# Taxonomy and phylogeny of the family Fuscideaceae (Umbilicariales, Ascomycota) with special emphasis on Fuscidea 

Martina Zahradníková



Thesis for the degree of philosophiae doctor ( PhD )
at the University of Bergen

2017

Year: 2017

Title: Taxonomy and phylogeny of the family Fuscideaceae (Umbilicariales, Ascomycota) with special emphasis on Fuscidea.

Author: Martina Zahradníková

Print: AIT Bjerch AS / University of Bergen

## Preface

This PhD project was carried out at the Department of Natural History, University Museum of Bergen, University of Bergen, and was funded by the University Museum of Bergen and the Olav Grolle Olsen fund. The molecular work was done at the Biodiversity Laboratories at the University of Bergen.

I would like to express my deepest gratitude to my principal supervisor, Professor Tor Tønsberg, for his tireless patience in discussing both taxonomic and personal issues, and for his constructive comments on the manuscripts. His passion for collecting lichens, including Fuscidea, provided me with hundreds of samples from Norway and Alaska. Thank you very much Tor.

I thank my second supervisor, associate professor Heidi Lie Andersen, for her excellent supervision of the molecular study of my PhD project, for text editing, help with figures, and for her good advice in matters both personal and scientific.

I would like to thank Professor Andreas Beck for helping me with the algal systematics. Professor emeritus Per M. Jørgensen helped with botanical nomenclature. Dr. Zdeněk Palice provided lichen collections for molecular analyses. Professor Mark R.D. Seaward and John McCarthy improved the English grammar in earlier versions of the manuscripts.

My sincere thanks to the curators of the following herbaria for loans of specimens: BM, HAch, HO, LD, MSC, S, and UPS, and to VER for accepting me as visitor. Professor Mark R.D. Seaward provided important specimens of Fuscidea for the phylogenetic analyses. Alan M. Fryday, Gintaras Kantvilas, John Inge Johnsen, Jiří Malíček, Ondřej Peksa, Josef Halda, Reidar Haugan, Jan Vondrák, and Jana Kocourková generously provided fresh material from Australia, Tasmania, British Isles, Central Europe, North America, and Norway.

I am grateful to Dr. Louise Lindblom for technical help with the molecular work, to Beate Helle for map preparation, and to Astri Botnen for technical help with herbarium collections. I thank Kim Abel and Adam Kurz for taking the photos.

Finally, sincere gratitude to my family for their constant support during my studies. I am very grateful to my father Jan Zahradník for coming to Norway and taking care of my children. My husband Adam Kurz and Adam junior and Barbora supported me all the time, including taking care of the housework, thus permitting me to work during the weekends.

## Contents

Preface ..... 3
Abstract ..... 6
List of publications ..... 9
Introduction ..... 10
Main objectives of the thesis ..... 14
Material and methods ..... 15
Results and discussion
Taxonomic placement of Fuscideaceae and its genera ..... 17
Genera not closely related to Fuscideaceae ..... 21
Phylogenetic relationships within Fuscidea ..... 21
Are Fuscidea lightfootii and F. pusilla conspecific? ..... 24
Taxonomy of Fuscidea cyathoides in Europe ..... 24
Substrate specificity in Fuscidea ..... 25
Photobiont in the genus Fuscidea ..... 27
Conclusions ..... 29
Future perspectives ..... 30
References ..... 31
Papers I-IV
Paper I ..... 38
Paper II ..... 90
Paper III ..... 118
Paper IV ..... 149
Errata ..... 193


#### Abstract

Introduction: For several decades, the taxonomic position of the lichen family Fuscideaceae and its associated genera, including the type genus Fuscidea V. Wirth \& Vězda, has been debated. Amongst the species of Fuscidea, there are many questions about species limitation. The identity of the photobiont in Fuscidea is poorly known and has not been studied by molecular methods. To fill these gaps, the objectives of this thesis were the following: 1) Investigate the placement of Fuscideaceae within Ascomycota and to designate the genera to be included in this family (Paper I); 2) Examine the phylogenetic relationships within the genus Fuscidea (Paper I); 3) Elucidate the taxonomy of the F. lightfootii-F. pusilla species complex (Paper II); 4) Assess the infraspecific taxonomy of $F$. cyathoides (Ach.) V. Wirth \& Vězda and the status of $F$. fagicola (Zschacke) Hafellner \& Türk and F. stiriaca (A. Massal.) Hafellner (Paper III); 5) Identify the photobiont in Fuscidea and clarify its systematic placement (Paper IV).


Methods: The concatenated data sets comprising the mitochondrial SSU and nuclear LSU, ITS rDNA regions of the fungal sequences (Papers I-III) as well as the individual 18S rDNA and partitioned ITS data sets of algal sequences (Paper IV) were analysed by Bayesian inference, maximum parsimony and maximum likelihood (ML) analysis. Principal Components Analysis (PCA) was used to assess selected morphological characters among varieties of F. cyathoides (Paper III). The ITS data set of algal sequences was run in the program Gblocks under relaxed and stringent masking to minimize the ambiguous positions in the alignment. The program SATé-II was used to analyse the non-aligned data matrix of ITS. The topologies and support values of the Bayesian and the ML trees recovered from the resulting aligned data sets were compared and their topologies with the ML tree calculated by SATé-II. The secondary structures of the ITS2 region were folded in order to identify Compensatory Base Changes (CBCs) and hemi-CBCs of the retrieved ITS groups (Paper IV).

Results: Fuscideaceae included four genera and was located in Umbilicariales. The new genus Printzeniella Palice, Tønsberg \& Zahradn. ined. was found to be closely related to Fuscidea. Ropalospora A. Massal. appeared as the first diverging lineage within Fuscideaceae and Maronea A. Massal. was nested within the Fuscidea-clade. The lichenicolous Lettauia D. Hawksw. \& R. Sant. and Cryptodiscus Corda were nested in Stictidaceae within Ostropales.

Loxospora A. Massal. was grouped with Sarrameana Vězda \& P. James in Sarrameanaceae, Sarrameanales, and closely related to Ostropales. Orphniospora Körb. may be related to Lecideaceae s. str. within Lecideales (Paper I). Fuscidea lightfootii (Sm.) Coppins \& P. James and $F$. pusilla Tønsberg were not conspecific, but phylogenetically well distinct. Fertile specimens of $F$. pusilla were recorded for the first time (Paper II). Genetic, chemical or morphological differences were not significant among the current varieties of $F$. cyathoides. The variation in apothecia and the presence of tuberculate apothecia were not significant for F. fagicola and F. stiriaca (Paper III). The photobiont in Fuscidea was identified as Apatococcus F. Brand, but its taxonomic position remained unresolved within Trebouxiophyceae due to poor supports in the deep phylogeny. Apatococcus fuscideae A. Beck \& Zahradn. ined. differs from A. lobatus (Chodat) J.P. Petersen by the presence of typical reticulate chloroplasts in the mature cells and by three CBCs and five hemi-CBCs on the conserved part of helix III. The photobiont of $F$. lightfootii differs from A. fuscideae by having four CBCs and three hemi-CBCs on the conserved part of helix III. Six ITS groups, including both lichenized and free-living species, were retrieved and supported by different CBCs and hemi-CBCs found on ITS2. (Paper IV).

Discussion: Fuscideaceae accommodates genera with a brownish hypothallus (sometimes inconspicuous in Maronea or invisible in Printzeniella), a green coccoid alga, a distinct pigmentation of the apothecium, slightly tapered or cylindrical-clavate asci of the Fuscideatype and short bacilliform conidia. The genus Fuscidea is tentatively split into three groups, possibly defined by the shape of the ascospores and the secondary chemistry. Some Fuscidea species remained unresolved. Fuscidea is paraphyletic as Maronea is nested inside Fuscidea. To make Fuscidea monophyletic there are three possibilities: to lump all Fuscidea species in Maronea, to transfer the Fuscidea species in the F. pusilla-clade (the sister to Maronea) to Maronea, or to introduce a new genus for the $F$. pusilla clade. As the backbone of the Fuscidea-clade is poorly resolved, at this point no nomenclatural changes at the generic level have been proposed (Paper I). Fuscidea lightfootii and F. pusilla are chemically identical, anatomically and morphologically similar but molecularly different. The two species are difficult to identify without molecular methods. The records of non-sequenced material need revision (Paper II). The diagnostic characters for F. cyathoides are the sessile apothecia with persistent margin, the bean-shaped ascospores becoming brown when mature and the presence of fumarprotocetraric acid (Paper III). The photobiont in F. lightfootii differed
from A. fuscideae and may represent another new Apatococcus species. SATé-II provides a phylogeny similar to those from the aligned ITS matrices (Paper IV).

Conclusion: Fuscideaceae belongs to Umbilicariales and is comprised of Fuscidea, Maronea, Ropalospora and Printzeniella gen. nov. Hueidea is treated as a tentative member of the family. The four genera Lettauia, Loxospora, Orphniospora and Sarrameana are not closely related to Fuscideaceae (Paper I). Although some morphotypes of F. lightfootii and F. pusilla appear to be distinguishable based on morphology, DNA sequencing is recommended for their definitive identification (Paper II). The varieties of $F$. cyathoides are synonymized with the typical saxicolous form and F. fagicola and F. stiriaca synonymous with F. cyathoides (Paper III). Apatococcus fuscideae is the photobiont in most of the studied Fuscidea species and Apatococcus is treated as a genus with uncertain position within Trebouxiophyceae (Paper IV).

