
examples that have been investigated.

Remark 3.17. The local Gaussian spectral densities in fig. 6 goes below zero for low frequen-
cies, a feature that is not entirely unexpected as { pv‘s(h)}hez, the collection of local Gaussian
autocorrelations, may not be a non-negative definite function. In fact, based on the observation
that the estimates of f;‘(w) have peaks that are taller and wider than those of f™(w), it is as
expected that these estimates might need to have negative values somewhere. The reason for
this is that all the spectral densities (global, local and m-truncated) by construction necessarily
must integrate to one over the interval (— %, %} The higher and wider peaks of the estimates for
fv";(w) thus requires that it has to lie below the estimates of f'“ (w) in some other region, and
if necessarily it must attain negative values somewhere. The interesting details in the plots are
thus the position of the peaks of :"'g(w), and regions with negative values should not in general
be considered a too troublesome feature.

The local trigonometric case: The next case to be investigated is an artificially constructed
model where different local cosines are used to create a process close to white noise, see the

top-panel of fig. 7 for a realisation. The basic recipe for these time series use the following

simple principle: For a given r > 2, select a collection of different base levels (L,,...,L,)
at the y-axis, a collection of amplitudes (A,, ..., A.), a collection of frequencies («, ..., «,)
and a collection of phase-adjustments (¢,,...,¢, ). Finally, assign a probability p, to each
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i=1,...,r, such that 22:1 p, = 1. In order to allow more randomness into the sample, it
is also possible to specify an additional amplitude adjustment (A’,..., A’). The amplitude
will, for each ¢, be selected uniformly from the interval spanned by A, and A; when both are
specified, and this uniformly random amplitude function will then be denoted A,(¢). (Note that
A,(t) = A, if A, is unspecified.)

The preceding ingredients enables the definition of the following functions,

C.(t)=L,+ A,(t) - cos (2ma,t + ¢,), i=1,...,m (3.2)

from which a stochastic variable Y, can be created by means of the probabilities (p,,...,p,),
i.e. let N, be a random variable that with probability p, takes the value 7, and define

Y =) C(t) - 1{N, = i}, (3.3)
=1

where the indicator function 1{} ensures that only one of the C',(¢) contribute at a given value .
Note that it is assumed that the phases ¢, are uniformly drawn (one time for each realisation)
from the interval between O and 27, and that it moreover also is assumed that the stochastic
processes ¢,, A,(t) and N, are independent of each other. Based on this, the autocovariance of
Y.,
combination of input parameters that returns a Y,-process that looks like white noise.

and Y, can be given as a function of L, and p,, from which it then is fairly easy to select a

The time series presented here has = 4 components with base levels L, in (-2, —1,0, 1),
amplitude-functions A, (¢) defined by A, in (1.0,0.5,0.3,0.5) and A’ in (0.5,0.2,0.2,0.6), and
frequencies «, in (0.267,0.091, 0.431, 0.270). For this case the probabilities p, in (0.05, 0.28, 0.33, 0.33)
was used to sample'® which component to include in Y.

Figure 7 shows a simplified excerpt of length 100 from one realisation of Y,, where A, (t) = A,
in order to emphasise which one of underlying ‘hidden’ components C.(t) (shown as dotted
curves) that was selected in this case (the phase-adjustments ¢, in this particular realisation
are (0.52,2.57, 3.24, 2.49)). Note that the amplitudes A, for this example was selected to give
a minimal level of overlap between the ranges of the functions C,(¢). The center panel of
fig. 7 shows an estimate of the m-truncated (global) spectral density f™(w), based on 100
independent samples of length 1974 and with a 90% pointwise confidence interval that shows
that it is viable to claim that this particular process behaves almost like white noise. Note that
the vertical lines in the center panel shows the frequencies ¢, that was used in eq. (3.2).

The bottom panel of fig. 7 is the one of major interest for the present discussion, i.e. it is the
one from which it is possible to provide an explanation for the expected shape of the local Gaus-
sian spectral density, at some particularly designated points v (given a suitable bandwidth b).
First of all, the bottom panel shows one of the cosines from the top panel, the red circles repre-
sents the points from the top panel that happened to lie on this particular cosine — and the blue
crosses represents all the remaining points (at integer valued times ¢) of the cosine. Recall that
these points are from the simplified realisation where A,(¢) = A,, and that the actual values thus
would be distorted a bit due to additional randomisation from the amplitude adjustments A;.

18The printed probabilities might not add to one! This is due to the fact that these values was rounded in R before
they were included in this document by the means of the R-package knitr, see (Xie, 2015, 2016) for details
about dynamic documents.
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21 Time series based on several cosines
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Figure 7: Top: Short excerpt from artifical example based on hidden trigonometric components.
Center: Estimated (truncated) global spectral density (hidden frequencies indicated
with vertical lines). Bottom: Local cosine showing the detected points at the local
level centered at -1.

The red circles can be considered as a randomly selected collection of points from a time
series like the one investigated in fig. 6, and the main point of interest is that it (for a sufficiently
long time series, and a sufficiently large bandwidth b) will be the case that the estimated local
Gaussian auto-correlations based on this scarce subset might be quite close to the estimates
obtained if all the points had been available. The rationale for this claim is related to the way
that the local Gaussian auto-correlation at lag h (at a given point v) is computed from the sets
of bivariate points (K o Y/,)' In particular: It might not have a detrimental effect upon the
resulting estimate if some of these lag h pairs are removed at random, as long as the remaining
number of pairs is large enough. Based on this idea, it can thus be argued that the local Gaussian
spectral density estimated from the collection of red points should be fairly close to the situation
shown in fig. 6, at least if the time series under investigation is sufficiently long.

Given this heuristic argument, and the observation that the input parameters used in eq. (3.3)
gives time series whose pseudo-normalised traces will have their 10%-, 50%- and 90%-quantiles
approximately corresponding to the original levels L, in (—1,0, 1), it can be postulated that
the estimated local Gaussian spectral densities at the designated points 10%: : 10%, 50%: : 507
and 90%: :90%, all should resemble fig. 6 — with peaks at the respective frequencies «; in
(0.091,0.431,0.270).

The local investigation by means of ﬁl(w) is presented in fig. 8, as usual based on 100 in-
dependent samples of length 1974, a bandwidth b = (0.5,0.5) and showing 90% pointwise
confidence bands. This shows that an exploratory tool based on the (m-truncated) local Gaus-
sian spectral density indeed is capable of detecting the expected peaks at the designated points
mentioned in the preceding discussion. In particular, f;r (w) picks up different peaks at differ-
ent points, and these peaks changes quite a bit from the lower tail to the upper tail.
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Remark 3.18. It should be noted that this simple example was created with a combination of
L,, A, and p, that gave peaks approximately at the three points investigated in this section, and
that the plots for other points might vary quite a bit. It is thus of importance to investigate a
range of points and check if/how the shape of f;f(w) changes as the point varies from the lower
tail to the upper tail. Note also that the rather low value for p, implies that the C|(t) seems
to go undetected. An investigation of the local behaviour for this component would require a
point at a lower quantile than the present value for the lower tail, and it seems likely that an
investigation at such a point might run into problems due to a scarcity of observations in the
vicinity of the point.
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Figure 8: Artifical example, hidden trigonometric components.

3.3.3 Beware of global structures

It is important to keep in mind that a comparison of the local Gaussian spectral density f, ;(w)
and the ordinary spectral density f(w) can reveal deviations from the property of the time
series Y, being Gaussian — and for time series whose ordinary (global) spectrum looks like
white noise, this can be interpreted as a detection of nonlinear traits in the time series under
investigation.

For time series with a non-flat global spectrum, it might not be a good idea to automatically
consider a difference between [, (w) and f(w) as a sign of nonlinear traits, as shown in fig. 9
where a more extreme version of the case investigated in fig. 6 are presented. In this case the
setup is similar to the one from fig. 6, i.e. the plots are based on 100 samples of length 1974
from a model of the form Y, = cos(2mat 4+ ¢) + w,, where o = 0.302 (as before), whereas the
standard deviation of the Gaussian white noise w, has been reduced to ¢ = 0.05.

The low value of the standard deviation o implies that samples from this time model have a
very clear periodic behaviour, as can be seen from the plots in fig. 9, where the 90% confidence
intervals are almost indistinguishable from the mean of the estimates. This clear periodicity is
also evident from the trace shown in the upper left panel of fig. 9, where the 100 first pseudo-
normalised observations of one of the samples are presented.

The main detail of interest in fig. 9 is the clear deviation between the local and global spec-
tra, as seen for the points 10:%: :10% and 50:%: : 50% at the truncation level m = 10 and for
10:%::10% at m = 20. Figure 9 reveals the importance of including both the local and global
spectra in the investigation, and it shows that caution should be exercised when trying to in-
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Figure 9: Pseudo-normalised single cosine and a tiny bit of noise.

terpret a difference between local and global spectra for a time series with a non-flat global
spectral density.

It might be natural (for such cases) to proceed with an approach where some model is fitted
to the data, preferably one that gives residuals that (globally) behaves like white noise, and then
perform a new local Gaussian analysis upon the residuals. For the present case of investigation,
that could in principle detect local information hidden in the white noise that was added on top
of the trigonometric function.

3.3.4 A GARCH-type model

The next example is a GARCH-type model, more precisely an asymmetric power ARCH-model
(apARCH) of order (2, 3), with parameters based on a fitting to the dmbp-data. (The R-package
rugarch, Ghalanos (2015b) was used to find the parameters of several GARCH-models, and
the asymmetric power ARCH model with the best fit was then selected.) The apARCH(p, ¢)
model was introduced in Ding et al. (1993), were it was given as

t tot) €, ~ N(07 ]-) ) (3421)

q
—v6.) +> Bsi,  where (3.4b)
j=1

a,>0,6>0, «a>0i=1...,p, 1<y <li=1....p, B,20,j=1...,4q,
(3.4¢)

but the apARCH(2, 3)-model used in this example is a bit more complicated than the one from
(Ding et al., 1993), see Ghalanos (2015a, sec. 2.2.5), for the details.

Figure 10 shows the result from a local Gaussian investigation of the above mentioned apARCH-
model, as usual showing 90% pointwise confidence bands constructed from 100 independent
samples of length 1974, and with a bandwidth b = (0.5, 0.5). The m-truncated ordinary global
spectral density f™(w) of a GARCH-type model like the one investigated here is known to be 1
(since p(h) = 0 when h # 0), and fig. 10 shows that the estimate of f™(w) indeed is close to 1.
These plots do in addition indicate that the estimated f:(w) differs a lot from f™(w) in the
tails, but not in the center. The question now is whether or not the shape of these (m-truncated)
local Gaussian spectral densities might reveal anything about the behaviour of the time series
at the levels corresponding to the points.
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Figure 10: GARCH-type model, based on dmbp.

For the lower and upper tails, the present example seems to indicate a symmetric situation,
and it seems to be ample reason to claim that the local values f;. (w) for low frequencies are
significantly different from the global values f™(w) when the pointwise confidence bands are
taken into account.

It is clear from lemma 2.5 that :’;;(0) =1+2-3" A (h)-p,;(h), so the peaks observed
at the lower and upper tails thus reveals that the first batch of estimated local Gaussian auto-
correlations consists of a sequence of positive values — which indicates that long range depen-
dencies might be present. This impression is strengthened when plots with a higher truncation
level is considered, as the peak at the frequency w = 0 continues to grow. Compare fig. 3
to see the situation for the estimated local Gaussian autocorrelations p,, . (%) for the dmbp-data,
upon which the parameters of the apARCH-model was based. Furthermore, the fact that ;7. (w)
seems to be very close to 1 at the center indicates that the estimated local Gaussian autocorrela-
tions p, ;(h) at the center fluctuates around 0, which again is in agreement with the impression
fig. 3 gives with regard to the dmbp-data at this point.

3.4 Real data

The data to be used in the present section will be the Bollerslev-Ghysel benchmark data set
(dmbp), see footnote 10 (page 11) for details. A plot of the pseudo-normalised dmbp-data was
given in fig. 2, and the estimates p, () was investigated in fig. 3. The apARCH(2, 3)-model
used to create fig. 10 had parameters obtained from a fitting to the dmbp-data, and the present
investigation will reveal that estimates of the m-truncated local Gaussian spectral density can
provide some visual aid with regard to the quality of the tested GARCH-type model — in par-
ticular, this might be of interest when doing model selection.

The estimation of :%(w) for a given point v at a given frequency w requires a selection of
a bandwidth b and some maximum number of the lags m, and these will be kept the same as
those used for the simulated data, since that seems to be the natural option when a comparison
of the corresponding estimated local Gaussian spectral densities is of interest. The number of
replicates used to create the confidence bands will likewise be kept the same, but issues related
to the resampling strategy for the given sample (see discussion below) might have an effect
upon that part.

Figure 11 presents the results based upon the dmbp-data. Note that this plot differs a bit
from those encountered for the simulated data; a solid line represents the estimate from the ac-
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tual (length 1974) sample at hand, using the bandwidth b = (0.5, 0.5), and the 90% pointwise
confidence band was constructed from estimates based on 100 resampled versions of the orig-
inal data. The resampling was done by means of a block-bootstrap, where the selection of the
blocklength (in this case 100) turned out to be a problem — since it (to the best of the authors’
knowledge) does not exist a method that can return a data-driven value for the blocklength to
be used for a sample from a nonlinear time series with a flat spectrum — see the discussion in
section 4 for further details.
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Figure 11: dmbp-data, bootstrapped based confidence intervals.

The solid line in the two right panels in fig. 11 indicates an asymmetry between the lower and
upper tails, which seems natural when one takes into account the observations from figs. 3 and 4
that the local Gaussian autocorrelations for lagged pairs at the lower tail tends to have higher
values than those occurring at the upper tail — and this is in agreement with the asymmetry
between a bear market (going down) and a bull market (going up). In particular, note that the
detected long range behaviour (peak at w = 0) for the extremes are more prominent for the for
bear market than for the bull market.

Keeping in mind that the apARCH(2, 3)-model from fig. 10 had coefficients obtained from
a fit to the dmbp-data, it is of interest to compare the dashed lines from that plot with the solid
lines in the present plot. Since the asymmetry observed in fig. 11 are missing from fig. 10, it
could be that the present GARCH-type model might not be optimal for the dmbp. But it has to
be emphasised that the pointwise confidence intervals in figs. 10 and 11 are rather wide, so it
might be premature to reject the apARCH(2, 3)-model as an adequate model for the dmbp data.

Remark 3.19. It was a problem to figure out which blocklength to use in the block-bootstrap
algorithm. The plots in fig. 11 used the value 100 for the blocklength, and this was selected
after some tests with different blocklengths. The reason for the selection of this blocklength was
partially due to the impression from fig. 3 that a long block length might be needed, and it was
partially due to a desire for the original estimate (i.e. the solid line) to be approximately at the
center of the estimated confidence band — and it has to be noted that such an approach could lead
to erroneous conclusions. However, it should also be noted that the significant difference (in
the tails, for frequencies w between 0 and 0.07) between local and global m-truncated spectral
densities still was present when other blocklengths was tested, so it seems safe to conclude
from fig. 11 that local properties have been detected in the dmbp-data for the lower and upper
tails. Note that the lower-tail part of fig. 3 in fact could indicate that an even larger blocklength
than 100 should be used, see section 4 for further details.
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3.5 Inspecting the local Gaussian autocorrelations

It might be enlightening to not only compare the estimated local Gaussian spectral densities,
but also to compare the estimated local Gaussian auto-correlations. Figure 12 illustrates this
by showing the first 20 lags for three different dmbp-related cases. The top panel shows the
estimates based on the pseudo-normalised dmbp-data, the center panel shows box-plots based
on the 100 bootstrapped replicates (using the block-length 100), whereas the bottom panel
shows box-plots based on the 100 samples (of length 1974) from the apARCH(2,3)-model
that was fitted to the original dmbp-data. The point under investigation is 10%: : 10%, and the
estimates are (as before) based on the bandwidth b = (0.5, 0.5).

A comparison of such plots of local Gaussian autocorrelations might be useful with regard
to the problem of judging the appropriateness of a proposed block-length for the bootstrapping
procedure, and it might also be possible to detect if a model fitted to the data clearly fails to
mimic the local behaviour of the data the model was fitted to.
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Figure 12: Local Gaussian auto-correlations related to the pseudo-normalised dmbp-data. Top:
Original data. Center: Bootstrapped results (100 replicated using the blocklength
100). Bottom: apARCH(2,3) fitted to dmbp (100 simulations).

3.6 Exploration for off-diagonal points
The preceding examples all considered points v = (v,, v,) on the diagonal, i.e. v, = v,, but
mathematically it is as such not a problem to estimate f, . (w) for points off the diagonal, see
appendix A.2 for the relevant asymptotic theory. However, the estimates becomes complex-
valued when v, # v,, which makes them harder to visualise and interpret — and there is no
clear level interpretation as in fig. 2. Nevertheless, when ,E"”s (w) is used as an exploratory tool
in relation to model selection, it could still be of interest to compare plots based on a model
fitted to the data and the plots based on the original data. As a follow up of the preceding
investigation, this section will compare the apARCH(2, 3)-model and the dmbp-data at the point
v = (—1.28,1.28), i.e. the first coordinate corresponds to the 10% quantile and the second
coordinate corresponds to the 90% quantile.

Since the estimates fj‘"(w) now are complex-valued, it seems natural to investigate them
by using plots based on their corresponding real and imaginary parts (cartesian presentation)
or plots based on their amplitude and phase (polar representation). This section will use the
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 61

cartesian presentation, where both the real and complex parts are investigated at the same time,
as shown in fig. 13.

In the cartesian case, the estimate can be written as fj‘"(w) =, (w) —iq,j1(w), cf. theo-
rem A.l, using a notation inspired by the one encountered when working with the complex-
valued ordinary cross-spectrum. To emphasize that the present investigation is related to an

~

(w) and ¢, (w) will respectively be referred to as estimates of

v|5

auto-spectrum, the estimates E;l’;
the auto-cospectrum and the auto-quadrature spectrum of f;(w).

The bias-variance properties of p, (h) will as always depend on the number of pseudo-
normalised pairs that efficiently contributes to the computation, i.e. it is of importance to once
more do an analysis akin to the one done for fig. 2. In this case the requirement that a pseudo-

~

normalised pair (Z,,,,7%,) lies in the lag & bandwidth-square is that Z,, lies in the bandwidth-
strip centered at the 10% level, whereas Z, lies in the bandwidth-strip centered at the 90% level.
For the present point of interest, i.e. (—1.28,1.28), a total of 59 lag 1 pairs occurred in the
corresponding lag 1 bandwidth-square, which is a bit smaller than the number of pairs that
occurred for the tail-points discussed in remark 3.10, which respectively was 75 and 66 for the
lower and upper tail.

Contrary to the situation for the two diagonal tail-points previously investigated, the number
of pseudo-normalised pairs (close to (—1.28,1.28)) will increase a bit as the lag h grows up
to the h = 200 case that was discussed in remark 3.12, in particular the number grows to 70
(which happens to coincide with the number of pseudo-normalised pairs for the lower tail).
This growth from 59 to 70 seems natural when it is taken into account that the lag h pairs are
expected to become independent when h grows, and then it is natural that the density should be
approximately the same in regions of the same size. Note that it could be a potential problem in
this example that the number of lag h pseudo-normalised pairs that efficiently contributes to the
computation of p, . (k) (for b = 1,...,10) might be a bit too low, but that will be ignored here.

