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Abstracts

Paper 1 ‘Nonlinear spectral analysis via the local Gaussian correlation’

The spectral distribution f(w) of a stationary time series {Y,},_, can be used to inves-
tigate whether or not periodic structures are present in {Y,},_,, but f(w) has some lim-
itations due to its dependence on the autocovariances ~(h). For example, f(w) can not
distinguish white i.i.d. noise from GARCH-type models (whose terms are dependent,
but uncorrelated), which implies that f(w) can be an inadequate tool when {Y,}, , con-
tains asymmetries and nonlinear dependencies.

tEL

Asymmetries between the upper and lower tails of a time series can be investigated
by means of the local Gaussian autocorrelations p,(h) introduced in Tjgstheim and
Hufthammer (2013), and these local measures of dependence can be used to construct
the local Gaussian spectral density f,(w) that is presented in this paper. A key feature of
f.(w) is that it coincides with f(w) for Gaussian time series, which implies that f,(w) can
be used to detect non-Gaussian traits in the time series under investigation. In particular,
if f(w) is flat, then peaks and troughs of f,(w) can indicate nonlinear traits, which po-
tentially might discover local periodic phenomena that goes undetected in an ordinary
spectral analysis.

Paper 2 ‘Nonlinear cross-spectrum analysis via the local Gaussian correlation’

Spectrum analysis can detect frequency related structures in a time series {Y}},_,, but
may in general be an inadequate tool if asymmetries or other nonlinear phenomena are
present. This limitation is a consequence of the way the spectrum is based on the second
order moments (auto and cross-covariances), and alternative approaches to spectrum
analysis have thus been investigated based on other measures of dependence. One such
approach was developed for univariate time series in Jordanger and Tjgstheim (2017),
where it was seen that a local Gaussian auto-spectrum f,(w), based on the local Gaus-
sian autocorrelations p (h) from Tjgstheim and Hufthammer (2013), could detect local
structures in time series that looked like white noise when investigated by the ordinary
auto-spectrum f(w). The local Gaussian approach in this paper is extended to a local
Gaussian cross-spectrum f,, (w) for multivariate time series. The local cross-spectrum
fi(w) has the desirable property that it coincides with the ordinary cross-spectrum
f..(w) for Gaussian time series, which implies that f,, (w) can be used to detect non-
Gaussian traits in the time series under investigation. In particular: If the ordinary
spectrum is flat, then peaks and troughs of the local Gaussian spectrum can indicate
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nonlinear traits, which potentially might discover local periodic phenomena that goes
undetected in an ordinary spectral analysis.

Paper 3 ‘Model selection of copulas: AIC versus a cross validation copula infor-
mation criterion’

Akaikes Information Criterion (AIC) is frequently employed in the semiparametric set-
ting of selection of copula models, even though as a model selection tool it was devel-
oped in a parametric setting. Recently a Copula Information Criterion (CIC) has been
especially designed for copula model selection. In this paper we examine the two ap-
proaches and present a simulation study where the performance of a cross-validated
version of CIC is compared with the AIC criterion. Only minor differences are ob-
served.
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Chapter 1

Introduction

For a time series {Y,},_,, the auto- and cross-spectra can only detect those properties
that are captured by the auto- and cross-covariances, and an investigation of features
that goes unnoticed by these second order moments will require some other approach.

This thesis presents new tools for the detection and investigation of nonlinear struc-
tures, in particular periodicities, in time series, i.e. the local Gaussian auto- and cross-
spectra (Paper 1 and 2, respectively). These tools are based on a local Gaussian investi-
gation of the probability density functions related to the lag h pairs (Yi o Yt) of the time
series under investigation, and a local Gaussian spectral analysis of {Y}},_, can thus be
conducted — which potentially might discover periodic phenomena that goes undetected
in an ordinary spectral analysis.

The local Gaussian spectra might also be of interest with regard to an informal
model selection for time series, as they enable a local view of the suitability of different
parametric models fitted to a given time series. The model selection aspect is taken
up more systematically, but restricted to a copula setting, in the last paper of this thesis
(Paper 3), where a simulation study compares different model selection tools for copula-
models.

A unifying theoretical framework which many of the concepts of this thesis builds
upon will be briefly outlined and discussed in this introduction. It will in particular be
seen that all the papers are in some sense related to the Kullback-Leibler information
criterion (KLIC), that a bit of copula-theory is needed, and that transformations of the
observations plays a central role.

1.1 Theoretical framework: The basic components

1.1.1 Extraction of information from observations

The detection of structure in a given set of n observations, say X = {x,}’  with

i=1
xz, = (z,,...,z,), requires techniques for the extraction of the inherent information. In
some cases it might be sufficient to let the data speak for themselves, e.g. non-parametric
methods can be applied in order to get a density estimate. In other cases it might be bet-

ter to look for a parametric or semi-parametric model, in which case it will be necessary



2 Introduction

to select a collection of models J := {F,};_, (with probably density functions f, and gen-
eral parameters «,), and then use an information criterion to select the model F (with
optimal parameters o) that gives the best match with the available observations X .

The concept of best match can be a tricky one, i.e. since the different selection meth-
ods might rest upon assumptions that could be hard to verify (based on the available
data). A brief reminder of the underlying theory can thus be enlightening.

1.1.2 The Kullback-Leibler divergence and information criteria

Many information criteria, like the Akaike Information Criterion (AIC) and the Takeuchi
Information Criterion (TIC), see respectively Akaike (1974); Takeuchi (1976), are re-
lated to different estimation regimes of the Kullback-Leibler Information Criterion
(KLIC), see Kullback and Leibler (1951). In particular, assuming that the sample X
originates from a known model F° (with probability density function f°), then it is pos-
sible to compute the following entity for each model F, € T,

KLIC(F*, F) = E;. {log I

f] =Ey.[log f°] = Eyo[log f] . (L.1)

It follows from the Jensen inequality that KLIC(F*, F,) always will be non-negative, and
that it is equal to zero if and only if f, = f° almost everywhere — and this implies that
KLIC(F*, F) can be used to find the optimal parameter-configuration « that makes F*
the best match to F°. Equation (1.1) can then be used to select the overall best model F*
from the collection of best matches {F;};_,. It is important to note that it might happen
that none of the models in F gives a decent approximation of F° — and in that case it
will be a bit of a misnomer to refer to F* as the ‘overall best model’.

Since the term Ey[log f°] is present in eq. (1.1) for all the models, it is clear that a
minimisation of KLIC(F*, F}) corresponds to a maximisation of E.[log f,], and many
information criteria are based on the strategy that this latter term are estimated from
the observations X . The actual estimation will be influenced by the assumptions made
upon the observations X, and the models F, which leads to different information criteria,
like the before mentioned AIC and TIC. These model selection strategies will be subject
to the effect of small-sample variation, and additional complications might also occur
if they are applied outside of the realm in which they originally were constructed.

1.1.3 The copula and the selection of copula models

Sklar’s theorem, see Sklar (1959), states that a multivariate model F,(x,,...,z,) can be
written as

E(xl7 "7xd) :Cl(El (Il)7"'7Fid (Id)) (1'2)
where | F; (xj) }; are the d marginal cumulative distributions, and where C,(u,, ..., u,)

is a d-variate copula that decodes all the interdependence structure of F(z,, ..., z,).



1.1 Theoretical framework: The basic components 3

Equation (1.2) enables a decoupling of the parameters of F into those that occurs
in the marginal distributions ', and those that occur in the copula C,. The parameters
of the marginals are often considered as nuisance parameters if the aim of the investi-
gation is to find the copula-model that best describes the internal dependency structure
of a given sample X . It is then natural to use a semi-parametric two-step approach,
where the first step uses the F' (the +4p-scaled marginal empirical cumulative density
functions) to transform from observations into pseudo-uniform observations, and the
second step is to find the copula model C* (from the collection C = {C,};_)) that best
matches the dependency structure of the pseudo-uniform observations.

Grgnneberg and Hjort (2008) showed that the transformation to pseudo-uniform ob-
servations had a non-negligible impact upon the asymptotic behaviour of the estimator,
i.e. that it formally was not quite correct to use a parametric method like AIC in this semi-
parametric setting. An investigation of the E-[log f,] term from eq. (1.1), that properly
took into account the effect of the pseudo-transformation of the observed data X , lead
to different information criteria for copula-selection, see Grgnneberg and Hjort (2008,
2014). The cross-validation Copula Information Criterion (xv-CIC) from (Grgnneberg
and Hjort, 2014) is the topic for Paper 3 in this thesis.

The copula also plays an important indirect role in Papers 1 and 2, with the intro-
duction of pairs of transformed pseudo-normal variables, see eq. (1.4) in section 1.1.5
for further details.

1.1.4 Local parametric models and the local Gaussian correlation p,

It might be a tall order to find a reasonable collection of parametric models F = {F,};_
when a data set X is to be investigated, in particular if the desired application is to
estimate f° ata given point v € R¢. The core of the problem is that even though eq. (1.1)
is used to select an optimal model F* from J, it might still be the case that f*(v) fails to
give a decent estimate of f°(v). The reason for this is that F'* has been selected based
on the property that its density f* minimises the expectation of log(f°/f,), and this does
not guarantee a good match between f° and f* at a specified point v.

A solution to this problem was introduced in Hjort and Jones (1996), where a lo-
cally parametric nonparametric density estimation approach was presented. In this ap-
proach, for a given parametric model F'(x; 6), the aim is to find a solution F(x; 6,) that
minimises the b — 0" limit of the following locally weighted version of KLIC, where
K, (x — v) is a kernel function and b is the bandwidth,

/ K,(@~v) | (@) log {5 — {1°(@) - f(@:0)}] da. (13)

Given that the model F(x; 0) is sufficiently flexible, this approach has a better chance of
ensuring a result that satisfies the requirement f°(v) = f(v;9,).

The aim of (Hjort and Jones, 1996) was the estimation of the density f°(v), but it is
also possible to change the focus to the estimated parameter vector 8,. This approach
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was pursued for the bivariate case in Tjgstheim and Hufthammer (2013), where the
specification that F'(x; @) should be a Gaussian distribution enabled the extraction of
the local Gaussian correlation p, from 6,. The p, obtained in this manner provides a
local measure of dependence, with the desirable properties that it (a) will return the
ordinary (global) correlation if the targeted function F* itself is Gaussian, and that it (b)
can detect nonlinear dependencies between uncorrelated random variables.

The local Gaussian approach from (Tjgstheim and Hufthammer, 2013) has been in-
vestigated in different settings, some focus (like (Hjort and Jones, 1996)) on density
estimation, see Otneim and Tjgstheim (2016, 2017), whereas other investigate proper-
ties of the local Gaussian correlation as a local measure of dependence, see Berentsen
et al. (2017, 2014a); Berentsen and Tj@stheim (2014); Berentsen et al. (2014b); Lacal
and Tjgstheim (2016, 2017); Stgve and Tjgstheim (2014); Stgve et al. (2014).

The idea that the local Gaussian correlation should be applied to time series was an
integral part of (Tjgstheim and Hufthammer, 2013), i.e. the theory was developed for
the case with lag h pairs (K s Yt) from a univariate time series {Y}},_,. This case will
in Paper 1 be referred to as p (h), the local Gaussian autocorrelation at lag h, and the
basic idea is to use the collection {p (h)},_, to define the local Gaussian auto-spectral
density for a univariate time series. The extension to multivariate time series, and the
concept of local Gaussian cross-spectral density, is given in Paper 2.

1.1.5 Estimation of the local Gaussian correlation p_

The R-package localgauss, see (Berentsen et al., 2014a), can compute estimates of
the local Gaussian correlation for bivariate samples. Figure 1.1 shows two examples,
both with samples of size n = 500. The sample in the left panel is from a bivariate
normal distribution with correlation 0.5 and standard normal margins. In this case the
local Gaussian correlation coincides with the ordinary (global) correlation, and this
agrees (taking small-sample variation into account) with the observed estimates of the
local Gaussian correlation. The case investigated in the right panel is from a bivariate
random variable (X,, X,), where X, = X? + ¢ with X, ~ N(0,1) and e ~ N(0,1). The
random variables X, and X, are uncorrelated, but obviously dependent, as can be see
in the right panel of fig. 1.1. For this sample the estimated correlation is -0.015, which
does not reveal anything about the internal dependency structure between X, and X,.
On the other hand, the estimated local Gaussian correlations clearly detect significant
local features of the underlying distribution.

The estimated local Gaussian correlations in fig. 1.1 are based on the original ob-
servations {(x,,,x,,)};_,, but it might in general be necessary to transform to pseudo-
normalised observations in order to avoid numerical problems during the estimation
process. The pseudo-normalisation procedure used in Paper 1 and 2 is a two step pro-
cess, where (1) the first step is to use the F (the —r-scaled empirical marginal cumu-
lative density functions) to replace the observations with pseudo-uniform observations,
and (II) the second step is to use &' (the inverse of the cumulative density function
for the univariate standard normal distribution) in order to get the pseudo-normalised
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Figure 1.1: Examples of the local Gaussian correlation p,.
observations, i.e.
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This pseudo-normalisation procedure in essence makes it possible to ignore the ef-
fect of the marginal distributions in the subsequent analysis, and puts the emphasis on
the copula-component that describes the interdependence of the variables. It is impor-
tant to note that this transformation does not destroy the desirable property that the local
Gaussian correlation of a Gaussian distribution will be equal to the correlation of that
distribution — which is pivotal for the interpretations that can be made later on in the
discussion of the local Gaussian spectral densities.

1.1.6 The local Gaussian correlation p, versus quantile based local mea-
sures

There are several strategies available that can give a local measure of dependence be-
tween two random variables X, and X, see the discussion in Tjgstheim and Hufthammer
(2013) for further details, and it is (as will be discussed in section 1.2) possible to use
these local measures of dependence to construct different local approaches to spectral
analysis.

Some local measures of the dependency structures between X, and X, contains ex-
pressions based on entities like X, < p, and X, < p,, where (p,, p,) denotes a point of
interest.! The knowledge of the distribution function F° of the bivariate pair (X,, X,)
will in general be unknown, and a transformation from observations to pseudo-uniform
observations (using part I of eq. (1.4)) is thus common to apply before the estimation
of these local measures. The transformation of the point (p,,p,) is a pair of quantiles
(7,,7,), and it is thus natural to refer to the local measures obtained in this manner as
quantile based.

It can be instructive to give a simple example that combines a visualisation of the
transformation process from eq. (1.4) with a brief comparison of the way the local Gaus-
sian correlation p, and the quantile based local measures are estimated. For this pur-
pose consider the lag 1 pairs (Y Yt) from a sample of size 400 from an AR(2)-model

t+17

"Variants based on expression like p; < X, < p, can also be encountered — but those are for simplicity not
included in the present discussion.
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Y, =9Y, ,+0¢Y, ,+w, with¢ =1, ¢, =—0.75 and w, ~ N(0, 1).

The panels of fig. 1.2 shows the 399 lag 1 pairs (Y; i Yt) based on the original ob-
servations, the pseudo-uniform observations and the pseudo-normalised observations,
of which the latter two respectively can be used for the estimation of a quantile based
measure of dependence and a local Gaussian measure of dependence.

original . 100- o, e, o  Pseydo . pseudo-normal
o’ ge e L

50-
25-
0.0 -

25 % s

-5.0- . 0001 = #t®

-5.0 -25 0.0 25 50 0.00 025 050 075 1.00 Py 0 2

Figure 1.2: The 399 lag 1 pairs (Y Y) from the AR(2)-example. Left: Original observa-

t+17 Tt
tions. Center: Pseudo-uniform observations. Right: Pseudo-normalised observations.

The blue area in the center panel shows the pseudo-uniform observations that, given
the quantiles g = (0.25,0.375), will be essential for the estimation of a quantile based
measure of dependence for that particular quantile. The point v = (—0.67,—0.32) in
the right panel is the ®~'-transformed version of g, and the blue square centered at v
(based on the bandwidth b = (0.6, 0.6)) shows the pseudo-normalised observations that
are essential for the estimation of the local Gaussian correlation in this case.

The blue regions in fig. 1.2 highlights the pseudo-uniform observations and pseudo-
normalised observations that will be essential for the estimation of the local measures
of dependence for the given sample, and it is important to note that these regions behave
differently when the sample size changes; in particular, the region in the center panel
will remain the same regardless of the sample size, whereas the square in the right
panel will shrink when the sample size increases (since a smaller bandwidth b then can
be applied).

Note that in theory it is possible to compute the local Gaussian correlations based
on the original observations in the left panel or the pseudo-uniform observations in the
center panel, but that this in practice might not be advisable to do due to numerical
problems in the estimation algorithm.

1.2 Theoretical framework: Time series

1.2.1 Stationary time series and spectral densities

The discussion will for notational simplicity focus on the univariate time series. The
multivariate case will be mentioned briefly in the discussion of Paper 2.
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For a univariate time series {Y,},_,, let y(r,s) denote the covariance between the
terms Y, and Y.. The time series is weakly stationary if it satisfies the following three
requirements

(i) E[|Y,])] <oo forallt e Z, (1.5a)
(ii) E[Y,]=m forallt e Z, (1.5b)
(iii) y(r,s) =~v(r +t,s+t) forallr s,t € Z. (1.5¢)

In this case the covariance only depends on the difference h» = r — s, and it is then
denoted v(h), the autocovariance at lag h. The corresponding entity p(h) = v(h)/v(0)
is the autocorrelation at lag h. 1f the collection {~(h)}, , is absolutely summable, then
the spectral density f(w) is the Fourier transform of {v(h)},_,. i.e.

flw) = Z v(h) - e, (1.6)

heZ

It follows from the Spectral Representation Theorem, see e.g. Brockwell and Davis
(1986, Th. 4.8.2), that it exists a right continuous orthogonal-increment processes Z(w)
that (with probability one) enables the original stationary time series to be expressed as

1/2
Y, = / e d Z(w), (1.7)
~1/2

which can be considered as a regression (with stochastic coefficients) of the time series
{Y,},., on sines and cosines that oscillates at different frequencies.

It can from this be derived that the spectral density f(w), when it exists, satisfies
f(w)dw =E[ld Z(w)[], (1.8)

i.e. f(w) is related to the variance of the complex-valued entity d Z(w).
Furthermore, the inverse Fourier transform of eq. (1.6) gives the relation

1/2
v(h) = (w) - " dw, (1.9)
~1/2

which for i = 0 expresses the variance Var(Y,) = ~(0) as the integral of the spectral
density f(w). This enables a visual inspection of how much different frequencies con-
tributes to the variance, and peaks and troughs in the graph of f(w) can thus reveal

information about periodic properties of the time series {Y,},_,.

Figure 1.3 exemplifies this for the case of the AR(2)-model from section 1.1.6. The
panel at the bottom shows the theoretical spectral density f(w) (only plotted for w > 0
since f(w) is an even function), and the peak near 0.15 indicates that a sample from this
AR(2)-model should have some periodic behaviour. However, since the peak is rather
wide, it will not be a clear-cut periodicity that occurs, which is in agreement with the
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observed trace shown in the top panel.

5.0-
2.5-
0.0-
-25-
-5.0-

0 100 200 300 400

25-
20-
15~
10-
5_

0_

0.0 0.1 0.2 0.3 0.4 0.5

Figure 1.3: An AR(2)-example. Top panel: Trace. Bottom panel: f(w).

Since Gaussian distributions are completely determined by their first and second
moments, it follows from eq. (1.5) that there is a one-to-one correspondence between
Gaussian time series and their corresponding spectral densities. The situation is not that
nice for general time series, and f(w) does in particular fail to be useful for GARCH-type
models, where the observations {Y,},_, are uncorrelated but not independent. The spec-
tral density is constant for such GARCH-type models, and f(w) thus does not provide
any information about the underlying nonlinear structure.

Many approaches have been investigated in order to find generalisations of f(w)
that overcomes the above mentioned shortcomings. Some of them (like the new ap-
proach presented in this thesis) need the additional assumption that the time series

{Y.},., should be strictly stationary, i.e. that the joint distributions of [Ytl . .YtJ and
|:Y;1+h7 . thh} are the same for all positive integers k and for all ¢,,...,¢,,h € Z.

Before presenting the local Gaussian auto- and cross-spectra in Paper 1 and 2, it
can be instructive first to give a brief account of some of the existing global and local
generalisations of f(w).

1.2.2 Higher order spectra (global) generalisations of f(w)

Noting that eq. (1.9), for h = 0, gave a decomposition of the variance (second or-
der moment) over different frequencies, Tukey introduced similar constructions based
on higher order moments and cumulants,” e.g. the bispectrum and trispectrum, which
respectively can be considered as a decomposition of skewness and kurtosis over the
frequencies — and he also introduced the polyspectra for multivariate time-series. See
Brillinger (1991) for an overview of the early history of the higher-order spectra.

2This approach was mentioned in Lapierre and Fortet (1953), and according to Brillinger (2002, p. 1602) this
could have motivated Tukeys 1953 article The spectral representation and transformation properties of the higher
moments of a stationary time series, in which the definition and properties of the bispectrum (the third-order
spectral density) was investigated. This article was unpublished until it appeared in The Collected Works of John
W. Tukey, Brillinger (1984), and the bispectrum first appeared in print in Tukey (1959).
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These higher order generalisations of f(w) often produce formulas that are hard to
estimate, the resulting estimates can be tricky to visualise (e.g. complex-valued), and
they can be hard to interpret. The same problems occur for the other generalisations
too, and the following quote from Akaike (1966) should thus be kept in mind for all the
generalisations of f(w).

The results of analyses of ordinary spectra and cross-spectra can be under-
stood completely on the basis of linear transformation theory and they sug-
gest the direction of development of models or theories about the phenomena
under observation. In contrast to this, higher order spectra seem to be still in
want of a sufficiently general theory which gives an overall understandabil-
ity of them, and their physical meanings have been understood only where a
proper model or theory existed before the observation.

Despite these issues, higher-order spectra have been further investigated and applied
in a plethora of different cases — the overview article Swami et al. (1997) lists 1759
entries up to 96/97, and a similar counting today would probably dwarf that number.
This increase is related to the improvement of the available computational and graphical
resources, which enables researchers to investigate nonlinear time series by means of
these higher order spectra techniques.

For further details, the interested reader could e.g. consult Collis et al. (1998), which
discuss the higher cumulant versus higher moment approaches, highlight technical de-
tails related to the estimation-techniques, and which, in addition, presents some ap-
proaches with regard to the graphical inspection of complex-valued results.

1.2.3 Alternative (global) generalisations of f(w)

The idea of the higher order spectra approach was to extend f(w) by replacing v(h) (a
second order moment measure) with measures that took into account higher moments or
cumulants. However, as discussed in Van Hecke et al. (2017), it is possible to consider
general spectral densities of the form

flw) =D g e, (1.10)

h€EZ

where the quantity &, is some dependence measure computed from the random variables
Y,andY,,,. As for instance noted in (Van Hecke et al., 2017), generalisations of f(w) of
the form given in eq. (1.10) have been considered in Ahdesmaki et al. (2005) (Kendall’s
7), Carcea and Serfling (2015) (Gini autocovariance) and Zhou (2012) (L-moments).

Note that the local Gaussian approach to spectral analysis is based on the idea de-
scribed in eq. (1.10), but with the variation that ¢, will depend on the selection of a point
v = (v,,v,). This enables an investigation of how different strata of the time series in-
teract, and for points on the diagonal, i.e. v, = v,, it might be possible to pick up local
periodic phenomena at different scales of the time series, and it could also be used to
detect asymmetric behaviour in the lower and upper tails of a time series.
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1.2.4 Generalised function (global) generalisation of f(w)

Hong (1999) introduced a generalisation of f(w) based on the characteristic function.
The idea is to transform a stationary time series {Y}},_, into a time series based on the
corresponding characteristic functions, i.e. {exp (iuY))},_,, and then consider the bivari-
ate function o (u,v) := Cov(exp (iuY;) ,exp (ivY,_,,)). This function will be identical
to zero for all u and v if and only if Y, and Y,_ , are independent, and it is thus possible
for this tool to investigate nonlinear time series that are dependent but uncorrelated, like
e.g. GARCH-type series. The Fourier transform of o (u, v) will exist under some mild
regularity assumptions, and it is then possible to define the generalised spectral density
function of {Y}},_, as

hiw,u,v) =0, (u,v) - e, (1.11)

heZ
All the information about {Y;},_, is contained in eq. (1.11), the ordinary spectrum can
e.g. be restored as f(w) = —%%h(w, u,v) o)’ The generalised spectral density

is in Hong (1999, 2000) used for hypotheses testing and tests of serial dependence (for
univariate time series), and recent work has extended the techniques to the case of testing
of multivariate time series, see e.g. Li et al. (2016), and a test for conditional indepen-
dence, see Wang and Hong (2017).

This approach has in common with the local Gaussian approach that it is distribution
based, not moment based.

1.2.5 Quantile-based (local) generalisations of f(w)

It is well known that stock returns behave in an asymmetric manner, i.e. that they, as
noted in Hong et al. (2007), ‘more often move with the market when the market goes
down than when it goes up’. This asymmetry can not be detected by a (global) measure
like the autocorrelation (%), and several local approaches have been developed in order
to help detect these asymmetries. After the development of a local replacement for the
autocovariances +(h), it is then natural to Fourier transform them, like in eq. (1.10), in
order to obtain a corresponding local spectral density.

Some examples of local replacements for the autocovariances ~(h) can e.g. be found
in Dette et al. (2015), where different cross-covariance kernels are defined. In particular,
the Laplace cross-covariance kernel and copula cross-covariance kernel are defined
respectively as

’Vh(xlaxz) = COV(H{Y;ML S '/L.l}7 ]I{Y; S le}) ) ('7"17'7"2) € sz (1123)
W (r, 1) =Cov(1{U,,, <7}, {U, < 1}), (r,,7,) € (0,17, (1.12b)
where 1{-} is the indicator function and where knowledge of the marginal distribution G

is necessary in order to construct U, := G(Y,). Under the assumptions that {v, (=, z,)},_,
and {v(7,,7,)},., are absolutely summable, Dette et al. (2015) define the Laplace and
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copula spectral density kernels as the corresponding Fourier transformed entities. (A
rank based Laplace periodogram kernel is also defined.)

The copula spectral density kernel in Dette et al. (2015) is closely related to the
concept of quantile regression, introduced in Koenker and Bassett Jr (1978), see also
Koenker (2005). Several other local alternatives to the ordinary spectral density f(w)
have been developed based on this concept, like e.g. the quantilogram from Linton and
Whang (2007), for which the interested reader might consult Han et al. (2016) for more
details and additional references. A quantile periodogram was investigated in Li (2012c)
(see also Li (2008, 2010a,b,c, 2012a,b, 2014a)), and a quantile-based approach was also
applied in Hagemann (2011).

Note that not all of these approaches are of the form given in eq. (1.10), e.g. the quan-
tile periodogram from Li (2012c¢), and it might thus be natural to include some remarks
from Li (2014b, p. 252-253)) about the construction of the quantile periodogram from
a sample {y,},. The starting point is the function p_(z) =z - {a — 1{z < 0}}, which
is (o« — 1)z when = < 0 and cx when z > 0. This is used in the estimation of two differ-
ent quantile-estimates, of which the first estimate is the sample a-quantile, denoted by
A, which minimises 3" | p.(y, — A). The other estimate is based on a quantile regres-
sion of the a-quantile of y,, which is the A, that satisfies P(y, < A,) = a. The idea in this
latter case is that \, can be estimated by A+ /(w)3, where z, (w) is the trigonometric re-
gressor [cos(2nwt), sin(27wt)]’, and where the optimal regression coefficients \_(w) and
B, (w) are found by minimising ", p. (y, — A — ;(w)B). The quantile periodogram is
then defined by

Qua(@) = 0.1, =A) = D> pu(v — A w) — 2/(W)B.W)) , (1.13)
t=1 t=1

which gives a measure of the net contribution of the trigonometric regressor x/(w) to
the reduction of the quantile regression cost function.

1.3 The local Gaussian spectral densities

1.3.1 The local Gaussian auto-spectrum, definition and basic properties

The asymmetric nature of e.g. stock returns, see the discussion in section 1.2.5, can also
be investigated using the local Gaussian approach — and as for all the other local mea-
sures of dependence, the natural question is then to examine whether a local spectral
analysis can be based on this. It is in particular of interest to investigate if it might be
possible to detect periodicities/cycles at a local scale (e.g. in the upper and lower ex-
tremes of the time series under investigation) which are invisible to the ordinary spectral
density f(w) that works on the global scale.

For a point v = (v, v,) and a strictly stationary time series {Y}},_,, the construction
of the local Gaussian auto-spectrum f,(w), requires that it is possible to compute the
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collection of local Gaussian autocorrelations p,(h) for all h # 0, i.e. that all the prob-
ability density functions g, for the bivariate random variables (Yt hs Yt), satisfies the
regularity conditions given in Tjgstheim and Hufthammer (2013). The case A = 0 can
not be covered by this, but for this case it is natural to let p (0) be identical to 1 for all
ve R

If the collection {p,(h)},_, is absolutely summable, i.e. ), _, |p,(h)| < oo, then the

local Gaussian auto-spectrum can be defined as the Fourier transform of {p,(h)},_,. i.e.

F@) = p(h)- e, (1.14)

heZ

The estimation problems mentioned in section 1.1.5 motivate an adjusted definition,
see Paper 1, where an initial step normalises the time series under investigation, i.e.
{Y,},., will be replaced with {Z, .= &' (G (Y,))},.,, where G is the cumulative density
function® of Y, and ®~* as usual is the inverse of the cumulative density function of the
standard normal distribution. It will henceforward for simplicity be assumed that this
transformation has been performed when f,(w) is discussed.

For Gaussian time series, the local Gaussian autocorrelations p (h) coincide with
the ordinary (global) autocorrelations p(h), which implies that f,(w) in that case coin-
cides with f(w)/v(0), the variance-rescaled version of the ordinary spectral density from
eq. (1.6). The assumption that the investigation is performed on the normalised version
of the time series implies that v(0) = 1, so f,(w) = f(w) for all points v € R* when the
time series under investigation is Gaussian.

It follows from this that a comparison of f,(w) and f(w) can be used to identify non-
Gaussian traits in the time series under investigation. If f(w) is flat, i.e. p(h) = 0 for
all » # 0, then a non-flat f(w) can be taken as an indicator of non-linear dependency
structures in the time series under investigation, and the peaks and troughs of f,(w) might
then reveal additional information about these non-linear structures.

Itis of interest to note that Brillinger (1965, p. 1372) for higher order spectra gave the
following argument in favour of using higher order cumulants instead of higher order
moments: ‘The consideration of the cumulant in this [Gaussian] case is not liable to
deceive one into believing that he has gained some information. In the non-Gaussian
case the cumulant provides an indication of the non-Gaussianity.” This quote shows
that it can be preferable to have a tool that does not trigger any false alarms when the
time series under investigation is Gaussian, and the coincidence of f(w) and f(w) for
Gaussian time series is thus quite desirable from this point of view.

A comparison of f(w) and f(w) for a general point v = (v,,v,) can be a bit com-
plicated, since the local Gaussian autocorrelations p (h) in general are different from
p.(—h), which implies that f (w) then becomes a complex valued function. That issue is
not present if the point v lies on the diagonal, i.e. v, = v,, so the examples in the next
section will only consider such diagonal points where f (w) is a real valued function.

3In practice G will be unknown, and an estimate G (based on the sample at hand) will be used instead. This
adjustment adds some smaller order effects that must be taken into account during the theoretical analysis.
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1.3.2 Estimation of f(w) and some examples

Theoretical and numerical estimates of the ordinary spectral density f(w) is typically
investigated by means of the fast Fourier transform (FFT) and techniques related to
the periodogram. The effectiveness of the FFT is due to the product structure of the
estimated autocovariances, i.e. Y(h) = ?ihl Yo * Yo and since no similar product
structure is present for the estimates used in the local Gaussian approach (which is based
on the distribution), it is not feasible to use the techniques from the FFT-based theory
for estimates of f(w) when estimates of f,(w) are required.

The pre-FFT approach for estimation of f(w), where a Fourier transform is taken of
the estimated autocorrelations after they have been smoothed and truncated by means
of some lag-window function, can be adapted to deal with the estimates of the local
Gaussian spectral densities f,(w). The estimates to be used later on for the comparison
of f(w) and f(w) will thus be

Frw)= > A h)-p(h) e, (1.15a)
|h|<m

Frw) =) A(h) Dby e, (1.15b)
|h|<m

where m denotes the truncation level and A (h) is the lag-window function used for the
smoothing. It has not been explicitly included in the notation of eq. (1.15b), but the
estimate J/‘Z"(w) does also depend on the bandwidth b that is needed for the estimation
of the local Gaussian autocorrelations p (k).

The estimation of f,(w), based on a (pseudo-normalised) sample {y,} ", of size n,
must also take into account that the selection of the point v = (v, v,) will influence the
bias-variance properties of the estimate. In particular, it can be problematic if the coor-
dinates v, and v, are too far out in the tails of the sample. And moreover, as mentioned in
the previous section, it can be preferable to consider points on the diagonal, i.e. v, = v,,
since f,(w) (and the estimate fj"’(au)) then are real valued functions of w. The coordi-
nates v, and v, will, for the examples investigated in Paper 1 and 2, be chosen among
the 10%, 50% and 90% percentiles of the standard normal distribution, whose values
are -1.28, 0 and 1.28. Information about v is contained in the upper right corner of the
relevant plots, where it is marked as 10%: : 10%, and so on.

Figures 1.4 and 1.5 are taken from Paper 1, and show two simulation based investi-
gations of f(w). Figure 1.4 shows the result when the estimation procedure is used on
100 independent samples from a standard normal distribution N(0, 1). The top left panel
shows the pseudo-normalised version of the first time series that was sampled from the
model, with dashed brown lines at the levels that correspond to the coordinates v, and
v,. The three other panels contain information about the m-truncated ordinary spectral
density f™(w) (red part, the same for all the plots) and the m-truncated local Gaussian
spectral densities f™(w) for the three diagonal points under investigation (blue part).
Information about the truncation level and the points are printed at the top of each plot.
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Figure 1.4: i.i.d. Gaussian white noise

It can be seen from fig. 1.4 that the medians of the estimates (the red and blue dashed
lines) are good estimates of f™(w) and f™(w) (the m-truncations of the true values),
which in this case in fact coincides with f(w) and f,(w), i.e. it is known that the true
values are identical to 1 both for the local and global case. Observe that the estimated
90% pointwise confidence bands are wider for the local Gaussian spectral densities,
which is as expected since the bandwidth used in the estimation of the local Gaussian
autocorrelations reduces the number of observations that effectively contributes to the
estimated values, and thus make the estimates more prone to small-sample variation.
Note also that the confidence bands are wider when the coordinates v, and v, are in the
tails, which is as expected due to the reduced number of available observations.

The estimation procedure gave good estimates of the true values f(w) and f(w) in
the simple example of fig. 1.4, but it is important to keep in mind that these plots actu-
ally shows estimates of f™(w) and f(w). It might be necessary to apply a (much) higher
truncation level before f™(w) and f™(w) give decent approximations of the true values
f(w) and f,(w). It thus seems preferable to compute J/‘;" (w) for a range of possible trun-
cation levels m, and then check if the shapes of the estimates for different truncations
share the same properties with regard to the position of any peaks and troughs. See the
discussion of the computer code in section 1.4 for further details.

The Gaussian case investigated in fig. 1.4 is the only one where it is known what the
true value of f,(w) should be. However, it is possible to construct an artificial example
like the one investigated in fig. 1.5, where an argument can be given that justifies that
the three local peaks of f(w) are as expected based on the generating model and the
bandwidth b = (0.6, 0.6) used in this particular case. Note that the parameters used to
generate the artificial example in fig. 1.5 was selected such that the global spectrum f(w)
should look like white noise, and this is in agreement with the observed estimates of the
global spectrum.

Note that fig. 1.5 shows that f,(w), in contrast to f(w), can take negative values for
some frequencies. This is due to the fact that the collection of local Gaussian autocor-
relations {p,(h)},_, might not be non-negative definite. Furthermore, a correspondence
like eq. (1.8) does not exist for f,(w), and caution is thus advised if peaks and troughs
of f(w) are attempted interpreted exactly as they would have been if they had occurred
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Figure 1.5: Artifical example, hidden trigonometric components.

for the ordinary spectral density f(w).

These somewhat problematic issues for f(w) might for practical purposes be a minor
problem, i.e. the central part of interest is that f,(w) can detect if a time series {Y}},_,
contains non-Gaussian traits. And, as was seen in fig. 1.5, the shape of f (w) can reveal
local properties that goes unnoticed by the ordinary spectral density. These features
implies that estimates of the local Gaussian spectral densities might be of interest to
consider as an additional tool with regard to local frequency representation and model
interpretation for time series, a topic that is discussed in Paper 1 and 2.

1.3.3 The local Gaussian cross-spectrum

The cross-spectrum f,,(w) is a bivariate concept defined for a jointly stationary time
series { (Y, ,,Y;,) },_,, which in Paper 2 will be assumed to consists of two of the mar-
gins of a stationary multivariate time series {Y;},_,, where Y, = (YM, . ,Y(“). With
P(h) = COV(Y;M . YM), the standardised cross-spectrum can be defined as

Fuw) = po(h) - e, (1.16)
heZ
and the local Gaussian cross-spectrum at a point v = (v,, v,) is then simply given as
Froal@) =) pyea(h) - €77, (1.17)
heZ

i.e. ordinary cross-covariances are replaced with the local Gaussian cross-covariances
that corresponds to the density functions g,, of the bivariate random variables (YM s YU) .
The cross-spectrum f,,(w) can, based on the same reasoning that was used in

egs. (1.7) and (1.8), be expressed as
fulw)dw =E[|dZ,(w)d Z,w)|] . (1.18)

where Z,(w) and Z,(w) are the right continuous orthogonal-increment processes that
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correspond to {YM}(EZ and {YM}M, i.e. f,,(w) is related to the covariance of the two
complex-valued entities d Z, (w) and d Z,(w).

The local Gaussian cross-spectrum f,,. (w) will by construction coincide with f,,(w)
if the multivariate time series under investigation is Gaussian, and the discussions re-
lated to the univariate time series thus apply in the multivariate case too.

Since f,,(w) in general is a complex-valued function, the actual comparison with
freo(w) will be based on the original and local Gaussian versions of the cospectrum,
quadrature spectrum, phase spectrum and amplitude spectrum.

Note that the coherence, defined as the correlation of d Z,(w) and d Z,(w), and
the related concept of squared coherence (a number between 0 and 1), does not be-
have well in the local Gaussian case. The squared coherence can be expressed as
foW) fo W)/ for(w) f,,(w), where a repeated index indicates an auto-spectrum, and it is
possible to create a naive local Gaussian analogue of these concepts, by simply replac-
ing the ordinary spectra with their local Gaussian spectra. This naive generalisation
of the squared coherence was however dropped, since it in general returned complex
valued results without any restrictions of how large the amplitudes could become.

1.3.4 Local Gaussian spectral analysis versus other alternatives to f(w)

It has not been the aim of this thesis to compare the local Gaussian approach to spectral
analysis with any of those approaches mentioned in sections 1.2.2 to 1.2.5, but a few
comments can nevertheless be included to at least point upon some details of interest.

The main motivation for these approaches is to investigate those properties of a time
series {Y,},_, that are not captured by the second order moments, which in particular is of
interest for non-Gaussian time series where nonlinear structures might be present. The
local Gaussian approach requires the assumption of strict stationarity, since it is based
on a local measure defined relative to the distribution functions, and this requirement is
shared by many of the approaches mentioned in sections 1.2.4 and 1.2.5.

The copula parts of the different distributions are central for the local Gaussian
approach, due to the practical requirement that the estimates are computed based on
pseudo-normalised observations. The additional normalising part of the transformation
makes this slightly different from the copula-approach described in Dette et al. (2015),
but it does still separate the marginal aspect of the time series from the serial aspect.
Moreover, as explained in Dette et al. (2015), the step that replaces the original obser-
vations with pseudo-uniform observations implies that these methods are invariant with
respect to monotone transformations of the marginal density, e.g. the same result will
be obtained from {Y,},_, and {exp(Y,)}

teZ teZ"®

1.3.5 Local Gaussian spectral analysis and model selection

Issues related to model selection were discussed in section 1.1.2, and the selection of
copula models will in particular be looked upon in Paper 3. Model selection can also
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be of interest to consider in conjunction with the local Gaussian spectral densities, as
explained in the discussion of the financial time series examples in Paper 1 and 2.

The basic idea in this latter case is that, given some sample {y,},_, from a time series,
and given a collection of potential models G := {G,};_,, then existing techniques should
first be applied for the selection of the optimal parameters for each individual G, and an
overall best model G* from G could then be selected for {y,}" .

An informal additional step can then be added based on the local Gaussian approach
to spectral analysis. In particular, it is possible to compare the results based on the
original sample {y,}’ , with results obtained from samples generated from the fitted
models. This might provide visual cues with regard to the suitability of the different
models, e.g. if the models in a decent manner managed to capture asymmetric properties
of the original observations.

1.4 Computer code

An R-package localgaussSpec has been created that builds upon the localgauss-
package (Berentsen et al., 2014a) and computes the local Gaussian spectral densities
discussed in Paper 1 and Paper 2. This package can be installed into R (R Core Team,
2017) by the help of the devtools-package (Wickham and Chang, 2016):

library(devtools)
install_github("LAJordanger/localgaussSpec")

The scripts needed for the reproduction of the plots in Paper 1 and Paper 2 are
contained in the localgaussSpec-package, and the interested reader can extract these
scripts from the compiled package by the help of the function LG_extract_scripts.
Note that these scripts also document how the different functions of the package work
together, and they are thus also intended to be used as templates for those that would
like to check out the functionality of the localgaussSpec-package.

Note that a shiny-application (Chang et al., 2017) is used to enable an interactive
investigation of the resulting plots, so it is fairly easy to investigate how the result is
affected by different configurations of the input-parameters. Read the scripts and the
package-documentation for further details.

1.5 Summary of papers

1.5.1 Summary of Paper 1: ‘Nonlinear spectral analysis via the local
Gaussian correlation.’
This paper introduces the local Gaussian spectral density f(w) as a local Gaussian

adjustment of the ordinary spectral density f(w), by simply replacing the ordinary auto-
correlations p(h) in the definition of f(w) with their local Gaussian counterparts p (h).
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An estimator of f (w) is constructed, and an asymptotic normality result for the estimator
is obtained by extending arguments from Tjgstheim and Hufthammer (2013).

Some simulated examples are investigated in order to check that the estimated local
Gaussian spectral density behaves as expected when it is known what the results should
look like. It is verified that the estimates of f,(w) and f(w) are close to each other for
Gaussian time series, and it is also seen that local periodic phenomena can be detected
by f,(w) for an artificially constructed time series whose ordinary (global) spectrum f(w)
looks like white noise.

A financial data set is then investigated by means of the local Gaussian spectral
density, and it is observed that local nonlinear features are present. Simulations from a
GARCH-type model fitted to the data set is also investigated, and it is seen that estimates
of f(w) can be used to get a local Gaussian spectral comparison of the fitted model
against the original observations. This implies that estimates of f,(w) could play a role
as an exploratory tool when it comes to model selection.

Note that the examples in this paper can be investigated in an interactive manner in
the accompanying R-package localgaussSpec.

1.5.2 Summary of Paper 2: ‘Nonlinear cross-spectrum analysis via the
local Gaussian correlation.’

This paper extends the setup from Paper 1 to the multivariate case, i.e. the concept
of local Gaussian cross-spectra f,, (w) are defined from the ordinary (global) cross-
spectrum f, (w) by replacing the cross-correlations p,,(h) with their local Gaussian
counterparts p,, (h). It is clear that some concepts related to the complex-valued or-
dinary (global) cross-spectrum f,,(w) can be extended trivially to the local Gaussian
case f,,. (w),1.e. local Gaussian versions exist for the cospectrum, quadrature spectrum,
amplitude spectrum and phase spectrum.

The asymptotic theory for estimates of f,, (w) is in essence the same as the asymp-
totic theory for estimates of f(w) (from Paper 1), which simplifies the investigation
tremendously. The only new part is that it in the multivariate context also is necessary
to find asymptotic results for the estimates of the local Gaussian amplitude spectrum
and the local Gaussian phase spectrum, but this follows quite trivially by applying stan-
dard techniques as given in Brockwell and Davis (1986).

The examples in Paper 2 closely resembles those from Paper 1, i.e. first a few bi-
variate time series are considered that verifies that the expected results are returned for
some simple cases, in particular a local trigonometric example shows that local periodic
phenomena can be detected that goes unnoticed by the ordinary (global) spectral densi-
ties. A multivariate financial time series with a corresponding GARCH-type model is
also investigated in order to show that estimates of the local Gaussian cross-spectrum
might be useful with regard to model interpretation and selection.

Note that the examples in this paper can be investigated in an interactive manner in
the accompanying R-package localgaussSpec.
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1.5.3 Summary of Paper 3: ‘Model selection of copulas: AIC versus a
cross validation copula information criterion.’

Lars Arne Jordanger and Dag Tjgstheim, ‘Model selection of copulas: AIC versus a
cross validation copula information criterion.’, Statistics and Probability Letters, 92,
249-255 (2014).

Paper 3 is motivated by Grgnneberg and Hjort (2008, 2014), i.e. it contains the re-
sults from a simulation study that compares the small-sample performance of the cross-
validation Copula Information Criterion (xv-CIC) from (Grgnneberg and Hjort, 2014)
with the performance of the ‘AIC, where AIC denotes that the Akaike Information Cri-
terion (from Akaike (1974)) is used on a (bivariate) sample where the (rescaled) empir-
ical marginal cumulative density functions have been used to replace observations with
pseudo-uniform observations.

Before (Grgnneberg and Hjort, 2008) it was commonly assumed that the transfor-
mation from observations to pseudo-uniform observations should have no impact on the
asymptotic theory, but that turned out to be an incorrect assumption. The asymptotic
investigation in (Grgnneberg and Hjort, 2008) resulted in two alternative copula infor-
mation criteria, but those were of less practical interest since they were not generally
applicable. The xv-CIC introduced in (Grgnneberg and Hjort, 2014) did not suffer from
that problem, and thus presented a (from an asymptotic point of view) more appropriate
model selection tool for copula models than ‘AIC.