## List of publications

| Paper I | Zahradníková, M., Palice. Z., Tønsberg, T. \& Andersen, H.L. Phylogeny and taxonomy of the lichen family Fuscideaceae (Ascomycota: Umbilicariales). Manuscript. |
| :---: | :---: |
| Paper II | Zahradníková, M., Andersen, H.L. \& Tønsberg, T. Fuscidea lightfootii and F. pusilla (Fuscideaceae, Umbilicariomycetidae, Ascomycota), two similar, but genetically distinct species. Manuscript submitted for The Lichenologist. |
| Paper III | Zahradníková, M., Tønsberg, T. \& Andersen, H.L. The taxonomy of the lichen Fuscidea cyathoides (Fuscideaceae, Umbilicariomycetidae, Ascomycota) in Europe. The Lichenologist, in print. |
| Paper IV | Zahradníková, M., Andersen, H.L., Tønsberg, T. \& Beck, A. Molecular evidence of Apatococcus, including A. fuscideae sp. nov., as photobiont in the genus Fuscidea. Manuscript submitted to Protist, reviewed and resubmitted. |

## Introduction

Lichens are symbiotic organisms comprised of at least two partners; a heterotrophic mycobiont and an autotrophic photobiont (Schwendener, 1867; Hawksworth, 1988; Honegger, 2000). The mycobiont, typically a member of Ascomycetes, provides nutrients and moisture to the photobionts and shelters them from the harsh environment. The photobiont is usually a green alga (e.g. Asterochloris Tschermak-Woess, Coccomyxa Schmidle, Trebouxia Puymaly) or a cyanobacterium (e.g. Nostoc Vauch., Stigonema C. Agardh ex Bornet \& Flahault), or both as is common in Peltigerales (e.g. Miadlikowska \& al., 2006; Friedl \& Büdel, 2008). In some cases, other fungi may take part such as the so-called lichenicolous fungi (e.g. Rambold \& Triebel, 1992; Werth \& al., 2013). Recently, a basidiomycete yeast was found as an obligate symbiont in cortex of Parmeliaceae (Spribille \& al., 2016). Its teleomorph state had previously been described as lichenicolous (Millanes \& al., 2016).

Lichen-forming fungi (estimated to a number between 17500 and 20000 species) represent more than $40 \%$ of the known Ascomycota (Kirk \& al., 2008). The largest class of the lichenized Ascomycota is Lecanoromycetes (Kirk \& al., 2008) accommodating five main subclasses (Acarosporomycetidae, Candelariomycetidae, Ostropomycetidae, Lecanoromycetidae and Umbilicariomycetidae) and 17 accepted orders (Lücking \& al., 2016).

Although Miadlikowska \& al. (2014) provided a comprehensive molecular study comprising 66 families across Lecanoromycetes, some of the groups remained unresolved. This is the case for Umbilicariales/Umbilicariomycetidae particularly when Fuscideaceae and Ropalosporaceae were included in the analyses. Without these two families, Umbilicariales was a well-supported group.

Magnusson's study of the Rivulosa-group of Lecidea Ach. (Magnusson, 1925) became a basis for the introduction of Fuscidea V. Wirth \& Vězda by Wirth \& Vězda (1972). Fuscidea species have an esorediate, sometimes sorediate thallus, a dark prothallus at the thallus edge, lecideine or aspicilioid apothecia with pseudothalline margins, simple or sparingly branched, sometimes anastomosing paraphyses with a swollen apical cell and brown cap, ellipsoid to bean-shaped or medianly constricted ascospores and the chemical constituents divaricatic (mostly), alectorialic, fumarprotocetraric or sekikaic (rarely) acids or are acid deficient. This cosmopolitan genus is comprised of saxicolous and corticolous taxa preferring acid substrates (Hertel, 1974, 1984; Inoue 1981a,b; Oberhollenzer \& Wirth, 1984; Galloway, 1985; Brusse, 1989a; Tønsberg 1992; Kantvilas, 2001, 2004; Øvstedal \& Smith, 2001; Fryday, 2008; Gilbert \& al., 2009; van de Boom \& al., 2014). Most previous taxonomic studies of Fuscidea were
based on morphology only and included only a limited number of species. The current taxonomy of Fuscidea is therefore in need of a thorough revision.

The phylogenetic position (Paper 1: Fig. 1, Table 1) and taxonomy (Paper I: Table 2) of the family Fuscideaceae have been matters of debate recently. As there is no generally accepted solution, a revision is needed. Based on the similarities in the ascus apex, the two genera, Fuscidea and Maronea A. Massal., comprised the family Fuscideaceae sensu Hafellner (1984). The two genera differ in the presence of a thalline margin in the apothecia (only in Maronea), the morphology of their brown paraphyses (with swollen apices as in Fuscidea vs. not swollen in Maronea), the number of ascospores in the ascus (8 in Fuscidea vs. many in Maronea) and in their ecology. Fuscidea species prefer cool and maritime climates, whereas Maronea prefers warmer, more temperate climates (Magnusson, 1936; Kantvilas, 2004). The inclusion of Maronea in Fuscideaceae has been disputed.

Based on the Fuscidea-type asci as the diagnostic character, Eriksson \& al. (2006) included the genera Fuscidea (Fig. 2A) and Hueidea Kantvilas \& P.M. McCarthy in Fuscideaceae. The genera Maronea (Fig. 2B), Ropalospora A. Massal. (Fig. 2C), Lettauia D. Hawksw. \& R. Sant. (Fig. 2D), Orphniospora Körb. (Fig. 2E) and Sarrameana Vězda \& P. James (Fig. 2F) were tentatively assigned to the family. Lumbsch \& Huhndorf (2007) excluded Sarrameana and placed it in the family Sarrameanaceae with Loxospora A. Massal., but Loxospora was later transferred to Fuscideaceae by Tehler \& Wedin (2008). According to Lücking \& al. (2016) Fuscideaceae accommodates Fuscidea, Hueidea, Maronea and Orphniospora.

The identity of the photobiont in Fuscidea is poorly known. It has been identified as a protococcoid alga (Inoue, 1981a; Oberhollenzer \& Wirth, 1984), Trebouxia Puymaly (Galloway, 1985), Apatococcus lobatus (Chodat) J.B. Petersen (Watanabe \& al., 1997), achlorococcoid alga, probably Chlorella Beyerinck [Beijerinck] (Gilbert \& al., 2009) and a coccoid green alga (Miadlikowska \& al., 2014). Fryday (2008) and Gilbert \& al. (2009) characterized the Fuscidea photobiont as a green alga with cells that duplicate by binary fission creating typical clusters of 2,4 or 8 daughter cells that are often flattened on one side. This description agrees with Apatococcus F. Brand. Ettl \& Gärtner (2014) considered the record of A. lobatus by Watanabe \& al. (1997) uncertain, since this alga was reported as the photobiont in the lichen genus Caloplaca, known to associate with Trebouxia only (Castillo \& Beck, 2012).


Figure 1. Taxonomic positions of the family Fuscideaceae according to the different studies depicted on the schematic presentation of phylogeny and classification of the class Lecanoromycetes made by Miadlikowska \& al. (2014).


Figure 2. Genera belonging to Fuscideaceae sensu Eriksson \& al. (2006). A - Fuscidea mollis (Wahlenb.) V. Wirth \& Vězda (part of T. Tønsberg 39940; BG-L-90300), B - Maronea constans (Nyl.) Hepp (HO:557799), C -Ropalospora lugubris (A.M. Fryday 8868; MSC0050548), D -Lettauia cladoniicola D. Hawksw. \& R. Sant. growing on Cladonia ciliata var. ciliata Stirt. (J. Kocourková \& K. Knudsen JK/7838), E - Orphniospora moriopsis Körb. (part of T. Tønsberg 39940; BG-L-101303), F - Sarrameana albidoplumbea Vĕzda \& P. James (G. Kantvilas \& J. Elix 78/08; HO:547319). For Hueidea see Kantvilas \& McCarthy, (2003; Fig. 1 on page 398). Scale A, C, E, \& F $=2 \mathrm{~mm} ; \mathrm{B}=1 \mathrm{~mm} ; \mathrm{D}=0.5 \mathrm{~mm}$. Photos: A-C, E, \& F - A. Kurz; D - M. Zahradníková.

## Main objectives of the thesis

As the taxonomy and systematics of the Fuscideaceae and Fuscidea are in need of revision and the knowledge about the identity of the photobiont in Fuscidea is poor, the main objectives of this thesis are to:

1) Investigate the placement of Fuscideaceae (Paper I).
2) Designate the genera that should be assigned to the family (Paper I).
3) Examine the phylogenetic relationships within the genus Fuscidea (Paper I).
4) Elucidate the taxonomy of the F. lightfootii-F. pusilla species complex (Paper II).
5) Assess the infraspecific taxonomy of $F$. cyathoides and the status of $F$. fagicola and F. stiriaca (Paper III).
6) Identify the photobiont in Fuscidea and clarify its systematic placement (Paper IV).

## Material and methods

## Taxon sampling

Specimens were obtained through fieldwork, loans from BM, H-Ach, HO, LD, MSC, UPS, $S$ and TUR, from private collections and by personal visit to herbarium VER.

## Chemical analysis

Thin-layer chromatography was carried on all specimens using solvents (A, $\mathrm{B}^{\prime}$ and C ) according to the methods of Culberson \& Kristinsson (1970), Culberson (1972) and Menlove (1974).

## Morphometric analysis

The morphological variation between esorediate and sorediate saxicolous as well as corticolous forms of $F$. cyathoides was assessed using Principal Components Analysis (PCA) (Paper III).

## DNA extraction, PCR amplification and sequencing

DNeasy Plant Mini Kit (Qiagen) was used for DNA extractions, following the plant leaf extraction protocol. The gene amplifications were performed for mtSSU, ITS, LSU rDNA of the mycobiont as well as for ITS and 18S rDNA of the photobiont (see Papers I-IV). The Polymerase Chain Reaction (PCR) mixture was adjusted according to the primers pair. PCR reactions were performed on a $\mathrm{C} 1000^{\mathrm{TM}}$ Touch thermal cycler (Bio-Rad Laboratories) using the following protocol: Initial denaturation at $94^{\circ} \mathrm{C}$ for 5 min , followed by a $63-55^{\circ} \mathrm{C}$ touchdown cycle depending on primers pair for the first 6 cycles, ending with 40 cycles at $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 56^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min 45 s and a final elongation at $72^{\circ} \mathrm{C}$ for 10 min . The PCR products were checked on a $1 \%$ RedGel-stained agarose gel under UV light and cleaned according to the manufacturer's instructions using Exo-Sap-IT (GE Heathcare). Sequencing reactions were carried out using a BigDye Terminator Cycle Sequencing kit (Applied Biosystems) and run on an ABI Prism 3700XL DNA analyser (Applied Biosystems). The program SeqMan II version 4.05 (DNASTAR) was used to assemble the sequences.

## Phylogenetic analyses

Sequence alignments were performed using Muscle (Edgar 2004a,b) implemented in the phylogenetic data editor PhyDE v.0.9971 (http://www.phyde.de/download.html) and Muscle (Edgar 2004a,b) or Geneious (Biomatters Ltd.) implemented in Geneious v.8.1.8 (Biomatters Ltd.), and followed by manual adjustment. Primer positions and ambiguous sites were excluded from the data matrices.

