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Abstract 

This thesis aims to explore how different factors can affect the search performance of 

evolutionary algorithms. Additionally how applying different mutation techniques 

changes the overall search performance of rtNEAT. This thesis demonstrates how 

mutation affects exploration and exploitation when optimizing for a 3-input XOR 

gate as well as optimizing agent movements in a real time environment. 

This thesis is also provided as a guideline in the development of an evolutionary 

algorithm, particularly the implementation of rtNEAT algorithm, and a simple game 

environment in Python.   
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1 Introduction 

 

 

1.1 Introduction 

Artificial intelligence is an emerging field and is rapidly becoming one of the most 

popular and debatable topics that keeps popping up in the news. Since A.I can be 

applied to solve a wide range of problems across all field of studies, questions have 

raised to challenge further development of A.I, such as if A.I is capable of achieving 

human intelligence or whether it will eventually take all of our jobs. 

Whether an A.I can achieve human intelligence is still one of several questions that 

needs to be answered. Yet the quest to answer this kind of question have been 

prompted by many researchers by the proposal of different general machine learning 

algorithms, in hope to improve the ability of computers to solve different problems 

on a general level,  something we as human are very good at. 

Recently a team of researchers from Google Deep Mind have created an A.I named 

AlphaGo [1] capable of winning against world champion in the classical board game 

Go, a game that was believed to be one of the most challenging problems for 

machines to learn. Yet with machine learning, particularly reinforcement learning 

they managed to achieve this goal. But even when AlphaGo can be excellent at 

playing Go, that is all it can do, no indication of general intelligence can be 

demonstrated by the system. 

To push the boundaries further, researchers (including Google Deep Mind) have 

developed techniques in an attempt to allow computers to play several computers 

games in the same manner as a human would, believing that by beating those games, 

an indication of general A.I can be promised [2][3]. 

This thesis attempts to explore the challenge of teaching machines to play computer 

games by using techniques in neuroevolution, which is capable of learning 

reinforcement learning tasks. Furthermore, this will hopefully inspire more 

researchers to explore the same direction. 

 

 

1.2 Motivation 

The original motivation which led to the work behind this thesis is the promising 

idea of teaching computers to play video games on a general and professional level. 

As many games in the commercial market today implements simplistic A.I models 

which often serve their purpose very well, but for real time competitive games such 
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as in e-sport1 games, simplistic A.I tends to fail or display mechanical and predictive 

behaviors when playing against human players. For this reason along with the belief 

that learning A.I is the holy-grail for developing challenging and interesting game 

agents with human-like behavior, interest grew towards the direction of 

neuroevolution, especially using a technique called rtNEAT which had been 

demonstrated to work for gaming environments, specifically for a game named 

NERO [4]. Yet no technique is perfect, therefore another motivation was to attempt to 

modify rtNEAT to allow for better performance. 

 

 

1.3 Research Questions 

As further reading and preliminary development were carried out, the original 

motivation did no longer define the research questions of interest in this thesis. One 

of the main reasons was the discovery of how different factors in different 

evolutionary algorithms can play a big role in how well they can solve certain tasks. 

This led to more reading towards the direction of how to tune different algorithmic 

parameters in order to generally optimize for any problem. 

The result of preliminary work laid ground for the research questions in this thesis: 

 

1. How do different elements of learning algorithms, particularly different 

mutation techniques combined with rtNEAT influence the search behavior? 

 

2. What are the common issues in tuning algorithmic parameters for balance 

between explorative and exploitative search? 

 

3. How well does rtNEAT perform particularly in a game environment when 

applying different mutation techniques? 

 

Additionally this thesis also aims to provide a detailed theoretical description of 

different techniques and methods in using neural network to solve reinforcement 

learning tasks, as well as how implementation for generic learning algorithms may 

be carried out, especially in the context of neuroevolution in game environments. 

This thesis and the work behind it can therefore be considered as a general guideline 

on how to research and implement neuroevolution algorithms as well as other 

generic optimization techniques. 

 

                                                           
1 https://en.wikipedia.org/wiki/ESports 
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1.4 Research Method 

The research method used in this thesis will be a combination of two methods: 

1. By proof of concept and experiments – One reason for using proof of concept 

is that it produces artifacts that can be used to run different experiments in 

order to strengthen the answer of research questions. Another reason is 

because the produced artifacts may lay ground for future work. 

 

The artifacts that are produced as a proof of concept in this thesis is a 

computer program used to run experiments to demonstrate the different 

effects of relevant learning algorithms, specifically neuroevolution algorithms. 

 

2. By literature review – Literature review lay the foundation for the work in 

this thesis as well as providing a guideline in the research direction. This is 

crucial in research as it would allow for a rigorous connection between 

research questions and the research work. In case of research question 2, 

which is more of a higher level question that requires a combination of actual 

research work and previous studies to answer.  

 

 

1.5 Contributions 

Besides the answers to the research questions of this thesis, the following additional 

contributions can be also considered: 

1. A general guideline (the thesis itself) in the developmental process of 

neuroevolution techniques with hints on issues and drawbacks during 

development. 

2. A pure rtNEAT along with an EDA Mutator implemented in Python to 

contribute to the NEAT Users Group (where different users have 

implemented their own versions), as well as the general research community 

as a whole. 

3. A simple visual 2d game framework that can be used to test different learning 

algorithms. 
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1.6 Thesis structure 

This thesis is divided into 7 chapters, where the purpose of each chapter is outlined 

below: 

1. Introduction – Introduces to the work of this thesis. 

2. Background – This chapters aims to provide readers with general knowledge 

behind the work of this thesis. 

3. Related Studies – This is a short chapter discussing different studies that are 

similar to the study presented here. 

4. Implementation – This chapter aims to provide a detailed description of how 

the different implementation stages were done. 

5. Experiments – This chapter describes the different experiment setups. 

6. Results – This chapter presents the results from the experiments in chapter 5. 

7. Discussion, conclusion and future work – This is the final chapter discussing 

and summarizing the work of this thesis, as well as what may be the next 

steps in future work. 

The reason this thesis is structured as described above is to provide readers with a 

gradual construction of background knowledge before diving deeper into the 

problems. This would allow readers to better understand each step as well as the 

purpose of the work presented in this thesis. 

 

 

2 Background 

This section presents related background theories and techniques used in this thesis. 

 

 

2.1 Artificial Neural Network 

Artificial neural network (ANN) is a computational network structure inspired by 

the biological neural network similar to those in the human brain [5].  

ANNs typically function by propagating information (usually from sensory inputs) 

through the network via nodes called Artificial Neurons (neurons) and connections 

known as Artificial Synapses (synapses). Nodes and Connections are therefore the 

fundamental building blocks of ANNs. 

In order for an ANN to carry out meaningful computations, information is 

transferred between neurons via synapses by a cascade of activation functions and 

connection weights from an initial state of input values to a final state as output 

values. Typically values accumulated at any layers of nodes are multiplied by their 
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corresponding outgoing connection weights before being added as input values to 

the next layer of nodes, at which these input values are summed before being applied 

an activation function for further propagation [6][7]. 

Signals fired and sent through synapses in an ANN can be either inhibitory for 

negative signals or excitatory for positive signals, which in turn will directly affect 

the activity of neurons down the paths in the network. 

The mechanism described above is well known and is commonly used in most 

implementations of ANN. Despite this there are also other models of ANNs where 

the process of activating and transferring information signals gets more complicated 

to imitate the actual processes in the biological brain. Such a different model of ANN 

is for example the spiking neural network, where signals are transferred in spikes of 

action potentials and can compute more complex functions than the traditional ANN 

model [8][9]. 

In this thesis, the more commonly used ANN model using a non-linear activation 

function (i.e. the sigmoid function) emitting a single action potential signal will be 

used instead of a more complex one such as the spiking model. 

Next we will discuss in more detail how values are computed within the simplest 

form of ANN, namely The Perceptron and its multi layered successor known as 

Multi Layered Perceptron (MLP). 

 

 

2.2 The Perceptron and Multi Layered Perceptron (MLP) 

The Perceptron is a name given to the simplest form of ANN invented by Frank 

Rosenblatt [10], which gained popularity among researchers and practitioners in the 

earlier days of neural computing. The Perceptron is an ANN consisting of a single 

neuron at which all the input synapses in the network are connected. 

 

Fig1. The Perceptron has a single neuron which sums all of its inputs before going 

through a step function. Note that there is a constant input of 1 connected through 𝒘𝟎, this 

is the bias connection. 
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The type of neuron used in the Perceptron (and generally in any ANN) can vary and 

depending on the problem space, but one of the most commonly used neuron 

models that have originally been proposed to work with the Perceptron is the 

McCulloch Pitt’s model [11]. 

The McCulloch Pitt’s model describes a type of neuron known as “all-or-none”, 

meaning that once excited above an activation threshold the neuron will emit a fixed 

signal regardless of the strength of the incoming stimuli. If the neuron does not 

receive enough stimulation to be excited, no signals will be fired until the activation 

threshold is reached. In addition the McCulloch Pitt’s model is also a binary model 

[12], this means that fired signals are constant and can therefore only represent either 

1 or 0 (fired and not fired). 

In recent years different neuron models have been proposed and used where the 

behavior of the neuron becomes more complex as different firing patterns and 

activation functions have been used (fig2) [5][6]. Some of the most common 

activation functions that have been widely adopted and also used in this thesis are 

the logistic sigmoid and the hyperbolic tangent functions. 

 

Fig2. Sigmoid, hyperbolic tangent and the linear rectifier activation functions. 

 

Generally most implementations of ANN (including the Perceptron) computes the 

network signals in similar way; the output signal for any given neuron y is given by 

 
𝑦 = 𝜃 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) 
(1) 

 

where θ is the activation function, n the number of incoming connections, 𝑤𝑖 denotes 

the weight of incoming connection i and 𝑥𝑖 is the incoming signal at connection i. 

For the McCulloch Pitt’s model, θ is considered a unit step function that steps at x = 0 

defined by 

 
𝜃(𝑥) = {

1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

 
(2) 
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As mentioned earlier, this thesis will instead use the more commonly used activation 

functions, namely the logistic sigmoid: 

 
𝜃(𝑥) =

1

(1 + 𝑒−𝛽𝑥)
 

(3) 

 

where 𝛽 is the slope parameter, and the hyperbolic tangent: 

 
𝜃(𝑥) = tanh (𝑥) =

2

(1 + 𝑒−2𝑥)
− 1 

(4) 

 

An important difference between the logistic sigmoid and the hyperbolic tangent 

function is that the logistic sigmoid has an output range between 0 and 1 while the 

hyperbolic tangent outputs in the range between -1 and 1, this is essential for 

calculations that requires negative values (i.e. velocity vector in a coordinate system). 

It has become a common practice to introduce so called bias connections in ANN 

(fig1). These bias connections are usually connected to an input source that 

constantly emits 1 and then multiplied with the bias connection weight. Without the 

bias connections it is almost impossible (if not very difficult via complicated 

circuitry) to move the activation function along the X-axis. These bias connections 

give an ANN a very powerful property that makes it a better universal 

approximator. 

Consider the activation function θ(x) in equation (3), if we are to move the activation 

function along the X-axis we must be able to express x+a, this can be done by 

introducing an independent bias input a from all other actual inputs x at each 

neuron, i.e. for the logistic sigmoid we get 

 
𝜃(𝑥 + 𝑎) =

1

(1 + 𝑒−𝛽(𝑥+𝑎))
 

(5) 

 

 

Perceptron learning is the concept of iteratively adjusting the connection weights in 

the Perceptron until a desired output is computed. In order to adjust the weights the 

Perceptron must be provided training examples of input patterns and expected 

output values. This form of weight training belongs to the class of supervised 

learning algorithm where an error-correction rule is used to correct the connection 

weights [5], this algorithm is also known as the Perceptron learning algorithm: 

 

1. Initialize random weights for all connections (including bias) 

2. Feed an input pattern of (𝑥1, 𝑥2, … , 𝑥𝑛) and evaluate the output value y 
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3. Update each weight according to 

 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝜂(𝑑 − 𝑦)𝑥𝑖 (6) 
 

  where 𝜂 is the learning rate and t is the iteration step. 

 

Many ANN learning algorithms use the notion of learning rate to train the network 

gradually over many iterations. The concept of learning rate is therefore crucial for 

most learning algorithms, particularly for supervised learning algorithms such as the 

backpropagation algorithm. We will discuss the backpropagation algorithm in more 

detail later but let’s first discuss the limitations of the single layered Perceptron and 

the introduction of the multi layered Perceptron. 

 

The multi layered Perceptron (MLP) is an ANN that introduces multiple layers of 

neurons between the input and the output of the originally proposed single layer 

Perceptron discussed above. These extra neurons and layers are called hidden 

neurons and hidden layers respectively (see fig3 for illustration). 

 

Fig3. MLP with a single hidden layer of hidden nodes. 

 

With the introduction of extra hidden layers, the MLP had overcame one of the 

biggest limitations in the Perceptron - the capability of computing only linear 

separable problems [13] - which made it possible for the MLP to compute one of the 

most fundamental logic XOR gate [14], something which the conventional Perceptron 

(using monotonic activation functions) could not be trained to do. It is possible to 

train a perceptron with a single node to compute the XOR if a non-monotonic 

activation function is used, such as the Gaussian function [15]. 

Over the years, usage of more hidden layers have been shown to improve 

performance of many challenging problems [16]. 
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ANN structures with hidden layers and nodes are also known today as deep neural 

networks and is the beating heart in the emerging and popular field of deep learning. 

Next we will discuss one of the most popular supervised learning algorithms for 

deep neural networks, the backpropagation algorithm. 

 

 

2.3 Supervised learning and Backpropagation 

Supervised learning in the field of machine learning is a category of learning 

algorithms that require data sets of training examples of inputs and expected 

outputs. These algorithms typically works by gradually adjusting an internal data 

structure (e.g. an ANN) by comparing expected output with what is computed from 

the internal structure. This section will only focus on the notion of using supervised 

learning algorithms to train artificial neural networks, hence when referring to 

supervised learning we mean exactly those that train neural networks instead of 

other supervised learning techniques like regression or support vector machines 

(SVM). 