However: In a practical setting only a finite sample will be present, and the result
from AIC might then (due to the effect of small-sample variation) be just as good/bad
as the results from the computationally much costlier xv-CIC.

The small-sample simulation study in Paper 3 shows that xv-CIC and 'AIC in most
cases will select the same model, and neither of them seems to be superior to the other
one for the cases investigated.
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Nonlinear spectral analysis via the
local Gaussian correlation

Lars Arne Jordanger Dag Tjgstheim

Abstract

The spectral distribution f(w) of a stationary time series {Y;},_, can be used to
1ez» DUL f(w) has
some limitations due to its dependence on the autocovariances (k). For example,
f(w) can not distinguish white i.i.d. noise from GARCH-type models (whose terms
are dependent, but uncorrelated), which implies that f(w) can be an inadequate tool
when {Y,},_,
Asymmetries between the upper and lower tails of a time series can be investi-
gated by means of the local Gaussian autocorrelations p (h) introduced in Tjgs-
theim and Hufthammer (2013), and these local measures of dependence can be
used to construct the local Gaussian spectral density f(w) that is presented in this
paper. A key feature of f,(w) is that it coincides with f(w) for Gaussian time se-
ries, which implies that f,(w) can be used to detect non-Gaussian traits in the time
series under investigation. In particular, if f(w) is flat, then peaks and troughs of
f.(w) can indicate nonlinear traits, which potentially might discover local periodic

phenomena that goes undetected in an ordinary spectral analysis.

investigate whether or not periodic structures are present in {Y,}

contains asymmetries and nonlinear dependencies.

1 Introduction

It is well known that stock returns behave in an asymmetric manner, i.e. that they, as noted
in e.g. Hong et al. (2007), ‘more often move with the market when the market goes down
than when it goes up’. An asymmetry in (Y; o Y;) can not be detected by the autocorrelation
~(h), which renders the corresponding spectral density f(w) an inadequate tool for this kind
of phenomenon. Several generalisations of f(w) have been developed based on the idea that
the second order moment (h) could be replaced with some other measure of dependence (to
be described later on), and this paper uses this approach to define a local Gaussian spectral
density f(w) based on the local Gaussian correlations p (h) from Tjgstheim and Hufthammer
(2013).

If a weakly stationary time series satisfies the additional requirement that the autocovariances
are absolutely summable, then the spectral density f(w) is the Fourier transform of {~(h)}
ie.

hez’

flw) = Zw(h) eIk (1.1)

heZ
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The inverse Fourier transform gives the relation y(h) = [ jﬁg (w) - e*™" dw, which for h = 0
expresses the variance as the integral of f(w). This enables a visual inspection of how much
different frequencies contribute to the variance,' and peaks and troughs in the graph of f(w)
can thus reveal information about periodic properties of the time series {Y,},_,.

The local Gaussian spectral density f,(w) introduced in this paper will be based on a nor-
malisation of {Y,},_,, which implies that the correlation p(h) equals the covariance y(h), and

references later on to f(w) will thus refer to the following rescaled version,

flw) = Zp(h)e'z’”w. (1.2)

heZ

The spectral density may be an inadequate tool when the time series under investigation
contains nonlinear features, like e.g. those present for GARCH-type models, where the terms
of {Y,},., are uncorrelated but not independent. However, f(w) gives a complete description
of Gaussian time series, which motivates the local Gaussian approach presented in this paper,
where the local Gaussian correlations p (h) are used to define the local Gaussian spectral
density f,(w). Note that this approach requires that {Y}},_,
requirement shared with quite a few of the existing global and local extensions of f(w), that

also must be strictly stationary, a

will be briefly reviewed below.

The higher order spectra (global) generalisations of f(w) was introduced by J. W. Tukey. The
bispectrum and trispectrum were the first generalisations of f(w), and these can be considered
as respectively a decomposition of skewness and kurtosis over the frequencies, see Brillinger
(1984, 1991); Tukey (1959). In general, the basic idea is to Fourier transform the higher order
moments or cumulants of (Yt h K) instead of the second order moments y(h).

These higher order generalisations of f(w) often produce formulas that are hard to estimate,
the resulting estimates can be tricky to visualise (e.g. complex-valued), and they can be hard
to interpret. The same problems may also occur for the other global and local generalisations
of f(w), and it is thus advisable to keep in mind the following quote from Akaike (1966) for
all the generalisations of f(w).

The results of analyses of ordinary spectra and cross-spectra can be understood
completely on the basis of linear transformation theory and they suggest the direc-
tion of development of models or theories about the phenomena under observation.
In contrast to this, higher order spectra seem to be still in want of a sufficiently
general theory which gives an overall understandability of them, and their physi-
cal meanings have been understood only where a proper model or theory existed
before the observation.

It is of interest to note that Brillinger (1965, p. 1372) for higher order spectra gave the fol-
lowing argument in favour of using higher order cumulants instead of higher order moments:
“The consideration of the cumulant in this [Gaussian] case is not liable to deceive one into be-
lieving that he has gained some information. In the non-Gaussian case the cumulant provides

I'This is related to the stochastic coefficients that occur when Y, is regressed on sines and cosines, i.e. when Y,
. 172 . . . .
isexpressedas Y, = [ _{ e dZ (w), where Z(w) is the right continuous orthogonal-increment processes

given by the Spectral Representation Theorem, see e.g. Brockwell and Davis (1986, Th. 4.8.2) for details.
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an indication of the non-Gaussianity.” This quote shows that it can be preferable to have a tool
that does not trigger any false alarms when the time series under investigation is Gaussian, and
this is a key property of the local Gaussian spectral density f,(w).

Alternative (global) generalisations of f(w) can be obtained by considering other dependence
measures &, based on the random variables Y, and Y

.+ 1t1s then possible to consider general
spectral densities of the form

W)=Y g, e (1.3)

heZ

As noted in (Van Hecke et al., 2017), generalisations of f(w) of the form given in eq. (1.3) have
been considered in Ahdesmiiki et al. (2005) (Kendall’s 7), Carcea and Serfling (2015) (distance
correlation) and Zhou (2012) (L-moments).

Hong (1999) introduced a generalised function generalisation of f(w), based on the charac-
teristic function. The idea is to transform {Y},_, into a u-indexed family of time series based
on the characteristic functions, i.e. {exp (iuY;)},_,, and then consider the bivariate function
o,(u,v) == Cov(exp (iuY;) ,exp (ivY,_,)). This function will be identical to zero for all u
and v if and only if Y, and Y,_, are independent, and it is thus possible for this tool to inves-
tigate nonlinear time series that are dependent but uncorrelated, like e.g. GARCH-type series.
The Fourier transform of o, (u, v) will exist under some mild regularity assumptions, and it is

then possible to define the generalised spectral density function of {Y,}

IGZ

(w, u, ) Z(I w,v) - eI, (1.4)

heZ

The generalised spectral density is in Hong (1999, 2000) used for hypotheses testing and tests
of serial dependence (for univariate time series), and recent work has extended the techniques
to the case of testing of multivariate time series, see e.g. Li et al. (2016), and a test for condi-
tional independence, see Wang and Hong (2017). This approach has in common with the local
Gaussian approach that it is distribution based, not moment based.

Many local spectral density approaches have been based on the Fourier transform of local
dependency measures. Some examples of local replacements for the autocovariances ~(h) can
e.g. be found in Dette et al. (2015), where different cross-covariance kernels are defined. In
particular, the Laplace cross-covariance kernel and copula cross-covariance kernel are defined
respectively as

V(2. 3,) = Cov(1{Y,,, <z}, 1{Y, <a,}), (z,,z,) € R?, (1.52)
¥, (7' 7,) = Cov(1{U,,, <7}, 1{U, < 7,}), (1,,7,) € (0,17, (1.5b)
where 1{-} is the indicator function and where knowledge of the marginal distribution G is
necessary in order to construct U, := G(Y,). Under the assumptions that {7, (z,,z,)},_, and
{7/ (7,,7,)},, are absolutely summable, Dette et al. (2015) define the Laplace and copula
spectral density kernels as the corresponding Fourier transformed entities. A rank based Laplace
periodogram kernel is also defined.
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These spectral density kernels are closely related to the concept of quantile regression, intro-
duced in Koenker and Bassett Jr (1978), see also Koenker (2005). Several other alternatives to
f(w) have been developed based on this concept, like e.g. the quantilogram from Linton and
Whang (2007), for which the interested reader might consult Han et al. (2016) for more details
and additional references. Quantile-based approaches can also be found in Li (2008, 2010a,b,c,
2012a,b, 2014)), and in Hagemann (2011). Note that not all of these approaches result in a local
tool of the form given in eq. (1.3), see e.g. the quantile periodogram from Li (2012c).

The local Gaussian approach to spectral analysis is based on the idea from eq. (1.3), with
the variation that ¢, will be a local measure of (K o K) that depends on a point v = (v,, v,),
where the coordinates v, and v, corresponds to quantiles of the time series under investigation.
The local measure used in this approach is the local Gaussian autocorrelations p,(h) from
Tjgstheim and Hufthammer (2013), which by construction coincide with the ordinary auto-
correlations p(h) for Gaussian time series. This implies that the local Gaussian generalisation
of f(w) by construction will coincide with f(w) for Gaussian time series. The local Gaussian
spectral density f,(w) can thus be used to detect non-Gaussianity in the time series under inves-
tigation. This enables an investigation of how different strata of the time series {Y,},_, interact,
and for points on the diagonal, i.e. v, = v,, it might then be possible to pick up local periodic
phenomena at different scales of the time series, and it could also be used to detect asymmetric
behaviour in the lower and upper tails of a time series.

An overview of the paper is as follows: Section 2 defines the local Gaussian spectral density
f.(w) more precisely and sets up the asymptotic theory for the estimators (the main bulk of the
technical details are covered in the appendices). The real and simulated examples in section 3
shows that estimates of f,(w) can be used to detect and investigate nonlinear structures in non-
Gaussian white noise, and in particular that f,(w) can detect local periodic phenomena that go
undetected in an ordinary spectral analysis. Note that the scripts needed for the reproduction
of these examples are contained in the R-package localgaussSpec,” where it in addition is
possible to use an interactive solution to see how adjustments of the input parameters (used in
the estimation algorithms) influence the estimates of f,(w). A discussion is given in section 4,
and section 5 presents conclusions.

2 Local Gaussian spectral densities

The local Gaussian correlation (LGC) was introduced in Tjgstheim and Hufthammer (2013),
with theory that showed how it could be used to estimate the local Gaussian autocorrelations
for a time series (see also Lacal and Tjgstheim (2017)), and with a comment that these local
Gaussian autocorrelations could be used to define a local Gaussian versions of the spectral
density from eq. (1.2).

The present section will give a brief summary of the local Gaussian autocorrelations, use
these to define the local Gaussian spectral density for strictly” stationary univariate time series
{Y,},.. and give estimators with a corresponding asymptotic theory.

2Usedevtools::install_github("LAJordanger/localgaussSpec") to install the package. See the doc-
umentation of the function LG_extract_scripts for further details.
3Strict stationarity is necessary in order for the machinery of the local Gaussian approximations to be feasible,

since Gaussian pdfs will be used to locally approximate the pdfs corresponding to the bivariate pairs (K hs K) .
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2.1 The local Gaussian correlations

The present investigation considers the original concept of the local Gaussian correlation that
was given in Tjgstheim and Hufthammer (2013), and it does in addition discuss some modi-
fications of the original definition that will be used later on. Details related to the estimation
regime, and asymptotic properties, can be found in appendix B.1.2. Note that other approaches
to the concept of local Gaussian correlation also have been investigated, cf. Berentsen et al.
(2017) for details.

2.1.1 Local Gaussian correlation, general version
The LGC-definition from Tjgstheim and Hufthammer (2013) will now be outlined for the case
of a bivariate random variable W = (W,, W,) with joint cdf G(w) and joint pdf g(w). For a
specified point v := (v,, v,), the main idea is to find the bivariate Gaussian distribution whose
density function best approximates g(w) in a neighbourhood of the point of interest. The LGC
will then be defined to be the correlation of this local Gaussian approximation.

For the purpose of this investigation, the vector containing the five parameters p,, 1, 7,, 0,
and p will be denoted by 8," and the bivariate Gaussian density function will be denoted 1 (w; 6),
ie.

210,054/ 1—p? 20703 (1-p?)

It is natural to require that the following equations are satisfied in order for ¢ (w; @) to be
considered a good approximation of g(w) in a neighbourhood of the point v,

[T2 wy— M 27 g, 0. wy,— M Wo— L (T2 Weo— L >
N I SSK LS A

i1/)('w; 0)

OT%Q(U) = dw,

o) = vwio), . 2 0 ' 0

(?Tulg(v) = %Qﬁ(’w;@) .

1

w=v

2.2)

i.e. g and ¢ should coincide at v and they should have coinciding tangent planes there.

It is easy to verify that a solution @ can be found for any point v where g(w) is smooth —
but these solutions are not unique: 1(w; @) and ¥(w;@') can have coinciding first order lin-
earisation around the point v, without @ being identical to 8'. It is possible to extend eq. (2.2)
to also include similar requirements for the second order partial derivatives, but the system of
equations will then in general have no solution.

To properly account for the higher order terms of ¢ (w; 6) at the point v, the approximation
method needs to include a neighbourhood around v. Applying the approach used when esti-
mating densities in Hjort and Jones (1996), one can consider a b — 0% limit of parameters 6,
that minimise the penalty function

0= / K, (w — v) [1)(w; 8) — g(w) log (1/(w; 8))] dw, 2.3)

where K, (w — v) is a kernel function with bandwidth b. As explained in (Hjort and Jones,
1996, Section 2.1), this can be interpreted as a locally weighted Kullback-Leibler distance be-
tween the targeted density g(w) and the approximating density ¢ (w; 8). An optimal parameter

“4The vector  is a function of the point v, but this will be suppressed in the notation.
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configuration 8, for eq. (2.3) should solve the vector equation
/Kb(w —v) u(w; 0) [Y(w;0) — g(w)]dw = 0, 2.4

where u(w; 0) = 2 log (¢/(w; 6)) is the score function of the approximating density ¢’ (w; 6).
There will, under suitable assumptions, be a unique limiting solution of eq. (2.4), i.e.

6, = lim 6, (2.5)

b—0t

will be well-defined, and the p-part of the 6,-vector can be used to define a LGC at the point v.

Remark 2.1. In the special case where W is a bivariate normal distributions, i.e. when

2
W~ Ndul} 7 [ a; Ulffjpb 7 2.6)
/”Ll 0102p 02

then, for any point v and any bandwidth b, the parameters 8, that gives the optimal solution of
eq. (2.4) will be the parameters given in eq. (2.6). The limit 8, in eq. (2.5) will thus of course
also be these parameters, which implies that the LGC coincides with the global parameter p at
all points in the Gaussian case. The interested reader should consult Tjgstheim and Hufthammer
(2013, p. 33) for further details/remarks that motivates the use of the LGC.

2.1.2 Local Gaussian correlation, normalised version

The algorithm that estimates the LGC can run into problems if the data under investigation
contains outliers — i.e. the numerical convergence might not succeed for points v in the periph-
ery of the data. It is possible to counter this problem by removing the most extreme outliers,
but that approach might trigger other problems when used on time dependent observations. An
alternative strategy based upon normalisation will thus be applied instead.

The key observation is that the numerical estimation problem does not occur when the marginal
distributions are standard normal - which motivates an adjusted strategy similar to the copula-
concept from Sklar (1959). Sklar’s theorem gives the existence of a copula C'(u,, u,) such that
the joint cdf G(w) can be expressed as C(G, (w,), G,(w,)), with G,(w,) the marginal cdf cor-
responding to I¥,. This copula C' contains all the interdependence information between the two
marginal random variables 17/, and W, it will be unique when the two margins are continuous,
and it will then be invariant under strictly increasing transformations of the margins.” Under
this continuity assumption, the random variable W = (W,, W,) will have the same copula as
the transformed random variable Z = (&~ '(G,(W,)) , @ (G,(WV,))), where @ is the cdf of
the standard normal distribution — whose corresponding pdf as usual will be denoted by ¢.° This
transformed version of W has standard normal margins, so the LGC-estimation algorithm will
not run into numerical problems for this case — which motivates the following alternative ap-
proach to the definition of LGC: Instead of finding a Gaussian approximating of the pdf g(w)
(of the original random variable W) at a point v, find a Gaussian approximation of the pdf

SFor a proof of this statement, see e.g. Nelsen (2006, Theorem 2.4.3).
6See Berentsen et al. (2014b) for an approach where this is used to construct a canonical local Gaussian corre-
lation for the copula C'.
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g z) of the transformed random variable Z at a transformed point v,. Expressed relative to
the pdf c of the copula C, this means that the strategy in eq. (2.7b) will be used instead of the
strategy in eq. (2.7a).

g(w) = c(G,(w,), G, (w,)) g,(w,) g,(w,) approximate at v = (v,,v,) , (2.7a)
92(2) = c(2(2), ®(2,)) () 6(2,) approximate at v, = (®7'(G,(v,)), @7(G,(v,))) -
(2.7b)

The normalised version of the LGC will return values that differ from those obtained from
the general LGC-version introduced in section 2.1.1, but the two versions coincide when the
random variable W is bivariate Gaussian. The transformed random variable Z corresponding
to the W from eq. (2.6) will thenbe Z = (W, — p,) /o,, (W, — u,) /o,), which implies

es(( )

so the normalised LGC will thus also coincide with the global parameter p at all points.

2.1.3 Local Gaussian correlation, simplified normalised version

The numerical estimation of the normalised LGC, based on eq. (2.7b), avoids by construction
the numerical convergence problems that can occur for the estimates of the general version in
eq. (2.7a). The analysis of the convergence rate of the normalised LGC must take into account
that there is an additional normalise the margins step, but this does not affect the convergence
rate, see remark 2.7, page 10 for further details and references.

The convergence rate for the estimates is rather slow for the LGC cases discussed above (it

s v/n(b,b,)"), and that is due to the kernel function K, in eq. (2.3). Briefly summarised, the
5 x 5 covariance matrix of the estimate 517 will have the form V,7'W, V7", the presence of the
kernel K, means that the matrices V, and W, have rank one in the limit b — 0%, and this slows
down the convergence rate, cf. Tjgstheim and Hufthammer (2013, Th. 3) for the details.

The property that the limiting matrices have rank one does not pose a problem when only
one parameter is estimated,’ and the convergence rate would then be much faster (i.e. \/nb,b,).
Inspired by the fact that the transformed random variable Z have standard normal margins, it
has been introduced a simplified normalised version of the LGC where only the p-parameter
should be estimated when using the approximation approach from eq. (2.7b), i.e. the values of
I, [, are taken to be 0, whereas o7 and o7 are taken to be 1. This simplified approach has been
applied successfully with regard to density estimation® in Otneim and Tjgstheim (2016, 2017),
and it thus seems natural to also include this approach in this paper too.

The algorithm used to find the optimal value for the single parameter p follows the same recipe
as the one used when five parameters are present, so the theoretical framework is unchanged.
Moreover, from the discussion around eq. (2.8), it is clear that the simplified LGC version
also gives the correct answer when the random variable W itself is Gaussian. However, the
simplified LGC will in general deviate from the normalised LGC-version in section 2.1.2 —

"The matrices then becomes 1 x 1, so the singularity problems does not occur.
8Note that it is not the local Gaussian correlation that is the target of interest when this simplified approach is
used for density estimation, as will be discussed in more detail in appendix C.6.
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and in fact, it might be regions where none of the desired properties listed in eq. (2.2) holds
when the simplified version is used. The geometric intuition from the general case can thus not
be applied when working with the simplified approach, cf. appendix C.6 for a more detailed
discussion.

2.2 The local Gaussian spectral densities

An extension of eq. (1.2) can in principle be based on any of the three LGC that was encoun-
tered in sections 2.1.1 to 2.1.3, but (in order to avoid the aforementioned numerical convergence
problems) only the latter two of them will be considered here, i.e. the time series will be nor-
malised before local Gaussian autocorrelations are computed.

Definition 2.1. The local Gaussian spectral density (LGSD), at a point v = (v,,v,), for a
strictly stationary univariate time series {Y,},_, is constructed in the following manner.
(a) With G the univariate marginal cumulative distribution of {Y,},_,, and ® the cumulative

distribution of the standard normal distribution, define a normalised version {Z,},_, of
{K}zez by

{2,= (G}, 2.9)

t

t+h? t)’
a local Gaussian autocorrelation p,, (h) can be computed, where the p specifies if the

(b) For a given point v = (v,,v,) and for each lag h # 0 bivariate pair Z, , = (Z

correlations stems from a one or five parameter approximation of the bivariate marginal
density of Z,., at (v,,v,). The convention p, (0) = 1 is used when h = 0, since no bi-
variate density is present for this case.

(c) When ), ., }pv‘p(h)| < 00, the local Gaussian spectral density at the point v is de-
fined as

Fop@) =" py,(h) - e, (2.10)

h=—00

Remark 2.2. The requirement Y., |p,,(h)| < coin definition 2.1(c) implies that the concept
of local Gaussian spectral density in general might not be well defined for all stationary time
series {Y,} __ and all points v € R*.

teL

The following definition of time reversible time series, from Tong (1990, def. 4.6), is needed
in lemma 2.3(c).

Definition 2.2. A stationary time series {Y,},_, is time reversible if for every positive integer n

) and (Y—m thz e thn) have the

teEL
and every t,,t,,...,t, € Z, the vectors <Y;1, Y, ...V

t’ﬂ,

same joint distributions.

Lemma 2.3. The following properties holds for f, (w).
(a) f,,(w) coincides with f(w) for all v € R* when {Y,}
when {Y,},_, consists of i.i.d. observations.

7 Gaussian time series, and
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(b) The following holds when © = (v,,v,) is the diagonal reflection of v = (v,,v,);

Fop@) =1+ py () e 3" p () e, 2.11a)
h=1 h=1
L) = f,(w). (2.11b)

(c) When {Y,},_, is time reversible, then f, (w) is real valued for all v € R?, i.e.

f(w) =142 "p, (h) - cos(2rwh). (2.12)
h=1

(d) f,,(w)will in general be complex-valued, but it will always be real valued when the point
v lies on the diagonal, i.e. when v, = v,. Equation (2.12) will hold in this diagonal case
too.

Proof. Item (a) follows for the Gaussian case since the local Gaussian autocorrelations p,, (h)
by construction coincides with the ordinary (global) autocorrelations p(h) in the Gaussian case.
Similarly, when {Y,} _, consists of i.i.d. observations, then both local and global autocorrela-
tions will be 0 when h # 0, and the local and global spectra both becomes 1. Items (b) to (d) are
trivial consequences of the diagonal folding property from lemma C.1,i.e. p, ,(=h) = p,,(h),
and the definition of time reversibility, see appendices C.1 and C.2 for details. U

teEL

Remark 2.3. For general points v = (v,,v,), the complex valued result of f, (w) might be hard
to investigate and interpret — but, due to lemma 2.3(d), the investigation becomes simpler for
points on the diagonal.” The real valued results J.,(w) for v along the diagonal can be compared
with the result of the ordinary (global) spectral density f(w), as given in eq. (1.2), and this might
detect cases where the times series {Y}},_, deviates from being Gaussian. Furthermore, if the
global spectrum f(w) is flat, then any peaks and troughs of f, (w) might be interpreted as
indicators of e.g. periodicities at a local level. This implies that estimates of f, (w) might be
useful as an exploratory tool, an idea that will be pursued in section 3.

Remark 2.4. Note that the collection of local Gaussian autocorrelations { Pop(R) }}LEZ might not
be non-negative definite. Caution is thus advised if peaks and troughs of f, (w) are attempted
interpreted as they would have been if they had occurred for an ordinary (global) spectral den-

sity f(w). See the discussion in section 4 for further details.

2.3 Estimation

Theoretical and numerical estimates of the ordinary spectral density f(w) is typically investi-
gated by means of the fast Fourier transform (FFT) and techniques related to the periodogram.
This FFT-approach can not be used in the local case since there is no natural factorisation of
terms making up a local estimated covariance, but there does exist a pre-FFT approach for the
estimation of f(w), where a Fourier transform is taken of the estimated autocorrelations after

°A diagonal point corresponds to a situation where observations of the same ‘scale of magnitude’ are compared.
This can in particular be of interest for time series featuring an asymmetric behaviour, since a comparison of
the local Gaussian spectra at points corresponding to e.g. the 10% and 90% quantiles might (as seen in fig. 11)
reveal nonlinear structures which the ordinary spectral density f(w) fails to detect.
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they have been smoothed and truncated by means of some lag-window function — and the pre-
FFT approach can be adapted to deal with the estimates of the local Gaussian spectral densities.

Definition 2.4. For a sample {y,}_ of size n, an m-truncated estimate f"‘ (w) of £,,(w) are
constructed by means of the followmg procedure.

(a) Find an estimate G, of the marginal cumulative distribution function, and compute the

Zyins )} for h=1,...,m, and esti-

mate, both for the point v = (v,,v,) and its diagonal reﬂectlon U= (vz, vl) the local

Gaussian autocorrelations {p, (hlv,)}" and {p,,(h|s, )} , where the {b,}"_ is the

h=1
bandwidths used during the estimation of the local Gaussian autocorrelatlon for the dif-

pseudo-normalised observations {2 =o! (é (yt)) }n that corresponds to {y,}"
(b) Create the lag h pseudo-normalised pairs {(

ferent lags.
(c) Adjust eq. (2.11a) from lemma 2.3(b) with some lag-window function \,(h) to get the

estimate
[ (@) =14+ 3N (h) By, (hln) - e £ 3" (B) - 5, (hlb,) - e7*". (2.13)
h=1 h=1

The selection of bandwidth and truncation level is discussed in sections 4.1 and 4.2.
The following result is an analogue to eq. (2.12) of lemma 2.3(c)

Lemma 2.5. When it is assumed that the sample {y,}_, comes from a time reversible stochastic

process {Y,}, ., the m-truncated estimate f (W) can for all points v € R*? be written as

tez’
(W) =1+2- Z)\ Py (h]b,) - cos(2mwh). (2.14)

Moreover, eq. (2.14) will always hold when the point v lies on the diagonal, i.e. v, = v,.

Proof. This follows from items (c) and (d) of lemma 2.3. [

Remark 2.5. The estimated é in definition 2.4(b) can e.g. be the (rescaled) empirical cu-
mulative distribution function created from the sample {y,}" , or it could be based on some
logspline technique like the one implemented in Otneim and Tjgstheim (2016).

h1?

Remark 2.6. The bandwidths b, = (b,,,b,,) in definition 2.4(b) does not need to be equal for all
the lags h when an estimate f,j";(w) is computed. For the asymptotic investigation it is sufficient
to require that b,, and b,, approach zero at the same rate, i.e. that there exists b = (b,, b,) such
that b,, < b, for i = 1,2 and for all i (that is to say, limb,,/b, = 1).

Remark 2.7. The asymptotic theory for g, (h[b,), given that the required regularity conditions
are satisfied, follows from Otneim and Tjgstheim (2016); Tjgstheim and Hufthammer (2013).
The analysis in (Tjgstheim and Hufthammer, 2013) considered the general case with a p =5

n—h

parameter local Gaussian approximation at the point v for the lag A pairs { (y,,,.,v,) } . i.e. the

original observations {y, }/_, were used instead of the normalised observations {z, .= ®~' (G(y,))},_,

Since the cumulative density function G in general will be unknown, the present asymptotic

10
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analysis must work with the pseudo-normalised observations {Z,}" , which makes it neces-

=10
sary to take into account the difference between the true normalised values z, and the esti-
mated pseudo-normalised values z,. The analysis in (Otneim and Tjgstheim, 2016) revealed
that G, (y,) approaches G/(y, ) at a faster rate than the rate of convergence for the estimated local
Gaussian correlation, so the convergence rate of g, (h|b,) will thus not be affected by the dis-
tinction between z, and Z,. The present analysis will not duplicate the arguments related to this
distinction, and the interested reader should consult (Otneim and Tjgstheim, 2016, Section 3)

for the details.

Remark 2.8. The bias-variance balance of the m-truncated estimates fm(w) of the ordinary
spectral density f(w) depends on the size of m relative to n (the size of the sample). The bias-
variance balance for the estimates fm (w) must in addition consider the size of m relative to
both n and the bandwidths {b, })" , i.e. the kernel function reduces the number of observations
that effectively contributes to the computauons of the estimates — and that number of effective
contributors can also depend on the location of the point v, i.e. whether the point v lies at
the center or in the periphery of the pseudo-normalised observations { (Z,,,,%,) } ", Confer
section 3.2 for further details.

Figure 1 shows the effect of the pseudo-normalisation on the dmbp example'® that will be
discussed in section 3.4. The uppermost part shows the original dmbp-series (of length 1974)
whereas the lowermost part shows the pseudo-normalised transformation of it, and it is clear
that the shape of the pseudo-normalised version resembles the shape of the original version.
The effect of the transformation is twofold; it removes the extreme outliers at the same time as
it spreads out the center of the distribution.

3 - original dmbp

o i i W 'W‘W”‘WW ol [,WW i rfifh ,,p i J oo

-1-

E pse‘:fm‘;wa'@“‘bp WM ﬂ J‘W{WM\MW ‘\‘4 T M\H W‘ m WM I {r% i W,\l* "”’?JM (,’

Figure 1: dmbp, original version and pseudo-normalised version.

2.4 Asymptotic theory for fm( )

This section presents asymptotic results for the cases where f " (w) are real-valued functions.
Note that both assumptions and results are stated relative to the orlginal observations instead of

19 This is the Deutschemark/British pound Exchange Rate (dmbp) data from Bollerslev and Ghysels (1996), which
is a common benchmark data set for GARCH-type models, and as such models are among the motivating
factors for the study of the local Gaussian spectral density, it seems natural to test the method on dmbp. The
data plotted here was found in the R-package rugarch, see Ghalanos (2015b), where the following description
was given: ‘The daily percentage nominal returns computed as 100 [In (P;) — In (P, — 1)], where P, is the
bilateral Deutschemark/British pound rate constructed from the corresponding U.S. dollar rates.’

11
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the pseudo-normalised observations. This simplification does not affect the final convergence
rates (see remark 2.7 for details) and it makes the analysis easier. The requirement that the
LGSD should be defined relative to the normalised observations is due to computational issues,
and the theoretical investigation shows that it could just as well have been phrased in terms of
the original observations.

2.4.1 A definition and an assumption for Y,

The assumption to be imposed on the univariate time series {Y,},_, requires components re-
lated to the bivariate lag h pairs that can be constructed from it, whereas the theoretical analysis
of fv";(w) also requires that (m + 1)-variate pairs are considered. Note that item (c) of defini-
tion 2.4 implies that it is sufficient to only consider positive values for h.

tEL

Definition 2.6. For a strictly stationary univariate time series {Y,},_,, withh > 1 and m > 2,

tez’

define bivariate and (m + 1)-variate time series as follows,

Y, = [Y..Y], Y..=[Y

t4+hy Lt t+m) )

Y], (2.15)

and let g,(y,) and g.(y.,) denote the respective probability density functions.

Remark 2.9. The densities g, are those needed when investigating the local Gaussian estimates
for the different lags h. The bivariate densities g, can all be obtained from the (m + 1) variate
density ¢.. by integrating out the m — 1 redundant marginals, which in particular implies that
if an (m + 1)-variate function 7}, (y.) : R™** — R! is the obvious extension''
function 7, (y,) : R* — R', then

of a bivariate

E[n,(Y,)] = B, (Y5,)],  forhe{l,....m}. (2.16)

With the notation from definition 2.6 the following assumption can now be imposed upon Y,.
Note that items (e) to (g) contains references to definitions that first are given in appendix B;
these definitions are related to the estimation of a penalty function — and they are quite technical
so it would impede the flow of the paper to include all the details here. For the present section,
it is sufficient to know that the random variables X7’ . in item (g) in essence are the result that
occurs when the product of the kernel function K.,(y, — v) and the score function of the local

Gaussian approximation ¢ (y, ) is evaluated iny, = Y,,,.

Assumption 2.1. The univariate process {Y,},_,
erties, with v = (v,,v,) in item (d) the point at which the estimate f;! (w) of f, (w) are to be

vlp

will be assumed to satisfy the following prop-

computed.
(@) {Y,},., is strictly stationary.

I'The obvious extension is to consider the function to be a constant with respect to all the new variables that are
introduced.

12
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(b) {Y,},., is strongly mixing, with mixing coefficient () satisfying
Zj“ [a(j)] " < oo  forsomev >2anda >1—2/v. (2.17)

(c) Var(Y?) < 0.

The bivariate density functions g, (y,) corresponding to the lag h pairs Y,

... of the univariate
time series {Y,}

5> must satisfy the following requirements for a given point v = (v,,,).

(d) g,(y,) is differentiable at v, such that Taylor’s theorem can be used to write g, (y, ) as

gh(yh,) = gh('v) + gh,(v)/ ['yh, - 'U] + mh(yh,)/ [yh, - ’U] ) (2.18)

and lim ‘R =0,
L] i )

h

where gh(v) = [ai;hgh(yh) v’ g%gh(yh)

Y=
and the same requirement must also hold for the diagonally reflected point © = (v,,v,).

(e) There exists a bandwidth b,, such that there forevery 0 < b < b
0, ., of the penalty function ¢, , defined in eq. (B.4), page 43.

(f) The collection of bandwidths {b,,}
that

.0 18 @ unique minimiser

has a positive infimum, i.e. there exists a b, such

h€eZ

0<b, = }1122 b, (2.19)

which implies that this b, can be used simultaneously for all the lags.

(g) For X' . from definition B.11, page 51, the bivariate, trivariate and tetravariate density
functions must be such that the expectations E[ X7, |, E[| X} |"] and E[ X}, - X7 ] all
are finite.

Remark 2.10. These assumption upon Y, are extensions of those used for the LGC-case in Tjgs-
theim and Hufthammer (2013). Assumption 2.1(b) is a bit more general than the one used in
(Tjgstheim and Hufthammer, 2013), but that is not a problem since the arguments given there
trivially extends to the present case.

Remark 2.11. The a-mixing requirement in item (b) ensures that Y, , and Y, will be asymptot-
ically independent as h — oo, i.e. the bivariate density functions g, (y, ) will for large lags h
approach the product of the marginal densities, and the situation will thus stabilise when A is
large enough. This is in particular of importance for item (f), since it implies that it will be

possible to find a nonzero b, that works for all A.

Remark 2.12. The finiteness requirements in assumption 2.1(g) will be trivially satisfied if the
densities are bounded, i.e. they will then be consequences of properties of the kernel function
K, and the score function of the bivariate Gaussian distribution, see lemma C.6 for details.

13
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2.4.2 An assumption for Y, and the score function u(w;8) of ¢(w; 0)
The score function in eq. (2.4), i.e. u(w; @) = & log (¥(w;H)), plays a central role in the
local density-estimation approach of Hjort and Jones (1996), and it thus also plays a pivotal
role in the local Gaussian correlation theory developed in Tjgstheim and Hufthammer (2013).
In particular, the convergence rate that in Tjgstheim and Hufthammer (2013) is given for
év — 0, does implicitly require that u(v;8,) # 0 in order for the corresponding asymptotic
covariance matrix to be well defined. The investigation of (fv"; (w) — f;‘p(w)) in this paper
builds upon the asymptotic results from Tjgstheim and Hufthammer (2013), and the follow-
ing assumption must thus be satisfied in order for the given convergence rates and asymptotic
variances to be valid. Note that the index p as usual does show whether it is a one or a five
parametric local Gaussian approximation ¢, (w; 6,) that is considered, and that u (w; 8,) here
represent the corresponding score function.

Assumption 2.2. The collection of local Gaussian parameters {Bm(h)} at the point v for the
bivariate probability density functions g, (y, ), must all be such that

(@) u,(v;0,,(h)) # 0 for all finite h.

(b) limu,(v;0,,(h)) # 0.

Remark 2.13. 1t is, for a given time series Y, and a given point v, possible to inspect the p
equations inu, (w; @) = 0in order to see when items () and (b) of assumption 2.2 might fail to
hold true. Itis e.g. possible to find the parameter-configurations 6!, which solve u (v;0,) =0,
and then observe that assumption 2.2(a) will fail if 6], € {GP‘U(h)}. For the case of the
asymptotic requirement in item (b), the key observation is that the strong mixing requirement
from assumption 2.1(b) implies that Y, , and Y, will become independent when h — ooc.
Together with the assumption of normalised marginals, this implies that the limit of 8, (%)
always becomes [,, ft,,0,,0,,p] = [0,0, 1,1, 0], which means that assumption 2.2(b) will

fail for any point v that solves u, (v; [0,0,1,1,0]') = 0.

Remark 2.14. The one parameter local Gaussian approximation ¢, (w; 6, ) is less flexible than
the five parameter approximation ), (w; 6,), and this lack of flexibility can for some time se-
ries Y, imply that assumption 2.2(a) is bound to fail at some points v, see the discussion in
appendix C.6.2 for further details.

2.4.3 Assumptions for n, m and b

For simplicity, the present analysis will use the b = (b,,b,) introduced in remark 2.6, see
page 10, i.e. it will be assumed that the individual bandwidths b, for the different lags h ap-
proach zero at the same rate — and that it for the asymptotic investigation thus can be assumed
that the same bandwidth is used for all the lags. For the present case, where the lag h pairs are
of the form (Yt o Y;) it might also be natural to assume that b, and b, should approach zero at
the same rate, i.e. that b, < b,, but this will not be imposed from the outset.

Assumption 2.3. Let m :=m_ — oo be a sequence of integers denoting the number of lags
to include, and let b := b, — 0" be the bandwidths used when estimating the local Gaussian
correlations for the lags h = 1,..., m (based on n observations). Let b, and b, refer to the two
components of b, and let v, v and a be as introduced in assumption 2.1(b). Let s .= 5, — 00

be a sequence of integers such that s = 0(« /nb,b,/ m) , and let 7 be a positive constant. The

14
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following requirements must be satisfied for these entities.'”

(a) logn/n(b,b,’ — 0, (only required for the case p = 5).
(b) nb,b,/m — .

(c) m*(b, vb,) — 0, where § =2V y(”a(ﬁ)llg.

(@ /nm/bb, s als—m+1) — co.

(e) m = o((nb,b,)***77*), for some A € (0,7/(2 + 57)).
) m = o(s).

Remark 2.15. Assumption 2.3(a) is needed for the case p = 5 in order for the asymptotic theory
from Tjgstheim and Hufthammer (2013) to be valid for the estimates p,,;(h).

Remark 2.16. See lemma C.3 for a verification of the internal consistency of the requirements
given in assumption 2.3.

2.5 Convergence theorems for f;"; (w)

Theorem 2.7 (v on diagonal, i.e. v, = v,). The local Gaussian spectral density f, (w) is a
real valued function when the point v lies on the diagonal. Furthermore; when the univariate
time series Y, satisfies assumptions 2.1 and 2.2, and n, m and b = (b,,b,) are as given in
assumption 2.3, then the following asymptotic results holds for the m-truncated estimate ﬁ’fp (w),

V)7 - () = f,(@)) =5 N(0,02,(w)) (2.20)

where the formula

m

2 H 1 2 2 ~2
oy, (W) = 4%13(10 - 2 A (h) - cos®(2mwh) - G, (h) (2.21)

relates the variance o2 (w) to the asymptotic variances 52, (h) of \/n(b,b,)"""*-(p, . (h[s,) — p,,,(h)).

v|p

Proof. The proof is given in appendix A.1. O
A similar result can be stated for time reversible stochastic processes.

Theorem 2.8 (Y, time reversible). The local Gaussian spectral density [, (w) is a real valued
function for all points v when Y, is time reversible (see definition 2.2, page 8). Furthermore
under assumptions 2.1 to 2.3, the same asymptotic results as stated in theorem 2.7 holds for the
m-truncated estimate fv”‘;(w)

Proof. Lemma 2.3(c) states that f, (w) is a real-valued function, and the proof of theorem 2.7
(see appendix A.1) can then be repeated without any modifications. O

12Notational convention: ‘V’ denotes the maximum of two numbers, whereas ‘A’ Denotes the minimum.
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Remark 2.17. The asymptotic normality results in theorems 2.7 and 2.8 does not easily enable
a computation of confidence intervals for the estimated LGSD. Thus, the confidence intervals
later on will either be estimated based on suitable quantiles obtained by repeated sampling from
a known distribution, or they will be based on bootstrapping techniques for those cases where
real data has been investigated. Confer Terésvirta et al. (2010, ch. 7.2.5 and 7.2.6) for further
details with regard to the need for bootstrapping in such situations.

Remark 2.18. The asymptotic result for f;rp(w) complex-valued is given in appendix A.2, where

it can be seen that |/n(b,b,)*"""* /m - (E"j(w) -/ w(w)) then asymptotically approaches a
complex-valued normal distribution instead of a real-valued one.

3 Examples and possible interpretations

This section will investigate if the m-truncated estimates f;rp(w) might have a potential as an
exploratory tool. It will be verified that it does behave as expected for the cases where it is
known what the result should be (i.e. Gaussian time series), that it can detect the presence of
local structures (including periodicities) in a constructed example, and finally, that it enables a
visual aid to see how good a GARCH-type model fitted to the dmbp-data'® seems to match the
result from the data themselves. Note that the discussion of some of the technical details are
postponed to section 4.

Remark 3.1. All the simulated time series investigated in this section have the same length as the
dmbp-series, i.e. they all have length 1974. This common length seems like a natural restriction
to apply for this first investigation of E]"p(w) as an exploratory tool, since different lengths
otherwise could be an explanation for any observed differences. The estimation machinery
does produce similar results for shorter time series too, but it remains to be investigated how
long a time series ought to be in order to avoid that small sample variation distorts the signal
of any local structures that might be present.

Remark 3.2. The same reasoning as in remark 3.1 motivates that the configuration of the input
parameters will be kept the same for the different cases to be investigated, see section 3.1 for
details about the selected values.

v|p
with the corresponding pseudo-normal observations {Z,
of the marginal cumulative density function G is needed. The present analysis has used the

Remark 3.3. The initial step of the computation of 7 (w) is to replace the observations {y,}"

n

cf. definition 2.4, i.e. an estimate

t=1>

rescaled empirical cumulative density function @ for this purpose, but the computations could
also have been based on a logspline-estimate of GG, see remark 2.5. For the time series in-
vestigated in this section, a preliminary investigation indicated that the two normalisation pro-

~

cedures created strikingly similar estimates of f (w), so the computationally faster approach

v|p

based on the rescaled empirical cumulative density-function has been applied for the present
investigation.

Remark 3.4. The estimation of f (w) does also include the selection of p, i.e. whether a

v|p

5-parameter or a 1-parameter local Gaussian approximation should be used. As noted in ap-
pendix C.6, the 1-parameter local Gaussian approximation might be useful when estimating

13See footnote 10 (page 11) for a description of the dmbp-data.
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densities, but the estimated parameters p,,,(h) might not give a good indicator of the local
dependency-structure of the targeted distribution. The 5-parameter estimates p,, (%) have thus
been selected for all of the plots, with the sole exception of fig. 14 where two plots based on
P, (h) have been included to emphasise why it is best to avoid them in this context.

Remark 3.5. The pointwise confidence bands"* shown in the plots later on are all based upon
R = 100 replicates. Repeated independent samples from the known model was used to con-
struct the confidence bands in section 3.3, whereas block-bootstrap was used for the real data
example in section 3.4. The lower and upper limits of the pointwise confidence bands are based
on the 0.05 and 0.95 quantiles of the resulting collection of estimated local Gaussian spectral
densities (truncated at lag m), and thus gives an estimated 90% pointwise confidence band
for f1 (w).

3.1 Setting the input parameters

Several input parameters must be selected before an estimate of ﬁrp(w) can be obtained. The
main parameters that must be taken into account are listed below, with the values that will
be used for the examples later on. A further discussion of some of these items are given in
section 4.

1. v, the points to investigate, will for the present investigation be diagonal points whose
coordinates corresponds to the 10%, 50% and 90% percentiles of the standard normal
distribution, i.e. the values are -1.28, 0 and 1.28. Information about the point of inves-
tigation is contained in the upper right corner of the relevant plots, where it is marked
as 10%: : 10%, and so on. The corresponding coordinates are (—1.28, —1.28), (0,0) and
(1.28,1.28), and these will often be referred to as lower tail, center and upper tail when
discussed in the text.

2. w, the frequencies to investigate. Values between 0 and %

3. b= (b,,b,), the bandwidth-vector to be used when computing the local Gaussian au-
tocorrelations. Most of the plots shown in this section have used b = (.5,.5), with the
exception of fig. 6, where plots basedon b = (.75,.75) and b = (1, 1) have been included
for comparison.

4. m, the truncation level, i.e. the number of lags to include in the estimate of ]?Jl";(w) The
value m = 10 has been used in this investigation, and this number is by default given in
the upper left corner of the relevant plots.

5. A, (h), the weighting function to be used for the smoothing of the different lags. The
Tukey-Hanning lag-window kernel has been used for all the present examples, i.e.

1o +cos(m-2)) |n<m,

A (h) = "
) {0 |h] > m.

Remark 3.6. The R-package localgaussSpec can be used for the estimation of fm (w) for a

vlp
16

wide combination of alternatives for the parameters, ® and it allows an integrated interactive

14The pointwise confidence band gives for each frequency w a confidence interval for the value of for(w).

151t is natural to require b, = b, since both of the components in the lag h pseudo-normalised pairs comes from
the same univariate time series.

16See footnote 2 (page 4) for details about installation of the 1localgaussSpec-package.
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investigation of the results by means of a shiny-application.!” Note that the R-package contains
all the scripts needed for the exact recreation of the plots included in this section.

