
1

THE EFFECT OF MUTATION ON

EXPLORATIVE & EXPLOITATIVE

BEHAVIORS WITH RT-NEAT

Master thesis for Khoa Pham

Institute of Information and Media Science

University of Bergen

Spring 2017

Key words: rtNeat, exploration, exploitation, EDA, Mutation

2

Abstract

This thesis aims to explore how different factors can affect the search performance of

evolutionary algorithms. Additionally how applying different mutation techniques

changes the overall search performance of rtNEAT. This thesis demonstrates how

mutation affects exploration and exploitation when optimizing for a 3-input XOR

gate as well as optimizing agent movements in a real time environment.

This thesis is also provided as a guideline in the development of an evolutionary

algorithm, particularly the implementation of rtNEAT algorithm, and a simple game

environment in Python.

3

Acknowledgements

Firstly, I would like to thank my mentor, Bjørnar Tessem for being of great help and

guided me throughout the work of my thesis.

Secondly I would like to thank my friend who had encouraged me to finish this

thesis even when I did not believed in myself.

4

Table of Contents

1 Introduction

1.1 Introduction

1.2 Motivation

1.3 Research Questions

1.4 Research Method

1.5 Contributions

1.6 Thesis structure

2 Background

2.1 Artificial Neural Network

2.2 The Perceptron and Multi Layered Perceptron (MLP)

2.3 Supervised learning and Backpropagation

2.4 Reinforcement Learning

2.5 Population Based Optimization Algorithms

2.6 Genetic Algorithms

2.7 Neuro Evolution

2.8 Neuro Evolution of Augmenting Topologies (NEAT)

2.9 Real Time NEAT (rtNEAT)

2.10 Exploration vs Exploitation

2.11 Estimation of Distribution Algorithms (EDA)

2.12 Experimenting With A.I in Game Environments

3 Related Studies

3.1 NERO

3.2 NEAT and XOR Function

3.3 Differential Evolution and EDA

4 Implementation

4.1 Implementation of rtNEAT – The Metaheuristic Search

4.2 Implementation of rtNEAT – The Neural Network

4.3 Implementing the real-time Game Environment

4.4 Implementation of EDA Mutator

4.5 The NEAT Mutator

6

6

6

7

8

8

9

9

9

10

14

15

18

22

25

28

33

35

40

41

42

43

43

44

44

45

47

49

50

52

5

4.6 Verifying rtNEAT – The Evolution of XOR

4.7 Implementation of the Experiments

4.8 Issues

5 Experiments

5.1 XOR

5.1.1 RtNEAT only

5.1.2 RtNEAT with explorative search

5.1.3 RtNEAT with exploitative search

5.1.4 RtNEAT with exploitative & explorative search

5.1.5 RtNEAT with EDA exploitative search

5.2 Game

5.2.1 RtNEAT only

5.2.2 RtNEAT with exploitative & explorative search

5.2.3 RtNEAT with exploitative EDA

6 Results

6.1 XOR

6.1.1 RtNEAT only

6.1.2 RtNEAT with explorative search

6.1.3 RtNEAT with exploitative search

6.1.4 RtNEAT with exploitative & explorative search

6.1.5 RtNEAT with EDA exploitative search

6.2 Game

6.2.1 RtNEAT only

6.2.2 RtNEAT with exploitative & explorative search

6.2.3 RtNEAT with exploitative EDA

7 Discussion, Conclusion and Future Work

7.1 Discussion

7.2 Conclusion

7.3 Future Work

References

53

55

56

57

57

58

58

59

60

60

60

61

62

62

62

62

63

64

66

66

67

68

68

69

70

71

71

73

74

75

6

1 Introduction

1.1 Introduction

Artificial intelligence is an emerging field and is rapidly becoming one of the most

popular and debatable topics that keeps popping up in the news. Since A.I can be

applied to solve a wide range of problems across all field of studies, questions have

raised to challenge further development of A.I, such as if A.I is capable of achieving

human intelligence or whether it will eventually take all of our jobs.

Whether an A.I can achieve human intelligence is still one of several questions that

needs to be answered. Yet the quest to answer this kind of question have been

prompted by many researchers by the proposal of different general machine learning

algorithms, in hope to improve the ability of computers to solve different problems

on a general level, something we as human are very good at.

Recently a team of researchers from Google Deep Mind have created an A.I named

AlphaGo [1] capable of winning against world champion in the classical board game

Go, a game that was believed to be one of the most challenging problems for

machines to learn. Yet with machine learning, particularly reinforcement learning

they managed to achieve this goal. But even when AlphaGo can be excellent at

playing Go, that is all it can do, no indication of general intelligence can be

demonstrated by the system.

To push the boundaries further, researchers (including Google Deep Mind) have

developed techniques in an attempt to allow computers to play several computers

games in the same manner as a human would, believing that by beating those games,

an indication of general A.I can be promised [2][3].

This thesis attempts to explore the challenge of teaching machines to play computer

games by using techniques in neuroevolution, which is capable of learning

reinforcement learning tasks. Furthermore, this will hopefully inspire more

researchers to explore the same direction.

1.2 Motivation

The original motivation which led to the work behind this thesis is the promising

idea of teaching computers to play video games on a general and professional level.

As many games in the commercial market today implements simplistic A.I models

which often serve their purpose very well, but for real time competitive games such

7

as in e-sport1 games, simplistic A.I tends to fail or display mechanical and predictive

behaviors when playing against human players. For this reason along with the belief

that learning A.I is the holy-grail for developing challenging and interesting game

agents with human-like behavior, interest grew towards the direction of

neuroevolution, especially using a technique called rtNEAT which had been

demonstrated to work for gaming environments, specifically for a game named

NERO [4]. Yet no technique is perfect, therefore another motivation was to attempt to

modify rtNEAT to allow for better performance.

1.3 Research Questions

As further reading and preliminary development were carried out, the original

motivation did no longer define the research questions of interest in this thesis. One

of the main reasons was the discovery of how different factors in different

evolutionary algorithms can play a big role in how well they can solve certain tasks.

This led to more reading towards the direction of how to tune different algorithmic

parameters in order to generally optimize for any problem.

The result of preliminary work laid ground for the research questions in this thesis:

1. How do different elements of learning algorithms, particularly different

mutation techniques combined with rtNEAT influence the search behavior?

2. What are the common issues in tuning algorithmic parameters for balance

between explorative and exploitative search?

3. How well does rtNEAT perform particularly in a game environment when

applying different mutation techniques?

Additionally this thesis also aims to provide a detailed theoretical description of

different techniques and methods in using neural network to solve reinforcement

learning tasks, as well as how implementation for generic learning algorithms may

be carried out, especially in the context of neuroevolution in game environments.

This thesis and the work behind it can therefore be considered as a general guideline

on how to research and implement neuroevolution algorithms as well as other

generic optimization techniques.

1 https://en.wikipedia.org/wiki/ESports

8

1.4 Research Method

The research method used in this thesis will be a combination of two methods:

1. By proof of concept and experiments – One reason for using proof of concept

is that it produces artifacts that can be used to run different experiments in

order to strengthen the answer of research questions. Another reason is

because the produced artifacts may lay ground for future work.

The artifacts that are produced as a proof of concept in this thesis is a

computer program used to run experiments to demonstrate the different

effects of relevant learning algorithms, specifically neuroevolution algorithms.

2. By literature review – Literature review lay the foundation for the work in

this thesis as well as providing a guideline in the research direction. This is

crucial in research as it would allow for a rigorous connection between

research questions and the research work. In case of research question 2,

which is more of a higher level question that requires a combination of actual

research work and previous studies to answer.

1.5 Contributions

Besides the answers to the research questions of this thesis, the following additional

contributions can be also considered:

1. A general guideline (the thesis itself) in the developmental process of

neuroevolution techniques with hints on issues and drawbacks during

development.

2. A pure rtNEAT along with an EDA Mutator implemented in Python to

contribute to the NEAT Users Group (where different users have

implemented their own versions), as well as the general research community

as a whole.

3. A simple visual 2d game framework that can be used to test different learning

algorithms.

9

1.6 Thesis structure

This thesis is divided into 7 chapters, where the purpose of each chapter is outlined

below:

1. Introduction – Introduces to the work of this thesis.

2. Background – This chapters aims to provide readers with general knowledge

behind the work of this thesis.

3. Related Studies – This is a short chapter discussing different studies that are

similar to the study presented here.

4. Implementation – This chapter aims to provide a detailed description of how

the different implementation stages were done.

5. Experiments – This chapter describes the different experiment setups.

6. Results – This chapter presents the results from the experiments in chapter 5.

7. Discussion, conclusion and future work – This is the final chapter discussing

and summarizing the work of this thesis, as well as what may be the next

steps in future work.

The reason this thesis is structured as described above is to provide readers with a

gradual construction of background knowledge before diving deeper into the

problems. This would allow readers to better understand each step as well as the

purpose of the work presented in this thesis.

2 Background

This section presents related background theories and techniques used in this thesis.

2.1 Artificial Neural Network

Artificial neural network (ANN) is a computational network structure inspired by

the biological neural network similar to those in the human brain [5].

ANNs typically function by propagating information (usually from sensory inputs)

through the network via nodes called Artificial Neurons (neurons) and connections

known as Artificial Synapses (synapses). Nodes and Connections are therefore the

fundamental building blocks of ANNs.

In order for an ANN to carry out meaningful computations, information is

transferred between neurons via synapses by a cascade of activation functions and

connection weights from an initial state of input values to a final state as output

values. Typically values accumulated at any layers of nodes are multiplied by their

10

corresponding outgoing connection weights before being added as input values to

the next layer of nodes, at which these input values are summed before being applied

an activation function for further propagation [6][7].

Signals fired and sent through synapses in an ANN can be either inhibitory for

negative signals or excitatory for positive signals, which in turn will directly affect

the activity of neurons down the paths in the network.

The mechanism described above is well known and is commonly used in most

implementations of ANN. Despite this there are also other models of ANNs where

the process of activating and transferring information signals gets more complicated

to imitate the actual processes in the biological brain. Such a different model of ANN

is for example the spiking neural network, where signals are transferred in spikes of

action potentials and can compute more complex functions than the traditional ANN

model [8][9].

In this thesis, the more commonly used ANN model using a non-linear activation

function (i.e. the sigmoid function) emitting a single action potential signal will be

used instead of a more complex one such as the spiking model.

Next we will discuss in more detail how values are computed within the simplest

form of ANN, namely The Perceptron and its multi layered successor known as

Multi Layered Perceptron (MLP).

2.2 The Perceptron and Multi Layered Perceptron (MLP)

The Perceptron is a name given to the simplest form of ANN invented by Frank

Rosenblatt [10], which gained popularity among researchers and practitioners in the

earlier days of neural computing. The Perceptron is an ANN consisting of a single

neuron at which all the input synapses in the network are connected.

Fig1. The Perceptron has a single neuron which sums all of its inputs before going

through a step function. Note that there is a constant input of 1 connected through 𝒘𝟎, this

is the bias connection.

11

The type of neuron used in the Perceptron (and generally in any ANN) can vary and

depending on the problem space, but one of the most commonly used neuron

models that have originally been proposed to work with the Perceptron is the

McCulloch Pitt’s model [11].

The McCulloch Pitt’s model describes a type of neuron known as “all-or-none”,

meaning that once excited above an activation threshold the neuron will emit a fixed

signal regardless of the strength of the incoming stimuli. If the neuron does not

receive enough stimulation to be excited, no signals will be fired until the activation

threshold is reached. In addition the McCulloch Pitt’s model is also a binary model

[12], this means that fired signals are constant and can therefore only represent either

1 or 0 (fired and not fired).

In recent years different neuron models have been proposed and used where the

behavior of the neuron becomes more complex as different firing patterns and

activation functions have been used (fig2) [5][6]. Some of the most common

activation functions that have been widely adopted and also used in this thesis are

the logistic sigmoid and the hyperbolic tangent functions.

Fig2. Sigmoid, hyperbolic tangent and the linear rectifier activation functions.

Generally most implementations of ANN (including the Perceptron) computes the

network signals in similar way; the output signal for any given neuron y is given by

𝑦 = 𝜃 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

)
(1)

where θ is the activation function, n the number of incoming connections, 𝑤𝑖 denotes

the weight of incoming connection i and 𝑥𝑖 is the incoming signal at connection i.

For the McCulloch Pitt’s model, θ is considered a unit step function that steps at x = 0

defined by

𝜃(𝑥) = {

1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

(2)

12

As mentioned earlier, this thesis will instead use the more commonly used activation

functions, namely the logistic sigmoid:

𝜃(𝑥) =

1

(1 + 𝑒−𝛽𝑥)

(3)

where 𝛽 is the slope parameter, and the hyperbolic tangent:

𝜃(𝑥) = tanh (𝑥) =

2

(1 + 𝑒−2𝑥)
− 1

(4)

An important difference between the logistic sigmoid and the hyperbolic tangent

function is that the logistic sigmoid has an output range between 0 and 1 while the

hyperbolic tangent outputs in the range between -1 and 1, this is essential for

calculations that requires negative values (i.e. velocity vector in a coordinate system).

It has become a common practice to introduce so called bias connections in ANN

(fig1). These bias connections are usually connected to an input source that

constantly emits 1 and then multiplied with the bias connection weight. Without the

bias connections it is almost impossible (if not very difficult via complicated

circuitry) to move the activation function along the X-axis. These bias connections

give an ANN a very powerful property that makes it a better universal

approximator.

Consider the activation function θ(x) in equation (3), if we are to move the activation

function along the X-axis we must be able to express x+a, this can be done by

introducing an independent bias input a from all other actual inputs x at each

neuron, i.e. for the logistic sigmoid we get

𝜃(𝑥 + 𝑎) =

1

(1 + 𝑒−𝛽(𝑥+𝑎))

(5)

Perceptron learning is the concept of iteratively adjusting the connection weights in

the Perceptron until a desired output is computed. In order to adjust the weights the

Perceptron must be provided training examples of input patterns and expected

output values. This form of weight training belongs to the class of supervised

learning algorithm where an error-correction rule is used to correct the connection

weights [5], this algorithm is also known as the Perceptron learning algorithm:

1. Initialize random weights for all connections (including bias)

2. Feed an input pattern of (𝑥1, 𝑥2, … , 𝑥𝑛) and evaluate the output value y

13

3. Update each weight according to

 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝜂(𝑑 − 𝑦)𝑥𝑖 (6)

 where 𝜂 is the learning rate and t is the iteration step.

Many ANN learning algorithms use the notion of learning rate to train the network

gradually over many iterations. The concept of learning rate is therefore crucial for

most learning algorithms, particularly for supervised learning algorithms such as the

backpropagation algorithm. We will discuss the backpropagation algorithm in more

detail later but let’s first discuss the limitations of the single layered Perceptron and

the introduction of the multi layered Perceptron.

The multi layered Perceptron (MLP) is an ANN that introduces multiple layers of

neurons between the input and the output of the originally proposed single layer

Perceptron discussed above. These extra neurons and layers are called hidden

neurons and hidden layers respectively (see fig3 for illustration).

Fig3. MLP with a single hidden layer of hidden nodes.

With the introduction of extra hidden layers, the MLP had overcame one of the

biggest limitations in the Perceptron - the capability of computing only linear

separable problems [13] - which made it possible for the MLP to compute one of the

most fundamental logic XOR gate [14], something which the conventional Perceptron

(using monotonic activation functions) could not be trained to do. It is possible to

train a perceptron with a single node to compute the XOR if a non-monotonic

activation function is used, such as the Gaussian function [15].