The Jukes-Cantor neighbor-joining model implemented in Geneious v.8.1.8 (Biomatters Ltd.) was used to assess the bootstrap scores in order to detect potential conflicts between individual data sets (Paper I).

The best-fit models for the individual and combined data sets were identified in the program jModelTest v.2.1.7 (Posada, 2008). The models with the lowest Akaike Information Criterion value were used in the analyses.

To obtain a $50 \%$ majority-consensus tree with branch supports shown as posterior probabilities, the program MrBayes v.3.2.1 (Ronquist \& Huelsenbeck, 2003) was chosen to sample trees under a Markov chain Monte Carlo method. Significant posterior probabilities were considered to be equal to or above 0.95 .

The maximum parsimony and maximum likelihood methods were carried out in PAUP* (Swofford, 2002) or RaxML v.7.2.8 (Stamatakis, 2006) to calculate a $50 \%$ majority-rule consensus trees with bootstrap supports. Significant posterior probabilities were considered to be equal or above $70 \%$.

The program SATé-II v.2.2.7 (Liu \& al., 2012) was used to analyse the non-aligned data matrix of ITS. The matrix was divided into subsets that were subsequently aligned by MAFFT (Katoh \& al., 2005; Katoh \& Toh, 2008) and combined by Muscle (Edgar 2004a,b) to conduct a new alignment. Ambiguous positions were identified and excluded by the use of Gblocks with stringent and relaxed masking (Talavera \& Castresana, 2007) (Paper IV). The secondary structures of the ITS2 sequences were folded using the RNAfold server (http://rna.tbi.univie.ac.at). The compensatory base pair changes (CBCs), i.e. nucleotide changes at both sides of paired bases and hemi-CBCs, i.e. nucleotide change at only one side of nucleotide pair, but still preserving pairing (e.g. Caisová \& al., 2011), were located on the folded ITS2 operons according to Coleman (2000, 2003) in order to support the recognition of different species retrieved in the ITS phylogeny. The conserved parts of ITS2 were identified according to Coleman (2007) (Paper IV).

## Results and discussion

## Taxonomic placement of Fuscideaceae and its genera

The taxonomic position of Fuscideaceae, represented by Fuscidea and Maronea, remains unsure even when large molecular data sets have been applied. Reeb \& al. (2004) concluded that Umbilicariaceae formed a robustly supported sister-group to Fuscideaceae and proposed to recognize these groups as a new order called Umbilicariales. Wedin \& al. (2005) indicated that Fuscideaceae may be related to Umbilicariaceae, but without a significant support. Miadlikowska \& al. (2006) proposed to classify the Fuscideaceae-OphioparmaceaeUmbilicariaceae group as a separate order Umbilicariales within Lecanoromycetidae, but the order was not formally introduced. Bylin \& al. (2007) found Fuscideacea as sister to Umbilicariales, although lacking support. Ropalosporaceae was reintroduced and placed with uncertain position tentatively within Umbilicariales. Bendiksby \& Timdal (2013) did not support the inclusion of Fuscideaceae in Umbilicariales, even though they found an ascus type in Umbilicaria Hoffm. like that of Fuscidea, i.e. amyloid inner and outer layer with a nonamyloid layer in between (see Fig. 3). Miadlikowska \& al. (2014) retrieved Fuscideaceae as a paraphyletic group within Umbilicariales and suggested that Fuscidea mollis (Wahlenb.) V. Wirth \& Vězda should be recognized as a distinct genus.


Figure 3: Structure of the Fuscidea-type ascus apex.

The taxonomic placement of Fuscideaceae and its associated genera within Lecanoromycetes were investigated using a 5-gene concatenated data set (Paper I). The family is nested within Umbilicariales (Fig. 4; Paper I: Figs. 1, S4). These results are similar to those of Miadlikowska \& al. $(2006,2014)$ who determinated Fuscideaceae as sister to Ophioparmaceae. In Miadlikowska \& al. (2014) the Ropalosporaceae was sister
to Fuscideaceae and nested as the first diverging lineage within Umbilicariales, while in the present study, Ropalospora is also located at the base of Fuscideaceae but is included in Fuscideaceae. The family Ropalosporaceae is synonymized with Fuscideaceae as in Eriksson \& al. (2006) and Kantvilas (2004).

The circumscription of Fuscideaceae agrees with Hafellner (1984), but two more genera, Ropalospora and Printzeniella Palice, Tønsberg \& Zahradn. gen. nov. ined., are included in the family. The similar ascus structure in Fuscideaceae and Teloschistales was found to be homoplastic by Miadlikowska \& al. (2006). The members of the family have in common a crustose rimose-cracked to areolate thallus (in Printzeniella obsolete or poorly developed), a brownish hypothallus (sometimes inconspicuous in Maronea or invisible in Printzeniella), a coccoid green alga as the photobiont, lecideine or lecanorine apothecia with a brownish pigmentation (see Fryday, 2008), 8- or in Maronea and Ropalospora, multispored, slightly tapering above or cylindrical-clavate asci of the $\pm$ Fuscidea-type (Fig. 3), containing simple or septate ascospores and short bacilliform conidia. The secondary chemical compounds are heterogenous within Fuscideaceae comprising, e.g. anthraquinones, benzyl esters, depsides, depsidones, higher aliphatic acids and usnic acid (Tønsberg, 1992; Ekman, 1993; Kantvilas, 2004; Gilbert \& al., 2009).

Figure 4 shows that Fuscidea is paraphyletic; this agrees with Miadlikowska \& al. (2014). To make the genus monophyletic, it is possible to synonymize Fuscidea with Maronea, a genus introduced by Massalongo (1856) before Fuscidea by Wirth \& Vězda (1972). As species of Fuscidea are more numerous than Maronea, conservation of the name Fuscidea over Maronea will be preferred. Another solution is to transfer the members of the F. pusilla-clade to Maronea, thus in the present phylogeny, Fuscidea will still be paraphyletic. It is also possible to recognize species in the $F$. pusilla-clade as a phylogenetically distinct genus, but Fuscidea will remain paraphyletic. It is worth conducting a new phylogenetic reconstruction with additional data from Maronea and Fuscidea as the backbone of the Fuscidea-clade is poorly resolved, in the hopes of obtaining a phylogeny with better node resolution.


Maronea afroalpina Brusse shows affinity with Fuscidea and differs from other Maronea species in the lecideine apothecia ( $v s$. lecanorine in Maronea), the presence of the paradepside divaricatic acid ( $v s$. the metadepsides sekikaic and submerochlorophaeic acids or an unidentified compound in Maronea) and in occurring on rock at high altitudes (ca. 3000 m ) (Brusse, 1989b; Kantvilas, 2004; LaGreca, 2006). Maronea afroalpina apparently holds an intermediate position between Fuscidea and Maronea and Brusse (1989b) argued that M. afroalpina may be a genus of its own. Unfortunately, it was not possible to get this species included in the phylogenetic tree.

Purvis \& al. (1992) treated Ropalospora as congeneric with Fuscidea based on the close resemblance between these two genera. They are similar in thallus morphology and pycnidial anatomy, but differ in the presence of thickened rectangular hyphae in the excipulum (not present in Ropalospora) and spore shape (acicular and multiseptate in Ropalospora). In addition, the asci in Ropalospora are 8- or 30 -spored (only 8 -spored in Fuscidea) and resemble the Fuscidea-type, but differ in being cylindrical-clavate (not slightly tapering above) and in lacking an ocular chamber in most species (Ekman, 1993). Several chemical constituents found in Ropalospora are rare or not present in Fuscidea, e.g. anthraquinone (parietin), depsides (gyrophoric and perlatolic acids, atranorin), usnic acid and higher aliphatic acids (Ekman, 1993; Kantvilas, 2001, 2004; Purvis \& al., 2009).

Printzeniella (Fig. 5) is an exclusively epiphytic and epixylic genus growing on acid bark and wood, rarely found on other substrates such as polypores. It is similar to Fuscidea with its brown apothecial, pycnidial and thalline pigmentation, but differs in having a Trebouxia photobiont, biatorine to lecanorine apothecia, a reduced and poorly differentiated excipulum proprium and asci resembling those of Ropalospora. For Printzeniella the higher aliphatic compound, apinnatic acid, not detected in Fuscidea, is diagnostic. The three phylogenetic clades of Printzeniella were all treated as Printzeniella phaeostigma (Körb.) Palice, Tønsberg \& Zahradn. ined., since they were not morphologically distinguishable (Paper I: Taxonomy).

Because fresh material for the sequencing was not available, Hueidea was tentatively placed in Fuscideaceae based on the morphological and anatomical similarities in thalli, the photobionts and the asci structures between Hueidea and Fuscidea (Kantvilas \& McCarthy, 2003).


Figure 5. Printzeniella phaeostigma (Körb.) Palice, Tønsberg \& Zahradn. ined. (T. Tønsberg 46763; BG-L-101305). Photo: A. Kurz.

## Genera not closely related to Fuscideaceae

The genera Lettauia, Loxospora, Orphniospora and Sarrameana are not closely related to Fuscideaceae (Paper I: Fig. 1). Three of these genera are nested within the subclass Ostropomycetidae and one within the subclass Lecanoromycetidae.

The lichenicolous Lettauia is grouped with Cryptodiscus Corda in Stictidaceae within Ostropales. Loxospora with Sarrameana form the family Sarrameanaceae as sister to Ostropales. Orphniospora appears to be sister to the Lecideaceae s. str. within Lecideales, although lacking a significant support in the ML analysis. A broader taxon sampling is needed in order to assess the taxonomic positions of Lettauia and Orphniospora.

## Phylogenetic relationships within Fuscidea

The reconstruction of the phylogenetic relationships of Fuscidea revealed three main groups, but some of the Fuscidea species remained unresolved (see Fig. 4).

Group 1 is unsupported in the phylogenetic tree, but possible to define by the presence of the lecideine, sessile (F. lowensis (H. Magn.) R.A. Anderson \& Hertel) or immersed aspicilioid apothecia with a pseudothalline margin, i.e. the "intercincta-type - "halo" (Oberhollenzer \& Wirth, 1984), subglobose to broadly ellipsoid spores becoming brownish when mature and the paradepside divaricatic acid. This group includes saxicolous species from Europe and North America such as F. gothoburgensis (H. Magn.) V. Wirth \& Vězda, F. intercincta (Nyl.) Poelt, F. lowensis, F. oceanica Fryday \& Coppins, F. oculata Oberholl. \& V. Wirth and F. thomsonii Brodo \& V. Wirth. The amyloid medulla in F. gothoburgensis
and F. lowensis may occasionally be non-amyloid (Oberhollenzer \& Wirth, 1985; Fryday, 2008) and should therefore not be considered as a diagnostic character.