Remark 3.7. The R-package localgauss, see Berentsen et al. (2014a), was used for the esti-
mation of the local Gaussian auto-correlations for the p = 5 case. These estimates are returned
with an indicator (named ef1ag) that reveals whether or not the estimation algorithm converged
numerically to the estimate, and this numerical convergence-information has then been added
to the relevant plots in their lower left corner. In particular, ‘NC = 0K’ will be used to show
that all the required estimates had a successful numerical convergence. Contrary, ‘NC = FAIL’
will represent that problems did occur during the estimation algorithm. It should be noted that
convergence-problems hardly occurs when the computations are based on pseudo-normalised
observations.

Remark 3.8. It has to be admitted upfront that there is an unresolved issue with regard to the
selection of the blocklength for the bootstrapping of the dmbp-example shown in fig. 11, see
the discussion in section 4 for further details.

3.2 Estimation aspects for the given parameter configuration

The estimation of ﬁ%(w) for a point v = (v,, v,) that lies on the diagonal, i.e. v, = v,, will be
based on the estimates of p,,(h) for h = 1,...,m. Itis thus of interest to investigate how the
estimates p,, ;(h) depends on the parameter-configuration given in section 3.1.

First of all, note that the combination of point v and bandwidth b influences how many of
the h-lagged pairs that effectively contributes to the computation of p,, (/). This is shown in
fig. 2 where the pseudo-normalised dmbp-data (of length 1974) has been used as an example.
In the plot of the pseudo-normalised time series, the three horizontal dashed lines represent the
levels which corresponds to the coordinates of the three points v, whereas the horizontal strips
centered at those lines shows which observations that lies within a distance of b = 0.5 from the
respective lines. The three plots at the bottom shows the corresponding 1-lagged pairs, each
with a bandwidth-square (of width 2b) centered at one of the selected points v.

Remark 3.9. In fig. 2, the bandwidth-strip at the center of the trajectory plot contains 756 obser-
vations, whereas the two other strips both contains 355 observations. Note that the bandwidth-
strips for the tails must contain the same number of observations due to the symmetry enforced
by the pseudo-normalisation, and furthermore note that all time series of this particular length
will end up with pseudo-normalised trajectories that (for the given combination of points v and
bandwidth b) must have the exact same number of observations inside of their bandwidth-strips
as those encountered here.

~

Remark 3.10. In order for an h-lagged pseudo-normalised pair (zL o

lag h bandwidth-square (centered at a diagonal point v), it is necessary that both Z,
inside the corresponding bandwidth-strip. For the case i = 1, shown at the bottom of fig. 2,
the number of points inside the three bandwidth-squares thus counts how many neighbouring
pseudo-normalised observations that occurred in the respective bandwidth-strips. The number
or observations captured in the three h = 1 cases are respectively 75, 359 and 66, and several
comments can be based on these numbers. First of all, these numbers indicates that there might

Z,) to occur within a
and Z, lie

17 See Chang et al. (2017) for details about shiny.
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Figure 2: dmbp (pseudo-normalised version), levels and bandwidth-bands (top) and lag I
bandwidth-squares (bottom).

be an asymmetry between the lower and upper tails of the dmbp-data. Furthermore, as the bias-

~

variance properties of the estimates (%) depends on the number of points that effectively
contributes during the computation, it is clear that the variance will increase for points v that
lie farther out in the tails. The selection of which tail-points to investigate must thus take into

account the number of available observations for the lags to be included.

Remark 3.11. An important detail with regard to the estimation of f, (w) is the selection of
the truncation level m, since that value (in addition to the value of the bandwidth b) influences
the bias-variance properties of the estimate :’l';(w) It would be preferable if some data driven
method could be used to identify an optimal range of values within which m should lie, or at
least have some rule of thumb that could be used during an investigation. An initial approach
might be to apply some existing rule of thumb used for the selection of m for the m-truncated
estimates of the ordinary spectral density f(w), but it remains to be investigated whether or not

that would give a reasonable truncation level when estimating f, .(w).

Remark 3.12. If the truncation level m is too large, the interconnection between m and b could
create a situation (for points v in the periphery of the data) where the number of lag h pseudo-
normalised observations used to estimate p,, . (/) might become too small to give a reasonable
estimate. It seems likely that it will be a difficult task to construct a general selection method for
the truncation level m, but it is not hard to investigate (before any estimates are produced) how
many pseudo-normalised lag h pairs that for a given combination of h, v and b lies inside of the
corresponding bandwidth-square. For the dmbp-example it can e.g. be noted that the number
of lag h pseudo-normalised pairs that occurs inside a given bandwidth-square will fluctuate a
bit as h increases, but that it obviously must decrease as i grows larger (since the total number
of lag h pairs decreases linearly). The numbers of such pseudo-normalised pairs that occurs
within the bandwidth-squares for the h = 200 version of fig. 2 are respectively 70, 263 and 63,
which for this particular case does not seem to represent a drastic decrease in the number of
pseudo-normalised observations that are available in the tails. This does of course not imply
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that an estimate of f, ;(w) based on a truncation level of m = 200 will necessarily make sense
in the dmbp-case (for the present points of interest), but it could be used as an indicator that a
higher truncation level could have been applied than the one used later on.

Figure 3 shows how p,, . (h) varies for the three points of interest (when b = (0.5,0.5)). Red
dotted lines shows the truncation level m = 10 (to be used later on), in order to emphasise
which estimates of p,, (/) that will contribute to the estimation of /?v‘” (w). This plot shows that
there is a clear distinction between the center and the two tails. The p, (%) tends to fluctuate
around O at the center, which implies that the corresponding estimated spectral density fjl"s(w)
most likely will be rather flat and close to 1. For the two tails, it seems natural to assumme
that some long-range dependency must be present, and one might also suspect that there is an
asymmetry between the two tails.

0 “i 0 i AT 10% :: 10%
08 o, i I,
‘0-3'NC=OKE

0 50 100 150 200
82: 50% :: 50%
Ojo_ L., “‘EH“‘\“‘\“ ‘\‘\H“M\ e e ‘_\m‘u ‘H‘\““\‘i“”“‘\”\“\ ‘u““‘\‘\“‘“‘\"H\“\\““\‘\“““ ‘MH
~03-NC=0K:
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8-2: : T— T 90% :: 90%
03] \HM\g\u\\\\m\m\\mm\”\mHMm\Mm‘m\‘\‘\m I 0l “\Hm:_MWH ol ool
-0.3-NC=OK: B :

FO
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Figure 3: dmbp-data, p,,(h) for b = 1,...,200 (for the three points of interest).

The cumulative sums of the autocorrelations from fig. 3, are presented in fig. 4, and once more
the plot indicates an asymmetry between the two tails. Moreover, since a long initial sequence
of positive values (a bit larger than zero) for p, , (h) automatically implies that the m-truncated
estimated spectral density :j“(w) must have a peak for the frequency w = 0, it follows from
fig. 4 that the local Gaussian spectral densities at the tail-points must have such peaks at w = 0.

These details are easier to see in fig. 11, page 29, where :’”‘5(w) for the dmbp-data are presented.

50-
40- — lower
30- -crcenter - em—mmmTmT T T STTe———-—-
20- B e e
10- =
0= T e e e e e e e mmm e

Figure 4: dmbp-data, cumulative sum of local Gaussian auto-correlations.

3.3 Some simulations
This section will estimate the local Gaussian spectral densities [, ;(w) for simulated data. It
is known from lemma 2.3(a) that f, . (w) coincides with the ordinary (global) spectral density
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 51

f(w) when the time series under investigation either is i.i.d. or Gaussian. This can be used
to test the sanity of the estimation algorithm, since repeated estimates based on independent
realisations from these models should be distributed around the expected value if the algorithm
works as intended.

The strategy used to create the plots for the simulated data works as follows: First draw a
given number of independent replicates from the specified model, and compute :'l’;(w) and
fm(w) for each of the replicates. Then extract the median of these estimates to get estimates
of the (m-truncations of the) true values, and select suitable upper and lower percentiles of the
estimates to produce an estimate of the pointwise confidence bands. Finally, create plots that
contains estimates and pointwise confidence bands for the m-truncated versions of f, . (w) and
f(w), see the definition below.

Definition 3.1. The m-truncated versions [ (w) and f™(w) of f, ,(w) and f(w), for a specified
weighting function \ (h), is defined by means of

m m

() =14 Y A (R) - () - e N (B) - p, (B) e (3.1a)
h=1 h=1
Frw) = > A(h) - p(h) - e, (3.1b)
h=—m

3.3.1 Gaussian white noise

Figure 5 shows the result when the estimation procedure is used on 100 independent samples
of length 1974 from a standard normal distribution N(0, 1). The computations are based on the
bandwidth b = (0.5, 0.5), and the points (on the diagonal) corresponds to the 0.1, 0.5 and 0.9
quantiles of the standard normal distribution. The top left panel shows the pseudo-normalised
version of the first time series that was sampled from the model, with dashed brown lines at
the levels that corresponds to the above mentioned points. The three other panels contains
information about the m-truncated ordinary spectral density f™(w) (red part, the same for all
the plots) and the m-truncated local Gaussian spectral densities [, (w) for the three points under
investigation (blue part). Information about the truncation level and the points are printed at
the top of each plot.

i.i.d. Gaussian white noise 2- m=10 10% :: 10%
2_
o—m ‘L | W W_ 1- S s
o7 ‘ ‘ T = o0-
NC = OK
1 1 l l l Ll Ll Ll Ll Ll Ll
0 500 1000 1500 2000 0.0 0.1 0.2 0.3 0.4 0.5
2- m=10 50% ::50%  2- m=10 90% :: 90%
1- s e —
NC = OK NC= OK
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Figure 5: i.i.d. Gaussian white noise.
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It can be seen from fig. 5 that the medians of the estimates (the red and blue dashed lines) are
good estimates of f(w) and f;7: (w) (the m-truncations of the true values), which in this case in
fact coincides with f(w) and f, ;(w), i.e. it is known that the true values are identical to 1 both
for the local and global case. Observe that the estimated 90% pointwise confidence bands are
wider for the local Gaussian spectral densities, which is as expected since the bandwidth used
in the estimation of the local Gaussian autocorrelations reduces the number of observations
that effectively contributes to the estimated values, and thus makes the estimates more prone to
small-sample variation. Note also that the confidence bands are wider in the tails, which is a
natural consequence of the reduced number of points in those region, see the discussion related
to fig. 2.

Remark 3.13. The estimation procedure gave good estimates of the true values f(w) and f, . (w)
in the simple example of fig. 5, but it is important to keep in mind that these plots actually shows
estimates of f™(w) and f7(w). It might be necessary to apply a (much) higher truncation level
before f™(w) and f;7.(w) gives decent approximations of the true values f(w) and f, (w). It
thus seems preferable to estimate :T(w) for a range of possible truncation levels m, and then
check if the shape of the estimates for different truncations share the same properties with regard
to the position of any peaks and troughs.

3.3.2 Some trigonometric examples

The Gaussian white noise example in fig. 5 shows that the estimated local Gaussian spectral
density behaved in the anticipated manner for that simple case, but it is of interest to see if
the result looks reasonable for other examples too. However, beyond the realm of Gaussian
time series, it is not known what the true value for the local Gaussian spectral density actually
should be — which poses a problem for such an investigation. This section will thus construct a
local trigonometric time series for which it at least can be reasonably argued what the expected
outcome should be for some specially designated points v (given a suitable bandwidth b). These
artificial time series will in in general not satisfy the requirements needed for the asymptotic
theory (both in the global and local case) to hold true, but they can still be used to investigate if
an exploratory tool based on the local Gaussian spectral density might reveal periodic properties
that the ordinary spectral density fails to detect.

As a prerequisite (and a reference) for the investigation of the local trigonometric time series,
it is necessary to first investigate the result based on independent samples from a time series
of the form Y, = cos(2rat + ¢) + w,, where w, is Gaussian white noise with mean zero and
standard deviation o, and where it in addition is such that « is fixed for all the replicates whereas
the phase-adjustment ¢ is randomly generated for each individual replicate. A realisation with
a = 0.302 and o = 0.75 is shown in fig. 6, where the frequency a has been indicated with a
vertical line in order to show that both the local and global approach in this case have a peak
at the expected position. The plots are based on 100 samples of length 1974, and shows 90%
pointwise confidence intervals. Some useful remarks can be based on fig. 6, before the local
trigonometric case is defined and investigated.

Remark 3.14. All the plots in fig. 6 shows the same point in the lower tail, but they differ with
regard to the bandwidths that have been used. In particular, the upper right plot is based on the
bandwidth b = (.5, .5) (the bandwidth used in all the other examples), whereas the two plots at
the bottom shows the situation for the bandwidths b = (.75, .75) and b = (1, 1), respectively at
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Figure 6: Single cosine and i.i.d. white noise, same point, bandwidths based on 0.5, 0.75 and 1.

the left and right. In this case, the widths of the pointwise confidence-bands are influenced by
the selected bandwidths, but the overall shape seems to be similar. This feature is also present
for the other examples that have been investigated.

Remark 3.15. Based on the width of the pointwise confidence bands in fig. 6, one might wonder
if the bandwidth b = (.5,.5) is too small, and that it perhaps would be better to use a larger
bandwidth. However, it is important to keep in mind that the bandwidth is used in a kernel
function K, that estimates p,,, (%), and when the bandwidth grows this estimate will converge
to the estimate of the ordinary global autocorrelation — which would make it impossible to
detect any local effects.

Remark 3.16. For the example in fig. 6, it will be a large difference in the plots when more lags
are included, i.e. the peaks will grow taller and narrower. However, the position of the peaks
will not move, and that indicates that these plots (even for rather low truncation values) might
reveal some properties of the underlying structure. Again, this feature is shared with the other
examples that have been investigated.

Remark 3.17. The local Gaussian spectral densities in fig. 6 goes below zero for low frequen-
cies, a feature that is not entirely unexpected as { pv‘s(h)}hez, the collection of local Gaussian
autocorrelations, may not be a non-negative definite function. In fact, based on the observation
that the estimates of f;‘(w) have peaks that are taller and wider than those of f™(w), it is as
expected that these estimates might need to have negative values somewhere. The reason for
this is that all the spectral densities (global, local and m-truncated) by construction necessarily
must integrate to one over the interval (— %, %} The higher and wider peaks of the estimates for
fv";(w) thus requires that it has to lie below the estimates of f'“ (w) in some other region, and
if necessarily it must attain negative values somewhere. The interesting details in the plots are
thus the position of the peaks of :"'g(w), and regions with negative values should not in general
be considered a too troublesome feature.

The local trigonometric case: The next case to be investigated is an artificially constructed
model where different local cosines are used to create a process close to white noise, see the

top-panel of fig. 7 for a realisation. The basic recipe for these time series use the following

simple principle: For a given r > 2, select a collection of different base levels (L,,...,L,)
at the y-axis, a collection of amplitudes (A,, ..., A.), a collection of frequencies («, ..., «,)
and a collection of phase-adjustments (¢,,...,¢, ). Finally, assign a probability p, to each
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i=1,...,r, such that 22:1 p, = 1. In order to allow more randomness into the sample, it
is also possible to specify an additional amplitude adjustment (A’,..., A’). The amplitude
will, for each ¢, be selected uniformly from the interval spanned by A, and A; when both are
specified, and this uniformly random amplitude function will then be denoted A,(¢). (Note that
A,(t) = A, if A, is unspecified.)

The preceding ingredients enables the definition of the following functions,

C.(t)=L,+ A,(t) - cos (2ma,t + ¢,), i=1,...,m (3.2)

from which a stochastic variable Y, can be created by means of the probabilities (p,,...,p,),
i.e. let N, be a random variable that with probability p, takes the value 7, and define

Y =) C(t) - 1{N, = i}, (3.3)
=1

where the indicator function 1{} ensures that only one of the C',(¢) contribute at a given value .
Note that it is assumed that the phases ¢, are uniformly drawn (one time for each realisation)
from the interval between O and 27, and that it moreover also is assumed that the stochastic
processes ¢,, A,(t) and N, are independent of each other. Based on this, the autocovariance of
Y.,
combination of input parameters that returns a Y,-process that looks like white noise.

and Y, can be given as a function of L, and p,, from which it then is fairly easy to select a

The time series presented here has = 4 components with base levels L, in (-2, —1,0, 1),
amplitude-functions A, (¢) defined by A, in (1.0,0.5,0.3,0.5) and A’ in (0.5,0.2,0.2,0.6), and
frequencies «, in (0.267,0.091, 0.431, 0.270). For this case the probabilities p, in (0.05, 0.28, 0.33, 0.33)
was used to sample'® which component to include in Y.

Figure 7 shows a simplified excerpt of length 100 from one realisation of Y,, where A, (t) = A,
in order to emphasise which one of underlying ‘hidden’ components C.(t) (shown as dotted
curves) that was selected in this case (the phase-adjustments ¢, in this particular realisation
are (0.52,2.57, 3.24, 2.49)). Note that the amplitudes A, for this example was selected to give
a minimal level of overlap between the ranges of the functions C,(¢). The center panel of
fig. 7 shows an estimate of the m-truncated (global) spectral density f™(w), based on 100
independent samples of length 1974 and with a 90% pointwise confidence interval that shows
that it is viable to claim that this particular process behaves almost like white noise. Note that
the vertical lines in the center panel shows the frequencies ¢, that was used in eq. (3.2).

The bottom panel of fig. 7 is the one of major interest for the present discussion, i.e. it is the
one from which it is possible to provide an explanation for the expected shape of the local Gaus-
sian spectral density, at some particularly designated points v (given a suitable bandwidth b).
First of all, the bottom panel shows one of the cosines from the top panel, the red circles repre-
sents the points from the top panel that happened to lie on this particular cosine — and the blue
crosses represents all the remaining points (at integer valued times ¢) of the cosine. Recall that
these points are from the simplified realisation where A,(¢) = A,, and that the actual values thus
would be distorted a bit due to additional randomisation from the amplitude adjustments A;.

18The printed probabilities might not add to one! This is due to the fact that these values was rounded in R before
they were included in this document by the means of the R-package knitr, see (Xie, 2015, 2016) for details
about dynamic documents.
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21 Time series based on several cosines
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Figure 7: Top: Short excerpt from artifical example based on hidden trigonometric components.
Center: Estimated (truncated) global spectral density (hidden frequencies indicated
with vertical lines). Bottom: Local cosine showing the detected points at the local
level centered at -1.

The red circles can be considered as a randomly selected collection of points from a time
series like the one investigated in fig. 6, and the main point of interest is that it (for a sufficiently
long time series, and a sufficiently large bandwidth b) will be the case that the estimated local
Gaussian auto-correlations based on this scarce subset might be quite close to the estimates
obtained if all the points had been available. The rationale for this claim is related to the way
that the local Gaussian auto-correlation at lag h (at a given point v) is computed from the sets
of bivariate points (K o Y/,)' In particular: It might not have a detrimental effect upon the
resulting estimate if some of these lag h pairs are removed at random, as long as the remaining
number of pairs is large enough. Based on this idea, it can thus be argued that the local Gaussian
spectral density estimated from the collection of red points should be fairly close to the situation
shown in fig. 6, at least if the time series under investigation is sufficiently long.

Given this heuristic argument, and the observation that the input parameters used in eq. (3.3)
gives time series whose pseudo-normalised traces will have their 10%-, 50%- and 90%-quantiles
approximately corresponding to the original levels L, in (—1,0, 1), it can be postulated that
the estimated local Gaussian spectral densities at the designated points 10%: : 10%, 50%: : 507
and 90%: :90%, all should resemble fig. 6 — with peaks at the respective frequencies «; in
(0.091,0.431,0.270).

The local investigation by means of ﬁl(w) is presented in fig. 8, as usual based on 100 in-
dependent samples of length 1974, a bandwidth b = (0.5,0.5) and showing 90% pointwise
confidence bands. This shows that an exploratory tool based on the (m-truncated) local Gaus-
sian spectral density indeed is capable of detecting the expected peaks at the designated points
mentioned in the preceding discussion. In particular, f;r (w) picks up different peaks at differ-
ent points, and these peaks changes quite a bit from the lower tail to the upper tail.
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Remark 3.18. It should be noted that this simple example was created with a combination of
L,, A, and p, that gave peaks approximately at the three points investigated in this section, and
that the plots for other points might vary quite a bit. It is thus of importance to investigate a
range of points and check if/how the shape of f;f(w) changes as the point varies from the lower
tail to the upper tail. Note also that the rather low value for p, implies that the C|(t) seems
to go undetected. An investigation of the local behaviour for this component would require a
point at a lower quantile than the present value for the lower tail, and it seems likely that an
investigation at such a point might run into problems due to a scarcity of observations in the
vicinity of the point.

artifical trigonometric example 6- m=10 o 10% :: 10%
2- 0 4-
0— - 2-
-2 - . 0-
-2-NC=0K
0 500 1000 1500 2000 0.0 0.1 0.2 0.3 0.4 0.5
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4- 4-
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Figure 8: Artifical example, hidden trigonometric components.

3.3.3 Beware of global structures

It is important to keep in mind that a comparison of the local Gaussian spectral density f, ;(w)
and the ordinary spectral density f(w) can reveal deviations from the property of the time
series Y, being Gaussian — and for time series whose ordinary (global) spectrum looks like
white noise, this can be interpreted as a detection of nonlinear traits in the time series under
investigation.

For time series with a non-flat global spectrum, it might not be a good idea to automatically
consider a difference between [, (w) and f(w) as a sign of nonlinear traits, as shown in fig. 9
where a more extreme version of the case investigated in fig. 6 are presented. In this case the
setup is similar to the one from fig. 6, i.e. the plots are based on 100 samples of length 1974
from a model of the form Y, = cos(2mat 4+ ¢) + w,, where o = 0.302 (as before), whereas the
standard deviation of the Gaussian white noise w, has been reduced to ¢ = 0.05.

The low value of the standard deviation o implies that samples from this time model have a
very clear periodic behaviour, as can be seen from the plots in fig. 9, where the 90% confidence
intervals are almost indistinguishable from the mean of the estimates. This clear periodicity is
also evident from the trace shown in the upper left panel of fig. 9, where the 100 first pseudo-
normalised observations of one of the samples are presented.

The main detail of interest in fig. 9 is the clear deviation between the local and global spec-
tra, as seen for the points 10:%: :10% and 50:%: : 50% at the truncation level m = 10 and for
10:%::10% at m = 20. Figure 9 reveals the importance of including both the local and global
spectra in the investigation, and it shows that caution should be exercised when trying to in-
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Figure 9: Pseudo-normalised single cosine and a tiny bit of noise.

terpret a difference between local and global spectra for a time series with a non-flat global
spectral density.

It might be natural (for such cases) to proceed with an approach where some model is fitted
to the data, preferably one that gives residuals that (globally) behaves like white noise, and then
perform a new local Gaussian analysis upon the residuals. For the present case of investigation,
that could in principle detect local information hidden in the white noise that was added on top
of the trigonometric function.

3.3.4 A GARCH-type model

The next example is a GARCH-type model, more precisely an asymmetric power ARCH-model
(apARCH) of order (2, 3), with parameters based on a fitting to the dmbp-data. (The R-package
rugarch, Ghalanos (2015b) was used to find the parameters of several GARCH-models, and
the asymmetric power ARCH model with the best fit was then selected.) The apARCH(p, ¢)
model was introduced in Ding et al. (1993), were it was given as

t tot) €, ~ N(07 ]-) ) (3421)

q
—v6.) +> Bsi,  where (3.4b)
j=1

a,>0,6>0, «a>0i=1...,p, 1<y <li=1....p, B,20,j=1...,4q,
(3.4¢)

but the apARCH(2, 3)-model used in this example is a bit more complicated than the one from
(Ding et al., 1993), see Ghalanos (2015a, sec. 2.2.5), for the details.

Figure 10 shows the result from a local Gaussian investigation of the above mentioned apARCH-
model, as usual showing 90% pointwise confidence bands constructed from 100 independent
samples of length 1974, and with a bandwidth b = (0.5, 0.5). The m-truncated ordinary global
spectral density f™(w) of a GARCH-type model like the one investigated here is known to be 1
(since p(h) = 0 when h # 0), and fig. 10 shows that the estimate of f™(w) indeed is close to 1.
These plots do in addition indicate that the estimated f:(w) differs a lot from f™(w) in the
tails, but not in the center. The question now is whether or not the shape of these (m-truncated)
local Gaussian spectral densities might reveal anything about the behaviour of the time series
at the levels corresponding to the points.
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Figure 10: GARCH-type model, based on dmbp.

For the lower and upper tails, the present example seems to indicate a symmetric situation,
and it seems to be ample reason to claim that the local values f;. (w) for low frequencies are
significantly different from the global values f™(w) when the pointwise confidence bands are
taken into account.

It is clear from lemma 2.5 that :’;;(0) =1+2-3" A (h)-p,;(h), so the peaks observed
at the lower and upper tails thus reveals that the first batch of estimated local Gaussian auto-
correlations consists of a sequence of positive values — which indicates that long range depen-
dencies might be present. This impression is strengthened when plots with a higher truncation
level is considered, as the peak at the frequency w = 0 continues to grow. Compare fig. 3
to see the situation for the estimated local Gaussian autocorrelations p,, . (%) for the dmbp-data,
upon which the parameters of the apARCH-model was based. Furthermore, the fact that ;7. (w)
seems to be very close to 1 at the center indicates that the estimated local Gaussian autocorrela-
tions p, ;(h) at the center fluctuates around 0, which again is in agreement with the impression
fig. 3 gives with regard to the dmbp-data at this point.

3.4 Real data

The data to be used in the present section will be the Bollerslev-Ghysel benchmark data set
(dmbp), see footnote 10 (page 11) for details. A plot of the pseudo-normalised dmbp-data was
given in fig. 2, and the estimates p, () was investigated in fig. 3. The apARCH(2, 3)-model
used to create fig. 10 had parameters obtained from a fitting to the dmbp-data, and the present
investigation will reveal that estimates of the m-truncated local Gaussian spectral density can
provide some visual aid with regard to the quality of the tested GARCH-type model — in par-
ticular, this might be of interest when doing model selection.

The estimation of :%(w) for a given point v at a given frequency w requires a selection of
a bandwidth b and some maximum number of the lags m, and these will be kept the same as
those used for the simulated data, since that seems to be the natural option when a comparison
of the corresponding estimated local Gaussian spectral densities is of interest. The number of
replicates used to create the confidence bands will likewise be kept the same, but issues related
to the resampling strategy for the given sample (see discussion below) might have an effect
upon that part.

Figure 11 presents the results based upon the dmbp-data. Note that this plot differs a bit
from those encountered for the simulated data; a solid line represents the estimate from the ac-
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tual (length 1974) sample at hand, using the bandwidth b = (0.5, 0.5), and the 90% pointwise
confidence band was constructed from estimates based on 100 resampled versions of the orig-
inal data. The resampling was done by means of a block-bootstrap, where the selection of the
blocklength (in this case 100) turned out to be a problem — since it (to the best of the authors’
knowledge) does not exist a method that can return a data-driven value for the blocklength to
be used for a sample from a nonlinear time series with a flat spectrum — see the discussion in
section 4 for further details.
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Figure 11: dmbp-data, bootstrapped based confidence intervals.

The solid line in the two right panels in fig. 11 indicates an asymmetry between the lower and
upper tails, which seems natural when one takes into account the observations from figs. 3 and 4
that the local Gaussian autocorrelations for lagged pairs at the lower tail tends to have higher
values than those occurring at the upper tail — and this is in agreement with the asymmetry
between a bear market (going down) and a bull market (going up). In particular, note that the
detected long range behaviour (peak at w = 0) for the extremes are more prominent for the for
bear market than for the bull market.

Keeping in mind that the apARCH(2, 3)-model from fig. 10 had coefficients obtained from
a fit to the dmbp-data, it is of interest to compare the dashed lines from that plot with the solid
lines in the present plot. Since the asymmetry observed in fig. 11 are missing from fig. 10, it
could be that the present GARCH-type model might not be optimal for the dmbp. But it has to
be emphasised that the pointwise confidence intervals in figs. 10 and 11 are rather wide, so it
might be premature to reject the apARCH(2, 3)-model as an adequate model for the dmbp data.

Remark 3.19. It was a problem to figure out which blocklength to use in the block-bootstrap
algorithm. The plots in fig. 11 used the value 100 for the blocklength, and this was selected
after some tests with different blocklengths. The reason for the selection of this blocklength was
partially due to the impression from fig. 3 that a long block length might be needed, and it was
partially due to a desire for the original estimate (i.e. the solid line) to be approximately at the
center of the estimated confidence band — and it has to be noted that such an approach could lead
to erroneous conclusions. However, it should also be noted that the significant difference (in
the tails, for frequencies w between 0 and 0.07) between local and global m-truncated spectral
densities still was present when other blocklengths was tested, so it seems safe to conclude
from fig. 11 that local properties have been detected in the dmbp-data for the lower and upper
tails. Note that the lower-tail part of fig. 3 in fact could indicate that an even larger blocklength
than 100 should be used, see section 4 for further details.
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3.5 Inspecting the local Gaussian autocorrelations

It might be enlightening to not only compare the estimated local Gaussian spectral densities,
but also to compare the estimated local Gaussian auto-correlations. Figure 12 illustrates this
by showing the first 20 lags for three different dmbp-related cases. The top panel shows the
estimates based on the pseudo-normalised dmbp-data, the center panel shows box-plots based
on the 100 bootstrapped replicates (using the block-length 100), whereas the bottom panel
shows box-plots based on the 100 samples (of length 1974) from the apARCH(2,3)-model
that was fitted to the original dmbp-data. The point under investigation is 10%: : 10%, and the
estimates are (as before) based on the bandwidth b = (0.5, 0.5).

A comparison of such plots of local Gaussian autocorrelations might be useful with regard
to the problem of judging the appropriateness of a proposed block-length for the bootstrapping
procedure, and it might also be possible to detect if a model fitted to the data clearly fails to
mimic the local behaviour of the data the model was fitted to.
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Figure 12: Local Gaussian auto-correlations related to the pseudo-normalised dmbp-data. Top:
Original data. Center: Bootstrapped results (100 replicated using the blocklength
100). Bottom: apARCH(2,3) fitted to dmbp (100 simulations).

3.6 Exploration for off-diagonal points
The preceding examples all considered points v = (v,, v,) on the diagonal, i.e. v, = v,, but
mathematically it is as such not a problem to estimate f, . (w) for points off the diagonal, see
appendix A.2 for the relevant asymptotic theory. However, the estimates becomes complex-
valued when v, # v,, which makes them harder to visualise and interpret — and there is no
clear level interpretation as in fig. 2. Nevertheless, when ,E"”s (w) is used as an exploratory tool
in relation to model selection, it could still be of interest to compare plots based on a model
fitted to the data and the plots based on the original data. As a follow up of the preceding
investigation, this section will compare the apARCH(2, 3)-model and the dmbp-data at the point
v = (—1.28,1.28), i.e. the first coordinate corresponds to the 10% quantile and the second
coordinate corresponds to the 90% quantile.

Since the estimates fj‘"(w) now are complex-valued, it seems natural to investigate them
by using plots based on their corresponding real and imaginary parts (cartesian presentation)
or plots based on their amplitude and phase (polar representation). This section will use the
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 61

cartesian presentation, where both the real and complex parts are investigated at the same time,
as shown in fig. 13.

In the cartesian case, the estimate can be written as fj‘"(w) =, (w) —iq,j1(w), cf. theo-
rem A.l, using a notation inspired by the one encountered when working with the complex-
valued ordinary cross-spectrum. To emphasize that the present investigation is related to an

~

(w) and ¢, (w) will respectively be referred to as estimates of

v|5

auto-spectrum, the estimates E;l’;
the auto-cospectrum and the auto-quadrature spectrum of f;(w).

The bias-variance properties of p, (h) will as always depend on the number of pseudo-
normalised pairs that efficiently contributes to the computation, i.e. it is of importance to once
more do an analysis akin to the one done for fig. 2. In this case the requirement that a pseudo-

~

normalised pair (Z,,,,7%,) lies in the lag & bandwidth-square is that Z,, lies in the bandwidth-
strip centered at the 10% level, whereas Z, lies in the bandwidth-strip centered at the 90% level.
For the present point of interest, i.e. (—1.28,1.28), a total of 59 lag 1 pairs occurred in the
corresponding lag 1 bandwidth-square, which is a bit smaller than the number of pairs that
occurred for the tail-points discussed in remark 3.10, which respectively was 75 and 66 for the
lower and upper tail.

Contrary to the situation for the two diagonal tail-points previously investigated, the number
of pseudo-normalised pairs (close to (—1.28,1.28)) will increase a bit as the lag h grows up
to the h = 200 case that was discussed in remark 3.12, in particular the number grows to 70
(which happens to coincide with the number of pseudo-normalised pairs for the lower tail).
This growth from 59 to 70 seems natural when it is taken into account that the lag h pairs are
expected to become independent when h grows, and then it is natural that the density should be
approximately the same in regions of the same size. Note that it could be a potential problem in
this example that the number of lag h pseudo-normalised pairs that efficiently contributes to the
computation of p, . (k) (for b = 1,...,10) might be a bit too low, but that will be ignored here.

Figure 13 shows plots that compares the apARCH(2, 3)-model (left) with the dmbp-data
(right)."” The corresponding estimated auto-cospectra Cc,(w) are given at the top and the
estimated auto-quadrature spectra g,;(w) at the bottom, with some additional details added
to enable a comparison against the estimate f™(w) of the ordinary global m-truncated spec-
tral density. Keeping in mind that f™(w) is real valued, it has only been added to the part
investigating ¢, (w), and only a dotted horizontal line at y = 0 has been added to the plot that

v|

investigates ¢, (w).

Remark 3.20. For this particular point v and this particular truncation-level m, the estimated
auto-cospectra ¢,; (w) seems to indicate that the result based on independent simulations from
the apARCH(2, 3)-model agrees quite well with those based on the dmbp-data. The estimated
auto-quadrature spectra g, (w) could however indicate that there might be features of the dmbp-
data that this particular GARCH-type model did not manage to pick up. Note that the afore-
mentioned issues regarding the selection of the blocklength (to be used in the bootstrap), could
imply that the pointwise confidence bands for the dmbp-data are a bit off the mark, and it would

thus be premature to accept/reject a fitted model solely based on this plot alone.

19The investigation for both of the cases use the same input parameters as described earlier. In particular: 90%
pointwise confidence intervals based on a 100 simulated samples of length 1974 for the apARCH-model, and
similarly 90% pointwise confidence intervals based on a 100 bootstrapped replicates of length 1974 for dmbp.
Both cases with the bandwidth b = (0.5, 0.5).
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Figure 13: An off-diagonal point, comparison apARCH(2, 3)-model (left) and dmbp (right),
auto-cospetrcum (top) vs. auto-quadrature spectrum (bottom).

Remark 3.21. An interpretation of ¢ (w) and g, (w) from fig. 13 is beyond the aim of the
present paper, but a few minor observatlons can nevertheless be given. First off all, observe
that g, (w) always must be O when w € {0 1}, and then observe that a peak or (like in this
case) a trough at the frequency w = 0 for ¢,; (w) can reveal the presence of an initial long-range
sequence of same-sign estimated local Gaussian autocorrelations p,, . (h). Furthermore, from
the definitions it follows that ¢} (w) and g,j;(w) respectively must integrate to 1 and O over

(—5, 5} and those properties might be useful when discussing peaks/troughs that occurs in the

graphs.

Remark 3.22. When lemma 2.3(c) is taken into account, it is clear that the plot of g,: (w) can
give an indication of whether or not the time series under investigation is reversible. For the
GARCH-type model investigated in fig. 13, the ;(w)-plot indicates that it might represents
a reversible time series, whereas the dmbp-data on the other and does not quite give that im-
pression. However, it would be premature to draw any conclusions based on the particular
combination of point v, truncation level m and bandwidth b used in this example.

Remark 3.23. A single plot based on the amplitude of fm (w) could have revealed approximately
the same as the present plots of ¢, (w), but it would not necessarily reveal the details that g, (w)
can give about the reversibility of the time series under investigaton. Moreover, a peak atw = 0
of the amplitude-specter would detect the presence of some long-range dependency of (%),
but it might not be immediately clear from the amplitude-plot whether the prevailing sign of
these p,,;(h) was positive or negative.

Remark 3.24. This example shows that f’" (w) might provide some insight also when the point v
lies off the diagonal. In a practical setting, it would of course be natural/necessary to investigate
several different off-diagonal points v for different combinations of bandwidths b and truncation
levels m, and for plots based on real data it would also be preferable to test different blocklengths
to see how much the estimated pointwise confidence bands depends on that setting.

3.7 1 parameter versus 5 parameter

The plots considered so far have all used the 5 parameter local Gaussian approximation in
the computation of the local Gaussian autocorrelations, i.e. estimates p, ;(h) of p, . (h) have
been used in the computations. The reason for this is that p,, (h) in general might not carry
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sufficient information about the local correlation structure of the densities, cf. the discussion in

-~

appendix C.6 . The estimates f7 (w) might thus return rather dubious results.

v|1
—~

The inadequacy of [, (w) is highlighted in fig. 14 where it has been compared against fv‘ (w)
for the previously encountered comparison of the GARCH-model and the dmbp-data (all the
parameters are identical to those described earlier). The two upper panels show the previously
encountered results for the simulated GARCH-model (left side) and the dmbp-data (right side),
whereas the two lower panels shows the corresponding results when p,, (h) was used instead
of p,;(h). The differences that occurs for the lower frequencies in these cases are quite clear,
i.e. the results obtained from the 1 parameter approach are not as high as those obtained from the
5 parameter approach, and it might thus happen that an analysis based on :71 (w) does not detect
a difference that is clear-cut when f:‘g(w) is employed. This makes the fj‘"l (w) less favourable
as an exploratory tool.>”
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Figure 14: apARCH(2, 3)-model (left) and dmbp (right), 5 parameter (top) vs. 1 parameter
(bottom).

The ‘trumpet shaped’ pointwise confidence band observed in the lower right panel seems to
be a common feature when the 1 parameter approach :'l’"‘l (w) are used on non-Gaussian data (like
the dmbp-example encountered here). This phenomenon occurs for a wide range of different
blocklengths for the bootstrap, which implies that the ‘problem’ is not directly related to the
blocklength that was used in this particular case. Due to larger flexibility, it seems evident that
the 5 parameter approach :”‘15 (w) is the better option to apply. See the discussion in appendix C.6
for further details.

For the record, these undesirable differences does not occur for Gaussian time series, which
is as expected since both the 1 parameter and 5 parameter algorithms in such nice cases will
give an estimated local Gaussian autocorrelation close to the ordinary autocorrelation of the
Gaussian time series. But, as the cases considered in fig. 14 shows, it seems clear that the
1 parameter approach ]/‘2‘"1 (w) might not be up to the task when the structure of interest deviates

from the Gaussian assumption.

2ONote that the algorithm used to find P (h) does not reveal whether or not the result is based on a successful
numerical computation, and this is the reason that ‘NC=7?7" is shown in fig. 14.
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4 Discussion

The examples in section 3 show that an exploratory tool based on estimates of the local Gaussian
spectral density f, . (w) might be useful, and that it in some cases might be possible to interpret
peaks and troughs that occurs in a manner similar to the interpretation used when estimates
of the ordinary spectral density f(w) are inspected. Caution must however be exercised, since
there still are many details related to the selection of the point v and the parameters m and b that
needs to be investigated further, and this section will present some additional comments related
to this part. Moreover, the unresolved issue with regard to the selection of the blocklength (when
bootstrapping is needed) will also be discussed here, before an alternative smoothing strategy
is commented upon at the end of this section.

4.1 The points v and the bandwidths b

Based on the discussion in section 3.2, it is clear that the combination of a point v and a band-
width b has a large impact on the number of pseudo-normalised lag / pairs from { (Z o 2) }:
that efficiently contributes to the computation of the estimates p, . (h).

The selection of v and b must be seen in conjunction, see remark 3.10, and in particular:
If b is rather small, then it is important to not select points v too far from the center of the
distribution, since the small-sample variation then might become the dominating feature of the
estimated values fv’f (w).

In section 3, the bandwidth b = (.5, .5) was used for the majority of the plots, with the excep-
tion of fig. 6, page 23. Figure 6 indicates that the estimates of f™(w) and f.(w) (the red and
blue dashed lines) seems to be the same for the three bandwidths chosen, but the width of the
corresponding pointwise confidence bands changes quite a bit, i.e. they, as expected, become
narrower with higher bandwidths.

The bandwidth b = (.5,.5) used as default in section 3 was selected based on the fact that
b = .5 is quite close to the value obtained when the formula b ~ 1.75n~*/¢ was given the value
n = 1974 (the length of the dmbp-data). This formula, due to Hikon Otneim, is based on exper-
imentation with the bandwidth-selection algorithm used in Otneim and Tjgstheim (2016), and
it has been applied here even though it originates from a bandwidth-selection algorithm aimed
at computing density estimates based on the one-parameter local Gaussian approximation.

It might be a dubious practice to use the same bandwidth for all the lags h = 1, ..., m, and it
could also be a problem that the same bandwidth is used for all the points v, since the number of
observations in the vicinity of points in the tail is much smaller than the corresponding number
for a point in the center, cf. remark 3.10. However, used as an exploratory tool, with pointwise
confidence bands that clearly shows the different variances, it should still make sense to use the
same bandwidth for a comparison like the one between the apARCH(2, 3)-model from fig. 10
and the original dmbp-data in fig. 11 (see page 29).

Remark 4.1. The R code used for the estimation of the local Gaussian autocorrelations, i.e.
Po5(h) and p, (), can apply different alternatives for the bandwidth-argument. It is e.g. pos-
sible to use an approach where a percentage is given, and the algorithm then selects for each
point v and each lag & a bandwidth that ensures that this percentage of the available pseudo-
normalised lag h pairs are included in the resulting bandwidth-square. A few experiments with
this simplistic bandwidth-approach did not produce results that differed significantly from those
based on fixed bandwidths.
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Remark 4.2. A simple rule of thumb, like the formula b ~ 1.75n~"/°, would be preferable with
regard to the selection of the bandwidth, since the computational cost can become a problem
if a new bandwidth has to be computed for each of the lags h = 1,..., m. In particular, if a
selection-algorithm for b could be based on a cross-validation technique, then it would for prac-
tical purposes probably be preferable to first compute estimates of f,. (w) for a range of fixed
bandwidths, and then apply the selection-algorithm only for those cases where some potentially
interesting structures was revealed in the initial investigation.

Remark 4.3. There does exist a leave-one-out cross-validation algorithm for the selection of
the bandwidth to be used when estimating the local Gaussian correlation based on independent
observations, see Berentsen and Tjgstheim (2014, Section 3.4) for details. An earlier version
of the R code (used for the estimations in the present paper) had an option where the p = 1
version of this algorithm, from Otneim and Tjgstheim (2016, Section 4), could be used when
estimating p,, (h). This option did however result in a tremendous increase in the computa-
tional time, since the estimation of f; (w) requires the estimation of m different local Gaus-
sian auto-correlations pv“(h).“ Moreover, it is also a bit questionable to apply an algorithm
developed for independent observations in a time series setting. In particular, the leave-one-
out cross-validation has some flaws if the aim is model selection based upon dependent data,
see Burman et al. (1994); Racine (2000); Shao (1993), where the concepts leave-n_-out cross-
validation, h-block cross validation, and hwv-block cross-validation were introduced as better
tools for the dependent case.

4.2 The truncation level m and the weighting function \ (h)

For estimates of the ordinary spectral density, f(w), there exist rules of thumb (based on the
number of observations n) that can define a range within which an appropriate truncation level
m might be found, such that a reasonable bias-variance balance is obtained for the estimated
spectral density f(w) The guiding principle for the selection of m for the global case is based
on the observation that there is a linear decrease in the number of lag h pairs, so the variance
of the estimates p(h) increases for higher lag-values, and the selection of truncation level m
and weighting function A () is then used to counter the effect of this increased variance from
high-lag components.

It would be preferable to have some similar guiding principle for the selection of m for the
local case too, but in this case the situation is more complicated since the bias-variance prop-
erties of the building blocks p, ;(h) are affected both by the position of the point v and the
selected bandwidth b. In particular, the kernel function involved in the estimation of p,,(h)
implies that the variance will depend on the number of pseudo-normalised lag h pairs (fz\t h ’z\,)
that lies inside the lag i bandwidth-squares, as shown in fig. 2.

Remarks 3.10 and 3.12 describe (for the three investigated diagonal points) the number of
efficiently contributing pseudo-normalised lag h pairs for the two lags h = 1 and h = 200. If a
common truncation level m is to be used for all the three points, then it is clear that the points
v with the smallest number of contributing pseudo-normalised pairs should be considered, i.e.

21 Tests were performed to see if it might be possible to only use the bandwidth-algorithm for the case A = 1, and
then let the higher lags inherit the estimated bandwidth — but it turned out that that assumption was not a viable
one. In particular, the bandwidths estimated for the higher lags did not need to be close to the one estimated
for the first lag.
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the numbers for the points at the lower and upper tails are those that is central to the selection
of truncation level m.

For these tail-points, the reduction from the lag 1 case to the lag 200 case was rather small,
which could imply that the variance of the corresponding estimates p, () grows at a much
slower pace than the variance of the estimates of the global autocorrelation p(h). Furthermore,
as the off-diagonal example in section 3.6 shows, points v can be found where the number of
efficiently contributing lag h pairs increases when h grows from lag 1 to lag 200.

In lack of a data-driven rule that can propose a suitable range of values for the truncation
level m, the following strategy has been used instead: First estimate the local Gaussian auto-
correlations p,,, (%) for a large range of lags, and then use a shiny-application (see footnote 17,
page 18) to interactively play through the plots of the corresponding m truncated estimates
fv‘ﬁ(h). A drawback with this solution is that it might waste computational resources on cases
where small-sample variation distorts the presence of any local signals.

4.3 The blocklength for the bootstrap

There do exist data-driven methods for the selection of the blocklength to be used when boot-
strapping, see e.g. Biihlmann and Kiinsch (1999); Lahiri et al. (2007); Nordman and Lahiri
(2014); Patton et al. (2009); Politis and Romano (1994); Politis and White (2004) — but these
methods does not give a good result when used upon data with a nonlinear structure and a flat
(ordinary) spectrum.