Over the years, usage of more hidden layers have been shown to improve

performance of many challenging problems [16].

14

ANN structures with hidden layers and nodes are also known today as deep neural

networks and is the beating heart in the emerging and popular field of deep learning.

Next we will discuss one of the most popular supervised learning algorithms for

deep neural networks, the backpropagation algorithm.

2.3 Supervised learning and Backpropagation

Supervised learning in the field of machine learning is a category of learning

algorithms that require data sets of training examples of inputs and expected

outputs. These algorithms typically works by gradually adjusting an internal data

structure (e.g. an ANN) by comparing expected output with what is computed from

the internal structure. This section will only focus on the notion of using supervised

learning algorithms to train artificial neural networks, hence when referring to

supervised learning we mean exactly those that train neural networks instead of

other supervised learning techniques like regression or support vector machines

(SVM).

Other interesting categories of learning algorithms that will be discussed in later

sections of this thesis are; reinforcement learning, evolutionary algorithms,

population based optimization, genetic algorithms and estimation of distribution

(EDA) algorithms.

Supervised learning can be very well suited for pattern recognition and classification

tasks where large datasets of input and output examples are available [17][18][19],

but lacks the ability to adapt to change and cannot explore for new solutions. This is

due to a limitation where neural network based supervised learning algorithms are

usually entirely bounded by the quality and quantity of the training datasets used.

Let us now take a look at a well-known algorithm for training neural networks in

supervised learning.

Backpropagation is a type of supervised learning algorithm that can be used to

efficiently train deep neural networks (ANN with hidden nodes or layers). It works

by first forward propagating network inputs through the network until output is

obtained. It then compares the obtained output with the expected output from the

training set to calculate an error gradient. Finally it backward propagates and adjust

the network weight accordingly.

The backpropagation algorithm can be briefly described as follows

1. Initialize random weights to the network

2. Feed input pattern (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) and apply forward propagation until

output is obtained.

15

3. Compare the obtained output with the expected output and calculate the

error.

4. Backward propagate the error and calculate the gradient to adjust the

weights for each layer.

5. Repeat from step 2 until the network output converges.

The gradient that is discussed in step 4 above is the derivatives of the error in respect

to the weights. For this reason, backpropagation is a gradient descent algorithm. To

understand more of the mathematical backbone of backpropagation please consult

these articles [13][6].

Since backpropagation is a type of gradient descent algorithm, it has the same

limitation of getting stuck in local minima. The reason for this is that the gradient

descent algorithm is designed to iteratively follow a gradient until convergence is

reached. This means that if following this gradient leads to a local optimum, there is

no way for the algorithm backtrack and find another optimum in the landscape.

Nonetheless, multiple techniques has been proposed to address this limitation

[20][21][22].

To summarize this section; supervised learning (in respect to training ANN) is a

paradigm of learning algorithms that adjust ANN weights by comparing input and

output examples with what is produced from the network until desired behavior is

reached (typically by convergence). Backpropagation is a supervised learning

algorithm that is well suited for several tasks but has a limitation of getting stuck in

local minima.

In the next section we will look into another category of learning algorithm that is

adaptive and capable of naturally avoiding local minima by design.

2.4 Reinforcement Learning

Reinforcement learning is a branch of machine learning that learns by evaluative

feedback instead of instructive feedback like supervised learning.

The difference between evaluative feedback and instructive feedback learning is that

in evaluative feedback learning, feedback is only provided to the learning system by

evaluating on how well the system is performing regarding the environments and its

states. Usually the evaluation is designed as a form of reward and value function that

rewards the system depending on the set of actions taken by the system.

Instructive feedback learning is instead learning by giving exact information on how

a learning system should behave, which often requires pre-existing knowledge of the

problem domain. In the case of supervised learning it is for example crucial to

16

provide training data that depicts how the system should behave according to an

input and output dataset.

Reinforcement learning is considered to be a more natural way to how human and

animals learn. The basic idea is to learn through interaction with the environment by

taking actions and receiving feedbacks for those actions, then over time figure out

which set of actions gives the most optimal performance.

Consider a scenario where we learned how to not put our fingers into the fire. We

would for example learn by first putting our fingers into a fire by chance, then

observe that there is a sensation of pain, after which we would update our internal

knowledge of the world to consider that fires are hot and is painful to touch. This

will in turn make it less likely for us to touch the fire, as we most likely evaluated the

feedback to be not so rewarding.

The scenario above describes how reinforcement learning typically learns the

environment its associated actions and states. Below I will discuss some key concepts

of reinforcement learning. For more detail on how reinforcement learning and

associative algorithms works, consult a book by Richard S. Sutton and Andrew G.

Barto [23].

In reinforcement learning some key elements that distinguishes it from other types of

learning. These elements are the policy, reward function, value function and model.

According to Richard S. Sutton and Andrew G. Barto [23] the policy is the most

important aspect of a reinforcement learning agent because it defines the behavior of

the agent, the other elements are only there to serve at improving the policy by

maximizing both the short and the long term rewards for the agent.

As mentioned, the policy defines the actions of an agent at each state, from which it

also defines the overall behavior of an agent in an environment. For example in the

scenario of experiencing pain when putting finger into fire, the policy is updated

after which the sensation of pain was perceived, this updated policy will make it less

likely for the harmful action to be taken again. As with other learning algorithms,

this policy update usually happens over several iterations based on some form of

learning rate.

The policy also defines the ability of an agent to balance between exploitative and

explorative search. This balance is very crucial for an agent to be able to maximize its

reward in term of its long term goal, because too much exploitation will lead to

finding only sub optimal solutions, while too much exploration may never lead to

the most optimal state as the agent will keep exploring indefinitely.

It is important to understand that states and actions of an agent does not need to be a

high-level representation, but can be as low-level as raw sensory inputs and

motorized actuators of a robot [23].

17

The reward function is the first evaluative feedback function that will tell an agent if

an immediate action in a specific state provides good or bad rewards. This function

helps the agent to navigate the search locally to find short term rewards, the analogy

to supervised learning is that the reward function can be considered as the gradient

towards a local optimum.

The value function is similar to the reward function, but instead of providing short

term feedback to the system, the value function provides an estimate of how

rewarding it will be in the long run if an agent was to take a certain action for a given

state. This function serves as a heuristic and helps the agent to update policies that

can help the agent to reach optimal solutions or goals. The value function is

important because it allows the agent to select an action that may look not so

rewarding on the short term, but in the long run will be more rewarding because it

may lead to consecutive high rewarding states.

The model element serves to represent the environment, it is important and

beneficial for planning tasks. Some reinforcement learning algorithms – such as the

Q-Learning algorithm – are model-free, meaning they do not utilize a model of the

environment to improve their performance while learning. Other types of

reinforcement learning algorithms instead rely on the model of the environment in

order to learn efficiently [24].

Fig4. Diagram showing the cycle of interaction between an agent and the

environment in reinforcement learning.

Because this thesis focuses on the aspects of training and evolving neural networks, it

is therefore essential to discuss how reinforcement learning algorithms may

incorporate neural networks in learning. One of such algorithm that has been shown

to be performing well in learning to play Atari games is a version of the Q-Learning

[25] algorithm called Deep Q-Network [2][26]. But without diving in too deep, we

will only discuss the basics of the Q-Learning algorithm and how to expand this idea

to benefit from deep neural networks in reinforcement learning.

18

The Q-Learning algorithm in its simplistic form is presented below

1. Initialize the Q(s, a) for all state-action pairs, typically to 0

2. Observe the current state s

3. Select an action a that gives most utility based on and execute it

4. Receive the immediate reward r(s, a)

5. Observe the new state s’

6. Update Q(s, a) according to the Q-Learning update rule:

 𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∗ 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) (7)

7. Set s = s’, go to step 2

The most important step in Q-Learning is step 6, where the Q-Value is updated after

which an action has been taken, then the implication of the Q-Learning algorithm is

that given enough time it will eventually be able to reach convergence and derive an

optimal policy [27]. This algorithm is also called an off-policy algorithm, because it

updates the utility of a state-action based on the assumption of a greedy algorithm

(maximizing for utility), while the actual policy that is to be derived is not a greedy

algorithm, but rather try to find an overall optimal solution.

The problem to Q-Learning arises when the state-action space become too large, such

as that of in a dynamic game world where the number of states and actions are

practically unbounded, in this case storing all the updated Q(s, a) values will no

longer be feasible. To address this problem one approach is to encode the Q-value

function in a neural network where the inputs are the state and action while the

output is the utility of the given state and action.

To incorporate neural network in encoding the Q-value function properly is by itself

a challenging task, this thesis will not discuss in detail how this is done as there are

several adaptations of this idea [28][2][26][29][30].

2.5 Population Based Optimization Algorithms

This section will step a bit away from specifically talking about learning algorithms

to give a brief introduction on population based optimization algorithms, from

which lay the foundation for some important algorithms used in this thesis.

Furthermore we will discuss how population based optimization algorithms may be

directly related to the learning algorithms used in this thesis and how it can be

associated with other learning algorithms such as supervised and reinforcement

learning.

19

Population based optimization algorithms are in this thesis referring to algorithms

that take the advantage of a multi-agent environment to optimize multiple solutions

across a population of agents. These algorithms are mostly derived from a group of

algorithms called nature-inspired algorithms [31], from which they can further be

divided into subsets of swam intelligence (SI), bio-inspired (BI), physics and

chemistry based and a set of other but still nature inspired (i.e. based on social

interaction models), for a comprehensive list of different algorithms see Iztok Fister

Jr. et al. [31].

One advantage in using population based algorithm is that they provide a way to

optimize problems when the landscape in which optimal solutions can be found are

hard to define precisely. A second advantage is the ability to search multiple

solutions at once by encoding possible solutions in a population of agents, this allows

for implementation efficiency when implemented in computing systems that are

capable of simulating agents in parallel (i.e. using computer graphics processing

unit) [32].

According to Yang [33] swarm intelligence algorithms can be represented by the

following inductive expression:

 (𝑥1, 𝑥2, … , 𝑥𝑛)𝑡+1

= 𝐴((𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡); (𝑝1, 𝑝2, … , 𝑝𝑘); (𝜖1, 𝜖2, … , 𝜖𝑘))(𝑥1, 𝑥2, … , 𝑥𝑛)𝑡

(8)

where 𝐴(∙) is an algorithm that takes three sets of parameters; a set of solutions

(𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡) at step t, a set of algorithm dependent parameters (𝑝1, 𝑝2, … , 𝑝𝑘) and a

set of random variables (𝜖1, 𝜖2, … , 𝜖𝑘). The implication is that 𝐴(∙) calculates an

improvement from a population of existing solutions (𝑥1, 𝑥2, … , 𝑥𝑛)𝑡 and generate

new improved set of solutions (𝑥1, 𝑥2, … , 𝑥𝑛)𝑡+1.

Since swarm intelligence as described by Yang reflects a population of potential

solutions and can therefore be considered as population based, hence this thesis will

assume equation (8) to be adequate when discussing population based algorithms.

Equation (8) is an inductive expression which implies that population based

algorithms are applied iteratively until a criteria is met such as when sufficient

solutions are found.

As mentioned above population based algorithms must be provided algorithm

dependent parameters, as these parameters are crucial in determining the overall

behavior of an algorithm as well as how will it performs. Because of this one of the

most challenging problems in using population based algorithm is to find a set of

parameters that is a sweet spot for such an algorithm, as this can be very difficult

according to discussion by Yang [33].

20

The challenge of finding such a sweet spot in finding the correct set of parameters

will later be discussed in more detail on how each parameter can affect the result of

the experiments in this thesis.

Population based algorithms (as well as most nature inspired algorithms) belongs to

a class of search algorithms called population metaheuristics, which are population

based algorithms that does not directly search for heuristics for a specific problem,

but rather search for heuristics on a higher level that are not dependent on any

specific problem [34]. For this reason metaheuristic algorithms are extremely

adaptive and can be applied to many optimization problems.

An example of a heuristic search algorithm that is problem dependent is for example

the A* search algorithm [35], where the algorithm tries to minimize a cost function

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), from which the term h(n) is a heuristic (estimated distance)

guiding the search towards the target. A heuristic like this is specific for the A*

algorithm as well as it can only be applied to problems that can be mapped to

shortest (least cost) path search.

On the other hand a metaheuristic search algorithm will not be bounded to a specific

problem (such as to find shortest paths), but will instead search in the solution space

using a form of evaluative function to evaluate how well a solution (or a set of

solutions) performs. Because of the lack of problem dependent heuristics (which

behaves as a guide), the only way to generate new and potential better solutions are

to introduce random variables to create or modify existing solutions by random for

evaluation.

It is also important to mention that the only parts in a metaheuristic search algorithm

that may be problem dependent is the evaluative function and the representation

(encoding) of solutions, similarly as described by Darrell Whitley for genetic

algorithms [36].

In order to prevent any metaheuristic search algorithm to only generate useful

solutions instead of a total random set of solutions, it is important to control these

random variables by a set of parameters, such that existing solutions can be

improved progressively over time. These are the algorithmic dependent parameters

mentioned above.

The element of randomness also makes it possible to generate new and potentially

better solutions than by just improving on existing solutions which can lead to a local

optimum. What this implies is that metaheuristic search algorithms usually have the

two elements of exploitation and exploration.

An analogy for this is to imagine a situation where an animal tries to locate a good

food source; it can do this by either searching randomly at nearby locations or to

travel to faraway lands. If the animal was to only search at nearby locations then it

may be able to find a food source, but if this food source is good and can last for a

long time is not known. The only way for this animal to know is to search farther

21

away as there can exist potential better food sources out there. What this animal will

need then is to balance between searching nearby (local) and searching far away

(global) so that it can find good food sources as well as not wander itself to death.

The elements of local search and global search is often referred to as the ability to

exploit and explore, and controlling the balance between these 2 elements in

metaheuristic search can be very difficult [33].

Fig5. Illustration of Ant Colony Optimization simulating how population of ants

can over time to find the shortest path.

Population based algorithms take the advantage of metaheuristic search as well as

speeding up the search by implementing not only a single solution but multiple

solutions called a population of solutions. Several population based algorithms also

implement a mechanic where solutions within the population can interact and share

information, such as the firefly algorithm [37], ant colony optimization (fig5) [38] and

genetic algorithm [36]. This information sharing mechanism is used to combine

existing solutions with each other in order to generate new and potentially better

solutions. Without this mechanism each solution will just behaves as if they were

independent single solution search and may cause overlapping search, which in turn

leads to inefficiency as each solution does not inform other solutions of what

solutions already exist.

The mechanism of information sharing is analogue to how each individual in a

society may inform and share knowledge between each other so that the total

knowledge of the entire society improves as a whole.

To summarize this section, we have looked at the fundamental concepts of

population based optimization algorithms, which in turn are mostly inspired from

nature. These algorithms can be used over a wide range of problems, but challenge

22

the user in setting a set of algorithm dependent parameters where parts are to find a

balance between exploitation and exploration.

Next we will discuss genetic algorithm, which is also considered as a nature inspired

algorithm, but since the concepts in genetic algorithms are essential to this work, it

deserves a dedicated section.

2.6 Genetic Algorithms

Genetic algorithms are population based search algorithms inspired by evolution

theories, natural selection and genetics [39]. As any population based algorithms,

genetic algorithms also have some of the same advantages and challenges such as

being capable of evolving multiple solutions, perform localized and global search

(exploitation vs exploration), but also inherit the challenges of parameter setting and

balancing between exploitation and exploration.