Other interesting categories of learning algorithms that will be discussed in later 

sections of this thesis are; reinforcement learning, evolutionary algorithms, 

population based optimization, genetic algorithms and estimation of distribution 

(EDA) algorithms. 

Supervised learning can be very well suited for pattern recognition and classification 

tasks where large datasets of input and output examples are available [17][18][19], 

but lacks the ability to adapt to change and cannot explore for new solutions. This is 

due to a limitation where neural network based supervised learning algorithms are 

usually entirely bounded by the quality and quantity of the training datasets used.  

Let us now take a look at a well-known algorithm for training neural networks in 

supervised learning. 

Backpropagation is a type of supervised learning algorithm that can be used to 

efficiently train deep neural networks (ANN with hidden nodes or layers). It works 

by first forward propagating network inputs through the network until output is 

obtained. It then compares the obtained output with the expected output from the 

training set to calculate an error gradient.  Finally it backward propagates and adjust 

the network weight accordingly. 

The backpropagation algorithm can be briefly described as follows 

1. Initialize random weights to the network 

2. Feed input pattern (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) and apply forward propagation until 

output is obtained. 
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3. Compare the obtained output with the expected output and calculate the 

error. 

4. Backward propagate the error and calculate the gradient to adjust the 

weights for each layer. 

5. Repeat from step 2 until the network output converges. 

 

The gradient that is discussed in step 4 above is the derivatives of the error in respect 

to the weights. For this reason, backpropagation is a gradient descent algorithm. To 

understand more of the mathematical backbone of backpropagation please consult 

these articles [13][6]. 

Since backpropagation is a type of gradient descent algorithm, it has the same 

limitation of getting stuck in local minima. The reason for this is that the gradient 

descent algorithm is designed to iteratively follow a gradient until convergence is 

reached. This means that if following this gradient leads to a local optimum, there is 

no way for the algorithm backtrack and find another optimum in the landscape. 

Nonetheless, multiple techniques has been proposed to address this limitation 

[20][21][22]. 

To summarize this section; supervised learning (in respect to training ANN) is a 

paradigm of learning algorithms that adjust ANN weights by comparing input and 

output examples with what is produced from the network until desired behavior is 

reached (typically by convergence). Backpropagation is a supervised learning 

algorithm that is well suited for several tasks but has a limitation of getting stuck in 

local minima. 

In the next section we will look into another category of learning algorithm that is 

adaptive and capable of naturally avoiding local minima by design. 

 

 

2.4 Reinforcement Learning 

Reinforcement learning is a branch of machine learning that learns by evaluative 

feedback instead of instructive feedback like supervised learning. 

The difference between evaluative feedback and instructive feedback learning is that 

in evaluative feedback learning, feedback is only provided to the learning system by 

evaluating on how well the system is performing regarding the environments and its 

states. Usually the evaluation is designed as a form of reward and value function that 

rewards the system depending on the set of actions taken by the system. 

Instructive feedback learning is instead learning by giving exact information on how 

a learning system should behave, which often requires pre-existing knowledge of the 

problem domain. In the case of supervised learning it is for example crucial to 
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provide training data that depicts how the system should behave according to an 

input and output dataset. 

Reinforcement learning is considered to be a more natural way to how human and 

animals learn. The basic idea is to learn through interaction with the environment by 

taking actions and receiving feedbacks for those actions, then over time figure out 

which set of actions gives the most optimal performance. 

Consider a scenario where we learned how to not put our fingers into the fire. We 

would for example learn by first putting our fingers into a fire by chance, then 

observe that there is a sensation of pain, after which we would update our internal 

knowledge of the world to consider that fires are hot and is painful to touch. This 

will in turn make it less likely for us to touch the fire, as we most likely evaluated the 

feedback to be not so rewarding. 

The scenario above describes how reinforcement learning typically learns the 

environment its associated actions and states. Below I will discuss some key concepts 

of reinforcement learning. For more detail on how reinforcement learning and 

associative algorithms works, consult a book by Richard S. Sutton and Andrew G. 

Barto [23]. 

In reinforcement learning some key elements that distinguishes it from other types of 

learning. These elements are the policy, reward function, value function and model. 

According to Richard S. Sutton and Andrew G. Barto [23] the policy is the most 

important aspect of a reinforcement learning agent because it defines the behavior of 

the agent, the other elements are only there to serve at improving the policy by 

maximizing both the short and the long term rewards for the agent. 

As mentioned, the policy defines the actions of an agent at each state, from which it 

also defines the overall behavior of an agent in an environment. For example in the 

scenario of experiencing pain when putting finger into fire, the policy is updated 

after which the sensation of pain was perceived, this updated policy will make it less 

likely for the harmful action to be taken again. As with other learning algorithms, 

this policy update usually happens over several iterations based on some form of 

learning rate. 

The policy also defines the ability of an agent to balance between exploitative and 

explorative search. This balance is very crucial for an agent to be able to maximize its 

reward in term of its long term goal, because too much exploitation will lead to 

finding only sub optimal solutions, while too much exploration may never lead to 

the most optimal state as the agent will keep exploring indefinitely. 

It is important to understand that states and actions of an agent does not need to be a 

high-level representation, but can be as low-level as raw sensory inputs and 

motorized actuators of a robot [23]. 
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The reward function is the first evaluative feedback function that will tell an agent if 

an immediate action in a specific state provides good or bad rewards. This function 

helps the agent to navigate the search locally to find short term rewards, the analogy 

to supervised learning is that the reward function can be considered as the gradient 

towards a local optimum. 

The value function is similar to the reward function, but instead of providing short 

term feedback to the system, the value function provides an estimate of how 

rewarding it will be in the long run if an agent was to take a certain action for a given 

state. This function serves as a heuristic and helps the agent to update policies that 

can help the agent to reach optimal solutions or goals. The value function is 

important because it allows the agent to select an action that may look not so 

rewarding on the short term, but in the long run will be more rewarding because it 

may lead to consecutive high rewarding states. 

The model element serves to represent the environment, it is important and 

beneficial for planning tasks. Some reinforcement learning algorithms – such as the 

Q-Learning algorithm – are model-free, meaning they do not utilize a model of the 

environment to improve their performance while learning. Other types of 

reinforcement learning algorithms instead rely on the model of the environment in 

order to learn efficiently [24]. 

 

Fig4. Diagram showing the cycle of interaction between an agent and the 

environment in reinforcement learning. 

 

Because this thesis focuses on the aspects of training and evolving neural networks, it 

is therefore essential to discuss how reinforcement learning algorithms may 

incorporate neural networks in learning. One of such algorithm that has been shown 

to be performing well in learning to play Atari games is a version of the Q-Learning 

[25] algorithm called Deep Q-Network [2][26]. But without diving in too deep, we 

will only discuss the basics of the Q-Learning algorithm and how to expand this idea 

to benefit from deep neural networks in reinforcement learning. 
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The Q-Learning algorithm in its simplistic form is presented below 

 

1. Initialize the Q(s, a) for all state-action pairs, typically to 0 

2. Observe the current state s 

3. Select an action a that gives most utility based on and execute it 

4. Receive the immediate reward r(s, a) 

5. Observe the new state s’ 

6. Update Q(s, a) according to the Q-Learning update rule: 

 𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∗ 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) (7) 
 

7. Set s = s’, go to step 2 

 

The most important step in Q-Learning is step 6, where the Q-Value is updated after 

which an action has been taken, then the implication of the Q-Learning algorithm is 

that given enough time it will eventually be able to reach convergence and derive an 

optimal policy [27]. This algorithm is also called an off-policy algorithm, because it 

updates the utility of a state-action based on the assumption of a greedy algorithm 

(maximizing for utility), while the actual policy that is to be derived is not a greedy 

algorithm, but rather try to find an overall optimal solution. 

The problem to Q-Learning arises when the state-action space become too large, such 

as that of in a dynamic game world where the number of states and actions are 

practically unbounded, in this case storing all the updated Q(s, a) values will no 

longer be feasible. To address this problem one approach is to encode the Q-value 

function in a neural network where the inputs are the state and action while the 

output is the utility of the given state and action. 

To incorporate neural network in encoding the Q-value function properly is by itself 

a challenging task, this thesis will not discuss in detail how this is done as there are 

several adaptations of this idea [28][2][26][29][30]. 

 

2.5 Population Based Optimization Algorithms 

This section will step a bit away from specifically talking about learning algorithms 

to give a brief introduction on population based optimization algorithms, from 

which lay the foundation for some important algorithms used in this thesis. 

Furthermore we will discuss how population based optimization algorithms may be 

directly related to the learning algorithms used in this thesis and how it can be 

associated with other learning algorithms such as supervised and reinforcement 

learning. 
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Population based optimization algorithms are in this thesis referring to algorithms 

that take the advantage of a multi-agent environment to optimize multiple solutions 

across a population of agents. These algorithms are mostly derived from a group of 

algorithms called nature-inspired algorithms [31], from which they can further be 

divided into subsets of swam intelligence (SI), bio-inspired (BI), physics and 

chemistry based and a set of other but still nature inspired (i.e. based on social 

interaction models), for a comprehensive list of different algorithms see Iztok Fister 

Jr. et al. [31]. 

One advantage in using population based algorithm is that they provide a way to 

optimize problems when the landscape in which optimal solutions can be found are 

hard to define precisely. A second advantage is the ability to search multiple 

solutions at once by encoding possible solutions in a population of agents, this allows 

for implementation efficiency when implemented in computing systems that are 

capable of simulating agents in parallel (i.e. using computer graphics processing 

unit) [32]. 

According to Yang [33] swarm intelligence algorithms can be represented by the 

following inductive expression: 

 (𝑥1,  𝑥2, … , 𝑥𝑛)𝑡+1

= 𝐴((𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡 ); (𝑝1, 𝑝2, … , 𝑝𝑘); (𝜖1, 𝜖2, … , 𝜖𝑘))(𝑥1,  𝑥2, … , 𝑥𝑛)𝑡 

(8) 

 

where 𝐴( ∙ ) is an algorithm that takes three sets of parameters;  a set of solutions 

(𝑥1
𝑡, 𝑥2

𝑡 , … , 𝑥𝑛
𝑡 ) at step t, a set of algorithm dependent parameters (𝑝1, 𝑝2, … , 𝑝𝑘) and a 

set of random variables (𝜖1, 𝜖2, … , 𝜖𝑘). The implication is that 𝐴( ∙ ) calculates an 

improvement from a population of existing solutions (𝑥1,  𝑥2, … , 𝑥𝑛)𝑡 and generate 

new improved set of solutions (𝑥1,  𝑥2, … , 𝑥𝑛)𝑡+1. 

Since swarm intelligence as described by Yang reflects a population of potential 

solutions and can therefore be considered as population based, hence this thesis will 

assume equation (8) to be adequate when discussing population based algorithms. 

Equation (8) is an inductive expression which implies that population based 

algorithms are applied iteratively until a criteria is met such as when sufficient 

solutions are found.  

As mentioned above population based algorithms must be provided algorithm 

dependent parameters, as these parameters are crucial in determining the overall 

behavior of an algorithm as well as how will it performs. Because of this one of the 

most challenging problems in using population based algorithm is to find a set of 

parameters that is a sweet spot for such an algorithm, as this can be very difficult 

according to discussion by Yang [33].  
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The challenge of finding such a sweet spot in finding the correct set of parameters 

will later be discussed in more detail on how each parameter can affect the result of 

the experiments in this thesis. 

Population based algorithms (as well as most nature inspired algorithms) belongs to 

a class of search algorithms called population metaheuristics, which are population 

based algorithms that does not directly search for heuristics for a specific problem, 

but rather search for heuristics on a higher level that are not dependent on any 

specific problem [34]. For this reason metaheuristic algorithms are extremely 

adaptive and can be applied to many optimization problems. 

An example of a heuristic search algorithm that is problem dependent is for example 

the A* search algorithm [35], where the algorithm tries to minimize a cost function 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), from which the term h(n) is a heuristic (estimated distance) 

guiding the search towards the target. A heuristic like this is specific for the A* 

algorithm as well as it can only be applied to problems that can be mapped to 

shortest (least cost) path search. 

On the other hand a metaheuristic search algorithm will not be bounded to a specific 

problem (such as to find shortest paths), but will instead search in the solution space 

using a form of evaluative function to evaluate how well a solution (or a set of 

solutions) performs. Because of the lack of problem dependent heuristics (which 

behaves as a guide), the only way to generate new and potential better solutions are 

to introduce random variables to create or modify existing solutions by random for 

evaluation. 

It is also important to mention that the only parts in a metaheuristic search algorithm 

that may be problem dependent is the evaluative function and the representation 

(encoding) of solutions, similarly as described by Darrell Whitley for genetic 

algorithms [36]. 

In order to prevent any metaheuristic search algorithm to only generate useful 

solutions instead of a total random set of solutions, it is important to control these 

random variables by a set of parameters, such that existing solutions can be 

improved progressively over time. These are the algorithmic dependent parameters 

mentioned above. 

The element of randomness also makes it possible to generate new and potentially 

better solutions than by just improving on existing solutions which can lead to a local 

optimum. What this implies is that metaheuristic search algorithms usually have the 

two elements of exploitation and exploration. 

An analogy for this is to imagine a situation where an animal tries to locate a good 

food source; it can do this by either searching randomly at nearby locations or to 

travel to faraway lands. If the animal was to only search at nearby locations then it 

may be able to find a food source, but if this food source is good and can last for a 

long time is not known. The only way for this animal to know is to search farther 
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away as there can exist potential better food sources out there. What this animal will 

need then is to balance between searching nearby (local) and searching far away 

(global) so that it can find good food sources as well as not wander itself to death.  

The elements of local search and global search is often referred to as the ability to 

exploit and explore, and controlling the balance between these 2 elements in 

metaheuristic search can be very difficult [33]. 

 

Fig5. Illustration of Ant Colony Optimization simulating how population of ants 

can over time to find the shortest path. 