Group 2 is supported by the phylogenetic tree and includes usually fertile Fuscidea species with curved ascospores and the depsidone fumarprotocetraric acid ( $F$. australis var. australis Kantvilas and var. montana Kantvilas, F. cyathoides) or the benzyl ester alectorialic acid (F. elixii Kantvilas and F. praeruptorum (Du Rietz \& H. Magn.) V. Wirth \& Vězda). Fuscidea elixii, endemic to Australia, appears as the first diverging lineage in Group 2 and morphologically resembles F. australis var. australis (Kantvilas, 2004). The taxonomy of $F$. cyathoides has been studied in detail in Paper III (see below). The mainly corticolous, esorediate and fertile $F$. australis resembles $F$. cyathoides in having sessile apothecia with a persistent margin and bean-shaped ascospores; it differs mainly in the ellipsoid conidia (bacilliform in F. cyathoides) (Kantvilas, 2001, 2004). Using this evidence, Kantvilas (2001) excluded F. cyathoides from Tasmania. The suggestion by Kantvilas (2001) that F. australis is distinct from $F$. cyathoides is confirmed here. The saxicolous taxon of $F$. praeruptorum is recognized as $F$. praeruptorum in the present study, while the corticolous one as $F$. muskeg Tønsberg \& Zahradn. ined.. These species differ in the shape of the ascospores and both occur in Europe and North America (Santesson \& al., 2004; Fryday, 2008; Gilbert \& al., 2009).

Fuscidea ramboldioides is not included in Group 2 due to the lack of a significant support (Paper I: Figs. 1, S4). It is a fertile, esorediate and saxicolous taxon having a greyishbrown, sometimes olive-brown thallus, curved to medianly constricted ascospores and divaricatic acid (Kantvilas 2001, 2004).

The fertile and saxicolous species from Europe, i.e. F. lygaea (Ach.) V. Wirth \& Vězda, the Fuscidea sp. from Norway (BG-L-101250) and F. kochiana (Hepp) V. Wirth \& Vězda, share broadly ellipsoid to globose ascospores. They are located in one non-supported group, which is tentatively assigned to Group 2 (see Paper I: Figs. 1, S4). The different outgroup and the fewer sequences in the alignment representing only the members of the Umbilicariales may cause the incongruence of their placement between Fig. 4 and Fig. 1 in Paper I. Fuscidea lygaea and Fuscidea sp. have no secondary compounds detected by TLC, but differ in thallus morphology (brown with purplish tinge in F. lygaea vs. pale-grey in Fuscidea sp.) and in the position of apothecia (sessile in F. lygaea vs. appressed with margin having pruina in young apothecia in Fuscidea sp.). Fuscidea kochiana has immersed apothecia, ascospores becoming red-brown when over-mature and divaricatic acid.

Group 3 includes corticolous Fuscidea and Maronea with a brown-green, green to olive-green thallus, a distinct dark brown prothallus, sessile apothecia and ascospores
with median constriction (rarely bean-shaped as in $F$. verruciformis or oblong in as Maronea). The F. pusilla-clade is comprised of Fuscidea arboricola Coppins \& Tønsberg, F. muskeg, $F$. pusilla Tønsberg and F. verruciformis May. Inoue. Except for $F$. verruciformis, which is esorediate and confined to Japan, all the species are sorediate and occur in Europe and North America. The members of Group 3 differ in their secondary chemistry. Fuscidea pusilla contains paradepside divaricatic acid, $F$. arboricola and $F$. verruciformis contain depsidone fumarprotocetraric acid, whereas $F$. muskeg is characterized by the presence of benzyl ester alectorialic acid. The Maronea-clade includes M. constans and M. chilensis B. de Lesd. and is sister to the Fuscidea-clade. Based on the present results, M. constans may be conspecific with M. chilensis, but more data are needed to elucidate their taxonomy.

Some of the Fuscidea species have uncertain positions, including F. austera (Nyl.) P. James, which is synonym to the type species F. aggregatilis (Flot.) V. Wirth \& Vězda.

The saxicolous F. asbolodes (Nyl.) Hertel \& V. Wirth from Tasmania and $F$. subasbolodes Kantvilas from the Subantarctic islands have similar asci and ascospores, but differ in their chemistry, thallus colour and apothecial size (Kantvilas, 2004).

Two species that produce divaricatic acid are grouped in one supported clade, the corticolous F. lightfootii from Western Europe and the saxicolous F. cf. umbricolor (Nyl.) Hertel from northern South America. Fuscidea lightfootii may be confused with F. pusilla, whereas $F$. cf. umbricolor is similar to $F$. lowensis.

The saxicolous F. appalachensis Fryday, F. austera, F. mollis and F. scrupulosa (Eckfeldt) Fryday have similar ascospore morphology, i.e. broadly ellipsoid to globose, becoming brownish when over-mature (not in F. mollis). Most of them have divaricatic acid (F. scrupulosa has alectorialic acid) and European and North American distribution, but F. austera and F. mollis have also been reported from Asia (Inoue, 1981a). Fuscidea appalachensis resembles $F$. kochiana with a pale grey thallus, immersed apothecia and a position of ascospores in asci (uniseriate) (Fryday, 2008). More data are necessary to resolve the taxonomy of the sterile and sorediate specimen from Norway, R. Haugan 9194 (O:L-165844). In North America, F. appalachensis could be confused with F. recensa var. arcuatula (Arnold) Fryday (see Fryday, 2008). Fuscidea mollis is similar to F. cyathoides, but differs in the shape of the ascospores and the chemical constituent. The proposal by Miadlikowska \& al. (2014) to assign F. mollis to a genus of its own was rejected, since F. mollis is clearly nested within Fuscidea.

The mainly saxicolous and sometimes sorediate $F$. recensa var. recensa (Stirt.) Hertel and occasionally corticolous, esorediate $F$. recensa var. arcuatula have ellipsoid to curved
ascospores and produce divaricatic acid (Fryday, 2008). Fuscidea recensa var. recensa occurs both in Europe (mostly sterile and sorediate) and North America (fertile and sorediate) and var. arcuatula from North America and Asia (Fryday, 2008; Moon, 2013).

## Are Fuscidea lightfootii and $\boldsymbol{F}$. pusilla conspecific?

The relationship between F. lightfootii (usually fertile) and F. pusilla (regarded as sterile only) was studied using a 5 -gene data set. Since they are morphologically similar and chemically identical, Tønsberg \& Johnsen (2008) suggested that they may be conspecific. As a result of DNA sequencing, F. pusilla was found fertile for the first time, having apothecia similar in morphology and anatomy to those of $F$. lightfootii. These two species are phylogenetically distinct and the hypothesis is therefore rejected. Although some morphotypes of $F$. lightfootii and $F$. pusilla appear to be distinguishable based on morphology, DNA sequencing is recommended for their identification.

They are sympatric in the British Isles and on the southwest coast of Norway (i.e. areas with an oceanic climate). Fuscidea pusilla also occurs in continental areas of Europe and throughout coastal Alaska (Paper II: Figs. 5-6). Reports of these species outside their distribution areas as defined in Paper II: Fig. 5, need revision.

## Taxonomy of Fuscidea cyathoides in Europe

Fuscidea cyathoides is characterized by sessile apothecia, bean-shaped ascospores becoming brown when mature and the presence of fumarprotocetraric acid. Substrate ecology and the presence/absence of soredia have been used as important characters for the formal recognition of infraspecific taxa in F. cyathoides (Fries, 1831; Magnusson, 1925). In addition, Hafellner \& Türk (2001) and Hafellner (2002) raised the corticolous form of F. cyathoides to the species level.

Fries (1831) suggested that the different thallus colour of saxicolous (grey when dry and umber-brown when wet) and corticolous specimens (black-brown when dry and greenish when wet) was significant and introduced var. corticola (as Biatora rivulosa b. corticola Fr.). This was not accepted by Oberhollenzer \& Wirth (1984) and Gilbert \& al. (2009), but was recognized by Inoue, (1981b) and Santesson \& al. (2004).

Magnusson (1925) suggested the presence of soredia on the typical saxicolous form as the reason for the introduction of var. sorediata (H. Magn.) Poelt (as Lecidea rivulosa var.
sorediata H. Magn). This variety was commonly accepted by, for example, Gilbert \& al. (2009).

Zschacke (1927) introduced the corticolous Lecidea fagicola Zschacke based on the absence of a black prothallus and probably the relatively large apothecia with pale brown margins (Paper III: Fig. 3C), later recognized as F. fagicola (Zschacke) Hafellner \& Türk by Hafellner \& Türk (2001). In describing the new corticolous species Biatora stiriaca A. Massal., Massalongo (1852) considered the bean-shaped ascospores and the presence of tuberculate apothecia as diagnostic. Hafellner (2002) transferred Biatora stiriaca to Fuscidea as F. stiriaca (A. Massal.) Hafellner and synonymized F. fagicola with F. stiriaca.

The taxonomic status of $F$. cyathoides was assessed by the use of chemical, morphometric and molecular methods. The variation in thallus morphology and colour, the presence of soredia, even the preferable substrate turned out not to be diagnostic for the varietal rank in $F$. cyathoides. All currently recognized varieties are therefore synonymized with the typical saxicolous form var. cyathoides. Similarly, the variation in apothecia and the presence of tuberculate apothecia were not significant for F. fagicola as well as $F$. stiriaca that should therefore be treated as synonyms of $F$. cyathoides.

## Substrate specificity in Fuscidea

Fuscidea is comprised of approximately 40 species. Most saxicolous specimens (ca $75 \%$ ) are restricted to siliceous vertical rock (i.e. F. austera, F. intercincta and $F$. mollis) and some corticolous specimens (ca 18\%) are restricted to somewhat acidic smooth bark (i.e. F. arboricola, F. lightfootii and F. muskeg ined.); only a few species (ca 7\%, i.e. F. australis, F. cyathoides and F. recensa) can inhabit both substrates (Tønsberg, 1992; Kantvilas, 2001; Gilbert \& al., 2009). Fuscidea species generally have high substrate specificities occurring on rock or on bark only (see Fig. 6).