The ‘problem’ is easily detected from an inspection of the selection algorithms in sections 3.2
and 3.3 in (Politis and White, 2004), as they all have a factor G := > |h|R(h) where R(h)
is the lag h autocovariance of the series under investigation. For a time series whose ordinary
spectrum is flat, the only nonzero R(h) occurs when i = 0, and the sum G thus becomes zero
in this case. This implies that the data-driven blocklength algorithms (both for the stationary
and for the circular bootstrap) considers a block of length 1 to be suitable when bootstrapping
the dmbp data — and that would obviously destroy all nonlinear structures in the data.

To the best of the authors’ knowledge, there does not exist an adjustment of the blocklength
algorithm suited for the present case of interest. This implies that the use of the local Gaussian
spectral density on real data suffers from the problem that the blocklength for the bootstrap must
be manually selected, which makes it harder to decide if a potentially interesting difference
between the ordinary and local spectral density really should be considered to be significant
— or if it should be discarded as a spurious effect due to a badly selected blocklength for the
construction of the pointwise confidence bands.

As explained in remark 3.19: The blocklength 100 was used for the dmbp-example (see
fig. 11) in order to get plots where the estimate J/‘;‘(w) based on the original sample was posi-
tioned approximately at the center of the resulting pointwise confidence-band.”> An approach
based on the testing of several different blocklengths is computationally costly, so it would be
preferable to find some data-driven strategy.

Based on the selection-algorithm in (Politis and White, 2004), one might wonder if an ad-
justed selection algorithm suited for the local case could be created by replacing the estimated

2]t should be noted that a wide range of possible blocklengths was investigated, and they all revealed significant
differences between the ordinary and local spectrum for low frequencies in the lower and upper tails — so the
dmbp-investigation did most likely detect an actual phenomenon in the data at hand.
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autocovariances R(h) with local Gaussian autocorrelations p, ;(h) instead. A potential prob-
lem with this approach is that the result could depend upon the points v that are investigated.
But still, if nothing else, a visual inspection (like the one given in fig. 3) of the estimated values
P, s(h) might help motivate lower and upper thresholds within which a search for the block-
length could be restricted. From this a blocklength of 100 might not be unreasonable.

It also has to be noted that there is an additional issue that remains to be investigated, and that
is the asymptotic properties of the bootstrap-approach in this particular case. The theoretical
properties of the bootstrap-methodology in the realm of local Gaussian correlation have been
investigated in Lacal and Tjgstheim (2017), and it seems likely that the methods employed there
could be adjusted to cover the present case of interest.

Remark 4.4. As mentioned before, the R-package localgaussSpec allows the estimation of
:%(w) for a wide range of settings for the points and parameters, with a simple interactive
solution for the inspection of the results. It is thus not that critical that data-driven methods
for the selection of the parameters still are missing, but with regard to the computational costs
it would be preferable to have at least some guiding principles that could restrict the initial
attention to parameter-regions where small-sample variance should not distort the presence of

any local signals.

4.4 An alternative smoothing strategy?

The previously defined estimates :'l’;(w) of f,,(w) was based on a weighting function A, (h)
that worked upon the estimated values p,. (%), but it should for the record be noted that an
alternative approach could have been applied too.

The point is, as mentioned in remark B.4, that it is possible to extend the result of ap-
pendix B.4 to show that the estimated m-truncated local Gaussian spectral densities fv‘(w)
corresponding to different points {v,},_ will be jointly asymptotically normal and pairwise
asymptotically independent (when m — oo and b — 0% as n — o0). This enables an alter-
native smoothing strategy, where an estimate fv"‘s(w) for a given point v could be based on a
weighting of the values of :’j‘(w) in a grid of points surrounding v.

This alternative approach shares some superficial similarities with the one used when the
ordinary global spectrum f(w) is computed based on the periodogram, see e.g. Brockwell and
Davis (1986) for details. However, the efficiency of the periodogram-approach in the estima-
tion of f(w) is due to the Fast Fourier Transform, which implies that the periodogram can be
computed directly from the observations without the need for an explicit computation of all of
the the estimated autocovariances p(h), and that shortcut is not available for the local Gaussian
case. The computational load would thus become much larger for the local Gaussian case if

such an averaging-approach was applied.

5 Summary

This paper presents the local Gaussian spectral density [, (w) as anew possible approach to the
study of nonlinear time-series and nonlinear periodic phenomena. This method is based upon
the simple approach that the ordinary autocorrelations p(h) in the standardised expression for
the spectral density, see eq. (1.2), are replaced with the local Gaussian autocorrelation p,,,(h).
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Estimates :T;(w) of the (m truncated) local Gaussian spectral densities are then obtained by
estimating the corresponding local Gaussian autocorrelations.

The parameter p can either be 5 or 1 depending on the type of the number of parameters
used in the local Gaussian approximation. The theory covers both options, but for practical
purposes, based on our experiences, only p = 5 can be recommended, since the p = 1 case
fails to capture the local structures in a satisfying way, see fig. 14 on page 33 for an illustration.

The point v = (v,, v,) can in principle be any point in R, but it is important to keep in mind
that small-sample variation could become a problem if it lies in an area with few observations.
Moreover, the visualisation and interpretation of the results might be easier if v lies on the

diagonal, i.e. v, = v,, since (as seen in theorem 2.7) real-valued results are obtained in that

1
case.

The examples™
to detect the presence of local structures that the ordinary spectral density does not register,
and that it also could give some aid when it comes to selecting models fitted to data, cf. the
discussion relating the apARCH (2, 3)-model from section 3.3 with the dmbp-data in section 3.4.
It seems likely that such a comparison could be of interest even when it is not known whether
or not the investigated time series satisfies the requirements needed for the asymptotic theory
to work.

Finally, it should be noted that this paper only aims at presenting the method and that there
are many issues that remains to be resolved with regard to the use of this method. This includes,

in section 3 indicates that this method can be used as an exploratory tool

as discussed in section 4.1, the need for some rules of thumbs with regard to how far out in the
tails it makes sense to select the points v given a number n of observations, the need for some
suitable method to select the bandwidths b and the truncation point m for the given number
of observations (potentially also depending on the point v) — and of course the issue regarding
the blocklength to use when working upon non-linear white noise. For all of these arguments
there is a need for a better understanding of the effect of them upon the bias-variance balance
of the resulting estimates.

23The scripts for all the examples are included in the R-package localgaussSpec, available on github
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Appendix A: Asymptotic results for /' (w)

This appendix presents the asymptotic properties of U‘p( w), the m-truncated estimate of the
local Gaussian spectral density, i.e. the proof of theorem 2.7 is given here together with a
theorem that covers the case when U‘p( w) is complex-valued. The technical details needed for
the proofs are covered in appendices B and C

A.1 The proof of theorem 2.7

Proof. The property that f, (w) is a real-valued function when v lies on the diagonal was
proved in lemma 2.3(d). The expression for }?Ufp (w) from lemma 2.5 can by the help of vectors
be written as

fr(@) =142 K,@) P, (A1)

i.e. the sum can be expressed as the inner product of the two vectors
A (w) =\ (1) -cos(2mw-1),..., A (m) - cos (2mw - m)], (A.2a)
P, = [l B, (m]p,)] (A.2b)

Since p,, (h[p,) is one of the p estimated parameters U‘P(h‘b ) from the local Gaussian appr0x1—
mation (of the lag & pairs) at the point v,** itis clear that it is possible to write 7, (h|b,) = €/, - vlp(h|b ),

(h|s,). The vectors{ (R, )}

and it follows that

where e/ is the unit vector that picks out p, ,(h[b,) from Ov‘p X

h=1
can be stacked on top of each other to glve a joint parameter vector 6,

v||b|p?

the vector P‘ulm\blp can be expressed as P olmislp =FE - Bvlmw where E/ is the matrix that
plcks out the relevant components from 0u|mu,|p (B, will be the m x m identity matrix if

= 1.) It follows from this, and Brockwell and Davis (1986, Proposition 6.4.2, p. 21 1) that an
will give an asymptotic normality result for v‘p( w). In
gives an mp-variate asymptotic normality result

asymptotlc normality result for 0,

v|m|blp

partlcular if a suitable scaling factor’
for 6

ﬂ\M\b\p

v|m|blp?

oo (Butmy = Ouimy) —2 N(0,Z,) (A3)

then a scaling factor ¢/ can be found that gives a univariate asymptotic normality result

for f‘p( w),

“n|m|b|p

cw/,,\mu»\p : (:T\';(W) - fv\p(w)) — N(O UU\,)(W)) , (A4)

24The properties of 0 ), (P[b,) was investigated in Tjgstheim and Hufthammer (2013). A brief summary, with
notation adjusted to fit the multivariate framework of the present paper, is given appendix B.1.2.

% must be a function of n, m and {b, },"_ , such that c — oo whenn — oo, m — coand b, — 07.

C
n|mblp n|mlb|p
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where the variance o7 (w) is a suitably scaled version of the limit of

Var( o (w )) =4- Vaf(N,n( ) E,,- gmmwbw)

— 4 AL @) - By, Var(8,,) - B, A () (A5)

mlp

The asymptotic normality required in eq. (A.3) follows from theorem B.22 (page 64), i.e. the

scaling factor ¢ will be 4 /n(b,b,)""""*, whereas the asymptotic covariance matrix X,

n|m|b|p

can be written as the direct sum of the covariance matrices for |/n(b,b,)"""*- 6, (h|s,), i.c.

Var< n(b,b,) 2. Aﬂmb'p) @Var( n(b,b,)" "2 . :p(h|b)> (A.6)

from which a simple calculation gives
m

Var( n(byb,) " fr (w )—4 ZY - cos? 27rwh)«Var( n(b,b,)" " @p(h|b,,)>.
(A7)

From this it is clear that the scaling factor ¢ requires an additional scaling with 1/1/m in

order to include the averaging factor 1/m for the sumin eq. (A.7). Thus, ¢/ n(b,b,) " fm,
which completes the proof. O

“nim|blp

nlmlblp

Remark A.1. Some care must be taken formally with regard to the limiting mp-variate normal
distribution in eq. (A.3), since it has to be interpreted as something that is approximately valid
for large (but finite) values of the truncation point m. The univariate normal distribution in
eq. (A.4) is the one of interest, and this will under the required assumptions be well defined in
the limit.

A.2 The complex-valued case

Theorem A.1 (Complex-valued case). If the local Gaussian spectral density f, (w) is a com-

plex valued function for a point v = (v,,v,), i.e. f, ‘p( w) = ¢, (W) —iq,,(w), withq,,(w) Z 0,
then, under assumptions 2.1 to 2.3, the components ¢ (w) and ' (w) of the m-truncated es-

timate 1)‘p( w) will, when w & % -7 = { =1 = 1 0,101, .}, be jointly asymptotically

)99
normally distributed as given below.

e () [l o))
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. ) ) .
where the variances o’ (w) and 0., (w) are given by

2 ol
02, (W) = Jim . ; A2 (R) - cos®(2nwh) - {57 ( 2.} (A.9a)
02, (W) = Jim — Z A2 (h) - sin®(27wh) - {a7 (h) + 37, (h)}, (A.9b)

h=1

with 5} (h) and &;,

B|p

() related to respectively p,,(h|v,) and p,,,(h|v,) as given in theorem 2.7.
The component q," (w) is identical to O when w € % -Z, and for these frequencies the following
asymptotic result holds under the given assumptions

(b b, - (i w) = £, (@) =5 N(0, 02, (), (A.10)

Proof. The case w € % - Z can be proved by the exact same argument that was used in the

proof of theorem 2.7, whereas the general case requires a bivariate extension of that proof. In
particular, when the proof of theorem 2.7 is used on ¢, (w) and g, (w), it follows that they can

Ip v|p

be written as

)

~

cn(w) =1+ A‘c\m(w) B e T A'/c\m(w) - P, =1+ A'm(w) P,

v|p @lmlblp v|m|blp

P (A.11a)
aﬁ;(w) =0+ A'/q\m (w) - vimlblp Alq\m(w) L bl =0+ A(,\m (w) - P’u |7 |blp (A.11b)

)

where Adm(w) and A’q‘m(w) are the coeflicient vectors containing respectively the cosines and
oimiplp A0 P,

for the lags under consideration, and where the length 2m vectors A',_ (w), A’

qlm

sines, where P contains the estimated correlations corresponding to v and ©

(w)and P

v|m|blp

o|m|b|p

are defined in the obvious manner in order to get a more compact notation. Following the same
=(E,,®E,,) ©
where @m‘ »,(V, ©) is the full set of estimated parameters from the local Gaussian approxima-
tions at v and ¥ for the lags under consideration,”® and where (E’mlp @ E’m‘p) is the matrix that
picks out the relevant autocorrelations.

line of argument as in the proof of theorem 2.7, it follows that p

vlmlblp m|blp

Based upon this, it follows that the target of interest can be written as
Ef;(w)} _ H [Alm(w)} , N6 )
U = + | E ©®F )-0©_. (v,0), (A.12)
|:qvn;(w) 0 Aq@(w) ( Ip \p) Jb\P( )
which together with the asymptotic normality result from theorem B.23, i.e.

n(b,b, )" - ((3) (v,9) — ©_

m|p

% d
m[blp (v7 v)) — N(Ov Eu\m\p D me\p) ) (A-13)
gives the result when the argurnents in the proof of theorem 2.7 are applied to the present setup.
Note that the requirement w ¢ - Z is needed in order to ensure that the variance o, (w) is
different from 0, which is needed in order for (Brockwell and Davis, 1986, Proposition 6.4.2,
p- 211) to be valid in this case. O

26The vector G):‘ »»(V, D) can be expressed as a combination of Gv‘ b1, @0d 0, where 6,

rameter vector from the proof of theorem 2.7.

1ol o161 18 the pa-
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~

Appendix B: Asymptotic results for 0

v|m|blp

~

This section will investigate the asymptotic properties of the parameter vector 8, . that is
used in the proof of theorem 2.7. The proof is similar in spirit to the one used in Tjgstheim and
Hufthammer (2013) for the asymptotic investigation of the parameter vectors 8, (hp,), i.e. the

Klimko-Nelson penalty function approach will be used to derive the desired result.

Appendix B.1 explains the Klimko-Nelson approach and shows how a local penalty func-
tion for the present case can be constructed based on the local penalty function encountered
in (Tjgstheim and Hufthammer, 2013). Appendix B.2 verifies the fourth of the requirements

~

needed for the Klimko-Nelson approach, and the asymptotic results for 6 are collected in

appendix B.3.

v|m|blp

Remark B.1. The asymptotic investigation requires several indices in order to keep track of
the different components, and to simplify references to v, b and p will whenever possible be
suppressed from the notation.

B.1 Local penalty functions and the Klimko-Nelson approach

Tjgstheim and Hufthammer (2013) used a local penalty function to define the local Gaussian
correlation p, ; as a new local measure of dependence at a point v, and then used the approach
formalised in Klimko and Nelson (1978), to investigate the asymptotic properties of p,, .. (The
arguments in (Tjgstheim and Hufthammer, 2013) holds for the simpler case p = 1 too.) The
local Gaussian spectral density [, (w) is based on the local Gaussian autocorrelations p, ,(h),
and the asymptotic properties of the estimates JE@(W) are thus closely connected to the asymp-
totic properties of p,, (h).

The Klimko-Nelson approach shows how the asymptotic properties of an estimate of the
parameters of a penalty function () can be expressed relative to the asymptotic properties of
(entities related to) the penalty function itself. This result plays a pivotal role in the present
analysis, and it has thus been included in appendix B.1.1.

Appendix B.1.2 presents the bivariate definitions and results from (Tjgstheim and Huftham-
mer, 2013), with the notational modifications that are needed in order to make it fit into the
multivariate approach in the present paper. The bivariate penalty functions (), from (Tjgs-
theim and Hufthammer, 2013) will be used as building blocks for the new penalty function.

B.1.1 The Klimko-Nelson approach

The following presentation is based on Taniguchi and Kakizawa (2000, Th. 3.2.23).

Let {X,},_, be anm-variate strictly stationary and ergodic process that satisfies E [|| X, ||*] < oo.
Consider a general real valued penalty function @, = Q,(0) = Q, (X,,..., X, ;0), which
should depend upon n observations {X,}" | and a parameter vector € that lies in an open set
©® € R, and let the true value of the parameter be denoted by 8°. Add the requirement that ),
must be twice continuously differentiable with respect to 8 a.e. in a neighbourhood A of 6°,
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<9,
Qu0) = Q.0 + (00 20.0)+ (007 50 0,(60°) (0~ 0)
+50-07{ 55000 - ) Lo -0) .10
QuO) +(0—0) 20.(0) + 3 (6 0V, (0 0°)
% (0 — 6°YT.(6°) (0 — 6°) (B.1b)

where V, and T, (0*) are defined in the obvious manner, with 8* = 0*(X,,..., X ;0) an in-
termediate point between 6 and 6° (determined by the mean value theorem).

Theorem B.1 (Klimko-Nelson, (Klimko and Nelson, 1978)). Assume that { X}, , and Q, are
such that as n — o0
(A1) n7'(0/06)Q,(6) ==
(A2) n'V, =25 V, where V is a p X p positive definite matrix, and
(A3) forj,k=1,...,p
lim sup (nd)™" |T,{6"},,| < a.s. (B.2)

n—00 —0

where T, {0"} , is the (j, k)th component of T, {0 }.
.,61)/, such that én 22 0°, and for

Then there exists a sequence of estimators é\n = (51, .
any € > 0, there exists an event E with P(E) > 1 — € and an n° such that on E, for n > n°,
(8/80)62”(5”) = 0 and Q) attains a relative minimum at é;. Furthermore, if

(A4) n2(9/00)Q, (8°) —= N(0, W)

then
1/2(0 —-6°) SN N, V-'WV). (B.3)

B.1.2 The bivariate penalty functions
This section will translate the bivariate results from Tjgstheim and Hufthammer (2013) into the
present multivariate framework, and these bivariate components will then be used to define a
new penalty function in appendix B.1.3.

The main idea from (Tjgstheim and Hufthammer, 2013) is to use bivariate Gaussian densities
¥(y,:6,,,) to approximate the bivariate densities g, (y,) ata point v, where 8, , = [0 0
is the five dimensional parameter-vector of the bivariate Gaussian distribution. The point v will
be fixed for the remainder of this discussion, and it will henceforth be dropped from the notation
for the parameters, i.e. 8, should always be understood as 6

wlh*

The local investigation requires a bandwidth vector b = (b,, b,) and a kernel function K (w),

which is used to define K,.,(y, —v) = %K(yhbi, %b;“) which in turn is used in the
following local approximation around v,
Qnp = / K’L b - W}(yhv eh) - gh(yh) log w(yh; Oh)] dym (B.4)
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a minimiser of which should satisfy the vector equation

- Kh=b(yh - ’U) uh(yh; eh) W)(yh; oh) - gh(yh)] dyh =0, (B.5)
where u, (y,;0,) =V, logi(y,;0,) is the score function of ¢ (y,;0,) (with V, := 9/00,).
Under the assumption that there is a bandwidth b, such that there exists a minimiser 8, , of
eq. (B.4) which satisfies eq. (B.5) for any b with 0 < b < b,,”’ this 0, , will be referred to as
the population value for the given bandwidth b.

Equation (B.4) is a special case of a tool that Hjort and Jones (1996) introduced in order to
perform locally parametric nonparametric density estimation, but (as was done in (Tj@stheim
and Hufthammer, 2013)) it can also be used to define and estimate local Gaussian parameters —
whose asymptotic properties can be investigated by means of a local penalty function @, (6, ),
to be described below, and the Klimko-Nelson approach.

For a sample of size n from {Y,_,},_,. the following M-estimator”® will be used, which (due
to the ergodicity implied by assumption 2.1(a)) will converge towards the penalty function g, , ,

Lh:n(eh) = Lh:n(Y

h:1) *

. Y,.;0,)

=Y Kial¥s — o) log0(¥,,:0,) = [ Kisly, =) 0(9,:0,)dy,. (B6)
t=1

The local penalty function from (Tjgstheim and Hufthammer, 2013) can be described as
Qh:n(oh) = Qh:n(Y;L:17 Y Oh) = _nLh:n(Oh)

= Z Kh:b(Yf-L:t - U) log 1/](Km,; 0},,) +n Kh:b(yh, - ’U) w(yh,; Oh) dym (B'7)
RZ

and it remains to write out how the different components in appendix B.1.1 looks like for this
particular penalty function. A central component is the vector of partial derivatives, which by
the help of the score function u, (y,; 6,) can be given as,

n

V,0.0)= -3 [Kh:bmt ), (¥:0,) — [ Kuuly, - v)u,(y,:0,) v(y,:0,) dy,

=1 R2

(B.8)

Note that the expectation of the bracketed expression in the sum gives the left hand side of
eq. (B.5), which implies that the expectation will be 0 when V,Q, . (6,) is evaluated at the
population value 6, , .

Given a bandwidth b which is small enough to ensure a unique solution 8, ,, the next part of
oh, - 0h,:b| < (5}

interest is the Taylor expansion of order two in a neighbourhood N, = {8, :

?TInequalities involving vectors are to be interpreted in a component-wise manner.

2The entity L, (6,) can for independent observations be thought of as a local log-likelihood or a local kernel-
smoothed log-likelihood, see Hjort and Jones (1996, Section 2-3) for details. In the realm of time series,
where the observations are dependent, it is according to Tjgstheim and Hufthammer (2013, page 36) better to
interpret it as an M -estimation penalty function
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 75

of 0,,.1i.e.
Qun(0,) = Q,0(0,,) +10, ~ 0, V,0,..(0,,) + £ [0, 0,,)'V,,.. 10, -0,
510,07, 16, - 6,,], (B.92)
where
Vo = Vi (01) = V,V,Q,..(6,,,) , (B.9b)
Ty = T (0.60,) = V,9,Q,,,(0) ~ V,%,,.,(6,.). (B.9¢)

with 0; an intermediate point between 8, and 0, ,, again determined by the mean value theorem.

h:b?

With the preceding definitions, (Tjgstheim and Hufthammer, 2013, theorem 1) investigated
the case where the bandwidth b was fixed as n — oo, i.e. items (A/) to (A4) of theorem B.1
was verified in order to obtain the following result for the estimated local Gaussian parame-
ters é\hm; for every € > 0 there exists an event A, (possibly depending on the point v) with
P(A:) < e, such that there exists a sequence of estimators 5, that converges almost surely to
6., (the minimiser of ¢, , from eq. (B.4)). And, moreover, the following asymptotic behaviour

is observed
(n6,0,)"* (8,0, — 0,.) ~ N(0,%,,), (B.10)

where &, , =V, 'W, V.-t with W, the matrix occurring in item (A4) of theorem B.1.

The situation when b — 0% as n — oo requires some extra care since the presence of the
kernel function K,.(w) in @, (6,), see eq. (B.7), gives limiting matrices of V,, and W, ,
of rank one. The details are covered in theorems 2 and 3 in (Tjgstheim and Hufthammer,
2013, p. 39-40), which ends out with the following adjusted version of eq. (B.10), where n and

b= (b17 b2) are such that log n/n(blb2)5 =0,
(n(b,0,))" (@,m - 92) —5 N(0,3), (B.11)

where ¢ is the b — 07 value of 6, , and where the limiting matrix X is a (b,b,)’-rescaled
version of matrices related to the matrices V, , and W, ,, see the discussion in (Tjgstheim and
Hufthammer, 2013) for details.

B.1.3 A new penalty function

~

The proof of theorem 2.7 requires an asymptotic result for the parameter vector 8 which
was obtained by combining m parameter vectors corresponding to the bivariate lag h pairs
(Y,,,,Y;) for h=1,... m. This section will show (for the case p = 5) how a penalty func-

t+h? 7t

~

tion for @

n|m|blp>

el CaN be constructed based on the bivariate penalty functions (), defined in
appendix B.1.2. The indices n, b and p will for notational simplicity be suppressed from the
notation, and only 8_ will henceforth be used.

An analysis akin to the one in Theorem 1 of (Tjgstheim and Hufthammer, 2013) will be
performed in this section, i.e. the asymptotic situation will be investigated for the simple case
where the truncation m and the bandwidth b both are fixed as n — oo. The proof that the
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new penalty function satisfies the four requirements items (A7) to (A4) of theorem B.1 can
then be based upon corresponding components of the proof of Theorem 1 from (Tjgstheim and
Hufthammer, 2013).

The general case, where m — oo and b — 0" whenn — oo, canrecycle the arguments given
here for the requirements in items (A7) to (A3), but extra work is needed for the requirement
given in item (A4). The details needed for item (A4) will be covered in appendix B.2.

With regard to the construction of the new penalty function, the main observation of interest is
that the @, (6,) from appendix B.1.2 was defined for bivariate time series {Y, ,},_,, whereas
the new penalty function will be defined for the (1 + 1)-variate time series {Y,.,},,. The
first step is to extend the penalty functions (), , h = 1,..., m from expression based on Y, ,
to expressions based on Y_ ,, but this is trivial since the bivariate functions occurring in the
definition of @,,,(0,) can be extended in a natural manner to (m + 1)-variate functions, as
mentioned in remark 2.9, which gives the desired functions Q w0,

Definition B.2. Let the new penalty function Q) (0..) be given as follows,

m

Qﬁm(em) = Qﬁz:n(Ym;lv AR Yﬁm; Om) = Z éh:n(ah) ) (B.12a)
h=1

where 0_ is the column vector obtained by stacking all the individual 0, on top of each other, i.e.

6. =1[0,...,0.]. (B.12b)

The m components @, (6,) in the sum that defines @, (6,.) have no common parameters,
which implies that the optimisation of the parameters for the different summands can be per-
formed independently. For a given sample from {Y_,},_, and for a given bandwidth b, the
optimal parameter vector 4/9\77“" for Q) (6.) can thus be constructed by stacking on top of each
other the parameter vectors that optimise the individual summands in eq. (B.12) — and these are

~ ~

the parameter vectors 6, that shows up for the m bivariate cases in eq. (B.10). Since each

h:in h:n

converge almost surely to 8, ,, it is clear that é}m will converge almost surely to 6_,, the vector
obtained by stacking the m vectors 6, , on top of each other.

The desired asymptotic result for the fixed b and fixed m estimates fvm(w) can be obtained
directly from the preceding observation and Theorem 1 in (Tjgstheim and Hufthammer, 2013),
but that would not reveal how m and b must behave in the general situation. The rest of this
section will thus be used to verify items (A7) to (A4) from theorem B.1, which in essence only
requires a minor adjustment of the bivariate discussion from appendix B.1.2, i.e. the discussion
can start with the following Taylor-expansion of Q.. (6..),

’ 1 ’
Qm:n(em) = Qm:n(am:b) + [am - 0m:b] VQO:n(om:b) + 5 [em - em:b] Vm\bm [em - 0m:b]

1 ,

+ 5 [ern - om:b] Zﬁ\b:n [am - 0m:b} ) (B13)
where 6_, represents the vector obtained by stacking on top of each other the m individual pop-
ulation parameters 0, ,, where V_ == [V/,... V'], and where the matrices V_, and T

|bin lbin
corresponds to the matrices V,, and T, , from eq. (B.9).
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 77

Remark B.2. The following matrix-observations gives the foundation for the extension from
the bivariate case to the multivariate case.

1. Keeping in mind how V_ is defined relative to V,, and how () is defined relative
to @,.,., it is clear that V_Q_ (6_,) is the vector obtained by stacking the m vectors
V.Q,..(8, ) on top of each other.

2. The operator V_V_ can be viewed as an m x m block-matrix, consisting of the 5 x 5

matrices V.V/, j,k = 1,...,m. Due to the definition of @Q__,, it is clear that the only
operators V.V, that will return a nonzero result are those having j = k.
3. The precedlng observation implies that V,, = @;", V,,...ie. V_, is the direct sum

of the matrices V, ,

and all other blocks are zero, cf. e.g. Horn and Johnson (2012, p.30) for further details).
4. The same observation implies that 7, = @,", T, ,..

(the block diagonal matrix where the diagonal blocks equals V, . ,

With these observations, and the details from the proof of Theorem 1 in (Tjgstheim and
Hufthammer, 2013), it is straightforward to verify items (A7) to (A3) of theorem B.1, whereas
item (A4) requires some more work.

Lemma B.3 (Item (A7) of theorem B.1.).
n'V,Q,..(0,,) —0

Proof. Since V_(Q).. (0..,) is the vector obtained by stacking the m vectors V,(), (0, ) on
top of each other, and the proof of Theorem 1 in (Tjgstheim and Hufthammer, 2013) shows
that 'V, Q,..(0,.,) converges almost surely to 0, the same must necessarily be true for the

combined vector n'V_Q_ (6. ,) too. O

Lemma B.4 (Item (A2) of theorem B.1.).
n'V 25V ., where V_

lbin b mlb

is a 5m x bm positive definite matrix.

Proof. Since V_,  is the direct sum of the m matrices V, , , the behaviour of those will de-
scribe the behaviour of V_ The proof of Theorem 1 in (Tjgstheim and Hufthammer, 2013)

m|b:n
shows that the matrices n*‘l\é W, COnverges almost surely to positive definite matrices V, ,, and
this implies that n ™'V,
as the direct sum of the matrices V, ,. Since the set of eigenvalues for a direct sum of matrices
equals the union of the eigenvalues for its components, see (Horn and Johnson, 2012, p.30) for

details, if follows that V_ . is positive definite since all the V, , = are positive definite. O

i|bin

will converge almost surely to a block diagonal matrix V__ ,, defined

Lemma B.5 (Item (A3) of theorem B.1.).
Forj,k=1,...,5m,

lim sup(nd)~ ’T,M L <o as., (B.14)

n—o00 §—0

where T’

mlbn

. Is the (4, k)™ component of T,

mlbin®

Proof. T_,,,, is the direct sum of the m matrices T,,,,,, so the required inequality is trivially
satisfied for all entries j and k that gives an element outside of the diagonal-blocks. The proof
of Theorem 1 in (Tjgstheim and Hufthammer, 2013) shows that the inequality is satisfied almost
surely on each of the m blocks 7, which implies that it holds for 7_ , = too. O

hibin?® m|bin
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Lemma B.6 (Item (A4 ) of theorem B.1.).
nil/QVQOm(Om:b) —) N(O V(/m\b)

Proof. As done in the proof of Theorem 1 in (Tjgstheim and Hufthammer, 2013), the idea is
to first prove asymptotic normality of each individual component of V_Q__ (6_,) by the help
of Theorem 2.20(i) and Theorem 2.21(i) from Fan and Yao (2003, p. 74-75). Then the Cramér-
Wold Theorem (see e.g. Theorem 29.4 in Billingsley (2012)) will be used to conclude that the
joint distribution of V_Q_ (0, ,) will be the joint distribution of these limiting components,
and finally a simple observation based on moment-generating functions tells us that this limiting
joint distribution is asymptotically normal.

Since V.Q....(0..,) =[V.Q...0,..),..., V. Q.. (0,,)], its components can be indexed
by pairs [h,i],h =1,...,mandi = 1,...,5. Fromeq. (B.8) itis clear that the [}, i]-component
of the vector can be written as

(V@0 (00))y = ZXM (B.15)

where the random variable X, , is defined as

Xhi:i = K’“b(Kut - ) (Y;Lﬁ 0 ) ) K’“b(yh - ’l)) uhi(yh; eh:b) d)(yh; oh) dyh: (B'l6)
R

and where u,, refers to the i component of the 2™ score function wu, .

The required a-mixing property (and thus ergodicity) are inherited from the original uni-
variate time series Y, to X,,, (see eq. (C.36) for details), and the connection with L’ -theory
observed in eq. (C.41) gives E[|X,,,|"] < co. Finally, since 6, , is the population value param-
eter that minimise eq. (B.5), it follows that E[X,,,| = 0. These observations show that X,
satisfies the requirements needed in order to apply Theorem 2.20(i) and Theorem 2.21(i) from
(Fan and Yao, 2003, p. 74-75), i.e. for S,, = >"7" = X, , Theorem 2.20(i) gives the asymp-

hiln t=1“>hizt?

totic result

NS, 0=+ 2 (B.17)
£>1

with v, being the ¢™ autocovariance of the series {X,,,} From Theorem 2.21(i) it now

tez®
follows that there is a component-wise asymptotic normality, i.e.

28, —% N(0,0%). (B.18)

hiln

In order to apply the Cramér-Wold device, all possible linear combinations of the components
inV_Q_. (6..,) mustbe considered. Such general sums can be representedas S, (a) = a' V_Q.. (0_,),
where a € R**™. This can be rewritten, by ‘taking the sum outside of the vector V_Q_ (0_,)’,
as

a)=Y X(a), (B.19)
t=1
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 79

where X, (a) = a'X,, with the vector X, obtained by stacking all the components X,,, on top
of each other, i.e. X, = [X . G

By construction, E[X,(a)] = 0, the required a-mixing are inherited from the original time
series {Y,} (see eq. (C.36)), and lemma C.8 ensures that the property E[|X,(a)|"] < oo holds
true. That is, X,(a) does also satisfy the requirements stated in Theorem 2.20(i) and Theo-
rem 2.21(i), which gives the following asymptotic results;

11:¢7 ° °

n'S,(a) — o*(a) =,(a) +2)_7(a) (B.20)

£>1

n28 (a) —= N(0,0%(a)), (B.21)

where the autocovariances ,(a) now are with respect to the time series X, (a) = a’X,.
Since y,(a) = Var(a'X,) = a’ Var(X,) aandv,(a) = Cov(a'X,,,,a'X,) = a'Cov(X,,,, X,) a,
it follows that we can write 0*(a) = a'W_ ,a, with W_ , being the matrix obtained in the ob-

vious manner by factorising out @’ and a from the sum of autocovariances, i.e.

W, = Var(X,) +2) Cov(X,,,, X,) (B.22)
£>1

=E[X,X]+2) E[X, X/, (B.23)
£>1

where the second equality follows since E[X,] = 0.

The Cramér-Wold device now gives the required conclusion, n">V.Q_ (6_,) -+ N (0, W)
O

Lemmas B.3 to B.6 shows that the penalty function Q) (6..) (for fixed m and fixed b) satis-
fies the four requirements given in items (A/) to (A4) of theorem B.1, and this implies that the
following asymptotic results holds in this particular case

\/ﬁ <§m:n - em;b) *} N(O V:;\mebV:i_\;) : (B24)

The hard task to deal with in the general situation, when m — oo and b — 0" as n — oo, is
the asymptotic behaviour of n=/2V_Q__ (6. ,). This will be treated in appendix B.2.

m

B.2 The A4-requirement in the general case

The verification of the three first requirements of the Klimko-Nelson approach does work as
before when ‘m — oo and b — 0 when n — o0’, whereas the asymptotic normality in
the fourth requirement demands a more detailed investigation. Appendix B.2.1 will introduce
some new building blocks to be used in the investigation of the asymptotic properties, which
will be developed in appendices B.2.2 and B.2.3. Some technical details that only depend upon
the kernel function and the score functions have been collected in appendix C.4.
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B.2.1 The final building blocks

The bivariate processes Y, , from definition 2.6 will now be used to construct new random
variables, that culminates in a random variable Q)7 which has the same limiting distribution®
\/@VWIQ%"(BW)). Looking upon eq. (B.8), it is clear that everything depends upon the
three functions ¢ (y,; 0,), u,(y,; 0,) and K,..(y, — v). The number of parameters in 6, will
henceforth be denoted with p, since the discussion needs to encompass both p = 1 and p = 5.

Definition B.7. For i (y,;8,) the local Gaussian density used when approximating g, (y, ) at
the point v = (v,,v,), define forallh € Nand q € {1,...,p}
(a) With 0, , the population value that minimises the penalty function q, , from eq. (B.4), let

0
uhq:b(w) = aT log (w(yh,; ah)) ( ) ( ) . (B.25)
hea Y3 0),)=(wi 0,

(b) For L > 0, define the following lower and upper truncated versions of u, ., (w),

U, (W) =, (w) - 1{]u,,,(w)| < L}, (B.26a)

hq:b — “hgb

U, (W) =, (w) 1{|u,,,(w)| > L}. (B.26b)

Obviously; uhq:b(w) = uhq:b(w)SL + uhq:b(w)>L and uhq:b(w)gL : uhq:b(w)>L =0.
(c) Let u, (w) be as in item (a), with the difference that the limit b — 0% of the parameters
0, ., are used in the definition.”’ Let u, (w)<" and u, (w)>" be the truncated versions

of Uy, (w)
The following simple observations will be useful later on.

Lemma B.8. For the point v, the following holds for the functions introduced in definition B.7.

(a) sup,, ’uh’q:b(v)| < oo and sup,, |uhq(v)‘ < 00.

<L )gL

(b) When L is large enough, u,,(v)=" = u, ,(v) and u, (v)=" = u, (v).

Proof. By definition, the functions u,,(w) and u, (w) will all be bivariate polynomials of
order two (in the variables w, and w,), which implies that they are well defined for any point v.
Since the parameters in these polynomials originates from a local Gaussian approximation of
g,(y,) at the point v, and since assumption 2.1(b) ensures that the bivariate densities g, (y, )
will approach the product of the marginal densities when h — oo, it follows that the estimated
parameters must stabilise when i becomes large. This rules out the possibility that any of the
parameters can grow to infinitely large values, which implies that the supremums in item (a)
are finite. Item (b) follows as a direct consequence of this, the statement holds true for any
threshold value L that is larger than the supremums given in item (a). U

The bivariate kernel to be used in the present approach will be the same as the one used in
Tjgstheim and Hufthammer (2013), i.e. it will be the product kernel based on two standard

%Due to the presence of the kernel function K,.,(w), the fourth requirement of the Klimko-Nelson approach
will (when b — 0%) require that the scaling factor n~'/* is adjusted with (b,b,)"*, and this scaling must thus
also be included in the discussion in the present approach.

3The limit of the parameters 8, , will exist under assumptions that implies that the four requirements of the
Klimko-Nelson approach are satisfied, cf. Tjgstheim and Hufthammer (2013) for details.

50



2.1 Nonlinear spectral analysis via the local Gaussian correlation 81

normal kernels. The following definition enables a more general approach to be used in the
theoretical investigation,’' while capturing the desirable properties that will be satisfied for the
product normal kernel.

Definition B.9. From a bivariate, non-negative, and bounded kernel function K (w), that sat-

isfies
RQK(waQ) dw,dw, = 1, (B.27a)
K, (w,) = [ K(w,,w,)w!dw, is bounded for k € {0, 1,2}, (B.27b)
R
K,,(w,) = / K(w,,w,)w: dw, is bounded for ¢ € {0,1,2}, (B.27¢)
/ K(w,,w,) |Jwiwi] dw,dw, < oo, k4>0andk+0<2-[v], (B.27d)

where v > 2 is from assumption 2.1(b) (and [-] is the ceiling function), define

1 Y, — U, Y, —
K|t =2 B.2
b b ( bl / b2 ) ( 8)

172

Kh:b(yh - ’U) =

It turns out, see appendix C.4 for details, that the asymptotic results needed later on mainly
depends upon the properties of the kernel K (w) and the components w, ,(w) of the score
functions.

Some vector and matrix notation is needed in order to make the expressions later on more tractable.

Definition B.10. With g, (y,), u,,,(w) and K(w) as given in definitions 2.6, B.7 and B.9, let

Uo = (W) ... 1, ,(v)], and define the following matrices.
b=, 0,(v) [ K(w) dw, (B.292)
RQ
=pw,, (B.29b)
h=1

Matrices W, and W, can be defined in a similar manner, using the b — 0% versions u, (w)
from definition B.7(c). Note that W, , and W, will have rank one, whereas W_ , and W_ will

have rank m. Furthermore, note thatifa, € R*anda_ = |a,,...,a,), thena., I/Vm W =2 aW, ,a,.

The time is due for the introduction of the random variables.

Definition B.11. Based on'Y,

h:t?

(W) and K. (y, — v) from definitions 2.6, B.7 and B.9,
define new bivariate random variables as follows,

X:qt ’U =V b,b, K’bb - hq:b(Y;:t) ) (B.30a)
X (0) = /0,5, Kia(Y,,, — hq:b(Y;:t)gL ) (B.30b)
Xy () = /b Ko (Y, — 0) 1, (Y,,) 7" (B.300)

3 Differences in the computational cost implies that the product normal kernel is used for practical purposes.
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Obviously; X'

he (V) = X035 (0) + X025 (v) and X535" (v) - X325 (v) = 0.

Since the point v will be fixed for the remainder of this discussion, v will be suppressed and
only X' will be used when referring to eq. (B.30a), and v will also be suppressed for the new
random variables derived from X7’ .

Note: A comparison of X"  against the components occurring in the expression for V,Q, . (6, ),

see eq. (B.8), implies that the following adjusted variable should be included,
)?;:q:t = X:q:t - b1b2 /2 K’“b(yh - U) uhq:b(yh) ¢(yh; 0h) dyh, (B'31)
v R

but the arguments later on will use a mean adjusted approach similar to the one used in Masry
and Tjgstheim (1995), see the definitions of Z; , and Q}_ below, and the only place X' , is
needed is in the proof of lemma B.14.

Definition B.12. Based on the bivariate random variables X' , from definition B.11 define the
Jollowing bivariate and (m + 1)-variate random variables,

Z,. =X, —B[X},.], (B.32a)
=D D (B.32b)
t=1

P >L L 7 . . .
Similarly, Z;\=", Zn<", W=t and Q)" can be defined in the natural manner, with the obvious

. >L <L >L <L >L L ]
connections Z)',, = Zy3" + Ziit Zii' - Ziast =0, and Qp, = Q1= + OF* holding for

hq:t

all L. Moreover: COV(Z" Z}"A) = E[Z" Z}"k] = COV(X” , X7 )

hq:i? ha:i haii? <X jrik

The last batch of random variables can now be introduced.

Definition B.13. Based upon the bivariate Z' , from definition B.12, and for a = a_, € R"*™,

hq:t
define the following (m + 1)-variate random variables,

m p

Zida) = 3% 0,2~ a2 ®.3%)
h=1 ¢q=1
m P

On(a) = a, 05, =a'Qy, (B.33b)
h=1 ¢g=1

where Z™

m:t

Lemma B.14. Q" and \/b,b,V_Q.. (0. ,) share the same limiting distribution.

Proof. The only difference between Q7. and \/0,0,V_ Q.. (6. ,)is that the firstuse Z}' , where
the second use X' ,. The difference between these components are

hq:t*

and Q~. are defined in the obvious manner.

Z:q;t - X:L;;t =V b1b2 : / K]“b(yh - U) uhq:b(yh) {gh(yh) - ¢(yh; Oh)} dyh’ (B'34)
R2

and this difference will not only approach zero but in fact be identical to zero when the band-
width b is smaller than b, since the population value 6, , in that case satisfies eq. (B.5). The
result now follows from Billingsley (2012, Th. 25.4). O
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 83

The purpose of the new random variables introduced in definitions B.11 to B.13 is to find
under which conditions the fourth requirement of the Klimko-Nelson approach is satisfied in
the general situation where m — oo and b — 0" when n — oo.

Compared to the discussion in appendices B.1.2 and B.1.3, the effect of p free parameters
instead of 5 free parameters is that the m x m block-matrices will have components that are
matrices of size p X p instead of size 5 X 5 — except for this, the arguments in lemmas B.3
to B.5 will be unaffected, i.e. the three first assumptions of the Klimko-Nelson approach have
already been covered.

The part that does require some effort to investigate is the fourth requirement of theorem B.1,
which (using the notation introduced here) means that it is necessary to verify that n='/> Q"
approaches a normal distribution when b goes to zero when n and m are ‘large enough’. The
proof will be presented in a step by step manner, that builds upon the asymptotic behaviour
of E [X i X k] The computation of this expectation will (depending on the indices A, 7, j
and k) either require a bivariate, trivariate or tetravariate integral.

Combinations H v ‘ b H Y. Y.,
First argument of K., v | b || Y | Y
Second argument of K., || v, b2 Y, Y,

Table 1: Factors deciding bivariate, trivariate or tetravariate.

hq:i gr: k]
i.e. the presence of v and b and the dependence on Y, in the kernel functions — and it is ev-

ident from this table that the amount of overlap in the indexing set {i,h + i, k, j + k} will
decide if the resulting integral turns out to be bi-, tri- or tetravariate. Note that eq. (2.13) of
definition 2.4(c) implies that only positive indices are required, so the bivariate case can thus
only occur when 7 = k and ~ = j. It will be seen later on that these bivariate components are
the only ones that adds non-negligible contributions to the asymptotic behaviour.

Table 1 lists the combinations that must be taken into account when computing E [X R, ¢4

B.2.2 The asymptotic results — basic part

The analysis of the asymptotic properties of X'
if either the kernel function K'(w) or the score-function components u,_,(w) had bounded
support, since the finiteness requirements of assumption 2.1(g) then would follow directly
from lemma C.6, and the proof of lemma B.15 would be rather trivial. However, in the present
analysis, K (w) and u,_, (w) both have R* as their support, which implies that extra care must
be taken when working with the densities under consideration.

from definition B.11, would be quite simple

hg:i?

Lemma B.15. When Y, satisfies assumption 2.1, and u, ., (w) and K (w) are as given in defi-
nitions B.7 and B.9, then the random variables X' | from definition B.11 satisfies

(@) E[X:,.] = O(y/bh,).

(b) B[| X717 = O(Ib,b,| 7).

hq:i
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U, (V) U, (V) g,(V) [ K(w)*dw + O(b, V b,) when bivariate,
(c) E[X;, - Xr.] =<0, Ab) when trivariate,
O(b,b,) when tetravariate,

where bivariate, trivariate and tetravariate refers to how many different Y, the four in-
dices h, i, j and k gives, cf. table 1 for details.

Proof. The expectations in items (a) to (c) are all finite due to assumption 2.1(g) and they do
in addition correspond to integrals whose integrands are of the form V - g, where g is a density
function and V is an integrand of the type discussed in items (a) to (c) of lemma C.6, i.e. V
collects everything that only depends on the functions w, , (w) and K (w). The substitutions
used in the proof of lemma C.6 can be applied to the different cases under investigation, and
it follows that these substitutions will create new integrals with the desired function of b, and
b, as a scaling factor. This proves items (a) and (b) and it also takes care of the trivariate and
tetravariate cases of item (c).