 

Population based algorithms take the advantage of metaheuristic search as well as 

speeding up the search by implementing not only a single solution but multiple 

solutions called a population of solutions. Several population based algorithms also 

implement a mechanic where solutions within the population can interact and share 

information, such as the firefly algorithm [37], ant colony optimization (fig5) [38] and 

genetic algorithm [36]. This information sharing mechanism is used to combine 

existing solutions with each other in order to generate new and potentially better 

solutions. Without this mechanism each solution will just behaves as if they were 

independent single solution search and may cause overlapping search, which in turn 

leads to inefficiency as each solution does not inform other solutions of what 

solutions already exist.  

The mechanism of information sharing is analogue to how each individual in a 

society may inform and share knowledge between each other so that the total 

knowledge of the entire society improves as a whole. 

To summarize this section, we have looked at the fundamental concepts of 

population based optimization algorithms, which in turn are mostly inspired from 

nature. These algorithms can be used over a wide range of problems, but challenge 
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the user in setting a set of algorithm dependent parameters where parts are to find a 

balance between exploitation and exploration. 

Next we will discuss genetic algorithm, which is also considered as a nature inspired 

algorithm, but since the concepts in genetic algorithms are essential to this work, it 

deserves a dedicated section. 

 

 

2.6 Genetic Algorithms 

Genetic algorithms are population based search algorithms inspired by evolution 

theories, natural selection and genetics [39]. As any population based algorithms, 

genetic algorithms also have some of the same advantages and challenges such as 

being capable of evolving multiple solutions, perform localized and global search 

(exploitation vs exploration), but also inherit the challenges of parameter setting and 

balancing between exploitation and exploration.  

In the case of optimization for genetic algorithms, solutions are often called to be 

evolving through generations to optimize for better solutions. This is analogue to 

biological evolution where organisms evolve through generations to adapt and 

become better at surviving in their environments. 

Previously when discussing population based algorithms, two important elements 

were mentioned that usually are problem dependent; the evaluation function and the 

encoding of solutions. In genetic algorithms evaluation functions are canonically 

called fitness functions, these functions are to evaluate how fit a solution (or a 

population of solutions) is in each generation, while the encoding of solutions are 

called genomes [40] or chromosomes [41], and behaves just like how biological 

genomes in organisms encodes their genetic traits. 

Genomes in genetic algorithms are usually represented by a string or a sequence of 

information (conventionally a sequence of bits), and can be modified by mutation 

and crossover operators. Let us take a look at some important elements in genetic 

algorithms, for more detailed description please see [36][39][42][41]. 

Encoding of solutions can be done in several representations, one of such 

representation is by representing a solution in a sequence or string of bits effectively 

forming a binary sequence.  

Using binary sequence is analogue to how data structures are stored within a 

computer, and since any piece of data are naturally stored in binary format it does 

not require any complex conversion or transformation other than casting the data 

representing a solution into bits, an operator that is often natively implemented in 

most modern programming languages.   
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A problem in using raw binary data in such a naïve way as described above is that 

such a representation cannot be easily manipulated by the way of how genetic 

algorithms modify (mutate) and recombine solutions (crossover). Any binary 

sequence representing any meaningful piece of data within a computer must follow 

certain structure for the type of data it represents (e.g. a data object, integer or string), 

it is therefore difficult to slice bits and pieces from one binary sequence and merge 

with another without corrupting the underlying data structure.  

A concrete example is for any given a binary sequence representing a text string, it is 

not possible to cut, slice or change bits within the sequence at any arbitrary location 

and still get a meaningful text string in return. The reason for this is because any 

literal symbol in a computer is usually represented by a “byte” (8 bits). To make 

meaningful manipulation of text strings, groups of 8 bits must be consider as a single 

smallest unit in the sequence. 

As a conclusion, when choosing an encoding for solutions that would allow genetic 

mutation and crossover, it is important to design the representation carefully in such 

a way that it is possible to modify and cut genes in the genome without corrupting 

the underlying representation. For example in the algorithms used in this thesis, 

genes are represented as a list of data objects representing neural network 

connections and nodes. 

Mutation is the process at which genomes of solutions are modified, usually by 

modifying the genes by some random about. The number and probability of genes 

that are selected to be modified can be set by the parameter of the algorithm. 

Mutation is in fact the mechanism in genetic algorithms that allows both local and 

global search leading to support the capability of optimizing and finding new 

solutions. It is therefore crucial to implement a mutation operator that allows for 

balance between exploitation and exploration. One can for example use a non-

uniform distribution such as the Lévy-flight such as used in the Cuckoo Search 

algorithm [43] for random mutation to control the distribution between of local and 

global search (small and big jumps). 

By randomizing genes in a genome is only one of several ways to mutate, as it is 

usually up to the design of individual algorithms that decides what kind of 

manipulations are possible for modifying genomes. The main idea of mutation is still 

clear, it is used to modify genomes in hope for finding better solutions. 

Crossover in genetic algorithm is based on the idea of biological counterpart where 

organisms crosses their genes when creating offspring. This mechanism allows for 

preserving genetic traits which in turn may preserve genetic traits of promising 

solutions, just like how fit biological organisms preserves their genes by having their 

offspring inheriting their genes.  

Since crossover only preserves genes from parent genomes, this further implies that 

the main searching mechanism in genetic algorithms are by mutation to both 
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optimize and find new solutions and by crossover to preserve and to combine 

existing solutions in hope for better ones. Supported by the building block 

hypothesis, crossover also behaves as a guide for genetic algorithms in searching for 

better solution more efficiently instead of trying every single combination using only 

the mutation operator. 

As with the mutation operator, crossover can also be implemented in several ways, 

some of the most common are k-point crossover and uniform crossover [42]. For 

different problems and applications, different crossover operators may be needed to 

allow for meaningful recombination of genes. What this means is that for genetic 

algorithms, the implementation of mutation and crossover operators may be problem 

dependent for certain types of problems, which also usually depends on the 

encoding method used.  

The building block hypothesis mentioned earlier refers to the a hypothesis 

supported by the schema theorem [44] that small genes (low-order schema) which 

can provide to increase in fitness have a higher chance in surviving through 

crossover and mutation and can therefore be recombined with other small fit genes 

in order to construct even more better set of genes. But the effect of whether this 

hypothesis holds for every generation with complex genomes is still debatable and 

hard to prove [44][45]. Nonetheless genetic algorithm is still one of the most popular 

optimization algorithms used today with several adaptations, one of such an 

adaptation is the NEAT algorithm that will later be discussed in another section. 

 

Fig6. Diagram of genetic algorithm showing the steps of selection, crossover and 

mutation. 

 

The genetic algorithm can generally be summarized as follow: 

1. Initialization – The first step is to create an initial population of solutions, 

this is usually done by creating solutions randomly over the solution space, 

but specific knowledge about the solution space can also be used to initialize 

better solutions to speed up the search. 
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2. Evaluation – Evaluation step is where solutions are evaluated for fitness 

using a fitness function. This information is important for the next steps. 

3. Selection – At this step, solutions are to be selected to create offsprings for the 

next generation. How solutions are selected can vary, but the idea is to 

somehow select solutions in such a way that good traits of fit solutions are 

can be preserved (i.e. the block hypothesis). It is also important to not select 

only the top solutions, because some of the other genes of the less fit solutions 

may contribute to create better solutions later, preserving variety also needs 

to be considered. 

4. Recombination – This is the crossover step, solutions selected from previous 

step can now be recombined with each other to create new offsprings. The 

number of parent solutions used to recombine offspring solutions can vary 

depending on the adaptation of the genetic algorithm, but commonly two 

parents are selected to create new offsprings. 

5. Mutation – As discussed previously, the mutation operator plays an 

important role in both optimization and also searching for new solutions. 

This step is therefore dedicated to mutating offspring solutions created from 

previous step. In order to not destroy good genes from parent solutions, it’s 

important to consider how intensive (frequency and amount) mutation 

should occur on each offspring solution. If an offspring always gets too much 

mutation, then the chances that it will converge to an optimal solution is 

rather scarce. The effect of this is as if pure random walk is used to find 

optimal solutions, something which destroys the purpose of the crossover 

operator.  

6. Replacement – Once offsprings have been created with through crossover 

and mutation, the entire population should be replaced with the newly 

created offsprings. This steps epochs the population into a new generation. 

Not all adaptations of genetic algorithms would replace an entire population 

with a new generation of offsprings, some adaptions would gradually replace 

solutions within a population, this would for example allows for real time 

evolution [4]. 

7. Go to step 2 if termination condition is not met, otherwise terminate. 

 

 

2.7 Neuro Evolution 

Neuroevolution is a machine learning technique that utilizes evolutionary algorithms 

(e.g. genetic algorithms) to evolve artificial neural networks. The idea is to utilize the 

power and flexibility (as discussed earlier) of evolutionary algorithms to optimize for 

optimal neural network weights and structures. Neuroevolution are commonly used 

to solve reinforcement learning tasks [46]. Even though it lacks the evaluation of 

direct interactions between agents and environment as required by typical 
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reinforcement learning algorithms, but with carefully designed fitness functions 

neuroevolution can perform as well [3] as reinforcement learning techniques [2]. 

In principle, any metaheuristic optimization algorithms can be used to optimize 

neural networks (as long as appropriate search operators are implemented), but 

neuroevolution is mostly associated with evolutionary algorithms, this association is 

intuitive since both neural networks and evolutionary algorithms takes inspiration 

from nature. Nevertheless it is worth to keep in mind that other optimization 

techniques (or a combination of techniques) can be used to evolve neural networks, 

e.g. [47]. 

To put this into perspective, this thesis considers neuroevolution to be made up of 

two components: 

1. A metaheuristic (usually population based such as GA) optimization 

algorithm, used to evolve a population of neural networks (solutions). 

2. Neural networks and related encoding and manipulation operators (e.g. 

mutation and crossover) used by the optimization algorithm. 

Besides the two distinct components mentioned above, problem dependent fitness 

functions for different optimization scenarios are required as well.  

Notice that the above interpretation of neuroevolution is quite ambiguous as it does 

not narrow on any specific algorithms, because the purpose is to attempt to simplify 

the understanding of the modular components in neuroevolution on a macroscopic 

level.  

Encoding of neural networks is about representing the structure of a neural network 

in such a way that it is possible to apply manipulation operator while maintaining 

the functionality of neural networks as a whole. For example fixed neural network 

structures can be encodes as a vector of weights [48], and evolution of each vector 

(network) is driven by randomly mutating the weight values within the vector. A 

population of weight vectors will be evaluated in each generation using a fitness 

function to assign corresponding fitness to each network. 

According to a review by Yao [49], some more complex encoding schemes  can be 

used to encode not only the weights of but also the topology and transfer functions 

of a network, other techniques to encode the transfer functions to evolve 

heterogeneous networks had also been studied [50]. What is to be encoded for a 

neural network usually depends on the objective of the application or experiment, 

but for some problems it is worth considering whether to use indirect or direct 

encoding scheme. 

Direct encoding is an encoding scheme where the relevant structures of a neural 

network can be directly mapped to the encoding and vice versa (isomorphic). The 

mapping assumes that whatever that is encoded are all that is needed to directly 

represent a network. For example a direct encoding of a fixed topology network may 
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be a fixed length vector of weight values corresponding to the different connections 

in the network, meaning that it is possible to directly translate a network between 

encoding and network structure consistently. 

A problem with direct encoding is the length of the encoding string will grow in 

proportion to the number of encoded elements in a network. This is not a problem 

for small neural networks but can quickly become an issue when neural networks 

have the ability to grow bigger (i.e. changing topology). For certain task it is 

fundamentally required that the neural networks used must be big, e.g. consider the 

work by Matthew et al. [3] where raw screen pixels are fed into the inputs of a neural 

network that is to be evolved for playing Atari games. This is where indirect 

encoding start to show some promising properties. 

Indirect encoding alleviates the issue with direct encoding where the encoded string 

can grow and become too big that can cause performance problems when mutation 

and crossover are applied. The idea to indirect encoding is that instead of 

representing a network structure as exact as possible, it is possible to be represented 

by a set of rules that can be used to construct a neural network. These rules can be 

used to generate any relevant part of an ANN, i.e. the weights, topology and transfer 

functions. 

For example the ES-HyperNEAT algorithm [51] indirectly encodes not just the 

connection weights but also the density and connections within a complex neural 

network called a substrate. This algorithm is based in HyperNEAT [52] and therefore 

evolves convolutional neural networks (CNNs) to generate structural patterns of 

large scale ANNs. The encoding of the CNNs utilizes direct encoding while the 

behavior of the CNNs indirectly encodes the actual ANN structures that are to be 

evaluated. 

Once an encoding scheme has been decided then the next step is to design evolving 

mechanisms. These mechanisms are manipulation operators that takes a genome and 

apply modifications to it to create new genomes. Manipulation can be on the 

weights, topology, transfer functions or even other properties such as learning rules 

for dynamic neural plasticity [53][54]. In genetic algorithms for example, 

manipulation operators are the mutation and crossover operators that were 

previously discussed. 

As evolution carries on and crossovers are applied, one of the questionable issues 

that arises with neuroevolution is what is known as the competing convention 

problem [55] also known as the permutations problem [56]. 

The competing convention problem refers to a problem that occurs when a naïve 

recombination operator is applied to genomes, e.g. by using single point crossover. 

This is because some recombination operators do not take into consideration the 

topological ordering of neural network structures. What this means is that e.g. the 

single point crossover operator assumes that each gene in a genome uniquely 
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contributes to the overall behavior of that genome, therefore by cutting a genome 

and combine with another should produce new genome that should inherit some of 

the properties its parents. But this is not the case for recombination of neural 

networks as different ordering of genes can exhibit the same behavior for distinct 

genomes, this makes it challenging to know how to cut and recombine genes so that 

offspring genomes will be corrupted.  

 

Fig7. Two genomes of exact same topological structure but breeds corrupted 

children using single point crossover operator. 

 

Consider (fig7), two different genomes may have the exact same topological 

structure and weights, but when a simple crossover operator is used corrupted 

children are created with duplicated neuron genes A and C. A better recombination 

operator is therefore needed to combine neural network structures such that 

genomes with similar structures also preserves their structure when creating 

offsprings, otherwise this can lead to a performance impact when searching for 

solutions. The competing convention is addressed in the next section introducing the 

Neuro Evolution of Augmenting Topologies algorithm. 