Among other genera within Lecanoromycetes, a strong substrate specificity is found in Porpidia Körb. According to Fryday \& al. (2009), the genus Porpidia is represented by 20 species in the British Isles and all of them are exclusively saxicolous (mostly on siliceous rock), but some species such as Porpidia crustulata (Ach.) Hertel \& Knoph, P. macrocarpa (DC.) Hertel \& A.J. Schwab and P. tuberculosa (Sm.) Hertel \& Knoph may be rarely found on hard-wood or on the bark of branches growing over a rock surface (Tønsberg, 1992; Z. Palice pers. com. 2017). On the contrary, the genus Ochrolechia A. Massal. displays a weak substrate specificity. Off the 11 species reported for the British

Isles, 3 species are corticolous and 3 species are both corticolous and saxicolous, 2 species grow on bryophytes, lichens and plant debris and 3 species inhabit all mentioned substrates (Fletcher \& al., 2009).

Figure 6 shows the evolution of the substrate specificity in Fuscidea species. It is most likely that the common ancestor of Fuscidea was saxicolous and the corticolous taxa evolved several times.


Figure 6. A part of Fig. 4. Marked substrate preference of the Fuscidea species. saxicolous; I: corticolous taxa.

A very interesting question is how and why the substrate preferences evolved among the Fuscidea species. Does the photobiont play any role in this ability? Do species colonizing more than one substrate have a higher genetic diversity of photobionts than exclusively saxicolous or corticolous species? The role of the substrate in the photobiont variation of Fuscidea species colonizing either rock, bark, or even both substrates is yet to be explained using more extensivetaxon sampling from different substrates.

## Photobiont in the genus Fuscidea

The photobiont in the genus Fuscidea is identified as Apatococcus that is nested with uncertain position within the class Trebouxiophyceae where it is closely related to Trebouxia and/or Myrmecia Printz (Paper IV: Fig. 1). Two species of lichenized Apatococcus are found so far. Four of the five studied Fuscidea species are associated with A. fuscideae, but F. lightfootii (Sm.) Coppins \& P. James has a photobiont of its own (Fig. 7, Paper IV: Figs. 1, 2). In addition, four different ITS groups were retrieved that possibly correspond to a distinct species of free-living Apatococcus, but this was not studied in detail.

Apatococcus is generally characterized by uninucleate cells with a single, parietal chloroplast without pyrenoids (Brand \& Stockmayer, 1925). Apatococcus lobatus usually has a bi-lobed chloroplast in the mature cells, while A. fuscideae A.Beck \& Zahradn. ined. has a reticulate, net like chloroplast (Paper IV: Fig. 4).

Using the Compensatory Base Changes (CBCs) species concept on the secondary structure of the ITS2 region, A. lobatus can be distinguished from A. fuscideae by three CBCs and one hemi-CBCs on helix I, one hemi-CBCs on helix II, four CBCs and six hemi-CBCs on helix III, from which three CBCs and five hemi-CBCs are on the conserved part of helix III. The photobiont in F. lightfootii differs from A. fuscideae in having two CBCs on helix I, seven CBCs and three hemi-CBCs on helix III, from which four CBCs and three hemi-CBCs are on the conserved part of helix III (Paper IV: Figs. 3, S2: A, E-F).

The resulting ML trees calculated from four individual ITS matrices contained different degrees of ambiguous sites, i.e. manually adjusted (MA), Gblocks with relaxed (R) and stringent masking ( S ) as well as non-aligned matrix. All of them showed almost identical topologies in the backbones of the ML trees and most of the recent nodes were recovered with only minor differences. The ML trees retrieved from the S matrix and SATé-II, for example, have different branching within group A and B than calculated from the MA and R matrices. Additionally, the S matrix restricted to the conserved alignment parts received
lower ML supports for most of the nodes than from the MA and R matrices, probably due to the short alignment. Although the aligning of the very variable ITS gene is difficult and time consuming, the alignment independent approach by SATé-II may provide reliable phylogenies faster than by traditional methods.


Figure 7. A part of Fig. 4. Fuscidea species where the photobiont is studied are marked (\%).

## Conclusions

The family Fuscideaceae is assigned to Umbilicariales and presently accommodates Fuscidea, Maronea, Ropalospora and Printzeniella gen. nov., whereas Hueidea is only tentatively placed in Fuscideaceae. The Fuscidea-type ascus apex appears to be a diagnostic character for the family as suggested by Hafellner (1984) (Paper I). Although it is possible to identify some morphotypes of $F$. lightfootii and $F$. pusilla, DNA sequencing is recommended for their definitive identification (Paper II). The varieties of $F$. cyathoides are synonymized with the typical saxicolous form. Two corticolous species, F. fagicola and F. stiriaca, are found to be synonymous with F. cyathoides (Paper III). The photobiont in most of the studied Fuscidea species is Apatococcus fuscideae A. Beck \& Zahradn. ined. and belongs to Trebouxiophyceae with uncertain position. Fuscidea lightfootii has a different photobiont (Paper IV).

## Future perspectives

This close investigation of Fuscidea and Fuscideaceae gave new knowledge about this group, but it also revealed new challenges for further studies:

1) Is Hueidea phylogenetically related to Fuscideaceae?
2) How to make Fuscidea monophyletic?
3) How to resolve the phylogenetic relationships within Fuscidea?
4) Is Fuscidea oculata synonymous with $F$. intercincta as suggested by Wirth \& al. (2013)?
5) Are Fuscidea asbolodes and F. subasbolodes distinct species as suggested by Kantvilas, (2001)?
6) Does the corticolous form of Fuscidea recensa var. recensa represent a new species?
7) Should Maronea chilensis be synonymized with M. constans?
8) Should the saxicolous form of the corticolous Fuscidea australis be recognized at the varietal rank?
9) Are Fuscidea cyathoides var. japonica May. Inoue \& P. James and F. cyathoides var. orientalis (Zahlbr.) May. Inoue synonyms of $F$. cyathoides var. cyathoides?
10) Is Fuscidea scrupulosa conspecific with F. circumflexa (Nyl.) V. Wirth \& Vězda as suggested by Fryday, (2008)?
11) Is Fuscidea poeltii Fryday a distinct species?
12) What are the distributional ranges of Fuscidea lightfootii and $F$. pusilla?
13) Is it possible to certainly solve the taxonomic position of Apatococcus in the systematics of green algae using protein-coding genes?
14) Will a genetic mapping of the Fuscidea photobionts be helpful in determining Fuscidea taxonomy and understanding systematic relationships among the various Fuscidea species?
15) Is the photobiont in Fuscidea lightfootii morphologically distinct from Apatococcus fuscideae?
16) Does the photobiont play any role in the substrate specificity of Fuscidea?

## References

Bendiksby, M. \& Timdal, E. 2013. Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morphological/ecological convergence. Taxon 62: 940-956.

Brand, F. \& Stockmayer, S. 1925. Analyse der aerophilen Grünalgenanflüge, insbesondere der proto- pleurococcoiden Formen. Arch. für Protistenkd. 52: 265-355.
Brusse, F. 1989a. A new species of Fuscidea (Lichenes) from the Cape Fold Mountains. Bothalia 19: 35-36.

Brusse, F. 1989b. A new species of Maronea (Lichenes) from the Drakensberg. Bothalia 19: 36-37.

Bylin, A., Arnerup, J., Högberg, N. \& Thor, G. 2007. A phylogenetic study of Fuscideaceae using mtSSU rDNA. Bibl. Lichenol. 96: 49-60.

Caisová, L., Marin, B. \& Melkonian, M. 2011. A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol. Biol. 11: 262.

Castillo, R.V. \& Beck, A. 2012. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 116: 665-676.

Coleman, A.W. 2000. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151: 1-9.
Coleman, A.W. 2003. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 19: 370-375.

Coleman, A.W. 2007. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 35: 3322-3329.

Culberson, C.F. 1972. Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J. Chromatogr. 72: 113-125.

Culberson, C.F. \& Kristinsson, H.-D. 1970. A standardized method for the identification of lichen products. J. Chromatogr. 46: 85-93.

Edgar, R.C. 2004a. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5: 113.

Edgar, R.C. 2004b. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.

Ekman, S. 1993. A taxonomic study of Ropalospora chlorantha, and a comparison between Ropalospora and Fuscidea. Bryologist 96: 582-591.

Eriksson, O.E., Baral, H.O., Currah, R.S., Hansen, K., Kurtzman, C.P., Rambold, G. \& Læssøe, T. 2006. Outline of Ascomycota-2006. Myconet 12: 1-82.

Ettl, H. \& Gärtner, G. 2014. Syllabus der Boden-, Luft- und Flechtenalgen. Berlin: SpringerVerlag.

Fletcher, A., James, P.W. \& Purvis, O.W. 2009. Ochrolechia A. Massal. (1852). Pp. 626631 in: Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P. W. \& Wolseley, P.A. (eds.), The Lichens of Great Britain and Ireland. London: British Lichen Society.
Friedl, T. \& Büdel, B. 2008. Photobionts. Pp. 1-28 in: Nash, T.H. (ed.), Lichen Biology, second edition. Cambridge: Cambridge University Press.

Fries, E.M. 1831.Lichenographia europaa reformata: Premittuntur lichenologixe fundamenta. Typis Berlingianis, venditur apud E. Mauritium, Gryphiae.

Fryday, A.M. 2008. The genus Fuscidea (Fuscideaceae, lichenized Ascomycota) in North America. Lichenologist 40: 295-328.

Fryday, A.M., Gilbert, O.L., Galloway, D.J. \& Coppins, B.J. 2009. Porpidia Körb. (1855). Pp. 739-749 in: Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. \& Wolseley, P.A. (eds.), The Lichens of Great Britain and Ireland. London: British Lichen Society.

Galloway, D.J. 1985. Flora of New Zealand - Lichens. New Zealand, Wellington: Hasselberg, Government Printer.

Gilbert, O.L., Purvis, O.W., Skjolddal, L.H. \& Tønsberg, T. 2009. Fuscidea V.Wirth \& Vězda (1972). Pp. 407-411 in: Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. \& Wolseley, P.A. (eds.), The Lichens of the Great Britain and Ireland. London: British Lichen Society.

Gueidan, C., Hill, D.J., Miadlikowska, J. \& Lutzoni, F. 2015. 4 Pezizomycotina: Lecanoromycetes. Pp. 89-120 in: McLaughlin, D.J. \& Spatofora, W. (eds.), Systematics and evolution. Berlin \& Heidelberg: Springer.

Hafellner, J. 1984. Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beih. Nova Hedwigia 79: 241-371.