Equation (2.18) from assumption 2.1(d) is needed for the bivariate case of item (c), i.e. the
Taylor expansion of g, (y,) around the point v allows the integral of interest to be written as
the sum of the following three integrals:

J = / V(y,)-g,(v)dy,, (B.352)
R2

7= [ V() (@) ly, - o) du, (B.350)

7= [ V) Ot v, — o)) by, (B350

The bivariate case of lemma C.6(c) shows that the term 7, gives the desired result, so it
remains to prove that the terms 7, and 7, are O(b, V b,). For this investigation, the substitution
w, = (y, —v,) /b, and w, = (y, — v,) /b, must be applied, which in particular replaces the
vector [y, — v] with the vector [b,w,, b,w,]’. In order to compactify the notation, let a, and a,
denote the two components of g, (v), let YW be the substituted version of V, let R, and R, ,
be the two components of the remainder function and finally let €, and %, , be the substituted
versions of R,, W and R, ,W.

With this notation, the substitution used upon 7, gives
J, = albl/ w, - W(w) dw + ang/ w, - W(w) dw, (B.36)
R? R2

whose integrands include an extra factor of w, or w, compared to the integrands encountered
in the proof of lemma C.6. This is however no problem, since lemma C.5(b) implies that the
finiteness conclusion still holds true in these cases, which implies that 7, is O(b, V b,)

Since assumption 2.1(g) ensures that the sum of the tree integrals 7,, J, and 7, is finite, and
the above discussion shows that the two first of them are finite, it follows that 7, also is finite.
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An inspection of 7, after substitution, i.e.
Ty = /2 [bw, - T, (y(w)) + bw, - T,,(y(w))] dw, (B.37)
R

then reveal that the maximum of b, and b, can be factorised out of the integrand. This implies
that 7, is O(b, V b,), and thus concludes the proof of lemma B.15 O

The following corollary is handy when the covariance is the target of interest.

Corollary B.16. When Y, satisfies assumption 2.1, and u, ., (w) and K(w) are as given in
definitions B.7 and B.9, then the random variables X} , from definition B.11 satisfies

hq:t

(V) U, (V) g,(V) [ K(w)*dw + O(b, V b,) when bivariate,

Cov(Xy ., X! .) =3 0(b, Ab,) when trivariate,
O(b,b,) when tetravariate.
(B.38)

Proof. Since Cov (X" Xn ) = [X" - X7 ] [X;q ] -E [X;.‘T:k] , the result follows im-

hqii? <> jrik hqsi jrik

mediately from an inspection of items (a) and (c) of lemma B.15. Ol

The next corollary is needed in the proof of lemma B.18.

Corollary B.17. When 'Y, satisfies assumption 2.1, and u,,(w) and K (w) are as given in def-
initions B.7 and B.9, then the random variables Z}' , and Z" (a) from definition B.12 satisfies
(@) E[|Z,.]']"" = O(|b,b,|*"™).

(b) El|Z;. (@)1 = O(m b5, ")

m:t

Proof. The connection between expectations and L”-spaces discussed in appendix C.5, see
eq. (C.41), can be applied here, which in essence reduces the proof to a simple application of
Minkowski’s inequality. For item (a), note that lemma B.15 gives the following result

H ha:t ]l/u _EHtht I:X:qt:l "} v (B.39a)
<E[IX;. 1" +B[E[X; ][ T" (B.39b)
= O([b,b,|*"™) +0(F) (B.39¢)
= O(|b,b,|*""™) . (B.39d)

Item (b) now follows from item (a) and lemma C.8, due to the following inequality,

v 1/v
E[| 22, (a)]']" th a2, } (B.40a)
= ZZ W Bl 201" (B.40b)
h=1 ¢=1
m p
<D D AL O(Ibb| ) (B.40c)
h=1 ¢=1
= O(m|b,b,|*"). (B.40d)
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where A_ is the maximum of |a,,q‘. U

B.2.3 The asymptotic results — final part

This section will present the final steps toward the verification of the fourth requirement of
the Klimko-Nelson approach for the case where m — oo and b — 0" when n — oo. Note
that theorem B.20 (the main theorem) requires both a large block - small block argument and
a truncation argument, and the technical details related to these components will be taken care
of in lemma B.18 and corollary B.19.

The large block - small block argument requires that quite a few components must be verified
to be asymptotically negligible. The following lemma, which extends an argument encoun-
tered in the proof of (Masry and Tjgstheim, 1995, Lemma 4.3(b)), shows that the asymptotic
negligibility of all the ‘off the diagonal’ components can be taken care of in one operation.

Lemma B.18. When Y, satisfies assumption 2.1, when n, m and b are as specified in assump-
tion 2.3, and when u,,,(w) and K (w) are as given in definitions B.7 and B.9 — then the random

variables 7" (a) from definition B.13 satisfies

m:t

= Z [E[Z2.(a) - 22, (a)]| = o(1). (B.41)

ik=1
i#k

Proof. Assumption 2.1(a), i.e. the strict stationarity of {Y,}
eq. (B.41) can be reduced to a single sum, i.e.

1 n n—1
Y Bz Zidal =2 Y (1 1) Ta) B.42)

\ez» implies that the double sum in

where the terms I” ,(a) are given by

1; (a) = [E[Z},(a) - Z} (a)] (B.430)
E ZZ% ha:0 ZZ%ZJL (B.43b)
=1 q=1 Jj=1 r=1

m P
Z Zzahq(l” Zyo ZJ", [} (B.43¢)

h=1 j=1 ¢g=1 r=1

m m p

<22 lanallasd Iy s (B.43d)

h=1 j=1 g=1 r=1

where I}' ., = ’E[Zl[q o 2, £]| — ‘Cov(X;L'qU,X]"M)’
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Introducing integers &, (to be specified later on) such that k£, — oo and k,m?b,b, — 0 as
n — 00, eq. (B.42) can be written as the sum of the following three sums,

J=2Y (1—t/n) I, (a), (B.44a)
=1
k,+m
J,=2Y " (1=t/n) 12, (a), (B.44b)
{=m+1
n—1
J,=2Y " (1=t/n) I} (a). (B.44c)
=k, +m+1

From the definition of I ,(a) it is seen that in J, there will be some overlap between those
Y, that are a part of Z

m:0

be the case for the two sums J, and J,.

(a) and those that are a part of Z" ,(a), and moreover that this will not

Equations (B.43d) and (B.44a) implies that a squeeze argument can be used when dealing
with J,, i.e.

m m m P p

0<J,<2- | max la 12D YD |cov(X 0, X2 | (B.45)

qe{1,...,p} (=1 h=1 j=1 ¢=1 r=1

and corollary B.16 can be used to determine how the summand behaves in the limit. Table 1,
page 53, shows that the bivariate case never occurs, that h must be equal to ¢ or 5 + ¢ in order
for a trivariate case to occur, and that the rest of the cases must be tetravariate. It is not hard (but
a bit tedious) to explicitly compute the number of trivariate terms that occur in eq. (B.45), but
for the present asymptotic analysis it is sufficient to note that the number of trivariate terms is
of order m?, whereas the number of tetravariate terms is of order m®. Corollary B.16 thus gives
that the bivariate and tetravariate parts of the bound for J, respectively are O(m?(b, A b,)) and
O(m?b,b,).
J, = o(1) now follows from assumption 2.3(c) and the following two simple observations;

m?*(b, Ab,) <m?(b, Vb,), (B.46a)
m’bb, <m™'-m*(b, Vb, =m™" - (m’ (b, Vb,)). (B.46b)

For J,, a squeeze similar to the one in eq. (B.45) can be used. The situation becomes simpler
since £ > M ensures that only the tetravariate case is present, and the order of .J, becomes

J, = O(k,m?b,b,) . (B.47)

Since k,m?b,b, — 0 (with a choice of k, to be specified below), it follows that .J, = o(1).

For J,, the Corollary of Lemma 2.1 in Davydov (1968) will be used to get an upper bound
on I" ,(a), such that a squeeze-argument can be used for J, too. The requirements needed
for Davydov’s result are covered as follows: The strong mixing requirement is covered by
assumption 2.1, and (for a given m and b) the requirement about finite expectations follows
from corollary B.17(b).
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The o-algebras to be used follows from the comment stated after eq. (C.33), i.e. that Z"  (a) € F,

whereas 27 ,(a) € F/t™ C F° Thus, for ¢ > k, + m, the following bound is obtained

m(—m)*
onl; (a),

I (a) = [E[Z},(a) - Z; ,(a)]| (B.48a)
= [E[Z}(a)- Z; (a)] — E[Z}, (a)] - E[Z], ,(a)]| (B.48b)
<12(E[|Z2,(a)')" - (B[ Zz. (@) - [a( —m)] " (B.48¢)
=12 ((B[|Zp,(@)|'])")" - [a(t = m)] =" (B.48d)
=12 (O(m|b,b,|* ")) - [a(t — m)] " (B.48e)
<C-m® - bb, | Ja(C —m) (B.48f)

where eq. (B.48b) follows since the mean of Z” ,(a) by construction is zero, where eq. (B.48c)
is Davydov’s result, where eq. (B.48d) use the strict stationarity of the process {Y,}, where
eq. (B.48e) is due to corollary B.17(b), and finally eq. (B.48f) is an equivalent statement,
using a suitable constant C to express the upper bound.

A squeeze for J, can now be stated in the following manner

0< T, <C- Y (m? - [o,b,| ") - [a(h)] ™", (B.49)

j=k,+1

where C, is a constant, where the index has been shifted by introducing j = ¢ — m, and where
the sum from eq. (B.44c) has been extended to infinity (adding only non-negative summands).

A comparison of eq. (B.49) with the finiteness requirement that the strong mixing coefficients
should satisfy, see assumption 2.1(b), indicates that if j* > m?> - |b,b,|*™"" for j > k_+ 1,
then that could be used to get a new upper bound in eq. (B.49). Taking the a™ root on both
sides, itis clear that the desired inequality can be obtained when k, + 1 = [m?“ - |b,b,|*"*"],
which gives the new bound

0<J,<C > lali) ™", (B.50)

J=kn+1

andif k, — oo whenn — oo, the finiteness assumption from assumption 2.1(b) gives that J, =

Finally, lemma C.4 verifies that k, satisfies the two limits k, m?b,b, — 0 (needed for the
J,-term) and k, — oo (needed for the J,-term). Altogether, this shows that eq. (B.41) can be
rewritten as J, + J, 4+ J,, all of which are o(1), and the proof is complete. O

The following observations are needed in the truncation argument of theorem B.20.

Corollary B.19. When Y, satisfies assumption 2.1, when n, m and b are as specified in assump-
tion 2.3, and with W, = @)W, ,anda = a_ = |a,,...,a,] (witha, € R?) as given in
definition B.10, then the random variable Z" ,(a) from definition B.13 satisfies

(a) Var(Z}, (a)) = al, W ,a,+0(m* - (b, Vb,)) = 351, a; W, ,a,+0(m* - (b, V' b,)) =

m:t

O(m).
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 89

Furthermore, with r == r, a sequence of integers that goes to oo when n — oo, and for a
given threshold value L, the following holds for the random variables 0, = ;_, Z= (a),
i = Zni () and npt =300 Z50 (a).

(b) Var(n,,)=r" {thl a,W,,a, +o(1)}.

(c) When L islarge enough, Var(nsk) =r-{>°]", a,W, ,a, + o(1)} and Var(n;%) = r - o(1).

Proof. For item (a), note that it follows from definitions B.12 and B.13 that

Var(Z7.( ZZZZ%% Cov(X; ., X ) (B.51a)

hljlqlrl

m V4 m Vg P
_ 0oy n n
E E a,.a,, Cov tht, hrt + E E E a,,a, Cov tht,X]”)
h=1 ¢g=1 r=1 h,j=1 ¢=1 r=1
h#j

(B.51b)

The bivariate case of corollary B.16 can be applied to the ‘diagonal part’ of the sumineq. (B.51b),
whereas the trivariate and tetravariate cases can be applied to the ‘off-diagonal part’ The ‘diag-
onal part’ can thus be written as the sumof )" | >0\ 3°%_ | a,,a,,1,,, (V) u,,., (V) 6,(V) [po K
(whichisequaltoa'W, ,a =>";"  a,W, ,a,)and a sum that is O( - (b, V' b,)). For the ‘off-
diagonal part’ the result is O(m? - (b, A b,)). Both of these asymptotically negligible terms are
covered by O(m? - (b, V b,)), and this gives the two first equalities of item (a). The last equality
follows since the summands a; IV, ,a, are finite.

For item (b), note that the variance can be expressed as

ar(n,,,) ZVar +ZE Z: (a)- Z2 (a)]. (B.52)

i k=1
ik

The ‘on diagonal’ part of this sum equals r - Var(Z~ ,(a)) due to assumption 2.1(a), while the
‘off diagonal’ part due to lemma B.18 becomes r - o(1). Together with the result from item (a),
this gives the statement in item (b).

The truncated cases in item (c) use the same arguments as those encountered in item (b), with
the effect thatthe u, , (v) u,,., (v) that occurs in IV, , either are replaced by u,, (v)=" u,, ., (v)="
or by u, ,(v)”" u,,,(v)"*. LemmaB.8(b) gives that u,,,(v)=" =, ,(v) when L is large
enough (and thus u, ,(v)”* = 0), which completes the proof. O

The main theorem can now be stated, i.e. this result can be used to verify the fourth re-
quirement of the Klimko-Nelson approach for the penalty function Q. (€. ,), from which it
follows an asymptotic normality result for 9v|m\ »p» that finally gives the asymptotic normality

result of f7' (w). (Confer remark B.3 for an interpretation of the m that occurs in the limiting
distributions.)

Theorem B.20. For a given point v = (v,,v,): When Y, satisfies assumptions 2.1 and 2.2,

when n, m and b are as specified in assumption 2.3, and with W, = @, W, , and a =

a. = la,,...,a,] (with a, € R?) as given in definition B.10, then the random variables

m

Q2 (a) and g);; Sfrom definition B.13 will for small b and large m and n satisfy
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(a) n72Q%(a ) —5 N(0, Z;” L a W, . a,), i.e. asymptotically univariate normal.
(b) n=2 QL —5 N(0, @), W,,), i.e. asymptotically mp-variate normal.

Proof. For the proof of item (a), note the following connection between Q7 (a) and Z"_(a)
which follows directly from definitions B.12 and B.13,

m p
on(@) => "> a0, = ZZahq ZZW

h=1 ¢=1 =1 g=1

[zz%@t
t=1

1 g=1

:ZZ:;t( ).

t=1

(B.53a)

A large block - small block argument can be used to analyse this, i.e. the index set {1,...,n}
will be partitioned into large blocks and small blocks, such that 7 (a) can be expressed as the
sum of S, S® and S® (to be defined below). The asymptotic distribution of Q7 (a) will
be shown to coincide with the asymptotic distribution of S, the summands of S" will be
shown to be asymptotically independent, and finally the Lindeberg conditions for asymptotic
normality of S{" will be verified.

Use ¢, r, and s from lemma C.3(c) to divide the indexing set {1, ..., n} into 2¢ 4 1 subsets
of large blocks and small blocks (and one reminder block), defined as follows

={(-D@r+s)+1,....,0-1)(r+s)+r}, forj=1,...,¢ (B.54a)
:{j—l(r+9)+r+1 Jr+s)}, forj=1,....¢, (B.54b)

_ ..,n} whent(r+s) <n, (B.540)

(Z) when ¢ (r + s) = n.
In order to avoid iterated sums later on, introduce the following unions,
¢ ¢
A=A, B =B, (B.55a)
j=1 j=1

Note that the number of elements in .4° and 3° will be ¢r and ¢s respectively. The number of
elements in C, will be n — ¢(r + s), and this can vary between O and r + s — 1 < 2r-.

Use these subsets of {1, ..., n} to define the following variables,
no=Y_ Zi(a), forj=1..0¢  SV:= Zn =Y 7..(a),  (B.56a)
tEA; teA°
= Zi(a) forj=1,...1¢ 5e —Zg =Y 7. .(a), (B.56b)
tGB teB®
=Y 2. (a), 59 =, (B.56¢)
teC,
such that
2 Qn(a) =nT S+ 5P + S} (B.57)
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The expectation of these quantities are by construction equal to zero, which gives

3 3
Var(n™* O (@) = - B[O} (@) OL(a)] = - SO EISY S0]. (BSY)

" p=1 ¢=1

When p # ¢, there will be no overlap between the indexing sets that occur in the two sums,
and the following inequality, here illustrated by the case p = 1 and ¢ = 2, is obtained

1
() (2 e

lE[S“) L S9)| =

< fZZ E[Z2,(a) - Z2,(a)] (B.59b)
i€ A° keB®

<= Z E[Z2.(a) - Z2,(a)]]. (B.59¢)
i,k=1
ik

Lemma B.18 thus gives that the expectation of all the cross-terms are asymptotically negligible.

For the case p = ¢ = 2, i.e. the small blocks, the same strategy as in eq. (B.59) shows that the
internal cross-terms are asymptotically negligible. Corollary B.19(a) states that the remaining
summands all are O(m), which results in the following bound

Els® 50 = - 3 B(Z;,(a)- 23, (a) (B.60)
1 . . 1 P
— EZE[ZW(a) Zpaa) 4~ ZOE[Zm(a) Z (a)]  (B.60b)
ieB ”7;‘5
- % >_0m) +o(1) (B.60c)
<m€5)
=0 : (B.60d)
n

For the case p = ¢ = 3, i.e. the residual block, a similar argument gives

E[S© . 5] = o(m(’l_’ms’))) <o(™). B.61)

n n n

Lemma C.3(c) ensures that (mfs)/n and mr/n goes to zero, so the terms investigated in

eq. (B.60) and eq. (B.61) are asymptotically negligible. This implies that n=*/2(Q% (a) — S) = 0

and (Billingsley, 2012, Theorem 25.4) states that there thus is a common limiting distribution
forn="? Q" (a) and n=*/2 SV,

The arguments used for S also gives the simple observation below, which is needed later
on,

Var(n™"/? SM) ZVar o(1). (B.62)
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The next step is to show that the random variables 7, are asymptotically independent, which
formulated relative to the characteristic functions corresponds to showing

¢
Elexp(itS™M)) HE exp (itn,) ]| — 0. (B.63)

J=1

The validity of this statement follows from Lemma 1.1 in Volkonskii and Rozanov (1959,
p- 180), by introducing random variables V. = exp(itnj), for j =1,...,¢. By construction,
the V/ trivially satisfies the requirement ’VJ’! < 1, so it only remains to identify the correspond-
ing o-algebras and the distance between them. From the definitions of 7,, A, and Z” (a),
it is easy to see that V € F( )71, and from this it follows that the distance between
the highest index in the o-algebra corresponding to V; and the lowest index in the o-algebra

corresponding to V., is given by

I ={(G+1)-Dr+s)+1}—{G-D(r+s)+r+m}=s—m+1. (B.64)

Assumption 2.3(f), i.e. m = o(s), ensures that there (asymptotically) will be no overlap be-
tween these o-algebras, and the result from (Volkonskii and Rozanov, 1959) thus gives 16(¢ — 1)a(¥)
as an upper bound on the left side of eq. (B.63). Lemma C.3(c) says that this bound goes to
zero, which shows that the 7); are asymptotically independent.

It remains to verify the Lindeberg condition, for which an expression for s> := Z§:1 Var (nj)
is needed. From assumption 2.1(a) and corollary B.19(b), it follows that

L m
5Z:ZVar(77j )=1¢-Var(n)=1(-7- {Za W,.,a, +o 1)} (B.65)
=1

and assuming s, > 0, the condition to verify is

’
Ve>0 ILm ZéE[r}?ﬂ{MJ Ze\/sj%}} — 0. (B.66)
n OO]:l ? ;

This holds trivially if the sets occurring in the indicator functions, i.e. { ’77] ’ > €,/5? } , becomes
empty when n is large enough. It is thus of interest to see if an upper bound for |77J| can be
found, and if the limit of this upper bound becomes smaller than the limit of the right-hand
side €,/s2.

Keeping in mind the definitions of X}’ ,, Z}' , and 1, see eqgs. (B.30a), (B.32a) and (B.56a),

it is clear that an upper bound for |77] | might be deduced from,

m p
’771’_ ZZ ahq hqt = ZZZ hq |tht 5 (B.67a)
fEAhlql fE.Ahlql
| Z = | X0, — E[Xr ]| < X0 + O(\/blbz) : (B.67b)
1 Y. —v Y —
| X = blbg-bth<"*’“'bUl, = vZ)uh:b(Ym) . (B.67¢)
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If all of the functions u,,,(w) are bounded, or if the kernel functions K).,(w — v) have
bounded support, then the present framework will be sufficient to reach the desired conclusion.
However, no such conditions are assumed, and a truncation argument must thus be introduced in
order to deal with this problem — in particular, the expression Q7 (a) = Q*<*(a) + Q*>*(a)
will be used.

Lemma B.8(a) implies that a large enough value for the threshold L will ensure that all con-
structions and arguments based upon the ordinary functions w, , (w) also works nicely for the
pew(w) =" and u, , (w)~*. With regard to the limiting distributions, first
note that =2 Q”>*(a) and n~'/2 S™'** shares the same limiting distribution, and then ob-
serve that the upper truncated versions of eqs. (B.62) and (B.65) together with the result from
corollary B.19(c), gives the following bound when L is large enough:

truncated functions u

—1/2 1\>L_1 - >L _KT
Var(n™/? SOM1F) = g;Var(nj ) +o(1) = —-o(1). (B.68)
Since ¢r < n, it follows that n~*/> Q™>*(a) = 0, so the limiting distributions of n~*/2Q" (a)
and n~'2 Q<" (a) coincide when L is large enough.*> Next, observe that the random variable
|7]§L | obviously will have an upper bound, since the truncated polynomial v, (w)=" will occur
in the lower truncated version of eq. (B.67). Since the kernel function K (w) by definition is
bounded by some constant /C, it follows that ’77/9| is bounded by

}nfL| < rmp (max ‘a

hq

K rm
——L+0(+/bb L B.69
)( Lt (\/12)><C L )
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where C is a constant that is independent of the index j.

It remains to verify that the indicator functions 1 { |77le > e/ (82)=" }, from the lower trun-
cated version of eq. (B.66), becomes zero when n — oo, which can be done by checking that
the upper bound of ‘nfL’ from eq. (B.69) in the limit gives a smaller value than the lower trun-
cated version of (s2)<* from eq. (B.65). This in turn can be done by dividing both of them with
V/frm, and then compare their limits. Assuming that the threshold value L is high enough to
allow corollary B.19(c) to be used, i.e. that (s?)=* and s? share the same asymptotic expression,
this becomes,

T

<L
"] <cr ™M, due to lemma C.3(c), (B.70a)

V Irm gblbg
/(&2\<L 1 m
&:e- {ZGZM:bah‘f‘O(l)}XE'

1 m
— W, La, B.70b
—> aW,a,  (B70b)

h=1

trm E h=1

Assumption 2.2(b) ensures that W, , (from definition B.10) converges to some non-zero matrix
(as h — oo and b — 07), and this implies that the limit of % Yo a, W, a, in eq. (B.70b)

h:b

Truncation arguments often requires the threshold value L to go to oo in order for a conclusion to be obtained
for the original expression, but this is not required for the present case under investigation (due to lemma B.8).
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will be nonzero, from which it follows that the indicator function in eq. (B.66) becomes zero
in the limit, i.e. that the Lindeberg condition is satisfied.
This implies that

£ <L
o<
IO/ SN 5 N(0,1), (B.71)

which due to ¢r < n can be re-expressed as

14

n~? Z nt — N (07 Z a;,W,“bahy> . (B.72)
h=1

=1

The proof of item (a) is now complete, since the four random variables n=/2Q?% (a), n='/?Q"<*(a),
n~2(SM)=t and n='/? Z 1" all share the same limiting distribution (when L is large
enough).
The proof of item (b) follows from the Cramér-Wold theorem. O

Remark B.3. The statements in theorem B.20 has to be interpreted as an approximate asymp-
totic distributions valid for large m and n and small b. One part of the ‘asymptotic problem’
is the interpretation of an infinite-variate Gaussian distribution, but the main problem is the
occurrence of the kernel function K (w), which in the limit gives a degenerate Gaussian distri-
bution in theorem B.20(b) (when p > 1). This degeneracy in itself would not have been any
issue if the target of interest had been the asymptotic behaviour of n='/2 Q" but it requires
some additional rescaling before the Klimko-Nelson approach in theorem B.1 can be used to
investigate the asymptotic properties of the estimates 0_ ., see appendix B.3 for details.

min?

Corollary B.21. Given the same assumptions as in theorem B.20, the following asymptotic
result holds true

n2/b,b,V.Q,.(0,., —>N< @ ) (B.73)

i.e. asymptotically mp-variate normal.

Proof. Lemma B.14 states that Q7 and /b,0,V_Q. (6. ,) have the same limiting distribu-
tion, and the result thus follows from theorem B.20(b). O

B.3 The asymptotic results for )
The final details needed for the investigation of the asymptotic properties of f " (w) will now
be presented, with a notation that discern between the two options p = 1 and p = 5. (Confer
remark B.3 for an interpretation of the m that occurs in the limiting distribution.)

v|m|blp

v\p

Theorem B.22. Under the same assumptions as in theorem B.20, the estimated parameter

vector 6 converges towards the true parameter vector 0, - in the following manner.

v|m|blp

n(bb,)" " - (5 9, ) L N(0,5,,,) (B.74)

v|m|blp v|m|p
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where =@, X, i-e. ¥, ., is the direct sum of the covariance matrices ¥, that

v|m|p *

corresponds 10 \ / n(b,b, )" (év\mb\p - aum\p)'

vlh|p

Proof. Under the given assumptions, corollary B.21 states that the fourth requirement of theo-
rem B.1 (the Klimko-Nelson approach) holds true for the local penalty function ()., (Ov‘mb‘p)
in the general case where m — oo and b — 0" when n — oo. The three remaining require-
ments holds true by the same arguments that was used in appendix B.1.3, so the Klimko-Nelson
approach can be used to obtain an asymptotic result for the difference of the estimate 0,
and the true parameter 6

As in Tjgstheim and Hufthammer (2013), it will be instructive to first consider the simpler
case where m and b were fixed. In this case, the asymptotic result obtained from theorem B.1

takes the form,

v|mlblp

v|m|p*

- d
V- (Ov\mlb\p o evm\p) - N(Ov vap) ’ (B.75)
withs, =V, W, _ V.., where the mp x mp matrices V,,_ and W, _  can be repre-
sented as
m m
Vo = D Vo Wi, = D Wor (B.76)
h=1 h=1
i.e. they are the direct sums of the p X p matrices V,, ~and W, ~that corresponds to the

bivariate penalty functions used for the investigation of the parameter vectors 6
Since V,

v|m|p

direct sum of V! (see e.g. Horn and Johnson (2012, p.31)). This implies that the matrix

v|h|p

vlhlblp*
is the direct sum of the invertible matrices V, it follows that V1 is the

v|h|p? v|m|p

5 _ m . -1 -1
of interest can be expressed as &, = D;,_, %, where ¥, =V W, Vo are the
covariance matrices that corresponds to /7 - (Om wole — Qo )» 1-€- @ bivariate result like the

one in (Tjgstheim and Hufthammer, 2013, Th. 1).

For the general situation, when m — oo and b — 0" when n — oo, it is necessary with
an additional scaling in order to get a covariance matrix with finite entries. Obviously, a factor
\/@ must be included in order to balance the effect of the kernel function K., — and for the
p = 1 case this is sufficient since the matrices V,, and W, reduces to nonzero scalars.

For the p = 5 case, the limiting matrices of V,, , and W, = turns out to have rank one, and
additional scaling is thus required in order to obtain a covariance matrix with finite entries.
This case is treated in (Tjgstheim and Hufthammer, 2013, Th. 3), from which it follows that
the scaling factor must be /(b,b,)° when p = 5. O

B.4 An extension to two different points, i.e. both v and v

The previous analysis was restricted to the case where one point was used throughout, which is
sufficient for the investigation of the asymptotic properties of the m-truncated estimates fv"; (w)
for a point v that lies upon the diagonal (see theorem 2.7) or for general points v € R* when
the time series under investigation is time reversible (see theorem 2.8).

-~

An investigation of the m-truncated estimates f;7 (w) for points v = (v,,v,) that lies off the

diagonal, i.e. v, # v,, requires some minor modifications of the setup leading to theorem B.22,
as discussed in the proof of the following theorem.
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Theorem B.23. Consider the same setup as in theorem B.20, but with the modification that the
pointv = (v,,v,) lies off the diagonal, and with the added requirement that the bivariate densi-
ties g, (y, ) does not possess diagonal symmetry. With© = (v,, v,) the diagonal reflection of v,

and @, (v,0) = [5

~ ’

the two parameter vectors 6 oé\m\b\p ,

can be combined to a vector © _

/
v|m|b|p |m|blp m|blp v|m|b|p?

possessing the following asymptotic behaviour.

\/n(ble)“*"”(@w(vﬁ)—@mp(v,ﬁ));”N(O, F“OM EO D (B.77)

v|m|p

and 3,

o|m|p

where the matrices % are as given in theorem B.22.

v|m|p
Proof. This result follows when the Klimko-Nelson approach is used upon the local penalty-
function

Qﬁm\p(@ib\b\p(v7 {])) = Qm:n\p (ev\m\bw) + Qm:nlp (Gﬁ\mlb\P) ’ (B78)

i.e. the four requirements in items (A7) to (A4) of theorem B.l must be verified for this new
penalty function. The function @, = on the right side of eq. (B.78) is the penalty function
encountered in the investigation of 8, ., i.e. the same observations {Y,}"_, occurs in both
the first and second term, but the point of interest will be v in the first one and ¥ in the second
one.

The requirement that v lies off the diagonal together with the requirement that none of the
bivariate densities g, (y, ) possess diagonal symmetry implies that different approximating lo-
cal Gaussian densities occurs for the different points and different lags, so it can be assumed
that there is no common parameters in 6, , and 6, _, . This implies that the arguments
used to verify the three first requirements of theorem B.1 for the penalty function @, (see
lemmas B.3 to B.5), also will work upon the combined penalty function ) and it will in
particular be the case that the Hessian matrix V.
as the direct sum of the matrices that corresponds to Q. (Ov‘m‘b‘p) and Qmm‘p(Bmm‘b‘p), ie.
Ve (0:0) = Vi, (0) © Vo,

notation to keep track of the components.

min|p?

occurring in lemma B.4 can be written
(v), where the points of interest has been included in the

The investigation of the fourth requirement of the Klimko-Nelson approach for the penalty
function @_ ., requires some minor modifications of the constructions that was encountered
in appendix B.2.1. Both X' (v)and X' (0)(forh=1,...,mandq =1,...,p)are needed,

hq:t hq:t
and the final random variaI;Ie will incluzie both v and ¥ versions of the variables Z;' ,, O}
Zy.(a), Z;.,, O (a) and Q7.
A minor revision of lemma B.14 proves that the same limiting distribution occurs for the
\/b,b,-scaled gradientof Q. (©,,,, (v, ¥)) and for the random variable Q7 (v, ¥) = [Q7 (v)", QL ()7,

and it is easy to see that 27" (a,, a,;v,v) = Z. (a,;v) + Z7 (a,; ) must take the place of
7 .(a) in the existing proofs. The key ingredient for the asymptotic investigation of Z~ ,(a,, a,; v, D)

m:t m:t

is a simple extension of lemma B.15(c) such that it also covers the ‘cross-term’ cases E [ X (v) - X7 ()]
and verifies that these cases are asymptotically negligible. This follows from the results stated
in lemma C.7

The statement for Z" ,(a) given in corollary B.17(b) extends trivially to the present case,

since the asymptotic behaviour are unaffected by the adjustment that a sum of length m is
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 97

replaced by two sums of length m. The statement in lemma B. 1 8 remains the same too, but some
minor adjustments are needed in the proof: First of all, from the definition of Z* ,(a,, a,; v, v),
it follows that

Zy(ay,a,50,.0) - 7}, (a,, a;0,9) = Z; (a,;v) - Z; (a;v) + Z; (a,;0) - Z;, (@, 0)
+ Z;uk(al; U) : Z;n(GZ; ’5) + Z;L:z(GIQ; Qv)) : Z;L:k(GZ; ’b)»

B.79)

and only the parts that contains both v and © needs to be investigated (since the other terms
already are covered by the existing results). The statement that must be verified reduces to

1 — 5
~ > 12 (asw) - Z; (0 0)] = o(1) (B.80)

i,k=1
i#k

and it is straightforward to verify that this sum can be realised as

n—1 "
¢ ) ¢ )
> (1 - n) I (@, a;v,0) + ) <1 - n) I' (a, a,;d,v), (B.81)
/=1

(=1

where I* ,(a,, a,;v,v) = |[E[Z"

m:0

(a,,v) 22 (a,,0)]|, with I (a,,a,;D,v) defined in the
obvious manner by interchanging the parameters and the points. The desired result follows

from this, since the remaining part of the proof of lemma B.18 (using the adjusted version of
lemma B.15(c)) gives that the two sums in eq. (B.81) both are o(1).

The investigation of the variance of Z” ,(a,, a,; v, D) is straight forward, i.e. the standard

mit

formula for the variance of a sum of random variables gives

Var(Z;, (a,, a,;v,9)) = Var(Z;, (a,,v)) + 2Cov(Z;, (a,,v). Z;, (a,,0)) + Var(Z;, (a,, D)),

b} it Mt

and the revised version of lemma B.15(c) implies that the covariance part of this expression
is asymptotically negligible. The two variances are already covered by the existing version of
corollary B.19(a), and from this it is clear that the asymptotically non-negligible parts can be
written as

a, -W,, a, = [0/170//2} : (W, b(v) ew

m: m:b

() - [“] 4l W, (v) - a, +a) W, (5)- a,
(B.82)

whereas the asymptotically negligible parts of corollary B.19(a) remains as before. This is
sufficient for the revision of corollary B.19 (since items (b) and (c) follows from item (a) and
lemma B.18)

Finally, theorem B.20 can now be updated based on the matrix W_, = W_ (v) © W_ (90),
and with some minor adjustments of the proof, i.e. new cross-terms are asymptotically negli-
gible and sums of length m are replaced with two sums of length m, it follows that

Q0 (04, (0, 0)) == N(0, W, ,(v) & W, ,(v)). (B.83)
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The revised version of corollary B.21 is as before trivial to prove, which completes the inves-
tigation of the fourth requirement needed in order to use the Klimko-Nelson approach. Basic
linear algebra together with theorem B.22 now finishes the proof. O

Remark B.4. The arguments above could (under suitable assumptions) have been formulated
in a more general setup, leading to a result that shows that the parameter vectors 0,
sponding to different points {v,}’_, will be jointly asymptotically normal and pairwise asymp-
totically independent. The asymptotically independent property are inherited by the corre-
sponding estimated local Gaussian spectral densities f:‘p(w) and this enables an alternative
smoothing strategy for the estimated local Gaussian spectral densities at a given point v, see
section 4.4. However, the added computational cost incurred by such an estimation approach

may make this a less interesting topic of investigation.

corre-

v |mlblp

Appendix C: Technical details

This section collects some technical details that would have impeded the flow of the main argu-
ment if they had been included throughout the paper. A brief overview: Appendix C.1 discuss
the diagonal folding property of the local Gaussian autocorrelations p,,(h) and appendix C.2
considers the special case of time-reversible time series. Appendix C.3 collects technical re-
sults related to the asymptotic relationship between n, m and b, whereas appendix C.4 shows
that the assumptions on the kernel function K (w) and the score functions u,, (w) implies that
some integrals are finite (which implies that assumption 2.1(g) will be trivially satisfied if the
bivariate densities g, (y, ) are finite). Appendix C.5 contains a few basic definitions/comments
related to a-mixing, o-algebras and L”-spaces, and finally appendix C.6 presents a compari-
son of the five-parameter versus the one-parameter local Gaussian approximation, in order to
pinpoint why ﬁj’g(w) should be used instead of j:ﬁ (w).

C.1 The diagonal folding property of p, (/)
The following simple observation about p,, (h) is of interest both for theoretical and computa-
tional aspects of the local Gaussian spectral density [, (w).

Lemma C.1. For a strictly stationary time series {Y,},_, and a pointv = (v,,v,), the following
symmetry property (diagonal folding) holds for the local Gaussian autocorrelation,

pv\p(_h) = pmp(h)v C.DH
where © = (v,,v,) is the diagonal reflection of v.

Proof. This is a simple consequence of the symmetrical nature of the bivariate random vari-
ablesY,, = (v,,Y,)and Y, , = (Y_ s Y(]), which due to the connection between the corre-

h:t

sponding cumulative density functions

G (yony) =PV, <y Y, <) =P(Y, <y, Y, <y_,) =P(Y, <y, Y, <y_,)
=G, (ym y—h) (€2
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gives the following property?? for the probability density functions,

9o ¥) = 9, (Uory_s) - (C3)

This implies that g , (v) = g, (%), and the symmetry does moreover induce a symmetrical
relation between the parameters 6 _, (v) of the local Gaussian approximation of g_, at v and the

parameters 6, (0) of the local Gaussian approximation of g, at v, i.e.if0_, (v) = [u,, fty, 011, Osas

then 6, (V) = [p,, iy, 04y, 04, p| - Equation (C.1) follows since p in these two vectors respec-
tively represents p, (—h) and p,(h), and this completes the proof. O

Remark C.1. The p = 1 case corresponds to the situation where it from the outset has been
assumed that 4, =y, =0and o, = 0,, = 1.

Remark C.2. A trivial consequence of the diagonal folding property in lemma C.1 is that the
local Gaussian autocorrelation becomes an even function of the lag h when v, = v,.

C.2 Time-reversible time series
Additional symmetry properties are present for time reversible time series, which i.e. implies
that the local Gaussian spectral densities f, (w) always are real-valued for such time series, see
definition 2.2 and theorem 2.8.

The following simple result follows immediately from definition 2.2.

Lemma C.2. If{Y,},_, is time reversible, then

teL

g}z(UU U2) = gh(vzv vl) (C4
Jor all points v = (v,,v,) € R? and all h € N, which implies
Puoip(=P) = Py, (). (C.5)

Proof. The time reversibility of {Y,}
distribution, i.e.

teL

implies that (V,,Y,) and (Y_,,Y,) have the same joint

th, (y—h,’yo) = P(th, < y—h’}/o < yo) = P(Yh, < y—hJYE) < yo) = Gh, (yfmyo) .

Together with the observation in eq. (C.2), this gives the diagonal symmetry stated in eq. (C.4).
The statement for the local Gaussian autocorrelations follows by the same reasoning as in the
proof of lemma C.1. O

C.3 Two limit theorems

This section contains two lemmas. Lemma C.3 combines a check of the internal consistency of
assumption 2.3 with the limits needed for the small block-large block argument in theorem B.20),
whereas lemma C.4 takes care of the two limits needed in order to prove that the off the diagonal
components in lemma B.18 are asymptotically negligible.

Lemma C.3. Under assumption 2.3, the following holds.

33This must not be confused with the property that g, and g_, themselves are symmetric around the diagonal, for
that will in general not be the case.
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(a) There exists integers s that makes items (¢) and (f) of assumption 2.3 compatible.
(b) There exists integers s and constants ¢ ‘= ¢, — 0o, such that

c-s:o(\/nble/m) , voam/bb, - c-a(s—m+1) — 0. (C.6)

(c) There exists integers s and constants c, such that with r, { and U given as the integers

rzrn;:{vnblbz/m|, 6=&¢={”J, 9=19 =s—m+1, (C7)

c r—+s

the following limits occur when n — oc:

i—)O; la(9) — 0; ﬂ—)0; mr — 0; m—és—>0.
r n b, n

172

(C.8)

Proof. Item (a) will be established by first observing that it is possible to find integers s that en-
sures that assumption 2.3(f) is compatible with the requirement m = o((nb,b,)), forany £ € (0, 1),
and then checking that the exponent 7/(2 + 57) — A lies in this interval.

Observe that it is impossible to have m = o(s) and s = o ( \ /nblbz/m) whenm > \/nb,b,/m,
which implies m < \/nb,b,/m, which is equivalent to m < (nb,b,)"”*. Some extra leeway is
needed in order to construct the desired integers s, so consider the requirement

m = o((nb,b,)"" ™), for some ¢ € (0,31) . (C.9)

Define the integers s by s := m - s, where s := 1V | (nb,b,)""*|, and note that this construction

ensures that s goes to co. Further, m = o(s) holdssincem/s = 1/s — 0,and s = o(w /nble/m)
holds since

s _m-(nbb,)"* md/? B m 3/2
Vibb,fm (b b,/m) " (nbb, ) [(nb,b,) "
1 m 3/2 1 T
B ' ‘ = | =0 =0 C.10
(nb1b2)2</3 (nblbz)l/dg] |:OO :| ( )

This implies that the desired integers s can be found whenever m = o((nb,b,) ), with & € (0, 3).
Since the value of 7/(2 + 57) — A lies in the interval (O, %), the proof of item (a) is complete.

For items (b) and (c), the integers s and constants c can e.g. be defined as

s=1V K\/’W)W . o= (\/m)"/ for some 5 € (0,1).  (C.11)

Since 1 — 7 and 7/2 are in (0, 1), it follows from assumption 2.3(b) that s and ¢ goes to co
as required. A quick inspection reveals that the product c - s is 0(\/nblb2 / m), proving the
first part of eq. (C.6). For the second part of eq. (C.6), keep in mind the similarity with
assumption 2.3(d), and observe that c in the limit is asymptotically equivalent to s7/2~". Since
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7 can be selected such that the exponent 7/2(1 — 1) becomes smaller than any 7 > 0, the sec-
ond statement holds too, which completes the proof of item (b).

In order to prove item (c), note that a floor-function |z | in a denominator can be ignored in the
limit x — oo, since z < |z |, thatislimz/ |z | = 1. Moreover, observe that assumption 2.3(b)
implies that n/m goes to co. With these observations, all except the last limit in eq. (C.8) are
trivial to prove, i.e.

S - S o c-S _
r A ibb/m L /nb b, /m
C

0, (C.12a)

la(¥) < . Z Soz(ﬁ) = ;a(ﬁ) = ﬁa(ﬂ) =+/nm/bb, c-a(¥) — 0, (C.12b)

(&

mr \/nblch/m B \/@ . 0

o< — =0 C.12
- n/m cy/n/m 000 ’ (C.120)
mr mr r(r+ s) r? it
= = = ° =——0. C.12d
B, Zbb,  nbb/m - nbbjm = nbbjm @ (C129)

For the proof of mfs/n — 0, the explicit expressions for s and ¢ from eq. (C.11) will be
needed, i.e.

1-n/2
mls < mot=s s s c- 8 (\/W)

r+s

=m =m-x=m <m
n o~ n r+s r \/nb,b,/m ~ \/nb,b,/m
1+n/4 (4+n)/4
__m _ mr ( m (C.13)
(nb,b,/m)"*  (nb,b,)""* (nb,b,)" ™ ) .

Assumption 2.3(e) states that m = 0((nb1b2)7/ (2“’)’*) , and it is consequently sufficient to show

that an 7 can be found which gives 7/(2 4+ 57) — A < p(n) = n/(4 +n). Sincep'(n) =4/ (4 +n) > 0,
the highest value of p(n) will be found at the upper end of the interval of available argu-
ments. From the proof of item (b) it is known that /2(1 — n) < 7, which gives the require-
ment 7 < 27/(1 + 27). The value of p(n) at the upper end of this interval is 7/(2 4+ 57), and
since A > 0 itis possible to find an n that satisfies 7/(2 + 57) — A < p(n) < 7/(2 + 57), which
concludes the proof. O

Lemma C.4. Under assumption 2.3, the sequence of integers definedby k, + 1 = {m”“ . |b1b2|<27”)/“"w
satisfies the following two limit requirements.

(a) k, — 0.

(b) k,m*bb, — 0.

Proof. The key requirements v > 2 and a > 1 — 2/v (inherited from assumption 2.1(b)) en-
sures that 2/a > 0 and (2 — v)/av < 0. Asm — oo and b — 0" when n — oo, it follows
that k. — oo, which proves item (a).
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For item (b), observe that k, = [m?* - |b,b,|“™*"| — 1 < m¥* - |b,b,|* """ implies

k,m’b,b, < (m>* - |b,b,|*™*) - m’b,b, (C.14a)
= P |y b [ (C.14b)
<m0t |(bl V b2)2|1*(2*”’/“” (C.14¢)
= {mUrye /el (o p Y }ROFE/e) (C.14d)
G N (VAR St (C.14e)

An inspection of the outermost exponent reveals

2-<1+(2WV)>—2~“(12/”)>0., (C.15)

a

which together with assumption 2.3(c) concludes the proof of item (b). O

C.4 Integrals based on the kernel and the score functions

The asymptotic properties of the random variables introduced in definitions B.11 to B.13
does of course depend upon the properties of the time series {Y,},_, upon which they have
been defined, but quite a few of the required properties does in fact only depend upon K (w)
and u,,,(w). Note that the treatment in this section exploits the property that the functions u, , (w)
all are quadratic polynomials in the variables w, and w,, which implies that the inequalities from
lemma C.5 is sufficient for the proofs of the asymptotic results given in lemma C.6.

Lemma C.5. For K(w) from definition B.9 (page 51), and v > 2 from assumption 2.1(b)
(page 12), the following holds:

(a) ‘fRQ K(w,, w,) ww, dw,dw,| < oo, k,0>0and k+ ¢ <5.

(b) ‘fR? K (w,, w,)*w*w! dw,dw,| < oo, k0>0andk+ ¢ <5.
(c) K(w,,w,)ww € L, k,¢>0and k+(<2.

Proof. Since the kernel function by definition is non-negative, it follows that

k, £
) K(w,,w,) wiw; dw,dw,
R

S/K(w],wz) |whw!| dw,dw,, (C.16)
R2

which proves item (a), since eq. (B.27d) of definition B.9 implies that this is finite for the
specified range of k and /.