In the case of optimization for genetic algorithms, solutions are often called to be

evolving through generations to optimize for better solutions. This is analogue to

biological evolution where organisms evolve through generations to adapt and

become better at surviving in their environments.

Previously when discussing population based algorithms, two important elements

were mentioned that usually are problem dependent; the evaluation function and the

encoding of solutions. In genetic algorithms evaluation functions are canonically

called fitness functions, these functions are to evaluate how fit a solution (or a

population of solutions) is in each generation, while the encoding of solutions are

called genomes [40] or chromosomes [41], and behaves just like how biological

genomes in organisms encodes their genetic traits.

Genomes in genetic algorithms are usually represented by a string or a sequence of

information (conventionally a sequence of bits), and can be modified by mutation

and crossover operators. Let us take a look at some important elements in genetic

algorithms, for more detailed description please see [36][39][42][41].

Encoding of solutions can be done in several representations, one of such

representation is by representing a solution in a sequence or string of bits effectively

forming a binary sequence.

Using binary sequence is analogue to how data structures are stored within a

computer, and since any piece of data are naturally stored in binary format it does

not require any complex conversion or transformation other than casting the data

representing a solution into bits, an operator that is often natively implemented in

most modern programming languages.

23

A problem in using raw binary data in such a naïve way as described above is that

such a representation cannot be easily manipulated by the way of how genetic

algorithms modify (mutate) and recombine solutions (crossover). Any binary

sequence representing any meaningful piece of data within a computer must follow

certain structure for the type of data it represents (e.g. a data object, integer or string),

it is therefore difficult to slice bits and pieces from one binary sequence and merge

with another without corrupting the underlying data structure.

A concrete example is for any given a binary sequence representing a text string, it is

not possible to cut, slice or change bits within the sequence at any arbitrary location

and still get a meaningful text string in return. The reason for this is because any

literal symbol in a computer is usually represented by a “byte” (8 bits). To make

meaningful manipulation of text strings, groups of 8 bits must be consider as a single

smallest unit in the sequence.

As a conclusion, when choosing an encoding for solutions that would allow genetic

mutation and crossover, it is important to design the representation carefully in such

a way that it is possible to modify and cut genes in the genome without corrupting

the underlying representation. For example in the algorithms used in this thesis,

genes are represented as a list of data objects representing neural network

connections and nodes.

Mutation is the process at which genomes of solutions are modified, usually by

modifying the genes by some random about. The number and probability of genes

that are selected to be modified can be set by the parameter of the algorithm.

Mutation is in fact the mechanism in genetic algorithms that allows both local and

global search leading to support the capability of optimizing and finding new

solutions. It is therefore crucial to implement a mutation operator that allows for

balance between exploitation and exploration. One can for example use a non-

uniform distribution such as the Lévy-flight such as used in the Cuckoo Search

algorithm [43] for random mutation to control the distribution between of local and

global search (small and big jumps).

By randomizing genes in a genome is only one of several ways to mutate, as it is

usually up to the design of individual algorithms that decides what kind of

manipulations are possible for modifying genomes. The main idea of mutation is still

clear, it is used to modify genomes in hope for finding better solutions.

Crossover in genetic algorithm is based on the idea of biological counterpart where

organisms crosses their genes when creating offspring. This mechanism allows for

preserving genetic traits which in turn may preserve genetic traits of promising

solutions, just like how fit biological organisms preserves their genes by having their

offspring inheriting their genes.

Since crossover only preserves genes from parent genomes, this further implies that

the main searching mechanism in genetic algorithms are by mutation to both

24

optimize and find new solutions and by crossover to preserve and to combine

existing solutions in hope for better ones. Supported by the building block

hypothesis, crossover also behaves as a guide for genetic algorithms in searching for

better solution more efficiently instead of trying every single combination using only

the mutation operator.

As with the mutation operator, crossover can also be implemented in several ways,

some of the most common are k-point crossover and uniform crossover [42]. For

different problems and applications, different crossover operators may be needed to

allow for meaningful recombination of genes. What this means is that for genetic

algorithms, the implementation of mutation and crossover operators may be problem

dependent for certain types of problems, which also usually depends on the

encoding method used.

The building block hypothesis mentioned earlier refers to the a hypothesis

supported by the schema theorem [44] that small genes (low-order schema) which

can provide to increase in fitness have a higher chance in surviving through

crossover and mutation and can therefore be recombined with other small fit genes

in order to construct even more better set of genes. But the effect of whether this

hypothesis holds for every generation with complex genomes is still debatable and

hard to prove [44][45]. Nonetheless genetic algorithm is still one of the most popular

optimization algorithms used today with several adaptations, one of such an

adaptation is the NEAT algorithm that will later be discussed in another section.

Fig6. Diagram of genetic algorithm showing the steps of selection, crossover and

mutation.

The genetic algorithm can generally be summarized as follow:

1. Initialization – The first step is to create an initial population of solutions,

this is usually done by creating solutions randomly over the solution space,

but specific knowledge about the solution space can also be used to initialize

better solutions to speed up the search.

25

2. Evaluation – Evaluation step is where solutions are evaluated for fitness

using a fitness function. This information is important for the next steps.

3. Selection – At this step, solutions are to be selected to create offsprings for the

next generation. How solutions are selected can vary, but the idea is to

somehow select solutions in such a way that good traits of fit solutions are

can be preserved (i.e. the block hypothesis). It is also important to not select

only the top solutions, because some of the other genes of the less fit solutions

may contribute to create better solutions later, preserving variety also needs

to be considered.

4. Recombination – This is the crossover step, solutions selected from previous

step can now be recombined with each other to create new offsprings. The

number of parent solutions used to recombine offspring solutions can vary

depending on the adaptation of the genetic algorithm, but commonly two

parents are selected to create new offsprings.

5. Mutation – As discussed previously, the mutation operator plays an

important role in both optimization and also searching for new solutions.

This step is therefore dedicated to mutating offspring solutions created from

previous step. In order to not destroy good genes from parent solutions, it’s

important to consider how intensive (frequency and amount) mutation

should occur on each offspring solution. If an offspring always gets too much

mutation, then the chances that it will converge to an optimal solution is

rather scarce. The effect of this is as if pure random walk is used to find

optimal solutions, something which destroys the purpose of the crossover

operator.

6. Replacement – Once offsprings have been created with through crossover

and mutation, the entire population should be replaced with the newly

created offsprings. This steps epochs the population into a new generation.

Not all adaptations of genetic algorithms would replace an entire population

with a new generation of offsprings, some adaptions would gradually replace

solutions within a population, this would for example allows for real time

evolution [4].

7. Go to step 2 if termination condition is not met, otherwise terminate.

2.7 Neuro Evolution

Neuroevolution is a machine learning technique that utilizes evolutionary algorithms

(e.g. genetic algorithms) to evolve artificial neural networks. The idea is to utilize the

power and flexibility (as discussed earlier) of evolutionary algorithms to optimize for

optimal neural network weights and structures. Neuroevolution are commonly used

to solve reinforcement learning tasks [46]. Even though it lacks the evaluation of

direct interactions between agents and environment as required by typical

26

reinforcement learning algorithms, but with carefully designed fitness functions

neuroevolution can perform as well [3] as reinforcement learning techniques [2].

In principle, any metaheuristic optimization algorithms can be used to optimize

neural networks (as long as appropriate search operators are implemented), but

neuroevolution is mostly associated with evolutionary algorithms, this association is

intuitive since both neural networks and evolutionary algorithms takes inspiration

from nature. Nevertheless it is worth to keep in mind that other optimization

techniques (or a combination of techniques) can be used to evolve neural networks,

e.g. [47].

To put this into perspective, this thesis considers neuroevolution to be made up of

two components:

1. A metaheuristic (usually population based such as GA) optimization

algorithm, used to evolve a population of neural networks (solutions).

2. Neural networks and related encoding and manipulation operators (e.g.

mutation and crossover) used by the optimization algorithm.

Besides the two distinct components mentioned above, problem dependent fitness

functions for different optimization scenarios are required as well.

Notice that the above interpretation of neuroevolution is quite ambiguous as it does

not narrow on any specific algorithms, because the purpose is to attempt to simplify

the understanding of the modular components in neuroevolution on a macroscopic

level.

Encoding of neural networks is about representing the structure of a neural network

in such a way that it is possible to apply manipulation operator while maintaining

the functionality of neural networks as a whole. For example fixed neural network

structures can be encodes as a vector of weights [48], and evolution of each vector

(network) is driven by randomly mutating the weight values within the vector. A

population of weight vectors will be evaluated in each generation using a fitness

function to assign corresponding fitness to each network.

According to a review by Yao [49], some more complex encoding schemes can be

used to encode not only the weights of but also the topology and transfer functions

of a network, other techniques to encode the transfer functions to evolve

heterogeneous networks had also been studied [50]. What is to be encoded for a

neural network usually depends on the objective of the application or experiment,

but for some problems it is worth considering whether to use indirect or direct

encoding scheme.

Direct encoding is an encoding scheme where the relevant structures of a neural

network can be directly mapped to the encoding and vice versa (isomorphic). The

mapping assumes that whatever that is encoded are all that is needed to directly

represent a network. For example a direct encoding of a fixed topology network may

27

be a fixed length vector of weight values corresponding to the different connections

in the network, meaning that it is possible to directly translate a network between

encoding and network structure consistently.

A problem with direct encoding is the length of the encoding string will grow in

proportion to the number of encoded elements in a network. This is not a problem

for small neural networks but can quickly become an issue when neural networks

have the ability to grow bigger (i.e. changing topology). For certain task it is

fundamentally required that the neural networks used must be big, e.g. consider the

work by Matthew et al. [3] where raw screen pixels are fed into the inputs of a neural

network that is to be evolved for playing Atari games. This is where indirect

encoding start to show some promising properties.

Indirect encoding alleviates the issue with direct encoding where the encoded string

can grow and become too big that can cause performance problems when mutation

and crossover are applied. The idea to indirect encoding is that instead of

representing a network structure as exact as possible, it is possible to be represented

by a set of rules that can be used to construct a neural network. These rules can be

used to generate any relevant part of an ANN, i.e. the weights, topology and transfer

functions.

For example the ES-HyperNEAT algorithm [51] indirectly encodes not just the

connection weights but also the density and connections within a complex neural

network called a substrate. This algorithm is based in HyperNEAT [52] and therefore

evolves convolutional neural networks (CNNs) to generate structural patterns of

large scale ANNs. The encoding of the CNNs utilizes direct encoding while the

behavior of the CNNs indirectly encodes the actual ANN structures that are to be

evaluated.

Once an encoding scheme has been decided then the next step is to design evolving

mechanisms. These mechanisms are manipulation operators that takes a genome and

apply modifications to it to create new genomes. Manipulation can be on the

weights, topology, transfer functions or even other properties such as learning rules

for dynamic neural plasticity [53][54]. In genetic algorithms for example,

manipulation operators are the mutation and crossover operators that were

previously discussed.

As evolution carries on and crossovers are applied, one of the questionable issues

that arises with neuroevolution is what is known as the competing convention

problem [55] also known as the permutations problem [56].

The competing convention problem refers to a problem that occurs when a naïve

recombination operator is applied to genomes, e.g. by using single point crossover.

This is because some recombination operators do not take into consideration the

topological ordering of neural network structures. What this means is that e.g. the

single point crossover operator assumes that each gene in a genome uniquely

28

contributes to the overall behavior of that genome, therefore by cutting a genome

and combine with another should produce new genome that should inherit some of

the properties its parents. But this is not the case for recombination of neural

networks as different ordering of genes can exhibit the same behavior for distinct

genomes, this makes it challenging to know how to cut and recombine genes so that

offspring genomes will be corrupted.

Fig7. Two genomes of exact same topological structure but breeds corrupted

children using single point crossover operator.

Consider (fig7), two different genomes may have the exact same topological

structure and weights, but when a simple crossover operator is used corrupted

children are created with duplicated neuron genes A and C. A better recombination

operator is therefore needed to combine neural network structures such that

genomes with similar structures also preserves their structure when creating

offsprings, otherwise this can lead to a performance impact when searching for

solutions. The competing convention is addressed in the next section introducing the

Neuro Evolution of Augmenting Topologies algorithm.

2.8 Neuro Evolution of Augmenting Topologies (NEAT)

This section will be dedicated to introducing the Neuro Evolution of Augmenting

Topologies (NEAT) algorithm, most of the information presented here will be largely

based on the work of Kenneth O. Stanley and Risto Miikkulainen [57], review their

work for more detail. This section will only summarize key points of the NEAT

algorithm.

29

NEAT is a neuroevolution technique which is implemented as a population based

genetic algorithm. NEAT addresses challenges such as how to consistently evolving

both the weight and topology of neural networks as well as dealing with the

competing convention problem in neuroevolution. NEAT also utilizes the

mechanism of speciation, also known as niching [58][59], to protect innovation and

allow diversity in a population.

Encoding in NEAT is implemented using direct encoding, each genome contains is a

list of connection and node objects called connection and node genes. Each

connection gene encapsulates the incoming node, outgoing node, connection weight,

an innovation number and a flag indicating whether that connection is enabled or

disabled. Only enabled connections will be used when constructing neural networks.

Node genes simply encodes if a node is an input, hidden or an output node.

The innovation number encoded within a connection gene is a unique number

assigned to each new connection innovation in the population of genomes.

Innovation number is globally tracked throughout evolution for all genomes so that

genes representing the same topological structure gets the same innovation number.

This concept is called historical marking, which historically marks all innovations

uniquely to track all the distinct genes within the entire population.

Historical marking is essential to keep track of what genes are compatible with each

other, as NEAT utilizes this marking to apply crossover consistently and avoid the

problem of competing convention. Because historical marking makes it possible to

identify exactly which genes are of the same innovation, crossover can now align

genes properly and not produce faulty offsprings.

Fig8. Encoding of a genome in NEAT.

As mentioned, NEAT can evolve both the weights and topology of a neural network.

Weight can be evolved by either assigning random weight or by perturbing the

30

existing weight by a small amount. The probability for randomizing and perturbing

weight are usually controlled by global parameters.

What is special about NEAT is the ability to augment topology, what this means is

that NEAT can add topological structure to an existing neural network to make it

more complex over time. In addition NEAT can also disable existing connections

which makes it possible to remove faulty connections.

The two main topological innovative mutations in NEAT are (fig9):

1. Mutate add connection – Adds a connection to existing unconnected nodes

2. Mutate add node – Adds a new node between an existing connection, this is

done by first selecting an existing connection, disable it, add a new node,

create connections to bridge the gap from the disabled connection. Connection

weight of the disabled connection is maintained in one of the new connections

while the remaining new connection gets a weight of 1, this is to minimize

disruption to the functionality of the old connection.

Crossover is done by first aligning genes between two genomes using information

from historical marking, offspring genes are then inherited depending on which

parent is more fit. If both parents are equally fit then genes can be randomly

inherited (fig10).

Fig9. Mutate Add Connection and Mutate Add Node.

31

Fig10. Crossover of genomes utilizes historical marking to match and align genes

before creating offsprings.

Because NEAT allows for topological innovations, newly created offsprings can

suffer from fitness loss because of recent augmented structures that does not yet have

time to optimize. Fitness loss can destroy innovation because a network with an

important innovation can be removed from the population too early before it gets a

chance to catch up with the rest. This is why NEAT utilizes the concept of speciation

to protect innovation.