Hafellner, J. 2002. Ein Beitrag zur Diversität von lichenisierten und lichenicolen Pilzen im Gebiet der Gleinalpe (Steiermark, Österreich). Fritschiana 33: 33-51.

Hafellner, J. \& Türk, R. 2001. Die lichenisierten Pilze Österreichs: eine Checkliste der bisher nachgewiesenen Arten mit Verbreitungsangaben (Vol. 76). Stapfia 76: 3167.

Hawksworth, D.L. 1988. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96:3-20.

Hawksworth, D.L., Kirk, P.M., Sutton, B.C. \& Pegler, D.N. 1995. Ainsworth and Bisby's dictionary of the fungi, 8th ed. Wallingford: CAB International.

Hertel, H. 1974. Krustenflechten aus Venezuela. Mitt. Bot. München 11: 405-430.
Hertel, H. 1984. Über saxicole, lecideoide Flechten der Subantarktis. Beih. Nova Hedwigia 79: 454-455.

Hodkinson, B. P. 2012. An evolving phylogenetically based taxonomy of lichens and allied fungi. Opusc. Philolichenum 11: 4-10.

Honegger, R. 2000. Great discoveries in bryology and lichenology - Simon Schwendener (1829-1919) and the Dual Hypothesis of Lichenes. Bryologist 103: 307-313.

Inoue, M. 1981a. A taxonomic study on the Japanese species of Fuscidea (Lichens). Hikobia Suppl. 1: 161-176.

Inoue, M. 1981b. A preliminary revision of extra-Japanese species of Fuscidea (Lichens). Hikobia Suppl. 1: 177-181.

Kantvilas, G. 2001. The lichen family Fuscideaceae in Tasmania. Bibl. Lichenol. 78: 169192.

Kantvilas, G. 2004. Fuscideaceae. Pp. 173-187 in: McCarthy, P.M. \& Mallett, K. (eds), Flora of Australia 56A, Lichens 4. Melbourne: ABRS, Canberra \& CSIRO Publishing.
Kantvilas, G. \& McCarthy, P.M. 2003. Hueidea (Fuscideaceae), a new lichen genus from alpine Australia. Lichenologist 35: 397-407.
Katoh, K., Kuma, K.I., Toh, H. \& Miyata, T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33: 511-518.
Katoh, K. \& Toh, H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 9: 286-298.

Kirk, P., Cannon, P.F., Minter D.W. \& Stalpers, J.A. (eds.). 2008. Dictionary of the Fungi, $10^{\text {th }} \mathrm{ed}$. UK, Oxon: CAB International.

LaGreca, S. 2006. Notes on the chemistry of Maronea constans and Maronea polyphaea (Fuscideaceae). Lichenologist 38: 595-598.
Lendemer, J.C. 2011. A review of the morphologically similar species Fuscidea pusilla and Ropalospora viridis in eastern North America. Opusc. Philolichenum 9: 11-20.

Liu, K., Warnow, T.J., Holder. M.T., Nelesen, S.M.,Yu, J., Stamatakis, A.P. \& Linder, C.R. 2012. SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst. Biol. 61: 90-106.

Lücking, R., Hodkinson, B.P. \& Leavitt, S.D. 2016. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera. Bryologist 119: 361-416.

Lumbsch, H.T. \& Huhndorf, S.M. 2007. Outline of Ascomycota-2007. Myconet 13: 1-58.
Lutzoni, F., Kauff, F., Cox, C.J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., Timothy, Y.J., Baloch, E. Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, T., O’Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R.C., Hosaka, K., Lim, Y.-W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. \& Vilgalys, R. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am. J. Bot. 91: 1446-1480.

Magnusson, A.H. 1925. Studies in the Rivulosa-group of the Genus Lecidea. Göteborgs Kungl. Vetensk.- Vitterh.-Samh. Handl. 22: 1-50.
Magnusson, A.H. 1936. Die Flechten: Acarosporaceae und Thelocarpaceae, 6. Gattung Maronea. Pp. 280-285 in: Zahlbruckner, H. (ed.), Dr. L. Rabenhort's KryptogamenFlora von Deutschland, Österreich und der Schweiz. Leipzig: Akademische Verlagsgesellschaft.

Massalongo, A. 1852. Licheni crostosi e materiali. Ricerche sull' autonomia del licheni crostosi. Verona.

Massalongo, A. 1856. Maronea A. Massal. Flora 19: 291.
Menlove, J.E. 1974. Thin-layer chromatography for the identification of lichen substances. Br. Lichen Soc. Bull. 34: 3-5.

Miadlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner J., Reeb, V., Hodkinson, B.P., Kukwa, M., Lücking, R., Hestmark, G., Otalora, M.G., Rauhut, A., Büdel, B., Scheidegger, C., Timdal, E., Stenroos, S., Brodo, I., Perlmutter, G.B., Ertz, D., Diederich, P., Lendemer, J.C., May, P., Schoch, C.L. \& Arnold, A.E. 2006. New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNAand two protein-coding genes. Mycologia 98: 1088-1103.

Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J.C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C., Otálora, M.A.G., Hodkinson, B., Kukwa, M., Lücking, R., Björk, C., Sipman, H.J.M., Burgaz, A.R., Thell, A., Passo, A., Myllys, L., Goward, T., Fernández-Brime, S., Hestmark, G., Lendemer, J., Lumbsch, H.T., Schmull, M., Schoch, C.L., Sérusiaux, E., Maddison, D.R., Arnold, A.E., François Lutzoni, F. \& Stenroos, S. 2014. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenet. Evol. 79: 132-168.

Millanes, A.M., Diederich, P. \& Wedin, M. 2016. Cyphobasidium gen. nov., a new licheninhabiting lineage in the Cystobasidiomycetes (Pucciniomycotina, Basidiomycota, Fungi). Fungal Biol. 120: 1468-1477.
Moon, K. H. 2013. Lichen-forming and lichenicolous fungi of Korea. Korea: Korean Lichen Research Institute (KoLRI), National Institute of Biological Resources.

Oberhollenzer, H. \& Wirth, V. 1984. Beiträge zur Revision der Flechtengattung Fuscidea. Beih. Nova Hedwigia 79: 537-595.

Oberhollenzer, H. \& Wirth, V. 1985. Beiträge zur Revision der Flechtengattung Fuscidea. II: Fuscidea gothoburgensis (H. Magnusson) V. Wirth \& Vězda s.l. Stuttg. Beitr. Natkdl, Ser. A 376: 1-11.

Øvstedal, D.O. \& Smith, R.L. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press.

Posada, D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.
Purvis, O.W., Coppins, B.J., Hawksworth D.L., James, P.W. \& Moore, D.M. (eds.). 1992. The lichen flora of Great Britain and Ireland. London: British Lichen Society.

Purvis, O.W., Skjolddal, L.H. \& Tønsberg, T. 2009. Ropalospora A. Massal. (1860). Pp. 827-828 in: Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. \& Wolseley, P.A. (eds.), The Lichens of Great Britain and Ireland. London: British Lichen Society.

Rambold, G. \& Triebel, D. 1992. The inter-lecanoralean associations. Bibl. Lichenol. 48: 1201.

Reeb, V., Lutzoni, F. \& Roux, C. 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Mol. Phylogenet. Evol. 32: 1036-1060.

Ronquist, F. \& Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Santesson, R., Moberg, R., Nordin, A., Tønsberg, T. \& Vitikainen, O. 2004. Lichenforming and lichenicolous fungi of Fennoscandia. Uppsala University: Museum of Evolution.
Schwendener, S. 1867. Über die wahre Natur der Flechtengonidien. Verh. Schweiz. Naturforsch. Ges. 57: 9-11.

Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M.C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H. \& McCutcheon, J.P. 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353: 488-492.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

Swofford, D.L. 2002. PAUP*: Phylogenetic analysis using parsimony (and other methods) 4.0 beta. Sinauer Associates, Sunderland, Mass.

Talavera, G. \& Castresana, J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564577.

Tehler, A. \& Wedin, M. 2008. Systematics of lichenized fungi. Pp. 338-354 in Nash, T.H. III (ed.), Lichen Biology, 2nd ed. Cambridge, Cambridge University Press.

Tønsberg, T. 1992. The sorediate and isidiate, corticolous crustose lichens in Norway. Sommerfeltia 14: 1-331.

Tønsberg, T. \& Johnsen, J. 2008. Fuscidea lightfootii new to Fennoscandia. Graphis Scr. 20:31-32

Van den Boom, P.P.G., Kalb, K. \& Elix J.A. 2014. Fuscidea tropica, a new lichen species from Brazil, Guatemala and Venezuela. Glalia 6: 1-7.

Watanabe, S., Nakano, T. \& Deguchi, H. 1997. Photobionts isolated from maritime lichens. J. Mar. Biotechnol. 5: 103-112.

Wedin, M., Wiklund, E., Crewe, A., Döring, H., Ekman, S., Nyberg, Å., Schmitt, I. \& Lumbsch, H.T. 2005. Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nuLSU rDNA sequence data. Mycol. Res. 109: 159-172.

Werth, S., Millanes, A.M., Wedin, M. \& Scheidegger, C. 2013. Lichenicolous fungi show population subdivision by host species but do not share population history with their hosts. Fungal Biol. 117: 71-84.

Wirth, V., Hauck, M. \& Schultz, M. 2013. Die Flechten Deutschlands. Band 1, 2. Stuttgart: Ulmer.

Wirth, V. \& Vězda, A. 1972. Zur Systematik der Lecidea cyathoides-Gruppe. Beitr. Natkdl. Forsch. Südwestdtschl. 31: 91-92.

Zschacke, H. 1927. Korsische Flechten, gesammelt in den Jahren 1914-16. Berlin: Botanischer Verein der Provinz Brandenburg.