Since the kernel function is bounded, there is some constant C such that K (w) < C, which
implies that

<C K(w,,w,) wiw; dw,dw,|, (C.17)

R2

2k, 0
. K(w,,w,) wiw, dw,dw,
R

which due to item (a) is finite, thus item (b) holds true.
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Next, note that | K (w,, w,) wrwt|” = | K (w,,w,)|" " | K (w,, w,)| [wrwi]” < C* VK (w,,w,) |wwt|",
which gives the following inequality,

1/v

/v
( K(wmwgwfwzrdwldwg) < cvv ( / K(wl,w»|w';wﬁ|“dwldw2) ,
R2 R2

(C.18)

from which it is clear that a proof of the finiteness of the right hand side of eq. (C.18) will
imply item (c). Since the region of integration can be divided into A,, = {w : |wfw:| < 1} and
A:, =R?*\ A,,, it follows from the non-negativeness of K (w), and eqs. (B.27a) and (B.27d)
of definition B.9, that

/ K(w,,w,) |lwiwi]” dw,dw, < / K(w,,w,)dwdw, < | K(w,w,)dwdw, =1,
‘Aké ‘Akl

R2
(C.19)
[ ) ot dodu, < [ K, ot dudu,
45 45
< | K(w,w,) |wi™w™| dw,dw, < oo, (C.19b)

R2

where the last inequality follows since the assumption k + ¢ < 2ensures thatk [v] + ¢ [v] < 2 [v].
The expression in eq. (C.18) is thus finite — and, as stated initem (¢), K (w,, w,) w*w! € L”. [0

Lemma C.6. The following holds for u,,,(w) and K,.,(y, — v) from definitions B.7 and B.9,
and v > 2 from assumption 2.1(D):

(a) fRi’ V b1b2K’“b(C - U) uhq:b(C) dC = O( V b1b2)'

(b) (f]}@ ‘\/@K’Hb(c - U) uhq;b(C)‘VdCy/l = O(|b1b2|(2ﬂ))/2u)'

(C) Let qu,hjzb(cu Cz) = Kh:b(C1 - U) Kj:b(CZ - ’U) uhq:b(Cl) ujr:b(Cz)’ where C1 and Cz ei-
ther coincide completely (bivariate), have one common component (trivariate), or have
no common components (tetravariate). Let r be the number of variates, and let d¢(k)
represent the corresponding k-variate differential. Then,

(V) U, (V) [ K(w)dw +O(b, Vb,) k=2,
Jae (0,0,) K, (€1:€,) dC (1) = 4 O(b, AD,) k=3
O(b,b,) k= 4.

Proof. Recalling the definition of K,.,(y, — v) from eq. (B.28), the integral in item (a) can be
written as

1 _ _
[V i (S5 ) e a e, (©20)

1
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which implies that the substitutions w, = (¢, — v,) /b, andw, = ({, — v,) /b, gives the integral

b,b.
‘/RZ b l; ZK (wl'/ wZ) uhq:b(blwl + vl’ b2w2 + v2) (bldwl) (bzdwz)

=4/b,b, / K (w,,w,)u,,,(bw, +v,,b,w, + v,) dw,dw,. (C.21)
R2

b,w, + v,, byw, + v,) can be writ-

Since u,,, (w) is a bivariate polynomial, it is clear that u X

ten as

hq:b(

Uy, (U1, 0,) + bcyw, + byc,w, + bic, wi 4 b b,c,w,w, + bye,w;, (C.22)
for suitable constants c,, c,, ¢,,, ¢,, and c,,. The integral in eq. (C.21) can thus be expressed as
a sum of integrals like those occurring in lemma C.5(a), all of which are finite. The dominant
term becomes O (\ / blbz) when b — 0%, and the conclusion of item (a) follows.

11°

The substitution used in item (2a) can also be applied for item (b), resulting in

(.

/v
= |b,b,| 7% (/ ’K (w,, w,) u,,,(b,w, +v,, byw, + vz)}"dwldwz) ) (C.23)
RQ

v

v
(byduw,) <b2dw2>)

1
blbz K (wla wz) Uy, -b(b1w1 + v, bzwz + UQ)
b1b2 ”

Note that this represent the norm in L”-space, and that eq. (C.22) implies that it can be realised
as the norm of a sum of the simpler components encountered in lemma C.5(c). It is now clear
that Minkowski’s inequality can be used to obtain a bound for the expression in eq. (C.23). In

particular, constants e, e,, e,,, e,, and e,, can be found that realises this bound as

11°
|b1b2|<2_y)/2u (uhq:b(vl7 v?) + blelwl + b‘262w2 + bfellwf + b1b2612w1w2 + b5622w§> ) (C24)

which is dominated by the |b,b,|* "/*"-term when b — 0%, as stated in item (b).

The investigation of item (c) requires different substitutions depending on the « for the con-
figuration under investigation. Noting that the integrand in addition to the scaling factor b,b,
always contains the product K;.(¢, — v) K;+({, — v), it follows that it regardless of the value
of x will be a factor 1/b,b, that will be adjusted by the b,- and b,-factors that originates from
the substituted differentials. It is easy to check that the new differentials becomes b,b, dw,dw,
when x = 2, b?b, dw,dw,dw, or b b} dw,dw,dw, when x = 3, and b30; dw,dw,dw,dw, when
k=4

For the bivariate case, the substitution from item (a) gives an expression of the following

form,

K(w,,w,)* - U(w,, w,) dw,dw,, (C.25)

R2

where U (w,, w,) is a product whose factors both are of the form encountered in eq. (C.22), i.e.
it will be a quartic polynomial in the variables (b,w,) and (b,w,), and its constant term will
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 105

be u,,,(v)u,, ,(v). From lemma C.6(b) it follows that this will be a finite integral, and as
b — 0" the result will be as given for the x = 2 case of item (c).

For the trivariate case, the overlap between ¢, and ¢, will belong to one of the follow-
ing configurations, (i) ¢, = ({,,{,) and ¢, = (¢,, ¢,), (i) ¢, = ((,,¢,) and ¢, = (;, ¢,), (iii)

¢, =(¢,¢)and ¢, = ((,, ¢,), or (iv) ¢, = (¢, ¢,) and ¢, = ((,, ¢,)- The reasoning is identical
for the four cases, so it is sufficient to consider case (i), which gives the following product of

kernel functions in the original integral,
K((G = v,)/by, (G = 0,)/by) - K((C, = v,) /by, (G = ) /D,) - (C.26)
When the substitution
w, = (¢, —v,)/b,, w, = (¢, —v,)/b,, w, = (¢ —v,)/bs, (C.27)
is used, the following component occurs in the transformed integrand,
K (w,, w,,w,) = K(w,,w,) - K([(byw, +v,) —v,] /b,,w,) . (C.28)

The argument [(b,w, + v,) — v,] /b, does not pose a problem due to the boundedness require-
ment from eq. (B.27d) in definition B.9, and the following inequality thus holds for ¢ € {0, 1, 2},

K (wu w,, w:s) wﬁ dw3 = K(wu wz) ’ K([(b2w2 + Uz) - Ul] /bu w3) ’LU.E dw's (C.292)

R R
= K(w,,w,) - K, ([(bw, +v,) —v,] /b)) (C.29b)
<D,, Kw,w,), (C.29¢)

where D, , is a constant that bounds the function /C,,.

Since the substitution in eq. (C.27) transforms the integral of interest into
b, / K (w,,w,,w,) - U(w,, w,, w,) dw,dw,dw,, (C.30)
R3

where U (w,, w,, w,) is a quadratic polynomial in the variables (b,w, ) and (b,w,), and a quartic
polynomial in w, (with coefficients having suitable powers of b, and b, as factors), the observa-
tion in eq. (C.29) implies that an iterated approach to the integral (starting with the w,-variable)
can be used to show that each part of the sum will be bounded by a constant times an integral of
the form encountered in lemma C.6(a). The trivariate integral in item (c) can thus be bounded
by a sum of finite integrals having coefficients based on powers of b, and b,. From the b, factor
in eq. (C.30), it follows that the trivariate integral in this case is O(b,) when b — 0*. Note that
w, = ((, — v,)/b, could have been used as an alternative substitution in eq. (C.27), which by
the obvious modifications of the arguments implies that the integral also will be O(b,) when
b — 0" — and from this if follows that the integral is O(b, A b,), which completes the proof for
the x = 3 case of item (c).
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The case xk = 4 is quite simple, since no common components in ¢, and ¢, implies that the
tetravariate integral, after the obvious substitution, corresponds to an expression of the form

o ([ Kt uconaw) - ([ Ko cwae), e
R R

where ¢{(w) = (b,w, + v, b,w, + v,). The integrals occurring in this product are similar to

those encountered in the bivariate case discussed above, and it is clear that the result will be

O(b,b,) when b — 0%, which concludes the proof of item (c). O

Note that the bivariate case of lemma C.6(c) only considers the configuration where the
components of ¢, and ¢, coincide completely, while the configuration where ¢, = ({,, ¢,) and
¢, is the diagonal reflection ((,, ¢,) has been left out. This restriction does not pose a problem
for the asymptotic investigation of ﬁfp(w) when the point v = (v,,v,) lies upon the diagonal,
i.e. when v, = v,, since the diagonal folding property ensures that it is sufficient to consider
positive lags for the point v in this case. For the general case, where v, # v,, the following
adjusted version of lemma C.6(c) is needed, where one of the kernels use v and the other use
the diagonally reflected point © = (v,,v,).

27 Y1

Lemma C.7. The following holds for u,,,(w) and K,.(y, — v) from definitions B.7 and B.9,
when the point v = (v,,v,) does not coincide with its diagonal reflection © = (v,,v,), i.e.
v, # VU,

Let I, ,.,(C €0, 0) = Kio(C, — v) Kjo(C, — 0) u,,,.,(C,) v, (C,), where ¢, and G, either
are diagonal reflections of each other (bivariate), have one common component (trivariate),
or have no common components (tetravariate). Let . be the number of variates, and let d{(k)
represent the corresponding k-variate differential. Then,

o) w=2
/ (blbz) Iqu,hj:b(CU C2§ v, {7) dC(’f) = O(b1 A bg) K ,
- Obb) k=

Proof. The statements for the trivariate and tetravariate cases are identical to those in lemma C.6(c),
and so are the proofs, i.e. the same substitutions can be applied for the present cases of interest.

For the bivariate case, the substitution w, = (¢, —v,) /b, and w, = ({, — v,) /b, gives that
the integral [o, K(w,,w,)* - U(w,,w,)dw, dw, from eq. (C.25) is replaced with a sum of in-
tegrals of the form,

- K(w1 + (U1 - Uz)/bw w, + (1)2 - U1)/bz) : K(ww wz)wfwé dw1 dwz? (C32)
where k, ¢ > 0 and k + ¢ < 4. and the integrands of these integrals goes to zero when b — 07,
due to the assumption that v, # v,. To clarify: For a kernel function X whose nonzero values
occurs on a bounded region of R?, the integrand of eq. (C.32) will become identical to zero
when (v, — v,)/b, and (v, — v,)/b, are large enough to ensure that at least one of the factors in
the integrand must be zero. For the general case, first observe that the factors K (w,, w,)w*w?
are the integrands that occurs in lemma C.5(a), and the finiteness of those integrals implies

76



2.1 Nonlinear spectral analysis via the local Gaussian correlation 107

that these factors must go to zero at a sufficiently high rate when w, and w, are far from origo.
The rate at which the individual kernel K (w,, w,) goes to zero will of course be faster than that
of the product K (w,, w,)wrw?, and together this implies that the integrand in eq. (C.32) must
go to zero when b — 0%, and the integral thus becomes asymptotically negligible. O

Remark C.3. It is a straightforward (albeit somewhat tedious) exercise to verify that eq. (C.32)
goes towards zero at an exponential rate when the kernel function K (w) is the product normal
kernel. The observation that the bivariate case of lemma C.7 is o(1) can also be derived from the
realisation that K,.+(¢, — v) and Kj.,({, — ©) are entities that converge towards two different
bivariate Dirac delta functions, and the limit of the integral becomes zero since these delta
functions sifts out different points.

C.5 A few details related to s-algebras, a-mixing and L’-spaces
The following general definitions and basic observations are needed when e.g. results from Davy-
dov (1968) and Volkonskii and Rozanov (1959) are used.

Related o-algebras

The o-algebras related to the process {Y,},_,, will be denoted

teZ’

Fr=o0(Y, Y), (C.33)

t t) Tt Ts

where ¢ and s are allowed to take the values —oo and +oo respectively.

Note in particular, that if a new random variable is defined by means of a measurable function
&(y,) fromR™ toR,ie. YV, =&(Y,,), then) , € Fitm,

Inheritance of a-mixing
The coefficients in the strong mixing property mentioned in assumption 2.1(b), is given by

a(s]Y,) =sup {|P(ANB) —P(A)P(B)| : —co<t<oo, A€ F'_, B€ F3 }, (C34)

from which it is an easy task to verify that a derived process, like the }/_, mentioned above,
will have an inherited a-mixing coefficient that satisfies

als|Y, ) <als—mlY,). (C.35)

This implies that the finiteness requirement in eq. (2.17) will be inherited by the process V,_,,
i.e. with v and a as introduced in assumption 2.1(b), the following holds true

Zy a(j |V, < (C.36)

Related L~ -spaces
Some inequalities are needed in the main proofs, and these inequalities can be verified by means
of the simple connection between expectations and L”-spaces outlined below.**

3These definitions are normally presented with p used instead of v.
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First of all, when a measure space (€2, G, ;1) is given, then for 1 < v < oo, the space L == L" (2, G, u1)
is defined to be the class of measurable real functions ¢ for which |¢|” is integrable, that is,

() el < /|C(z)\”du < 0. (C.37)
Q

The L”-spaces related to the processes Y, , and Y, will henceforth be denoted by

L, —the L spaces related to the densities Gp» (C.38a)
L.. —the L" space related to the density g,_. (C.38b)

These L” spaces are in fact Banach spaces, see e.g. Billingsley (2012, Section 19) for details,
which means that they are complete normed vector spaces, with a v-norm defined by

1/v
I, = (/Q IC(Z)I”du) = (Bllc@)N” (C.39)

and the Minkowski’s inequality (i.e. the triangle inequality for L"-spaces) will play a central
role in the investigation later on,

16.(2) + G < NG + GG, - (C.40)

The main reason for the introduction of these L -spaces are the following observation: With
Z arandom variable on (2, G, 11), the definitions of expectation and " -spaces gives a sequence
of equivalences

ECN <%0 = [[@ldu<o > (@el (C41)

withY,

h:t

andy.

m:t

Lemma C.8. For a univariate time series {Y,},_,,
and with m bivariate functions ¢, : R* — R’

as defined in definition 2.6,

IFE[|C,(Y,.)|'] < ocoforh=1,...,m, then
(E[IXZH a6 ()l )" < S0 la] BIG (Y, ) D < oo,

a,

Proof. Fromeq.(C.41)itfollows that E[|¢, (Y, ,)|"] < coimplies(,(y,) € L, forh =1,... m.
With (, (y..) the corresponding trivial extensions to (m + 1)-variate functions, it follows from

m

eq. (2.16) that ¢,(y..) € L., for h =1,...,m. From the vector space property of L’ -spaces
it follows that >, , @,¢,(Y,.,) € L., and Minkowski’s inequality then gives the desired re-
sult. U

C.6 The one-parameter local Gaussian approximation

The input parameter p in the local Gaussian spectral density f, (w) signifies whether a five-
parameter or a one-parameter local Gaussian approximation has been used in the local neigh-
bourhood approach inherited from Hjort and Jones (1996), see section 2 for details. In particu-
lar, pis either 5 or 1, and the two different approximation strategies (to be used in the normalised
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2.1 Nonlinear spectral analysis via the local Gaussian correlation 109

situation with standard normal marginals) will henceforth be denoted v, (w) or 9, (w), where

1 o o} (“’1 —Hq )2_2‘71‘72/’(“’1 —Hq ) (u’z _“2)""7% (“’2 “Ho )2
2roioo/Ip? exXp )

20705 (1-p?)

Vs (w; iy, 1y, 0,,0,,p) =

2m-0 04
(C.42a)
29 0 wa w2
U(w;p) = o exp {—7”1 Pt } : (C.42b)

As noted in section 2.1.3, the simplified approach based on v, (w) has been used with good
results with regard to density estimation, see Otneim and Tjgstheim (2016, 2017), which mo-
tivated that this approach also should be tried in the present paper. However, as was seen in
fig. 14, page 33, the local Gaussian spectral densities based on p
sive results whereas those based on p,, . clearly indicated the presence of non-linear traits in the

1 gave more or less inconclu-
time series under investigation.

It is thus of interest to investigate closer the one-parameter local Gaussian approximation
¥, (w), i.e. how appropriate will it in general be to use the estimated local correlations obtained
from v, (w). It is e.g. evident from eq. (C.42) that v, (w) lacks the flexibility of ), (w), but
that is obviously not a detrimental problem with regard to density estimation, as was seen in
(Otneim and Tjgstheim, 2016) — where a new density estimation method based on ¢, (w) in
many cases turned out to be just as good or even better than already existing methods. However,
the lack of flexibility seems to be a problem when, for a given point v, the target of interest
moves from the estimated density 121 (v) to the estimated parameter p,, .

The analysis related to v, (w) is straightforward to do, since it in essence only requires that
some integrals containing the factor K, (w — v) must be reexpressed by the help of substitutions
and second order Taylor expansions. The bivariate nature of the problem does however make
these expressions a bit cumbersome to work with, so an analogous univariate situation will
thus be used instead in order to illustrate the differences between the one- and multi-parameter
approach. The idea is that the approach from Tj@stheim and Hufthammer (2013) can be applied
on the density estimation method from Hjort and Jones (1996) in a univariate setting, i.e. the
target density g(w) will be a univariate distribution whereas the approximating local density
will be univariate Gaussian. For simplicity of the analysis, it will henceforth be implicitly
assumed that the required regularity assumptions from Tjgstheim and Hufthammer (2013) are
satisfied.

Remark C.4. The bivariate 1), (w) are used in a situation where an initial step first normalises the
marginals of the target density, and then the procedure of density estimation and extraction of
the corresponding correlation are performed — which in essence implies that it is the properties
of the copula-structure of the target density that are investigated. A similar ‘normalisation of
the marginals’ for the univariate framework would however be nonsensical, since that would
completely remove all the available information from the case under investigation.

C.6.1 A simplified univariate case — ‘local Gaussian standard deviation’

The problems of interest for the bivariate case ¢, and the local Gaussian correlation p,, can be
identified from an inspection of the following simplified univariate situation, where the concept
of a ‘local Gaussian standard deviation’ can be defined in a completely analogous manner to
the one used for the definition of the local Gaussian correlation. In particular: For a given
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univariate density g(w) and a given point v, first use the univariate Gaussian distribution ¢(w)
as the approximating function in the density estimation approach of Hjort and Jones (1996),
then define the local Gaussian standard deviation o, by extracting the standard deviation from
the approximating Gaussian distribution.

The univariate analogue of eq. (C.42) is taken to be

bu(wsp,0) = e exp { =5 L (C43a)
0 (w;0) = —exp{~3% }, (C.43b)

where ¢, (w; o), together with its score function u, (w; o) = £ log ¢, (w;0) = (w? — 0*)/0?,
is the target of interest for the present investigation. It is clear from the rigidity of the one-
parameter alternative ¢, (w; o) that it has some limitations with regard to which values it can
take, and it is easy to see that ¢, (w; o) < ¢, (w; |w|) when w # 0.

Ignoring for the time being that the inflexibility of ¢, (w; o) renders it a rather undesirable
candidate for density estimation, the univariate version of the procedure explained in egs. (2.3)
and (2.4) can be used for i = 1, 2 to minimise the b — 0" limit of the penalty functions

Qo /K w —=v)[¢,(w; ) — g(w) - log ¢, (w; o)} dw, (C44)

where K,(w —v) = 1 - K(“*), with K the standard normal kernel and b the bandwidth.
Henceforth focusing on the case i = 1, it follows that the value o, ,, that minimises g, will
satisfy -2 3oL = 0, i.e. the following equation should be satisfied,

w[b[1

/Kb(w —v)u, (w; O’v‘b‘l) [qSl(w; O’U‘bu) - g(w)} dw = 0. (C.45)

Under the additional assumption that g(w) can be differentiated twice at v, and with h(w; o)
defined as u, (w; o) [¢, (w; o) — g(w)] in order to compactify the expressions encountered later
on, it follows that the substitution z = (w — v) /b followed by a second order Taylor expansion
of h(w; o) around v, enables eq. (C.45) to be restated as

h(v;a,,,) +b* - h“)( S On) +0° /R(v +02;0,0,,,)2°K(2)dz = 0, (C.46)

where R is the remainder term of the Taylor expansion.

It follows from eq. (C.46) that the b — 0 limit of A(v; 0, ,,) must be zero. This requirement
is satisfied when either ¢,(v;0,,,) = g(v) (preferred case) or u,(v;0,,,) = 0 (problematic
case). Note in particular that u, (v; 0, ,) must go to zero in the limit if g(v) > ¢, (v;[v|), that
eq. (C.46) implies that u,(v; 0,,,) for such a case satisfies

b - {%h(z)(v;av‘bu) + fR v+ bz; b, crv‘b‘l) K(z) dz}
(g(U) - ¢1(U; O—U\b|1)) ’

in this case must be o, , = [v].

u,(v;0,,,) = (C47)

and that the b — 07 limit of o

w|b|1
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The asymptotic arguments given in Tjgstheim and Hufthammer (2013) can be applied in the
present univariate situation too, and it follows that the n — oo limit of the matrices from the
Klimko-Nelson approach (see theorem B.1) are given as the following scalar expressions,

W\b\l =b-u;(v; Uu|h\1) +0° T, (v; b, U,,|z,\1)7 (C.48a)
I/Vu\bu =b-u;(v; Uv|bu) +b* - Ty (v; b, O’,‘b“), (C.48b)

v

where T, (v; b, 0,,,) and T, (v; b, 0,,,) represent the higher order terms and remainder terms
of the Taylor expansions used in these cases. The b — 0% and n — oo limit of the asymptotic

variance of /n (3,,, — 0,,,) is thus based on the b — 0* limit of

b-uw(v;o,,) + 0T, (v;b,o,,,
Vi Won Viih = ;0 GUL LAY (C49)
[b ~u(v;o,,) + b0 Ty (v; b, val)]

~

from which it follows that the asymptotic variance of v/nb (G, — 0,,) is 1/u?(v;0,,,) when
u,(v;0,,) # 0 in the limit. However, as explained above, all cases where g(v) is larger than
é,(v; [v]) will give a situation where the limit of u, (v; o,,,) is zero — and it is then clear from
the expression for u, (v; o) in eq. (C.47) that the asymptotic result in these cases requires a
scaling with \/W instead of v/nb, and that the asymptotic variance in this case will be the
b — 0 limit of T, (v; b, 0,,,) /T (v; b, 0,

> Yulbl1 u\bu)'

Remark C.5. The one-parameter approximation ¢, (w; o) will return the value ¢, (v; |v|) for all
univariate densities g(w) which are twice differentiable at v and satisfies g(v) > @, (v; |v]).
This implies that not only does the estimated local standard deviation o, , converge slower in
these cases, but g, ,
regardless of the actual value of g(w) at the point v and regardless of how g(w) behaves in a
neighbourhood of v, so o, , does not contain any local information about the targeted densities
for these cases.

will moreover always converge to the value ¢, = |v|. This will happen

Remark C.6. It is not a problem to use ¢, (w; ) as a tool for density estimation at v when g(w)
satisfies g(v) < ¢,(v; |v]), as can be seen in fig. 15, where the Beta distribution with parameters
a = 2.19 and 8 = 1.50 has been approximated at the point v = 0.25. Both ¢, (w; o) (blue
dashed line) and ¢,(w; o) (red dotted line) manages to estimate the value g(0.25) ~ 0.7041,
and are as such equally good as density estimators in this case — however, the corresponding
standard deviations, in this case respectively o,, = 0.50 for ¢,(w;0) and o,, ~ 0.29 for
¢,(w; p, o), can in general be quite different. It might thus be reasonable, even when ¢, (w; o)
can be used to provide a density estimate of g(w) at v, to consider the standard deviation of
¢, (w; o) to be a somewhat dubious ‘local measure’ of the properties of the target function g(w)
in the vicinity of v.

C.6.2 The bivariate case v, (w; p)

It is clear from eq. (C.42b) that ¢, (0; p) never can attain a value below 1 /2, and it is not hard to
check that ¢, (w; p) can attain any positive value when w = (w,, w,) satisfies |w,| = |w,| # 0
(although p might need to be very close to —1 or 1 when a high value is desired). For other
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Figure 15: Simplified univariate investigation based on ‘local Gaussian standard deviations’.

points w than those already mentioned, an inspection of the corresponding score function,

_p3 + p2w1w2 +p (]- — (wf + w;)) + w, w,
(1-p?)° ’

together with the requirement that p lies in (—1, 1), gives that there is an upper limit ¢, (w; pz, ,)

w1

i p) = 3 log (0w ) = (C.50)

for ¢, (w; p) at this particular point. Note that p;, , is a solution of u, (w; p) = 0, and these so-
lutions can be explicitly computed by the help of the formula for the roots of the cubic function,
but this is not necessary to do for the present discussion.

The arguments used for the one-parameter univariate ¢, (w, o), see egs. (C.44) to (C.49), can
be extended directly to the one-parameter bivariate ¢, (w). The observations below follows
from those given in remarks C.5 and C.6. Not that the bivariate target density g(w) here corre-
sponds to a copula-model with standard normal margins, and v = (v,, v,) represents the point
at which the density estimation and extraction of correlation p,, is performed.

(a) If v = 0 and g(0) < 1/2r, then p,, = 0 and the estimated density always becomes
¥,(0;0) = 1/27. The estimates of p,,, will in this case converge towards p,,, = 0 with a
slower convergence rate than y/nb,b,, and p,,, = 0 will always occur when g(0) < 1/2,
regardless of how g(w) behaves in a neighbourhood of v = 0.

(b) If v ‘lies off the diagonals’, i.e. [v,| # |v,|, and g(v) > ¢, (v; p,), then p,, = p, and
the estimated density always becomes 1, (v; p;, ). The estimates of p,, will in this case
converge towards p;, with a slower convergence rate than \/nb,b,, and p,,, = p,, will
always occur when g(v) > v, (v; p, ), regardless of how g(w) behaves in a neighbour-
hood of v.

(c) The one-parameter approximation 1, (w; p) will give the correct density estimate of g(w)
at v for other cases than those excluded above, but the corresponding correlation p,,,
might differ substantially from the one obtained from the five-parameter approximation.

The case in item (b) can e.g. be observed when g(w) is the probability density function of a
Clayton copula with standard normal marginals.

Remark C.1. The preceding discussion assumed that the target density g(w) was known, and
this will in general not be the case when a sample is investigated. Small sample variation must
also be taken into account when local Gaussian autocorrelations are to be computed for a given
sample, and it might be hard to test whether or not there are significant differences between
the correlations obtained from the five- and one-parameter approximations. However, clear
differences can occur, like seen in fig. 14 (page 33), where the estimates of f,  (w) and f, ,(w)
for the dmbp-case was discussed. It might thus be enlightening to briefly return to the dmbp-
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case and present a plot that shows how the estimated local Gaussian autocorrelations based
on the one- and five-parameter approaches looks like, see fig. 16. The point 90%: : 90% is the
same that was used in fig. 14, the red dotted lines shows the truncation level m = 10 used for the
estimated local Gaussian spectra, and all the estimations have as usual been performed based on
the bandwidth b = (0.5,0.5). As can be seen, the estimates based on the ¥, (w)-approximation
tend to have the same sign as those from the v, (w)-approximation, but the values are in general
much closer to 0.

82: : 90% :: 90%
OjO- m\guxm% bt Lo bt et il et bt L L i) N T P T IR TR PRI PSR
-0.3- Computations based on 1-parameter approach. Use 5-parameter instead!

0 50 100 150 200
o8 2“ T | : 90% :: 90%
0.0 M} bl ‘w‘ At ‘M‘M N \W\w cLail \“‘HH\U . “H\h“\\‘ L e I y ‘\“ L, o
-03-NC=0K: ‘

i :

0 50 100 150 200
Figure 16: A comparison of estimated local Gaussian autocorrelations from the dmbp-data:
P, (h) from the 1, (w)-approximation (top) versus p,.(h) from the 1 (w)-
approximation (bottom).

Remark C.8. Keeping in mind that the one- and five-parameter local Gaussian approxima-
tions both should return approximately the same estimated correlation-values when the density
g,(y,) of (Yt .n»Y,) either is Gaussian or independent, it seems plausible that a visual compar-
ison like the one in fig. 16 might be used to provide some insight into the long range behaviour
of the time series under interest. However, as discussed in section 4, it is important to keep in
mind that there are uncertainties related to the level of small sample variation that can occur
for different configuration of the input parameters.

Remark C.9. It might be the case that the ‘trumpet shape’ that occurred for some of the esti-
mated pointwise confidence bands in fig. 14 could be related to a situation where the density
g,(y,) behaves in such a manner that the one-parameter approximation v, (wj; p) runs into
problems as a density estimator. This has not been investigated in this paper, but it should be
possible to approach this idea by a two step procedure where 1) copula models are fitted to
the pairs (Y,,,,Y,), and 2) the selected copula-models (with standard normal marginals) are
compared against the one-parameter case 1, (w; p).

Remark C.10. Figures 14 and 16 are the only plots in this paper that compares the results
based on correlations extracted from ¢, (w) with those based on correlations from v, (w). The
scripts stored in the R-package localgaussSpec can be used to get hold of additional exam-
ples. Use devtools::install_github("LAJordanger/localgaussSpec") to install the
package, then load the package and use LG_extract_scripts to get access to the scripts. The
resulting plots can be interactively investigated by means of the shiny-application part of the
package, read the scripts and the package-documentation for further details.
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Nonlinear cross-spectrum analysis
via the local Gaussian correlation

Lars Arne Jordanger Dag Tjgstheim

Abstract

Spectrum analysis can detect frequency related structures in a time series {Y,},_,,
but may in general be an inadequate tool if asymmetries or other nonlinear phe-
nomena are present. This limitation is a consequence of the way the spectrum is
based on the second order moments (auto and cross-covariances), and alternative
approaches to spectrum analysis have thus been investigated based on other mea-
sures of dependence. One such approach was developed for univariate time series
in Jordanger and Tjgstheim (2017), where it was seen that a local Gaussian auto-
spectrum f,(w), based on the local Gaussian autocorrelations p,(h) from Tjgs-
theim and Hufthammer (2013), could detect local structures in time series that
looked like white noise when investigated by the ordinary auto-spectrum f(w).
The local Gaussian approach in this paper is extended to a local Gaussian cross-
spectrum f,, (w) for multivariate time series. The local cross-spectrum f;,, (w) has
the desirable property that it coincides with the ordinary cross-spectrum f,,(w)
for Gaussian time series, which implies that f,, (w) can be used to detect non-
Gaussian traits in the time series under investigation. In particular: If the ordinary
spectrum is flat, then peaks and troughs of the local Gaussian spectrum can indi-
cate nonlinear traits, which potentially might discover local periodic phenomena
that goes undetected in an ordinary spectral analysis.

1 Introduction

The auto and cross-covariances { {v,,(h)},_, } fet
can range from determining it completely (Gaussian time series) to containing no information
at all (GARCH-type models). The auto- and cross-spectral densities { f,,(w)}; ,_, (based on
these second order moments) inherit these features, and they may thus be inadequate tools

*_ fromatimeseries {Y, = (Y;,,....Y, )}, .

when the task of interest is to investigate non-Gaussian time series containing asymmetries or
other nonlinear structures — like those observed in stock returns, cf. e.g. Hong et al. (2007).

In ordinary spectral analysis, if {Y,,}, and {Y,,}  are jointly weakly stationary, and
if the cross-covariances +,,(h) := Cov (Yk_’,’ o Yw) are absolutely summable, then the cross-
spectrum f,,(w) is defined as the Fourier transform of the autocovariances, .i.e.

f;c[(w) = Z’Ykz(h) eI, (L.1)

heZ
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The expression for the inverse Fourier transform reveals, when i = 0, that the covariance
Cov(Y,,,Y,,) = 7..(0) can be expressed as the integral fjﬁQ fi,(w) dw. This makes it possible
to inspect how the interaction between the marginal time series varies with the frequency w. An
inspection of the cross-spectrum f,,(w) is a bit more complicated than that of the auto-spectrum,
since f,,(w) in general will be a complex-valued function. It is thus usually the following real

valued functions that are investigated,

Ckl(w) =Re (f;cl(w)) ) qkl(w) = —Im (sz(w)) ) (1.2a)
akl(w) = Mod (.ﬁ-z(w)) ) (bke(w) = Arg (fk[(w)) ’ (1.2b)

where ¢, (w), ¢,,(w), a,,(w) and ¢, (w), respectively, are referred to as the cospectrum, quadra-
ture spectrum, amplitude spectrum and phase spectrum. Note that c,,(w) always integrates to
one over one period, whereas ¢,,(w) always integrates to zero.

The coherence K, ,(w) = f,,(w)/+/ fr(w) f,,(w) is an important tool when a spectral analysis
is performed on a multivariate time series, in particular since K,,(w) can be realised as the
correlation of dZ, (w) and dZ,(w), where Z, (w) and Z,(w) are the right continuous orthogonal-
increment processes that by the Spectral Representation Theorem correspond to the weakly
stationary time series {Y,,},_ and {Y,,}, . see e.g. Brockwell and Davis (1986, p. 436) for
details. The squared coherence |K,,(w)|” is of interest since its value (in the interval [0, 1])
reveals to what extent the two time series {V, .}, and {Y,,}  can be related by a linear filter.

Other spectral approaches, involving different generalisations of the auto-spectrum f(w) were
discussed in Jordanger and Tjgstheim (2017, section 1), and the majority of the approaches
were based on the following idea: The second order moments captured by the autocovariances
{7(h)},., can be replaced by alternative dependence measures &, computed from the bivariate
random variables (Y Y) , and a spectral density approach can then (under suitable regularity

t+h? Tt

conditions) be defined as the Fourier transform of {¢, } For multivariate time series, the

heL®
natural extension is then to define similar measures fk; for the bivariate random variables
(Y,,.n»Y,,), and then use the corresponding Fourier-transform as an alternative to the cross-
spectrum f,,(w).

It does not seem to be the case (yet) that multivariate versions have been investigated for all
of the possible generalisations of the auto-spectrum f(w), but some generalisations do exist.
The first extension of the cross-spectrum f,,(w) along these lines is the polyspectra introduced
in Brillinger (1965), which is the multivariate version of the higher order moments/cumulants
approach to spectral analysis, see Brillinger (1984, 1991); Tukey (1959). Another generalisa-
tion of f,,(w) is given in Chung and Hong (2007), where the generalised function approach
introduced in Hong (1999) is used to set up a cross-spectrum that can be used for the testing of
directional predictability in foreign exchange markets.

A local Gaussian spectral density f(w) for univariate strictly stationary time series was de-
fined in Jordanger and Tjgstheim (2017), based on the local Gaussian auto-correlations p,(h)
from Tjgstheim and Hufthammer (2013). A simple adjustment gives the local Gaussian cross-
correlations p,, (h) for multivariate strictly stationary time series, from which a local Gaussian
analogue f,, (w) of the cross-spectrum f,,(w) can be constructed using the Fourier transform.
The local Gaussian version of the cross-spectrum enables local Gaussian alternatives to be de-
fined of the cospectrum, quadrature spectrum, amplitude spectrum, and phase spectrum, by
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simply copying the setup used in the ordinary (global) case. Local Gaussian analogues of the
coherence and squared coherence were investigated in the preparation for this paper, but then
discarded, see remark 2.5 for further details.

An overview of the paper is as follows: Section 2 defines the local Gaussian cross-spectrum
fren(w), which immediately gives the related local Gaussian variants of the cospectrum, quadra-
ture spectrum, amplitude spectrum and phase spectrum from eq. (1.2). The asymptotic theory
for the estimators are then presented (some technical details and proofs are postponed to the
appendices). The real and simulated examples in section 3 shows that estimates of f,, (w)
can be used to detect and investigate nonlinear structures in non-Gaussian white noise, and
in particular that f,, (w) can detect local periodic phenomena that goes undetected in an or-
dinary spectral analysis. Note that the scripts needed for the reproduction of these examples
are contained in the R-package localgaussSpec,’ where it in addition is possible to use an
interactive solution to see how adjustments of the input parameters (used in the estimation al-
gorithms) influence the estimates of f,, (w). A discussion is given in section 4, and section 5
presents the conclusion.

2 Definitions

This section will present the formal definitions of the local Gaussian versions of the cross-
correlation f,,(w) and its derived entities. The details are almost identical to those encountered
when the local Gaussian spectral density was introdued in Jordanger and Tjgstheim (2017),
and the present discussion will thus only give short summaries of descriptions and arguments
already undertaken in (Jordanger and Tjgstheim, 2017).

2.1 The local Gaussian correlations

At the core of the generalisation of eq. (1.1) lies the local Gaussian correlation p, from Tjgs-
theim and Hufthammer (2013). The theoretical treatment can be based directly on p,, but
the numerical convergence of the estimation-algorithm might then sometimes fail, in partic-
ular if the samples contains outliers. As noted in (Jordanger and Tjgstheim, 2017, sec-
tions 2.1.2 and 2.1.3), this estimation-problem can be countered by the help of the two revised
versions p,. and p,,,, where a normalisation of the marginals (see definition 2.1 below) are
performed before the estimation-algorithm is used. The numbers 5 and 1 refer to whether the
estimation-algorithm use a local Gaussian correlation that originates from a five-parameter or
a one-parameter local Gaussian approximation, as shown below,

v|1°

U)s(w;ﬂlvﬂmanawp) = o202(1—p?)

1 _ o} (wl —Hq )2_2‘71‘72P(w1 —Hq ) (“’2 _H2)+‘7§ (w2 “Ho )2
2roioa/Ip? €xXp )

210,04
(2.1a)
]2* W, w. “12
Uy (wip) = e exp { A (2.1b)

Both p,; and p,, can be used as the starting point for the theoretical investigation, and the
notation p, will be used to indicate that both of the alternatives are discussed simultaneously.
Although both of the alternatives can be used, only the constructions based on p, . will in

! Use devtools::install_github("LAJordanger/localgaussSpec") to install the package. See the doc-
umentation of the function LG_extract_scripts for further details.
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general be able to properly detect local properties of the investigated time series. The discussion
in (Jordanger and Tjgstheim, 2017, appendix C.6)) gives some reasons for the failure of the
one-parameter local Gaussian approach in this context.

Remark 2.1. In order to have a unified notation, the two functions in eq. (2.1) will later on be
denoted by 9, (w; GP), where additional indices will be added to 6, in order to identify the
targeted density and the point of investigation.

2.2 The local Gaussian cross-spectrum

The definition of the local Gaussian cross-spectrum density is almost identical to the definition
of the local Gaussian spectral density from (Jordanger and Tjgstheim, 2017, section 2.2),
which in this paper henceforth will be referred to as the local Gaussian auto-spectrum.

Definition 2.1. For a strictly stationary multivariate time series {Y,},_,, where

Y, = (Y,

t 1,69 "

te?’
. KM), the local Gaussian cross-spectrum of the marginal time series {Yk’z }tEZ

and {Yw}fgv/ is constructed in the following manner.
(a) With G, and G, the univariate marginal cumulative distribution of respectively {Yk’z }tez
and {Yu}tez, and ® the cumulative distribution of the univariate standard normal dis-
tribution, define normalised versions {Z"‘vl}tez and {Zm}zez by

{Z., =2 (GC.(V. )} {Z.=27(G(Y))} o 2.2)

= (Zk:mw Z“), a
local Gaussian cross-correlation p,,,,, (h) can be computed, where the p specifies if the
correlations stems from a one or a five parameter local Gaussian approximation of the
bivariate density of Z,,, , at (v,,v,).

(c) When ), _, ’pumlp(hﬂ < 00, the local Gaussian cross-spectrum at the point v is de-
fined as

(b) For a given point v = (v,,v,) and for each bivariate lag h pair Z,

kl:h:t *

Frown@) = D P (B) e we [-11]. (2.3)

h=—o0

Remark 2.2. The definition of the local Gaussian auto-spectrum is in essence the same as the
one given here for the local Gaussian cross-spectrum, with the minor adjustment that £ = £ in
the auto-spectrum case — which requires the added convention that p,, , (0) = 1 for all points v.

The basic properties of the local Gaussian cross-spectrum are quite similar to those encoun-
tered for the local Gaussian auto-spectrum in (Jordanger and Tjgstheim, 2017, lemma 2.3).

Lemma 2.2. The following properties holds for f,,., . (w).
(@) [fiw, (W) coincides with f,,(w) for all v € R* when {Y,},_, is a multivariate Gaussian
time series.

(b) The following holds when © = (v,,v,) is the diagonal reflection of v = (v,,v,);

fke;u\p(w) - fzk-,;mp(w)7 (2.4a)

fwm\p(w) = pu;u\p(o) + Z pw:mp(h) et 4 Z pkl:v‘p(h) ce AR (2.4b)
h=1 h=1
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Proof. Ttem (a) follows since the local Gaussian cross-correlations p,,., . (h) by construction
coincides with the ordinary (global) cross-correlations p(h) in the Gaussian case. For the proof
of item (b), the key observation is that the diagonal folding property that was observed for the
local Gaussian auto-spectrum, see (Jordanger and Tjgstheim, 2017, lemma C.1), extends
directly to the present case, i.e. p,,,(—h) = p,,,(h), where © = (v,,v,) is the diagonally re-
flected point corresponding to v. This implies that f,, (W) = fi.,(—W) = fi.4,(w), and it
also follows that eq. (2.3) can be reexpressed as eq. (2.4b). ]

2.3 Related local Gaussian entities
From the definition of the local Gaussian cross-spectrum, it is possible to define related spectra
in the same manner as those mentioned for the ordinary spectrum in eq. (1.2).

Definition 2.3. The local Gaussian versions of the cospectrum c,,(w), the quadrature spec-
trum q,,(w), the amplitude spectrum «,,(w) and the phase spectrum ¢, ,(w), are given by

Cu:mp(w) = Re (fu;u\p(w)) = pu;u\p(o) + Z Cos (27“*}]7‘) I:pkf:v\p(h’) + pu;mp(hﬂ , (259)

h=1
Qurop (@) 1= =T (f, (@) = D sin (270h) [py,(B) = Py, (W] (2.5b)
h=1
gy (@) = MO (f01, () = 1/ 02, (©) + G () (2.5¢)
Brpeupp (W) = Arg (fk_[:v‘p(w)) € (—m, 7). (2.5d)
Remark 2.3. The sums occurring in eqgs. (2.5a) and (2.5b) follows from eq. (2.4b). Equa-
ti(:;l (2.(4:‘1)) gives cum‘p(w) = clkw(w), qkemlp(w) = —qlkm(w), akl;v‘p(w) = aw(w) and quMmlp(w) =
o (W)

Remark 2.4. For Gaussian distributions, the local Gaussian correlations will always be equal
to the ordinary (global) correlations,” and the local Gaussian constructions in definitions 2.1
and 2.3 will thus coincide with the ordinary (global) versions for multivariate Gaussian time
series. A comparison of the local and global estimates in the same plot is thus of interest when
a given sample is considered, since this could detect nonlinear interactions of the time series
under investigation.

Remark 2.5. Tt is possible to define a local Gaussian anaologue of the squared coherence men-

tioned in section 1 by replacing the ordinary cross- and auto-spectra with the corresponding lo-

cal Gaussian versions, i.e. the object of interest would be Q,, ., (W) = f,.0, (W) 0 (W) / Frrn)p (W) frpin) (@)
This approach was investigated in the preparation of this paper, but it has not been included

here since Q,, . (w) in general lacked the nice properties known from the ordinary global case.

In particular, the local Gaussian auto-spectra f,, . (w) and f,,, (w) will in general be com-

plex valued functions, so an inspection of @, (w) must thus be based on plots of its real and

imaginary parts (or its amplitude and phase). Moreover, these plots did more often than not

turn out to be rather hard to investigate, since the estimates of f,, , (w) and f,,, (w) (for some
distributions and some frequencies w) gave values very close to zero in the denominator.

2This is due to the way the local Gaussian correlation is defined, see Tjgstheim and Hufthammer (2013) for
details.
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2.4 Estimation

The estimation of the local Gaussian cross-spectrum f, . (h) from section 2.2 follows the
same setup that was used in (Jordanger and Tjgstheim, 2017, section 2.3) for the estimation
of the local Gaussian auto-spectrum, with the obvious difference that some extra indices are
needed in the present case. The estimation of the related spectra c,,,,,,(h), ¢, (1)s Qypy, (7))
and ¢, (h) from section 2.3 is then obtained from the estimate of f,,, (%) in an obvious
manner.

Definition 2.4. For a sample {yt = (Y., ,ydyt) }:;1 of size n from a multivariate time se-
ries, an m-truncated estimate f?ﬁv\p(w) of [rep, (W) is constructed by means of the following

procedure.
(a) Use the univariate marginals {ykht};l and {y“}::l to find estimates é,”, and @m of
the corresponding marginal cumulative distribution functions, and compute from this the

pseudo-normalised observations { = (Gk . (yk i)) }::1 and { = ¢ (GZ . (yz t)) }n:l.

(b) Create the lag I pseudo-normalised pairs { 2y o Ze, t)} "forh =0,...,m, and esti-
mate for the point v = (v,, v,) the local Gaussian cross- correlazions {Prvwrp(h]p) }
where the {b,}"  is the bandwidths that are used for the different lags.