Figure 13 shows plots that compares the apARCH(2, 3)-model (left) with the dmbp-data
(right)."” The corresponding estimated auto-cospectra Cc,(w) are given at the top and the
estimated auto-quadrature spectra g,;(w) at the bottom, with some additional details added
to enable a comparison against the estimate f™(w) of the ordinary global m-truncated spec-
tral density. Keeping in mind that f™(w) is real valued, it has only been added to the part
investigating ¢, (w), and only a dotted horizontal line at y = 0 has been added to the plot that

v|

investigates ¢, (w).

Remark 3.20. For this particular point v and this particular truncation-level m, the estimated
auto-cospectra ¢,; (w) seems to indicate that the result based on independent simulations from
the apARCH(2, 3)-model agrees quite well with those based on the dmbp-data. The estimated
auto-quadrature spectra g, (w) could however indicate that there might be features of the dmbp-
data that this particular GARCH-type model did not manage to pick up. Note that the afore-
mentioned issues regarding the selection of the blocklength (to be used in the bootstrap), could
imply that the pointwise confidence bands for the dmbp-data are a bit off the mark, and it would

thus be premature to accept/reject a fitted model solely based on this plot alone.

19The investigation for both of the cases use the same input parameters as described earlier. In particular: 90%
pointwise confidence intervals based on a 100 simulated samples of length 1974 for the apARCH-model, and
similarly 90% pointwise confidence intervals based on a 100 bootstrapped replicates of length 1974 for dmbp.
Both cases with the bandwidth b = (0.5, 0.5).
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Figure 13: An off-diagonal point, comparison apARCH(2, 3)-model (left) and dmbp (right),
auto-cospetrcum (top) vs. auto-quadrature spectrum (bottom).

Remark 3.21. An interpretation of ¢ (w) and g, (w) from fig. 13 is beyond the aim of the
present paper, but a few minor observatlons can nevertheless be given. First off all, observe
that g, (w) always must be O when w € {0 1}, and then observe that a peak or (like in this
case) a trough at the frequency w = 0 for ¢,; (w) can reveal the presence of an initial long-range
sequence of same-sign estimated local Gaussian autocorrelations p,, . (h). Furthermore, from
the definitions it follows that ¢} (w) and g,j;(w) respectively must integrate to 1 and O over

(—5, 5} and those properties might be useful when discussing peaks/troughs that occurs in the

graphs.

Remark 3.22. When lemma 2.3(c) is taken into account, it is clear that the plot of g,: (w) can
give an indication of whether or not the time series under investigation is reversible. For the
GARCH-type model investigated in fig. 13, the ;(w)-plot indicates that it might represents
a reversible time series, whereas the dmbp-data on the other and does not quite give that im-
pression. However, it would be premature to draw any conclusions based on the particular
combination of point v, truncation level m and bandwidth b used in this example.

Remark 3.23. A single plot based on the amplitude of fm (w) could have revealed approximately
the same as the present plots of ¢, (w), but it would not necessarily reveal the details that g, (w)
can give about the reversibility of the time series under investigaton. Moreover, a peak atw = 0
of the amplitude-specter would detect the presence of some long-range dependency of (%),
but it might not be immediately clear from the amplitude-plot whether the prevailing sign of
these p,,;(h) was positive or negative.

Remark 3.24. This example shows that f’" (w) might provide some insight also when the point v
lies off the diagonal. In a practical setting, it would of course be natural/necessary to investigate
several different off-diagonal points v for different combinations of bandwidths b and truncation
levels m, and for plots based on real data it would also be preferable to test different blocklengths
to see how much the estimated pointwise confidence bands depends on that setting.

3.7 1 parameter versus 5 parameter

The plots considered so far have all used the 5 parameter local Gaussian approximation in
the computation of the local Gaussian autocorrelations, i.e. estimates p, ;(h) of p, . (h) have
been used in the computations. The reason for this is that p,, (h) in general might not carry
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 63

sufficient information about the local correlation structure of the densities, cf. the discussion in

-~

appendix C.6 . The estimates f7 (w) might thus return rather dubious results.

v|1
—~

The inadequacy of [, (w) is highlighted in fig. 14 where it has been compared against fv‘ (w)
for the previously encountered comparison of the GARCH-model and the dmbp-data (all the
parameters are identical to those described earlier). The two upper panels show the previously
encountered results for the simulated GARCH-model (left side) and the dmbp-data (right side),
whereas the two lower panels shows the corresponding results when p,, (h) was used instead
of p,;(h). The differences that occurs for the lower frequencies in these cases are quite clear,
i.e. the results obtained from the 1 parameter approach are not as high as those obtained from the
5 parameter approach, and it might thus happen that an analysis based on :71 (w) does not detect
a difference that is clear-cut when f:‘g(w) is employed. This makes the fj‘"l (w) less favourable
as an exploratory tool.>”

8- m =10 apARCH(2,3) 90% :: 90% 8- m= 10 dmbp 90% :: 90%
6- 5 parameter 6- 5 parameter
4- 4-
2- 2 g
0-NC=O0K 0- NC = 0K
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Figure 14: apARCH(2, 3)-model (left) and dmbp (right), 5 parameter (top) vs. 1 parameter
(bottom).

The ‘trumpet shaped’ pointwise confidence band observed in the lower right panel seems to
be a common feature when the 1 parameter approach :'l’"‘l (w) are used on non-Gaussian data (like
the dmbp-example encountered here). This phenomenon occurs for a wide range of different
blocklengths for the bootstrap, which implies that the ‘problem’ is not directly related to the
blocklength that was used in this particular case. Due to larger flexibility, it seems evident that
the 5 parameter approach :”‘15 (w) is the better option to apply. See the discussion in appendix C.6
for further details.

For the record, these undesirable differences does not occur for Gaussian time series, which
is as expected since both the 1 parameter and 5 parameter algorithms in such nice cases will
give an estimated local Gaussian autocorrelation close to the ordinary autocorrelation of the
Gaussian time series. But, as the cases considered in fig. 14 shows, it seems clear that the
1 parameter approach ]/‘2‘"1 (w) might not be up to the task when the structure of interest deviates

from the Gaussian assumption.

2ONote that the algorithm used to find P (h) does not reveal whether or not the result is based on a successful
numerical computation, and this is the reason that ‘NC=7?7" is shown in fig. 14.
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4 Discussion

The examples in section 3 show that an exploratory tool based on estimates of the local Gaussian
spectral density f, . (w) might be useful, and that it in some cases might be possible to interpret
peaks and troughs that occurs in a manner similar to the interpretation used when estimates
of the ordinary spectral density f(w) are inspected. Caution must however be exercised, since
there still are many details related to the selection of the point v and the parameters m and b that
needs to be investigated further, and this section will present some additional comments related
to this part. Moreover, the unresolved issue with regard to the selection of the blocklength (when
bootstrapping is needed) will also be discussed here, before an alternative smoothing strategy
is commented upon at the end of this section.

4.1 The points v and the bandwidths b

Based on the discussion in section 3.2, it is clear that the combination of a point v and a band-
width b has a large impact on the number of pseudo-normalised lag / pairs from { (Z o 2) }:
that efficiently contributes to the computation of the estimates p, . (h).

The selection of v and b must be seen in conjunction, see remark 3.10, and in particular:
If b is rather small, then it is important to not select points v too far from the center of the
distribution, since the small-sample variation then might become the dominating feature of the
estimated values fv’f (w).

In section 3, the bandwidth b = (.5, .5) was used for the majority of the plots, with the excep-
tion of fig. 6, page 23. Figure 6 indicates that the estimates of f™(w) and f.(w) (the red and
blue dashed lines) seems to be the same for the three bandwidths chosen, but the width of the
corresponding pointwise confidence bands changes quite a bit, i.e. they, as expected, become
narrower with higher bandwidths.

The bandwidth b = (.5,.5) used as default in section 3 was selected based on the fact that
b = .5 is quite close to the value obtained when the formula b ~ 1.75n~*/¢ was given the value
n = 1974 (the length of the dmbp-data). This formula, due to Hikon Otneim, is based on exper-
imentation with the bandwidth-selection algorithm used in Otneim and Tjgstheim (2016), and
it has been applied here even though it originates from a bandwidth-selection algorithm aimed
at computing density estimates based on the one-parameter local Gaussian approximation.

It might be a dubious practice to use the same bandwidth for all the lags h = 1, ..., m, and it
could also be a problem that the same bandwidth is used for all the points v, since the number of
observations in the vicinity of points in the tail is much smaller than the corresponding number
for a point in the center, cf. remark 3.10. However, used as an exploratory tool, with pointwise
confidence bands that clearly shows the different variances, it should still make sense to use the
same bandwidth for a comparison like the one between the apARCH(2, 3)-model from fig. 10
and the original dmbp-data in fig. 11 (see page 29).

Remark 4.1. The R code used for the estimation of the local Gaussian autocorrelations, i.e.
Po5(h) and p, (), can apply different alternatives for the bandwidth-argument. It is e.g. pos-
sible to use an approach where a percentage is given, and the algorithm then selects for each
point v and each lag & a bandwidth that ensures that this percentage of the available pseudo-
normalised lag h pairs are included in the resulting bandwidth-square. A few experiments with
this simplistic bandwidth-approach did not produce results that differed significantly from those
based on fixed bandwidths.
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Remark 4.2. A simple rule of thumb, like the formula b ~ 1.75n~"/°, would be preferable with
regard to the selection of the bandwidth, since the computational cost can become a problem
if a new bandwidth has to be computed for each of the lags h = 1,..., m. In particular, if a
selection-algorithm for b could be based on a cross-validation technique, then it would for prac-
tical purposes probably be preferable to first compute estimates of f,. (w) for a range of fixed
bandwidths, and then apply the selection-algorithm only for those cases where some potentially
interesting structures was revealed in the initial investigation.

Remark 4.3. There does exist a leave-one-out cross-validation algorithm for the selection of
the bandwidth to be used when estimating the local Gaussian correlation based on independent
observations, see Berentsen and Tjgstheim (2014, Section 3.4) for details. An earlier version
of the R code (used for the estimations in the present paper) had an option where the p = 1
version of this algorithm, from Otneim and Tjgstheim (2016, Section 4), could be used when
estimating p,, (h). This option did however result in a tremendous increase in the computa-
tional time, since the estimation of f; (w) requires the estimation of m different local Gaus-
sian auto-correlations pv“(h).“ Moreover, it is also a bit questionable to apply an algorithm
developed for independent observations in a time series setting. In particular, the leave-one-
out cross-validation has some flaws if the aim is model selection based upon dependent data,
see Burman et al. (1994); Racine (2000); Shao (1993), where the concepts leave-n_-out cross-
validation, h-block cross validation, and hwv-block cross-validation were introduced as better
tools for the dependent case.

4.2 The truncation level m and the weighting function \ (h)

For estimates of the ordinary spectral density, f(w), there exist rules of thumb (based on the
number of observations n) that can define a range within which an appropriate truncation level
m might be found, such that a reasonable bias-variance balance is obtained for the estimated
spectral density f(w) The guiding principle for the selection of m for the global case is based
on the observation that there is a linear decrease in the number of lag h pairs, so the variance
of the estimates p(h) increases for higher lag-values, and the selection of truncation level m
and weighting function A () is then used to counter the effect of this increased variance from
high-lag components.

It would be preferable to have some similar guiding principle for the selection of m for the
local case too, but in this case the situation is more complicated since the bias-variance prop-
erties of the building blocks p, ;(h) are affected both by the position of the point v and the
selected bandwidth b. In particular, the kernel function involved in the estimation of p,,(h)
implies that the variance will depend on the number of pseudo-normalised lag h pairs (fz\t h ’z\,)
that lies inside the lag i bandwidth-squares, as shown in fig. 2.

Remarks 3.10 and 3.12 describe (for the three investigated diagonal points) the number of
efficiently contributing pseudo-normalised lag h pairs for the two lags h = 1 and h = 200. If a
common truncation level m is to be used for all the three points, then it is clear that the points
v with the smallest number of contributing pseudo-normalised pairs should be considered, i.e.

21 Tests were performed to see if it might be possible to only use the bandwidth-algorithm for the case A = 1, and
then let the higher lags inherit the estimated bandwidth — but it turned out that that assumption was not a viable
one. In particular, the bandwidths estimated for the higher lags did not need to be close to the one estimated
for the first lag.
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the numbers for the points at the lower and upper tails are those that is central to the selection
of truncation level m.

For these tail-points, the reduction from the lag 1 case to the lag 200 case was rather small,
which could imply that the variance of the corresponding estimates p, () grows at a much
slower pace than the variance of the estimates of the global autocorrelation p(h). Furthermore,
as the off-diagonal example in section 3.6 shows, points v can be found where the number of
efficiently contributing lag h pairs increases when h grows from lag 1 to lag 200.

In lack of a data-driven rule that can propose a suitable range of values for the truncation
level m, the following strategy has been used instead: First estimate the local Gaussian auto-
correlations p,,, (%) for a large range of lags, and then use a shiny-application (see footnote 17,
page 18) to interactively play through the plots of the corresponding m truncated estimates
fv‘ﬁ(h). A drawback with this solution is that it might waste computational resources on cases
where small-sample variation distorts the presence of any local signals.

4.3 The blocklength for the bootstrap

There do exist data-driven methods for the selection of the blocklength to be used when boot-
strapping, see e.g. Biihlmann and Kiinsch (1999); Lahiri et al. (2007); Nordman and Lahiri
(2014); Patton et al. (2009); Politis and Romano (1994); Politis and White (2004) — but these
methods does not give a good result when used upon data with a nonlinear structure and a flat
(ordinary) spectrum.

The ‘problem’ is easily detected from an inspection of the selection algorithms in sections 3.2
and 3.3 in (Politis and White, 2004), as they all have a factor G := > |h|R(h) where R(h)
is the lag h autocovariance of the series under investigation. For a time series whose ordinary
spectrum is flat, the only nonzero R(h) occurs when i = 0, and the sum G thus becomes zero
in this case. This implies that the data-driven blocklength algorithms (both for the stationary
and for the circular bootstrap) considers a block of length 1 to be suitable when bootstrapping
the dmbp data — and that would obviously destroy all nonlinear structures in the data.

To the best of the authors’ knowledge, there does not exist an adjustment of the blocklength
algorithm suited for the present case of interest. This implies that the use of the local Gaussian
spectral density on real data suffers from the problem that the blocklength for the bootstrap must
be manually selected, which makes it harder to decide if a potentially interesting difference
between the ordinary and local spectral density really should be considered to be significant
— or if it should be discarded as a spurious effect due to a badly selected blocklength for the
construction of the pointwise confidence bands.

As explained in remark 3.19: The blocklength 100 was used for the dmbp-example (see
fig. 11) in order to get plots where the estimate J/‘;‘(w) based on the original sample was posi-
tioned approximately at the center of the resulting pointwise confidence-band.”> An approach
based on the testing of several different blocklengths is computationally costly, so it would be
preferable to find some data-driven strategy.

Based on the selection-algorithm in (Politis and White, 2004), one might wonder if an ad-
justed selection algorithm suited for the local case could be created by replacing the estimated

2]t should be noted that a wide range of possible blocklengths was investigated, and they all revealed significant
differences between the ordinary and local spectrum for low frequencies in the lower and upper tails — so the
dmbp-investigation did most likely detect an actual phenomenon in the data at hand.
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autocovariances R(h) with local Gaussian autocorrelations p, ;(h) instead. A potential prob-
lem with this approach is that the result could depend upon the points v that are investigated.
But still, if nothing else, a visual inspection (like the one given in fig. 3) of the estimated values
P, s(h) might help motivate lower and upper thresholds within which a search for the block-
length could be restricted. From this a blocklength of 100 might not be unreasonable.

It also has to be noted that there is an additional issue that remains to be investigated, and that
is the asymptotic properties of the bootstrap-approach in this particular case. The theoretical
properties of the bootstrap-methodology in the realm of local Gaussian correlation have been
investigated in Lacal and Tjgstheim (2017), and it seems likely that the methods employed there
could be adjusted to cover the present case of interest.

Remark 4.4. As mentioned before, the R-package localgaussSpec allows the estimation of
:%(w) for a wide range of settings for the points and parameters, with a simple interactive
solution for the inspection of the results. It is thus not that critical that data-driven methods
for the selection of the parameters still are missing, but with regard to the computational costs
it would be preferable to have at least some guiding principles that could restrict the initial
attention to parameter-regions where small-sample variance should not distort the presence of

any local signals.

4.4 An alternative smoothing strategy?

The previously defined estimates :'l’;(w) of f,,(w) was based on a weighting function A, (h)
that worked upon the estimated values p,. (%), but it should for the record be noted that an
alternative approach could have been applied too.

The point is, as mentioned in remark B.4, that it is possible to extend the result of ap-
pendix B.4 to show that the estimated m-truncated local Gaussian spectral densities fv‘(w)
corresponding to different points {v,},_ will be jointly asymptotically normal and pairwise
asymptotically independent (when m — oo and b — 0% as n — o0). This enables an alter-
native smoothing strategy, where an estimate fv"‘s(w) for a given point v could be based on a
weighting of the values of :’j‘(w) in a grid of points surrounding v.

This alternative approach shares some superficial similarities with the one used when the
ordinary global spectrum f(w) is computed based on the periodogram, see e.g. Brockwell and
Davis (1986) for details. However, the efficiency of the periodogram-approach in the estima-
tion of f(w) is due to the Fast Fourier Transform, which implies that the periodogram can be
computed directly from the observations without the need for an explicit computation of all of
the the estimated autocovariances p(h), and that shortcut is not available for the local Gaussian
case. The computational load would thus become much larger for the local Gaussian case if

such an averaging-approach was applied.

5 Summary

This paper presents the local Gaussian spectral density [, (w) as anew possible approach to the
study of nonlinear time-series and nonlinear periodic phenomena. This method is based upon
the simple approach that the ordinary autocorrelations p(h) in the standardised expression for
the spectral density, see eq. (1.2), are replaced with the local Gaussian autocorrelation p,,,(h).
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Estimates :T;(w) of the (m truncated) local Gaussian spectral densities are then obtained by
estimating the corresponding local Gaussian autocorrelations.

The parameter p can either be 5 or 1 depending on the type of the number of parameters
used in the local Gaussian approximation. The theory covers both options, but for practical
purposes, based on our experiences, only p = 5 can be recommended, since the p = 1 case
fails to capture the local structures in a satisfying way, see fig. 14 on page 33 for an illustration.

The point v = (v,, v,) can in principle be any point in R, but it is important to keep in mind
that small-sample variation could become a problem if it lies in an area with few observations.
Moreover, the visualisation and interpretation of the results might be easier if v lies on the

diagonal, i.e. v, = v,, since (as seen in theorem 2.7) real-valued results are obtained in that

1
case.

The examples™
to detect the presence of local structures that the ordinary spectral density does not register,
and that it also could give some aid when it comes to selecting models fitted to data, cf. the
discussion relating the apARCH (2, 3)-model from section 3.3 with the dmbp-data in section 3.4.
It seems likely that such a comparison could be of interest even when it is not known whether
or not the investigated time series satisfies the requirements needed for the asymptotic theory
to work.

Finally, it should be noted that this paper only aims at presenting the method and that there
are many issues that remains to be resolved with regard to the use of this method. This includes,

in section 3 indicates that this method can be used as an exploratory tool

as discussed in section 4.1, the need for some rules of thumbs with regard to how far out in the
tails it makes sense to select the points v given a number n of observations, the need for some
suitable method to select the bandwidths b and the truncation point m for the given number
of observations (potentially also depending on the point v) — and of course the issue regarding
the blocklength to use when working upon non-linear white noise. For all of these arguments
there is a need for a better understanding of the effect of them upon the bias-variance balance
of the resulting estimates.