 

 

2.8 Neuro Evolution of Augmenting Topologies (NEAT) 

This section will be dedicated to introducing the Neuro Evolution of Augmenting 

Topologies (NEAT) algorithm, most of the information presented here will be largely 

based on the work of Kenneth O. Stanley and Risto Miikkulainen [57], review their 

work for more detail. This section will only summarize key points of the NEAT 

algorithm. 
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NEAT is a neuroevolution technique which is implemented as a population based 

genetic algorithm. NEAT addresses challenges such as how to consistently evolving 

both the weight and topology of neural networks as well as dealing with the 

competing convention problem in neuroevolution. NEAT also utilizes the 

mechanism of speciation, also known as niching [58][59], to protect innovation and 

allow diversity in a population.  

Encoding in NEAT is implemented using direct encoding, each genome contains is a 

list of connection and node objects called connection and node genes. Each 

connection gene encapsulates the incoming node, outgoing node, connection weight, 

an innovation number and a flag indicating whether that connection is enabled or 

disabled. Only enabled connections will be used when constructing neural networks. 

Node genes simply encodes if a node is an input, hidden or an output node. 

The innovation number encoded within a connection gene is a unique number 

assigned to each new connection innovation in the population of genomes. 

Innovation number is globally tracked throughout evolution for all genomes so that 

genes representing the same topological structure gets the same innovation number. 

This concept is called historical marking, which historically marks all innovations 

uniquely to track all the distinct genes within the entire population. 

Historical marking is essential to keep track of what genes are compatible with each 

other, as NEAT utilizes this marking to apply crossover consistently and avoid the 

problem of competing convention. Because historical marking makes it possible to 

identify exactly which genes are of the same innovation, crossover can now align 

genes properly and not produce faulty offsprings.  

 

Fig8. Encoding of a genome in NEAT. 

 

As mentioned, NEAT can evolve both the weights and topology of a neural network. 

Weight can be evolved by either assigning random weight or by perturbing the 
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existing weight by a small amount. The probability for randomizing and perturbing 

weight are usually controlled by global parameters. 

What is special about NEAT is the ability to augment topology, what this means is 

that NEAT can add topological structure to an existing neural network to make it 

more complex over time. In addition NEAT can also disable existing connections 

which makes it possible to remove faulty connections. 

The two main topological innovative mutations in NEAT are (fig9): 

1. Mutate add connection – Adds a connection to existing unconnected nodes 

2. Mutate add node – Adds a new node between an existing connection, this is 

done by first selecting an existing connection, disable it, add a new node, 

create connections to bridge the gap from the disabled connection. Connection 

weight of the disabled connection is maintained in one of the new connections 

while the remaining new connection gets a weight of 1, this is to minimize 

disruption to the functionality of the old connection. 

Crossover is done by first aligning genes between two genomes using information 

from historical marking, offspring genes are then inherited depending on which 

parent is more fit. If both parents are equally fit then genes can be randomly 

inherited (fig10). 

 

Fig9. Mutate Add Connection and Mutate Add Node. 
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Fig10. Crossover of genomes utilizes historical marking to match and align genes 

before creating offsprings. 

 

Because NEAT allows for topological innovations, newly created offsprings can 

suffer from fitness loss because of recent augmented structures that does not yet have 

time to optimize. Fitness loss can destroy innovation because a network with an 

important innovation can be removed from the population too early before it gets a 

chance to catch up with the rest. This is why NEAT utilizes the concept of speciation 

to protect innovation. 

Speciation divides the population into species of similar topology, this is done by 

aligning and comparing genes with each other using historical marking. Genomes 

that are too different from each other will be put into different species, while similar 

genomes will be assigned to the same species. The distance (difference) between 

genomes are calculated using the formula in equation (9). 

 
𝛿 =  

𝑐1𝐸

𝑁
+  

𝑐2𝐷

𝑁
+  𝑐3 ∙ �̅� 

(9) 

E and D are the number of excess and disjoint genes, E+D makes the total number of 

different genes, �̅� is the average weight differences, the coefficients 𝑐1, 𝑐21 and 𝑐3 are 

constants adjusting the importance of each term, finally N is the number of genes in 

the largest genome. Distance 𝛿 is then compared with a threshold value 𝛿𝑡, if it is 

within this threshold then both genomes will be put into the same species. As the 

number of species may grow over time, it is suggested to adjust 𝛿𝑡 to maintain a 

somewhat stable number of species throughout evolution. 
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Genomes that belong to the same species share their fitness, what this means is that 

every genome within the same species will have their raw fitness normalized by the 

number of genomes within that same species. This allows for genomes in small 

species (e.g. young species with innovative genomes) to have a chance to compete 

with genomes in larger species, because genomes in larger species will have their 

fitness diminished by the larger number of genomes in that species. The fitness 

sharing function for genome 𝑓𝑖′ for genome i is specified as follow: 

 
𝑓𝑖′ =  

𝑓𝑖

∑ 𝑠ℎ(𝛿(𝑖, 𝑗))𝑛
𝑗=1

 
(10) 

where 𝛿(𝑖, 𝑗) is the distance between genome i and j, 𝑠ℎ( ∙ ) is set to 1 if the distance 

𝛿(𝑖, 𝑗) is within the threshold 𝛿𝑡, otherwise it is set to 0, this means that 𝑠ℎ( ∙ ) is the 

number of genomes in the same species. 𝑓𝑖 is the raw fitness of genome i, and n is the 

number of genomes within the entire population. 

Genomes in the population of NEAT are assigned to species according to the 

following steps [4]: 

 

Fig11. The genome loop that assigns genomes to species in NEAT. 

The NEAT algorithm generally starts with a population of primitive genomes (i.e. 

genomes with only input and output nodes) and add more complex topology as 

evolution carries on. This allows for dimensionality reduction. What this means is 

that since topology are slowly added over time, the population will be able to search 

for solutions in a smaller dimension incrementally. This effectively reduces the 

dimensionality of the search which makes it possible for the algorithm to find 

compact solutions. Yet a problem may arise if the parameters selected for structural 
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mutations are too frequent, then NEAT may not be able to find compact solutions 

because it will not have enough time to optimize for the weight values (i.e. perform 

search in weight space). Because it is not always clear which parameters are suitable 

for topology mutation, synaptic pruning may be a solution to counter this problem 

[60][61].  

Since the first proposal of the NEAT technique, several adaptations have been 

created that have shown great promises in using neuroevolution for solving different 

kind of tasks [62][63][3][64]. 

Next we will look into one of the adaptations of NEAT called rtNEAT, which is 

implemented in the work of this thesis. 

 

 

2.9 Real Time NEAT (rtNEAT) 

Real time NEAT (rtNEAT) is an adaptation of the original NEAT algorithm that 

allows for evolution in real time. It was originally developed and used in the 

neuroevolution video game NERO [4]. 

The algorithm was developed to demonstrate that it is possible to use neuroevolution 

in real time video game environments where team of agents can be trained and learn 

to solve different tasks in real time (online evolution). 

The idea of rtNEAT is to evaluate and replace worst performing agents with 

offsprings one at a time instead of replacing an entire generation of agents with 

offsprings to produce the next, since the process of replacing the entire population of 

agents can be very costly and is not desirable in interactive environments such as 

video games. When replacing agent(s), it is important to replace the worst 

performing agent(s) based on their adjusted fitness, otherwise the effect of speciation 

will be destroyed. 

Agents in rtNEAT are also assigned minimum time to stay alive, this allows newborn 

agents to have time to adapt and optimize to the environment. Without this 

minimum lifespan agents may get replaced and destroyed too quickly before they 

can prove for themselves. This is typically important in a dynamic environment (i.e. 

a game) as fitness of agents can only be evaluated over time instead of over discrete 

generations.  

Because this thesis implements the rtNEAT algorithm, the steps for the main loop of 

the rtNEAT algorithm are presented below for a deeper understanding on how it 

works. 
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Fig12. Illustration of rtNEAT reproduction cycle. 

 

The rtNEAT Algorithm: 

1. Calculate the adjusted fitness 𝑓𝑖′ for every individual i from the population 

using equation (10). This step prepares the fitness sharing for the next step to 

preserve speciation dynamics. 

2. Remove the worst performing agent with lowest adjusted fitness. When 

removing agent, consideration on how long an agent has been alive must be 

accounted for. Because agents in rtNEAT and created and destroyed 

continuously, it is needed to assign to each agent a minimum timer in order to 

track which agent have been alive in sufficient amount of time for fitness 

evaluation. Agents that have not been alive long enough need a chance to be 

evaluated for fitness before they can be considered for removal. The minimum 

timer is a parameter m and can be set experimentally depending on the task, 

as some tasks requires more or less time for evaluation of fitness. Using 

parameter m, population size |P| and specifying the percentage I of the 

population that are ineligible for removal and can’t be replaced by offsprings, 

it is possible define the number of ticks n between replacements as follow: 

 𝑛 =
𝑚

|𝑃|𝐼
 (11) 

 

3. Each species in rtNEAT is assigned an average fitness �̅�, at this step it is 

necessary to re-estimate �̅� as this is used for selecting parent species in the 

next step to produce offspring. The average fitness �̅� needs to be re-estimated 

at this step because an agent has been removed from the previous step. 

4. At this step a parent species is selected to create an offspring. In the offline 

version NEAT, the number of offsprings created per species is proportional to 

the average fitness �̅� of individual species. But since rtNEAT only create one 
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offspring at a time, parent species are therefore selected by a probability also 

proportional to the average fitness of each species: 

 
𝑃𝑟(𝑆𝑘) =

𝐹𝑘
̅̅ ̅

𝐹𝑡𝑜𝑡
̅̅ ̅̅ ̅

 
(12) 

 

where 𝐹𝑘
̅̅ ̅ is the average fitness of species k and 𝐹𝑡𝑜𝑡

̅̅ ̅̅ ̅ is the total average fitness 

of all species in the population. Once a parent species is created, two 

individuals from this species are selected to combine and create a new 

offspring individual. 

5. At this stage the newly created individual must be assigned a species. 

Intuitively the Genome Loop (fig11) could be run each time a new individual 

is born, but as this process can have an impact on the performance of rtNEAT 

it is not always necessary to completely reassign all individuals in the 

population. Depending on the task environment, it may just be enough to 

assign the newly created individual to the same species as its parents, and the 

Genome Loop can be run once every few replacements. This can save 

computing power as rtNEAT was designed for real time environments, 

meaning for a program to run at 30 frames a second there’s only 0.03 seconds 

available for all the calculations. 

6. Lastly is to connect the newborn neural network to an existing agent in the 

environment, this can for example be done by separating the implementation 

of the visible agent from the brain (neural network) by making them modular. 

As long as neural networks can be replaced for the same agent then it is 

perfectly compatible with how rtNEAT is intended to work, because one of 

the main goals of rtNEAT is to seamlessly integrate neuroevolution into 

interactive environments. 

 

To summarize, rtNEAT is based largely on the original offline version NEAT with 

some modification to allow for real time (online) evolution. One of the main 

mechanism that allows for this is the modification of parent species selection using 

equation (12), this allows for the speciation dynamics which is one of the essential 

features of NEAT. 

 

 

2.10 Exploration vs Exploitation 

Because exploration vs exploitation plays an important role in the research questions 

of this thesis, it is therefore necessary to look at what importance exploration and 

exploitation have for evolutionary algorithms, as well as why it is an important topic 

in regard to general optimization. 
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This section will be largely based on discussions from a comprehensive survey 

regarding exploration and exploitation in evolutionary algorithms by Črepinšek et al. 

[65], as well as one of the earlier discussions on the topic by Eiben and Schippers [66]. 

In order to become familiar with the concept of exploration vs exploitation, let’s 

begin by laying down some common understandings around the topic that will be 

assumed in this thesis. In fact, several general concepts around this topic will also be 

based on ideas and observations from the work by Mehlhorn et al.  [67]. 

Exploration is commonly understood as the behavior of organism in searching for 

new areas and locations that may in the long run be rewarding. For example how the 

human race have historically explored the surface of the earth to discover new lands 

and eventually led to acquisition of both new knowledge and resources. Exploration 

is essential for survival, i.e. it allows for finding new habitable locations once 

resources in the current known locations have been depleted. Exploration may also 

looked at in the perspective of evolution where organisms have explored ways to 

adapt to existing environment through mutation. For instance there is a breed of 

trees called Sequoias that have found a way to survive forest fire by utilizing the heat 

to crack their cones to seed the earth. In addition to this the Sequoias also somehow 

adapted to the fact that fire would kill other competing tree breeds and their ashes 

would further fertilize Sequoias seeds. The adaptation of Sequoias are quite 

exceptional as fire is generally considered as purely destructive, but nature still have 

found its way through the ashes and flames to create new life. 

So exploration seems to be generally about searching for new ways or places in order 

to survive, because survival is the single witness to successful evolution according to 

the general understanding of evolution; the fittest will live. But it is necessary to keep 

in mind that with pure exploration there would be no beneficial effect, because it 

means to constantly moving or changing which often comes with a cost, i.e. in the 

form of energy burned. This implies that in order to survive, there must also be some 

countering mechanism that would stop exploration to save and gather energy 

(perhaps for further exploration). This brings us to the idea of exploitation. 

Exploitation is an opposite cornerstone to exploration [66], because exploitation is 

not about discovering new land or adapting new ways to survival, but is instead 

about utilizing existing discoveries to maximize potential rewards. For example 

humming birds might first explore to find a field of flowers, but once found, they 

would choose a specific flower patch and settle to feed. In other words, humming 

birds would exploit the potential of newly discovered sources of nutrient by sticking 

to a specific flower patch and would only switch once that nutrient potential is 

depleted. Another example is how men have discovered new continents and 

eventually settled on those. This is because discoveries of new continents have 

provided opportunities for better lives, and once these opportunities were known, it 

was naturally to exploit the potential they were estimated to benefit. 
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If the idea of exploitation and exploration seems to be countering each other, then 

how can they co-exist as well as why does it seems like this is a must for survival? 

Furthermore how can for example the behavior of exploration suddenly change to 

the behavior of exploitation as in the case of the humming birds?  