Speciation divides the population into species of similar topology, this is done by

aligning and comparing genes with each other using historical marking. Genomes

that are too different from each other will be put into different species, while similar

genomes will be assigned to the same species. The distance (difference) between

genomes are calculated using the formula in equation (9).

𝛿 =

𝑐1𝐸

𝑁
+

𝑐2𝐷

𝑁
+ 𝑐3 ∙ �̅�

(9)

E and D are the number of excess and disjoint genes, E+D makes the total number of

different genes, �̅� is the average weight differences, the coefficients 𝑐1, 𝑐21 and 𝑐3 are

constants adjusting the importance of each term, finally N is the number of genes in

the largest genome. Distance 𝛿 is then compared with a threshold value 𝛿𝑡, if it is

within this threshold then both genomes will be put into the same species. As the

number of species may grow over time, it is suggested to adjust 𝛿𝑡 to maintain a

somewhat stable number of species throughout evolution.

32

Genomes that belong to the same species share their fitness, what this means is that

every genome within the same species will have their raw fitness normalized by the

number of genomes within that same species. This allows for genomes in small

species (e.g. young species with innovative genomes) to have a chance to compete

with genomes in larger species, because genomes in larger species will have their

fitness diminished by the larger number of genomes in that species. The fitness

sharing function for genome 𝑓𝑖′ for genome i is specified as follow:

𝑓𝑖′ =

𝑓𝑖

∑ 𝑠ℎ(𝛿(𝑖, 𝑗))𝑛
𝑗=1

(10)

where 𝛿(𝑖, 𝑗) is the distance between genome i and j, 𝑠ℎ(∙) is set to 1 if the distance

𝛿(𝑖, 𝑗) is within the threshold 𝛿𝑡, otherwise it is set to 0, this means that 𝑠ℎ(∙) is the

number of genomes in the same species. 𝑓𝑖 is the raw fitness of genome i, and n is the

number of genomes within the entire population.

Genomes in the population of NEAT are assigned to species according to the

following steps [4]:

Fig11. The genome loop that assigns genomes to species in NEAT.

The NEAT algorithm generally starts with a population of primitive genomes (i.e.

genomes with only input and output nodes) and add more complex topology as

evolution carries on. This allows for dimensionality reduction. What this means is

that since topology are slowly added over time, the population will be able to search

for solutions in a smaller dimension incrementally. This effectively reduces the

dimensionality of the search which makes it possible for the algorithm to find

compact solutions. Yet a problem may arise if the parameters selected for structural

33

mutations are too frequent, then NEAT may not be able to find compact solutions

because it will not have enough time to optimize for the weight values (i.e. perform

search in weight space). Because it is not always clear which parameters are suitable

for topology mutation, synaptic pruning may be a solution to counter this problem

[60][61].

Since the first proposal of the NEAT technique, several adaptations have been

created that have shown great promises in using neuroevolution for solving different

kind of tasks [62][63][3][64].

Next we will look into one of the adaptations of NEAT called rtNEAT, which is

implemented in the work of this thesis.

2.9 Real Time NEAT (rtNEAT)

Real time NEAT (rtNEAT) is an adaptation of the original NEAT algorithm that

allows for evolution in real time. It was originally developed and used in the

neuroevolution video game NERO [4].

The algorithm was developed to demonstrate that it is possible to use neuroevolution

in real time video game environments where team of agents can be trained and learn

to solve different tasks in real time (online evolution).

The idea of rtNEAT is to evaluate and replace worst performing agents with

offsprings one at a time instead of replacing an entire generation of agents with

offsprings to produce the next, since the process of replacing the entire population of

agents can be very costly and is not desirable in interactive environments such as

video games. When replacing agent(s), it is important to replace the worst

performing agent(s) based on their adjusted fitness, otherwise the effect of speciation

will be destroyed.

Agents in rtNEAT are also assigned minimum time to stay alive, this allows newborn

agents to have time to adapt and optimize to the environment. Without this

minimum lifespan agents may get replaced and destroyed too quickly before they

can prove for themselves. This is typically important in a dynamic environment (i.e.

a game) as fitness of agents can only be evaluated over time instead of over discrete

generations.

Because this thesis implements the rtNEAT algorithm, the steps for the main loop of

the rtNEAT algorithm are presented below for a deeper understanding on how it

works.

34

Fig12. Illustration of rtNEAT reproduction cycle.

The rtNEAT Algorithm:

1. Calculate the adjusted fitness 𝑓𝑖′ for every individual i from the population

using equation (10). This step prepares the fitness sharing for the next step to

preserve speciation dynamics.

2. Remove the worst performing agent with lowest adjusted fitness. When

removing agent, consideration on how long an agent has been alive must be

accounted for. Because agents in rtNEAT and created and destroyed

continuously, it is needed to assign to each agent a minimum timer in order to

track which agent have been alive in sufficient amount of time for fitness

evaluation. Agents that have not been alive long enough need a chance to be

evaluated for fitness before they can be considered for removal. The minimum

timer is a parameter m and can be set experimentally depending on the task,

as some tasks requires more or less time for evaluation of fitness. Using

parameter m, population size |P| and specifying the percentage I of the

population that are ineligible for removal and can’t be replaced by offsprings,

it is possible define the number of ticks n between replacements as follow:

 𝑛 =
𝑚

|𝑃|𝐼
 (11)

3. Each species in rtNEAT is assigned an average fitness �̅�, at this step it is

necessary to re-estimate �̅� as this is used for selecting parent species in the

next step to produce offspring. The average fitness �̅� needs to be re-estimated

at this step because an agent has been removed from the previous step.

4. At this step a parent species is selected to create an offspring. In the offline

version NEAT, the number of offsprings created per species is proportional to

the average fitness �̅� of individual species. But since rtNEAT only create one

35

offspring at a time, parent species are therefore selected by a probability also

proportional to the average fitness of each species:

𝑃𝑟(𝑆𝑘) =

𝐹𝑘
̅̅ ̅

𝐹𝑡𝑜𝑡
̅̅ ̅̅ ̅

(12)

where 𝐹𝑘
̅̅ ̅ is the average fitness of species k and 𝐹𝑡𝑜𝑡

̅̅ ̅̅ ̅ is the total average fitness

of all species in the population. Once a parent species is created, two

individuals from this species are selected to combine and create a new

offspring individual.

5. At this stage the newly created individual must be assigned a species.

Intuitively the Genome Loop (fig11) could be run each time a new individual

is born, but as this process can have an impact on the performance of rtNEAT

it is not always necessary to completely reassign all individuals in the

population. Depending on the task environment, it may just be enough to

assign the newly created individual to the same species as its parents, and the

Genome Loop can be run once every few replacements. This can save

computing power as rtNEAT was designed for real time environments,

meaning for a program to run at 30 frames a second there’s only 0.03 seconds

available for all the calculations.

6. Lastly is to connect the newborn neural network to an existing agent in the

environment, this can for example be done by separating the implementation

of the visible agent from the brain (neural network) by making them modular.

As long as neural networks can be replaced for the same agent then it is

perfectly compatible with how rtNEAT is intended to work, because one of

the main goals of rtNEAT is to seamlessly integrate neuroevolution into

interactive environments.

To summarize, rtNEAT is based largely on the original offline version NEAT with

some modification to allow for real time (online) evolution. One of the main

mechanism that allows for this is the modification of parent species selection using

equation (12), this allows for the speciation dynamics which is one of the essential

features of NEAT.

2.10 Exploration vs Exploitation

Because exploration vs exploitation plays an important role in the research questions

of this thesis, it is therefore necessary to look at what importance exploration and

exploitation have for evolutionary algorithms, as well as why it is an important topic

in regard to general optimization.

36

This section will be largely based on discussions from a comprehensive survey

regarding exploration and exploitation in evolutionary algorithms by Črepinšek et al.

[65], as well as one of the earlier discussions on the topic by Eiben and Schippers [66].

In order to become familiar with the concept of exploration vs exploitation, let’s

begin by laying down some common understandings around the topic that will be

assumed in this thesis. In fact, several general concepts around this topic will also be

based on ideas and observations from the work by Mehlhorn et al. [67].

Exploration is commonly understood as the behavior of organism in searching for

new areas and locations that may in the long run be rewarding. For example how the

human race have historically explored the surface of the earth to discover new lands

and eventually led to acquisition of both new knowledge and resources. Exploration

is essential for survival, i.e. it allows for finding new habitable locations once

resources in the current known locations have been depleted. Exploration may also

looked at in the perspective of evolution where organisms have explored ways to

adapt to existing environment through mutation. For instance there is a breed of

trees called Sequoias that have found a way to survive forest fire by utilizing the heat

to crack their cones to seed the earth. In addition to this the Sequoias also somehow

adapted to the fact that fire would kill other competing tree breeds and their ashes

would further fertilize Sequoias seeds. The adaptation of Sequoias are quite

exceptional as fire is generally considered as purely destructive, but nature still have

found its way through the ashes and flames to create new life.

So exploration seems to be generally about searching for new ways or places in order

to survive, because survival is the single witness to successful evolution according to

the general understanding of evolution; the fittest will live. But it is necessary to keep

in mind that with pure exploration there would be no beneficial effect, because it

means to constantly moving or changing which often comes with a cost, i.e. in the

form of energy burned. This implies that in order to survive, there must also be some

countering mechanism that would stop exploration to save and gather energy

(perhaps for further exploration). This brings us to the idea of exploitation.

Exploitation is an opposite cornerstone to exploration [66], because exploitation is

not about discovering new land or adapting new ways to survival, but is instead

about utilizing existing discoveries to maximize potential rewards. For example

humming birds might first explore to find a field of flowers, but once found, they

would choose a specific flower patch and settle to feed. In other words, humming

birds would exploit the potential of newly discovered sources of nutrient by sticking

to a specific flower patch and would only switch once that nutrient potential is

depleted. Another example is how men have discovered new continents and

eventually settled on those. This is because discoveries of new continents have

provided opportunities for better lives, and once these opportunities were known, it

was naturally to exploit the potential they were estimated to benefit.

37

If the idea of exploitation and exploration seems to be countering each other, then

how can they co-exist as well as why does it seems like this is a must for survival?

Furthermore how can for example the behavior of exploration suddenly change to

the behavior of exploitation as in the case of the humming birds?

Exploration vs exploitation discusses the notion of why two seemingly incompatible

behaviors are important for survival of organisms but as well as effective search in

optimization algorithms. Discussions regarding the benefits and challenges of having

exploration and exploitation as features in optimization algorithms will be left for

later. Let us first look at some of the issues that arise when exploration and

exploitation are often perceived as two distinct and often mutually exclusive

behaviors.

Fig13. Illustration showing behavioral pattern of exploration and exploitation as a

continuum.

The idea of exploration and exploitation being mutually exclusive means that these

two behaviors cannot be exhibited at the same time in decision making of organisms.

In other words if an organism is exploring, it cannot exploit and vice versa. But

Mehlhorn et al. [67] argues that exploration and exploitation can in fact be a

continuum instead of a binary trade-off model (i.e. explore and exploit are mutually

exclusive). Additionally behaviors can seem to be exploring in one dimension but

might as well be an exploiting behavior in another dimension.

Viewing exploration and exploitation as a continuum gives room for modelling

exploration and exploitation models where both can co-exist and have different kind

of transitions in between.

Imagine for example a population of men that have never seen the value to gold. At

first there may be a handful individuals who would accidently stumble upon gold

38

ingots. As these individuals bring home the metal, it would attract more and more

people to explore for gold as they start to see the value in it. This can be interpreted

as exploitation gradually become exploration in the perspective of the population as

a whole (i.e. the population was exploiting whatever was valuable to them until they

saw a metal of great value).

Exploration and exploitation can also be difficult to define because depending on the

dimension of interpretation exploration can be exploitation and vice versa. For

example a group of humming birds that explore a field of flowers can be looked at as

an exploiting behavior if we consider the whole field of flower as a single source.

Likewise on the level of individual flowers, when a bird is exploiting a single patch

of flowers can also be looked at as exploring as they jump between individual

flowers. This is referred to as spatial scale according to Mehlhorn et al. [67], because

the dependency on scale of space defines the notion of exploitation and exploration.

Time can also play a role in defining exploitation and exploration, in this case it is

referred to as temporal scale. Generalizing this we can imagine that there may be

several other scales that could affect the definition of exploration and exploitation

behaviors.

Let us now move away from the general discussion of exploitation and exploration

models and look at how this topic also influences the design of evolutionary

algorithms.

Exploration vs exploitation in evolutionary algorithms have been discussed in

several studies, but not many have attempted to lay down a common ground for

researchers to navigate in the field, according to Črepinšek et al. [65]. For this reason

they had put together a survey to discuss common issues, misconceptions and

challenges regarding exploration and exploitation in evolutionary algorithms, from

which this thesis will summarize key ideas.

Exploration and exploitation in neuroevolution have mostly been concerned with

how to concentrate and diversify a population of solutions, in order to find a global

optimum. This seemingly shows the need for controlling balance between

exploration and exploitation in order to maintain a balanced global and local search

in evolutionary algorithms. Supporting this, Črepinšek et al. [65] argues that more

research is needed in order to understand more on how different factors in

evolutionary algorithms may affect the ability of intelligent systems to explore and

exploit:

- Defining phases of exploration and exploitation. As discussed previously,

defining when exploration or exploitation occurs can be tricky as there seems

to be no thin red line dividing them.

- Which parts of evolutionary algorithms contribute to exploration and

exploitation? Since evolutionary algorithms consist of many parts that can

contribute to the behavior of search, i.e. mutation, crossover and selection

39

operators can all contribute to what and how the search space is explored. At

some level an operator appear to contribute to exploration, but at another

level the exact same operator could also be contributing to exploitation.

- How balance between exploration and exploitation can be achieved.

Several algorithms have control parameters, how do we know which

parameters contribute to exploration and exploitation? Many parameters

seems to be set by the user through trial and error, how can we decide a sweet

spot that would achieve the balance between exploration and exploitation?

- When to control the balance between exploration and exploitation. As

exploration phases to exploitation to find optimal peaks, how can we define

when to phase between exploration and exploitation? Should exploration and

exploitation occur simultaneously?

- How to control the balance between exploration and exploitation.

Controlling the balance between exploration and exploitation means to be able

to identify and control the moving parts of an evolutionary. For instance one

technique may be to measure and control diversity as diversity is often

regarded as a property that contributes to exploration. How can we identify

those moving parts as well as controlling them in order to get the result we

need?

- How to measure exploration and exploitation. Finally how can we measure if

a system is exploring or exploiting, as this can be critical in maintaining the

balance between these two phases.

The list above summarizes some of the elements that need to be considered when

designing algorithms to achieve a balance between exploration and exploitation,

which will hopefully help improving the performance of evolutionary algorithms.

This is a rather longer section discussing the difficulties in identifying and

controlling explorative and exploitative behaviors of intelligent systems using i.e.

evolutionary techniques. But this is clearly an important task to understand these

challenges in order to design better techniques (e.g. metaheuristic algorithms) to

solve reinforcement learning problems.

This thesis attempts to test some of the mentioned concepts regarding exploration vs

exploitation. Particularly on how mutation parameters contribute to exploration and

exploitation.

40

2.11 Estimation of Distribution Algorithms (EDA)

Because the work in this thesis implements a simplistic EDA, it is therefore

supplementary to give a brief introduction to this type of stochastic population based

algorithm known as Estimation of Distribution Algorithm (EDA), originally

introduced by Mühlenbein and Paass [68].