(c) Create the lag h pseudo-normalised pairs {(Z,,,,,%,.) }t;’ forh=1,...,m, and esti-
mate for the diagonally reflected point © = (v,,v,) the local Gaussian cross-correlations

(P (B},
(d) Adjust eq. (2.4b) from lemma 2.2(b) with some lag-window function )\ (h) to get the

m

h=0"

estimate
fl:Zv\p(w) = ﬁum\p(o) + Z )\rn,(}L) : I?)\ek;mp(h) SerImen + Z )‘m(h> : Z)\Ici,:'u“)(h) : eizﬂw}ba
h=1 h=1
(2.6)
where the {b,}"_ has been suppressed from the notation in order to get a more compact
formula.
Definition 2.5. For a multivariate sample {y,},_, of size n, as described in definition 2.4, the

m-truncated estimates of the local Gaussian versions of the cospectrum, quadrature spectrum,
amplitude spectrum and phase spectrum is given by

ZZ:'UM)(W) = Re (fk?:u\p(w)) = ﬁu:u\p(o) + Z COs (QWWh) [ﬁkl:'v\p(h) + ﬁlv[:ﬁ\p(h)] , (27a)

C
h=1
(W) = —TIm (f7, (w) Zsm (27Wh) (Dt (h) = Prrarn(h)] - (2.7b)
h=1
a:lz:mp(w) = Mod (fl:;;v\p(w)) = \/(CZZ'U\p(w))Q + (qﬁ;v\p(w))Qv (2.7¢)
T (W) = Arg (f7, (w)) € (=, 7). (2.7d)

Remark 2.6. The comments in (Jordanger and Tjgstheim, 2017, remarks 2.5 to 2.8) holds for
the present case too. In particular, the estimated marginal cumulative distributions G , and G(, N

from definition 2.4(a) can either be based on the (rescaled) empirical cumulative dlstnbutlon
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functions or they could be built upon a logspline technique like the one implemented in Otneim
and Tjgstheim (2016). Furthermore, for the asymptotic investigation, the arguments in (Otneim
and Tjgstheim, 2016, Section 3) reveals that the pseudo-normalisation of the marginals does
not affect the final convergence rates, which (as was done in (Jordanger and Tjgstheim, 2017))
implies that the present theoretical analysis can ignore the distinction between the original
observations and the pseudo-normalised observations.

2.5 Asymptotic theory for ﬁ;{fw(w)

The asymptotic theory for the local Gaussian cross-spectrum £,
adjustments of the asymptotic theory that was developed for the local Gaussian auto-spectra.
Asin (Jordanger and Tjgstheim, 2017, section 2.4), the assumptions and results will be stated
for the original observations instead of the pseudo-normalised observations, since this makes

the analysis easier and since the final convergence rates are unaffected by this distinction, see

(w) follows from a few minor

remark 2.6 for details.

2.5.1 Some definitions and an assumption for Y,

As for the univariate case in (Jordanger and Tjgstheim, 2017), the assumptions to be imposed

on the k and ¢ components of the multivariate times series {Y,} __need to be phrased relative to

tEL
the bivariate pairs that can be created as different combinations of elements from the univariate
marginals {Yk, }fEZ and {Y;{J/ }tEZ. Note that the folding property from item (d) of definition 2.4
implies that it is sufficient to formulate the assumption based on non-negative values of the

lag h.

with Y, = (¥, ..V,
and for a selected pair of indices k and {, define the following bivariate pairs from the univariate

marginals {YM}fEZ and {YM}M.

Definition 2.6. For a strictly stationary multivariate time series {Y,},_,, ;

Y,.=Y.Y, h>0, (2.82)
}/Zk:h:i = I:}/é,prhv }/k,t:ll ) h 2 ]-7 (28b)

and let g,,, (Y,..,) and g,,.,.(Y,...) denote the respective probability density functions.

The basic idea for the construction of f,,, (w) is that a point v = (v, v,) should be se-
lected at which for all h the density functions g,,,(Y,,,) of Y.,,.,
P, (y,cM; 0, ,CMW), where ¢ is one of the bivariate Gaussian density functions from eq. (2.1).
The correlation-parameter from the approximating Gaussian density function will be denoted

Preoip (1), and it will be referred to as the local Gaussian lag h cross-correlation of Y, , , and

will be approximated by

Y, (in that order) at the point v.
This local investigation requires a bandwidth vector b = (b,, b,) and a kernel function K (w),
1

. . Yen= V1 YoV . . . N
which is used to define Ko (Y,,., — v) = EK(%, %), which in turn is used in

qu\kz:h:mp = ~/R2 Kk&h:b(yw:h - U) [wp (yu:}ﬁ ou\u:mp) - IOg /wp (yu:h; Ouw,:h\p) gke:h(yu:h)] dyke:m
2.9)
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a minimiser of which should satisfy the vector equation

Kk'f:hfb(yu;h - v) ukz;h\p (ykl:h; eu\uzh\p) [gu;h(yke;h) - wp (yu:rﬁ ov\ke:h\p)] dyke:h = 07
(2.10)

R2

whereu,,, (Yo euw:mp) = Vi, 1089, (Yo Hv\u:h\p) is the score function of 1, (y,,.,; lekl:,L‘p)
(with V,, . = 0/06,,,,,)- Under the assumption that there is a bandwidth b, , such
that there exists a minimiser 6,,,, ., of eq. (2.9) which satisfies eq. (2.10) for any b with
0<b<b this 6

lehi0” ikenp Will be referred to as the population value for the given band-
width b.

Remark 2.7. This approach was introduced in a more general context in Hjort and Jones (1996),
where it was used to define a local approach to density estimation, and the new idea in (Tjg@s-
t/l\leim and Hufthammer, 2013) was to focus upon the estimated local Gaussian parameters
O,jecnip
eters was investigated in (Tjgstheim and Hufthammer, 2013) by the help of the Klimko-Nelson

approach’ and a suitably defined local penalty function Q 0, k-é:h|p) (see eq. (B.1) in
appendix B.1).

(instead of the estimated densities). The asymptotic properties of the estimated param-

u\ke:hm,\p(

The assumptions to be imposed on Y, is related to the estimation of eq. (2.10), and thus
requires a few additional definitions.

Definition 2.7. For1), (yk s 0})) the local Gaussian density used when approximating g,,., (y,,.,)
at the point v = (v, v,), and for @,,,,, . the population value that minimises the penalty func-
tion G, g, from eq. (2.9), define for all h € Nand all g € {1,...,p}

0
Unsngs (W) = 55— 108 (4, (8043 6,)) ; .11

P (ykl:h;g ):("U?eu\kz:h:b\p)

where 8/00,, is the ¢ partial derivative (with respect 10 0,).

The following requirements on the kernel function are identical to those given in (Jordanger
and Tjgstheim, 2017, definition B.9).

3The Klimko-Nelson approach (see Klimko and Nelson (1978)) shows how the asymptotic properties of an
estimate of the parameters of a penalty function () can be expressed relative to the asymptotic properties of
(entities related to) the penalty function itself. The interested reader can consult (Jordanger and Tjgstheim,
2017, appendix B.1) for a more detailed presentation of the Klimko-Nelson approach when a local penalty-
function is used.
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Definition 2.8. From a bivariate, non-negative, and bounded kernel function K (w), that sat-

isfies

/ZK(wl,wz) dw,dw, =1, (2.12a)

R

K,..(w,) = lK(w17 w,) wt dw, is bounded for k € {0, 1,2}, (2.12b)
R

K,,(w,) = ]RlK(wl,wz) ws dw, is bounded for ¢ € {0,1,2}, (2.12¢)

/RZK(wl,wZ) |wiw;| dw,dw, < oo, k>0andk+(<2-[v], (2.12d)

where v > 2 is from assumption 2.1(b) (and [-] is the ceiling function), define

1 -V, Yy — U,
Eno(Yhn = 0) = 3K <y”b yb> : (2.13)

172 1 2

Definition 2.9. Based on'Y,,, . u,,.,...,(w) and K,.,(y,,, — v), define the new bivariate ran-

dom variables X,:}‘f;uq:,, as follows,

X:J:I;r:q:t =V bleKh’b(Yl-cl:h:t - ’U) uke:h,:q:b(}fu:h:t) . (2'14)

Note that a product of the random variables X ,:‘)f’h:q:,, and X°.... will be a function of Y, i
and Y,

2,87

Yoo Yoo
0,6° © k,s+i
a bivariate, trivariate or tetravariate function. The expectation of the product X ,Z}‘f;,,:q:,, X
will thus (depending on these indices) either require a bivariate, trivariate or tetravariate density

function.

which depending on the configuration of the indices h, i, s, t will be either

Assumption 2.1. The multivariate process {Y,}, , will be assumed to satisfy the following
properties, with v = (v,, v,) (initem (d)) the point at which £ (w), the estimate of f,,, (w),

Lolp
is to be computed.

(@) {Y}},, is strictly stationary.
(b) {Y.},_, is strongly mixing, with mixing coefficient o(j) satisfying

> it leG) " <o forsomer >2anda>1-2/v. (2.15)
=1
(c) Var(]|Y;||?) < oo, where || - || is the Euclidean norm.

The bivariate density functions g,,,(Y,,.,.) and g,,.,(y,...), corresponding to the lag h pairs
introduced in eq. (2.8), must satisfy the following requirements for a given point v = (v,,v,).



132 Papers

) g,,.,(y,,.,) is differentiable at v, such that Taylor’s theorem can be used to write g, ., (y,,.,) as

gk;e:h,(yu:h,) = gh('v) + gh(v)/ ['ykl:h, - ’U} + mh,(yke:h)/ [yk[,:h, - ’U] ) (2-16)

!
ykf:h_”:|

with the same requirement for g,, , (y,,.,) at the diagonally reflected point © = (v,, v, ).
(e) There exists a bandwidth b,,, , such that there for every 0 < b < b, , is a unique min-
wlkenibl 1TOM €q. (2.9).

has a positive infimum, i.e. there exists a b, ,,,

) aL;ng(:h (Yyen)

where gh(v) = |:8(Zhgklé:h(ykf:h)

Yeo:n="v

and lim ‘R, (yké:h)7

Yo=Y

imiser 0, ,,.,,.,,, of the penalty function ¢
(f) The collection of bandwidths {b
such that

kk’:h:[)}h,g%

0<b = }lllég bw:h:m (2.17)

ke:0 :
which implies that this b, ,, can be used simultaneously for all the lags.

(g) For X ,f)fjuq:t from definition 2.9, the related bivariate, trivariate and tetravariate density
functions must be such that the expectations E [ X5, |, E[| Xii5...| ] and E [ X5 - X007, ]
all are finite.

Remark 2.8. The present assumption 2.1 is in essence identical to (Jordanger and Tjgstheim,
2017, assumption 2.1) with some extra indices, so the remarks from (Jordanger and Tjgstheim,
2017) is of intereset here too. In particular, the a-mixing requirement in item (b) implies that
Y, ..» and Y,  will be asymptotically independent as h — oo, i.e. the bivariate density functions
Gren (Y, ) Will for large lags h approach the product of the marginal densities, and the situation
will thus stabilise when h is large enough. This is in particular of importance for item (f), since
it implies that it will be possible to find a nonzero b,,, that works for all h. Moreover, the
finiteness assumptions in item (g) are always trivially satisfied if the required density-functions
are finite.

2.5.2 An assumption for (Y, ,.Y,,) and the score function u (w;0,) of ¢ (w;6,)
The following assumption is in essence identical to (Jordanger and Tjgstheim, 2017, assump-
tion 2.2), which was included due to the need for the asymptotic results from Tjgstheim and
Hufthammer (2013) to be applied for all the different lags h.

Assumption 2.2. The collection of local Gaussian parameters {01,‘ Mh‘p} at the point v for the
bivariate probability density functions g,,., (y,,.,), must all be such that

(@) u,(v;0,,,.,,) 7 0 for all finite A.

(b) limw,(v;0,,,,,) # 0.

Note that an inspection of the p equations in u (w;8,) = 0 can be used to identify when
items (a) and (b) of assumption 2.2 might fail, cf. the discussion in (Jordanger and Tjgstheim,
2017, section 2.4.2) for further details.

“Inequalities involving vectors are to be interpreted in a component-wise manner.

10
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2.5.3 Assumptions for n, m and b = (b,,b,)

The following assumption is identical to (Jordanger and Tjgstheim, 2017, assumption 2.3).
The internal consistency of it was verified in (Jordanger and Tjgstheim, 2017, lemma C.3).

Assumption 2.3. Let m := m_ — oo be a sequence of integers denoting the number of lags
to include, and let b :== b, — 0 be the bandwidths used when estimating the local Gaussian
correlations for the lags h = 1, ..., m (based on n observations). Let b, and b, refer to the two
components of b, and let o, v and a be as introduced in assumption 2.1(b). Let s := s, — 00
be a sequence of integers such that s = 0(\/nb1b2 /m) , and let 7 be a positive constant. The
following requirements must be satisfied for these entities.’

(a) logn/n(b,b,) —> 0, (only required for the case p = 5).

(b) nb,b,/m — .

(c) m’(b, Vb,) — 0, where 6 =2V %

d) /nm/bb, s a(s —m+1) — occ.
(e) m = o((nb,b,)" "), for some A € (0,7/(2+ 57)).
® m = ofs)

2.5.4 Convergence theorems for f,;;v‘p(w), a,p,,(w) and $k’" (w)

L:v|p

See appendix A for the proofs of the theorems stated below.

-~

Theorem 2.10. The estimate f;., (w) =¢.7, (w) —i-q.,, (w) of the local Gaussian cross-

spectrum [, (W) = ¢y, (W) =0 - Gy, (W), will under assumptions 2.1 to 2.3 satisfy
n(blbz)(p+l)/2/m . ([@zmp(‘”)} . {Cump(w)}) LN N( [O] 7 |:Uc2u:up(w) 0 }) 7
qkz?v\p(w) qkz:u\p(w) 0 0 U;\kz:v\p(w)
(2.18)

whenw%%-Z:{...,—l,—
are given by

,0,5,1, .. .}, where the variances o

Jreatp (W) and o, (@)

1L
27772

2 : 1 ~2 - 2 2 ~2 ~2
Uc\k/l:v\kl\p(w) = lim — (Jvup(o) + Z >\7n(h) - COS (27TWh) : {Uv\ktz\p(h’) + Uﬁ(kp(h)})

m—o0 1M, 1

(2.192)

2 : 1 - 2 a2 ~2 ~2
O troiely (W) = 77113;1)0 . (Z A2 (h) - sin®(2mwh) - {67, (R) + kap(h)}> , (2.19b)

h=1

with ;,,.(h) and 3, (h) the asymptotic variances related to the estimates p,,,, (h) and
Por.sip (), see theorem B.1 for the details.

The local Gaussian quadrature spectrum is identical to zero when w € % - Z, and for those
frequencies the following asymptotic result holds under the given assumptions

n(b,b,) "% /m - (ﬁ'zmp(w) - f,dw‘p(w)) LN N(O o? (w)) , w € % -Z. (2.20)

s Yelkeiv|p

SNotational convention: ‘v’ denotes the maximum of two numbers, whereas ‘A’ denotes the minimum.

11
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The asymptotic results for the local Gaussian amplitude- and phase-spectra is a direct conse-
quence of theorem 2.10 and (Brockwell and Davis, 1986, proposition 6.4.3, p. 211).

Theorem 2.11. Under assumptions 2.1 to 2.3, when o, (w) > 0 and w ¢ 1+ Z, the estimate

87y (@) =\ @1, (@))” + (@, () satisfies

\/ n(blbz)(p+l)/2/m : (akzu\p(w) - akem\p(w)) o N(07 Jj(w)) ) (2.21)

(w) (from eq. (A.9) in theorem 2.10) as

where o7(w) is given relative to 77, (w) and 77,

Of - (Ciz:u\p(w) : Ujkem\p(w) + qi@:'v“’)(w) : qu\ké:v\p(w)) /aiem\p(w)' (2'22)

Theorem 2.12. Under assumptions 2.1 to 2.3, when «

-~

(w) > 0andw ¢ % - Z, the estimate

ke:v|p

~

(@) = args (67, (w) —i- g, (w)) satisfies

VLS i (82, () = Gy (@) =5 N(0,02()) (2.23)

where o;(w) is given relative to 03,,., (w) and 0}, .(w) (from eq. (A.9) in theorem 2.10) as

4 q|ke:v|p
Oj(w) = (qil:v\p(w) ! Uju:v\p(w) + Ci[:v\p(w) ' Ujkl:v\p<w)) /Oé:'[:‘u\p(w)' (2'24)

Remark 2.9. The asymptotic normality results in theorems 2.10 to 2.12 do not necessarily
help much if computations of pointwise confidence intervals for the estimated local Gaussian
estimates are of interest, since it in practice may be unfeasible to find decent estimates of the
(w) that occurs in theorem 2.10. The pointwise confidence
intervals will thus later on either be estimated based on suitable quantiles obtained by repeated
sampling from a known distribution, or they will be based on bootstrapping techniques for those
cases where real data has been investigated. Confer Terdsvirta et al. (2010, ch. 7.2.5 and 7.2.6)
for further details with regard to the need for bootstrapping in such situations.

. 2 2
variances Uc\kz;u\p(w) and Oqirevlp

3 Examples

This section will investigate if the m-truncated estimates of the local Gaussian cross-spectrum
Jiewpp (W) might be of interest to consider when multiviarate time series are encountered. Since
f,;fv‘p(w) is complex-valued, the actual investigation will be based on plots of the correspond-
ing local Gaussian versions of the cospectrum, quadrature spectrum, phase spectrum and the
amplitude spectrum.

The present setup is similar to the one used for the investigation of the local Gaussian auto-
spectrum, see (Jordanger and Tjgstheim, 2017, section 3), i.e. it will first be checked that
the expected result is obtained when the origin of the data is a bivariate Gaussian time series.
After this a simulation from a bivariate extension of the local trigonometric time series from
(Jordanger and Tjgstheim, 2017, section 3.3.2) will be considered, and there will moreover
be an example based on real multivariate data together with a simulation from a model based
on these data. As in (Jordanger and Tjgstheim, 2017), it will be seen that plots related to the
estimated ﬁfzv‘p(w) might be useful as an exploratory tool, i.e. that this approach can detect
nonlinear dependencies and periodicities between the variables.
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 135

Several parameters must be specified in order for an m-truncated estimate of f,,, (w) to be
computed, and for the examples in the present paper the following values will be used:

1. p, the number of parameters in the local Gaussian approximation. Only the value p = 5
will be used in the present examples, since the results based on p = 1 in general fails
to capture the local structure in a proper manner (see the discussion in (Jordanger and
Tjgstheim, 2017, section 3.7) for further details).

2. v = (v,,v,), the points to investigate. The present investigation will consider points
whose first and second coordinates correspond to the 10%, 50% and 90% percentiles
of the standard normal distribution, i.e. the values are —1.28, 0 and 1.28. Information
about the point of investigation is contained in the upper right corner of the relevant plots,
where it will be marked as 10%: : 507% and so on.

3. w, the frequencies to investigate. Values between 0 and %

4. b= (b,,b,), the bandwidth-vector to be used when computing the local Gaussian auto-
correlations. The value b = (.6, .6) has been used for all of the cases in this paper.

5. m, the truncation level, i.e. the number of lags to include in the estimate :j’;(w) The
value m = 10 has been used in this investigation, and this number is by default given in
the upper left corner of the relevant plots.

6. A, (h), the weighting function to be used for the smoothing of the different lags. The
Tukey-Hanning lag-window kernel has been used for all the present examples, i.e.

1 b < m.
M(h) =42 (1+cos(m- L)) |n] <m,
0 |h| > m.

Remark 3.1. This list of parameters is similar to the one used when estimating the local Gaus-
sian auto-spectra in (Jordanger and Tjgstheim, 2017, section 3.1), with the main exception
that the value 0.6 is used instead of 0.5 in the bandwidth vector b. This adjustment is partially
due to the fact that the time series in this paper are sligthly shorter than those used in (Jordanger
and Tjgstheim, 2017), i.e. length 1859 versus length 1974. (All the time series have the same
length as the one encountered for the real sample.)

Remark 3.2. It was noted in (Jordanger and Tjgstheim, 2017) that it was natural to require
that the bandwidth b = (b,, b,) should satisfy b, = b, when the local Gaussian autocorrelations
Priwlp(t) should be estimated, since both of the components in the lag / pseudo-normalised
pairs originated from the same univariate time series. For the estimation of local Gaussian
cross-correlations p,,, . (h), it is the pseudo-normalisation of the marginals that justifies the
assumed equality of b, and b,.

Remark 3.3. The pointwise confidence bands® shown in the plots later on are all based upon
R =100 replicates. Repeated independent samples from the known model was used to con-
struct the confidence bands in section 3.3, whereas block-bootstrap was used for the real data
example in section 3.4. The lower and upper limits of the pointwise confidence bands are based
on the 0.05 and 0.95 quantiles of the resulting collection of estimated local Gaussian spectral
densities (truncated at lag m), and thus gives estimated 90% pointwise confidence bands for
CZZ:u\p(w)v qulz:v\p(w)’ azlz:u\p(w)’ and ¢22:v‘p(w)~

5The pointwise confidence band gives for each frequency w a confidence interval for the values of i (W)s

Uty (W)s O, (), and 7 (w).
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Remark 3.4. Tt will in general be hard to know in advance which input parameters it would be
natural to employ for a given time series, and it is thus necessary and recommended to find
estimates fk’;ﬁmp(w) for several different parameter combinations and then use an interactive
tool to inspect the corresponding plots to see if some interesting features might be present. The
R-package localgaussSpec’ has been created to take care of both of these parts, i.e. it allows
an integrated interactive investigation of the results by means of a shiny-application.®

Remark 3.5. The scripts that generated the plots presented in this paper is included as a part of
the R-package localgaussSpec, so the interested reader can run these and check out how the
plots change when the input parameters in the estimation algorithm are modified. Note that any
conclusions based on individual static plots, like those presented in this paper, in general should
be considered with some caution, in particular when there is a lack of data-driven methods that
can justify the parameter-configuration that was used in the estimation-algorithm. Moreover,
it is important to be aware of the fact that small-sample variation might occur not only if an
estimate is computed for a time series sample that is too short, but that it also can be small-
sample variation that dominates if the point v lies too far out in the periphery, or if the truncation
level m and the bandwidth b are not keept within reasonable limits. See the discussion in
section 4 for further details.

Remark 3.6. The R-package localgauss, see Berentsen et al. (2014), was used for the esti-
mation of the local Gaussian auto- and cross-correlations for the p = 5 case. These estimates
are returned with an indicator (named eflag) that reveals whether or not the estimation algo-
rithm converged numerically to the estimate, and this numerical convergence-information has
then been added to the relevant plots in their lower left corner. In particular, ‘NC = 0K’ will
be used to show that all the required estimates had a successful numerical convergence. Con-
trary, ‘NC = FAIL’ will represent that problems did occur during the estimation algorithm. It
should be noted that convergence-problems hardly occurs when the computations are based on
pseudo-normalised observations.

3.1 Some basic simulations

This section will check that the estimates of f7., (w) behaves as expected for a few simple
simulated bivariate examples, where the underlying models in essence are bivariate extensions
of the models encountered in (Jordanger and Tjgstheim, 2017, section 3.3), and it will be seen
that a joint inspection of the Co-, Quad- and Phase-plots might be useful as an exploratory tool
for nonlinear dependencies in multivariate time series. The Amplitude-plots have not been
included here since the interesting details (in most cases) already would have been detected by

the other plots.

3.1.1 Bivariate Gaussian white noise

It is known from lemma 2.2(a) that the local Gaussian cross-spectrum coincide with the ordi-
nary cross-spectrum when the time series under investigation is Gaussian. The plots in fig. 1
shows the Co-, Quad- and Phase-plots based on 100 independent samples of length 1859 from
a bivariate Gaussian distribution with standard normal marginals and correlation 0.35. The
left column of fig. | shows the situation for a point off the diagonal, whereas the right column

7See footnote 1 (page 3) for details about the installation of the localgaussSpec-package.
8See Chang et al. (2017) for details about shiny.
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 137

shows the situation for a point at the center of the diagonal, i.e. v, = v, = 0. Note that the
global spectra are identical for all the points, i.e. the red components are the same for each row
of fig. 1.

In this simple case, where the true values of the local Gaussian versions of the spectra co-
incides with the ordinary global spectra, it follows that the Co-, Quad- and Phase-spectra (for
any truncation level m) respectively should be the constants 0.35, 0 and 0. Figure 1 shows that
the red and blue dotted lines, that respectively represents the estimates of the global and local
m-truncated spectra,’ seems to match these true values quite reasonably — and this provides a
sanity check of the code that generated these plots. Note that the 90% pointwise confidence
interval for the local Gaussian versions (blue ribbons) are wider than those for the ordinary
spectra (red ribbons) since the bandwidth used for the estimation of the local Gaussian cross-
correlations, in this case b = (0.6,0.6), reduces the number of observations that effectively
contributes to the computation of the local Gaussian spectra.

075 - =0 Co, 10% :: 50% 075- m=10 Co, 50% :: 50%
PN p— e s 0 ]
g T s PO === == e e e e e
0.00 - 0.00 -
NC'= 0K NC = 0K
o0 o 02 03 o os 00 o1 02 0 os o5
0= m=10 Quad, 10% : 50% 4= m=10 Quad, 50% : 50%
02 02+
0 e e e S O ey e MR S - D07 e T S
0z 02
4 NC=0OK ‘ , ‘ ‘ ‘ s NC=0K ‘ ‘ ‘ ‘
0 o 02 o3 o os o o o2 os o os
m=10 Phase, 10% :: 50% m=10 Phase, 50% :: 50%
2 2
o o
2 2]
NC = OK NC = OK

00 o1 02 03 04 05 00 01 02 03 04 0s

Figure 1:i.i.d. bivariate Gaussian white noise.

3.1.2 Bivariate local trigonometric examples

With the exception of the Gaussian time series, it is not known what the true local Gaussian
spectral densities should look like — which makes it hard to know whether or not the Co-, Quad-
and Phase-plots looks like they are expected to do. However, it is possible to extend to the bi-
variate case the strategy that was outlined in (Jordanger and Tjgstheim, 2017, section 3.3.2),
i.e. that bivariate local trigonometric time series can be constructed for which it, at some desig-
nated points v, can be given a heuristic argument for the expected shape of the local Gaussian
spectra.

The heuristic argument needed for the bivariate case is identical in structure to the one used
in the univariate case, and for the present case the reference for the plots later on is based on
the following simple bivariate model,

Y,, = cos (2rat + ¢) +w, and Y, , = cos (2rat + ¢ +0) + w,, 3.1)

The dotted lines represents the medians of the estimated values, whereas the 90% pointwise confidence intervals
are based on the 5% and 95% quantiles of these samples.
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where w, is Gaussian white noise with mean zero and standard deviation o, and where it in
addition is such that « and 6 are fixed for all the replicates whereas ¢ is drawn uniformly from
[0, 27r) for each individual replicate. A realisation with o = 0.75, & = 0.302 and 6 = 7/3 has
been used for the Co-, Quad-, and Phase-plots shown in fig. 2, where 100 independent samples
of length 1859 were used to get the estimates of the m-truncated spectra and their correspond-
ing 90 pointwise confidence intervals (based on the bandwidth b = (0.6, 0.6)). Some useful
remarks can be based on this plot, before the bivariate local trigonometric case is defined and
investigated.

Co, 10% :: 10%

m=10 Co, 50% :: 50%

Quad, 10% :: 10% 3- m=10

miE0 Phase, 10% :: 10% m=10 Phase, 50% :: 50%

2 i o
NQ =0K ; NC = 0K

00 o1 02 03 04 05 00 01 02 03 04 0s

Figure 2: Realisation of eq. (3.1), with & = 0.302 and § = 7/3.

Remark 3.7. In this particular case, the local Gaussian spectra in fig. 2 shares many similarities
with the corresponding global spectra. In particular, the peak of the Co- and Quad-plots lies both
for the local and global spectra at the frequency w = « (shown in the plots as a vertical line),
and the corresponding Phase-plots at this frequency lies quite close to the phase-adjustment
0 = /3 (shown as a horizontal line, positioned with an appropriate sign adjustment). This
phenomenon is present both for the point at 10%: : 10% and the point at 50%: : 50%, but it should
be noted that this nice match does not hold for all values of o. In fact, experiments with different
values for o (plots not included in this paper) indicates that the difference between the local and
global spectra becomes larger (in particular for the point 10%: : 10%) when o becomes smaller.
See (Jordanger and Tjgstheim, 2017, fig. 9) for an example of the results that can occur.

Remark 3.8. The values of the Co- and Quad-plots (for a given frequency w) are (for each
frequency) related to the corresponding values of the Amplitude- and Phase-plots by the fol-
lowing simple relations,

—Quad-plot/Co-plot = tan(Phase-plot), (3.2a)
Co-plot = Amplitude-plot - cos(Phase-plot), (3.2b)
—Quad-plot = Amplitude-plot - sin(Phase-plot), (3.2¢)

which follows trivially from the way these spectra are defined relative to Cartesian or polar
representations of the complex-valued cross-spectra, cf. eq. (1.2) and definition 2.3. For the
example investigated in fig. 2, where the Phase plot is close to —m/3 at o = 0.302, it thus
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 139

follows that the peak for the Quad-spectrum should be approximately v/3 times larger than the
peak of the Co-spectrum.

Remark 3.9. Tt can be enlightening to compare the Co-, Quad- and Phase-plots in fig. 2 with
a plot that shows the underlying estimates upon which the pointwise confidence intervals were
based. Such a plot is shown in fig. 3, where the left panel presents the complex-valued esti-
mates of the local Gaussian cross-spectrum at the frequency w = «, and where medians and
quantiles relative to a polar representation, i.e. z = re’, have been added to the plot. The
center panel shows the same estimated values, but this time the median/quantiles are based
on a Cartesian representation z = = + ¢y. These two panels gives a geometrical view to the
observations presented in remark 3.8. The third panel of fig. 3 presents a zoomed in version
of the estimated values of the local Gaussian cross-spectrum, and it gives a reminder that it
in principle is possible to extract more information from these estimates than what has been
done so far. A closer inspection of these estimates could e.g. be used to see how much they
(for the given m-truncation) deviate from the expected asymptotic distributions that was given
in section 2.5.4.

Remark 3.10. The wide pointwise confidence band observed for w near O in the 10%: : 10%-
Phase-plot, is related to the branch-cut that occurs at — in the definition of the phase-spectrum,
cf. definition 2.3. The simple algorithm used for the creation of the pointwise confidence inter-
vals has not been tweaked to properly cover the case where the majority of the estimates lies in
the second and third quadrants of the complex plane, which implies that the Co- and Quad-plots
should be consulted instead when the Phase-plot misbehaves in this manner.

4" m=10 ©=0.302 4" m=10 ©=0.302 -1.6i-
Polar, z=re" Cartesian, z £ x +iy
2i- 2i- i
0i—— | -‘ 0i- ! -2.4i- i
~2i- i ~2i- ;!6‘5 -2.8i-
4-NC=0K | 10%:10% _, NC=OK | 10%:10% -32- , .
% 2 6 3 4 % 2 b 2 4 s 20 2

Figure 3: Complex-valued representation of 100 samples of f, (w) from eq. (3.1), at the peak
frequency w = 0.302. Left panel: Pointwise 90% confidence bands based on polar
representation. Center panel: Pointwise 90% confidence bands based on Cartesian
representation. Right panel: Zoomed in plot.

The bivariate local trigonometric case: Two bivariate extensions of the artificial local
trigonometric time series from (Jordanger and Tjgstheim, 2017, section 3.3.2) will now
be considered. The parameters in these time series can be selected in such a manner that the
global spectra are similar to those encountered for white noise, whereas the local Gaussian
spectra contains different peaks at different points. The same heuristic argument that was used
in (Jordanger and Tjgstheim, 2017) implies that it is expected that the local periodicity at some
designated points should resemble those in fig. 2, and samples from these models can thus be
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used to check if the Co-, Quad- and Phase-plots can detect these local properties. It will be seen
that the answer indeed is affirmative for the designated points for both of the models considered
here, see figs. 4 and 6, but it will also be noted (see fig. 5) that the plots can be quite different
when other points are investigated.

The algorithm for the bivariate samples (Yw Yu) (defined below) is based on the univariate
algorithm from (Jordanger and Tjgstheim, 2017), i.e. the marginals Y, , and Y, , will both be
generated by the same local trigonometric formula that was used in (Jordanger and Tjgstheim,
2017, section 3.3.2), but with the distinction that an additional phase-adjustment is used for
the second component. To clarify this, here follows the required modification of the univariate
setup from (Jordanger and Tjgstheim, 2017), with the specification of the parameters used in
the present computations.

The bivariate local trigonometric time series are constructed by the following principle: For a
given r > 2, first select a collection of different base levels (L,, . .., L) at the y-axis, and a col-
lection of amplitudes (A,, ..., A,) and amplitude adjustments (A/, ..., A’). Create a stochas-
tic amplitude A, (t), for each ¢, by selecting uniformly a value from the interval spanned by
A, and A!. Then select a collection of frequencies (, ..., a,), and two collections of phase-
adjustments (¢,,...,¢,) and (6,,...,6.). Finally, assign a probability p, toeachi =1,...,r,
such that 7 p, = 1. These ingredients enables the definition of the following functions for
1=1,...,7,

C,.(t)=L,+ A(t) - cos 2ma,t + ¢,), (3.3a)
C,.(t) =L, 4+ A,((t) - cos 2mat + ¢, +0,), (3.3b)

from which the stochastic variables Y, , and Y, , can be created by means of the probabilities
(pys---,p.),1.e.let N, be arandom variable that with probability p, takes the value ¢, and define

Y, =3 O, 1{N, =i}, (3.42)
i=1

Y, = C, () 1{N, = i}. (3.4b)
i=1

The indicator function 1{} ensures that only one of the r functions in the sum contributes for a
given value ¢. Note that it is assumed that the phases ¢, are uniformly drawn (one time for each
realisation) from the interval between 0 and 27, and that it moreover also is assumed that the
stochastic processes ¢,, A,(t) and N, are independent of each other. Based on this, the auto-
and cross-covariances can can be given as functions of L, and p,, from which it then is fairly
easy to select a combination of input parameters that returns a (YM7 YM)—process that looks

like white noise.
The generating models for the two time series presented in this section both have r = 4

components with base levels L, in (—2, —1,0, 1), amplitude-functions A,(¢) defined by A, in
(1.0,0.5,0.3,0.5) and A} in (0.5,0.2,0.2, 0.6), and frequencies ¢, in (0.267,0.091, 0.431, 0.270).
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 141

The probabilities p, in (0.05, 0.28, 0.33, 0.33) was used to sample'’ which component to include
inY,,andV,,.

The distinction between the two models are due to the selection of the additional phase-
adjustments ¢,. The model investigated in figs. 4 and 5 have a constant phase adjustment of
6 = /3, whereas the model investigated in fig. 6 have individual phase-adjustments given as
0,,0,,0,,0,) = (7/3,m/4,0,7/2).

To complete the specification of the setup, note that the 90% pointwise confidence intervals
in figs. 4 to 6 all are based on 100 independent samples of length 1859 from the above described
models, and that the bandwidth b = (0.6, 0.6) was used in the computation of the local Gaussian
cross-correlations.

Constant phase adjustment: The case where the phase difference § = /3 was used for

all the 6, is investigated in figs. 4 and 5. Figure 4 (see page 22) shows the Co-, Quad- and
Phase-plots for the three designated points 10%: : 10%, 50%: : 50% and 90%: : 90%, for which the
heuristic argumentation implies that the results should look a bit like the situation encountered
in fig. 2.
Remark 3.11. The three points investigated in fig. 4 corresponds to the function-components
in eq. (3.3) with indices ¢ = 2, 3, 4. The point that corresponds to the i = 1 component would,
due to the combination of the low probability p, and the placement of the level L , lie too far out
in the tail to be properly investigated by the present sample size and truncation point. The : = 1
component was included in the example in (Jordanger and Tjgstheim, 2017) in order to show
that an exploratory approach based on local Gaussian spectra can fail to detect local signals
that are much weaker than the dominating ones.

For the points investigated in fig. 4, it seems to be the case that the local Gaussian part of the
Co-, Quad- and Phase-plots together reveal local properties in accordance with the outcome
expected from the knowledge of the generating model — and these local structures are not de-
tected by the ordinary global spectra, which in this case (due to the values used for L, and p,)
are flat. The left column investigates a point at the lower tail of the diagonal, and it can there
be observed that both the Co- and Quad-plots have a peak close to the leftmost a-value — and
the value of the corresponding Phase-plot for frequencies close to this a-value lies quite close
to the phase difference between the first and second component. A similar situation is present
for the three plots shown in the right column, where a point at the upper tail of the diagonal are
investigated. Moreover, in accordance with the general observation in remark 3.8, the peaks of
the Quad-plots are higher than those of the Co-plots in this case due to the phase-difference 6
that was used in the input parameters.

For the center column of fig. 4, which investigates the point at the center of the diagonal, it
can be seen that the Quad- and Phase-plots in addition to the expected a-value also detects the
presence of the other a-values. The Phase-plot is for this point not that close to the expected
value, but that situation changes if the truncation is performed at a higher lag than m = 10. The
center column thus shows the importance of considering a range of values for the truncation
point when such plots are investigated. The additional peaks that are detected in the center
column are due to contamination from the neighbouring regions.

10The printed probabilities might not add to one! This is due to the fact that these values was rounded in R before
they were included in this document by the means of the R-package knitr, see (Xie, 2015, 2016) for details
about dynamic documents.
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Figure 5 present plots based on the same sample that was used for fig. 4, but now the investi-
gated points are no longer among the designated ones on the diagonal. The plots in fig. 5 shows
that the Co-, Quad- and Phase-plots at the point 10%: : 90% looks more like the i.i.d. white noise
that was encountered in fig. 1, whereas the plots for the two points 10%: :50% and 50%: : 907
does detect the presence of local phenomena. It might not be any obvious interpretation of
these plots when seen isolated, but it should at least be noted that the plots for the two points
10%: :50% and 50%: : 90% have troughs for the a-values that corresponds to the first and sec-
ond coordinates of these points — and this seen in conjunction with the previously investigated
points in fig. 4 does support the idea that there are local features in the data that depends on
these a-values.

Individual phase adjustment: Figure 6 investigates the same designated points as fig. 4 did,
but now the samples have been generated from the model where the second variate used the
individual phase-adjustments specified in (6,, 6,,6,,0,) = (/3,7 /4,0, 7/2). Horizontal lines
have been added to the Phase-plots to show all of these #,-values (adjusted to have the correct
sign), and for each of the designated points the intersection with the relevant vertical o,-line
has been highlighted to show the expected outcome based on the knowledge of the model.

The Co-, Quad- and Phase-plots in fig. 6 does behave in accordance with what was observed
in fig. 4, i.e. the Phase-plots lies close to the expected #,-value when the frequency w is near
the corresponding «,-value, and the height of the corresponding Co- and Quad-peaks are in
accordance with the values of the Phase-plots. In particular, the phase-adjustment is 6, = 7 /4
for the point 10%: : 10%, which implies that the Co- and Quad-peaks should rise approximately to
the same height above their respective baselines, which seems to be fairly close to the observed
result. For the points 50%: : 50% and 90%: : 90% the situation is clearer since the respective local
frequencies 6, = 0 and §, = 7/2 then implies that only the Co-plot should have a peak for the
point 50%: :50% and only the Quad-plot should have a peak for the point 90%: : 90%, again in
agreement with the impression based on fig. 6.

Remark 3.12. The examples investigated in figs. 2 to 6 do not satisfy the requirements needed
for the asymptotic results (both for the global and local cases) to hold true, in particular the
local Gaussian cross-correlations will in these cases not be absolutely summable.'' Despite
this, the examples are still of interest since they shows that an exploratory tool based on the
local Gaussian spectra in this case can detect information that is in agreement with what could
be expected based on the parameters used in the models for (Yw YM).

Remark 3.13. The generating model will of course not be known when a real multivariate time
series is encountered, so it is important to estimate the local Gaussian cross-spectrum at a wide
range of points v in the plane and a wide range of truncation levels m. This is necessary since
it can happen, like seen in fig. 5, that there are some points where the result might look like
it has been computed based on i.i.d. white noise, whereas other points shows that some local
phenomenon could be present.

Remark 3.14. Even when it might not be obvious how to interpret the results shown in the Co-,
Quad- and Phase-plots, it should be noted that they can be used as an exploratory tool that can
detect nonlinear traits in the observations. Moreover, these plots can also be used to investigate
if a model fitted to the data contains elements that can mimic the observed features. The recipe

n this respect the situation is similar to the detection of a pure sinusoidal for the global spectrum.
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 143

for this approach would then be to first select a model, then estimate parameters based on the
available sample, and finally use the resulting fitted model to generate independent samples of
the same length as the sample. Section 3.2 will show an example of this approach, cf. figs. 9
and 12.
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 147

3.2 Areal multivariate time series and a (badly) fitted GARCH-type

model
This section will show how the Co-, Quad- and Phase-plots can be used as an exploratory tool
on some financial data, and then it will be seen how this approach can be used to get a visual
impression of the quality of a multivariate GARCH-type model fitted to these data.

The multivariate time series sample to be considered in this section will be a bivariate subset
of the (log-returns of the) tetravariate EuStockMarkets-sample from the datasets-package of
R, R Core Team (2017). This data-set has been selected since it has a length that should be large
enough to justify the assumption that the observed features in the Co-, Quad- and Phase-plots
are not solely there due to small sample variation.

The EuStockMarkets contains 1860 daily closing prices collected in the period 1991-1998,
from the following four major European stock indices: Germany DAX (Ibis), Switzerland SMI,
France CAC, and UK FTSE. The data was sampled in business time, i.e., weekends and holidays
was omitted.

The log-returns of the EuStockMarkets values gives a tetravariate data-set that it seems nat-
ural to model with some multivariate GARCH-type model, and the R-package rmgarch, Gha-
lanos (2015b), was thus used for that purpose. Note that the present paper only aims at showing
how this kind of analysis can be performed, so only one very simple model was investigated —
which thus gave a rather badly fitted model for the data at hand.

3.2.1 The DAX-CAC subset of the EuStockMarkets-log-returns

The log-returns of the bivariate EuStockMarkets-subset (Y,,Y;) = (DAX, CAC), of length
1859, will now be investigated. The individual pseudo-normalised traces of these observations
are shown in fig. 7, and it will be from these pseudo-normalised observations that the local
Gaussian cross-correlations will be computed.

The plots of the resulting m-truncated global and local spectra are shown as the red and
blue lines in fig. 9, and the 90% pointwise confidence intervals has been created based on 100
block-bootstrap replicates using a block-length of 100.

No data-driven algorithm is present for the selection of the blocklength in this case, cf. sec-
tion 4.1, and the rationale for the use of a given blocklength is thus based on a visual inspec-
tion of fig. 8, where the plot of the local Gaussian cross-correlations (based on the bandwidth
b = (0.6, 0.6) for all the lags) are presented for the three points that will be investigated in fig. 9.
It seems plausible, based on an inspection of fig. 8, that a blocklength of 100 might be needed
in this case — but note that a more rigorous investigation should have been employed if this was
to be an actual in depth analysis of the dependence on the blocklength.

The three points considered in fig. 9 all lie on the diagonal, since it seems easier to give an
interpretation for those points. In particular, the point 10%: : 10% represent a situation where the
market goes down both in Germany and France, whereas the points 50%: : 50% and 90%: : 907
similarly represent cases where the market either is stable or goes up in both countries.

Thus, for the purpose of the present paper, it suffices to point out that the Co-, Quad- and
Phase-plots of fig. 9 indicates that the data contains nonlinear traits, which in particular is
visible in the Co-plot for the point 10%: : 10% and for all the plots related to the point 90%: : 90%.
It should be noted that the Co-plots at the frequency w = 0 simply gives a weighted sum of the

local Gaussian cross-correlations (between (YM h Y:M)) seen in fig. 8, so the Co-plot peaks at
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w = 0 for the points 10%: : 10% and 90%: : 90% are thus as expected, and the lack of a Co-plot
peak at w = 0 for the point 50%: :50% also seems natural in view of fig. 8. It should also be
noted that the w = 0 peak for the 90%: : 90% Co-plot is lower than the corresponding peak for
10%: : 10%, but this seems in this case to be due to the low truncation level used for the plots, i.e.
these two peaks attain approximately the same height when a higher truncation level is applied.

It seems, for the particular parameter-configuration that generated the plots in fig. 9, to be
the case that the point 90%: : 90% has the most interesting Quad- and Phase-plots, but again,
as noted above, it may be premature to put too much emphasis on this particular plot given
the uncertainties involved in the selection of the bandwidth b, the truncation level m, and the
block-length to be used in the bootstrap. In particular the block-length is critical with regard
to this, since a shorter block-length tends to give wider confidence-intervals, and that might
result in plots where a seemingly significant difference between the local and global spectra
disappears.

It should also be noted that a low number of bootstrapped replicates can be a source of small
sample variation for the width of the estimated pointwise confidence intervals, and this is im-
portant to keep in mind if a minor gap is observed between the pointwise confidence intervals
for the local and global spectra. Such gaps could appear or disappear when the algorithm is
used to generate new computations based on the same number of bootstrapped replicates, a
behaviour that in particular has been observed for the rightmost peak/trough of the Quad- and
Phase-plots at the point 90%: : 90% in fig. 9.

This kind of ambiguity can be countered by increasing the number of bootstrapped replicates,
but that has not been done for the present example due to the uncertainty with regard to the size
of the selected blocklength. In particular, if fig. 9 is recreated with the blocklength 50 in-
stead of 100,'? then the pointwise confidence interval for the Phase-plot at the point 90%: : 90%
widens enough to remove those occurrences where it seems that it could be a significant trough
at the rightmost side. The peak at the center of the 90%: : 90% Phase-plot does however re-
main significantly different from the global spectrum even with a smaller blocklength, which
strengthens the impression that something of interest might be present at that frequency. How-
ever, it is important to keep in mind that this impression is based on the present combination
of bandwidth and truncation level — and there are at the moment no data-driven method for the
selection of these parameters. (A positive phase difference is consistent with the 90%: : 90%
cross-correlation plot in fig. 8, which might indicate that the DAX is leading over CAC when
the market is going up.)

Remark 3.15. Note that the shiny-interface in the R-package 1ocalgaussSpec should be used
if it is of interest to pursue a further analysis of the local Gaussian spectra of the (log-returns of
the) EuStockMarkets-data, since that enables an interactive investigation that shows how the
estimates vary based on different bandwidths b and truncation levels m, and moreover, it would
also allow an investigation of how much the selection of the block-length for the bootstrap-
procedure influences the widths of the pointwise confidence intervals in the Co-, Quad- and
Phase-plots.