Exploration vs exploitation discusses the notion of why two seemingly incompatible 

behaviors are important for survival of organisms but as well as effective search in 

optimization algorithms. Discussions regarding the benefits and challenges of having 

exploration and exploitation as features in optimization algorithms will be left for 

later. Let us first look at some of the issues that arise when exploration and 

exploitation are often perceived as two distinct and often mutually exclusive 

behaviors. 

 

Fig13. Illustration showing behavioral pattern of exploration and exploitation as a 

continuum. 

 

The idea of exploration and exploitation being mutually exclusive means that these 

two behaviors cannot be exhibited at the same time in decision making of organisms. 

In other words if an organism is exploring, it cannot exploit and vice versa. But 

Mehlhorn et al. [67] argues that exploration and exploitation can in fact be a 

continuum instead of a binary trade-off model (i.e. explore and exploit are mutually 

exclusive). Additionally behaviors can seem to be exploring in one dimension but 

might as well be an exploiting behavior in another dimension. 

Viewing exploration and exploitation as a continuum gives room for modelling 

exploration and exploitation models where both can co-exist and have different kind 

of transitions in between.  

Imagine for example a population of men that have never seen the value to gold. At 

first there may be a handful individuals who would accidently stumble upon gold 
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ingots. As these individuals bring home the metal, it would attract more and more 

people to explore for gold as they start to see the value in it. This can be interpreted 

as exploitation gradually become exploration in the perspective of the population as 

a whole (i.e. the population was exploiting whatever was valuable to them until they 

saw a metal of great value). 

Exploration and exploitation can also be difficult to define because depending on the 

dimension of interpretation exploration can be exploitation and vice versa. For 

example a group of humming birds that explore a field of flowers can be looked at as 

an exploiting behavior if we consider the whole field of flower as a single source. 

Likewise on the level of individual flowers, when a bird is exploiting a single patch 

of flowers can also be looked at as exploring as they jump between individual 

flowers. This is referred to as spatial scale according to Mehlhorn et al. [67], because 

the dependency on scale of space defines the notion of exploitation and exploration. 

Time can also play a role in defining exploitation and exploration, in this case it is 

referred to as temporal scale. Generalizing this we can imagine that there may be 

several other scales that could affect the definition of exploration and exploitation 

behaviors.  

Let us now move away from the general discussion of exploitation and exploration 

models and look at how this topic also influences the design of evolutionary 

algorithms. 

Exploration vs exploitation in evolutionary algorithms have been discussed in 

several studies, but not many have attempted to lay down a common ground for 

researchers to navigate in the field, according to Črepinšek et al. [65]. For this reason 

they had put together a survey to discuss common issues, misconceptions and 

challenges regarding exploration and exploitation in evolutionary algorithms, from 

which this thesis will summarize key ideas. 

Exploration and exploitation in neuroevolution have mostly been concerned with 

how to concentrate and diversify a population of solutions, in order to find a global 

optimum. This seemingly shows the need for controlling balance between 

exploration and exploitation in order to maintain a balanced global and local search 

in evolutionary algorithms. Supporting this, Črepinšek et al. [65] argues that more 

research is needed in order to understand more on how different factors in 

evolutionary algorithms may affect the ability of intelligent systems to explore and 

exploit: 

- Defining phases of exploration and exploitation. As discussed previously, 

defining when exploration or exploitation occurs can be tricky as there seems 

to be no thin red line dividing them. 

 

- Which parts of evolutionary algorithms contribute to exploration and 

exploitation? Since evolutionary algorithms consist of many parts that can 

contribute to the behavior of search, i.e. mutation, crossover and selection 
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operators can all contribute to what and how the search space is explored. At 

some level an operator appear to contribute to exploration, but at another 

level the exact same operator could also be contributing to exploitation. 

 

- How balance between exploration and exploitation can be achieved. 

Several algorithms have control parameters, how do we know which 

parameters contribute to exploration and exploitation? Many parameters 

seems to be set by the user through trial and error, how can we decide a sweet 

spot that would achieve the balance between exploration and exploitation?  

 

- When to control the balance between exploration and exploitation. As 

exploration phases to exploitation to find optimal peaks, how can we define 

when to phase between exploration and exploitation? Should exploration and 

exploitation occur simultaneously? 

 

- How to control the balance between exploration and exploitation. 

Controlling the balance between exploration and exploitation means to be able 

to identify and control the moving parts of an evolutionary. For instance one 

technique may be to measure and control diversity as diversity is often 

regarded as a property that contributes to exploration. How can we identify 

those moving parts as well as controlling them in order to get the result we 

need? 

 

- How to measure exploration and exploitation. Finally how can we measure if 

a system is exploring or exploiting, as this can be critical in maintaining the 

balance between these two phases. 

 

The list above summarizes some of the elements that need to be considered when 

designing algorithms to achieve a balance between exploration and exploitation, 

which will hopefully help improving the performance of evolutionary algorithms. 

This is a rather longer section discussing the difficulties in identifying and 

controlling explorative and exploitative behaviors of intelligent systems using i.e. 

evolutionary techniques. But this is clearly an important task to understand these 

challenges in order to design better techniques (e.g. metaheuristic algorithms) to 

solve reinforcement learning problems.  

This thesis attempts to test some of the mentioned concepts regarding exploration vs 

exploitation. Particularly on how mutation parameters contribute to exploration and 

exploitation. 
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2.11 Estimation of Distribution Algorithms (EDA) 

Because the work in this thesis implements a simplistic EDA, it is therefore 

supplementary to give a brief introduction to this type of stochastic population based 

algorithm known as Estimation of Distribution Algorithm (EDA), originally 

introduced by Mühlenbein and Paass [68]. 

EDAs are stochastic algorithms that works by generating new, hopefully better 

solutions based on a probabilistic model built from a set of promising solutions 

drawn from an existing population. 

A drawback to EDA is perhaps the fact that new solutions are solely based on 

existing solutions which might lead to early convergence. One of several methods to 

solve this is for example by combining EDA with other algorithms [69][70] to expand 

the search bound in solution space, which in turn helps escaping local optima in 

large and deceptive fitness landscapes. In this thesis an adaptation of EDA will be 

combined with rtNEAT to test if it can speed up the process of finding optimal 

solutions. 

The general EDA algorithm is presented below [69]: 

1. P ⇐ Initialize the population 

2. Evaluate the initial population 

3. while iter_number ≤ Max_iterations do 

4. 𝑃𝑠 ⇐ Select the top s individuals from P 

5. M ⇐ Estimate a new Model from 𝑃𝑠 

6. 𝑃𝑛 ⇐ Sample n individuals from M 

7. Evaluate 𝑃𝑛 

8. P ⇐ Select n individuals from 𝑃 ∪ 𝑃𝑛 

9. iter_number = iter_number + 1 

10. end while 

Step 5 in the EDA algorithm is the most important part, as it builds a probabilistic 

model from top performing solutions. The way to build probabilistic models can 

vary greatly, and usually defines the type of EDA algorithm being used. For instance 

the Bayesian Optimization Algorithm (BOA) [71] is an EDA that builds a 

probabilistic model of Bayesian network. 

This thesis implements a simplistic probability vector model similar to the one 

shown in (fig14), further details will be described in implementation section. 
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Fig14. Probabilistic model is sampled into a vector to represent the percentage of 

occurrences for each bit in sampled solutions. EDA then generates new solutions 

based on sampled vector model. 

 

 

2.12 Experimenting With A.I in Game Environments 

“Games are a great testing ground for developing smarter, more flexible algorithms 

that have the ability to tackle problems in ways similar to humans” [72], a statement 

from the minds behind AlphaGo [73], the deep learning system that had set an 

important milestone in A.I research, where a machine finally could win against some 

of the world’s best human Go players [73][1], a task that was believed to be one of the 

most challenging tasks for Artificial Intelligence. 

Using A.I in video games have existed almost since the beginning of video game 

history, as the demand for computer controlled entities were necessary to create an 

interactive and fun environment for players. From primitive conditional based A.I to 

search & planning algorithms, and eventually integrates machine learning [74]. 

Because games have shown to be greatly flexible and can be modelled to reflect all 

kinds of tasks and problems. This is what that have made video games so popular in 

A.I research, simply because of the ability to model and simulate different scenarios. 

For example, strategic decisions and planning have been studied using real time 

strategy games (RTS) to test different machine learning techniques [75], even with the 

usage of rtNEAT [76], which as discussed as an essential part of the work in this 

thesis. Other cases where games were used to test the ability of using reinforcement 

learning for learning to play at a human level using raw pixel inputs [2][77]. Even 
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popular games such as Angry Birds2 and Minecraft3 have been used as test beds for 

teaching A.I in games, see [78] and [79] respectively. Other specialized game 

environments have also been created specifically for A.I education as well as research 

[80]. 

As A.I research progresses in games, and as many good results have shown that 

machine learning techniques can be used to beat human in video game playing, a 

natural question which arises is that if those A.I models have reached human level 

intelligence? Certainly this is not the case because almost all A.I models are trained to 

excel really well in the tasks they are trained for and does not generalize too well, 

this is one of the motivations behind the General Video Game AI (GVGAI) 

framework [81].  

GVGAI is a framework for designing gaming environments that is unbounded by 

quantity, i.e. using Video Game Description Language (VGDL) [82] to generate 

games dynamically for different A.I models to compete. This allows trained A.I 

models to face game environments that they have never seen before, allowing them 

to generalize over different unseen problems and tasks instead of being fixed to a set 

of games they have been trained for. With this framework Perez-liebana et al. hopes 

to help generalizing machine learning A.I models to equivalent to General Artificial 

Intelligence [81]. 

A central aspect to this thesis is regarding neuroevolution algorithms, which have 

also been extensively used to attempt to improve NPC behaviors, procedural content 

generation as well as other aspects of different kind of games [83]. In the same 

context of using A.I techniques to improve different game elements, it is worth 

taking a look at the work of Yannakakis et al. [84], where they have compared 

different computational intelligence techniques used in different aspects of video 

games. 

Since using game environments have shown to be promising for A.I research, this 

thesis implements a simplistic real time game environment to run some of the 

experiments. This allows the possibility for future research of proposed techniques in 

this thesis to run more complex and interesting machine learning experiments. 

 

 

3 Related Studies 

As there are not many directly related studies, i.e. studies where rtNEAT is used in 

combination with other techniques to test for the effects of exploration and 

                                                           
2 https://www.angrybirds.com/ 
3 https://minecraft.net/ 
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exploitation, this chapter will therefore only present some studies that are somewhat 

related and point in the same direction as the research done in this thesis. 

 

 

3.1 NERO 

NeuroEvolving Robotic Operatives (NERO), is a video game created by Stanley et al. 

[4] to demonstrate the ability of rtNEAT in evolving agents in a real-time game 

environment. For this purpose NERO was the first game to utilize rtNEAT as a core 

feature in its game mechanics. 

NERO may as well be described as a game of its own style, where the main purpose 

of the game is to allow players to train robotic agents in several tasks. In fact the 

players interact with the game environment by designing different tasks for the 

agents to solve. 

Agents in NERO starts out with no knowledge of the world and are gradually 

evolved and learn to solve different tasks. The agents are always equipped with a set 

of different sensors to perceive the environment around them. 

This game demonstrated that it is possible to use neuroevolution to implement 

learning agents in an interactive game environment. This is a key idea that inspired 

made possible for the work in this thesis, by using rtNEAT to probabilistically evolve 

the population, real-time evolution was made possible. 

 

 

3.2 NEAT and XOR Function 

In the original paper of the original NEAT algorithm [57], Stanley and Miikkulainen 

evaluated their proposed algorithm using the XOR function. They argued that even 

though the XOR function is a simplistic function, but do well serves the purpose of 

testing their learning algorithm for evolving non-linear separable functions.  

Another advantage in using XOR for evaluation is its simplicity, easy to implement 

and can test if the different mechanisms in NEAT were working as expected before 

evaluating for more complex functions. 

This thesis leverages this idea and have as well used the XOR function for evaluation 

of rtNEAT’s functionality. 
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3.3 Differential Evolution and EDA 

In a study by Sun et al. [70], they had created a hybrid algorithm by combining DE 

and EDA algorithms called DE/EDA.  

DE algorithms works by mutation and crossover similarly to genetic algorithms, with 

the only difference is that DE performs mutation and crossover by sampling from the 

existing population (usually 3 candidates) and calculates a differential between them 

in order to produce a trial candidate for evaluation. If the trial candidate shows 

improvement, it is accepted. 

In DE/EDA, instead of performing mutation and crossover only using the calculated 

differential between sampled agents, EDA algorithm is used to build a probabilistic 

model from the population and contribute to creating new solutions. At the same 

time an adjustment coefficient is also introduced in the DE/EDA to allow adjustment 

of how much effect EDA would have during creation of new solutions. 

The mechanism described above is closely related to how EDA is used with rtNEAT 

in the study of this thesis. Similarly the EDA Mutator implemented in this thesis also 

has an adjustable parameters to adjust how much influence the EDA algorithm 

should contribute to mutation. 

 

 

4 Implementation 

This chapter will be dedicated to the implementation progress of rtNEAT, as well as 

discussing some of the challenges and issues that arose during implementation that 

could directly and indirectly affect the overall behavior of the algorithms used, which 

in turn may affect the experiments and results. 

All of the final implementations were done using the Python programming 

language. The reason Python was chosen was because it provides a simple workflow 

from coding to testing and debugging as compilation is not required. 

C++ was also involved initially in an attempt to use Python purely for prototyping, 

while the main code would be implemented in C++ using the Unreal 4 game engine. 

The Unreal 4 game engine was chosen because of the promising workflow of using 

an existing game engine to ease the process of creating game environments. But this 

workflow of using Python and Unreal 4 eventually became a bottleneck, because 

Unreal 4 implements an adaptation of C++, which made porting Python code to 

Unreal 4 more difficult than planned. 

For the reasons mentioned above, all the codes implemented in Unreal 4 was 

discarded and only Python was used to implement all the experiments discussed 

here in this thesis. 
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4.1 Implementation of rtNEAT – The Metaheuristic Search 

As mentioned in section 2.7, this thesis divides neuroevolution algorithm into two 

components; metaheuristic search and neural network elements. Regarding the 

implementation of rtNEAT, the metaheuristic search component is first implemented 

and tested, then comes the addition of neural network elements (section 4.2). 