EDAs are stochastic algorithms that works by generating new, hopefully better

solutions based on a probabilistic model built from a set of promising solutions

drawn from an existing population.

A drawback to EDA is perhaps the fact that new solutions are solely based on

existing solutions which might lead to early convergence. One of several methods to

solve this is for example by combining EDA with other algorithms [69][70] to expand

the search bound in solution space, which in turn helps escaping local optima in

large and deceptive fitness landscapes. In this thesis an adaptation of EDA will be

combined with rtNEAT to test if it can speed up the process of finding optimal

solutions.

The general EDA algorithm is presented below [69]:

1. P ⇐ Initialize the population

2. Evaluate the initial population

3. while iter_number ≤ Max_iterations do

4. 𝑃𝑠 ⇐ Select the top s individuals from P

5. M ⇐ Estimate a new Model from 𝑃𝑠

6. 𝑃𝑛 ⇐ Sample n individuals from M

7. Evaluate 𝑃𝑛

8. P ⇐ Select n individuals from 𝑃 ∪ 𝑃𝑛

9. iter_number = iter_number + 1

10. end while

Step 5 in the EDA algorithm is the most important part, as it builds a probabilistic

model from top performing solutions. The way to build probabilistic models can

vary greatly, and usually defines the type of EDA algorithm being used. For instance

the Bayesian Optimization Algorithm (BOA) [71] is an EDA that builds a

probabilistic model of Bayesian network.

This thesis implements a simplistic probability vector model similar to the one

shown in (fig14), further details will be described in implementation section.

41

Fig14. Probabilistic model is sampled into a vector to represent the percentage of

occurrences for each bit in sampled solutions. EDA then generates new solutions

based on sampled vector model.

2.12 Experimenting With A.I in Game Environments

“Games are a great testing ground for developing smarter, more flexible algorithms

that have the ability to tackle problems in ways similar to humans” [72], a statement

from the minds behind AlphaGo [73], the deep learning system that had set an

important milestone in A.I research, where a machine finally could win against some

of the world’s best human Go players [73][1], a task that was believed to be one of the

most challenging tasks for Artificial Intelligence.

Using A.I in video games have existed almost since the beginning of video game

history, as the demand for computer controlled entities were necessary to create an

interactive and fun environment for players. From primitive conditional based A.I to

search & planning algorithms, and eventually integrates machine learning [74].

Because games have shown to be greatly flexible and can be modelled to reflect all

kinds of tasks and problems. This is what that have made video games so popular in

A.I research, simply because of the ability to model and simulate different scenarios.

For example, strategic decisions and planning have been studied using real time

strategy games (RTS) to test different machine learning techniques [75], even with the

usage of rtNEAT [76], which as discussed as an essential part of the work in this

thesis. Other cases where games were used to test the ability of using reinforcement

learning for learning to play at a human level using raw pixel inputs [2][77]. Even

42

popular games such as Angry Birds2 and Minecraft3 have been used as test beds for

teaching A.I in games, see [78] and [79] respectively. Other specialized game

environments have also been created specifically for A.I education as well as research

[80].

As A.I research progresses in games, and as many good results have shown that

machine learning techniques can be used to beat human in video game playing, a

natural question which arises is that if those A.I models have reached human level

intelligence? Certainly this is not the case because almost all A.I models are trained to

excel really well in the tasks they are trained for and does not generalize too well,

this is one of the motivations behind the General Video Game AI (GVGAI)

framework [81].

GVGAI is a framework for designing gaming environments that is unbounded by

quantity, i.e. using Video Game Description Language (VGDL) [82] to generate

games dynamically for different A.I models to compete. This allows trained A.I

models to face game environments that they have never seen before, allowing them

to generalize over different unseen problems and tasks instead of being fixed to a set

of games they have been trained for. With this framework Perez-liebana et al. hopes

to help generalizing machine learning A.I models to equivalent to General Artificial

Intelligence [81].

A central aspect to this thesis is regarding neuroevolution algorithms, which have

also been extensively used to attempt to improve NPC behaviors, procedural content

generation as well as other aspects of different kind of games [83]. In the same

context of using A.I techniques to improve different game elements, it is worth

taking a look at the work of Yannakakis et al. [84], where they have compared

different computational intelligence techniques used in different aspects of video

games.

Since using game environments have shown to be promising for A.I research, this

thesis implements a simplistic real time game environment to run some of the

experiments. This allows the possibility for future research of proposed techniques in

this thesis to run more complex and interesting machine learning experiments.

3 Related Studies

As there are not many directly related studies, i.e. studies where rtNEAT is used in

combination with other techniques to test for the effects of exploration and

2 https://www.angrybirds.com/
3 https://minecraft.net/

43

exploitation, this chapter will therefore only present some studies that are somewhat

related and point in the same direction as the research done in this thesis.

3.1 NERO

NeuroEvolving Robotic Operatives (NERO), is a video game created by Stanley et al.

[4] to demonstrate the ability of rtNEAT in evolving agents in a real-time game

environment. For this purpose NERO was the first game to utilize rtNEAT as a core

feature in its game mechanics.

NERO may as well be described as a game of its own style, where the main purpose

of the game is to allow players to train robotic agents in several tasks. In fact the

players interact with the game environment by designing different tasks for the

agents to solve.

Agents in NERO starts out with no knowledge of the world and are gradually

evolved and learn to solve different tasks. The agents are always equipped with a set

of different sensors to perceive the environment around them.

This game demonstrated that it is possible to use neuroevolution to implement

learning agents in an interactive game environment. This is a key idea that inspired

made possible for the work in this thesis, by using rtNEAT to probabilistically evolve

the population, real-time evolution was made possible.

3.2 NEAT and XOR Function

In the original paper of the original NEAT algorithm [57], Stanley and Miikkulainen

evaluated their proposed algorithm using the XOR function. They argued that even

though the XOR function is a simplistic function, but do well serves the purpose of

testing their learning algorithm for evolving non-linear separable functions.

Another advantage in using XOR for evaluation is its simplicity, easy to implement

and can test if the different mechanisms in NEAT were working as expected before

evaluating for more complex functions.

This thesis leverages this idea and have as well used the XOR function for evaluation

of rtNEAT’s functionality.

44

3.3 Differential Evolution and EDA

In a study by Sun et al. [70], they had created a hybrid algorithm by combining DE

and EDA algorithms called DE/EDA.

DE algorithms works by mutation and crossover similarly to genetic algorithms, with

the only difference is that DE performs mutation and crossover by sampling from the

existing population (usually 3 candidates) and calculates a differential between them

in order to produce a trial candidate for evaluation. If the trial candidate shows

improvement, it is accepted.

In DE/EDA, instead of performing mutation and crossover only using the calculated

differential between sampled agents, EDA algorithm is used to build a probabilistic

model from the population and contribute to creating new solutions. At the same

time an adjustment coefficient is also introduced in the DE/EDA to allow adjustment

of how much effect EDA would have during creation of new solutions.

The mechanism described above is closely related to how EDA is used with rtNEAT

in the study of this thesis. Similarly the EDA Mutator implemented in this thesis also

has an adjustable parameters to adjust how much influence the EDA algorithm

should contribute to mutation.

4 Implementation

This chapter will be dedicated to the implementation progress of rtNEAT, as well as

discussing some of the challenges and issues that arose during implementation that

could directly and indirectly affect the overall behavior of the algorithms used, which

in turn may affect the experiments and results.

All of the final implementations were done using the Python programming

language. The reason Python was chosen was because it provides a simple workflow

from coding to testing and debugging as compilation is not required.

C++ was also involved initially in an attempt to use Python purely for prototyping,

while the main code would be implemented in C++ using the Unreal 4 game engine.

The Unreal 4 game engine was chosen because of the promising workflow of using

an existing game engine to ease the process of creating game environments. But this

workflow of using Python and Unreal 4 eventually became a bottleneck, because

Unreal 4 implements an adaptation of C++, which made porting Python code to

Unreal 4 more difficult than planned.

For the reasons mentioned above, all the codes implemented in Unreal 4 was

discarded and only Python was used to implement all the experiments discussed

here in this thesis.

45

4.1 Implementation of rtNEAT – The Metaheuristic Search

As mentioned in section 2.7, this thesis divides neuroevolution algorithm into two

components; metaheuristic search and neural network elements. Regarding the

implementation of rtNEAT, the metaheuristic search component is first implemented

and tested, then comes the addition of neural network elements (section 4.2).

The implementation of rtNEAT’s metaheuristic search component was first identified

to be a set of different key elements:

1. Data structure for species.

2. Data structure for population.

3. Selection mechanism, including speciation.

Note that historical marking, which is a key feature of rtNEAT does not belong to the

metaheuristic component, because it is only used to match neural network genes

when applying crossover of neural network genomes.

In order to test if the metaheuristic search algorithm works, simple implementation

of the agent class was created. These agents simply represent 2d vectors in Euclidean

space along with mutation and crossover operators. Mutation operator simply

modified the vector components randomly, while crossover operator would blend

then 2d vectors from two distinct agents to create an offspring.

Testing also required implementation of a simple problem to test if the code could

optimize well, therefore a simple fitness function was created to evaluate the

population of vector agents based on their distance from a predefined circle radius of

10; the closer the more fitness. As a result the metaheuristic search successfully

optimized towards this problem (fig15).

A simple mechanism to test for the effect of exploration vs exploitation was also

implemented. This was done by allowing the agents to mutate more (take bigger

jumps) when they are on low fitness, while agents with high fitness would jump

shorter distances, allowing for exploitation (fig16).

46

Fig15. Graphical output showing how the metaheuristic search improved agent

positions over generations. Blue agents are the fittest, while red shows the worst

agents.

Fig16. Agents were able to explore and find the circle much faster as well as

sticking to the edge (exploit) once found.

47

4.2 Implementation of rtNEAT – The Neural Network

At its core, a neural network is simply a graph of nodes and edges, therefore

implementing any neural network data structure is similar to implementing graph

data structures.

A graph consist of a list of nodes and edges, in the case of a neural network they are

referred to as list of neurons and connections respectively. A graph of neurons and

connections is called a genome.

Neurons in the implementation of rtNEAT in this thesis contain 3 lists of incoming,

outgoing and blocked nodes, as well as a type string. Specifically for any given

neuron N, the following data members are maintained:

1. Incoming nodes - A list of node indices pointing to neurons that have

connections to N.

2. Outgoing nodes – A list of node indices pointing to neurons that N is

connected to.

3. Blocked nodes – A list of node indices that N considers as blocked, this list is

used to prevent cyclic paths as well as other connection prevention

mechanisms, such as preventing output neurons to have outgoing

connections.

4. Type – A string indicating what type of neuron N is; Input, Output or Hidden.

Connections simply contain neural network and rtNEAT required properties such as

weight, enabled/disabled state, incoming and outgoing nodes.

A Genome encapsulates neurons and connections as well as important class methods

for mutation and crossover operators. Genomes can be set to allow either recursive or

feed forward networks. The implementation of forcing feed-forward graph

structures in genomes have also taken much of development time and extensive

debugging throughout development, as small mistakes have escalated to deeper and

hard to spot bugs during genome mutation and crossover.

One key difference between the implementation of rtNEAt in this thesis and

traditional NEAT is the possibility to physically remove a connections (not just

disabling connections as in traditional rtNEAT). The implication of this is that by just

removing connections, the algorithm can create new connections with opposite

direction, this can be important for feed-forward networks as connections are

removed and reconnected, new interesting structures can emerge.

48

Fig17. Output to demonstrate sampling of unconnected pairs. Picking 1000

samples of random unconnected pairs resulted in a uniform distribution across all

possible pairs (1, 3), (2, 1), (1, 2) and (3, 1), where each pair was sampled 246, 236,

251 and 267 times respectively.

Comparing to the original C++ rtNEAT4 implementation by Kenneth O. Stanley

himself as well a NEAT implementation in python (neat-python5), the rtNEAT

implemented in this thesis also has a second difference when it comes to the mutate-

add-connection operator. The implemented rtNEAT in this thesis guarantees to

always find a pair of unconnected nodes (uniformly distributed) and add a

connection between them (fig17). It will only fail if the graph network is fully

connected and provides no remaining free pair of nodes to connect, in contrast to

neat-python and C++ rtNEAT where this kind of mutation will cancel if the

randomly selected pair give rise to invalid connection (i.e. cycles in a feed-forward

network). The implication of this is the effect mutation probability parameters have

for C++ rtNEAT and neat-python can vary. Since adding connection can fail, it

means that the mutation probability parameters do not precisely define the exact

probability of mutation.

This differences above were discovered accidently when the source codes of

mentioned implementations were looked into and compared, as the rtNEAT

implementation within this thesis was initially designed purely by the description

from the original articles [40][4] instead of porting existing codes.

4 http://nn.cs.utexas.edu/keyword?rtneat
5 https://github.com/CodeReclaimers/neat-python/

49

4.3 Implementing the real-time Game Environment

The implementation of the real-time game environment was done using the python

Arcade6 library. Arcade is simplistic 2d library intended for developers to provide a

simplified workflow in 2d game creation.

The implementation of a simple game environment resulted in the following set of

main code classes:

1. NEATGame – The core class for running the game environment. It defines the

game bound as well as update methods for periodically updating entities and

events within the environment.

2. GameEntity – Base class for visual entities within the game environment. An

entity have position and velocity, and is as well bounded by the game bound,

which performs simple collision check to prevent game entities to fall outside

the screen. Even though entities can also have default colors and render radius

defined, it is possible to override rendering and update methods to allow

custom visual and behavior within the environment.

3. NEATEntity – This class extends from the GameEntity class to allow for

interaction between NEAT agents and the game environment. The

functionality of this class serves the purpose of encapsulating methods for

perceiving environmental inputs as well as acting on neural network outputs

to actions from an associated NEAT agent (NEATAgent). This is basically the

physical representation of a NEAT agent within the environment.

4. NEATAgent – This class represents the brain of NEAT entities within

environment. This class is also directly represents agents within species of the

rtNEAT population. As agents evolve and are replaced with offsprings,

associated entities will also get their brains (NEATAgent objects) replaced. By

replacing brains instead of the entities themselves will make it look like as if

game entities evolve their behavior over time instead of being replaced with

new physical entities. This is important feature to allow for designing

seamless interactive game environments where computer controlled entities

are made to behave as continuously living agents.

Objectives represents the fitness function of rtNEAT in the environment. They are

designed from extending the GameEntity class, this allow them to have different

visualizations as well as interactions with the environment and other entities. For

example to design a fitness function to evaluate and assign high fitness to agents

6 https://pythonhosted.org/arcade/

50

within a rectangular frame, an objective is created with overridden update and

rendering method to assign fitness as well as drawing the rectangular frames (fig18).

Fig18. Agents being evolved using rtNEAT to optimize for a fitness landscape of a

rectangular frame. Blue agents are within the frame, red agents are outside. This

simulation eventually made the agents circle in a somewhat rectangular pattern,

though not fully optimal.

4.4 Implementation of EDA Mutator

To test the effect of using estimated distribution models from EDA algorithms, a

simple approach was designed to allow for mutation in the same manner as how

EDA builds probabilistic models.