23The scripts for all the examples are included in the R-package localgaussSpec, available on github
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Appendix A: Asymptotic results for /' (w)

This appendix presents the asymptotic properties of U‘p( w), the m-truncated estimate of the
local Gaussian spectral density, i.e. the proof of theorem 2.7 is given here together with a
theorem that covers the case when U‘p( w) is complex-valued. The technical details needed for
the proofs are covered in appendices B and C

A.1 The proof of theorem 2.7

Proof. The property that f, (w) is a real-valued function when v lies on the diagonal was
proved in lemma 2.3(d). The expression for }?Ufp (w) from lemma 2.5 can by the help of vectors
be written as

fr(@) =142 K,@) P, (A1)

i.e. the sum can be expressed as the inner product of the two vectors
A (w) =\ (1) -cos(2mw-1),..., A (m) - cos (2mw - m)], (A.2a)
P, = [l B, (m]p,)] (A.2b)

Since p,, (h[p,) is one of the p estimated parameters U‘P(h‘b ) from the local Gaussian appr0x1—
mation (of the lag & pairs) at the point v,** itis clear that it is possible to write 7, (h|b,) = €/, - vlp(h|b ),

(h|s,). The vectors{ (R, )}

and it follows that

where e/ is the unit vector that picks out p, ,(h[b,) from Ov‘p X

h=1
can be stacked on top of each other to glve a joint parameter vector 6,

v||b|p?

the vector P‘ulm\blp can be expressed as P olmislp =FE - Bvlmw where E/ is the matrix that
plcks out the relevant components from 0u|mu,|p (B, will be the m x m identity matrix if

= 1.) It follows from this, and Brockwell and Davis (1986, Proposition 6.4.2, p. 21 1) that an
will give an asymptotic normality result for v‘p( w). In
gives an mp-variate asymptotic normality result

asymptotlc normality result for 0,

v|m|blp

partlcular if a suitable scaling factor’
for 6

ﬂ\M\b\p

v|m|blp?

oo (Butmy = Ouimy) —2 N(0,Z,) (A3)

then a scaling factor ¢/ can be found that gives a univariate asymptotic normality result

for f‘p( w),

“n|m|b|p

cw/,,\mu»\p : (:T\';(W) - fv\p(w)) — N(O UU\,)(W)) , (A4)

24The properties of 0 ), (P[b,) was investigated in Tjgstheim and Hufthammer (2013). A brief summary, with
notation adjusted to fit the multivariate framework of the present paper, is given appendix B.1.2.

% must be a function of n, m and {b, },"_ , such that c — oo whenn — oo, m — coand b, — 07.

C
n|mblp n|mlb|p
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where the variance o7 (w) is a suitably scaled version of the limit of

Var( o (w )) =4- Vaf(N,n( ) E,,- gmmwbw)

— 4 AL @) - By, Var(8,,) - B, A () (A5)

mlp

The asymptotic normality required in eq. (A.3) follows from theorem B.22 (page 64), i.e. the

scaling factor ¢ will be 4 /n(b,b,)""""*, whereas the asymptotic covariance matrix X,

n|m|b|p

can be written as the direct sum of the covariance matrices for |/n(b,b,)"""*- 6, (h|s,), i.c.

Var< n(b,b,) 2. Aﬂmb'p) @Var( n(b,b,)" "2 . :p(h|b)> (A.6)

from which a simple calculation gives
m

Var( n(byb,) " fr (w )—4 ZY - cos? 27rwh)«Var( n(b,b,)" " @p(h|b,,)>.
(A7)

From this it is clear that the scaling factor ¢ requires an additional scaling with 1/1/m in

order to include the averaging factor 1/m for the sumin eq. (A.7). Thus, ¢/ n(b,b,) " fm,
which completes the proof. O

“nim|blp

nlmlblp

Remark A.1. Some care must be taken formally with regard to the limiting mp-variate normal
distribution in eq. (A.3), since it has to be interpreted as something that is approximately valid
for large (but finite) values of the truncation point m. The univariate normal distribution in
eq. (A.4) is the one of interest, and this will under the required assumptions be well defined in
the limit.

A.2 The complex-valued case

Theorem A.1 (Complex-valued case). If the local Gaussian spectral density f, (w) is a com-

plex valued function for a point v = (v,,v,), i.e. f, ‘p( w) = ¢, (W) —iq,,(w), withq,,(w) Z 0,
then, under assumptions 2.1 to 2.3, the components ¢ (w) and ' (w) of the m-truncated es-

timate 1)‘p( w) will, when w & % -7 = { =1 = 1 0,101, .}, be jointly asymptotically

)99
normally distributed as given below.

e () [l o))
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. ) ) .
where the variances o’ (w) and 0., (w) are given by

2 ol
02, (W) = Jim . ; A2 (R) - cos®(2nwh) - {57 ( 2.} (A.9a)
02, (W) = Jim — Z A2 (h) - sin®(27wh) - {a7 (h) + 37, (h)}, (A.9b)

h=1

with 5} (h) and &;,

B|p

() related to respectively p,,(h|v,) and p,,,(h|v,) as given in theorem 2.7.
The component q," (w) is identical to O when w € % -Z, and for these frequencies the following
asymptotic result holds under the given assumptions

(b b, - (i w) = £, (@) =5 N(0, 02, (), (A.10)

Proof. The case w € % - Z can be proved by the exact same argument that was used in the

proof of theorem 2.7, whereas the general case requires a bivariate extension of that proof. In
particular, when the proof of theorem 2.7 is used on ¢, (w) and g, (w), it follows that they can

Ip v|p

be written as

)

~

cn(w) =1+ A‘c\m(w) B e T A'/c\m(w) - P, =1+ A'm(w) P,

v|p @lmlblp v|m|blp

P (A.11a)
aﬁ;(w) =0+ A'/q\m (w) - vimlblp Alq\m(w) L bl =0+ A(,\m (w) - P’u |7 |blp (A.11b)

)

where Adm(w) and A’q‘m(w) are the coeflicient vectors containing respectively the cosines and
oimiplp A0 P,

for the lags under consideration, and where the length 2m vectors A',_ (w), A’

qlm

sines, where P contains the estimated correlations corresponding to v and ©

(w)and P

v|m|blp

o|m|b|p

are defined in the obvious manner in order to get a more compact notation. Following the same
=(E,,®E,,) ©
where @m‘ »,(V, ©) is the full set of estimated parameters from the local Gaussian approxima-
tions at v and ¥ for the lags under consideration,”® and where (E’mlp @ E’m‘p) is the matrix that
picks out the relevant autocorrelations.

line of argument as in the proof of theorem 2.7, it follows that p

vlmlblp m|blp

Based upon this, it follows that the target of interest can be written as
Ef;(w)} _ H [Alm(w)} , N6 )
U = + | E ©®F )-0©_. (v,0), (A.12)
|:qvn;(w) 0 Aq@(w) ( Ip \p) Jb\P( )
which together with the asymptotic normality result from theorem B.23, i.e.

n(b,b, )" - ((3) (v,9) — ©_

m|p

% d
m[blp (v7 v)) — N(Ov Eu\m\p D me\p) ) (A-13)
gives the result when the argurnents in the proof of theorem 2.7 are applied to the present setup.
Note that the requirement w ¢ - Z is needed in order to ensure that the variance o, (w) is
different from 0, which is needed in order for (Brockwell and Davis, 1986, Proposition 6.4.2,
p- 211) to be valid in this case. O

26The vector G):‘ »»(V, D) can be expressed as a combination of Gv‘ b1, @0d 0, where 6,

rameter vector from the proof of theorem 2.7.

1ol o161 18 the pa-
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~

Appendix B: Asymptotic results for 0

v|m|blp

~

This section will investigate the asymptotic properties of the parameter vector 8, . that is
used in the proof of theorem 2.7. The proof is similar in spirit to the one used in Tjgstheim and
Hufthammer (2013) for the asymptotic investigation of the parameter vectors 8, (hp,), i.e. the

Klimko-Nelson penalty function approach will be used to derive the desired result.

Appendix B.1 explains the Klimko-Nelson approach and shows how a local penalty func-
tion for the present case can be constructed based on the local penalty function encountered
in (Tjgstheim and Hufthammer, 2013). Appendix B.2 verifies the fourth of the requirements

~

needed for the Klimko-Nelson approach, and the asymptotic results for 6 are collected in

appendix B.3.

v|m|blp

Remark B.1. The asymptotic investigation requires several indices in order to keep track of
the different components, and to simplify references to v, b and p will whenever possible be
suppressed from the notation.

B.1 Local penalty functions and the Klimko-Nelson approach

Tjgstheim and Hufthammer (2013) used a local penalty function to define the local Gaussian
correlation p, ; as a new local measure of dependence at a point v, and then used the approach
formalised in Klimko and Nelson (1978), to investigate the asymptotic properties of p,, .. (The
arguments in (Tjgstheim and Hufthammer, 2013) holds for the simpler case p = 1 too.) The
local Gaussian spectral density [, (w) is based on the local Gaussian autocorrelations p, ,(h),
and the asymptotic properties of the estimates JE@(W) are thus closely connected to the asymp-
totic properties of p,, (h).

The Klimko-Nelson approach shows how the asymptotic properties of an estimate of the
parameters of a penalty function () can be expressed relative to the asymptotic properties of
(entities related to) the penalty function itself. This result plays a pivotal role in the present
analysis, and it has thus been included in appendix B.1.1.

Appendix B.1.2 presents the bivariate definitions and results from (Tjgstheim and Huftham-
mer, 2013), with the notational modifications that are needed in order to make it fit into the
multivariate approach in the present paper. The bivariate penalty functions (), from (Tjgs-
theim and Hufthammer, 2013) will be used as building blocks for the new penalty function.

B.1.1 The Klimko-Nelson approach

The following presentation is based on Taniguchi and Kakizawa (2000, Th. 3.2.23).

Let {X,},_, be anm-variate strictly stationary and ergodic process that satisfies E [|| X, ||*] < oo.
Consider a general real valued penalty function @, = Q,(0) = Q, (X,,..., X, ;0), which
should depend upon n observations {X,}" | and a parameter vector € that lies in an open set
©® € R, and let the true value of the parameter be denoted by 8°. Add the requirement that ),
must be twice continuously differentiable with respect to 8 a.e. in a neighbourhood A of 6°,
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 73

<9,
Qu0) = Q.0 + (00 20.0)+ (007 50 0,(60°) (0~ 0)
+50-07{ 55000 - ) Lo -0) .10
QuO) +(0—0) 20.(0) + 3 (6 0V, (0 0°)
% (0 — 6°YT.(6°) (0 — 6°) (B.1b)

where V, and T, (0*) are defined in the obvious manner, with 8* = 0*(X,,..., X ;0) an in-
termediate point between 6 and 6° (determined by the mean value theorem).

Theorem B.1 (Klimko-Nelson, (Klimko and Nelson, 1978)). Assume that { X}, , and Q, are
such that as n — o0
(A1) n7'(0/06)Q,(6) ==
(A2) n'V, =25 V, where V is a p X p positive definite matrix, and
(A3) forj,k=1,...,p
lim sup (nd)™" |T,{6"},,| < a.s. (B.2)

n—00 —0

where T, {0"} , is the (j, k)th component of T, {0 }.
.,61)/, such that én 22 0°, and for

Then there exists a sequence of estimators é\n = (51, .
any € > 0, there exists an event E with P(E) > 1 — € and an n° such that on E, for n > n°,
(8/80)62”(5”) = 0 and Q) attains a relative minimum at é;. Furthermore, if

(A4) n2(9/00)Q, (8°) —= N(0, W)

then
1/2(0 —-6°) SN N, V-'WV). (B.3)

B.1.2 The bivariate penalty functions
This section will translate the bivariate results from Tjgstheim and Hufthammer (2013) into the
present multivariate framework, and these bivariate components will then be used to define a
new penalty function in appendix B.1.3.

The main idea from (Tjgstheim and Hufthammer, 2013) is to use bivariate Gaussian densities
¥(y,:6,,,) to approximate the bivariate densities g, (y,) ata point v, where 8, , = [0 0
is the five dimensional parameter-vector of the bivariate Gaussian distribution. The point v will
be fixed for the remainder of this discussion, and it will henceforth be dropped from the notation
for the parameters, i.e. 8, should always be understood as 6

wlh*

The local investigation requires a bandwidth vector b = (b,, b,) and a kernel function K (w),

which is used to define K,.,(y, —v) = %K(yhbi, %b;“) which in turn is used in the
following local approximation around v,
Qnp = / K’L b - W}(yhv eh) - gh(yh) log w(yh; Oh)] dym (B.4)
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a minimiser of which should satisfy the vector equation

- Kh=b(yh - ’U) uh(yh; eh) W)(yh; oh) - gh(yh)] dyh =0, (B.5)
where u, (y,;0,) =V, logi(y,;0,) is the score function of ¢ (y,;0,) (with V, := 9/00,).
Under the assumption that there is a bandwidth b, such that there exists a minimiser 8, , of
eq. (B.4) which satisfies eq. (B.5) for any b with 0 < b < b,,”’ this 0, , will be referred to as
the population value for the given bandwidth b.

Equation (B.4) is a special case of a tool that Hjort and Jones (1996) introduced in order to
perform locally parametric nonparametric density estimation, but (as was done in (Tj@stheim
and Hufthammer, 2013)) it can also be used to define and estimate local Gaussian parameters —
whose asymptotic properties can be investigated by means of a local penalty function @, (6, ),
to be described below, and the Klimko-Nelson approach.

For a sample of size n from {Y,_,},_,. the following M-estimator”® will be used, which (due
to the ergodicity implied by assumption 2.1(a)) will converge towards the penalty function g, , ,

Lh:n(eh) = Lh:n(Y

h:1) *

. Y,.;0,)

=Y Kial¥s — o) log0(¥,,:0,) = [ Kisly, =) 0(9,:0,)dy,. (B6)
t=1

The local penalty function from (Tjgstheim and Hufthammer, 2013) can be described as
Qh:n(oh) = Qh:n(Y;L:17 Y Oh) = _nLh:n(Oh)

= Z Kh:b(Yf-L:t - U) log 1/](Km,; 0},,) +n Kh:b(yh, - ’U) w(yh,; Oh) dym (B'7)
RZ

and it remains to write out how the different components in appendix B.1.1 looks like for this
particular penalty function. A central component is the vector of partial derivatives, which by
the help of the score function u, (y,; 6,) can be given as,

n

V,0.0)= -3 [Kh:bmt ), (¥:0,) — [ Kuuly, - v)u,(y,:0,) v(y,:0,) dy,

=1 R2

(B.8)

Note that the expectation of the bracketed expression in the sum gives the left hand side of
eq. (B.5), which implies that the expectation will be 0 when V,Q, . (6,) is evaluated at the
population value 6, , .

Given a bandwidth b which is small enough to ensure a unique solution 8, ,, the next part of
oh, - 0h,:b| < (5}

interest is the Taylor expansion of order two in a neighbourhood N, = {8, :

?TInequalities involving vectors are to be interpreted in a component-wise manner.

2The entity L, (6,) can for independent observations be thought of as a local log-likelihood or a local kernel-
smoothed log-likelihood, see Hjort and Jones (1996, Section 2-3) for details. In the realm of time series,
where the observations are dependent, it is according to Tjgstheim and Hufthammer (2013, page 36) better to
interpret it as an M -estimation penalty function
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 75

of 0,,.1i.e.
Qun(0,) = Q,0(0,,) +10, ~ 0, V,0,..(0,,) + £ [0, 0,,)'V,,.. 10, -0,
510,07, 16, - 6,,], (B.92)
where
Vo = Vi (01) = V,V,Q,..(6,,,) , (B.9b)
Ty = T (0.60,) = V,9,Q,,,(0) ~ V,%,,.,(6,.). (B.9¢)

with 0; an intermediate point between 8, and 0, ,, again determined by the mean value theorem.

h:b?

With the preceding definitions, (Tjgstheim and Hufthammer, 2013, theorem 1) investigated
the case where the bandwidth b was fixed as n — oo, i.e. items (A/) to (A4) of theorem B.1
was verified in order to obtain the following result for the estimated local Gaussian parame-
ters é\hm; for every € > 0 there exists an event A, (possibly depending on the point v) with
P(A:) < e, such that there exists a sequence of estimators 5, that converges almost surely to
6., (the minimiser of ¢, , from eq. (B.4)). And, moreover, the following asymptotic behaviour

is observed
(n6,0,)"* (8,0, — 0,.) ~ N(0,%,,), (B.10)

where &, , =V, 'W, V.-t with W, the matrix occurring in item (A4) of theorem B.1.

The situation when b — 0% as n — oo requires some extra care since the presence of the
kernel function K,.(w) in @, (6,), see eq. (B.7), gives limiting matrices of V,, and W, ,
of rank one. The details are covered in theorems 2 and 3 in (Tjgstheim and Hufthammer,
2013, p. 39-40), which ends out with the following adjusted version of eq. (B.10), where n and

b= (b17 b2) are such that log n/n(blb2)5 =0,
(n(b,0,))" (@,m - 92) —5 N(0,3), (B.11)

where ¢ is the b — 07 value of 6, , and where the limiting matrix X is a (b,b,)’-rescaled
version of matrices related to the matrices V, , and W, ,, see the discussion in (Tjgstheim and
Hufthammer, 2013) for details.

B.1.3 A new penalty function

~

The proof of theorem 2.7 requires an asymptotic result for the parameter vector 8 which
was obtained by combining m parameter vectors corresponding to the bivariate lag h pairs
(Y,,,,Y;) for h=1,... m. This section will show (for the case p = 5) how a penalty func-

t+h? 7t

~

tion for @

n|m|blp>

el CaN be constructed based on the bivariate penalty functions (), defined in
appendix B.1.2. The indices n, b and p will for notational simplicity be suppressed from the
notation, and only 8_ will henceforth be used.

An analysis akin to the one in Theorem 1 of (Tjgstheim and Hufthammer, 2013) will be
performed in this section, i.e. the asymptotic situation will be investigated for the simple case
where the truncation m and the bandwidth b both are fixed as n — oo. The proof that the
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new penalty function satisfies the four requirements items (A7) to (A4) of theorem B.1 can
then be based upon corresponding components of the proof of Theorem 1 from (Tjgstheim and
Hufthammer, 2013).

The general case, where m — oo and b — 0" whenn — oo, canrecycle the arguments given
here for the requirements in items (A7) to (A3), but extra work is needed for the requirement
given in item (A4). The details needed for item (A4) will be covered in appendix B.2.

With regard to the construction of the new penalty function, the main observation of interest is
that the @, (6,) from appendix B.1.2 was defined for bivariate time series {Y, ,},_,, whereas
the new penalty function will be defined for the (1 + 1)-variate time series {Y,.,},,. The
first step is to extend the penalty functions (), , h = 1,..., m from expression based on Y, ,
to expressions based on Y_ ,, but this is trivial since the bivariate functions occurring in the
definition of @,,,(0,) can be extended in a natural manner to (m + 1)-variate functions, as
mentioned in remark 2.9, which gives the desired functions Q w0,

Definition B.2. Let the new penalty function Q) (0..) be given as follows,

m

Qﬁm(em) = Qﬁz:n(Ym;lv AR Yﬁm; Om) = Z éh:n(ah) ) (B.12a)
h=1

where 0_ is the column vector obtained by stacking all the individual 0, on top of each other, i.e.