## Paper IV

# Molecular evidence of Apatococcus, including A. fuscideae sp. nov., as photobiont in the genus Fuscidea 

Martina Zahradníkováa, ${ }^{\text {, }}$, Heidi L. Andersen ${ }^{\text {b }}$, Tor Tønsberg ${ }^{\text {a }}$, and Andreas Beck ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Department of Natural History, University Museum, University of Bergen, Allégaten 41, P.O.Box 7800, N-5020 Bergen, Norway, e-mail: Tor.Tonsberg@uib.no<br>${ }^{\mathrm{b}}$ The Arboretum and Botanical Gardens, Department of Natural History, University Museum, University of Bergen, Allégaten 41, P.O.Box 7800, N-5020 Bergen, Norway, e-mail: Heidi.Andersen@uib.no

${ }^{c}$ Department of Lichenology and Bryology, Botanische Staatssammlung München, 80638 München, Germany, e-mail: beck@bsm.mwn.de


#### Abstract

The knowledge of the taxonomy and classification of algae (including lichenized) has recently increased rapidly, but there are still many gaps. We aimed to 1) identify the Fuscidea photobionts by locating their taxonomic positions in the green algal classification, and 2) resolve their interspecific relationships. The lichenized algae were examined based on morphological observations of axenic isolates as well as molecular studies of 18S and ITS nrDNA sequences. Analysis of the secondary structure of ITS2 operon complemented these investigations. We found that the Fuscidea photobionts were placed within the Trebouxiophyceae, related to Apatococcus lobatus (Chodat) J.B. Petersen. Phylogenetic


[^0]analyses revealed one clade nesting free-living and lichenized Apatococcus F. Brand which comprised six different lineages in the ITS phylogeny. The lichenized alga associated with the investigated Fuscidea species, except for F. lightfootii (Sm.) Coppins \& James, represents a hitherto unknown lineage within Apatococcus. Fuscidea lightfootii was lichenized with a separate lineage within Apatococcus, together with free-living members of which were already known from the Genbank sequences. All retrieved groups within Apatococcus were rather different in ITS sequence, thus most likely corresponding to different species. The most common photobiont of Fuscidea species, Apatococcus fuscideae A.Beck \& Zahradn., was described as new to science.

Key words: lichenized algae; lichen; Fuscidea lightfootii; green algal systematics; Trebouxiophyceae; ITS2 secondary structure

## Introduction

Lichens, known as symbiotic organisms, comprise at least two partners, the heterotrophic mycobiont (typically an Ascomycete) providing the water, nutrients and the shelter for its autotrophic partner called the photobiont (typically a green alga, a cyanobacterium, or sometimes both), which produces sugar alcohol for the mycobiont (Hawksworth 1988; Honegger 2000; Schwendener 1867). In many species, more than one photobiont species is involved (Högnabba et al. 2009; James and Henssen 1976). While the scientific name of lichens refers to the mycobiont, the photobiont has an independent scientific name. Rambold et al. (1998) argued that the photobiont genus can provide new and valuable information for lichen systematics due to the strong photobiont selectivity of the mycobiont. The knowledge about the diversity of symbiotic green algae is increasing recently (e.g. Catalá et al. 2016; Leavitt et al. 2016; Sanders et al. 2016; Škaloud et al. 2016; Voytsekhovich and Beck 2016), but the identity of the photobionts is still unknown for many groups of lichens, with a general estimate of $97 \%$ of the lichens with unknown photobiont species (Voytsekhovich and Beck 2016). In British Isles 42\% of lichen genera are associcated with an unidentified protococcoid or chlorococcoid green algae, $26 \%$ with trebouxiod green algae or Trebouxia de Puymaly, 20\% with Trentepohlia Martius, 3\% with Coccomyxa Schmidle and $9 \%$ with other known symbiotic green algae, as complied from Smith et al. (2009).

One of the lichen genera associated with an unidentified green alga is Fuscidea Wirth \& Vězda. Its photobiont was identified as a protococcoid alga (Inoue 1981; Oberhollenzer and Wirth 1984), Trebouxia (Galloway 1985), Apatococcus lobatus (Chodat) J.B. Petersen (Watanabe et al. 1997), a chlorococcoid alga, probably Chlorella Beyerinck [Beijerinck] (Gilbert et al. 2009) and a coccoid green alga (Miadlikowska et al. 2014). The first record of A. lobatus from F. cyathoides var. japonica May. Inoue \& P. James as a lichenized alga
made by Watanabe et al. (1997) was considered uncertain by Ettl and Gärtner (2014) because other algal species were described from this lichen by the same authors in the same publication, namely Elliptochloris bilobata Tschermak-Woess, E. reniformis H. Ettl \& G. Gärtner (as Palmellococcus reniformis S.Watanabe), E. subsphaerica (Reisigl) Ettl \& Gärtner (as Chlorella reisiglii S. Watanabe), and Myrmecia biatorellae J.B. Petersen.

Free-living Apatococcus algae F. Brand inhabit subaerial environments characterized by a high dosage of light irradiance and UV radiation and different anthropogenic substrates (e.g. Hallmann et al. 2016, Rindi 2007). Hallmann et al. (2016) listed several morphological adaptations such as thickened walls, the special growth form, and several layers of empty Apatococcus cells that may protect the free-living Apatococcus against harsh conditions.

To reveal the identity of the photobiont in Fuscidea, two different markers has been chose; the marker 18S rDNA is suitable for solving higher level systematics and has frequently been used for investigations of green algae at different, mainly higher taxonomic levels (Dal Grande et al. 2014; Friedl and Zeltner 1994; Friedl 1995, 1997; Škaloud et al. 2016), and ITS rDNA on the other hand is very variable, suitable for phylogenies at the species and intraspecific levels and commonly used for phylogenetic reconstructions, including lichenized algae (e.g. Beck et al. 1998, Catalá et al. 2016; Miadlikowska et al. 2014; Muggia et al. 2013; Nyati et al. 2014; Škaloud and Peksa 2010). ITS rDNA has also been advocated as a suitable marker for species level phylogenetics of algae (e.g. Gile et al. 2010; Pröschold et al. 2011) and used as an efficient barcode marker for green algae (Hadi et al. 2016). Škaloud and Peksa (2010) found better phylogenetic resolution for the photobiont genus Asterochloris when partitioning the ITS sequence into three regions: ITS1, 5.8 rDNA , and ITS2.

As there is no common agreement on lichenized Apatococcus and the identity of the photobiont associated with Fuscidea, we aim to 1) identify the Fuscidea photobionts by locating their taxonomic positions in the green algal classification, and 2) resolve their
interspecific relationships. In addition to the traditional alignment based approaches, two further methods were chosen to test for a possible influence of potential errors in ITS alignments, i.e. Gblocks conducting alignments with different amount of ambiguous sites (Talavera and Castresana 2007) and the alignment independent approach by SATé-II (Lie et al. 2012). The secondary structure of the ITS2 operon can provide additional characters in species delimitation (Buchheim et al. 2012; Caisová et al. 2013; Poulíčková et al. 2010; Rampersad 2014; Škaloud and Peksa 2010) when boosted by the application of the Compensatory Base Changes (CBCs) species concept (Coleman 2000; Müller et al. 2007). We therefore also tested the applicability of the CBC concept for species delimitation in Apatococcus.

## Material and Methods

Specimen collection and identification: Voucher specimens were collected in Austria, Norway, and Scotland between 1998 and 2011 (Table 1) and deposited in the herbaria of BG and M (abbreviations according to Index Herbariorum; http://sweetgum.nybg.org/science/ih/).

Lichen substances: The secondary chemical compounds were analysed by thin-layer chromatography (TLC) using the methods of Culberson and Kristinsson (1970), Culberson (1972), and later modifications. All three solvents (A, B' and C) were used.

Culturing: The photobiont of Fuscidea kochiana (Hepp) V. Wirth \& Vězda, specimen M0154470, was isolated using a single cell manipulator and cultured on mineral medium following the protocol described by Beck and Koop (2001).

DNA sequencing: For identification of the Fuscidea photobionts, two nuclear ribosomal genes, 18S (SSU) for nine specimens and ITS for 13 specimens, were sequenced. The thalli of esorediate specimens were thoroughly washed by deionized water to reduce contamination
from free-living algae, and selected under a Carl Zeiss microscope to minimize the superficial grime. Except for the F. kochiana M-0154470 from which the culture AB98.122B1 was prepared, DNA was extracted directly from small lichen thalli areoles, using the DNeasy Plant Mini Kit (Qiagen) following the manufacturer's instructions.

Amplification of 18 S was performed according to Dal Grande et al. (2014), and ITS was amplified using the green-algal specific forward primer AL1500bf (Helms et al. 2001) or AL1648 (Vargas and Beck 2012) in combination with ITS4 (White et al. 1990).

The PCR mixture consisted of $1 \times$ GeneAmp® $10 \times$ PCR Buffer II (Applied Biosystems), $2.5 \mu \mathrm{M} \mathrm{MgCl}_{2}$ (Applied Biosystems), $20 \mu \mathrm{M}$ dNTPs (Promega), $0.6 \mu \mathrm{M}$ of each primer, 0.036U AmpliTaq® DNA Polymerase (Applied Biosystems), $5.0 \mu 1$ of genomic DNA extract and $9.85 \mu \mathrm{l}$ distilled water to a total volume of $25 \mu \mathrm{l}$. An initial denaturation at $94^{\circ} \mathrm{C}$ for 5 min was followed by 40 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s, annealing with a $63-58^{\circ} \mathrm{C}$ touchdown procedure decreasing $1^{\circ}$ per cycle, ending at $57^{\circ} \mathrm{C}$ for 30 s , and polymerisation at $72^{\circ} \mathrm{C}$ in 1 min 45 s with a final elongation at $72^{\circ} \mathrm{C}$ for 10 min .

The PCR products were visualized on a $1 \%$ RedGel-stained agarose gel under UV light, and purified according to the manufacturer's instructions using Exo-Sap-IT (GE Heathcare). The amplification primers were used for direct sequencing in both directions, with BigDye Terminator Cycle Sequencing kit (Applied biosystems) and run on an ABI Prism 3700XL DNA analyzer (Applied Biosystems) at the DNA Sequencing Lab, University of Bergen, Norway and LMU Munich, Germany. The GenBank accession numbers on the newly generated sequences from the DNA vouchers as well as the $F$. kochiana AB130 culture are given in Table 1.

Alignment and phylogenetic analyses: The phylogenetic analyses were based on two nrDNA molecular markers: 18 S and ITS, analysed separately due to the very limited number of taxa for which both markers were available at Genbank.

## Identifying the Fuscidea photobionts and inferring their taxonomic positions in the systematics of green algae

The 18S matrix comprised 337 sequences, including nine new sequences (Table 1), in addition to 328 sequences from GenBank (Supplementary material Table S1). The matrix was aligned using the program Muscle (Edgar 2004a,b) implemented in the phylogenetic data editor PhyDE version 0.9971 (http://www.phyde.de/download.html), followed by manual adjustment and is available in Supplementary material (Appendix B). Missing positions at the ends were coded as missing data (?). Two sequences of the Prasinophyceae, Nephroselmis olivacea Stein (GenBank Acc. No: FN562436) and N. pyriformis (N. Carter) Ettl (GenBank Acc. No: KF615768), were chosen as outgroup.