The implemented EDA Mutator is no mean a fully stand-alone EDA algorithm,

because an EDA algorithm would evolve its own population through generations

like how evolutionary algorithms would. This is why it is called the EDA Mutator, as

evolution is carried out by the implemented rtNEAT algorithm, EDA Mutator would

contribute in mutating genomes based on built probabilistic models. The EDA

Mutator was also implemented modular, meaning it can be turned on or off for

different experiments.

How the EDA Mutator works mainly by using 2 class methods:

51

1. BuildModel(genomes, reset=True) – This method builds the probabilistic

model of connections from a list of genomes (i.e. from top performing

genomes). This model holds the probabilities of the existence of connection

genes, the weight means and weight standard deviation. There is also a reset

flag that can be used to reset model building or continue from previously built

model, which allows for incremental model building.

2. MutateGenome(genome) – After a model has been built, the EDA Mutator

can be used to mutate individual genomes, by mutating their genes using the

built probabilistic model. This method takes a single genome as argument.

Mutation is also controlled by a global parameter called power, which

controls how much influence EDA mutation should affect mutated genomes,

with 0 as no influence as all while 1 is considered fully influential.

The implemented rtNEAT algorithm has the functionality to set which mutator

object is to be active at any given time, with a default set to NEAT Mutator. When

needed, EDA Mutator can be assigned for EDA based mutations.

It is important to illustrate how the power parameter influences the normal

distributions used for mutation of genomes, in order to understand the mechanism

behind EDA mutation. Since an example is worth a thousand words, see (fig19).

Fig19. Given a connection with weight 0.2, a probabilistic model where 𝝁 =

𝟎. 𝟖, 𝝈 = 𝟎. 𝟐, the power parameter will interpolate the probability density function

between the yellow and red distributions. At 0 power the weight will be exactly 0.2

with 𝝈 = 𝟎, the yellow distribution is only an exaggerated illustration of this

scenario for the purpose of visibility.

52

Lastly, the EDA Mutator described in this section is no mean the only way to

implement mutation with EDA. This implementation only demonstrates the

possibility to combine parts of one algorithm with another algorithm, particularly

EDA and rtNEAT algorithms.

4.5 The NEAT Mutator

As mentioned in previous section, the rtNEAT algorithm implemented in this thesis

is defaulted to use standard NEAT/rtNEAT mutation operators, originally described

here [40]. But in the implementation presented here, there are some elements that

differs from the standard NEAT. This can have implications for how evolution might

affect the experiment results. Different NEAT based adaptions found on the internet

may differ from each other as well (some can be found on the NEAT users page7),

something which is expected as different developers implemented their own

interpretation of the originally described algorithm. Nonetheless, the main core

elements of the original algorithm is often kept intact.

Mutation, crossover and historical marking are controlled by the NEAT Mutator

class in the current implementation of rtNEAT, therefore any adaptation to these

elements also affects how the current implementation handles these rtNEAT

mechanisms.

Key adaptation that differs from the original NEAT/rtNEAT mechanisms are:

1. Historical Marking – Historical marking plays an essential role in rtNEAT as

well as all NEAT based adaptations, because it lay ground for consistent

crossovers where genes need to be aligned for structural matching. The basic

concept of historical marking is to assign new unique structural mutation a

unique identification number. In the current implementation of rtNEAT, the

NEAT Mutator also controls assignment of historical marking, but this was

later realized to be unnecessary, as the implementation of the Genome class

already supports unique identification of structural mutations.

Each time a connection is created between two nodes, a hash table is updated.

This hash table keeps track of which pair of nodes are associated with which

connection objects. Initially this was only intended for easy retrieval of

connection objects by only providing node indices as arguments. But this was

adopted to be used for gene matching as well. Since each structural innovation

between the same pair of nodes across genomes would give the same hash key

in the form of a python tuple object (i.e. node1→node2 = (1, 2)), while new

unique structural innovation would give distinct keys, this can be translated

7 https://www.cs.ucf.edu/~kstanley/neat.html

53

to have the same effect as maintaining historical marking across the

population.

2. Mutate Remove Connection – Another adaptation to the NEAT mechanism

the connection removal mutation. In original NEAT a connection could

mutate to become disabled or enabled (but is directionally maintained). In this

implementation, connections disabled and enabled state can still be mutated,

but additionally they can also be physically removed, which allows for re-

creation of new connections with different connectional directions. This is

rather important in mutating a feed-forward enabled genomes, otherwise it

would be impossible to re-create a connections of opposite directions by just

enabling and disabling connections, as the cyclic prevention mechanism

would kick in and prevent this. This is not as critical in a recurrent network, as

connections in both directions can be created between any pair of nodes, and

by disabling and enabling those would allow for the same effect of flipping

connection directions.

The NEAT Mutator also takes in most of the rtNEAT related parameters such as

mutation probabilities. Those are shown in the figure below (fig20):

Fig20. NEAT Mutator parameters, largely affects the overall behavior of rtNEAT.

4.6 Verifying rtNEAT – The Evolution of XOR

Once rtNEAT had been implemented, the next natural step is to verify if everything

was working as intended. One of the most common experiments to run for this kind

of test is to optimize for the XOR logic function. A traditional reason to using the

XOR is because as mentioned in section 2.2, the XOR function had shown to be one of

the initial challenge to perceptron learning, therefore several learning algorithms

have tested their performance by learning the XOR function, including NEAT.

According to the NEAT User Group website8, it is also mentioned that when

8 https://www.cs.ucf.edu/~kstanley/neat.html

54

implementing NEAT, many would prefer to first test with the XOR function to

ensure functionality of the implementation.

The XOR verification test was executed twice with two different settings; the first

was to have agents starting out with only 2 input nodes, 1 output node and no

connections, the second was with fully connected connections assigned random

weights. The test evolution was running over 3000 reproductions in both cases.

According to how rtNEAT works, each reproduction would create one offspring

with a probability for it to be mutated. In Other words rtNEAT does not mutate any

other agents in the population except for when reproducing. The result of the XOR

test can be seen in (fig21).

Fig21. XOR evolution with two different settings, this shows that by assigning

random connections to agents initially would improve the performance of search

(higher fitness). Nonetheless, it is important to remember that mutation

parameters do play a big role in providing this result, using other parameters the

result may be entirely different.

As (fig21) shows that agents that started with initial connections almost gained the

maximum possible fitness of 1 over 3000 reproductions. Despite the differences of

performance between the two cases, in both cases evolution was able to find the non-

linearity of the XOR function. The output of the best performing agents from both

cases are shown in (fig22):

55

Fig22. Final output of best performing agents from both test cases, both achieved

non-linearity of the XOR function.

4.7 Implementation of the Experiments

The experiments presented in this thesis are a mixture of XOR function experiments

and Game Environment based experiments. The reason for using simplistic XOR

function to run parts of the experiments is because it is quick to setup and can be

used as a preliminary to larger experiments.

Because the development time was set back by the initial development in Unreal 4

engine, which forced a full re-implementation (several components were re-used) in

python, this had also constrained the available time to design for more complex

experiments. Despite this, using the XOR function in combination with the simplistic

game environment can still show interesting results and lay the foundation for future

work using rtNEAT.

Logging data for analysis is an important factor in designing experiments. In the

following experiments of this thesis, data is recorded in two ways:

1. Console output – All development in python during the project have been

based on using the Pycharm IDE9, this had allowed for ease in coding and

testing. As a habit of any developer, the console output is often used for

printing out all kinds of program related data. In the case of this thesis, much

of the console logged data could directly be used for statistics, such as fitness

performance, mutations and neural network structures can all be printed in

the console.

2. Using python-dill – Dill is a python library that allows for storing and

loading any data object during runtime, this makes it possible to store any

state of objects during evolution, i.e. storing an entire population every X

number of mutations and later load for analysis.

9 https://www.jetbrains.com/pycharm/

56

4.8 Issues

This section will briefly discuss some of the several issues and drawbacks that

occurring during development that may have an effect on the experiments, which

hopefully would be helpful to anyone who would try to implement and experiment

with rtNEAT.

Metaheuristic Search - As previously described, the implementation of rtNEAT is

divided in two parts. The development of metaheuristic search component did not

meet many obstacles. But during the process, key mechanism such as speciation

needed to be designed carefully, as this mechanism relies on the functionality of

agents to be comparable with each other (for compatibility). Hence the

implementation of comparability of agents needed to be done carefully, and is as

well problem dependent based on the type of problem the agents represents. For

example in the case of vector agents, their relative distances are measured for

compatibility, while for neural networks, gene distance as described in NEAT is

used.

Genomes & Neural Network – The implementation of neural network genomes

were the most challenging due to the fact that they needed to be able to evolve

purely feed-forward networks. One problem lead to the next, suddenly the problem

was no longer related to neuroevolution, but rather graph theory related; how to

procedurally generate arbitrarily non-cyclic networks. This took much of

development time as small mistakes creeped up during evolution of complex

structures, and made it difficult to track for the cause. The key idea here is to always

test exhaustively the fundamental mechanics whenever something is changed in the

implementation.

Developing Games - Often times it may be tempting to use existing libraries or game

engines to develop the game environment that the experiments is going to take place,

as this would simplify the process of development. But sometimes the actual libraries

and engines themselves are in fact the crucial bottleneck to experimental design if

preliminary knowledge was not known. Limitations of engines and libraries may

only show themselves in later stages of development as the technological boundaries

of these engines and libraries are reached. In the case of the Unreal 4 engine, the

technological boundary was their custom adaption of C++ which broke several

implementations and had to be implemented differently.

Performance - Moving away from Unreal 4 engine made it possible to speed up the

process of development of rtNEAT and related codes. But when everything was up

and running, another issue appeared, which also limited the scope of possible

experiments in this thesis. Namely performance issues caused by the python

interpreter. As most of the implemented codes were implemented naively using

python classes and objects, which helped to speed up development time, but these

python objects when nested deeply and without care can cause huge performance

57

impact during execution. This is one of the main culprits that prevents the

experiments to scale. This can perhaps be avoided by first acquiring deep knowledge

in the platforms available for development, but then again any project is time

constrained, and is therefore a difficult trade-off task.

5 Experiments

The experiments were setup to be divided into XOR and Game related experiments,

each demonstrate different aspects of how mutation affects exploration and

exploitation in rtNEAT as well as in combination with EDA.

5.1 XOR

To make things more interesting, the XOR logic function used for the experiments

presented here are extended to be a 3-input XOR function. 3 way input XOR

functions can have different truth tables depending on the application, one is by

chaining up 2 XOR logic gates, another is by assigning 1 only when one of the inputs

equals to 1. The latter XOR function is used in the experiments presented here, with

the following truth table (table1):

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Table1. 3-input exclusive or truth table.

In addition, all agents in the population will start with all input nodes connected to

the output node, this is to allow for a small speed up in evolution. The size of

population is set to 50 with the following mutation parameters (found

experimentally):

AddConnectionProb 0,2

RemoveConnectionProb 0,1

AddNodeProb 0,05

RemoveNodeProb 0

RemoveNodeThreshold 0

MutateStateProb 0

MutateWeightProb 0,6

WeightBlendFactor 0,7

58

MutateWeightMean 0

MutateWeightDev 5

PerturbWeightDev 0,1

PerturbWeightProb 0,9

Table2. Mutation parameters for 3-input XOR.

The activation function used is a logistic sigmoid function as shown in equation (3)

where 𝛽 = 1. Evaluation of evolutions (number of evaluations vary per experiment)

will be limited to 5000 reproductions per evolution, this is equivalent to 100

generations (5000/50=100) per evolution. Number of species is also set to target 5

species, and the algorithm will attempt to maintain this number of species whenever

possible. The coefficient 𝑐3 from equation (9) is also experimentally set to be 0.1.

The fitness function to evaluate the 3-input XOR function is defined as

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒−(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑−𝑜𝑢𝑡𝑝𝑢𝑡)2
 (13)

The reason for using an exponential fitness function is to avoid negative values,

because the selection mechanism in genetic algorithms don’t behave well with

negative values when proportional selected is used. Because NEAT/rtNEAT creates

offsprings based on the proportion of species fitness (equation 12), it is therefore

needed to convert negative fitness values into a positive range.

5.1.1 RtNEAT only

This experiment is designed to serve as the baseline for the comparison of other

experiments. A secondary purpose of this experiment is also to show how sudden

innovative mutations may boost the entire population in search for better solutions.

This experiment evaluates 3 complete evolutions of 8000 reproductions each. The

reason for using 8000 reproductions instead of 5000, is only to demonstrate that

when letting evolution run for long enough time, it will be able to converge to the

optimal solution if the fitness landscape is not deceptive (including several optima),

which it is for the case of 3-input XOR.

5.1.2 RtNEAT with explorative search

This experiment attempts to test the effect of how increasing the number of

mutations effects the ability of population to find better solutions, as well as testing a

secondary effect to see what happens when too large portion of the population is

mutated.

59

This experiment will be evaluated 3 times, with the standard 5000 steps of

reproduction. Additional at each step of reproduction a portion of the worst

performing agents in the population is at the same time mutated. For the 3

evaluations, the portion from which the population will be mutated are 10%, 20%

and 40% of the worst performing agents. Agent performance is measured using

adjusted fitness to protect innovation in the same manner as the speciation

mechanism.

5.1.3 RtNEAT with exploitative search

This experiment is similar to the one in 5.1.2, but instead of mutating for exploration,

attempts to mutate for exploitation is tested. To test this, smaller mutation

parameters were chosen as well as only applying mutation to well performing

agents.

Agents will still be selected using their adjusted fitness, but here another approach is

used for selection instead of selecting an increment % of the population from top

performing agents. Three different ranges of the population will be selected for

mutation: [0%-10%], [10%-30%] and [20%-60%]. What these ranges mean is that the

population of agents will be ordered by adjusted fitness, then they will be selected

from the given % range. For example a selection of [10%-30%] means the top 10% of

agents will not be selected, but from 10% and onward to 30%, giving 20% agents of

the entire population will be selected. This kind of selection tests how exploitative

search for different ranges of agents would affect the overall performance of the

population. Furthermore this kind of selection would also be indicative if mutating

well performing agents would disrupt good solutions created from the Building

Block Hypothesis.

Additional, to allow for exploitative search, the extra mutations will have their

mutation parameters modified according to (table 3) below, while offspring

mutations will remain the same as in (table 2):

AddNodeProb 0

AddConnectionProb 0,02

RemoveConnectionProb 0,01

MutateWeightProb 0,05

PerturbWeightDev 0,1

PerturbWeightProb 0,9

Table3. Exploitative mutation parameters. These parameters are mainly focused on

perturbing weight values with small probabilities to mutate connections.

60

5.1.4 RtNEAT with exploitative & explorative search

In this experiment, attempts to boost the performance of rtNEAT search using both

explorative and exploitative search is carried out. At the same time to see if

combining explorative and exploitative mutations helps rtNEAT in finding optimal

solutions faster. The mutation parameters in this experiment will be taken from the

two previous experiments; 10%, 20% and 40% for explorative search combined with

[0%-10%], [10%-30%] and [20%-60%] for exploitative search respectively.

5.1.5 RtNEAT with EDA exploitative search

Similar to 5.1.4, this experiment attempts to test exploitative search, but instead of

using straight forward random mutations for exploitation, the EDA mutator will be

used to test if using probabilistic model would result in better exploitative

performance.

Here EDA will be used to build probabilistic models of the 20% of best performing

agents and mutate using the same range defined in 5.1.3: [0%-10%], [10%-30%] and

[20%-60%].

5.2 Game

This section is dedicated to experiments running in the game environment. Because

running experiments in the game environment is demanding on performance, these

experiments should not be considered exhaustive but rather indicative of what can

be attempted.