6. =1[0,...,0.]. (B.12b)

The m components @, (6,) in the sum that defines @, (6,.) have no common parameters,
which implies that the optimisation of the parameters for the different summands can be per-
formed independently. For a given sample from {Y_,},_, and for a given bandwidth b, the
optimal parameter vector 4/9\77“" for Q) (6.) can thus be constructed by stacking on top of each
other the parameter vectors that optimise the individual summands in eq. (B.12) — and these are

~ ~

the parameter vectors 6, that shows up for the m bivariate cases in eq. (B.10). Since each

h:in h:n

converge almost surely to 8, ,, it is clear that é}m will converge almost surely to 6_,, the vector
obtained by stacking the m vectors 6, , on top of each other.

The desired asymptotic result for the fixed b and fixed m estimates fvm(w) can be obtained
directly from the preceding observation and Theorem 1 in (Tjgstheim and Hufthammer, 2013),
but that would not reveal how m and b must behave in the general situation. The rest of this
section will thus be used to verify items (A7) to (A4) from theorem B.1, which in essence only
requires a minor adjustment of the bivariate discussion from appendix B.1.2, i.e. the discussion
can start with the following Taylor-expansion of Q.. (6..),

’ 1 ’
Qm:n(em) = Qm:n(am:b) + [am - 0m:b] VQO:n(om:b) + 5 [em - em:b] Vm\bm [em - 0m:b]

1 ,

+ 5 [ern - om:b] Zﬁ\b:n [am - 0m:b} ) (B13)
where 6_, represents the vector obtained by stacking on top of each other the m individual pop-
ulation parameters 0, ,, where V_ == [V/,... V'], and where the matrices V_, and T

|bin lbin
corresponds to the matrices V,, and T, , from eq. (B.9).
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Remark B.2. The following matrix-observations gives the foundation for the extension from
the bivariate case to the multivariate case.

1. Keeping in mind how V_ is defined relative to V,, and how () is defined relative
to @,.,., it is clear that V_Q_ (6_,) is the vector obtained by stacking the m vectors
V.Q,..(8, ) on top of each other.

2. The operator V_V_ can be viewed as an m x m block-matrix, consisting of the 5 x 5

matrices V.V/, j,k = 1,...,m. Due to the definition of @Q__,, it is clear that the only
operators V.V, that will return a nonzero result are those having j = k.
3. The precedlng observation implies that V,, = @;", V,,...ie. V_, is the direct sum

of the matrices V, ,

and all other blocks are zero, cf. e.g. Horn and Johnson (2012, p.30) for further details).
4. The same observation implies that 7, = @,", T, ,..

(the block diagonal matrix where the diagonal blocks equals V, . ,

With these observations, and the details from the proof of Theorem 1 in (Tjgstheim and
Hufthammer, 2013), it is straightforward to verify items (A7) to (A3) of theorem B.1, whereas
item (A4) requires some more work.

Lemma B.3 (Item (A7) of theorem B.1.).
n'V,Q,..(0,,) —0

Proof. Since V_(Q).. (0..,) is the vector obtained by stacking the m vectors V,(), (0, ) on
top of each other, and the proof of Theorem 1 in (Tjgstheim and Hufthammer, 2013) shows
that 'V, Q,..(0,.,) converges almost surely to 0, the same must necessarily be true for the

combined vector n'V_Q_ (6. ,) too. O

Lemma B.4 (Item (A2) of theorem B.1.).
n'V 25V ., where V_

lbin b mlb

is a 5m x bm positive definite matrix.

Proof. Since V_,  is the direct sum of the m matrices V, , , the behaviour of those will de-
scribe the behaviour of V_ The proof of Theorem 1 in (Tjgstheim and Hufthammer, 2013)

m|b:n
shows that the matrices n*‘l\é W, COnverges almost surely to positive definite matrices V, ,, and
this implies that n ™'V,
as the direct sum of the matrices V, ,. Since the set of eigenvalues for a direct sum of matrices
equals the union of the eigenvalues for its components, see (Horn and Johnson, 2012, p.30) for

details, if follows that V_ . is positive definite since all the V, , = are positive definite. O

i|bin

will converge almost surely to a block diagonal matrix V__ ,, defined

Lemma B.5 (Item (A3) of theorem B.1.).
Forj,k=1,...,5m,

lim sup(nd)~ ’T,M L <o as., (B.14)

n—o00 §—0

where T’

mlbn

. Is the (4, k)™ component of T,

mlbin®

Proof. T_,,,, is the direct sum of the m matrices T,,,,,, so the required inequality is trivially
satisfied for all entries j and k that gives an element outside of the diagonal-blocks. The proof
of Theorem 1 in (Tjgstheim and Hufthammer, 2013) shows that the inequality is satisfied almost
surely on each of the m blocks 7, which implies that it holds for 7_ , = too. O

hibin?® m|bin
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Lemma B.6 (Item (A4 ) of theorem B.1.).
nil/QVQOm(Om:b) —) N(O V(/m\b)

Proof. As done in the proof of Theorem 1 in (Tjgstheim and Hufthammer, 2013), the idea is
to first prove asymptotic normality of each individual component of V_Q__ (6_,) by the help
of Theorem 2.20(i) and Theorem 2.21(i) from Fan and Yao (2003, p. 74-75). Then the Cramér-
Wold Theorem (see e.g. Theorem 29.4 in Billingsley (2012)) will be used to conclude that the
joint distribution of V_Q_ (0, ,) will be the joint distribution of these limiting components,
and finally a simple observation based on moment-generating functions tells us that this limiting
joint distribution is asymptotically normal.

Since V.Q....(0..,) =[V.Q...0,..),..., V. Q.. (0,,)], its components can be indexed
by pairs [h,i],h =1,...,mandi = 1,...,5. Fromeq. (B.8) itis clear that the [}, i]-component
of the vector can be written as

(V@0 (00))y = ZXM (B.15)

where the random variable X, , is defined as

Xhi:i = K’“b(Kut - ) (Y;Lﬁ 0 ) ) K’“b(yh - ’l)) uhi(yh; eh:b) d)(yh; oh) dyh: (B'l6)
R

and where u,, refers to the i component of the 2™ score function wu, .

The required a-mixing property (and thus ergodicity) are inherited from the original uni-
variate time series Y, to X,,, (see eq. (C.36) for details), and the connection with L’ -theory
observed in eq. (C.41) gives E[|X,,,|"] < co. Finally, since 6, , is the population value param-
eter that minimise eq. (B.5), it follows that E[X,,,| = 0. These observations show that X,
satisfies the requirements needed in order to apply Theorem 2.20(i) and Theorem 2.21(i) from
(Fan and Yao, 2003, p. 74-75), i.e. for S,, = >"7" = X, , Theorem 2.20(i) gives the asymp-

hiln t=1“>hizt?

totic result

NS, 0=+ 2 (B.17)
£>1

with v, being the ¢™ autocovariance of the series {X,,,} From Theorem 2.21(i) it now

tez®
follows that there is a component-wise asymptotic normality, i.e.

28, —% N(0,0%). (B.18)

hiln

In order to apply the Cramér-Wold device, all possible linear combinations of the components
inV_Q_. (6..,) mustbe considered. Such general sums can be representedas S, (a) = a' V_Q.. (0_,),
where a € R**™. This can be rewritten, by ‘taking the sum outside of the vector V_Q_ (0_,)’,
as

a)=Y X(a), (B.19)
t=1

48



2.1 Nonlinear spectral analysis via the local Gaussian correlation 79

where X, (a) = a'X,, with the vector X, obtained by stacking all the components X,,, on top
of each other, i.e. X, = [X . G

By construction, E[X,(a)] = 0, the required a-mixing are inherited from the original time
series {Y,} (see eq. (C.36)), and lemma C.8 ensures that the property E[|X,(a)|"] < oo holds
true. That is, X,(a) does also satisfy the requirements stated in Theorem 2.20(i) and Theo-
rem 2.21(i), which gives the following asymptotic results;

11:¢7 ° °

n'S,(a) — o*(a) =,(a) +2)_7(a) (B.20)

£>1

n28 (a) —= N(0,0%(a)), (B.21)

where the autocovariances ,(a) now are with respect to the time series X, (a) = a’X,.
Since y,(a) = Var(a'X,) = a’ Var(X,) aandv,(a) = Cov(a'X,,,,a'X,) = a'Cov(X,,,, X,) a,
it follows that we can write 0*(a) = a'W_ ,a, with W_ , being the matrix obtained in the ob-

vious manner by factorising out @’ and a from the sum of autocovariances, i.e.

W, = Var(X,) +2) Cov(X,,,, X,) (B.22)
£>1

=E[X,X]+2) E[X, X/, (B.23)
£>1

where the second equality follows since E[X,] = 0.

The Cramér-Wold device now gives the required conclusion, n">V.Q_ (6_,) -+ N (0, W)
O

Lemmas B.3 to B.6 shows that the penalty function Q) (6..) (for fixed m and fixed b) satis-
fies the four requirements given in items (A/) to (A4) of theorem B.1, and this implies that the
following asymptotic results holds in this particular case

\/ﬁ <§m:n - em;b) *} N(O V:;\mebV:i_\;) : (B24)

The hard task to deal with in the general situation, when m — oo and b — 0" as n — oo, is
the asymptotic behaviour of n=/2V_Q__ (6. ,). This will be treated in appendix B.2.

m

B.2 The A4-requirement in the general case

The verification of the three first requirements of the Klimko-Nelson approach does work as
before when ‘m — oo and b — 0 when n — o0’, whereas the asymptotic normality in
the fourth requirement demands a more detailed investigation. Appendix B.2.1 will introduce
some new building blocks to be used in the investigation of the asymptotic properties, which
will be developed in appendices B.2.2 and B.2.3. Some technical details that only depend upon
the kernel function and the score functions have been collected in appendix C.4.
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B.2.1 The final building blocks

The bivariate processes Y, , from definition 2.6 will now be used to construct new random
variables, that culminates in a random variable Q)7 which has the same limiting distribution®
\/@VWIQ%"(BW)). Looking upon eq. (B.8), it is clear that everything depends upon the
three functions ¢ (y,; 0,), u,(y,; 0,) and K,..(y, — v). The number of parameters in 6, will
henceforth be denoted with p, since the discussion needs to encompass both p = 1 and p = 5.

Definition B.7. For i (y,;8,) the local Gaussian density used when approximating g, (y, ) at
the point v = (v,,v,), define forallh € Nand q € {1,...,p}
(a) With 0, , the population value that minimises the penalty function q, , from eq. (B.4), let

0
uhq:b(w) = aT log (w(yh,; ah)) ( ) ( ) . (B.25)
hea Y3 0),)=(wi 0,

(b) For L > 0, define the following lower and upper truncated versions of u, ., (w),

U, (W) =, (w) - 1{]u,,,(w)| < L}, (B.26a)

hq:b — “hgb

U, (W) =, (w) 1{|u,,,(w)| > L}. (B.26b)

Obviously; uhq:b(w) = uhq:b(w)SL + uhq:b(w)>L and uhq:b(w)gL : uhq:b(w)>L =0.
(c) Let u, (w) be as in item (a), with the difference that the limit b — 0% of the parameters
0, ., are used in the definition.”’ Let u, (w)<" and u, (w)>" be the truncated versions

of Uy, (w)
The following simple observations will be useful later on.

Lemma B.8. For the point v, the following holds for the functions introduced in definition B.7.

(a) sup,, ’uh’q:b(v)| < oo and sup,, |uhq(v)‘ < 00.

<L )gL

(b) When L is large enough, u,,(v)=" = u, ,(v) and u, (v)=" = u, (v).

Proof. By definition, the functions u,,(w) and u, (w) will all be bivariate polynomials of
order two (in the variables w, and w,), which implies that they are well defined for any point v.
Since the parameters in these polynomials originates from a local Gaussian approximation of
g,(y,) at the point v, and since assumption 2.1(b) ensures that the bivariate densities g, (y, )
will approach the product of the marginal densities when h — oo, it follows that the estimated
parameters must stabilise when i becomes large. This rules out the possibility that any of the
parameters can grow to infinitely large values, which implies that the supremums in item (a)
are finite. Item (b) follows as a direct consequence of this, the statement holds true for any
threshold value L that is larger than the supremums given in item (a). U

The bivariate kernel to be used in the present approach will be the same as the one used in
Tjgstheim and Hufthammer (2013), i.e. it will be the product kernel based on two standard

%Due to the presence of the kernel function K,.,(w), the fourth requirement of the Klimko-Nelson approach
will (when b — 0%) require that the scaling factor n~'/* is adjusted with (b,b,)"*, and this scaling must thus
also be included in the discussion in the present approach.

3The limit of the parameters 8, , will exist under assumptions that implies that the four requirements of the
Klimko-Nelson approach are satisfied, cf. Tjgstheim and Hufthammer (2013) for details.
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normal kernels. The following definition enables a more general approach to be used in the
theoretical investigation,’' while capturing the desirable properties that will be satisfied for the
product normal kernel.

Definition B.9. From a bivariate, non-negative, and bounded kernel function K (w), that sat-

isfies
RQK(waQ) dw,dw, = 1, (B.27a)
K, (w,) = [ K(w,,w,)w!dw, is bounded for k € {0, 1,2}, (B.27b)
R
K,,(w,) = / K(w,,w,)w: dw, is bounded for ¢ € {0,1,2}, (B.27¢)
/ K(w,,w,) |Jwiwi] dw,dw, < oo, k4>0andk+0<2-[v], (B.27d)

where v > 2 is from assumption 2.1(b) (and [-] is the ceiling function), define

1 Y, — U, Y, —
K|t =2 B.2
b b ( bl / b2 ) ( 8)

172

Kh:b(yh - ’U) =

It turns out, see appendix C.4 for details, that the asymptotic results needed later on mainly
depends upon the properties of the kernel K (w) and the components w, ,(w) of the score
functions.

Some vector and matrix notation is needed in order to make the expressions later on more tractable.

Definition B.10. With g, (y,), u,,,(w) and K(w) as given in definitions 2.6, B.7 and B.9, let

Uo = (W) ... 1, ,(v)], and define the following matrices.
b=, 0,(v) [ K(w) dw, (B.292)
RQ
=pw,, (B.29b)
h=1

Matrices W, and W, can be defined in a similar manner, using the b — 0% versions u, (w)
from definition B.7(c). Note that W, , and W, will have rank one, whereas W_ , and W_ will

have rank m. Furthermore, note thatifa, € R*anda_ = |a,,...,a,), thena., I/Vm W =2 aW, ,a,.

The time is due for the introduction of the random variables.

Definition B.11. Based on'Y,

h:t?

(W) and K. (y, — v) from definitions 2.6, B.7 and B.9,
define new bivariate random variables as follows,

X:qt ’U =V b,b, K’bb - hq:b(Y;:t) ) (B.30a)
X (0) = /0,5, Kia(Y,,, — hq:b(Y;:t)gL ) (B.30b)
Xy () = /b Ko (Y, — 0) 1, (Y,,) 7" (B.300)

3 Differences in the computational cost implies that the product normal kernel is used for practical purposes.
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Obviously; X'

he (V) = X035 (0) + X025 (v) and X535" (v) - X325 (v) = 0.

Since the point v will be fixed for the remainder of this discussion, v will be suppressed and
only X' will be used when referring to eq. (B.30a), and v will also be suppressed for the new
random variables derived from X7’ .

Note: A comparison of X"  against the components occurring in the expression for V,Q, . (6, ),

see eq. (B.8), implies that the following adjusted variable should be included,
)?;:q:t = X:q:t - b1b2 /2 K’“b(yh - U) uhq:b(yh) ¢(yh; 0h) dyh, (B'31)
v R

but the arguments later on will use a mean adjusted approach similar to the one used in Masry
and Tjgstheim (1995), see the definitions of Z; , and Q}_ below, and the only place X' , is
needed is in the proof of lemma B.14.

Definition B.12. Based on the bivariate random variables X' , from definition B.11 define the
Jollowing bivariate and (m + 1)-variate random variables,

Z,. =X, —B[X},.], (B.32a)
=D D (B.32b)
t=1

P >L L 7 . . .
Similarly, Z;\=", Zn<", W=t and Q)" can be defined in the natural manner, with the obvious

. >L <L >L <L >L L ]
connections Z)',, = Zy3" + Ziit Zii' - Ziast =0, and Qp, = Q1= + OF* holding for

hq:t

all L. Moreover: COV(Z" Z}"A) = E[Z" Z}"k] = COV(X” , X7 )

hq:i? ha:i haii? <X jrik

The last batch of random variables can now be introduced.

Definition B.13. Based upon the bivariate Z' , from definition B.12, and for a = a_, € R"*™,

hq:t
define the following (m + 1)-variate random variables,

m p

Zida) = 3% 0,2~ a2 ®.3%)
h=1 ¢q=1
m P

On(a) = a, 05, =a'Qy, (B.33b)
h=1 ¢g=1

where Z™

m:t

Lemma B.14. Q" and \/b,b,V_Q.. (0. ,) share the same limiting distribution.

Proof. The only difference between Q7. and \/0,0,V_ Q.. (6. ,)is that the firstuse Z}' , where
the second use X' ,. The difference between these components are

hq:t*

and Q~. are defined in the obvious manner.

Z:q;t - X:L;;t =V b1b2 : / K]“b(yh - U) uhq:b(yh) {gh(yh) - ¢(yh; Oh)} dyh’ (B'34)
R2

and this difference will not only approach zero but in fact be identical to zero when the band-
width b is smaller than b, since the population value 6, , in that case satisfies eq. (B.5). The
result now follows from Billingsley (2012, Th. 25.4). O
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The purpose of the new random variables introduced in definitions B.11 to B.13 is to find
under which conditions the fourth requirement of the Klimko-Nelson approach is satisfied in
the general situation where m — oo and b — 0" when n — oo.

Compared to the discussion in appendices B.1.2 and B.1.3, the effect of p free parameters
instead of 5 free parameters is that the m x m block-matrices will have components that are
matrices of size p X p instead of size 5 X 5 — except for this, the arguments in lemmas B.3
to B.5 will be unaffected, i.e. the three first assumptions of the Klimko-Nelson approach have
already been covered.

The part that does require some effort to investigate is the fourth requirement of theorem B.1,
which (using the notation introduced here) means that it is necessary to verify that n='/> Q"
approaches a normal distribution when b goes to zero when n and m are ‘large enough’. The
proof will be presented in a step by step manner, that builds upon the asymptotic behaviour
of E [X i X k] The computation of this expectation will (depending on the indices A, 7, j
and k) either require a bivariate, trivariate or tetravariate integral.

Combinations H v ‘ b H Y. Y.,
First argument of K., v | b || Y | Y
Second argument of K., || v, b2 Y, Y,

Table 1: Factors deciding bivariate, trivariate or tetravariate.

hq:i gr: k]
i.e. the presence of v and b and the dependence on Y, in the kernel functions — and it is ev-

ident from this table that the amount of overlap in the indexing set {i,h + i, k, j + k} will
decide if the resulting integral turns out to be bi-, tri- or tetravariate. Note that eq. (2.13) of
definition 2.4(c) implies that only positive indices are required, so the bivariate case can thus
only occur when 7 = k and ~ = j. It will be seen later on that these bivariate components are
the only ones that adds non-negligible contributions to the asymptotic behaviour.