12Based on the lower panel of fig. 8, it might be ample reason to consider a block-length of 50 to be too short.
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Figure 7: EuStockMarkets, pseduo-normalised components under investigation.
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 151

3.2.2 A simple copula GARCH-model fitted to EuStockMarkets

It might not be obvious how to interpret the Co-, Quad- and Phase spectra based on the log-
returns of the EuStockMarkets-data, but they do at least provide an approach where nonlinear
dependencies might be detected from a visual inspection of the plots.

Furthermore, it is possible to use this as an exploratory tool in order to investigate whether
a model fitted to the original data is capable of reproducing nonlinear traits that match those
observed for the data. The procedure is straightforward:

1. Fit the selected model to the data.

2. Perform a local Gaussian spectrum investigation based on simulated samples from the
fitted model. The parameters should match those used in the investigation of the original
data.

3. Compare the plots based on the original data with corresponding plots based on the sim-
ulated data from the model. It can be of interest to not only compare the Co-, Quad- and
Phase-plots, but also include plots that shows the traces and the estimated local Gaussian
auto- and cross-spectra.

For the present case of interest, item 2 of the list above implies that 100 independent samples
of length 1859 will be used as the basis for the construction of the Co-, Quad- and Phase-plots
of the fitted model, and the bandwidth b = (0.6, 0.6) will be used for the estimation of the local
Gaussian cross-correlations at the three points 10%: : 10%, 50%: : 50% and 90%: : 90%.

The model: The R-package rmgarch was used to fit a simple multivariate GARCH-type
model to the log-returns of the EuStockMarkets-data, in order to exemplify the procedure
outlined above, i.e. a copula GARCH-model (cGARCH) with the simplest available univariate
models for the marginals'® was fitted to the data, and the resulting model was then used to
produce figs. 10 to 12.

The traces: Figure 10 shows the pseudo-normalised trace of the Y, - and Y, -variables for one
sample from the tetravariate cGARCH-model, and this can be compared with the corresponding
pseudo-normalised trace of the DAX and CAC plot for the pseudo-normalised log-returns of the
EuStockMarkets-data, see fig. 7 on page 27. Obviously, a comparison of one single simulated
trace with the trace of the original data might not reveal much, and it should also be noted that
it in general might be preferable to compare the traces before they are subjected to the pseudo-
normalisation, since that could detect if the model might fail to produce sufficiently extreme
outliers.

The local Gaussian correlations: Box-plots, based on the 100 independent estimates of the
local Gaussian cross-correlations from the cGARCH-model, are shown in fig. 1 1. These can be
compared with the local Gaussian cross-correlations estimated from the original sample, shown
in fig. 8. It should be noted that the computational cost for the production of the box-plots in
fig. 11 is substantially larger than the cost for the production of the simpler plots shown in fig. §,
so it is preferable to restrict the attention to a shorter range of lags in fig. 11. Note also that
the wide range of lags included in fig. 8 is related to the need for a justification of the selected
block-lenght for the bootstrap-algorithm, and it should be possible to judge the suitability of
the fitted model from the shorter range of lags included in fig. 11.

13See Ghalanos (2015a) for details about the cGARCH-model and other options available in the rmgarch-
package.
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The impression from the lags included in fig. 11 is that the medians of the estimated local
Gaussian cross-correlations for the point 50%: : 50% lies quite close to zero, whereas the medi-
ans for the points 10%: : 10% and 90%: : 90% mostly lies slightly above zero. Almost none of the
boxes for the two latter points seems to be positioned in a manner consistent with the desired
outcome for a good match with the corresponding estimated values in fig. 8, and it might thus
be ample reason to suspect that this cGARCH-model might better be replaced with another
model instead.

The Co- Quad- and Phase-plots: Figure 12 shows the local Gaussian spectra for the same
points v and the same configuration of parameters as those used in fig. 9. The Co-, Quad- and
Phase-plots of fig. 12 does look like they could originate from i.i.d. white noise — which does
not come as a surprise in view of the information about the local Gaussian cross-correlations in
fig. 11. The Co-plots for the two points 10%: : 10% and 90%: : 90% does show that the estimates
of the m-truncated local Gaussian cospectra, i.e. the blue dashed lines, might have a peak at
w = 0 — but the 90% pointwise confidence intervals are too wide to support a claim that these
peaks are significant. A further comparison of these two Co-plots with the corresponding Co-
plots in fig. 9 (beware of different scales for the axes), does moreover show that the confidence
intervals from fig. 12 are too narrow (at w = 0) to encompass the peaks observed in fig. 9 —
which indicates that the selected model might be a rather bad approximation to the log-returns
of the EuStockMarkets-data. It thus seems advisable to look for some other model instead, a
natural conclusion given that no effort whatsoever was made with regard to finding reasonable
marginal distributions for the copula GARCH-model used in this discussion.

Remark 3.16. It should be noted that a local Gaussian spectra comparison of the original data
and the fitted model in practise also should include a comparison of the local Gaussian auto-
spectra of the marginals, as was done in (Jordanger and Tjgstheim, 2017). These auto-spectra
plots (not included in this paper) can provide some additional information useful for the model-
selection process. In particular, if a model-selection algorithm for GARCH-type models has
been used to pick one marginal model from a given collection of marginal models, then an
investigation based on the local Gaussian auto-spectrum might reveal if the selected marginal
model captures the local traits of the corresponding marginal observations in a reasonable man-
ner.

cGARCH, Y

B » 1 wwm i wwwww—wm s
wwwwm : w«wmwwm SO0

Figure 10: cGARCH, pseduo-normalised components under investigation.
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2.2 Nonlinear cross-spectrum analysis via the local Gaussian correlation 155

4 Discussion

This paper extends the local Gaussian auto-spectrum from Jordanger and Tjgstheim (2017) to
the case of the local Gaussian cross-spectrum, and it has been seen that this can be used as an
exploratory tool to detect non-linear traits in multivariate time series. The simulated locally
trigonometric examples in section 3.1.2 showed that nonlinear periodicities can be detected
with this machinery, but it should be noted that the selection of the point v = (v,,v,) was
pivotal with regard to what was detected. It was also observed, see the discussion in section 3.2,
that this local Gaussian approach to spectral analysis might be useful with regard to model
selection, i.e. that it can be used to check if a model fitted to the data can reproduce local traits
detected in the original sample.

This new local Gaussian approach to spectral analysis is still in its infancy, and many details
have not been looked into yet. Some details, i.e. those related to the selection of the input
parameters, have already been discussed in the treatment of the univariate case, see (Jordanger
and Tjgstheim, 2017, section 4), and these will only be briefly discussed in this section.

4.1 The input parameters

The selection of the point v and the sample length: It is important that the coordinates v,
and v, of the point v = (v,, v,) should not correspond to quantiles too far out in the tails, since
that could allow small sample variation to dominate even when the sample itself is large,'* cf.
the discussion related to (Jordanger and Tj@stheim, 2017, fig. 2) for further details.

The selection of the bandwidth b and the truncation level m: A problem that can arise
when several points {v,}_, are investigated at the same time, is that each point v, could have
its own optimal configuration of bandwidth b and truncation level m — and the question then
becomes whether these individual values should be used, or if it would be preferable to instead
search for some common values for the bandwidth b and the truncation level m. The interested
reader can find a more detailed discussion about this and related issues in (Jordanger and
Tjgstheim, 2017, sections 4.1 and 4.2)

The block-length: It was noted in (Jordanger and Tjgstheim, 2017, section 4.3) that the
standard algorithms for the selection of the bootstrap block-length depended on the (global)
spectral density, and this rendered them rather useless for samples from e.g. GARCH-type
models — see (Jordanger and Tjgstheim, 2017) for further details and references.

4.2 The smoothing of the estimates

The estimates of the local Gaussian auto- and cross-spectra are smoothed by the help of weight-
ing functions A (h), that work upon the estimated local Gaussian auto- and cross-correlations,
cf. definition 2.4(d). For the present investigation, the smoothing function has been inherited
from the one used in the global case.

A completely different smoothing strategy can, as explained in (Jordanger and Tj@stheim,
2017, section 4.4), be based on the observation that the estimated m-truncated local Gaussian
spectra corresponding to different points {v,}’_, will be jointly asymptotically normal and pair-
wise asymptotically independent (when m — oo and b — 0* as n — o). This implies that it
should be possible to find a smoothed estimate of the local Gaussian spectral density at a given

141t is possible to have a point v far out in the tails if the bandwidth b is large, but the result would then hardly
deserve to be referred to as an estimate of the local Gaussian spectral density at the point v.
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point v, by the help of the estimated values in a grid of points surrounding v. This approach
resembles the one used when the ordinary global spectral densities are computed based on the
periodogram,'” but with the important distinction that the smoothing in this case would be over
a grid of neighbouring points instead of a range of neighbouring frequencies.

The periodogram-approach for the estimation of the ordinary (global) auto- and cross-spectra
provides an efficient estimation regime due to the Fast Fourier Transform (FFT), which enables
the periodogram to be computed directly from the observations without the need for an explicit
computation of all of the estimated auto- and cross-correlations. The effectiveness of FFT is
linked to the product structure of the estimated covariance function, i.e. y(h) = Z?;l‘hl Yorin * Yoo
and a similar simple connection does not exist for the distribution based approach used for the
local Gaussian autocorrelation. The above mentioned grid-based smoothing approach for the
local Gaussian spectral density might thus be rather inefficient to use in practice, but it could
still be of interest to keep this approach in mind.

4.3 The visualisation of the local Gaussian cross-spectrum

The local Gaussian cross-spectrum is complex valued, which makes a direct graphical inves-
tigation of it a bit tricky. It is possible to use a solution like the one in section 3, where a
combination of the Co-, Quad- and Phase-plots together provide a graphical setup that enable
local traits and periodicities in the data to be discovered, but other alternative might also be of
interest to investigate. In particular, plots (like fig. 3) that individually might not be that infor-
mative could reveal interesting features if a sequence of them are interactively investigated by
the means of a shiny-interface, like the one used in the R-package localgaussSpec.

A completely different approach would be to estimate the local Gaussian cross-spectra for a
grid of points v in the plane, and then use three dimensional plots to see how (for a specified
frequency w) the real and imaginary parts, or the amplitude and the phase, varies over the grid.
The two dimensional contour-plots corresponding to these three dimensional plots might of
course also be considered, or alternative visualisations like the colour-coded phase plots from
Wegert and Semmler (2011).

An obvious drawback with the above mentioned approach is that these plots might not be
useful unless the number of points in the grid is (sufficiently) large, which could incur large
computational costs. It might, despite this, still be of interest to initiate an investigation us-
ing such an approach with a coarse grid, since that could detect regions containing promising
structures.

4.4 Possible applications

A key property of the local Gaussian spectral densities is that they for Gaussian time series
coincide with the ordinary spectral densities. This implies that a comparison of ordinary spec-
tra and local Gaussian spectra can detect the presence of non-Gaussian structures, which in
particular can be of interest for time series whose ordinary spectra looks like white noise. Any
peaks and troughs of the local Gaussian spectra can for such white noise cases naturally be con-
sidered as indicators of nonlinear structures in the time series under investigation, and it might
then in particular be of interest to investigate if periodicities in the local Gaussian spectra might
correspond to real phenomena in the data generating structure.

15See e.g. Brockwell and Davis (1986) for details.
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Estimates of the local Gaussian spectral densities might also be of interest to consider as
an informal tool in addition to existing tools for model selection for time series, i.e. estimates
based on repeated samples from a parametric model fitted to the original observations can be
compared with the corresponding estimates based on the original observations. Significant
differences between these estimates (taking the pointwise confidence intervals into account)
could indicate that the selected model might not be good enough, and that it thus might be
prudent to look for a better model.

These applications of the local Gaussian spectra could provide useful insight even when it is
unknown whether or not the investigated time series actually satisfies the requirements needed
for the asymptotic theory to work. It might however occur problems due to the (at the present
state of development) unresolved issues regarding the selection of the input parameters — in
particular, cases can be encountered where it is hard to figure out if a peak/trough represents
an actual nonlinear phenomenon, or if it is small-sample variation due to an unsavoury combi-
nation of input parameters. More work is needed in order to resolve these issues.

5 Conclusion

The local Gaussian cross-spectrum f,,, (w) can be used to detect nonlinear dependencies
between the marginals Y, , and Y,, of a multivariate time series {Y, = (Y, ,,...,Y,,)}, .
This provides, together with the local Gaussian auto-spectrum from Jordanger and Tj@stheim
(2017), alocal Gaussian approach to spectral analysis, which in particular can be used to detect
if the time series under investigation deviates from being Gaussian. For time series whose ordi-
nary auto- and cross-spectra are flat, any peaks and troughs from the local Gaussian approach

can then be considered indicators of local nonlinear traits and local periodicities.
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Appendix A: The proofs of theorems 2.10 to 2.12

This appendix presents the proofs of the asymptotic results stated in the main part of the pa-
per. The proof of the result for the m-truncated estimate of the local Gaussian cross-spectrum
Jiewpp(w) 18 in essence identical to the one encountered in Jordanger and Tjgstheim (2017) for
the local Gaussian auto-spectrum f,, . (w), whereas the proofs for the estimates of the local
Gaussian amplitude- and phase-spectra are identical in structure to those encountered in the
ordinary global case. Some technical details needed for the proof of theorem 2.10 are covered
in appendix B.

Proof of theorem 2.10, page 11.
The case w ¢ % - Z will be treated first, since the other case follows from a trivial adjustment of
the setup. The key observation for this case is that the sum that defines £, (w), see eq. (2.6)

in definition 2.4(d), implies that ¢,;, (w) and g,7,,,(w) can be realised as the following inner

ke:vp
products,
/C\}:Zv\p(w) = Alz\@(w) ) PM@MP(’U, 0) (A.1a)
akzv\p(w) = A'/q\rj,(w) : ‘Pk:e@,wp(va {’) ) (A.1b)

where A/, (w)and A/, (w) respectively contains the coefficients A, () cos(2rwh) and A, (h) sin(27wh),
and where sz:@\b\p(vv 'D) = [ﬁlk:f)\p(m)7 T ﬁlk:'ﬂﬂp(l)’ ﬁkl:'zﬂp(o)’ s 7ﬁkz;u\p(m)]l contains the
2m + 1 estimates of the local Gaussian cross-correlations (based on the bandwidth b). The

vector ﬁkz:@‘b‘p(v, ¥) can by the help of a suitable (2m + 1) x (2m + 1)p matrix E.  (based
on the vectors e/ that gives p,,,.(h) =€ -0,,,, ) be expressed as

sz:@,\b\p(vv v) = E;@p : ekﬂ:@\b\p(v7 0), (A2)
where ®k£@\b|p(v7 'i}) = [Oﬁ\zzc:m:n\pv A sz\ék:lzn\p’ au\kz:om\pv s 70u\ke:mm\p is the length (2m + 1)]0

vector created by stacking into one vector all the estimated parameters from the local Gaussian
approximations. It follows from this that the target of interest can be written as

Fk;ffw(w)] _ [A' m(“)} B,

b . - © v,9), (A.3)
quv\p(w) Aq@(w> ! )

kz:@\mp(

which together with the asymptotic normality result from theorem B.3 (page 39), i.e.

\/ n(blbz)(p+l)/2 : (ékéﬁ\b\p(v’ 'b) - ek'lfrin\blp(v7 {;)) L> N(O’ Ev\k[:@\p) ) (A4)

and Brockwell and Davis (1986, proposition 6.4.2, p. 211) gives that

(b, )7 ([@’Zw(w)} _ [cwm,)(w)b (AS)

a\k?:”v\p(w) ka;mp(w)
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is asymptotically bivariate normally distributed with mean 0 and covariance matrix

1 A/C m(w) ’
E ’ <[A’qlm(w)] ! E@\p : Eume:m\p ’ Ezn\p ’ {Ac@v Aq|m]> : (A.6)

The specified form of the covariance matrix given in theorem 2.10 now follows by the help of
some linear algebra, the observation in theorem B.3 that

1 m
va@\p = (@ Zqﬂk:hp> @ (@ E‘U“c[:hp) ) (A7)

h=m h=0

and the definition 5}, (h) =€, - X

It is easy to see that both o7, .., (w) and 07, ., (w) from eq. (2.19) are nonzero when
wé % -Z, as required for the validity of (Brockwell and Davis, 1986, proposition 6.4.2, p. 211).
The proof for the case w € % - Z can be constructed in the same manner, simply ignoring the

components having sine-terms. U

.. -e_ fromtheorem B.1.
v|kl:h|p P

The key observation for the proof of theorems 2.11 and 2.12 is that they both follow as a
consequence of theorem 2.10 and Brockwell and Davis (1986, proposition 6.4.3, p. 211). Note
that these arguments are quite similar to those used for the investigation of the estimates of the
ordinary amplitude and phase spectra in (Brockwell and Davis, 1986, p.448-449).

Proof of theorem 2.11, page 12.
First observe that the function h(z,, x,) = /2% + 22 implies that

1772

akzu\p(w) - O‘kz:v\p(w) = h(EkZu\p(w)v Z]\kz‘:”v\p(w)) - h(cum\p(w)v ka:mp(w)) ) (A'S)

and then observe that the asymptotic covariance matrix in theorem 2.10

._ Uju:v\p(w) 0
DIR (%) ( 0 nguw(w)>, (A.9)

obviously is a symmetric non-negative definite matrix.
It now follows from Brockwell and Davis (1986, proposition 6.4.2, p. 211) that

n(0,b,)" 2 - {0 (@), Gy (0) = (€ (@) Gy, (@) ] = N(0,02(w))

(A.10)
where 0’ (w) = D - %, (w) - D', with
D= 0 h(z,,x,) ih(r z,)| = [, /32 + 23, 1,/ \/22 + 2] (A.11)
axl 12 7ax2 172 1 1 27 <72 1 2

evaluated in (z,, 7,) = (ck[:v‘p(w), Tty (W))-
A simple calculation gives D = [¢, ., (w)/ 0001, (@W), Qpayp (W) /@, (w)] . from which it
follows that Uj(w) = (Cif:v\p(w) : Ujum\p(w) + QZz:v\p(“}) : J;\kzm\p(w)) /O‘iz:u\p(w)' O
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Proof of theorem 2.12, page 12.

This argument is quite similar to the proof of theorem 2.1 1, and only the details that are different
will thus be included. In this case the function of interest is h(x,,z,) = tan~*(z,/x,), from
which it follows that

8 a 2 2 2 2
o h(x17x2)7 %h(xwxz) = [712/ ('Il + Iz) 7‘Tl/ (‘Tl + 1‘2)} : (A.12)
This implies that D = [—q,,.,,(w)/02,.., (W), Copuyp (W) /02, (w)] and a simple calculation
now gives
05 (@) = (@raip(@) * Ty (W) F Gy (W) * Oyl (@) /i, (@), (A.13)
which completes the proof. U

Appendix B: The underlying asymptotic results

B.1 The bivariate case, a brief overview and the p,, (h)-case

The main ingredient for the theoretical setup is a translation of the bivariate results from (Tjgs-
theim and Hufthammer, 2013) into the multivariate framework, and this is almost identical
to the discussion that was given in (Jordanger and Tjgstheim, 2017, appendix B.1.2). The
main difference is that two extra indices (k and ¢) now are needed in order to specify which
components from Y, = (Y, Y, ) that are investigated.

Lo
The basic building-blocks was given in section 2.5.1, see definitions 2.6 to 2.9, and the first
target of interest is to define a suitable bivariate penalty function relative to the requirement

of eq. (2.10). For a sample of size n from {Y, and with the present notation, the local

z:h:t}tez’
penalty function from (Tjgstheim and Hufthammer, 2013) can be described as

Qu\kz:h;n\p (Ou\kz:h\p) = Z K"'[:’“b(Y;cZ:h:t - ’l)) log wp (Kcl:h:i; 0v\uzh\p)
t=1

+n - ka:h=b(yu:h, - v) wp (yk-é:h; evwz:mp) dyw:m (B'l)
and from this, under suitable regularity conditions and by the help of the Klimko-Nelson ap-
proach, the following asymptotic normality result can be obtained for the estimated parameters,

\/ n(blbz)(p+l)/2 : (ev\k/é:h:n\p - 0v\k£:h|p) i> N(Ov va;n\p) . (B.2)

See Tjgstheim and Hufthammer (2013, Th. 3) for the details for the p = 5 case, and note that
the p = 1 case follows from a simplification of that result.

Remark B.1. For the p = 1 case, §vw:,m,,“ consists of the single value p,,.,, (%), and eq. (B.2)
gives the univariate result of interest. For the p =5 case, p,,.,;(h) can be expressed as e -
5 ~

lkenniz» Where € is the unit vector that picks out the correlation from 6 and it follows

v|kl:hin|5?
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from (Brockwell and Davis, 1986, proposition 6.4.2, p. 211) that

n(ble)B ' (ﬁkl:v\f)(h) - pkm\a(h)) i) N(Ov e; : Zu\kz:ms : 65) . (B-S)

These observations can (by introducing e, := 1) be collected in the following result, which
is included in order to give a reference for the statements in theorem 2.10.

Theorem B.1. Under assumptions 2.1 to 2.3, the following univariate asymptotic result holds
for the estimates p,,.,,(h) of the local Gaussian cross-correlations p,,.,.(h).

n(b1b2)(p+1>/2 : (Ib\um\p(h) - pu:u\p(h’)) *) N(O, v\mp(h)) ) (B.4)

where G,

(h)=¢€e, -X e

P wlke:hlp ~ Cp*

B.2 The asymptotic result for e

The Klimko-Nelson approach from the bivariate case can be extended to the present case of

ké:@\b\p(v7 Tuj)

interest in the same manner as it was done for the local Gaussian auto-spectrum in (Jordanger
and Tjgstheim, 2017, appendix B).

7]

v ke:h|p

Definition B.2. For each bivariate penalty function Q.. .. n‘p( ) (as given in eq. (B.1)),
denote by Qv‘k, henlp (GUW h‘p) the extension of it from a function of Y,,,, = [YMM’ Y@.,r,]/ to a
Y, Y,

function of [ wtmr s Yoo Yooy oo YZJ . Use these extensions do define the new penalty
function

Qv:f)\kl:vj:n\p(®kl:7ﬁ\b\p(v7v ZQkahnm b|Lk:h|p +Zvahn|p u|wh\p) (B.5)

h=m

The 2m + 1 bivariate components in the sum that defines @) (:)M@b‘p(v7 13)) have

no common parameters, so the optimisation of the parameters for the different summands can be

v:0|kL:min|p

performed independently. The optimal parameter vector e) v b, (U, ©) for the penalty function
Qe (fOT @ given sample) can thus be constructed by stacking on top of each other the
and 6,

parameter vectors 6, NP

 btshlp that optimise the individual summands in eq. (B.5).

The Klimko-Nelson approach can now be used on the penalty function from eq. (B.5) i.e.
four requirements related to the penalty function must be verified before the desired asymptotic
result for the paramater-vector e weumibl (U5 ©) is obtained. The following cross-spectrum ana-
logue of (Jordanger and Tjgstheim, 2017, theorem B.23) can now be stated for the present
case of interest.

Theorem B.3. Under assumptlons 2.11t0 2.3, the followmg asymptotlc behaviour holds for the

estimated parameters © il (VD) = [Ov‘“}:mm‘p, ..,0, 6 ..,0

B|k:1in|p) L vlke:0n|p? 'v\kl:nlm,\pi| ’

0(b,5,) "+ (8, (0, 8) = 1, (0,9)) 5 N(0, 5 (B.6)

okels)
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where the matrix 3 is the direct sum of the matrices from eq. (B.2) that occurs when the

vlktsmlp
individual bivariate components of the penalty function is investigated, i.e.

1 m
Eu\k»z@\p = <@ Zmem;;) @ (@ ka(:hp> . B.7)
h=0

h=m

Proof. This result follows when the Klimko-Nelson approach is used with the local penalty-
function @, ;s (@M@b‘p(v, 1“))) from eq. (B.5), and the proof is in essence identical to
the proof of (Jordanger and Tjgstheim, 2017, theorem B.23). The three first requirements
of the Klimko-Nelson approach follows trivially from the corresponding investigation for the
bivariate case, whereas the proof of the fourth requirement must take into account how m — oo
and b — 0" asn — oo.

The investigation of the fourth requirement of the Klimko-Nelson approach can be done in
the exact same manner that was employed in Jordanger and Tjgstheim (2017), i.e. first construct
a collection of simple random variables whose interaction and asymptotic properties are easy to
investigate, then use these basic building blocks to construct a more complicated random vari-

able QO _ that has the same limiting distribution as the estimator of 1/0,0,V,, . Q. kemini (@M@‘b‘p (v,

v|m
(where V.. . is obtained by stacking together V,,, ). After this, it is sufficient to use stan-
dard methods to prove that the limiting distribution of Q7 _
distribution, and the statement for the parameter vectors then follows from the Klimko-Nelson

theorem and some linear algebra. U

is the desired multivariate normal

40
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1. Introduction

For a set of independent observations X, = {xj}l_;, % = (Xj1,...,Xq), and a proposed parametric family F with
parameters e, the Akaike Information Criterion, introduced in Akaike (1974), will assign the following value to the members
of the family F,!

AICF = 205(a@) — 2 dim(a), (1)

where 5 is the log-likelihood-function, @ is the maximum-likelihood estimate of & based on the independent observations
X, and dim(e) is the number of parameters in the model.

AIC was introduced in the setting of time-series, but it is also formally valid in more general situations. It is customary
to apply a modified version of AIC when the goal is to find the (parametric) copula model C that best describes the set of
pseudo-observations X, in the unit (hyper)cube, obtained when the empirical marginal distributions constructed from
the observations X, are used. The modified version of AIC on ? X, will in this article be denoted by "AIC? and it is given by

"AIC ¢ = 2°¢c(P0) — 2 dim(8), 2)

where @ is the parameters of the copula C, P@ is the maximum pseudo-likelihood estimate based on the pseudo-observations
PX, and *0¢ is the pseudo-log-likelihood function.

* Corresponding author.
E-mail addresses: lars.jordanger@math.uib.no, lars.jordanger@gmail.com (L.A. Jordanger).
1 The original formula introduced by Akaike is (—1) times the one given here. Both versions are used in the literature, and the main references for this
article use the form given in Eq. (1).
2 Most statisticians will usually also call this for AIC.

http://dx.doi.org/10.1016/j.spl.2014.06.006
0167-7152/© 2014 Elsevier B.V. All rights reserved.
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The use of Eq. (2) has been justified by the belief that in the limit there is a continuous connection between AIC on X;, and
"AIC on PG, —but it turns out that this is not the case, see Grenneberg and Hjort (2014), and as such one might wonder to
what degree results based upon "AIC should be trusted. A comparison of the small-sample results of "AIC, with those obtained
from a cross-validation Copula Information Criterion, has thus been performed in order to see how the bias-correcting terms
estimated from the data affects the ranking of the proposed models.

2. The copula information criteria

There are altogether three copula information criteria. The two criteria introduced in Grenneberg and Hjort (2008) are of
less practical interest since they are not generally applicable.? The xv-CIC from Grenneberg and Hjort (2014) does not suffer
from this problem, and can be used as a general model selection tool. A sketch of the arguments leading to xv-CIC will now
be presented. (Further details can be found in e.g. Claeskens and Hjort (2008, chapter 2).)

If the observations X, are assumed to originate from some unknown data-generating model F° (with pdf f°), and
there is a collection of proposed parametric model families {F.} (with pdfs f, and parameters o), then an approach by
a Kullback-Leibler information criterion can be used in order to find the optimal approximating model. The argument is
based on a minimisation of

KLIC(F®, F) & Eo [mgffo} = E° [logf°] — Ey [logf], (3)

which can be used to find the best approximating model in the case of a known data generating function F°. The idea is
that within each proposed parametric model-family Fy there exists an optimal model with parameter configuration e, that
minimises the “distance” to the true model F°, and the “closest” candidate can then be selected from the resulting set of
optimal models.

In a practical setting, with an unknown F°, the observed data X, will be used to estimate Eq. (3)—in fact only the
term Es° [log f] needs to be estimated since the estimate of the term E;° [logf°] is common for all the models. When the
multivariate empirical distribution function is used as an approximation for F°, the best estimate of e}, is the one given by
the maximum likelihood estimate @y, which thus selects one optimal estimated model from each model-family Fy. Since both
F° and e} are unknown, some care must be taken before these estimated models are compared against each other—i.e. there
is a need for a bias-correcting term.

The argument leading to the bias-correcting term for a proposed parametric family F with optimal parameter
configuration «°, starts by a Taylor expansion of logf around «°. Then an asymptotic argument is used to get a more
convenient expression. In the end, the value assigned to a parametric model F based on n observations X;,, is given by

Estimate of {E; [logf]} = Ll (er@) — O’]R)) )
in which £ is the log-lil(elihood—function, andJ and K are estimators of J = Er [I(e)] with I(a®) = 733;;[ 10gf‘ and
a=a®

K = Vary° (u(e®)) with u(a®) = a lo.

Estimation of the matrices J and K requlres that all the first and second order partial derivatives of log f are evaluated at
all the observations in XG,,. This requires extra computations, and the resulting bias-correction will experience finite sample
variability. However, the computation becomes trivial when the assumption of a correctly specified family is used, i.e. that
F° belongs to it. In this case both J and K equals the Fisher information matrix of F°, which implies that Tr (J’IK) =Tr{) =
dim(a), i.e. the exact bias-correcting term is known without any computations—and one is essentially back to the AIC
criterion from Eq. (1). Thus, the AIC formula is a valid selection method when used on independent observations X;, and
under the assumption of a correctly specified model family F. If this assumption is dropped, the estimated bias-correcting
term must be computed from the data in accordance with Eq. (4), and in this case the Takeuchi Information Criterion
(TIC), Takeuchi (1976), given by TICk = 2 (&) — 2 Tr G’]K), should be used instead of AIC.

The precision of asymptotic tools like AIC and TIC will depend on the number of observations, and simulation studies must
be performed in order to test their small-sample behaviour. The AIC- and TIC-based rankings of proposed models coincide
to a high degree, i.e. the extra computations needed for the empirically estimated correction term in the TIC-formula may
not pay off. Moreover, it might also be preferable to avoid the added finite sample variation from the TIC-formula, and in
practice it is thus customary to settle for AIC as the chosen model selection method.

Cross-validation is frequently used when the aim is the best predictive model, i.e. one part of the observations is used to
estimate the parameters of the model and the remaining part is used to test the fitness of the estimated model. The version
of particular interest with regard to the construction of xv-CIC is the leave-one-out cross-validation, given by

! Z logfaq (X (5)

3 Grenneberg explains in his contribution to Kurowicka and Joe (2010), that the theoretic bias-correcting term can attain an infinite expectation when
these two selection methods are used on copula models with some tail-dependence.
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in which@(i) is the maximum likelihood estimate based on the sample without the ith observation. The following connection
with TIC is the reason for the interest in xv,

TIC =2nxv,+0,(1), (6)

and this motivates the construction in Grenneberg and Hjort (2014) leading to the generally applicable cross-validation
Copula Information Criterion, xv-CIC.
Sklar’s theorem, Sklar (1959), states that any d-variate cumulative distribution function F(x) can be expressed as

F®) = C(F (%)), @]

where C(u) is a copulaon [0, 1]9, and F | (x) def (Fy (1) - ... F4 (x4)) is the vector of marginal cdfs. The copula C is unique
when the marginals are continuous.

When the focal point of interest is to describe the multivariate dependences in X, the object of interest is the
corresponding copula C°. Techniques that increase the chance of finding the correct copula-model, and good estimates of its
parameters 6, should thus be used. It turns out that it may often be preferable to simply avoid the use of parametric models

. e . . . e def
for the marginal distributions F | (x), and instead use the empirical marginal distributions F, .l(x) = (F,,‘l(xl), o, Fn,d(xd)),
where F, j(x;) stands for the #-rescaled empirical marginal.# This strategy avoids the risk of misspecified marginals, that
can severely affect the estimated parameters of the copula.

Based on observations X;,, from some continuous model F°(x) = C°(F9(x)), a vector F,  (x) of empirical marginal
distributions is constructed—and there are now two sets of points that should be considered,

def

def
uxn def

(P00 e, and 7%, < (F, )] ®)

When the goal is to find a good approximation to C°, access to the points in “¢, would be preferable—since these
correspond to a situation with exact knowledge of the models for all the marginal distributions. But the independent set
3G, is unattainable when the marginals of F° is unknown, and the set of dependent pseudo-observations in ? X, must
be used instead. As n increases P X, approaches "X, and it is plausible to expect that minor modifications of the copula
model selection techniques from the parametric realm, like Eq. (2), still should provide decent rankings of the copula models
considered.

An analysis akin to the one stated after Eq. (3) was first conducted in Grenneberg and Hjort (2008) for the case of a true
unknown copula model C° and a collection of proposed copula-models {C;}. The replacement of “ X, with? X implies thata
Taylor-expansion with regard to the variates u of the copula must also be included in the construction of the bias-correcting
term, which results in a more complicated formula than the one given in Eq. (4)—and which perhaps more importantly
shows that the "AIC from Eq. (2) is not a formally valid model selection method in this semiparametric case.

The above approach did not result in a generally applicable model selection method for the semiparametric case, but
the approach motivated by the relationship in Eq. (6) between TIC and xv , did however succeed. Based on this the cross-
validation Copula Information Criterion, xv-CIC, for a copula model C is in Grenneberg and Hjort (2014) defined by

XE€%,

Xv-CIC &2 "¢ (@) —2-(8c+3u), ©

where P and plc are as described after Eq. (2), and where the two bias-correcting terms :S\f and '(S\m both depend on P# and
account for different effects due to Taylor expansions. A more detailed presentation of these two bias-correcting components
is beyond the scope of the present article, whose aim instead is to present some results based upon the first author’s master’s
thesis,” where the small-sample adequacy of xv-CIC, which is more asymptotically correct but harder to compute, were
investigated and compared to "AIC, which may not be quite correct but much easier to compute. To our knowledge such a
simulation study has not been undertaken before.

3. Setup for simulations

In order to examine how xv-CIC fares as a selection method in the finite sample realm, it must be tested on data with
known origin. The main part of this presentation includes data originating from the following five bi-variate one-parameter
copula families: clayton, frank, gumbel, normal and t (df=4). Of these, the first three are Archimedean copulas,
with gumbel being an extreme-value copula. The two copula models normal and t refer respectively to the copulas
corresponding to the bivariate normal distribution and the bivariate student’s t-distribution.

Using the R-package copula, Ivan Kojadinovic and Jun Yan (2010), samples "X, of size N € {100, 250, 500, 1000} were
drawn from all of the five copula models, with parameter values chosen to give values of the rank correlation coefficient

4 The rescaling ensures that points on the edge of the unit (hyper)cube in R is avoided, which is important since many copula models of interest have
heavy tail-dependence, and points on the boundary could then introduce infinities into the calculations.

5 Semiparametric Model Selection for Copulas, http://hdl.handle.net/1956/6778.
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Table 1
xv-CIC versus AIC, N = 250 and T = 0.5—counting.
d.cop IC clayton frank gumbel normal t (df=4)
clayton ‘aic 4992 2 0 5 1
clayton xv-CIC 4974 9 0 11 6
frank ‘aic 3 4663 28 270 36
frank xv-CIC 0 4741 34 201 24
gumbel ‘aic 0 28 4595 170 207
gumbel xv-CIC 0 36 4754 98 112
normal ‘Al 8 133 229 4332 298
normal xv-CIC 1 196 362 4208 233
t (df=4) ‘aic 8 27 275 186 4504
t (df=4) xv-CIC 4 42 431 211 4312
Table 2
Coincidence of AIC and xv-CIC, with 95% confidence interval.
N =025 =05 =075 All

100  90.260+0.1172  91.264+£0.1178  92.540£0.1186  91.354 4 0.0681
250  95.01640.1202  96.912+0.1214 97.812+0.1219  96.580 4 0.0700
500 98.60440.1224  99.380£0.1229  99.732£0.1231  99.238 £ 0.0709
1000  99.608 £0.1230  99.964+0.1233  99.976+0.1233  99.849+0.0711

Table 3

Hit-rates for AIC and xv-CIC, the case N = 100 and 7 = 0.25.
IC clayton frank gumbel normal t (df=4)
falc 8128+ 1081 4772+ 1384 6422+ 1329 3784+ 1344 6380+ 1.332

xv-CIC 7334+ 1.225 51.324+1.385 68.96 + 1.282 37.82 £1.344 61.10 &+ 1.351

Kendall's T in the set {0.25, 0.5, 0.75}. Since the pseudo-observations? X, are created by the help of the empirical marginals,
itis sufficient to work directly upon the samples " X, generated from the copula models, cf. Fermanian et al. (2004, Lemma 1).
A total of 5000 samples were created for each combination of copula, N and t—and then all of the five copula models were
fitted to these samples and ranked according to values of PAIC and xv-CIC.

4. Results

Table 1 is representative for the behaviour of "AIC and xv-CIC for all the twelve combinations of N and t under
consideration. The first column “d.cop” specifies the data-generating copula that the sample originated from, while the
second column “IC” contains the information criterion that filled in the remaining five columns according to how often the
selection criteria picked the proposed copula as the model for the sample at hand. It seems like the two selection methods
follow each other rather closely, both with regard to correct and erroneous proposals, without one being superior.

The coincidence-percentages, i.e. the fraction of times that "AIC and xv-CIC proposed the same model regardless of
whether or not it was the true model, is given in Table 2. The estimated 95% confidence intervals are based upon the
asymptotic approximation to the standard normal distribution, which can be used due to the size of the data-sets (25 000
for each cell in the T-columns, 75 000 for the all-column).

These coincidence-percentages reveal that "AIC and xv-CIC necessarily also must have close returned-the-true-model-
percentages (hit-rates)—and that the sample size must be small in order for one of them to clearly outperform the other.
Since low values of t imply that the data-generating copula-models all are closer to the independence copula, and since the
transformation *,, — P3G, induces more randomness for low values of N, the most distinct differences between "AIC and
xv-CIC are found for the samples with T = 0.25 and N = 100. Table 3 gives the hit-rates for this case, with 95% confidence
intervals. There is no indication that one of them is superior—and similar tables for the other combinations of 7 and N
support that impression.

Some of the hit-rates in Table 3 are rather low, but the improvement when the sample-size increases is reassuring. For
N = 500 and N = 1000 the lowest observed hit-rates were respectively 83.76% and 95.02%, whereas the highest in both
cases turned out to be 100%.

The true data-generating copula-models, and the samples " X, will in practice be unknown. If a model selection strategy
based directly on "X, is compared against PAIC and xv-CIC used on PXG,, that should give an idea to what extent the extra
randomness from the transformation “X, — P, affected the conclusion, or to what extent the true model differs from the
finite sample Kullback-Leibler best choice. In order to investigate this, a bootstrap estimate for Kullback-Leibler information
for model selection was used, i.e. the WIC-bootstrap, based on 1000 bootstrap-replicates, on the case N = 100, t = 0.25.
See Shibata (1997) for a description of the WIC-method and further references.
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Table 4
Coincidence of AIC and xv-CIC with WIC-bootstrap, N = 100 and t = 0.25.
IC clayton frank gumbel normal t (df=4)
Alc 86.86 + 0.936 73.58 +1.222 7950+ 1.119 71.38 +1.253 81.22 + 1.082

xv-CIC  83.60 & 1.026 74.88 = 1.202 80.34 & 1.101 70.98 & 1.258 7974+ 1.114

The coincidence percentages for "AIC and xv-CIC against the WIC-selection turned out to be respectively 78.51 & 0.509
and 77.91 &+ 0.514, i.e. even for the small sample size of N = 100 they are almost close enough to reject a hypothesis that
they should be considered as truly different selection techniques. Moreover, when the knowledge of the data-generating
models is used to stratify the results, see Table 4,° the same affinity/aversion for the different models shows up as those
present in Table 3.

From Tables 3 and 4 it seems like the two selection criteria have some affinity for different models, which could be related
to the behaviour of the bias-correcting term in the xv-CIC-formula. The plots in Fig. 1 show how the distribution of this term
varies for two N-t-combinations when fitting the copula t (df=4), where the knowledge of the true data-generating
copula-models has been used to stratify the observed bias-corrections into groups of 5000 observations. The dotted line at
x = 1shows the simple bias-correction used by "AIC. These plots indicate that the bias-correction in addition to its inherent
variation with the model fitted also varies quite a bit with different values of r and N and different data-generating models.

The increased span of bias-corrections for the N = 1000-case originates from the fact that the xv-CIC-formula does not
rescale the bias-correction with the size of the sample, cf. Eq. (4). The tenfold increase in sample-size thus represents a
significantly improved precision, which might be a reason for the improved coincidence-percentages observed in Table 2.
That table says that the bias-correction in most cases did not alter the ranking based on the values of the pseudo-log-
likelihood *¢,7 and the hit-rates from Table 3 indicate that it hardly was any improvement in the cases where the rankings
were affected.

Conclusion

For the five bivariate one-parameter copula models considered in this section, the difference in performance between
xv-CIC and "AIC is altogether rather small. When the sample-size is large enough for them to perform good, their difference
is small enough to make it tempting to consider them to be interchangeable as selection techniques. This implies that there
has been no payoff for the extra computational investment that was made in the production of the xv-CIC-values, and it
thus seems reasonable to propose the same practice here as the one used in the fully parametric setting—where the “costly”
computation of TIC without further ado is replaced with the “inexpensive” AIC.

5. A C-vine example in three dimensions

The previous section only considered bi-variate one parameter copula-models, and the question remains if the conclusion
would differ if xv-CIC were tested againstPAIC for more complicated cases. However, the simultaneous estimation procedure
needed for an investigation of how xv-CIC fares on such models quickly becomes computationally intractable. A more modest
task has thus been performed, investigating the effect of using xv-CIC instead of AIC as the selection tool for the (conditional)
bivariate copula models of a C-vine. The effect on the AIC-rankings when observations “X, are replaced with pseudo-
observations P X, has also been included in Fig. 2 (explained below), where data from 729 different three dimensional
C-vines are presented.

Observations “ X, with more than two variates can be modelled by vine copulas and the pairwise copula construction—
i.e. a d-variate copula model can be approximated by first selecting a vine-copula structure based on the data, before bi-
variate copula models are selected for the different levels of this vine, see e.g. Aas et al. (2009), Brechmann (2010), Haff
(2012) and references therein. For the case of a three dimensional copula model, this approximation requires a simple
C-vine and the specification of three bivariate copula models (of which one is a conditional copula).

To keep things computationally tractable, the bi-variate copula models were restricted to the three one-parameter
copula-models clayton, gumbel and normal, with values for Kendall's  as before—which for the case of a three
dimensional C-vine gave 729 different data-generating models. A total of 200 samples "X, of size N = 500 was drawn
from each model using functions from the R-package VineCopula, Schepsmeier et al. (2013), and the corresponding pseudo-
observations P X;,, were then created. The model-estimating function in the VineCopula-package was used on both * X, and
PX;,, before a modified xv-CIC-version was used on P X .

6 The coincidence-percentage between the bootstrap-based selection technique and ordinary AIC, both used on samples "X, turned out to be
95.02 + 0.269, and their hit-rates (against the true models) were almost identical, i.e. 62.98 + 0.598 and 62.99 + 0.598, so Table 4 would have looked
almost the same if the comparison had been against the models proposed by ordinary AIC instead. When the AIC-comparison is made for the higher values
of N, the models obtained from an analysis based on "X, and those based on ”X;,, coincide almost completely.

7 Since all the models have one parameter, the "AIC-ranking coincides with the "¢-ranking.
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N=100 1=0.25 m.cop=t(df=4) N=1000 1=0.75 m.cop=t (df=4)
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Fig. 1. Stratified behaviour of bias-correction for xv-CIC, when fitting t (df=4).

Performance-plot 1: 729 3-dimensional C-vines, with medians. Performance-plot 2: 729 3-dimensional C-vines, with medians.
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Fig. 2. Coincidence-percentages and hit-rates for the simple three dimensional case.

The left plot in Fig. 2 compares the performance of the xv-CIC-adjusted selection method with the ordinary AIC-selection
method used on PX,.. The coincidence-percentages are along the horizontal axis whereas the vertical axis presents the
difference in hit-rates. There is some overlap among the points, and lines representing the two medians have been included.
The impression is that there is no gain in hit-rate from an approach using the xv-CIC-modified selection, in particular since
the low coincidence-percentage cases had better hit-rates for the ordinary "AIC selection strategy.

The right plot does not consider the xv-CIC at all, but instead gives an impression of how the transformation X, — X,
affected the selection process in this case with samples of size N = 500. For decent-sized data-sets, it seems safe to assume
that the result from a "AlC-selection based on the pseudo-observations ? X, should return more or less the same result as
an AlC-selection based upon “X .

This simple example indicates that AIC used on pseudo-observations P X, does a good job, and that there is little/no
gain from the use of xv-CIC. Moreover, the xv-CIC-modified selection method for the bivariate copulas in the C-vine could
actually be less straightforward to use, since the asymptotic validity of xv-CIC has not been established for the conditional
bivariate copulas needed for the higher levels of the vine.

6. Some further comments

The present analysis does not cover the case of copula models with more than one parameter. The increased
computational cost incurred in the computation of xv-CIC for copula models with several parameters implies that "AIC
probably still would be the standard alternative even if xv-CIC should happen to be a slightly better selection method in
some cases.
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Regardless of whether xv-CIC or "AIC is used, one needs to keep in mind that these selection methods do not give
any information about the quality of the chosen model. In particular, if there is no adequate models among those copula
attempted fit to the data, then the same will be true for the selected approximation to the least false of them. It is thus
important to apply goodness-of-fit tests to the chosen models, in order to see if they may be trusted or not, see e.g. Berentsen
etal. (2014).

The purpose of this work was to do a comparison of xv-CIC and "AIC, and readers interested in model selection for copula
models in general can consult e.g. Aas et al. (2009), DiBmann et al. (2013).
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