The mutation parameters used for the experiments in the game environment is

identical to the ones used for the 3-input XOR experiments. Dynamic threshold is still

maintained to target 5 species. Time in between reproductions were set to target 25%

of the population to be ineligible according to equation (11). Additionally all agents

have a minimum lifespan of 3.0 seconds, this is to allow them enough time to explore

the environment before being replaced.

In all experiments agents will initially spawn randomly in a cluster at the bottom left

corner of the game window, and the objective is to move inside a circle placed a little

off top to the right of the center of the screen (fig23).

Agents in the game environment are designed to perceive a normalized 2d vector of

their position in the environment, additionally they also have the ability to walk

around by manipulating a 2d velocity vector. This is a simplistic setup to allow

61

agents to see and learn their position in the world and adjust their movement

accordingly in order to locate objectives.

When it comes to the fitness function defined agents to search for the circle objective,

the fitness function is formulated as

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = {

100/𝑑 𝑖𝑓 𝑑 > 𝑅
100 𝑖𝑓 𝑑 ≤ 𝑅

(14)

Where d is the distance between an agent and the circle, and R is the radius of the

circle. This is to allow agents outside the circle to “feel” the fitness gradient while still

rewarding agents inside the circle with equal amount. This has the effect that agents

can stay distributed inside the circle radius instead of clustering at the circle center.

Another point to note regarding the experiments presented here is that there are no

limit on how many reproductions/mutations evolution can run, each run will run

continuously until the program is forced to stop. Therefore, all of the experiments

here were left to run until deemed by the observer (user) that no further

improvements were possible.

Fig23. Game environment with agents at the bottom left corner.

5.2.1 RtNEAT only

Similarly to the XOR experiments, a pure rtNEAT experiment without any additional

mutations was carried out to form a base line. Furthermore the experiments

62

presented here will also have 3 evaluations for different scenarios. For the case of this

experiment, agents are to search and stay within the circle shown in (fig23). The

circle has a default radius of 100 and will shrink to 60 and then 20 over 3 evaluations.

This is to test how effective rtNEAT is in finding small objectives.

For the remaining experiments the circle is kept at a radius of 100 units, this is

because in the other experiments different mutation parameters are tested and

compared, which requires a base line objective for evaluation.

5.2.2 RtNEAT with exploitative & explorative search

This experiment is designed similarly to the XOR experiment, a population of agents

will be mutated using the same setup and parameters as in the XOR experiment. The

goal here is to test the effect of different mutation parameters in a real time game

environment.

5.2.3 RtNEAT with exploitative EDA

This experiment is again setup to be using the same parameters as in the case of the

related XOR experiment. This section only serves to maintain the logical relationship

to the sections in chapter 6.

6 Results

The results from the experiments in chapter 5 will be presented here, divided into

sections and subsections in the same logical structure. Discussions related the

individual experimental results will also be presented. The overall discussion of the

entire research will be presented in chapter 7.

6.1 XOR

Experiment results for the 3-input XOR gate experiments and related discussions will

be presented below.

63

6.1.1 RtNEAT only

This experiment shows (fig24) that the implemented rtNEAT (despite the differences

with standard rtNEAT) managed to evolve the 3-input XOR function successfully.

Through all 3 evaluations the algorithm managed to continuously optimize and find

better and better solutions. It is also important to notice how evolution in rtNEAT

may take big jumps from time to time in fitness optimization. This is because

whenever innovative mutations occur it will be protected by speciation and slowly

contribute to the growth of the entire population as a whole. Throughout all 3

evaluations a number of 5 species were maintained consistently.

The final behavior of best performing agents can also be seen in (tables 4-6), showing

that all evaluations could in fact managed to evolve agents to calculate the 3-input

XOR and is not just a measurement of fitness.

Fig24. XOR – rtNEAT only evaluations.

0.0 0.0 0.0 0,175257

0.0 0.0 1.0 0,862461

0.0 1.0 0.0 0,870095

0.0 1.0 1.0 0,056489

1.0 0.0 0.0 0,902221

1.0 0.0 1.0 0,074932

1.0 1.0 0.0 0,095245

1.0 1.0 1.0 0,018051

Table4. XOR – rtNEAT only, evaluation 1.

0.0 0.0 0.0 0,191184

0.0 0.0 1.0 0,899743

0.0 1.0 0.0 0,783509

64

0.0 1.0 1.0 0,141059

1.0 0.0 0.0 0,97132

1.0 0.0 1.0 0,002227

1.0 1.0 0.0 0,029106

1.0 1.0 1.0 0,001205

Table5. XOR – rtNEAT only, evaluation 2.

0.0 0.0 0.0 0,256503

0.0 0.0 1.0 0,943524

0.0 1.0 0.0 0,704761

0.0 1.0 1.0 0,002973

1.0 0.0 0.0 0,80122

1.0 0.0 1.0 0,010479

1.0 1.0 0.0 0,026444

1.0 1.0 1.0 0,002993

Table6. XOR – rtNEAT only, evaluation 3.

6.1.2 RtNEAT with explorative search

Computational performance during evaluation 2 of this experiment was crippling

near the end of its evolution, which caused long computing time in between

mutations. For this reason, adjustments to mutation parameters (table 7) were

needed in order to run evaluation 3. The main reason for this was because once a

larger portion of the population was mutated at the same time, the probability for

genomes to grow larger increased over the entire population. As a result the fittest

genome in evaluation 2 had acquired 29 nodes (neurons), causing a large impact on

the computational performance during mutation and crossover. To put this in

perspective, evaluation 1 evolved the best performing genome with only 9 nodes,

while the smallest genome evolved contains only 5 nodes from experiment 6.1.1.

The adjustment of mutation parameters were to balance mutation probabilities so

that the genomes would not grow too large too quickly. This adjustment could of

course have an impact on the experimental result which cannot be directly compared

to the results from evaluation 1 and 2. But this may as well be a demonstration of

how parameters may depend on the problem scenario, may it be as a result of

computational performance slowdown or other factors. Furthermore fast growing

genomes would also increase the search space exponentially, which is another factor

that impacts performance.

Once new parameters were assigned to evaluation 3, the computational performance

improved as well as indication of improved optimization performance in regard to

65

population fitness (fig25). The resulting genome evolved 15 nodes, substantially less

than from evaluation 2.

AddNodeProb 0,01

AddConnectionProb 0,1

RemoveConnectionProb 0,06

MutateWeightProb 0,6

MutateWeightDev 5

Table7. Adjustments towards smaller mutation rates were applied to a subset of

original mutation parameters (table 2) for evaluation 3 in order to prevent genomes

from growing too large too quickly.

The results from this experiment seems to indicate that when allowing more agents

to mutate, would help speed up search and in turn boost the overall fitness gain of

the population. Another indication is that when mutating a small portion of the

worst performing agents seems to be more effective than when larger portions were

mutated. This could be explained by the fact that when too many agents are mutated,

the population can no longer maintain important building blocks and therefore slow

down progress.

Fig25. Evaluations of rtNEAT explorative search. Notice how all 3 evaluations

stopped before the limit of 5000 reproductions. This is due to the fact that

evolution is set to automatically stop searching once it finds a solution with a

fitness of 0.98 or above.

66

6.1.3 RtNEAT with exploitative search

The results from this experiment (fig26) shows that there is a difference in regarding

to what portion of the population is mutated. The evaluations 1, 2 and 3 refers to

mutation range [0%-10%], [10%-30%] and [20%-60%] respectively.

A possible explanation to getting this result is that when mutating in the range of top

performing agents, genetic building blocks are more often disrupted and cannot

maintain the good innovations acquired. If this is the case then the result shown here

also strengthen the building block hypothesis for genetic algorithms. Yet exhaustive

experimentation is still needed in order to acquire enough data to reach statistical

significance.

Fig26. XOR – rtNEAT with exploitative search.

6.1.4 RtNEAT with exploitative & explorative search

The results from this combination and exploration was quite surprising, because in

evaluation 3, a big part of the population were extensively mutated, yet the

population managed to converge, in fact quite early, which may as well be by chance

caused by a random good innovation. Despite this, the algorithm was able to

maintain good mutations and boost the overall population fitness.

One theory that can explain the result shown here (fig27) is that when additional

exploitative and explorative mutations concentrated around the center of the

population in the case of evaluation 3, top performing agents could keep the best

innovations while the worst performing agents were replaced with offsprings by the

reproduction mechanism. This may have allowed for a balance between exploitation

and exploration as a large part of the entire population were contributing to search.

It’s also important to keep in mind that during evolution, the time in between

reproductions also increased due to increase in computational power was needed to

mutate a larger number of agents.

67

Fig27. XOR – rtNEAT with exploitative & explorative search.

6.1.5 RtNEAT with EDA exploitative search

This experiment shows that by incorporating EDA algorithm may as well be a good

technique to allow for better exploitation. Even though the results in 6.1.4 beat the

results (fig28) in this experiment by a large margin, but this may as well be by

chance, and perhaps with further tuning EDA may perform as well.

Anyhow, the results here still beat pure rtNEAT, rtNEAT with explorative and

rtNEAT with exploitative mutations. In combination with results from 6.1.4, these

experiments show that by combining explorative and exploitative search,

performance will be improved noticeably.

Fig28. XOR – rtNEAT with EDA exploitative search.

68

6.2 Game

This section will present the results for the experiments in the game environment.

6.2.1 RtNEAT only

The results from this experiment shows that rtNEAT can very well be used to

optimize for real-time game environments. Even when the objective is very small,

rtNEAT could eventually locate and influence the population to move towards it,

and finally cluster inside the objective circle.

Clearly, in search to find smaller objectives, more reproduction cycles were needed

before the objective could be located. During evolution the game environment ran

smoothly without any lag, meaning the implemented rtNEAT does satisfy the

intended design, which is to run in real time.

(Fig29) shows the results of all evaluation while (fig30) shows the final convergence

of agents in the environment when the objective was found.

Fig29. Game – rtNEAT only results.

69

Fig30. Game – rtNEAT only, final result screenshots. From left to right: Eval1,

Eval2 and Eval3.

6.2.2 RtNEAT with exploitative & explorative search

This experiment was a surprise, because the results (fig31) displays some very

strange statistics. How could it be that evaluation 1 could perfectly find the objective

while the other evaluations couldn’t? The initial explanation for this phenomenon

was that since evaluation 1 did not mutate so many agents, which was the main

reason for its convergence. But after a closer look at how the agents moved around in

the environment, a strange behavior was detected. Several of the agents were

“twitching” or did micro-jumps. It was then later realized that because the mutations

were happening at the same frequency as the reproduction cycle, more and more

agents would “twitch” whenever reproduction occurred.

Now the “twitching” behavior itself was not the cause for the detrimental results

from evaluation 2 and 3, the main cause was (thanks to the observation of twitching)

that agents were mutated regardless of how long they have been alive. What this

means is that as more and more agents were mutated frequently, led to the fact that

more and more agents did not have time to explore and optimize.

This experiment proves yet another factor that could affect the overall fitness of the

population, namely the minimum lifespan is crucial in protecting newborn agents in

the quest to explore the surrounding landscape and build their fitness. The final

screenshots of how agents ended up being spread across the environment in

evaluation 2 and 3 are shown in (fig32).

70

Fig31. Game – rtNEAT with exploitative & explorative search results.

Fig32. Game – rtNEAT with exploitative & explorative search, final result

screenshots. From left to right: Eval1, Eval2 and Eval3.

6.2.3 RtNEAT with exploitative EDA

The results from this experiment are quite interesting (fig33). First of all because of

the diverse variation between evaluations, showing no clear pattern. This could be

due to chance as with any algorithms where random variables are used. In order to

understand this statistics better, more exhaustive experiments need to be carried out

in order to rule out the hypothesis that this may be caused by chance.

Nonetheless, it is quite interesting to see how evaluation 1 performed well, while

evaluation 2 did significantly better, but evaluation 3 could not really find the

objective. One of the reason for evaluation 3 failing could be the same reason as for

the results in 6.2.2, because both the explorative and EDA mutations here were

applied without taking into account the minimum lifespan of agents, as this was

much later discovered to be a possible issue. Yet, it is surprising how evaluation 2

managed to skyrocket in fitness while in experiment results of 6.2.2 both evaluations

2 and 3 failed. Surely more experiments need to be carried out in order to understand

this phenomenon.

71

Fig33. Game – rtNEAT with exploitative EDA results.

Fig34. Game – rtNEAT with exploitative EDA, final result screenshots. From left to

right: Eval1, Eval2 and Eval3.

7 Discussion, Conclusion and Future Work

This chapter will summarize an overall discussion over the work done in this thesis,

as well as concluding and propose possible future work.

7.1 Discussion

Throughout this thesis we have been introduced to the elements of a neural network,

then to how different learning algorithms incorporate ANN to enable general

optimization, and how all of them are constrained by a common problem of

parameter adjustments and controlling algorithmic factors to allow for better search.

72

On the level of neurons and perceptrons to neural networks, different factors can

play a key role in what kind of problems they can be optimized for, e.g. how using

non-monotonic transfer functions could solve the XOR problem without introducing

hidden layers, or how adding bias connections in neural networks would allow for

better function approximator.

Moving further into the realm of reinforcement learning, we have seen how

evaluative functions can be important in solving for problems where the fitness

landscape is initially unknown. Reinforcement learning behaves like a gradient

explorer where the gradient of the fitness landscapes are revealed over time through

interactions between agents and environment.

On the other hand, moving away from direct feedback of interactions between agents

and environment, we get population based metaheuristic search algorithms such as

evolutionary algorithms. These algorithms takes a bigger step away from

reinforcement learning in regard to estimating the gradient of the fitness landscape.

Instead of estimating the gradient, evolutionary algorithms utilizes a single fitness

function to evolve a population of agents, in hope that over time agents would

accumulate enough knowledge about the environment and navigate it well. This

leads to the question of how to define a proper fitness function, as well as how to set

the search parameters so that the agents can navigate the environment via the fitness

landscape.

Certainly exploration and exploitation plays a big role in the questions above,

because exploration leverages the ability for agents to search and find new solutions,

which is essential for exploring and discovering optima in the fitness landscape.

While exploitation would allow agents to narrow down the search space on a

particular area in order to find the exact point of a global optimum.

The work in this thesis have demonstration some of the key issues regarding finding

the perfect search parameters as well as how particularly mutation affects search

performance.

Because most of the mutation parameters used in the experiments of this thesis were

found experimentally, this does not provide much knowledge on how different

parameters directly affect search. But some cases were shown that when mutation

parameters values were too great, genomes could grow too big and cripple

evolution. Also many mini experiments have been carried out during development

of the system, which also led to the discovery of the parameters used in the

presented experiments. This could have biased the experiment design as to how they

were designed in order to show certain effects of different mutation techniques

applied.

Nonetheless the experiments in this thesis have provided important understanding

of how mutation affects search, how explorative, exploitative as well as how EDA

affects the overall search performance of a population of agents. Some interesting

73

cases were also presented, such as the results from 6.2.3, which indicates that further

work is needed in order to have a better understand of the results.

7.2 Conclusion

As a conclusion, I would like to answer the research questions of this thesis:

1. How do different elements of learning algorithms, particularly different

mutation techniques combined with rtNEAT influence the search behavior?

2. What are the common issues in tuning algorithmic parameters for balance

between explorative and exploitative search?

3. How well does rtNEAT perform particularly in a game environment when

applying different mutation techniques?