Table 1 lists the combinations that must be taken into account when computing E [X R, ¢4

B.2.2 The asymptotic results — basic part

The analysis of the asymptotic properties of X'
if either the kernel function K'(w) or the score-function components u,_,(w) had bounded
support, since the finiteness requirements of assumption 2.1(g) then would follow directly
from lemma C.6, and the proof of lemma B.15 would be rather trivial. However, in the present
analysis, K (w) and u,_, (w) both have R* as their support, which implies that extra care must
be taken when working with the densities under consideration.

from definition B.11, would be quite simple

hg:i?

Lemma B.15. When Y, satisfies assumption 2.1, and u, ., (w) and K (w) are as given in defi-
nitions B.7 and B.9, then the random variables X' | from definition B.11 satisfies

(@) E[X:,.] = O(y/bh,).

(b) B[| X717 = O(Ib,b,| 7).

hq:i
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U, (V) U, (V) g,(V) [ K(w)*dw + O(b, V b,) when bivariate,
(c) E[X;, - Xr.] =<0, Ab) when trivariate,
O(b,b,) when tetravariate,

where bivariate, trivariate and tetravariate refers to how many different Y, the four in-
dices h, i, j and k gives, cf. table 1 for details.

Proof. The expectations in items (a) to (c) are all finite due to assumption 2.1(g) and they do
in addition correspond to integrals whose integrands are of the form V - g, where g is a density
function and V is an integrand of the type discussed in items (a) to (c) of lemma C.6, i.e. V
collects everything that only depends on the functions w, , (w) and K (w). The substitutions
used in the proof of lemma C.6 can be applied to the different cases under investigation, and
it follows that these substitutions will create new integrals with the desired function of b, and
b, as a scaling factor. This proves items (a) and (b) and it also takes care of the trivariate and
tetravariate cases of item (c).

Equation (2.18) from assumption 2.1(d) is needed for the bivariate case of item (c), i.e. the
Taylor expansion of g, (y,) around the point v allows the integral of interest to be written as
the sum of the following three integrals:

J = / V(y,)-g,(v)dy,, (B.352)
R2

7= [ V() (@) ly, - o) du, (B.350)

7= [ V) Ot v, — o)) by, (B350

The bivariate case of lemma C.6(c) shows that the term 7, gives the desired result, so it
remains to prove that the terms 7, and 7, are O(b, V b,). For this investigation, the substitution
w, = (y, —v,) /b, and w, = (y, — v,) /b, must be applied, which in particular replaces the
vector [y, — v] with the vector [b,w,, b,w,]’. In order to compactify the notation, let a, and a,
denote the two components of g, (v), let YW be the substituted version of V, let R, and R, ,
be the two components of the remainder function and finally let €, and %, , be the substituted
versions of R,, W and R, ,W.

With this notation, the substitution used upon 7, gives
J, = albl/ w, - W(w) dw + ang/ w, - W(w) dw, (B.36)
R? R2

whose integrands include an extra factor of w, or w, compared to the integrands encountered
in the proof of lemma C.6. This is however no problem, since lemma C.5(b) implies that the
finiteness conclusion still holds true in these cases, which implies that 7, is O(b, V b,)

Since assumption 2.1(g) ensures that the sum of the tree integrals 7,, J, and 7, is finite, and
the above discussion shows that the two first of them are finite, it follows that 7, also is finite.

54
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An inspection of 7, after substitution, i.e.
Ty = /2 [bw, - T, (y(w)) + bw, - T,,(y(w))] dw, (B.37)
R

then reveal that the maximum of b, and b, can be factorised out of the integrand. This implies
that 7, is O(b, V b,), and thus concludes the proof of lemma B.15 O

The following corollary is handy when the covariance is the target of interest.

Corollary B.16. When Y, satisfies assumption 2.1, and u, ., (w) and K(w) are as given in
definitions B.7 and B.9, then the random variables X} , from definition B.11 satisfies

hq:t

(V) U, (V) g,(V) [ K(w)*dw + O(b, V b,) when bivariate,

Cov(Xy ., X! .) =3 0(b, Ab,) when trivariate,
O(b,b,) when tetravariate.
(B.38)

Proof. Since Cov (X" Xn ) = [X" - X7 ] [X;q ] -E [X;.‘T:k] , the result follows im-

hqii? <> jrik hqsi jrik

mediately from an inspection of items (a) and (c) of lemma B.15. Ol

The next corollary is needed in the proof of lemma B.18.

Corollary B.17. When 'Y, satisfies assumption 2.1, and u,,(w) and K (w) are as given in def-
initions B.7 and B.9, then the random variables Z}' , and Z" (a) from definition B.12 satisfies
(@) E[|Z,.]']"" = O(|b,b,|*"™).

(b) El|Z;. (@)1 = O(m b5, ")

m:t

Proof. The connection between expectations and L”-spaces discussed in appendix C.5, see
eq. (C.41), can be applied here, which in essence reduces the proof to a simple application of
Minkowski’s inequality. For item (a), note that lemma B.15 gives the following result

H ha:t ]l/u _EHtht I:X:qt:l "} v (B.39a)
<E[IX;. 1" +B[E[X; ][ T" (B.39b)
= O([b,b,|*"™) +0(F) (B.39¢)
= O(|b,b,|*""™) . (B.39d)

Item (b) now follows from item (a) and lemma C.8, due to the following inequality,

v 1/v
E[| 22, (a)]']" th a2, } (B.40a)
= ZZ W Bl 201" (B.40b)
h=1 ¢=1
m p
<D D AL O(Ibb| ) (B.40c)
h=1 ¢=1
= O(m|b,b,|*"). (B.40d)



86 Papers

where A_ is the maximum of |a,,q‘. U

B.2.3 The asymptotic results — final part

This section will present the final steps toward the verification of the fourth requirement of
the Klimko-Nelson approach for the case where m — oo and b — 0" when n — oo. Note
that theorem B.20 (the main theorem) requires both a large block - small block argument and
a truncation argument, and the technical details related to these components will be taken care
of in lemma B.18 and corollary B.19.

The large block - small block argument requires that quite a few components must be verified
to be asymptotically negligible. The following lemma, which extends an argument encoun-
tered in the proof of (Masry and Tjgstheim, 1995, Lemma 4.3(b)), shows that the asymptotic
negligibility of all the ‘off the diagonal’ components can be taken care of in one operation.

Lemma B.18. When Y, satisfies assumption 2.1, when n, m and b are as specified in assump-
tion 2.3, and when u,,,(w) and K (w) are as given in definitions B.7 and B.9 — then the random

variables 7" (a) from definition B.13 satisfies

m:t

= Z [E[Z2.(a) - 22, (a)]| = o(1). (B.41)

ik=1
i#k

Proof. Assumption 2.1(a), i.e. the strict stationarity of {Y,}
eq. (B.41) can be reduced to a single sum, i.e.

1 n n—1
Y Bz Zidal =2 Y (1 1) Ta) B.42)

\ez» implies that the double sum in

where the terms I” ,(a) are given by

1; (a) = [E[Z},(a) - Z} (a)] (B.430)
E ZZ% ha:0 ZZ%ZJL (B.43b)
=1 q=1 Jj=1 r=1

m P
Z Zzahq(l” Zyo ZJ", [} (B.43¢)

h=1 j=1 ¢g=1 r=1

m m p

<22 lanallasd Iy s (B.43d)

h=1 j=1 g=1 r=1

where I}' ., = ’E[Zl[q o 2, £]| — ‘Cov(X;L'qU,X]"M)’
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Introducing integers &, (to be specified later on) such that k£, — oo and k,m?b,b, — 0 as
n — 00, eq. (B.42) can be written as the sum of the following three sums,

J=2Y (1—t/n) I, (a), (B.44a)
=1
k,+m
J,=2Y " (1=t/n) 12, (a), (B.44b)
{=m+1
n—1
J,=2Y " (1=t/n) I} (a). (B.44c)
=k, +m+1

From the definition of I ,(a) it is seen that in J, there will be some overlap between those
Y, that are a part of Z

m:0

be the case for the two sums J, and J,.

(a) and those that are a part of Z" ,(a), and moreover that this will not

Equations (B.43d) and (B.44a) implies that a squeeze argument can be used when dealing
with J,, i.e.

m m m P p

0<J,<2- | max la 12D YD |cov(X 0, X2 | (B.45)

qe{1,...,p} (=1 h=1 j=1 ¢=1 r=1

and corollary B.16 can be used to determine how the summand behaves in the limit. Table 1,
page 53, shows that the bivariate case never occurs, that h must be equal to ¢ or 5 + ¢ in order
for a trivariate case to occur, and that the rest of the cases must be tetravariate. It is not hard (but
a bit tedious) to explicitly compute the number of trivariate terms that occur in eq. (B.45), but
for the present asymptotic analysis it is sufficient to note that the number of trivariate terms is
of order m?, whereas the number of tetravariate terms is of order m®. Corollary B.16 thus gives
that the bivariate and tetravariate parts of the bound for J, respectively are O(m?(b, A b,)) and
O(m?b,b,).
J, = o(1) now follows from assumption 2.3(c) and the following two simple observations;

m?*(b, Ab,) <m?(b, Vb,), (B.46a)
m’bb, <m™'-m*(b, Vb, =m™" - (m’ (b, Vb,)). (B.46b)

For J,, a squeeze similar to the one in eq. (B.45) can be used. The situation becomes simpler
since £ > M ensures that only the tetravariate case is present, and the order of .J, becomes

J, = O(k,m?b,b,) . (B.47)

Since k,m?b,b, — 0 (with a choice of k, to be specified below), it follows that .J, = o(1).

For J,, the Corollary of Lemma 2.1 in Davydov (1968) will be used to get an upper bound
on I" ,(a), such that a squeeze-argument can be used for J, too. The requirements needed
for Davydov’s result are covered as follows: The strong mixing requirement is covered by
assumption 2.1, and (for a given m and b) the requirement about finite expectations follows
from corollary B.17(b).
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The o-algebras to be used follows from the comment stated after eq. (C.33), i.e. that Z"  (a) € F,

whereas 27 ,(a) € F/t™ C F° Thus, for ¢ > k, + m, the following bound is obtained

m(—m)*
onl; (a),

I (a) = [E[Z},(a) - Z; ,(a)]| (B.48a)
= [E[Z}(a)- Z; (a)] — E[Z}, (a)] - E[Z], ,(a)]| (B.48b)
<12(E[|Z2,(a)')" - (B[ Zz. (@) - [a( —m)] " (B.48¢)
=12 ((B[|Zp,(@)|'])")" - [a(t = m)] =" (B.48d)
=12 (O(m|b,b,|* ")) - [a(t — m)] " (B.48e)
<C-m® - bb, | Ja(C —m) (B.48f)

where eq. (B.48b) follows since the mean of Z” ,(a) by construction is zero, where eq. (B.48c)
is Davydov’s result, where eq. (B.48d) use the strict stationarity of the process {Y,}, where
eq. (B.48e) is due to corollary B.17(b), and finally eq. (B.48f) is an equivalent statement,
using a suitable constant C to express the upper bound.

A squeeze for J, can now be stated in the following manner

0< T, <C- Y (m? - [o,b,| ") - [a(h)] ™", (B.49)

j=k,+1

where C, is a constant, where the index has been shifted by introducing j = ¢ — m, and where
the sum from eq. (B.44c) has been extended to infinity (adding only non-negative summands).

A comparison of eq. (B.49) with the finiteness requirement that the strong mixing coefficients
should satisfy, see assumption 2.1(b), indicates that if j* > m?> - |b,b,|*™"" for j > k_+ 1,
then that could be used to get a new upper bound in eq. (B.49). Taking the a™ root on both
sides, itis clear that the desired inequality can be obtained when k, + 1 = [m?“ - |b,b,|*"*"],
which gives the new bound

0<J,<C > lali) ™", (B.50)

J=kn+1

andif k, — oo whenn — oo, the finiteness assumption from assumption 2.1(b) gives that J, =

Finally, lemma C.4 verifies that k, satisfies the two limits k, m?b,b, — 0 (needed for the
J,-term) and k, — oo (needed for the J,-term). Altogether, this shows that eq. (B.41) can be
rewritten as J, + J, 4+ J,, all of which are o(1), and the proof is complete. O

The following observations are needed in the truncation argument of theorem B.20.

Corollary B.19. When Y, satisfies assumption 2.1, when n, m and b are as specified in assump-
tion 2.3, and with W, = @)W, ,anda = a_ = |a,,...,a,] (witha, € R?) as given in
definition B.10, then the random variable Z" ,(a) from definition B.13 satisfies

(a) Var(Z}, (a)) = al, W ,a,+0(m* - (b, Vb,)) = 351, a; W, ,a,+0(m* - (b, V' b,)) =

m:t

O(m).
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Furthermore, with r == r, a sequence of integers that goes to oo when n — oo, and for a
given threshold value L, the following holds for the random variables 0, = ;_, Z= (a),
i = Zni () and npt =300 Z50 (a).

(b) Var(n,,)=r" {thl a,W,,a, +o(1)}.

(c) When L islarge enough, Var(nsk) =r-{>°]", a,W, ,a, + o(1)} and Var(n;%) = r - o(1).

Proof. For item (a), note that it follows from definitions B.12 and B.13 that

Var(Z7.( ZZZZ%% Cov(X; ., X ) (B.51a)

hljlqlrl

m V4 m Vg P
_ 0oy n n
E E a,.a,, Cov tht, hrt + E E E a,,a, Cov tht,X]”)
h=1 ¢g=1 r=1 h,j=1 ¢=1 r=1
h#j

(B.51b)

The bivariate case of corollary B.16 can be applied to the ‘diagonal part’ of the sumineq. (B.51b),
whereas the trivariate and tetravariate cases can be applied to the ‘off-diagonal part’ The ‘diag-
onal part’ can thus be written as the sumof )" | >0\ 3°%_ | a,,a,,1,,, (V) u,,., (V) 6,(V) [po K
(whichisequaltoa'W, ,a =>";"  a,W, ,a,)and a sum that is O( - (b, V' b,)). For the ‘off-
diagonal part’ the result is O(m? - (b, A b,)). Both of these asymptotically negligible terms are
covered by O(m? - (b, V b,)), and this gives the two first equalities of item (a). The last equality
follows since the summands a; IV, ,a, are finite.

For item (b), note that the variance can be expressed as

ar(n,,,) ZVar +ZE Z: (a)- Z2 (a)]. (B.52)

i k=1
ik

The ‘on diagonal’ part of this sum equals r - Var(Z~ ,(a)) due to assumption 2.1(a), while the
‘off diagonal’ part due to lemma B.18 becomes r - o(1). Together with the result from item (a),
this gives the statement in item (b).

The truncated cases in item (c) use the same arguments as those encountered in item (b), with
the effect thatthe u, , (v) u,,., (v) that occurs in IV, , either are replaced by u,, (v)=" u,, ., (v)="
or by u, ,(v)”" u,,,(v)"*. LemmaB.8(b) gives that u,,,(v)=" =, ,(v) when L is large
enough (and thus u, ,(v)”* = 0), which completes the proof. O

The main theorem can now be stated, i.e. this result can be used to verify the fourth re-
quirement of the Klimko-Nelson approach for the penalty function Q. (€. ,), from which it
follows an asymptotic normality result for 9v|m\ »p» that finally gives the asymptotic normality

result of f7' (w). (Confer remark B.3 for an interpretation of the m that occurs in the limiting
distributions.)

Theorem B.20. For a given point v = (v,,v,): When Y, satisfies assumptions 2.1 and 2.2,

when n, m and b are as specified in assumption 2.3, and with W, = @, W, , and a =

a. = la,,...,a,] (with a, € R?) as given in definition B.10, then the random variables

m

Q2 (a) and g);; Sfrom definition B.13 will for small b and large m and n satisfy
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(a) n72Q%(a ) —5 N(0, Z;” L a W, . a,), i.e. asymptotically univariate normal.
(b) n=2 QL —5 N(0, @), W,,), i.e. asymptotically mp-variate normal.

Proof. For the proof of item (a), note the following connection between Q7 (a) and Z"_(a)
which follows directly from definitions B.12 and B.13,

m p
on(@) => "> a0, = ZZahq ZZW

h=1 ¢=1 =1 g=1

[zz%@t
t=1

1 g=1

:ZZ:;t( ).

t=1

(B.53a)

A large block - small block argument can be used to analyse this, i.e. the index set {1,...,n}
will be partitioned into large blocks and small blocks, such that 7 (a) can be expressed as the
sum of S, S® and S® (to be defined below). The asymptotic distribution of Q7 (a) will
be shown to coincide with the asymptotic distribution of S, the summands of S" will be
shown to be asymptotically independent, and finally the Lindeberg conditions for asymptotic
normality of S{" will be verified.

Use ¢, r, and s from lemma C.3(c) to divide the indexing set {1, ..., n} into 2¢ 4 1 subsets
of large blocks and small blocks (and one reminder block), defined as follows

={(-D@r+s)+1,....,0-1)(r+s)+r}, forj=1,...,¢ (B.54a)
:{j—l(r+9)+r+1 Jr+s)}, forj=1,....¢, (B.54b)

_ ..,n} whent(r+s) <n, (B.540)

(Z) when ¢ (r + s) = n.
In order to avoid iterated sums later on, introduce the following unions,
¢ ¢
A=A, B =B, (B.55a)
j=1 j=1

Note that the number of elements in .4° and 3° will be ¢r and ¢s respectively. The number of
elements in C, will be n — ¢(r + s), and this can vary between O and r + s — 1 < 2r-.

Use these subsets of {1, ..., n} to define the following variables,
no=Y_ Zi(a), forj=1..0¢  SV:= Zn =Y 7..(a),  (B.56a)
tEA; teA°
= Zi(a) forj=1,...1¢ 5e —Zg =Y 7. .(a), (B.56b)
tGB teB®
=Y 2. (a), 59 =, (B.56¢)
teC,
such that
2 Qn(a) =nT S+ 5P + S} (B.57)
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The expectation of these quantities are by construction equal to zero, which gives

3 3
Var(n™* O (@) = - B[O} (@) OL(a)] = - SO EISY S0]. (BSY)

" p=1 ¢=1

When p # ¢, there will be no overlap between the indexing sets that occur in the two sums,
and the following inequality, here illustrated by the case p = 1 and ¢ = 2, is obtained

1
() (2 e

lE[S“) L S9)| =

< fZZ E[Z2,(a) - Z2,(a)] (B.59b)
i€ A° keB®

<= Z E[Z2.(a) - Z2,(a)]]. (B.59¢)
i,k=1
ik

Lemma B.18 thus gives that the expectation of all the cross-terms are asymptotically negligible.