The implementation of rtNEAT’s metaheuristic search component was first identified 

to be a set of different key elements: 

1. Data structure for species. 

2. Data structure for population. 

3. Selection mechanism, including speciation. 

Note that historical marking, which is a key feature of rtNEAT does not belong to the 

metaheuristic component, because it is only used to match neural network genes 

when applying crossover of neural network genomes. 

In order to test if the metaheuristic search algorithm works, simple implementation 

of the agent class was created. These agents simply represent 2d vectors in Euclidean 

space along with mutation and crossover operators. Mutation operator simply 

modified the vector components randomly, while crossover operator would blend 

then 2d vectors from two distinct agents to create an offspring. 

Testing also required implementation of a simple problem to test if the code could 

optimize well, therefore a simple fitness function was created to evaluate the 

population of vector agents based on their distance from a predefined circle radius of 

10; the closer the more fitness. As a result the metaheuristic search successfully 

optimized towards this problem (fig15).  

A simple mechanism to test for the effect of exploration vs exploitation was also 

implemented. This was done by allowing the agents to mutate more (take bigger 

jumps) when they are on low fitness, while agents with high fitness would jump 

shorter distances, allowing for exploitation (fig16). 
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Fig15. Graphical output showing how the metaheuristic search improved agent 

positions over generations. Blue agents are the fittest, while red shows the worst 

agents. 

 

 

Fig16. Agents were able to explore and find the circle much faster as well as 

sticking to the edge (exploit) once found. 
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4.2 Implementation of rtNEAT – The Neural Network 

At its core, a neural network is simply a graph of nodes and edges, therefore 

implementing any neural network data structure is similar to implementing graph 

data structures. 

A graph consist of a list of nodes and edges, in the case of a neural network they are 

referred to as list of neurons and connections respectively. A graph of neurons and 

connections is called a genome. 

Neurons in the implementation of rtNEAT in this thesis contain 3 lists of incoming, 

outgoing and blocked nodes, as well as a type string. Specifically for any given 

neuron N, the following data members are maintained: 

1. Incoming nodes - A list of node indices pointing to neurons that have 

connections to N. 

2. Outgoing nodes – A list of node indices pointing to neurons that N is 

connected to. 

3. Blocked nodes – A list of node indices that N considers as blocked, this list is 

used to prevent cyclic paths as well as other connection prevention 

mechanisms, such as preventing output neurons to have outgoing 

connections. 

4. Type – A string indicating what type of neuron N is; Input, Output or Hidden. 

Connections simply contain neural network and rtNEAT required properties such as 

weight, enabled/disabled state, incoming and outgoing nodes. 

A Genome encapsulates neurons and connections as well as important class methods 

for mutation and crossover operators. Genomes can be set to allow either recursive or 

feed forward networks. The implementation of forcing feed-forward graph 

structures in genomes have also taken much of development time and extensive 

debugging throughout development, as small mistakes have escalated to deeper and 

hard to spot bugs during genome mutation and crossover. 

One key difference between the implementation of rtNEAt in this thesis and 

traditional NEAT is the possibility to physically remove a connections (not just 

disabling connections as in traditional rtNEAT). The implication of this is that by just 

removing connections, the algorithm can create new connections with opposite 

direction, this can be important for feed-forward networks as connections are 

removed and reconnected, new interesting structures can emerge. 
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Fig17. Output to demonstrate sampling of unconnected pairs. Picking 1000 

samples of random unconnected pairs resulted in a uniform distribution across all 

possible pairs (1, 3), (2, 1), (1, 2) and (3, 1), where each pair was sampled 246, 236, 

251 and 267 times respectively. 

 

Comparing to the original C++ rtNEAT4 implementation by Kenneth O. Stanley 

himself as well a NEAT implementation in python (neat-python5), the rtNEAT 

implemented in this thesis also has a second difference when it comes to the mutate-

add-connection operator. The implemented rtNEAT in this thesis guarantees to 

always find a pair of unconnected nodes (uniformly distributed) and add a 

connection between them (fig17). It will only fail if the graph network is fully 

connected and provides no remaining free pair of nodes to connect, in contrast to 

neat-python and C++ rtNEAT where this kind of mutation will cancel if the 

randomly selected pair give rise to invalid connection (i.e. cycles in a feed-forward 

network). The implication of this is the effect mutation probability parameters have 

for C++ rtNEAT and neat-python can vary. Since adding connection can fail, it 

means that the mutation probability parameters do not precisely define the exact 

probability of mutation.  

This differences above were discovered accidently when the source codes of 

mentioned implementations were looked into and compared, as the rtNEAT 

implementation within this thesis was initially designed purely by the description 

from the original articles [40][4] instead of porting existing codes. 

 

 

 

 

 

                                                           
4 http://nn.cs.utexas.edu/keyword?rtneat 
5 https://github.com/CodeReclaimers/neat-python/ 
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4.3 Implementing the real-time Game Environment 

The implementation of the real-time game environment was done using the python 

Arcade6 library. Arcade is simplistic 2d library intended for developers to provide a 

simplified workflow in 2d game creation. 

The implementation of a simple game environment resulted in the following set of 

main code classes: 

1. NEATGame – The core class for running the game environment. It defines the 

game bound as well as update methods for periodically updating entities and 

events within the environment. 

 

2. GameEntity – Base class for visual entities within the game environment. An 

entity have position and velocity, and is as well bounded by the game bound, 

which performs simple collision check to prevent game entities to fall outside 

the screen. Even though entities can also have default colors and render radius 

defined, it is possible to override rendering and update methods to allow 

custom visual and behavior within the environment. 

 

3. NEATEntity – This class extends from the GameEntity class to allow for 

interaction between NEAT agents and the game environment. The 

functionality of this class serves the purpose of encapsulating methods for 

perceiving environmental inputs as well as acting on neural network outputs 

to actions from an associated NEAT agent (NEATAgent). This is basically the 

physical representation of a NEAT agent within the environment. 

 

4. NEATAgent – This class represents the brain of NEAT entities within 

environment. This class is also directly represents agents within species of the 

rtNEAT population. As agents evolve and are replaced with offsprings, 

associated entities will also get their brains (NEATAgent objects) replaced. By 

replacing brains instead of the entities themselves will make it look like as if 

game entities evolve their behavior over time instead of being replaced with 

new physical entities. This is important feature to allow for designing 

seamless interactive game environments where computer controlled entities 

are made to behave as continuously living agents. 

 

Objectives represents the fitness function of rtNEAT in the environment. They are 

designed from extending the GameEntity class, this allow them to have different 

visualizations as well as interactions with the environment and other entities. For 

example to design a fitness function to evaluate and assign high fitness to agents 

                                                           
6 https://pythonhosted.org/arcade/ 
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within a rectangular frame, an objective is created with overridden update and 

rendering method to assign fitness as well as drawing the rectangular frames (fig18). 

 

Fig18. Agents being evolved using rtNEAT to optimize for a fitness landscape of a 

rectangular frame. Blue agents are within the frame, red agents are outside. This 

simulation eventually made the agents circle in a somewhat rectangular pattern, 

though not fully optimal. 

 

 

4.4 Implementation of EDA Mutator 

To test the effect of using estimated distribution models from EDA algorithms, a 

simple approach was designed to allow for mutation in the same manner as how 

EDA builds probabilistic models. 

The implemented EDA Mutator is no mean a fully stand-alone EDA algorithm, 

because an EDA algorithm would evolve its own population through generations 

like how evolutionary algorithms would. This is why it is called the EDA Mutator, as 

evolution is carried out by the implemented rtNEAT algorithm, EDA Mutator would 

contribute in mutating genomes based on built probabilistic models. The EDA 

Mutator was also implemented modular, meaning it can be turned on or off for 

different experiments. 

How the EDA Mutator works mainly by using 2 class methods: 
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1. BuildModel(genomes, reset=True) – This method builds the probabilistic 

model of connections from a list of genomes (i.e. from top performing 

genomes). This model holds the probabilities of the existence of connection 

genes, the weight means and weight standard deviation. There is also a reset 

flag that can be used to reset model building or continue from previously built 

model, which allows for incremental model building. 

 

2. MutateGenome(genome) – After a model has been built, the EDA Mutator 

can be used to mutate individual genomes, by mutating their genes using the 

built probabilistic model. This method takes a single genome as argument. 

Mutation is also controlled by a global parameter called power, which 

controls how much influence EDA mutation should affect mutated genomes, 

with 0 as no influence as all while 1 is considered fully influential. 

 

The implemented rtNEAT algorithm has the functionality to set which mutator 

object is to be active at any given time, with a default set to NEAT Mutator. When 

needed, EDA Mutator can be assigned for EDA based mutations. 

It is important to illustrate how the power parameter influences the normal 

distributions used for mutation of genomes, in order to understand the mechanism 

behind EDA mutation. Since an example is worth a thousand words, see (fig19). 

 

Fig19. Given a connection with weight 0.2, a probabilistic model where 𝝁 =

𝟎. 𝟖, 𝝈 = 𝟎. 𝟐, the power parameter will interpolate the probability density function 

between the yellow and red distributions. At 0 power the weight will be exactly 0.2 

with 𝝈 = 𝟎, the yellow distribution is only an exaggerated illustration of this 

scenario for the purpose of visibility. 
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Lastly, the EDA Mutator described in this section is no mean the only way to 

implement mutation with EDA. This implementation only demonstrates the 

possibility to combine parts of one algorithm with another algorithm, particularly 

EDA and rtNEAT algorithms. 

 

 

4.5 The NEAT Mutator 

As mentioned in previous section, the rtNEAT algorithm implemented in this thesis 

is defaulted to use standard NEAT/rtNEAT mutation operators, originally described 

here [40]. But in the implementation presented here, there are some elements that 

differs from the standard NEAT. This can have implications for how evolution might 

affect the experiment results. Different NEAT based adaptions found on the internet 

may differ from each other as well (some can be found on the NEAT users page7), 

something which is expected as different developers implemented their own 

interpretation of the originally described algorithm. Nonetheless, the main core 

elements of the original algorithm is often kept intact. 

Mutation, crossover and historical marking are controlled by the NEAT Mutator 

class in the current implementation of rtNEAT, therefore any adaptation to these 

elements also affects how the current implementation handles these rtNEAT 

mechanisms. 

Key adaptation that differs from the original NEAT/rtNEAT mechanisms are: 

1. Historical Marking – Historical marking plays an essential role in rtNEAT as 

well as all NEAT based adaptations, because it lay ground for consistent 

crossovers where genes need to be aligned for structural matching. The basic 

concept of historical marking is to assign new unique structural mutation a 

unique identification number. In the current implementation of rtNEAT, the 

NEAT Mutator also controls assignment of historical marking, but this was 

later realized to be unnecessary, as the implementation of the Genome class 

already supports unique identification of structural mutations. 

 

Each time a connection is created between two nodes, a hash table is updated. 

This hash table keeps track of which pair of nodes are associated with which 

connection objects. Initially this was only intended for easy retrieval of 

connection objects by only providing node indices as arguments. But this was 

adopted to be used for gene matching as well. Since each structural innovation 

between the same pair of nodes across genomes would give the same hash key 

in the form of a python tuple object (i.e. node1→node2 = (1, 2) ), while new 

unique structural innovation would give distinct keys, this can be translated 

                                                           
7 https://www.cs.ucf.edu/~kstanley/neat.html 
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to have the same effect as maintaining historical marking across the 

population. 

 

2. Mutate Remove Connection – Another adaptation to the NEAT mechanism 

the connection removal mutation. In original NEAT a connection could 

mutate to become disabled or enabled (but is directionally maintained). In this 

implementation, connections disabled and enabled state can still be mutated, 

but additionally they can also be physically removed, which allows for re-

creation of new connections with different connectional directions. This is 

rather important in mutating a feed-forward enabled genomes, otherwise it 

would be impossible to re-create a connections of opposite directions by just 

enabling and disabling connections, as the cyclic prevention mechanism 

would kick in and prevent this. This is not as critical in a recurrent network, as 

connections in both directions can be created between any pair of nodes, and 

by disabling and enabling those would allow for the same effect of flipping 

connection directions. 

The NEAT Mutator also takes in most of the rtNEAT related parameters such as 

mutation probabilities. Those are shown in the figure below (fig20): 

 

Fig20. NEAT Mutator parameters, largely affects the overall behavior of rtNEAT. 

 

 

4.6 Verifying rtNEAT – The Evolution of XOR 

Once rtNEAT had been implemented, the next natural step is to verify if everything 

was working as intended. One of the most common experiments to run for this kind 

of test is to optimize for the XOR logic function. A traditional reason to using the 

XOR is because as mentioned in section 2.2, the XOR function had shown to be one of 

the initial challenge to perceptron learning, therefore several learning algorithms 

have tested their performance by learning the XOR function, including NEAT. 

According to the NEAT User Group website8, it is also mentioned that when 

                                                           
8 https://www.cs.ucf.edu/~kstanley/neat.html 
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implementing NEAT, many would prefer to first test with the XOR function to 

ensure functionality of the implementation. 

The XOR verification test was executed twice with two different settings; the first 

was to have agents starting out with only 2 input nodes, 1 output node and no 

connections, the second was with fully connected connections assigned random 

weights. The test evolution was running over 3000 reproductions in both cases. 

According to how rtNEAT works, each reproduction would create one offspring 

with a probability for it to be mutated. In Other words rtNEAT does not mutate any 

other agents in the population except for when reproducing. The result of the XOR 

test can be seen in (fig21). 

 

Fig21. XOR evolution with two different settings, this shows that by assigning 

random connections to agents initially would improve the performance of search 

(higher fitness). Nonetheless, it is important to remember that mutation 

parameters do play a big role in providing this result, using other parameters the 

result may be entirely different. 

 

As (fig21) shows that agents that started with initial connections almost gained the 

maximum possible fitness of 1 over 3000 reproductions. Despite the differences of 

performance between the two cases, in both cases evolution was able to find the non-

linearity of the XOR function. The output of the best performing agents from both 

cases are shown in (fig22): 
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Fig22. Final output of best performing agents from both test cases, both achieved 

non-linearity of the XOR function. 