As for the first question, it seems like when using exploitative and explorative

mutations in combination would provide better search performance than without, or

when only one of them is used. Through several experiments both with the XOR and

Game, exploitative combined explorative search had shown an improvement in

search performance.

For the second question, it have been discussed in previous studies [67][65] that some

of the most challenging factors in balancing exploration and exploitation is firstly to

identify the difference between them, whether there are at all. Secondly for

evolutionary algorithms, it is necessary to identify how different factors in a search

algorithm contribute to explorative and exploitative behaviors. In the work of this

thesis, an attempt to identify the difference between exploration and exploitation was

to test whether bad performing agents could be used to explore while top performing

agents could be used to exploit. Additionally different parameters were used for

exploration and exploitation. Exploitative parameters were less disruptive to the

neural network structures, while the explorative parameters were more aggressive.

An indication from the work of this thesis is that certainly it is possible to find traits

to what factors contributes to exploitive and explorative behaviors, but more work is

needed to order to rule out possible misconceptions.

Lastly, to answer the third research question, results from 6.2.2 and 6.2.3 need to be

considered. The initial impression is that applying additional mutation techniques

seems to improve search in the real time game environment, but unfortunately due

to the fact that mutation also destroyed the ability for newborn agents to explore,

which may have severely ruined the results of these experiments. Nonetheless, a

conclusion can be drawn here by observing that applying additional mutations may

74

as well improve search performance, but it must be done with care as careless

mutations can destroy the underlying search mechanism of rtNEAT.

Lastly the summarized conclusion is that in order to create better learning agents in

game environments, one must consider the detailed description of the underlying

algorithms as well as taking into account all of its moving parts, as each of them can

contribute to different search behaviors which in turn affects the overall behavior of

agents.

7.3 Future Work

This thesis had lay ground for several possible future work in the quest of

understanding how to balance exploration and exploitation for learning algorithms

as well as how different parts can affect the overall behavior. The framework is done

and several experiments can be designed in the future to test other aspects of

combining rtNEAT with other algorithms as well as how to fine tune search

parameters.

Furthermore, the implementation of rtNEAT in this thesis had also shown that

Python may be a good language for development but it lacks the performance

needed to run complex experiments. Future work may involve optimizing existing

code or porting it to better performing languages.

Nonetheless this thesis have provided a guideline for future research in the same

direction.

75

References

[1] L. Se-dol, “Artificial intelligence: Google’s AlphaGo beats Go master Lee Se-
dol,” BBC News, pp. 1–17, 2016.

[2] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[3] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A neuroevolution
approach to general atari game playing,” IEEE Trans. Comput. Intell. AI Games,
vol. 6, no. 4, pp. 355–366, 2014.

[4] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevolution in
the NERO video game,” IEEE Trans. Evol. Comput., vol. 9, no. 6, pp. 653–668,
2005.

[5] A. K. Jain and J. Mao, “Artificial Neural Network: A Tutorial,” Communications,
vol. 29, pp. 31–44, 1996.

[6] D. Svozil, V. Kvasnička, and J. Pospíchal, “Introduction to multi-layer feed-
forward neural networks,” in Chemometrics and Intelligent Laboratory Systems,
1997, vol. 39, no. 1, pp. 43–62.

[7] A. Krogh, “What are artificial neural networks?,” Nat Biotechnol, vol. 26, no. 2,
pp. 195–197, 2008.

[8] W. Gerstner and W. M. Kistler, Spiking Neuron Models. 2002.

[9] N. Kasabov, “To spike or not to spike: A probabilistic spiking neuron model,”
Neural Networks, vol. 23, no. 1, pp. 16–19, 2010.

[10] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain.,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.

[11] W. S. McCulloch and W. Pitts, “A Logical Calculus of the Idea Immanent in
Nervous Activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[12] S. Hayman, “The McCulloch-Pitts model,” in IJCNN’99. International Joint
Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, vol. 6, pp.
4438–4439.

[13] J. Jantzen, “Introduction To Perceptron Networks,” Neural Networks, vol. 873,
no. 98, pp. 1–32, 1998.

[14] Y. Zhao, B. Deng, and Z. Wang, “Analysis and study of perceptron to solve
XOR problem,” in Proceedings - 2nd International Workshop on Autonomous
Decentralized System, IWADS 2002, 2002, pp. 168–173.

[15] T. M. Kwon, “Gaussian perceptron: experimental results,” Conf. Proc. 1991
IEEE Int. Conf. Syst. Man, Cybern., no. 3, pp. 1593–1598, 1991.

[16] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

76

Networks, vol. 61, pp. 85–117, Jan. 2015.

[17] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37, 2000.

[18] A. Sperduti and A. Starita, “Supervised neural networks for the classification
of structures,” IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 714–735, 1997.

[19] S. B. Kotsiantis, “Supervised machine learning: A review of classification
techniques,” Informatica, vol. 31, pp. 249–268, 2007.

[20] M. Gori and A. Tesi, “On the problem of local minima in backpropagation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 1, pp. 76–86, 1992.

[21] X. G. Wang, Z. Tang, H. Tamura, M. Ishii, and W. D. Sun, “An improved
backpropagation algorithm to avoid the local minima problem,”
Neurocomputing, vol. 56, no. 1–4, pp. 455–460, 2004.

[22] Y. H. Zweiri, J. F. Whidborne, and L. D. Seneviratne, “A three-term
backpropagation algorithm,” Neurocomputing, vol. 50, pp. 305–318, Jan. 2003.

[23] R. S. Sutton and A. G. Barto, “Reinforcement learning,” Learning, vol. 3, no. 9,
p. 322, 2012.

[24] M. L. Littman, “Reinforcement learning improves behaviour from evaluative
feedback.,” Nature, vol. 521, no. 7553, pp. 445–51, 2015.

[25] C. john cornish hellaby Watkins, “Learning From Delayed Rewards,”
Cambridge University, 1989.

[26] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[27] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3–4, pp.
279–292, 1992.

[28] M. Riedmiller, “Neural fitted Q iteration - First experiences with a data
efficient neural Reinforcement Learning method,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2005, vol. 3720 LNAI, pp. 317–328.

[29] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with
Double Q-learning,” arXiv1509.06461 [cs], no. 2, pp. 1–5, 2015.

[30] G. Lample and D. S. Chaplot, “Playing FPS Games with Deep Reinforcement
Learning,” arXiv cs.AI, vol. 9, p. 5521, 2016.

[31] I. Fister, X. S. Yang, J. Brest, and D. Fister, “A brief review of nature-inspired
algorithms for optimization,” Elektrotehniski Vestnik/Electrotechnical Review, vol.
80, no. 3. pp. 116–122, 2013.

[32] P. Krömer, J. Platoš, and V. Snášel, “Nature-Inspired Meta-Heuristics on
Modern GPUs: State of the Art and Brief Survey of Selected Algorithms,” Int. J.
Parallel Program., vol. 42, no. 5, pp. 681–709, Oct. 2014.

77

[33] X.-S. Yang, “Nature-Inspired Algorithms: Success and Challenges,” in
Computational Methods in Applied Sciences, vol. 38, 2015, pp. 129–143.

[34] K. S??rensen, “Metaheuristics-the metaphor exposed,” Int. Trans. Oper. Res.,
vol. 22, no. 1, pp. 3–18, 2015.

[35] Peter E. Hart ; Nils J. Nilsson ; Bertram Raphael, “Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4,
no. 2, pp. 100–107, 1968.

[36] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–
85, 1994.

[37] X. Yang, Firefly Algorithm. 2010.

[38] C. Blum, “Ant colony optimization: Introduction and recent trends,” Phys. Life
Rev., vol. 2, no. 4, pp. 353–373, Dec. 2005.

[39] J. H. Holland, “Genetic Algorithms,” Sci. Am., vol. 267, no. 1, pp. 66–72, 1992.

[40] K. O. Stanley and R. Miikkulainen, “Evolving Neural Network through
Augmenting Topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[41] M. Kumar, M. Husian, N. Upreti, and D. Gupta, “Genetic Algorithm: Review
and Application,” Int. J. Inf. Technol. Knowl. Manag., vol. 2, no. 2, pp. 451–454,
2010.

[42] K. Sastry, D. Goldberg, and G. Kendall, “Genetic Algorithms,” in Search
Methodologies, Boston, MA: Springer US, 2005, pp. 97–125.

[43] X. S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in 2009 World Congress
on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, 2009,
pp. 210–214.

[44] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
1989.

[45] U.-M. O’Reilly and F. Oppacher, “The Troubling Aspects of a Building Block
Hypothesis for Genetic Programming,” Found. Genet. Algorithms 3, pp. 73–88,
1994.

[46] J. Lehman and R. Miikkulainen, “Neuroevolution,” Scholarpedia, vol. 8, no. 6, p.
30977, 2013.

[47] K. Socha and C. Blum, “An ant colony optimization algorithm for continuous
optimization: Application to feed-forward neural network training,” Neural
Comput. Appl., vol. 16, no. 3, pp. 235–247, 2007.

[48] D. B. Fogel, L. J. Fogel, and V. W. Porto, “Evolving neural networks,” Biol.
Cybern., vol. 63, no. 6, pp. 487–493, 1990.

[49] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9, pp.
1423–1447, 1999.

78

[50] A. J. Turner and J. F. Miller, “NeuroEvolution: Evolving Heterogeneous
Artificial Neural Networks,” Evol. Intell., vol. 7, no. 3, pp. 135–154, 2014.

[51] S. Risi, J. Lehman, and K. O. Stanley, “Evolving the placement and density of
neurons in the hyperneat substrate,” in Proceedings of the 12th annual conference
on Genetic and evolutionary computation - GECCO ’10, 2010, no. Gecco, p. 563.

[52] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A Hypercube-Based Encoding
for Evolving Large-Scale Neural Networks,” Artif. Life, vol. 15, no. 2, pp. 185–
212, Apr. 2009.

[53] S. Risi and K. O. Stanley, “A unified approach to evolving plasticity and neural
geometry,” in Proceedings of the International Joint Conference on Neural Networks,
2012.

[54] S. Risi and K. O. Stanley, “Indirectly encoding neural plasticity as a pattern of
local rules,” in Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6226 LNAI,
pp. 533–543.

[55] D. J. Montana and L. Davis, “Training Feedforward Neural Networks Using
Genetic Algorithms,” Proc. 11th Int. Jt. Conf. Artif. Intell. - Vol. 1, vol. 89, pp.
762–767, 1989.

[56] N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimisation,” Neural Comput. Appl., vol. 1, no. 1, pp. 67–90,
1993.

[57] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through
Augmenting Topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, Jun. 2002.

[58] S. Mahfoud, “Niching methods for genetic algorithms,” Urbana, no. 95001, p.
251, 1995.

[59] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching methods revisited,”
IEEE Trans. Evol. Comput., vol. 2, no. 3, pp. 97–106, 1998.

[60] E. Dolson and D. Park, “Applying neural pruning to NEAT,” pp. 1–11, 2012.

[61] E. Cant, “Pruning Neural Networks with Distribution Estimation Algorithms,”
Neural Networks, pp. 790–800, 2003.

[62] S. Whiteson and P. Stone, Evolutionary Function Approximation for Reinforcement
Learning, vol. 7, no. AI05-320. 2006.

[63] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Learning to drive in the open
racing car simulator using online neuroevolution,” IEEE Trans. Comput. Intell.
AI Games, vol. 2, no. 3, pp. 176–190, 2010.

[64] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl, “Automatic
feature selection in neuroevolution,” Proc. 2005 Conf. Genet. Evol. Comput. -
GECCO ’05, pp. 1225–1232, 2005.

79

[65] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploitation in
evolutionary algorithms,” ACM Comput. Surv., vol. 45, no. 3, pp. 1–33, Jun.
2013.

[66] a E. Eiben and C. a Schippers, “On Evolutionary Exploration and
Exploitation,” Fundam. Informaticae, vol. 35, pp. 35–50, 1998.

[67] K. Mehlhorn et al., “Unpacking the exploration–exploitation tradeoff: A
synthesis of human and animal literatures.,” Decision, vol. 2, no. 3, pp. 191–215,
2015.

[68] H. Mühlenbein and G. Paass, “From recombination of genes to the estimation
of distributions I Binary parameters,” in PPSN IV Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature, 1996, pp. 178–
187.

[69] M. El-Abd, “Preventing premature convergence in a PSO and EDA hybrid,” in
2009 IEEE Congress on Evolutionary Computation, 2009, pp. 3060–3066.

[70] J. SUN, Q. ZHANG, and E. TSANG, “DE/EDA: A new evolutionary algorithm
for global optimization,” Inf. Sci. (Ny)., vol. 169, no. 3–4, pp. 249–262, Feb. 2005.

[71] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
Optimization Algorithm,” Genet. Evol. Comput., vol. 1, pp. 525–532, 1999.

[72] D. Silver and D. Hassabis, “AlphaGo: Mastering the ancient game of Go with
Machine Learning,” Google Research Blog, 2016. [Online]. Available:
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-
of-go.html.

[73] D. Silver et al., “Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[74] L. Galway, D. Charles, and M. Black, “Machine learning in digital games: a
survey,” Artif. Intell. Rev., vol. 29, no. 2, pp. 123–161, 2009.

[75] R. Lara-Cabrera, C. Cotta, and A. J. Fernandez-Leiva, “A review of
computational intelligence in RTS games,” in Proceedings of the 2013 IEEE
Symposium on Foundations of Computational Intelligence, FOCI 2013 - 2013 IEEE
Symposium Series on Computational Intelligence, SSCI 2013, 2013, pp. 114–121.

[76] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge balance in
an RTS game using rtNEAT,” in 2008 IEEE Symposium On Computational
Intelligence and Games, 2008, pp. 87–94.

[77] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski, “ViZDoom:
A Doom-based AI research platform for visual reinforcement learning,” in
IEEE Conference on Computatonal Intelligence and Games, CIG, 2017.

[78] D. M. Yoon and K. J. Kim, “Challenges and Opportunities in Game Artificial
Intelligence Education Using Angry Birds,” IEEE Access, vol. 3, pp. 793–804,
2015.

80

[79] J. D. Bayliss, “Teaching game AI through Minecraft mods,” in 4th International
IEEE Consumer Electronic Society - Games Innovation Conference, IGiC 2012, 2012.

[80] S. Sosnowski, T. Ernsberger, F. Cao, and S. Ray, “SEPIA : A Scalable Game
Environment for Artificial Intelligence Teaching and Research,” in Fourth AAAI
Symposium on Educational Advances in Artificial Intelligence, 2013, pp. 1592–1597.

[81] D. Perez-liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M. Lucas,
“General Video Game AI: Competition, Challenges and Opportunities,” Proc.
30th Conf. Artif. Intell. (AAAI 2016), no. Schaul, pp. 4335–4337, 2016.

[82] T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with VGDL,” in 2015 IEEE Conference on
Computational Intelligence and Games, CIG 2015 - Proceedings, 2015, pp. 185–192.

[83] S. Risi and J. Togelius, “Neuroevolution in Games: State of the Art and Open
Challenges,” IEEE Trans. Comput. Intell. AI Games, vol. 9, no. 1, pp. 25–41, Mar.
2017.

[84] G. N. Yannakakis and J. Togelius, “A Panorama of Artificial and
Computational Intelligence in Games,” IEEE Trans. Comput. Intell. AI Games,
vol. 7, no. 4, pp. 317–335, 2015.