For the case p = ¢ = 2, i.e. the small blocks, the same strategy as in eq. (B.59) shows that the
internal cross-terms are asymptotically negligible. Corollary B.19(a) states that the remaining
summands all are O(m), which results in the following bound

Els® 50 = - 3 B(Z;,(a)- 23, (a) (B.60)
1 . . 1 P
— EZE[ZW(a) Zpaa) 4~ ZOE[Zm(a) Z (a)]  (B.60b)
ieB ”7;‘5
- % >_0m) +o(1) (B.60c)
<m€5)
=0 : (B.60d)
n

For the case p = ¢ = 3, i.e. the residual block, a similar argument gives

E[S© . 5] = o(m(’l_’ms’))) <o(™). B.61)

n n n

Lemma C.3(c) ensures that (mfs)/n and mr/n goes to zero, so the terms investigated in

eq. (B.60) and eq. (B.61) are asymptotically negligible. This implies that n=*/2(Q% (a) — S) = 0

and (Billingsley, 2012, Theorem 25.4) states that there thus is a common limiting distribution
forn="? Q" (a) and n=*/2 SV,

The arguments used for S also gives the simple observation below, which is needed later
on,

Var(n™"/? SM) ZVar o(1). (B.62)
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The next step is to show that the random variables 7, are asymptotically independent, which
formulated relative to the characteristic functions corresponds to showing

¢
Elexp(itS™M)) HE exp (itn,) ]| — 0. (B.63)

J=1

The validity of this statement follows from Lemma 1.1 in Volkonskii and Rozanov (1959,
p- 180), by introducing random variables V. = exp(itnj), for j =1,...,¢. By construction,
the V/ trivially satisfies the requirement ’VJ’! < 1, so it only remains to identify the correspond-
ing o-algebras and the distance between them. From the definitions of 7,, A, and Z” (a),
it is easy to see that V € F( )71, and from this it follows that the distance between
the highest index in the o-algebra corresponding to V; and the lowest index in the o-algebra

corresponding to V., is given by

I ={(G+1)-Dr+s)+1}—{G-D(r+s)+r+m}=s—m+1. (B.64)

Assumption 2.3(f), i.e. m = o(s), ensures that there (asymptotically) will be no overlap be-
tween these o-algebras, and the result from (Volkonskii and Rozanov, 1959) thus gives 16(¢ — 1)a(¥)
as an upper bound on the left side of eq. (B.63). Lemma C.3(c) says that this bound goes to
zero, which shows that the 7); are asymptotically independent.

It remains to verify the Lindeberg condition, for which an expression for s> := Z§:1 Var (nj)
is needed. From assumption 2.1(a) and corollary B.19(b), it follows that

L m
5Z:ZVar(77j )=1¢-Var(n)=1(-7- {Za W,.,a, +o 1)} (B.65)
=1

and assuming s, > 0, the condition to verify is

’
Ve>0 ILm ZéE[r}?ﬂ{MJ Ze\/sj%}} — 0. (B.66)
n OO]:l ? ;

This holds trivially if the sets occurring in the indicator functions, i.e. { ’77] ’ > €,/5? } , becomes
empty when n is large enough. It is thus of interest to see if an upper bound for |77J| can be
found, and if the limit of this upper bound becomes smaller than the limit of the right-hand
side €,/s2.

Keeping in mind the definitions of X}’ ,, Z}' , and 1, see eqgs. (B.30a), (B.32a) and (B.56a),

it is clear that an upper bound for |77] | might be deduced from,

m p
’771’_ ZZ ahq hqt = ZZZ hq |tht 5 (B.67a)
fEAhlql fE.Ahlql
| Z = | X0, — E[Xr ]| < X0 + O(\/blbz) : (B.67b)
1 Y. —v Y —
| X = blbg-bth<"*’“'bUl, = vZ)uh:b(Ym) . (B.67¢)
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If all of the functions u,,,(w) are bounded, or if the kernel functions K).,(w — v) have
bounded support, then the present framework will be sufficient to reach the desired conclusion.
However, no such conditions are assumed, and a truncation argument must thus be introduced in
order to deal with this problem — in particular, the expression Q7 (a) = Q*<*(a) + Q*>*(a)
will be used.

Lemma B.8(a) implies that a large enough value for the threshold L will ensure that all con-
structions and arguments based upon the ordinary functions w, , (w) also works nicely for the
pew(w) =" and u, , (w)~*. With regard to the limiting distributions, first
note that =2 Q”>*(a) and n~'/2 S™'** shares the same limiting distribution, and then ob-
serve that the upper truncated versions of eqs. (B.62) and (B.65) together with the result from
corollary B.19(c), gives the following bound when L is large enough:

truncated functions u

—1/2 1\>L_1 - >L _KT
Var(n™/? SOM1F) = g;Var(nj ) +o(1) = —-o(1). (B.68)
Since ¢r < n, it follows that n~*/> Q™>*(a) = 0, so the limiting distributions of n~*/2Q" (a)
and n~'2 Q<" (a) coincide when L is large enough.*> Next, observe that the random variable
|7]§L | obviously will have an upper bound, since the truncated polynomial v, (w)=" will occur
in the lower truncated version of eq. (B.67). Since the kernel function K (w) by definition is
bounded by some constant /C, it follows that ’77/9| is bounded by

}nfL| < rmp (max ‘a

hq

K rm
——L+0(+/bb L B.69
)( Lt (\/12)><C L )

172
where C is a constant that is independent of the index j.

It remains to verify that the indicator functions 1 { |77le > e/ (82)=" }, from the lower trun-
cated version of eq. (B.66), becomes zero when n — oo, which can be done by checking that
the upper bound of ‘nfL’ from eq. (B.69) in the limit gives a smaller value than the lower trun-
cated version of (s2)<* from eq. (B.65). This in turn can be done by dividing both of them with
V/frm, and then compare their limits. Assuming that the threshold value L is high enough to
allow corollary B.19(c) to be used, i.e. that (s?)=* and s? share the same asymptotic expression,
this becomes,

T

<L
"] <cr ™M, due to lemma C.3(c), (B.70a)

V Irm gblbg
/(&2\<L 1 m
&:e- {ZGZM:bah‘f‘O(l)}XE'

1 m
— W, La, B.70b
—> aW,a,  (B70b)

h=1

trm E h=1

Assumption 2.2(b) ensures that W, , (from definition B.10) converges to some non-zero matrix
(as h — oo and b — 07), and this implies that the limit of % Yo a, W, a, in eq. (B.70b)

h:b

Truncation arguments often requires the threshold value L to go to oo in order for a conclusion to be obtained
for the original expression, but this is not required for the present case under investigation (due to lemma B.8).
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will be nonzero, from which it follows that the indicator function in eq. (B.66) becomes zero
in the limit, i.e. that the Lindeberg condition is satisfied.
This implies that

£ <L
o<
IO/ SN 5 N(0,1), (B.71)

which due to ¢r < n can be re-expressed as

14

n~? Z nt — N (07 Z a;,W,“bahy> . (B.72)
h=1

=1

The proof of item (a) is now complete, since the four random variables n=/2Q?% (a), n='/?Q"<*(a),
n~2(SM)=t and n='/? Z 1" all share the same limiting distribution (when L is large
enough).
The proof of item (b) follows from the Cramér-Wold theorem. O

Remark B.3. The statements in theorem B.20 has to be interpreted as an approximate asymp-
totic distributions valid for large m and n and small b. One part of the ‘asymptotic problem’
is the interpretation of an infinite-variate Gaussian distribution, but the main problem is the
occurrence of the kernel function K (w), which in the limit gives a degenerate Gaussian distri-
bution in theorem B.20(b) (when p > 1). This degeneracy in itself would not have been any
issue if the target of interest had been the asymptotic behaviour of n='/2 Q" but it requires
some additional rescaling before the Klimko-Nelson approach in theorem B.1 can be used to
investigate the asymptotic properties of the estimates 0_ ., see appendix B.3 for details.

min?

Corollary B.21. Given the same assumptions as in theorem B.20, the following asymptotic
result holds true

n2/b,b,V.Q,.(0,., —>N< @ ) (B.73)

i.e. asymptotically mp-variate normal.

Proof. Lemma B.14 states that Q7 and /b,0,V_Q. (6. ,) have the same limiting distribu-
tion, and the result thus follows from theorem B.20(b). O

B.3 The asymptotic results for )
The final details needed for the investigation of the asymptotic properties of f " (w) will now
be presented, with a notation that discern between the two options p = 1 and p = 5. (Confer
remark B.3 for an interpretation of the m that occurs in the limiting distribution.)

v|m|blp

v\p

Theorem B.22. Under the same assumptions as in theorem B.20, the estimated parameter

vector 6 converges towards the true parameter vector 0, - in the following manner.

v|m|blp

n(bb,)" " - (5 9, ) L N(0,5,,,) (B.74)

v|m|blp v|m|p
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where =@, X, i-e. ¥, ., is the direct sum of the covariance matrices ¥, that

v|m|p *

corresponds 10 \ / n(b,b, )" (év\mb\p - aum\p)'

vlh|p

Proof. Under the given assumptions, corollary B.21 states that the fourth requirement of theo-
rem B.1 (the Klimko-Nelson approach) holds true for the local penalty function ()., (Ov‘mb‘p)
in the general case where m — oo and b — 0" when n — oo. The three remaining require-
ments holds true by the same arguments that was used in appendix B.1.3, so the Klimko-Nelson
approach can be used to obtain an asymptotic result for the difference of the estimate 0,
and the true parameter 6

As in Tjgstheim and Hufthammer (2013), it will be instructive to first consider the simpler
case where m and b were fixed. In this case, the asymptotic result obtained from theorem B.1

takes the form,

v|mlblp

v|m|p*

- d
V- (Ov\mlb\p o evm\p) - N(Ov vap) ’ (B.75)
withs, =V, W, _ V.., where the mp x mp matrices V,,_ and W, _  can be repre-
sented as
m m
Vo = D Vo Wi, = D Wor (B.76)
h=1 h=1
i.e. they are the direct sums of the p X p matrices V,, ~and W, ~that corresponds to the

bivariate penalty functions used for the investigation of the parameter vectors 6
Since V,

v|m|p

direct sum of V! (see e.g. Horn and Johnson (2012, p.31)). This implies that the matrix

v|h|p

vlhlblp*
is the direct sum of the invertible matrices V, it follows that V1 is the

v|h|p? v|m|p

5 _ m . -1 -1
of interest can be expressed as &, = D;,_, %, where ¥, =V W, Vo are the
covariance matrices that corresponds to /7 - (Om wole — Qo )» 1-€- @ bivariate result like the

one in (Tjgstheim and Hufthammer, 2013, Th. 1).

For the general situation, when m — oo and b — 0" when n — oo, it is necessary with
an additional scaling in order to get a covariance matrix with finite entries. Obviously, a factor
\/@ must be included in order to balance the effect of the kernel function K., — and for the
p = 1 case this is sufficient since the matrices V,, and W, reduces to nonzero scalars.

For the p = 5 case, the limiting matrices of V,, , and W, = turns out to have rank one, and
additional scaling is thus required in order to obtain a covariance matrix with finite entries.
This case is treated in (Tjgstheim and Hufthammer, 2013, Th. 3), from which it follows that
the scaling factor must be /(b,b,)° when p = 5. O

B.4 An extension to two different points, i.e. both v and v

The previous analysis was restricted to the case where one point was used throughout, which is
sufficient for the investigation of the asymptotic properties of the m-truncated estimates fv"; (w)
for a point v that lies upon the diagonal (see theorem 2.7) or for general points v € R* when
the time series under investigation is time reversible (see theorem 2.8).

-~

An investigation of the m-truncated estimates f;7 (w) for points v = (v,,v,) that lies off the

diagonal, i.e. v, # v,, requires some minor modifications of the setup leading to theorem B.22,
as discussed in the proof of the following theorem.
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Theorem B.23. Consider the same setup as in theorem B.20, but with the modification that the
pointv = (v,,v,) lies off the diagonal, and with the added requirement that the bivariate densi-
ties g, (y, ) does not possess diagonal symmetry. With© = (v,, v,) the diagonal reflection of v,

and @, (v,0) = [5

~ ’

the two parameter vectors 6 oé\m\b\p ,

can be combined to a vector © _

/
v|m|b|p |m|blp m|blp v|m|b|p?

possessing the following asymptotic behaviour.

\/n(ble)“*"”(@w(vﬁ)—@mp(v,ﬁ));”N(O, F“OM EO D (B.77)

v|m|p

and 3,

o|m|p

where the matrices % are as given in theorem B.22.

v|m|p
Proof. This result follows when the Klimko-Nelson approach is used upon the local penalty-
function

Qﬁm\p(@ib\b\p(v7 {])) = Qm:n\p (ev\m\bw) + Qm:nlp (Gﬁ\mlb\P) ’ (B78)

i.e. the four requirements in items (A7) to (A4) of theorem B.l must be verified for this new
penalty function. The function @, = on the right side of eq. (B.78) is the penalty function
encountered in the investigation of 8, ., i.e. the same observations {Y,}"_, occurs in both
the first and second term, but the point of interest will be v in the first one and ¥ in the second
one.

The requirement that v lies off the diagonal together with the requirement that none of the
bivariate densities g, (y, ) possess diagonal symmetry implies that different approximating lo-
cal Gaussian densities occurs for the different points and different lags, so it can be assumed
that there is no common parameters in 6, , and 6, _, . This implies that the arguments
used to verify the three first requirements of theorem B.1 for the penalty function @, (see
lemmas B.3 to B.5), also will work upon the combined penalty function ) and it will in
particular be the case that the Hessian matrix V.
as the direct sum of the matrices that corresponds to Q. (Ov‘m‘b‘p) and Qmm‘p(Bmm‘b‘p), ie.
Ve (0:0) = Vi, (0) © Vo,

notation to keep track of the components.

min|p?

occurring in lemma B.4 can be written
(v), where the points of interest has been included in the

The investigation of the fourth requirement of the Klimko-Nelson approach for the penalty
function @_ ., requires some minor modifications of the constructions that was encountered
in appendix B.2.1. Both X' (v)and X' (0)(forh=1,...,mandq =1,...,p)are needed,

hq:t hq:t
and the final random variaI;Ie will incluzie both v and ¥ versions of the variables Z;' ,, O}
Zy.(a), Z;.,, O (a) and Q7.
A minor revision of lemma B.14 proves that the same limiting distribution occurs for the
\/b,b,-scaled gradientof Q. (©,,,, (v, ¥)) and for the random variable Q7 (v, ¥) = [Q7 (v)", QL ()7,

and it is easy to see that 27" (a,, a,;v,v) = Z. (a,;v) + Z7 (a,; ) must take the place of
7 .(a) in the existing proofs. The key ingredient for the asymptotic investigation of Z~ ,(a,, a,; v, D)

m:t m:t

is a simple extension of lemma B.15(c) such that it also covers the ‘cross-term’ cases E [ X (v) - X7 ()]
and verifies that these cases are asymptotically negligible. This follows from the results stated
in lemma C.7

The statement for Z" ,(a) given in corollary B.17(b) extends trivially to the present case,

since the asymptotic behaviour are unaffected by the adjustment that a sum of length m is
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replaced by two sums of length m. The statement in lemma B. 1 8 remains the same too, but some
minor adjustments are needed in the proof: First of all, from the definition of Z* ,(a,, a,; v, v),
it follows that

Zy(ay,a,50,.0) - 7}, (a,, a;0,9) = Z; (a,;v) - Z; (a;v) + Z; (a,;0) - Z;, (@, 0)
+ Z;uk(al; U) : Z;n(GZ; ’5) + Z;L:z(GIQ; Qv)) : Z;L:k(GZ; ’b)»

B.79)

and only the parts that contains both v and © needs to be investigated (since the other terms
already are covered by the existing results). The statement that must be verified reduces to

1 — 5
~ > 12 (asw) - Z; (0 0)] = o(1) (B.80)

i,k=1
i#k

and it is straightforward to verify that this sum can be realised as

n—1 "
¢ ) ¢ )
> (1 - n) I (@, a;v,0) + ) <1 - n) I' (a, a,;d,v), (B.81)
/=1

(=1

where I* ,(a,, a,;v,v) = |[E[Z"

m:0

(a,,v) 22 (a,,0)]|, with I (a,,a,;D,v) defined in the
obvious manner by interchanging the parameters and the points. The desired result follows

from this, since the remaining part of the proof of lemma B.18 (using the adjusted version of
lemma B.15(c)) gives that the two sums in eq. (B.81) both are o(1).

The investigation of the variance of Z” ,(a,, a,; v, D) is straight forward, i.e. the standard

mit

formula for the variance of a sum of random variables gives

Var(Z;, (a,, a,;v,9)) = Var(Z;, (a,,v)) + 2Cov(Z;, (a,,v). Z;, (a,,0)) + Var(Z;, (a,, D)),

b} it Mt

and the revised version of lemma B.15(c) implies that the covariance part of this expression
is asymptotically negligible. The two variances are already covered by the existing version of
corollary B.19(a), and from this it is clear that the asymptotically non-negligible parts can be
written as

a, -W,, a, = [0/170//2} : (W, b(v) ew

m: m:b

() - [“] 4l W, (v) - a, +a) W, (5)- a,
(B.82)

whereas the asymptotically negligible parts of corollary B.19(a) remains as before. This is
sufficient for the revision of corollary B.19 (since items (b) and (c) follows from item (a) and
lemma B.18)

Finally, theorem B.20 can now be updated based on the matrix W_, = W_ (v) © W_ (90),
and with some minor adjustments of the proof, i.e. new cross-terms are asymptotically negli-
gible and sums of length m are replaced with two sums of length m, it follows that

Q0 (04, (0, 0)) == N(0, W, ,(v) & W, ,(v)). (B.83)
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The revised version of corollary B.21 is as before trivial to prove, which completes the inves-
tigation of the fourth requirement needed in order to use the Klimko-Nelson approach. Basic
linear algebra together with theorem B.22 now finishes the proof. O

Remark B.4. The arguments above could (under suitable assumptions) have been formulated
in a more general setup, leading to a result that shows that the parameter vectors 0,
sponding to different points {v,}’_, will be jointly asymptotically normal and pairwise asymp-
totically independent. The asymptotically independent property are inherited by the corre-
sponding estimated local Gaussian spectral densities f:‘p(w) and this enables an alternative
smoothing strategy for the estimated local Gaussian spectral densities at a given point v, see
section 4.4. However, the added computational cost incurred by such an estimation approach

may make this a less interesting topic of investigation.

corre-

v |mlblp

Appendix C: Technical details

This section collects some technical details that would have impeded the flow of the main argu-
ment if they had been included throughout the paper. A brief overview: Appendix C.1 discuss
the diagonal folding property of the local Gaussian autocorrelations p,,(h) and appendix C.2
considers the special case of time-reversible time series. Appendix C.3 collects technical re-
sults related to the asymptotic relationship between n, m and b, whereas appendix C.4 shows
that the assumptions on the kernel function K (w) and the score functions u,, (w) implies that
some integrals are finite (which implies that assumption 2.1(g) will be trivially satisfied if the
bivariate densities g, (y, ) are finite). Appendix C.5 contains a few basic definitions/comments
related to a-mixing, o-algebras and L”-spaces, and finally appendix C.6 presents a compari-
son of the five-parameter versus the one-parameter local Gaussian approximation, in order to
pinpoint why ﬁj’g(w) should be used instead of j:ﬁ (w).

C.1 The diagonal folding property of p, (/)
The following simple observation about p,, (h) is of interest both for theoretical and computa-
tional aspects of the local Gaussian spectral density [, (w).

Lemma C.1. For a strictly stationary time series {Y,},_, and a pointv = (v,,v,), the following
symmetry property (diagonal folding) holds for the local Gaussian autocorrelation,

pv\p(_h) = pmp(h)v C.DH
where © = (v,,v,) is the diagonal reflection of v.

Proof. This is a simple consequence of the symmetrical nature of the bivariate random vari-
ablesY,, = (v,,Y,)and Y, , = (Y_ s Y(]), which due to the connection between the corre-

h:t

sponding cumulative density functions

G (yony) =PV, <y Y, <) =P(Y, <y, Y, <y_,) =P(Y, <y, Y, <y_,)
=G, (ym y—h) (€2
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gives the following property?? for the probability density functions,

9o ¥) = 9, (Uory_s) - (C3)

This implies that g , (v) = g, (%), and the symmetry does moreover induce a symmetrical
relation between the parameters 6 _, (v) of the local Gaussian approximation of g_, at v and the

parameters 6, (0) of the local Gaussian approximation of g, at v, i.e.if0_, (v) = [u,, fty, 011, Osas

then 6, (V) = [p,, iy, 04y, 04, p| - Equation (C.1) follows since p in these two vectors respec-
tively represents p, (—h) and p,(h), and this completes the proof. O

Remark C.1. The p = 1 case corresponds to the situation where it from the outset has been
assumed that 4, =y, =0and o, = 0,, = 1.