 

 

4.7 Implementation of the Experiments 

The experiments presented in this thesis are a mixture of XOR function experiments 

and Game Environment based experiments. The reason for using simplistic XOR 

function to run parts of the experiments is because it is quick to setup and can be 

used as a preliminary to larger experiments. 

Because the development time was set back by the initial development in Unreal 4 

engine, which forced a full re-implementation (several components were re-used) in 

python, this had also constrained the available time to design for more complex 

experiments. Despite this, using the XOR function in combination with the simplistic 

game environment can still show interesting results and lay the foundation for future 

work using rtNEAT.  

Logging data for analysis is an important factor in designing experiments. In the 

following experiments of this thesis, data is recorded in two ways: 

1. Console output – All development in python during the project have been 

based on using the Pycharm IDE9, this had allowed for ease in coding and 

testing. As a habit of any developer, the console output is often used for 

printing out all kinds of program related data. In the case of this thesis, much 

of the console logged data could directly be used for statistics, such as fitness 

performance, mutations and neural network structures can all be printed in 

the console. 

 

2. Using python-dill – Dill is a python library that allows for storing and 

loading any data object during runtime, this makes it possible to store any 

state of objects during evolution, i.e. storing an entire population every X 

number of mutations and later load for analysis. 

                                                           
9 https://www.jetbrains.com/pycharm/ 
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4.8 Issues 

This section will briefly discuss some of the several issues and drawbacks that 

occurring during development that may have an effect on the experiments, which 

hopefully would be helpful to anyone who would try to implement and experiment 

with rtNEAT. 

Metaheuristic Search - As previously described, the implementation of rtNEAT is 

divided in two parts. The development of metaheuristic search component did not 

meet many obstacles. But during the process, key mechanism such as speciation 

needed to be designed carefully, as this mechanism relies on the functionality of 

agents to be comparable with each other (for compatibility). Hence the 

implementation of comparability of agents needed to be done carefully, and is as 

well problem dependent based on the type of problem the agents represents. For 

example in the case of vector agents, their relative distances are measured for 

compatibility, while for neural networks, gene distance as described in NEAT is 

used. 

Genomes & Neural Network – The implementation of neural network genomes 

were the most challenging due to the fact that they needed to be able to evolve 

purely feed-forward networks. One problem lead to the next, suddenly the problem 

was no longer related to neuroevolution, but rather graph theory related; how to 

procedurally generate arbitrarily non-cyclic networks. This took much of 

development time as small mistakes creeped up during evolution of complex 

structures, and made it difficult to track for the cause. The key idea here is to always 

test exhaustively the fundamental mechanics whenever something is changed in the 

implementation. 

Developing Games - Often times it may be tempting to use existing libraries or game 

engines to develop the game environment that the experiments is going to take place, 

as this would simplify the process of development. But sometimes the actual libraries 

and engines themselves are in fact the crucial bottleneck to experimental design if 

preliminary knowledge was not known. Limitations of engines and libraries may 

only show themselves in later stages of development as the technological boundaries 

of these engines and libraries are reached. In the case of the Unreal 4 engine, the 

technological boundary was their custom adaption of C++ which broke several 

implementations and had to be implemented differently. 

Performance - Moving away from Unreal 4 engine made it possible to speed up the 

process of development of rtNEAT and related codes. But when everything was up 

and running, another issue appeared, which also limited the scope of possible 

experiments in this thesis. Namely performance issues caused by the python 

interpreter. As most of the implemented codes were implemented naively using 

python classes and objects, which helped to speed up development time, but these 

python objects when nested deeply and without care can cause huge performance 
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impact during execution. This is one of the main culprits that prevents the 

experiments to scale. This can perhaps be avoided by first acquiring deep knowledge 

in the platforms available for development, but then again any project is time 

constrained, and is therefore a difficult trade-off task. 

 

 

5 Experiments 

The experiments were setup to be divided into XOR and Game related experiments, 

each demonstrate different aspects of how mutation affects exploration and 

exploitation in rtNEAT as well as in combination with EDA. 

 

5.1 XOR 

To make things more interesting, the XOR logic function used for the experiments 

presented here are extended to be a 3-input XOR function. 3 way input XOR 

functions can have different truth tables depending on the application, one is by 

chaining up 2 XOR logic gates, another is by assigning 1 only when one of the inputs 

equals to 1. The latter XOR function is used in the experiments presented here, with 

the following truth table (table1): 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 0 

Table1. 3-input exclusive or truth table. 

In addition, all agents in the population will start with all input nodes connected to 

the output node, this is to allow for a small speed up in evolution. The size of 

population is set to 50 with the following mutation parameters (found 

experimentally): 

AddConnectionProb 0,2 

RemoveConnectionProb 0,1 

AddNodeProb 0,05 

RemoveNodeProb 0 

RemoveNodeThreshold 0 

MutateStateProb 0 

MutateWeightProb 0,6 

WeightBlendFactor 0,7 
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MutateWeightMean 0 

MutateWeightDev 5 

PerturbWeightDev 0,1 

PerturbWeightProb 0,9 

Table2. Mutation parameters for 3-input XOR. 

The activation function used is a logistic sigmoid function as shown in equation (3) 

where 𝛽 = 1. Evaluation of evolutions (number of evaluations vary per experiment) 

will be limited to 5000 reproductions per evolution, this is equivalent to 100 

generations (5000/50=100) per evolution. Number of species is also set to target 5 

species, and the algorithm will attempt to maintain this number of species whenever 

possible. The coefficient 𝑐3 from equation (9) is also experimentally set to be 0.1. 

The fitness function to evaluate the 3-input XOR function is defined as 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒−(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑−𝑜𝑢𝑡𝑝𝑢𝑡)2
 (13) 

 

The reason for using an exponential fitness function is to avoid negative values, 

because the selection mechanism in genetic algorithms don’t behave well with 

negative values when proportional selected is used. Because NEAT/rtNEAT creates 

offsprings based on the proportion of species fitness (equation 12), it is therefore 

needed to convert negative fitness values into a positive range. 

 

 

5.1.1 RtNEAT only 

This experiment is designed to serve as the baseline for the comparison of other 

experiments. A secondary purpose of this experiment is also to show how sudden 

innovative mutations may boost the entire population in search for better solutions. 

This experiment evaluates 3 complete evolutions of 8000 reproductions each. The 

reason for using 8000 reproductions instead of 5000, is only to demonstrate that 

when letting evolution run for long enough time, it will be able to converge to the 

optimal solution if the fitness landscape is not deceptive (including several optima), 

which it is for the case of 3-input XOR. 

 

5.1.2 RtNEAT with explorative search 

This experiment attempts to test the effect of how increasing the number of 

mutations effects the ability of population to find better solutions, as well as testing a 

secondary effect to see what happens when too large portion of the population is 

mutated. 
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This experiment will be evaluated 3 times, with the standard 5000 steps of 

reproduction. Additional at each step of reproduction a portion of the worst 

performing agents in the population is at the same time mutated. For the 3 

evaluations, the portion from which the population will be mutated are 10%, 20% 

and 40% of the worst performing agents. Agent performance is measured using 

adjusted fitness to protect innovation in the same manner as the speciation 

mechanism. 

 

5.1.3 RtNEAT with exploitative search 

This experiment is similar to the one in 5.1.2, but instead of mutating for exploration, 

attempts to mutate for exploitation is tested. To test this, smaller mutation 

parameters were chosen as well as only applying mutation to well performing 

agents.  

Agents will still be selected using their adjusted fitness, but here another approach is 

used for selection instead of selecting an increment % of the population from top 

performing agents. Three different ranges of the population will be selected for 

mutation: [0%-10%], [10%-30%] and [20%-60%]. What these ranges mean is that the 

population of agents will be ordered by adjusted fitness, then they will be selected 

from the given % range. For example a selection of [10%-30%] means the top 10% of 

agents will not be selected, but from 10% and onward to 30%, giving 20% agents of 

the entire population will be selected. This kind of selection tests how exploitative 

search for different ranges of agents would affect the overall performance of the 

population. Furthermore this kind of selection would also be indicative if mutating 

well performing agents would disrupt good solutions created from the Building 

Block Hypothesis. 

Additional, to allow for exploitative search, the extra mutations will have their 

mutation parameters modified according to (table 3) below, while offspring 

mutations will remain the same as in (table 2): 

 

AddNodeProb 0 

AddConnectionProb 0,02 

RemoveConnectionProb 0,01 

MutateWeightProb 0,05 

PerturbWeightDev 0,1 

PerturbWeightProb 0,9 

Table3. Exploitative mutation parameters. These parameters are mainly focused on 

perturbing weight values with small probabilities to mutate connections. 
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5.1.4 RtNEAT with exploitative & explorative search 

In this experiment, attempts to boost the performance of rtNEAT search using both 

explorative and exploitative search is carried out. At the same time to see if 

combining explorative and exploitative mutations helps rtNEAT in finding optimal 

solutions faster. The mutation parameters in this experiment will be taken from the 

two previous experiments; 10%, 20% and 40% for explorative search combined with 

[0%-10%], [10%-30%] and [20%-60%] for exploitative search respectively. 

 

5.1.5 RtNEAT with EDA exploitative search 

Similar to 5.1.4, this experiment attempts to test exploitative search, but instead of 

using straight forward random mutations for exploitation, the EDA mutator will be 

used to test if using probabilistic model would result in better exploitative 

performance. 

Here EDA will be used to build probabilistic models of the 20% of best performing 

agents and mutate using the same range defined in 5.1.3: [0%-10%], [10%-30%] and 

[20%-60%]. 

 

 

5.2 Game 

This section is dedicated to experiments running in the game environment. Because 

running experiments in the game environment is demanding on performance, these 

experiments should not be considered exhaustive but rather indicative of what can 

be attempted. 

The mutation parameters used for the experiments in the game environment is 

identical to the ones used for the 3-input XOR experiments. Dynamic threshold is still 

maintained to target 5 species. Time in between reproductions were set to target 25% 

of the population to be ineligible according to equation (11). Additionally all agents 

have a minimum lifespan of 3.0 seconds, this is to allow them enough time to explore 

the environment before being replaced. 

In all experiments agents will initially spawn randomly in a cluster at the bottom left 

corner of the game window, and the objective is to move inside a circle placed a little 

off top to the right of the center of the screen (fig23). 

Agents in the game environment are designed to perceive a normalized 2d vector of 

their position in the environment, additionally they also have the ability to walk 

around by manipulating a 2d velocity vector. This is a simplistic setup to allow 
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agents to see and learn their position in the world and adjust their movement 

accordingly in order to locate objectives. 

When it comes to the fitness function defined agents to search for the circle objective, 

the fitness function is formulated as 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  {

100/𝑑       𝑖𝑓 𝑑 > 𝑅
100            𝑖𝑓 𝑑 ≤ 𝑅

 
(14) 

 

Where d is the distance between an agent and the circle, and R is the radius of the 

circle. This is to allow agents outside the circle to “feel” the fitness gradient while still 

rewarding agents inside the circle with equal amount. This has the effect that agents 

can stay distributed inside the circle radius instead of clustering at the circle center. 

Another point to note regarding the experiments presented here is that there are no 

limit on how many reproductions/mutations evolution can run, each run will run 

continuously until the program is forced to stop. Therefore, all of the experiments 

here were left to run until deemed by the observer (user) that no further 

improvements were possible. 

 

 

Fig23. Game environment with agents at the bottom left corner. 

 

 

5.2.1 RtNEAT only 

Similarly to the XOR experiments, a pure rtNEAT experiment without any additional 

mutations was carried out to form a base line. Furthermore the experiments 
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presented here will also have 3 evaluations for different scenarios. For the case of this 

experiment, agents are to search and stay within the circle shown in (fig23). The 

circle has a default radius of 100 and will shrink to 60 and then 20 over 3 evaluations. 

This is to test how effective rtNEAT is in finding small objectives. 

For the remaining experiments the circle is kept at a radius of 100 units, this is 

because in the other experiments different mutation parameters are tested and 

compared, which requires a base line objective for evaluation. 

 

5.2.2 RtNEAT with exploitative & explorative search 

This experiment is designed similarly to the XOR experiment, a population of agents 

will be mutated using the same setup and parameters as in the XOR experiment. The 

goal here is to test the effect of different mutation parameters in a real time game 

environment. 

 

5.2.3 RtNEAT with exploitative EDA 

This experiment is again setup to be using the same parameters as in the case of the 

related XOR experiment. This section only serves to maintain the logical relationship 

to the sections in chapter 6. 

 

 

6 Results 

The results from the experiments in chapter 5 will be presented here, divided into 

sections and subsections in the same logical structure. Discussions related the 

individual experimental results will also be presented. The overall discussion of the 

entire research will be presented in chapter 7. 

 

 

6.1 XOR 

Experiment results for the 3-input XOR gate experiments and related discussions will 

be presented below. 
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6.1.1 RtNEAT only 

This experiment shows (fig24) that the implemented rtNEAT (despite the differences 

with standard rtNEAT) managed to evolve the 3-input XOR function successfully. 

Through all 3 evaluations the algorithm managed to continuously optimize and find 

better and better solutions. It is also important to notice how evolution in rtNEAT 

may take big jumps from time to time in fitness optimization. This is because 

whenever innovative mutations occur it will be protected by speciation and slowly 

contribute to the growth of the entire population as a whole. Throughout all 3 

evaluations a number of 5 species were maintained consistently. 

The final behavior of best performing agents can also be seen in (tables 4-6), showing 

that all evaluations could in fact managed to evolve agents to calculate the 3-input 

XOR and is not just a measurement of fitness. 

 

 

Fig24. XOR – rtNEAT only evaluations. 

 

0.0  0.0  0.0 0,175257 

0.0  0.0  1.0 0,862461 

0.0  1.0  0.0 0,870095 

0.0  1.0  1.0 0,056489 

1.0  0.0  0.0 0,902221 

1.0  0.0  1.0 0,074932 

1.0  1.0  0.0 0,095245 

1.0  1.0  1.0 0,018051 

Table4. XOR – rtNEAT only, evaluation 1. 

 

0.0  0.0  0.0 0,191184 

0.0  0.0  1.0 0,899743 

0.0  1.0  0.0 0,783509 
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0.0  1.0  1.0 0,141059 

1.0  0.0  0.0 0,97132 

1.0  0.0  1.0 0,002227 

1.0  1.0  0.0 0,029106 

1.0  1.0  1.0 0,001205 

Table5. XOR – rtNEAT only, evaluation 2. 

 

0.0  0.0  0.0 0,256503 

0.0  0.0  1.0 0,943524 

0.0  1.0  0.0 0,704761 

0.0  1.0  1.0 0,002973 

1.0  0.0  0.0 0,80122 

1.0  0.0  1.0 0,010479 

1.0  1.0  0.0 0,026444 

1.0  1.0  1.0 0,002993 

Table6. XOR – rtNEAT only, evaluation 3. 

 

 

6.1.2 RtNEAT with explorative search 

Computational performance during evaluation 2 of this experiment was crippling 

near the end of its evolution, which caused long computing time in between 

mutations. For this reason, adjustments to mutation parameters (table 7) were 

needed in order to run evaluation 3. The main reason for this was because once a 

larger portion of the population was mutated at the same time, the probability for 

genomes to grow larger increased over the entire population. As a result the fittest 

genome in evaluation 2 had acquired 29 nodes (neurons), causing a large impact on 

the computational performance during mutation and crossover. To put this in 

perspective, evaluation 1 evolved the best performing genome with only 9 nodes, 

while the smallest genome evolved contains only 5 nodes from experiment 6.1.1. 

The adjustment of mutation parameters were to balance mutation probabilities so 

that the genomes would not grow too large too quickly. This adjustment could of 

course have an impact on the experimental result which cannot be directly compared 

to the results from evaluation 1 and 2. But this may as well be a demonstration of 

how parameters may depend on the problem scenario, may it be as a result of 

computational performance slowdown or other factors. Furthermore fast growing 

genomes would also increase the search space exponentially, which is another factor 

that impacts performance. 

Once new parameters were assigned to evaluation 3, the computational performance 

improved as well as indication of improved optimization performance in regard to 
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population fitness (fig25). The resulting genome evolved 15 nodes, substantially less 

than from evaluation 2. 

 

AddNodeProb 0,01 

AddConnectionProb 0,1 

RemoveConnectionProb 0,06 

MutateWeightProb 0,6 

MutateWeightDev 5 

Table7. Adjustments towards smaller mutation rates were applied to a subset of 

original mutation parameters (table 2) for evaluation 3 in order to prevent genomes 

from growing too large too quickly. 

 

The results from this experiment seems to indicate that when allowing more agents 

to mutate, would help speed up search and in turn boost the overall fitness gain of 

the population. Another indication is that when mutating a small portion of the 

worst performing agents seems to be more effective than when larger portions were 

mutated. This could be explained by the fact that when too many agents are mutated, 

the population can no longer maintain important building blocks and therefore slow 

down progress. 

 

 

Fig25. Evaluations of rtNEAT explorative search. Notice how all 3 evaluations 

stopped before the limit of 5000 reproductions. This is due to the fact that 

evolution is set to automatically stop searching once it finds a solution with a 

fitness of 0.98 or above. 
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6.1.3 RtNEAT with exploitative search 

The results from this experiment (fig26) shows that there is a difference in regarding 

to what portion of the population is mutated. The evaluations 1, 2 and 3 refers to 

mutation range [0%-10%], [10%-30%] and [20%-60%] respectively. 

A possible explanation to getting this result is that when mutating in the range of top 

performing agents, genetic building blocks are more often disrupted and cannot 

maintain the good innovations acquired. If this is the case then the result shown here 

also strengthen the building block hypothesis for genetic algorithms. Yet exhaustive 

experimentation is still needed in order to acquire enough data to reach statistical 

significance. 

 

Fig26. XOR – rtNEAT with exploitative search. 

 

6.1.4 RtNEAT with exploitative & explorative search 

The results from this combination and exploration was quite surprising, because in 

evaluation 3, a big part of the population were extensively mutated, yet the 

population managed to converge, in fact quite early, which may as well be by chance 

caused by a random good innovation. Despite this, the algorithm was able to 

maintain good mutations and boost the overall population fitness. 

One theory that can explain the result shown here (fig27) is that when additional 

exploitative and explorative mutations concentrated around the center of the 

population in the case of evaluation 3, top performing agents could keep the best 

innovations while the worst performing agents were replaced with offsprings by the 

reproduction mechanism. This may have allowed for a balance between exploitation 

and exploration as a large part of the entire population were contributing to search. 

It’s also important to keep in mind that during evolution, the time in between 

reproductions also increased due to increase in computational power was needed to 

mutate a larger number of agents. 



67 
 

 

Fig27. XOR – rtNEAT with exploitative & explorative search. 

 

6.1.5 RtNEAT with EDA exploitative search 

This experiment shows that by incorporating EDA algorithm may as well be a good 

technique to allow for better exploitation. Even though the results in 6.1.4 beat the 

results (fig28) in this experiment by a large margin, but this may as well be by 

chance, and perhaps with further tuning EDA may perform as well. 

Anyhow, the results here still beat pure rtNEAT, rtNEAT with explorative and 

rtNEAT with exploitative mutations. In combination with results from 6.1.4, these 

experiments show that by combining explorative and exploitative search, 

performance will be improved noticeably. 

 

Fig28. XOR – rtNEAT with EDA exploitative search. 
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6.2 Game 

This section will present the results for the experiments in the game environment. 

 

 

6.2.1 RtNEAT only 

The results from this experiment shows that rtNEAT can very well be used to 

optimize for real-time game environments. Even when the objective is very small, 

rtNEAT could eventually locate and influence the population to move towards it, 

and finally cluster inside the objective circle. 

Clearly, in search to find smaller objectives, more reproduction cycles were needed 

before the objective could be located. During evolution the game environment ran 

smoothly without any lag, meaning the implemented rtNEAT does satisfy the 

intended design, which is to run in real time. 

(Fig29) shows the results of all evaluation while (fig30) shows the final convergence 

of agents in the environment when the objective was found. 

 

Fig29. Game – rtNEAT only results. 
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Fig30. Game – rtNEAT only, final result screenshots. From left to right: Eval1, 

Eval2 and Eval3. 

 

6.2.2 RtNEAT with exploitative & explorative search 

This experiment was a surprise, because the results (fig31) displays some very 

strange statistics. How could it be that evaluation 1 could perfectly find the objective 

while the other evaluations couldn’t? The initial explanation for this phenomenon 

was that since evaluation 1 did not mutate so many agents, which was the main 

reason for its convergence. But after a closer look at how the agents moved around in 

the environment, a strange behavior was detected. Several of the agents were 

“twitching” or did micro-jumps. It was then later realized that because the mutations 

were happening at the same frequency as the reproduction cycle, more and more 

agents would “twitch” whenever reproduction occurred. 

Now the “twitching” behavior itself was not the cause for the detrimental results 

from evaluation 2 and 3, the main cause was (thanks to the observation of twitching) 

that agents were mutated regardless of how long they have been alive. What this 

means is that as more and more agents were mutated frequently, led to the fact that 

more and more agents did not have time to explore and optimize. 

This experiment proves yet another factor that could affect the overall fitness of the 

population, namely the minimum lifespan is crucial in protecting newborn agents in 

the quest to explore the surrounding landscape and build their fitness. The final 

screenshots of how agents ended up being spread across the environment in 

evaluation 2 and 3 are shown in (fig32). 
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Fig31. Game – rtNEAT with exploitative & explorative search results. 

 

   

Fig32. Game – rtNEAT with exploitative & explorative search, final result 

screenshots. From left to right: Eval1, Eval2 and Eval3. 

 

6.2.3 RtNEAT with exploitative EDA 

The results from this experiment are quite interesting (fig33). First of all because of 

the diverse variation between evaluations, showing no clear pattern. This could be 

due to chance as with any algorithms where random variables are used. In order to 

understand this statistics better, more exhaustive experiments need to be carried out 

in order to rule out the hypothesis that this may be caused by chance. 

Nonetheless, it is quite interesting to see how evaluation 1 performed well, while 

evaluation 2 did significantly better, but evaluation 3 could not really find the 

objective. One of the reason for evaluation 3 failing could be the same reason as for 

the results in 6.2.2, because both the explorative and EDA mutations here were 

applied without taking into account the minimum lifespan of agents, as this was 

much later discovered to be a possible issue. Yet, it is surprising how evaluation 2 

managed to skyrocket in fitness while in experiment results of 6.2.2 both evaluations 

2 and 3 failed. Surely more experiments need to be carried out in order to understand 

this phenomenon. 
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Fig33. Game – rtNEAT with exploitative EDA results. 

 

   

Fig34. Game – rtNEAT with exploitative EDA, final result screenshots. From left to 

right: Eval1, Eval2 and Eval3. 

 

 

7 Discussion, Conclusion and Future Work 

This chapter will summarize an overall discussion over the work done in this thesis, 

as well as concluding and propose possible future work. 

 

 

7.1 Discussion 

Throughout this thesis we have been introduced to the elements of a neural network, 

then to how different learning algorithms incorporate ANN to enable general 

optimization, and how all of them are constrained by a common problem of 

parameter adjustments and controlling algorithmic factors to allow for better search. 
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On the level of neurons and perceptrons to neural networks, different factors can 

play a key role in what kind of problems they can be optimized for, e.g. how using 

non-monotonic transfer functions could solve the XOR problem without introducing 

hidden layers, or how adding bias connections in neural networks would allow for 

better function approximator.  

Moving further into the realm of reinforcement learning, we have seen how 

evaluative functions can be important in solving for problems where the fitness 

landscape is initially unknown. Reinforcement learning behaves like a gradient 

explorer where the gradient of the fitness landscapes are revealed over time through 

interactions between agents and environment. 

On the other hand, moving away from direct feedback of interactions between agents 

and environment, we get population based metaheuristic search algorithms such as 

evolutionary algorithms. These algorithms takes a bigger step away from 

reinforcement learning in regard to estimating the gradient of the fitness landscape. 

Instead of estimating the gradient, evolutionary algorithms utilizes a single fitness 

function to evolve a population of agents, in hope that over time agents would 

accumulate enough knowledge about the environment and navigate it well. This 

leads to the question of how to define a proper fitness function, as well as how to set 

the search parameters so that the agents can navigate the environment via the fitness 

landscape. 

Certainly exploration and exploitation plays a big role in the questions above, 

because exploration leverages the ability for agents to search and find new solutions, 

which is essential for exploring and discovering optima in the fitness landscape. 

While exploitation would allow agents to narrow down the search space on a 

particular area in order to find the exact point of a global optimum. 

The work in this thesis have demonstration some of the key issues regarding finding 

the perfect search parameters as well as how particularly mutation affects search 

performance.  

Because most of the mutation parameters used in the experiments of this thesis were 

found experimentally, this does not provide much knowledge on how different 

parameters directly affect search. But some cases were shown that when mutation 

parameters values were too great, genomes could grow too big and cripple 

evolution. Also many mini experiments have been carried out during development 

of the system, which also led to the discovery of the parameters used in the 

presented experiments. This could have biased the experiment design as to how they 

were designed in order to show certain effects of different mutation techniques 

applied. 

Nonetheless the experiments in this thesis have provided important understanding 

of how mutation affects search, how explorative, exploitative as well as how EDA 

affects the overall search performance of a population of agents. Some interesting 
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cases were also presented, such as the results from 6.2.3, which indicates that further 

work is needed in order to have a better understand of the results. 

 

 

7.2 Conclusion 

As a conclusion, I would like to answer the research questions of this thesis: 

1. How do different elements of learning algorithms, particularly different 

mutation techniques combined with rtNEAT influence the search behavior? 

 

2. What are the common issues in tuning algorithmic parameters for balance 

between explorative and exploitative search? 

 

3. How well does rtNEAT perform particularly in a game environment when 

applying different mutation techniques? 

As for the first question, it seems like when using exploitative and explorative 

mutations in combination would provide better search performance than without, or 

when only one of them is used. Through several experiments both with the XOR and 

Game, exploitative combined explorative search had shown an improvement in 

search performance. 

For the second question, it have been discussed in previous studies [67][65] that some 

of the most challenging factors in balancing exploration and exploitation is firstly to 

identify the difference between them, whether there are at all. Secondly for 

evolutionary algorithms, it is necessary to identify how different factors in a search 

algorithm contribute to explorative and exploitative behaviors. In the work of this 

thesis, an attempt to identify the difference between exploration and exploitation was 

to test whether bad performing agents could be used to explore while top performing 

agents could be used to exploit. Additionally different parameters were used for 

exploration and exploitation. Exploitative parameters were less disruptive to the 

neural network structures, while the explorative parameters were more aggressive. 

An indication from the work of this thesis is that certainly it is possible to find traits 

to what factors contributes to exploitive and explorative behaviors, but more work is 

needed to order to rule out possible misconceptions. 

Lastly, to answer the third research question, results from 6.2.2 and 6.2.3 need to be 

considered. The initial impression is that applying additional mutation techniques 

seems to improve search in the real time game environment, but unfortunately due 

to the fact that mutation also destroyed the ability for newborn agents to explore, 

which may have severely ruined the results of these experiments. Nonetheless, a 

conclusion can be drawn here by observing that applying additional mutations may 
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as well improve search performance, but it must be done with care as careless 

mutations can destroy the underlying search mechanism of rtNEAT. 

Lastly the summarized conclusion is that in order to create better learning agents in 

game environments, one must consider the detailed description of the underlying 

algorithms as well as taking into account all of its moving parts, as each of them can 

contribute to different search behaviors which in turn affects the overall behavior of 

agents. 

 

 

7.3 Future Work 

This thesis had lay ground for several possible future work in the quest of 

understanding how to balance exploration and exploitation for learning algorithms 

as well as how different parts can affect the overall behavior. The framework is done 

and several experiments can be designed in the future to test other aspects of 

combining rtNEAT with other algorithms as well as how to fine tune search 

parameters. 

Furthermore, the implementation of rtNEAT in this thesis had also shown that 

Python may be a good language for development but it lacks the performance 

needed to run complex experiments. Future work may involve optimizing existing 

code or porting it to better performing languages. 

Nonetheless this thesis have provided a guideline for future research in the same 

direction. 
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