Remark C.2. A trivial consequence of the diagonal folding property in lemma C.1 is that the
local Gaussian autocorrelation becomes an even function of the lag h when v, = v,.

C.2 Time-reversible time series
Additional symmetry properties are present for time reversible time series, which i.e. implies
that the local Gaussian spectral densities f, (w) always are real-valued for such time series, see
definition 2.2 and theorem 2.8.

The following simple result follows immediately from definition 2.2.

Lemma C.2. If{Y,},_, is time reversible, then

teL

g}z(UU U2) = gh(vzv vl) (C4
Jor all points v = (v,,v,) € R? and all h € N, which implies
Puoip(=P) = Py, (). (C.5)

Proof. The time reversibility of {Y,}
distribution, i.e.

teL

implies that (V,,Y,) and (Y_,,Y,) have the same joint

th, (y—h,’yo) = P(th, < y—h’}/o < yo) = P(Yh, < y—hJYE) < yo) = Gh, (yfmyo) .

Together with the observation in eq. (C.2), this gives the diagonal symmetry stated in eq. (C.4).
The statement for the local Gaussian autocorrelations follows by the same reasoning as in the
proof of lemma C.1. O

C.3 Two limit theorems

This section contains two lemmas. Lemma C.3 combines a check of the internal consistency of
assumption 2.3 with the limits needed for the small block-large block argument in theorem B.20),
whereas lemma C.4 takes care of the two limits needed in order to prove that the off the diagonal
components in lemma B.18 are asymptotically negligible.

Lemma C.3. Under assumption 2.3, the following holds.

33This must not be confused with the property that g, and g_, themselves are symmetric around the diagonal, for
that will in general not be the case.
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(a) There exists integers s that makes items (¢) and (f) of assumption 2.3 compatible.
(b) There exists integers s and constants ¢ ‘= ¢, — 0o, such that

c-s:o(\/nble/m) , voam/bb, - c-a(s—m+1) — 0. (C.6)

(c) There exists integers s and constants c, such that with r, { and U given as the integers

rzrn;:{vnblbz/m|, 6=&¢={”J, 9=19 =s—m+1, (C7)

c r—+s

the following limits occur when n — oc:

i—)O; la(9) — 0; ﬂ—)0; mr — 0; m—és—>0.
r n b, n

172

(C.8)

Proof. Item (a) will be established by first observing that it is possible to find integers s that en-
sures that assumption 2.3(f) is compatible with the requirement m = o((nb,b,)), forany £ € (0, 1),
and then checking that the exponent 7/(2 + 57) — A lies in this interval.

Observe that it is impossible to have m = o(s) and s = o ( \ /nblbz/m) whenm > \/nb,b,/m,
which implies m < \/nb,b,/m, which is equivalent to m < (nb,b,)"”*. Some extra leeway is
needed in order to construct the desired integers s, so consider the requirement

m = o((nb,b,)"" ™), for some ¢ € (0,31) . (C.9)

Define the integers s by s := m - s, where s := 1V | (nb,b,)""*|, and note that this construction

ensures that s goes to co. Further, m = o(s) holdssincem/s = 1/s — 0,and s = o(w /nble/m)
holds since

s _m-(nbb,)"* md/? B m 3/2
Vibb,fm (b b,/m) " (nbb, ) [(nb,b,) "
1 m 3/2 1 T
B ' ‘ = | =0 =0 C.10
(nb1b2)2</3 (nblbz)l/dg] |:OO :| ( )

This implies that the desired integers s can be found whenever m = o((nb,b,) ), with & € (0, 3).
Since the value of 7/(2 + 57) — A lies in the interval (O, %), the proof of item (a) is complete.

For items (b) and (c), the integers s and constants c can e.g. be defined as

s=1V K\/’W)W . o= (\/m)"/ for some 5 € (0,1).  (C.11)

Since 1 — 7 and 7/2 are in (0, 1), it follows from assumption 2.3(b) that s and ¢ goes to co
as required. A quick inspection reveals that the product c - s is 0(\/nblb2 / m), proving the
first part of eq. (C.6). For the second part of eq. (C.6), keep in mind the similarity with
assumption 2.3(d), and observe that c in the limit is asymptotically equivalent to s7/2~". Since
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 101

7 can be selected such that the exponent 7/2(1 — 1) becomes smaller than any 7 > 0, the sec-
ond statement holds too, which completes the proof of item (b).

In order to prove item (c), note that a floor-function |z | in a denominator can be ignored in the
limit x — oo, since z < |z |, thatislimz/ |z | = 1. Moreover, observe that assumption 2.3(b)
implies that n/m goes to co. With these observations, all except the last limit in eq. (C.8) are
trivial to prove, i.e.

S - S o c-S _
r A ibb/m L /nb b, /m
C

0, (C.12a)

la(¥) < . Z Soz(ﬁ) = ;a(ﬁ) = ﬁa(ﬂ) =+/nm/bb, c-a(¥) — 0, (C.12b)

(&

mr \/nblch/m B \/@ . 0

o< — =0 C.12
- n/m cy/n/m 000 ’ (C.120)
mr mr r(r+ s) r? it
= = = ° =——0. C.12d
B, Zbb,  nbb/m - nbbjm = nbbjm @ (C129)

For the proof of mfs/n — 0, the explicit expressions for s and ¢ from eq. (C.11) will be
needed, i.e.

1-n/2
mls < mot=s s s c- 8 (\/W)

r+s

=m =m-x=m <m
n o~ n r+s r \/nb,b,/m ~ \/nb,b,/m
1+n/4 (4+n)/4
__m _ mr ( m (C.13)
(nb,b,/m)"*  (nb,b,)""* (nb,b,)" ™ ) .

Assumption 2.3(e) states that m = 0((nb1b2)7/ (2“’)’*) , and it is consequently sufficient to show

that an 7 can be found which gives 7/(2 4+ 57) — A < p(n) = n/(4 +n). Sincep'(n) =4/ (4 +n) > 0,
the highest value of p(n) will be found at the upper end of the interval of available argu-
ments. From the proof of item (b) it is known that /2(1 — n) < 7, which gives the require-
ment 7 < 27/(1 + 27). The value of p(n) at the upper end of this interval is 7/(2 4+ 57), and
since A > 0 itis possible to find an n that satisfies 7/(2 + 57) — A < p(n) < 7/(2 + 57), which
concludes the proof. O

Lemma C.4. Under assumption 2.3, the sequence of integers definedby k, + 1 = {m”“ . |b1b2|<27”)/“"w
satisfies the following two limit requirements.

(a) k, — 0.

(b) k,m*bb, — 0.

Proof. The key requirements v > 2 and a > 1 — 2/v (inherited from assumption 2.1(b)) en-
sures that 2/a > 0 and (2 — v)/av < 0. Asm — oo and b — 0" when n — oo, it follows
that k. — oo, which proves item (a).
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For item (b), observe that k, = [m?* - |b,b,|“™*"| — 1 < m¥* - |b,b,|* """ implies

k,m’b,b, < (m>* - |b,b,|*™*) - m’b,b, (C.14a)
= P |y b [ (C.14b)
<m0t |(bl V b2)2|1*(2*”’/“” (C.14¢)
= {mUrye /el (o p Y }ROFE/e) (C.14d)
G N (VAR St (C.14e)

An inspection of the outermost exponent reveals

2-<1+(2WV)>—2~“(12/”)>0., (C.15)

a

which together with assumption 2.3(c) concludes the proof of item (b). O

C.4 Integrals based on the kernel and the score functions

The asymptotic properties of the random variables introduced in definitions B.11 to B.13
does of course depend upon the properties of the time series {Y,},_, upon which they have
been defined, but quite a few of the required properties does in fact only depend upon K (w)
and u,,,(w). Note that the treatment in this section exploits the property that the functions u, , (w)
all are quadratic polynomials in the variables w, and w,, which implies that the inequalities from
lemma C.5 is sufficient for the proofs of the asymptotic results given in lemma C.6.

Lemma C.5. For K(w) from definition B.9 (page 51), and v > 2 from assumption 2.1(b)
(page 12), the following holds:

(a) ‘fRQ K(w,, w,) ww, dw,dw,| < oo, k,0>0and k+ ¢ <5.

(b) ‘fR? K (w,, w,)*w*w! dw,dw,| < oo, k0>0andk+ ¢ <5.
(c) K(w,,w,)ww € L, k,¢>0and k+(<2.

Proof. Since the kernel function by definition is non-negative, it follows that

k, £
) K(w,,w,) wiw; dw,dw,
R

S/K(w],wz) |whw!| dw,dw,, (C.16)
R2

which proves item (a), since eq. (B.27d) of definition B.9 implies that this is finite for the
specified range of k and /.

Since the kernel function is bounded, there is some constant C such that K (w) < C, which
implies that

<C K(w,,w,) wiw; dw,dw,|, (C.17)

R2

2k, 0
. K(w,,w,) wiw, dw,dw,
R

which due to item (a) is finite, thus item (b) holds true.
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 103

Next, note that | K (w,, w,) wrwt|” = | K (w,,w,)|" " | K (w,, w,)| [wrwi]” < C* VK (w,,w,) |wwt|",
which gives the following inequality,

1/v

/v
( K(wmwgwfwzrdwldwg) < cvv ( / K(wl,w»|w';wﬁ|“dwldw2) ,
R2 R2

(C.18)

from which it is clear that a proof of the finiteness of the right hand side of eq. (C.18) will
imply item (c). Since the region of integration can be divided into A,, = {w : |wfw:| < 1} and
A:, =R?*\ A,,, it follows from the non-negativeness of K (w), and eqs. (B.27a) and (B.27d)
of definition B.9, that

/ K(w,,w,) |lwiwi]” dw,dw, < / K(w,,w,)dwdw, < | K(w,w,)dwdw, =1,
‘Aké ‘Akl

R2
(C.19)
[ ) ot dodu, < [ K, ot dudu,
45 45
< | K(w,w,) |wi™w™| dw,dw, < oo, (C.19b)

R2

where the last inequality follows since the assumption k + ¢ < 2ensures thatk [v] + ¢ [v] < 2 [v].
The expression in eq. (C.18) is thus finite — and, as stated initem (¢), K (w,, w,) w*w! € L”. [0

Lemma C.6. The following holds for u,,,(w) and K,.,(y, — v) from definitions B.7 and B.9,
and v > 2 from assumption 2.1(D):

(a) fRi’ V b1b2K’“b(C - U) uhq:b(C) dC = O( V b1b2)'

(b) (f]}@ ‘\/@K’Hb(c - U) uhq;b(C)‘VdCy/l = O(|b1b2|(2ﬂ))/2u)'

(C) Let qu,hjzb(cu Cz) = Kh:b(C1 - U) Kj:b(CZ - ’U) uhq:b(Cl) ujr:b(Cz)’ where C1 and Cz ei-
ther coincide completely (bivariate), have one common component (trivariate), or have
no common components (tetravariate). Let r be the number of variates, and let d¢(k)
represent the corresponding k-variate differential. Then,

(V) U, (V) [ K(w)dw +O(b, Vb,) k=2,
Jae (0,0,) K, (€1:€,) dC (1) = 4 O(b, AD,) k=3
O(b,b,) k= 4.

Proof. Recalling the definition of K,.,(y, — v) from eq. (B.28), the integral in item (a) can be
written as

1 _ _
[V i (S5 ) e a e, (©20)

1
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which implies that the substitutions w, = (¢, — v,) /b, andw, = ({, — v,) /b, gives the integral

b,b.
‘/RZ b l; ZK (wl'/ wZ) uhq:b(blwl + vl’ b2w2 + v2) (bldwl) (bzdwz)

=4/b,b, / K (w,,w,)u,,,(bw, +v,,b,w, + v,) dw,dw,. (C.21)
R2

b,w, + v,, byw, + v,) can be writ-

Since u,,, (w) is a bivariate polynomial, it is clear that u X

ten as

hq:b(

Uy, (U1, 0,) + bcyw, + byc,w, + bic, wi 4 b b,c,w,w, + bye,w;, (C.22)
for suitable constants c,, c,, ¢,,, ¢,, and c,,. The integral in eq. (C.21) can thus be expressed as
a sum of integrals like those occurring in lemma C.5(a), all of which are finite. The dominant
term becomes O (\ / blbz) when b — 0%, and the conclusion of item (a) follows.

11°

The substitution used in item (2a) can also be applied for item (b), resulting in

(.

/v
= |b,b,| 7% (/ ’K (w,, w,) u,,,(b,w, +v,, byw, + vz)}"dwldwz) ) (C.23)
RQ

v

v
(byduw,) <b2dw2>)

1
blbz K (wla wz) Uy, -b(b1w1 + v, bzwz + UQ)
b1b2 ”

Note that this represent the norm in L”-space, and that eq. (C.22) implies that it can be realised
as the norm of a sum of the simpler components encountered in lemma C.5(c). It is now clear
that Minkowski’s inequality can be used to obtain a bound for the expression in eq. (C.23). In

particular, constants e, e,, e,,, e,, and e,, can be found that realises this bound as

11°
|b1b2|<2_y)/2u (uhq:b(vl7 v?) + blelwl + b‘262w2 + bfellwf + b1b2612w1w2 + b5622w§> ) (C24)

which is dominated by the |b,b,|* "/*"-term when b — 0%, as stated in item (b).

The investigation of item (c) requires different substitutions depending on the « for the con-
figuration under investigation. Noting that the integrand in addition to the scaling factor b,b,
always contains the product K;.(¢, — v) K;+({, — v), it follows that it regardless of the value
of x will be a factor 1/b,b, that will be adjusted by the b,- and b,-factors that originates from
the substituted differentials. It is easy to check that the new differentials becomes b,b, dw,dw,
when x = 2, b?b, dw,dw,dw, or b b} dw,dw,dw, when x = 3, and b30; dw,dw,dw,dw, when
k=4

For the bivariate case, the substitution from item (a) gives an expression of the following

form,

K(w,,w,)* - U(w,, w,) dw,dw,, (C.25)

R2

where U (w,, w,) is a product whose factors both are of the form encountered in eq. (C.22), i.e.
it will be a quartic polynomial in the variables (b,w,) and (b,w,), and its constant term will
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be u,,,(v)u,, ,(v). From lemma C.6(b) it follows that this will be a finite integral, and as
b — 0" the result will be as given for the x = 2 case of item (c).

For the trivariate case, the overlap between ¢, and ¢, will belong to one of the follow-
ing configurations, (i) ¢, = ({,,{,) and ¢, = (¢,, ¢,), (i) ¢, = ((,,¢,) and ¢, = (;, ¢,), (iii)

¢, =(¢,¢)and ¢, = ((,, ¢,), or (iv) ¢, = (¢, ¢,) and ¢, = ((,, ¢,)- The reasoning is identical
for the four cases, so it is sufficient to consider case (i), which gives the following product of

kernel functions in the original integral,
K((G = v,)/by, (G = 0,)/by) - K((C, = v,) /by, (G = ) /D,) - (C.26)
When the substitution
w, = (¢, —v,)/b,, w, = (¢, —v,)/b,, w, = (¢ —v,)/bs, (C.27)
is used, the following component occurs in the transformed integrand,
K (w,, w,,w,) = K(w,,w,) - K([(byw, +v,) —v,] /b,,w,) . (C.28)

The argument [(b,w, + v,) — v,] /b, does not pose a problem due to the boundedness require-
ment from eq. (B.27d) in definition B.9, and the following inequality thus holds for ¢ € {0, 1, 2},

K (wu w,, w:s) wﬁ dw3 = K(wu wz) ’ K([(b2w2 + Uz) - Ul] /bu w3) ’LU.E dw's (C.292)

R R
= K(w,,w,) - K, ([(bw, +v,) —v,] /b)) (C.29b)
<D,, Kw,w,), (C.29¢)

where D, , is a constant that bounds the function /C,,.

Since the substitution in eq. (C.27) transforms the integral of interest into
b, / K (w,,w,,w,) - U(w,, w,, w,) dw,dw,dw,, (C.30)
R3

where U (w,, w,, w,) is a quadratic polynomial in the variables (b,w, ) and (b,w,), and a quartic
polynomial in w, (with coefficients having suitable powers of b, and b, as factors), the observa-
tion in eq. (C.29) implies that an iterated approach to the integral (starting with the w,-variable)
can be used to show that each part of the sum will be bounded by a constant times an integral of
the form encountered in lemma C.6(a). The trivariate integral in item (c) can thus be bounded
by a sum of finite integrals having coefficients based on powers of b, and b,. From the b, factor
in eq. (C.30), it follows that the trivariate integral in this case is O(b,) when b — 0*. Note that
w, = ((, — v,)/b, could have been used as an alternative substitution in eq. (C.27), which by
the obvious modifications of the arguments implies that the integral also will be O(b,) when
b — 0" — and from this if follows that the integral is O(b, A b,), which completes the proof for
the x = 3 case of item (c).
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The case xk = 4 is quite simple, since no common components in ¢, and ¢, implies that the
tetravariate integral, after the obvious substitution, corresponds to an expression of the form

o ([ Kt uconaw) - ([ Ko cwae), e
R R

where ¢{(w) = (b,w, + v, b,w, + v,). The integrals occurring in this product are similar to

those encountered in the bivariate case discussed above, and it is clear that the result will be

O(b,b,) when b — 0%, which concludes the proof of item (c). O

Note that the bivariate case of lemma C.6(c) only considers the configuration where the
components of ¢, and ¢, coincide completely, while the configuration where ¢, = ({,, ¢,) and
¢, is the diagonal reflection ((,, ¢,) has been left out. This restriction does not pose a problem
for the asymptotic investigation of ﬁfp(w) when the point v = (v,,v,) lies upon the diagonal,
i.e. when v, = v,, since the diagonal folding property ensures that it is sufficient to consider
positive lags for the point v in this case. For the general case, where v, # v,, the following
adjusted version of lemma C.6(c) is needed, where one of the kernels use v and the other use
the diagonally reflected point © = (v,,v,).

27 Y1

Lemma C.7. The following holds for u,,,(w) and K,.(y, — v) from definitions B.7 and B.9,
when the point v = (v,,v,) does not coincide with its diagonal reflection © = (v,,v,), i.e.
v, # VU,

Let I, ,.,(C €0, 0) = Kio(C, — v) Kjo(C, — 0) u,,,.,(C,) v, (C,), where ¢, and G, either
are diagonal reflections of each other (bivariate), have one common component (trivariate),
or have no common components (tetravariate). Let . be the number of variates, and let d{(k)
represent the corresponding k-variate differential. Then,

o) w=2
/ (blbz) Iqu,hj:b(CU C2§ v, {7) dC(’f) = O(b1 A bg) K ,
- Obb) k=

Proof. The statements for the trivariate and tetravariate cases are identical to those in lemma C.6(c),
and so are the proofs, i.e. the same substitutions can be applied for the present cases of interest.

For the bivariate case, the substitution w, = (¢, —v,) /b, and w, = ({, — v,) /b, gives that
the integral [o, K(w,,w,)* - U(w,,w,)dw, dw, from eq. (C.25) is replaced with a sum of in-
tegrals of the form,

- K(w1 + (U1 - Uz)/bw w, + (1)2 - U1)/bz) : K(ww wz)wfwé dw1 dwz? (C32)
where k, ¢ > 0 and k + ¢ < 4. and the integrands of these integrals goes to zero when b — 07,
due to the assumption that v, # v,. To clarify: For a kernel function X whose nonzero values
occurs on a bounded region of R?, the integrand of eq. (C.32) will become identical to zero
when (v, — v,)/b, and (v, — v,)/b, are large enough to ensure that at least one of the factors in
the integrand must be zero. For the general case, first observe that the factors K (w,, w,)w*w?
are the integrands that occurs in lemma C.5(a), and the finiteness of those integrals implies
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that these factors must go to zero at a sufficiently high rate when w, and w, are far from origo.
The rate at which the individual kernel K (w,, w,) goes to zero will of course be faster than that
of the product K (w,, w,)wrw?, and together this implies that the integrand in eq. (C.32) must
go to zero when b — 0%, and the integral thus becomes asymptotically negligible. O

Remark C.3. It is a straightforward (albeit somewhat tedious) exercise to verify that eq. (C.32)
goes towards zero at an exponential rate when the kernel function K (w) is the product normal
kernel. The observation that the bivariate case of lemma C.7 is o(1) can also be derived from the
realisation that K,.+(¢, — v) and Kj.,({, — ©) are entities that converge towards two different
bivariate Dirac delta functions, and the limit of the integral becomes zero since these delta
functions sifts out different points.

C.5 A few details related to s-algebras, a-mixing and L’-spaces
The following general definitions and basic observations are needed when e.g. results from Davy-
dov (1968) and Volkonskii and Rozanov (1959) are used.

Related o-algebras

The o-algebras related to the process {Y,},_,, will be denoted

teZ’

Fr=o0(Y, Y), (C.33)

t t) Tt Ts

where ¢ and s are allowed to take the values —oo and +oo respectively.

Note in particular, that if a new random variable is defined by means of a measurable function
&(y,) fromR™ toR,ie. YV, =&(Y,,), then) , € Fitm,

Inheritance of a-mixing
The coefficients in the strong mixing property mentioned in assumption 2.1(b), is given by

a(s]Y,) =sup {|P(ANB) —P(A)P(B)| : —co<t<oo, A€ F'_, B€ F3 }, (C34)

from which it is an easy task to verify that a derived process, like the }/_, mentioned above,
will have an inherited a-mixing coefficient that satisfies

als|Y, ) <als—mlY,). (C.35)

This implies that the finiteness requirement in eq. (2.17) will be inherited by the process V,_,,
i.e. with v and a as introduced in assumption 2.1(b), the following holds true

Zy a(j |V, < (C.36)

Related L~ -spaces
Some inequalities are needed in the main proofs, and these inequalities can be verified by means
of the simple connection between expectations and L”-spaces outlined below.**

3These definitions are normally presented with p used instead of v.
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First of all, when a measure space (€2, G, ;1) is given, then for 1 < v < oo, the space L == L" (2, G, u1)
is defined to be the class of measurable real functions ¢ for which |¢|” is integrable, that is,

() el < /|C(z)\”du < 0. (C.37)
Q

The L”-spaces related to the processes Y, , and Y, will henceforth be denoted by

L, —the L spaces related to the densities Gp» (C.38a)
L.. —the L" space related to the density g,_. (C.38b)

These L” spaces are in fact Banach spaces, see e.g. Billingsley (2012, Section 19) for details,
which means that they are complete normed vector spaces, with a v-norm defined by

1/v
I, = (/Q IC(Z)I”du) = (Bllc@)N” (C.39)

and the Minkowski’s inequality (i.e. the triangle inequality for L"-spaces) will play a central
role in the investigation later on,

16.(2) + G < NG + GG, - (C.40)

The main reason for the introduction of these L -spaces are the following observation: With
Z arandom variable on (2, G, 11), the definitions of expectation and " -spaces gives a sequence
of equivalences

ECN <%0 = [[@ldu<o > (@el (C41)

withY,

h:t

andy.

m:t

Lemma C.8. For a univariate time series {Y,},_,,
and with m bivariate functions ¢, : R* — R’

as defined in definition 2.6,

IFE[|C,(Y,.)|'] < ocoforh=1,...,m, then
(E[IXZH a6 ()l )" < S0 la] BIG (Y, ) D < oo,

a,

Proof. Fromeq.(C.41)itfollows that E[|¢, (Y, ,)|"] < coimplies(,(y,) € L, forh =1,... m.
With (, (y..) the corresponding trivial extensions to (m + 1)-variate functions, it follows from

m

eq. (2.16) that ¢,(y..) € L., for h =1,...,m. From the vector space property of L’ -spaces
it follows that >, , @,¢,(Y,.,) € L., and Minkowski’s inequality then gives the desired re-
sult. U

C.6 The one-parameter local Gaussian approximation

The input parameter p in the local Gaussian spectral density f, (w) signifies whether a five-
parameter or a one-parameter local Gaussian approximation has been used in the local neigh-
bourhood approach inherited from Hjort and Jones (1996), see section 2 for details. In particu-
lar, pis either 5 or 1, and the two different approximation strategies (to be used in the normalised
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 109

situation with standard normal marginals) will henceforth be denoted v, (w) or 9, (w), where

1 o o} (“’1 —Hq )2_2‘71‘72/’(“’1 —Hq ) (u’z _“2)""7% (“’2 “Ho )2
2roioo/Ip? exXp )

20705 (1-p?)

Vs (w; iy, 1y, 0,,0,,p) =

2m-0 04
(C.42a)
29 0 wa w2
U(w;p) = o exp {—7”1 Pt } : (C.42b)

As noted in section 2.1.3, the simplified approach based on v, (w) has been used with good
results with regard to density estimation, see Otneim and Tjgstheim (2016, 2017), which mo-
tivated that this approach also should be tried in the present paper. However, as was seen in
fig. 14, page 33, the local Gaussian spectral densities based on p
sive results whereas those based on p,, . clearly indicated the presence of non-linear traits in the

1 gave more or less inconclu-
time series under investigation.

It is thus of interest to investigate closer the one-parameter local Gaussian approximation
¥, (w), i.e. how appropriate will it in general be to use the estimated local correlations obtained
from v, (w). It is e.g. evident from eq. (C.42) that v, (w) lacks the flexibility of ), (w), but
that is obviously not a detrimental problem with regard to density estimation, as was seen in
(Otneim and Tjgstheim, 2016) — where a new density estimation method based on ¢, (w) in
many cases turned out to be just as good or even better than already existing methods. However,
the lack of flexibility seems to be a problem when, for a given point v, the target of interest
moves from the estimated density 121 (v) to the estimated parameter p,, .

The analysis related to v, (w) is straightforward to do, since it in essence only requires that
some integrals containing the factor K, (w — v) must be reexpressed by the help of substitutions
and second order Taylor expansions. The bivariate nature of the problem does however make
these expressions a bit cumbersome to work with, so an analogous univariate situation will
thus be used instead in order to illustrate the differences between the one- and multi-parameter
approach. The idea is that the approach from Tj@stheim and Hufthammer (2013) can be applied
on the density estimation method from Hjort and Jones (1996) in a univariate setting, i.e. the
target density g(w) will be a univariate distribution whereas the approximating local density
will be univariate Gaussian. For simplicity of the analysis, it will henceforth be implicitly
assumed that the required regularity assumptions from Tjgstheim and Hufthammer (2013) are
satisfied.

Remark C.4. The bivariate 1), (w) are used in a situation where an initial step first normalises the
marginals of the target density, and then the procedure of density estimation and extraction of
the corresponding correlation are performed — which in essence implies that it is the properties
of the copula-structure of the target density that are investigated. A similar ‘normalisation of
the marginals’ for the univariate framework would however be nonsensical, since that would
completely remove all the available information from the case under investigation.

C.6.1 A simplified univariate case — ‘local Gaussian standard deviation’

The problems of interest for the bivariate case ¢, and the local Gaussian correlation p,, can be
identified from an inspection of the following simplified univariate situation, where the concept
of a ‘local Gaussian standard deviation’ can be defined in a completely analogous manner to
the one used for the definition of the local Gaussian correlation. In particular: For a given
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univariate density g(w) and a given point v, first use the univariate Gaussian distribution ¢(w)
as the approximating function in the density estimation approach of Hjort and Jones (1996),
then define the local Gaussian standard deviation o, by extracting the standard deviation from
the approximating Gaussian distribution.

The univariate analogue of eq. (C.42) is taken to be

bu(wsp,0) = e exp { =5 L (C43a)
0 (w;0) = —exp{~3% }, (C.43b)

where ¢, (w; o), together with its score function u, (w; o) = £ log ¢, (w;0) = (w? — 0*)/0?,
is the target of interest for the present investigation. It is clear from the rigidity of the one-
parameter alternative ¢, (w; o) that it has some limitations with regard to which values it can
take, and it is easy to see that ¢, (w; o) < ¢, (w; |w|) when w # 0.

Ignoring for the time being that the inflexibility of ¢, (w; o) renders it a rather undesirable
candidate for density estimation, the univariate version of the procedure explained in egs. (2.3)
and (2.4) can be used for i = 1, 2 to minimise the b — 0" limit of the penalty functions

Qo /K w —=v)[¢,(w; ) — g(w) - log ¢, (w; o)} dw, (C44)

where K,(w —v) = 1 - K(“*), with K the standard normal kernel and b the bandwidth.
Henceforth focusing on the case i = 1, it follows that the value o, ,, that minimises g, will
satisfy -2 3oL = 0, i.e. the following equation should be satisfied,

w[b[1

/Kb(w —v)u, (w; O’v‘b‘l) [qSl(w; O’U‘bu) - g(w)} dw = 0. (C.45)

Under the additional assumption that g(w) can be differentiated twice at v, and with h(w; o)
defined as u, (w; o) [¢, (w; o) — g(w)] in order to compactify the expressions encountered later
on, it follows that the substitution z = (w — v) /b followed by a second order Taylor expansion
of h(w; o) around v, enables eq. (C.45) to be restated as

h(v;a,,,) +b* - h“)( S On) +0° /R(v +02;0,0,,,)2°K(2)dz = 0, (C.46)

where R is the remainder term of the Taylor expansion.

It follows from eq. (C.46) that the b — 0 limit of A(v; 0, ,,) must be zero. This requirement
is satisfied when either ¢,(v;0,,,) = g(v) (preferred case) or u,(v;0,,,) = 0 (problematic
case). Note in particular that u, (v; 0, ,) must go to zero in the limit if g(v) > ¢, (v;[v|), that
eq. (C.46) implies that u,(v; 0,,,) for such a case satisfies

b - {%h(z)(v;av‘bu) + fR v+ bz; b, crv‘b‘l) K(z) dz}
(g(U) - ¢1(U; O—U\b|1)) ’

in this case must be o, , = [v].

u,(v;0,,,) = (C47)

and that the b — 07 limit of o

w|b|1

80



2.1 Nonlinear spectral analysis via the local Gaussian correlation 111

The asymptotic arguments given in Tjgstheim and Hufthammer (2013) can be applied in the
present univariate situation too, and it follows that the n — oo limit of the matrices from the
Klimko-Nelson approach (see theorem B.1) are given as the following scalar expressions,

W\b\l =b-u;(v; Uu|h\1) +0° T, (v; b, U,,|z,\1)7 (C.48a)
I/Vu\bu =b-u;(v; Uv|bu) +b* - Ty (v; b, O’,‘b“), (C.48b)

v

where T, (v; b, 0,,,) and T, (v; b, 0,,,) represent the higher order terms and remainder terms
of the Taylor expansions used in these cases. The b — 0% and n — oo limit of the asymptotic

variance of /n (3,,, — 0,,,) is thus based on the b — 0* limit of

b-uw(v;o,,) + 0T, (v;b,o,,,
Vi Won Viih = ;0 GUL LAY (C49)
[b ~u(v;o,,) + b0 Ty (v; b, val)]

~

from which it follows that the asymptotic variance of v/nb (G, — 0,,) is 1/u?(v;0,,,) when
u,(v;0,,) # 0 in the limit. However, as explained above, all cases where g(v) is larger than
é,(v; [v]) will give a situation where the limit of u, (v; o,,,) is zero — and it is then clear from
the expression for u, (v; o) in eq. (C.47) that the asymptotic result in these cases requires a
scaling with \/W instead of v/nb, and that the asymptotic variance in this case will be the
b — 0 limit of T, (v; b, 0,,,) /T (v; b, 0,

> Yulbl1 u\bu)'

Remark C.5. The one-parameter approximation ¢, (w; o) will return the value ¢, (v; |v|) for all
univariate densities g(w) which are twice differentiable at v and satisfies g(v) > @, (v; |v]).
This implies that not only does the estimated local standard deviation o, , converge slower in
these cases, but g, ,
regardless of the actual value of g(w) at the point v and regardless of how g(w) behaves in a
neighbourhood of v, so o, , does not contain any local information about the targeted densities
for these cases.

will moreover always converge to the value ¢, = |v|. This will happen

Remark C.6. It is not a problem to use ¢, (w; ) as a tool for density estimation at v when g(w)
satisfies g(v) < ¢,(v; |v]), as can be seen in fig. 15, where the Beta distribution with parameters
a = 2.19 and 8 = 1.50 has been approximated at the point v = 0.25. Both ¢, (w; o) (blue
dashed line) and ¢,(w; o) (red dotted line) manages to estimate the value g(0.25) ~ 0.7041,
and are as such equally good as density estimators in this case — however, the corresponding
standard deviations, in this case respectively o,, = 0.50 for ¢,(w;0) and o,, ~ 0.29 for
¢,(w; p, o), can in general be quite different. It might thus be reasonable, even when ¢, (w; o)
can be used to provide a density estimate of g(w) at v, to consider the standard deviation of
¢, (w; o) to be a somewhat dubious ‘local measure’ of the properties of the target function g(w)
in the vicinity of v.

C.6.2 The bivariate case v, (w; p)

It is clear from eq. (C.42b) that ¢, (0; p) never can attain a value below 1 /2, and it is not hard to
check that ¢, (w; p) can attain any positive value when w = (w,, w,) satisfies |w,| = |w,| # 0
(although p might need to be very close to —1 or 1 when a high value is desired). For other
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1.5-

1.0-

0.5-

0.0-

0.00 025 0.50 075 1.00

Figure 15: Simplified univariate investigation based on ‘local Gaussian standard deviations’.

points w than those already mentioned, an inspection of the corresponding score function,

_p3 + p2w1w2 +p (]- — (wf + w;)) + w, w,
(1-p?)° ’

together with the requirement that p lies in (—1, 1), gives that there is an upper limit ¢, (w; pz, ,)

w1

i p) = 3 log (0w ) = (C.50)

for ¢, (w; p) at this particular point. Note that p;, , is a solution of u, (w; p) = 0, and these so-
lutions can be explicitly computed by the help of the formula for the roots of the cubic function,
but this is not necessary to do for the present discussion.

The arguments used for the one-parameter univariate ¢, (w, o), see egs. (C.44) to (C.49), can
be extended directly to the one-parameter bivariate ¢, (w). The observations below follows
from those given in remarks C.5 and C.6. Not that the bivariate target density g(w) here corre-
sponds to a copula-model with standard normal margins, and v = (v,, v,) represents the point
at which the density estimation and extraction of correlation p,, is performed.

(a) If v = 0 and g(0) < 1/2r, then p,, = 0 and the estimated density always becomes
¥,(0;0) = 1/27. The estimates of p,,, will in this case converge towards p,,, = 0 with a
slower convergence rate than y/nb,b,, and p,,, = 0 will always occur when g(0) < 1/2,
regardless of how g(w) behaves in a neighbourhood of v = 0.

(b) If v ‘lies off the diagonals’, i.e. [v,| # |v,|, and g(v) > ¢, (v; p,), then p,, = p, and
the estimated density always becomes 1, (v; p;, ). The estimates of p,, will in this case
converge towards p;, with a slower convergence rate than \/nb,b,, and p,,, = p,, will
always occur when g(v) > v, (v; p, ), regardless of how g(w) behaves in a neighbour-
hood of v.

(c) The one-parameter approximation 1, (w; p) will give the correct density estimate of g(w)
at v for other cases than those excluded above, but the corresponding correlation p,,,
might differ substantially from the one obtained from the five-parameter approximation.

The case in item (b) can e.g. be observed when g(w) is the probability density function of a
Clayton copula with standard normal marginals.

Remark C.1. The preceding discussion assumed that the target density g(w) was known, and
this will in general not be the case when a sample is investigated. Small sample variation must
also be taken into account when local Gaussian autocorrelations are to be computed for a given
sample, and it might be hard to test whether or not there are significant differences between
the correlations obtained from the five- and one-parameter approximations. However, clear
differences can occur, like seen in fig. 14 (page 33), where the estimates of f,  (w) and f, ,(w)
for the dmbp-case was discussed. It might thus be enlightening to briefly return to the dmbp-
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 113

case and present a plot that shows how the estimated local Gaussian autocorrelations based
on the one- and five-parameter approaches looks like, see fig. 16. The point 90%: : 90% is the
same that was used in fig. 14, the red dotted lines shows the truncation level m = 10 used for the
estimated local Gaussian spectra, and all the estimations have as usual been performed based on
the bandwidth b = (0.5,0.5). As can be seen, the estimates based on the ¥, (w)-approximation
tend to have the same sign as those from the v, (w)-approximation, but the values are in general
much closer to 0.

82: : 90% :: 90%
OjO- m\guxm% bt Lo bt et il et bt L L i) N T P T IR TR PRI PSR
-0.3- Computations based on 1-parameter approach. Use 5-parameter instead!

0 50 100 150 200
o8 2“ T | : 90% :: 90%
0.0 M} bl ‘w‘ At ‘M‘M N \W\w cLail \“‘HH\U . “H\h“\\‘ L e I y ‘\“ L, o
-03-NC=0K: ‘

i :

0 50 100 150 200
Figure 16: A comparison of estimated local Gaussian autocorrelations from the dmbp-data:
P, (h) from the 1, (w)-approximation (top) versus p,.(h) from the 1 (w)-
approximation (bottom).

Remark C.8. Keeping in mind that the one- and five-parameter local Gaussian approxima-
tions both should return approximately the same estimated correlation-values when the density
g,(y,) of (Yt .n»Y,) either is Gaussian or independent, it seems plausible that a visual compar-
ison like the one in fig. 16 might be used to provide some insight into the long range behaviour
of the time series under interest. However, as discussed in section 4, it is important to keep in
mind that there are uncertainties related to the level of small sample variation that can occur
for different configuration of the input parameters.

Remark C.9. It might be the case that the ‘trumpet shape’ that occurred for some of the esti-
mated pointwise confidence bands in fig. 14 could be related to a situation where the density
g,(y,) behaves in such a manner that the one-parameter approximation v, (wj; p) runs into
problems as a density estimator. This has not been investigated in this paper, but it should be
possible to approach this idea by a two step procedure where 1) copula models are fitted to
the pairs (Y,,,,Y,), and 2) the selected copula-models (with standard normal marginals) are
compared against the one-parameter case 1, (w; p).

Remark C.10. Figures 14 and 16 are the only plots in this paper that compares the results
based on correlations extracted from ¢, (w) with those based on correlations from v, (w). The
scripts stored in the R-package localgaussSpec can be used to get hold of additional exam-
ples. Use devtools::install_github("LAJordanger/localgaussSpec") to install the
package, then load the package and use LG_extract_scripts to get access to the scripts. The
resulting plots can be interactively investigated by means of the shiny-application part of the
package, read the scripts and the package-documentation for further details.
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