The substitution model for 18 S was identified by the software jModelTest version 2.1.7 (Posada 2008). The model with the lowest Akaike information criterion (AIC) was used in the analyses (Table 2).

The Bayesian B/MCMC analysis (BI) was run for 20 million generations, sampling every 100th, with four parallel chains starting from a random tree using the default temperature of 0.2 in MrBayes version 3.2.1 (Ronquist and Huelsenbeck 2003). The equilibrium was inspected in Tracer version 1.6.0 (Rambaut et al. 2014) and resulted in a 10\% "burn-in". A Bayesian 50\% majority-rule consensus tree with average branch lengths was constructed from the resulting 180,000 trees and visualized using the program Geneious version 8.1.8. (Biomatters Ltd.). Posterior probabilities $\geq 0.9$ were considered to be significant.

The maximum likelihood analysis (ML) was carried out using RAxML version 8 (Stamatakis 2014) with 1,000 bootstrap replicates and 10 random additions.

## Resolving the interspecific relationships between the Fuscidea photobionts

The ITS matrix included 75 sequences, where off 13 new (Table 1), combined with 62 from GenBank (Table S1). Of the matrix with 664 characters, 176 were constant and 448
parsimony-informative. Coccomyxa simplex Mainx (GenBank Acc. No: HG972980), Coccomyxa sp. Schmidle (GenBank Acc. No: HG972980), and Pseudococcomyxa simplex (Mainx) Fott (GenBank Acc. No: HE586504) were chosen as outgroup based on a MegaBLAST search. Symbiochloris Škaloud, Friedl, A. Beck \& Dal Grande from GenBank was included, as it may represent a sister group based on Hallmann et al. (2013a,b; 2016) and Neustupa et al. (2013). Trebouxia (lichenized) sequences were included due to the highest scores in a MegaBLAST search.

Substitution models with lowest AIC for ITS1, 5.8S, and ITS2 were estimated separately using jModelTest version 2.1.7 (Posada 2008) and used in the analyses (Table 2).

ITS has some alignment challenges in the hypervariable parts, and thus several methods were tested to adjust for these poorly aligned parts. Firstly, the ITS sequences were aligned with the Muscle algorithm implemented in Geneious version 8.1.8. (Biomatters Ltd.) with $65 \%$ similarity option on (Gap penalty=14.5, Gap extension penalty=5), followed by manual adjustments (called the MA matrix, available in Appendix B). To optimize the manual adjustments, information from the secondary structure of the ITS2 operon was also included. Secondly, the program Gblocks version 0.91b (Talavera and Castresana 2007) was used on the MA matrix and run under two different modes; relaxed and stringent masking. Under relaxed masking, smaller final blocks, gaps positions and less strict flanking positions were allowed resulting in a matrix called the R matrix, while under the stringent masking, ambiguous positions and gaps were not allowed resulting in a matrix called the S matrix (see Table 3). Missing positions at the ends were coded as missing data (?) in the MA and R matrices.

The partitioned MA and R matrices as well as the non-partitioned S matrix were analysed with the Bayesian $\mathrm{B} / \mathrm{MCMC}$ approach for 15 million generations with four parallel chains, starting from a random tree, and using the default temperature of 0.2 . Every 100th tree,
including branch lengths, was sampled. After inspection in Tracer version 1.6.0 (Rambaut et al. 2014), the first one and a half million generations were discarded as "burn-in". A Bayesian 50\% majority-rule consensus tree with average branch lengths was constructed from the 135,000 resulting trees and visualized using Geneious version 8.1.8. (Biomatters Ltd.). Posterior probabilities $\geq 0.9$ were considered to be significant.

PAUP*4.0b10 (Swofford 2002) was used to search for MP and ML trees for the MA, R and S matrices, not partitioned. The MP trees were found under a heuristic search using random sequence additions with 1,000 replicates and tree bisection-reconnection branch swapping (TBR). The MulTrees and steepest descent options were on, but the collapse zero-length branches option was off. A second heuristic search with 100 replicates, using the ML criterion with the empirical base frequencies as previously calculated in jModelTest (Posada 2008), was carried out to calculate the ML trees of the three ITS. Branch support for each ML tree was estimated by 100 bootstrap replicates with 10 random additions. High bootstrap support was considered to be equal or above $80 \%$.

In addition, the non-aligned data matrix of ITS was analysed in SATé-II version 2.2.7 (Liu et al. 2012). This program automatically divides the matrix into subsets, which are subsequently aligned by MAFFT (Katoh et al. 2005; Katoh and Toh 2008) and merged using Muscle (Edgar 2004a,b) in order to produce a new alignment. The default settings were chosen, except for the iteration limit that was set to 50 . This resulting alignment was analysed under the GTR CAT and the GTR $+\mathrm{I}+\mathrm{G}$ evolution models using RAxML.

The secondary structures of the ITS2 sequences were reconstructed using RNAfold (http://rna.tbi.univie.ac.at) with folding temperature set to $25^{\circ} \mathrm{C}$. Compensatory base pair changes (CBCs) are nucleotide changes at both sides of paired bases, while hemi-CBCs (e.g. G-U $\rightarrow$ G-C) have changes at only one side of nucleotide pairs that retain the base
pairing (e.g. Caisová et al. 2011). CBCs and hemi-CBCs were located according to Coleman (2000, 2003), the highly conserved regions were determined following Coleman (2007).

## Results

## Apatococcus is the Fuscidea photobiont and classified within the Trebouxiophyceae

The final 18S matrix consisted of 962 charaters of which 550 sites were constant and 284 parsimony-informative. The resulting $50 \%$ majority-rule consensus tree with posterior probabilities from the BI analysis $(-\ln =10,686.02)$ is displayed in Fig. 1, combined with bootstrap supports retrieved from the ML analysis. The average standard deviation of split frequencies fell below 0.0063 , which indicated convergence of the Markov chain when comparing two independent runs. The likelihood parameters of the MCMC analysis are listed in Supplementary material (Table S2).

Even though most of the deep relationships among major groups in the Trebouxiophyceae were poorly supported, the supported clades were in agreement with Dal Grande et al. (2014), Hallmann et al. (2016), Sanders et al. (2016), and Škaloud et al. (2016), which also lacked significant support at basal nodes. The incongruencies between BI and ML tree are indicated by asterisks in Fig. 1.

Within the Trebouxiophyceae, one distinct clade called the Apatococcus-clade with $\mathrm{PP}=1.0 / \mathrm{BS}=100 \%$ support included the Fuscidea photobionts in addition to 23 Apatococcus and two Eukaryote sequences, supporting the identity of the photobionts in question as members of Apatococcus. The Apatococcus-clade can be grouped into four supported clades based on the 18 S data (see Fig. 1) and the Fuscidea photobiont appeared in two distinct groups. Myrmecia Printz and Trebouxia formed clades near Apatococcus, but lacking support.

One specimen of A. lobatus, strain CCALA 213 (GenBank Acc. No.: KF355939), appeared in the Chlorella-clade 2 (see discussion).

## Resolving the interspecific relationships between the Fuscidea photobionts

The BI and ML resulting trees were examined for each ITS matrix separately and then compared. A Bayesian 50\% majority-rule consensus tree conducted from the MA alignment with depicted PP and BS values from all phylogenetic analyses is given in Fig. 2.

The calculated parameters of all the BI approaches are given in Table S 2 and the resulting tree statistics of ITS data matrices from the MP analysis are summarized in Table S3. In general, the tree resulting from the R matrix had higher PP and BS values than the others.

The resulting tree (Fig. 2) showed that Apatococcus, Symbiochloris and Trebouxia form three well-supported clades. The relationships between these groups remained unresolved.

The Apatococcus-clade, accommodating all lichenized as well as free-living Apatococcus specimens, was divided into six supported clades, the five clades reported by Hallmann et al. (2016) and a new clade. We entitled the supported clades alphabetically after Hallmann et al. (2016), but renamed their group B with group A (identified by the strain SAG 2145) and vice versa. This strain was isolated and identified as A. lobatus already by W. Vischer (Vischer, 1960) who also amended its description, and thus is a very suitable authentic culture of Apatococcus lobatus. The Fuscidea photobionts were included in two separate clades; F and E. In clade F with $\mathrm{PP}=1.0 / \mathrm{BS}=100 \%$, most of the Fuscidea photobionts were included, while the photobiont of F. lightfootii (Sm.) Coppins \& P. James was nested with free-living Apatococcus specimens in clade E with $1.0 / 88 \%$ support.

The resulting phylogenetic trees from SATé-II revealed the same topology, i.e. six distinct groups.

The secondary structures of ITS2 operons were folded for all retrieved ITS groups (see Suppl. Fig S2), and the conserved features among Eukaryota and green algae (Coleman 2003, 2009;

Mai and Coleman 1997) were identified, i.e. four helices, a pyrimidine-pyrimidine mismatch near the base of helix II, AAA mononucleotide repeats between helices II and III, and a conserved section of the nucleotides GUUU and its modifications on the 5'side of helix III. Since the ITS2 secondary structures were very similar, the apical parts were also analysed. In total, 8 CBCs and 11 hemi-CBCs on the conservative part on helix III, and 1 hemi-CBCs on the conservative part on helix II were distinguished using group F, as the reference secondary structure for mapping the differences to the other five Apatococcus groups (Fig. 3 and Table 4). Both the CBCs and the hemi-CBCs observed on helix IV in group A, C, D, and E were not included, as these helices were not recognized by RNAfold (available at http://rna.tbi.univie.ac.at), but folded manually.

## Taxonomy

## Apatococcus fuscideae A. Beck \& Zahradn. sp. nov. (Fig. 4)

Description: Cells round to oval $9-30 \times 9-15 \mu \mathrm{~m}$ in size. Cells duplicate by binary fission creating typical clusters of 2,4 or 8 daughter cells, often flattened on one side, forming cubical packages. Chloroplast parietal, without distinctive pyrenoid, as typical for the genus Apatococcus. Cell wall up to $1 \mu \mathrm{~m}$ thick. No zoospores observed. Differing from A. lobatus by the typical reticulate, netlike chloroplast in mature cells, see Fig. 4.

Diagnostic ribosomal DNA sequences of strain AB98.122B1: 18S: GenBank Acc. No. KY587795; ITS: GenBank Acc. No. KY587804; for ITS2 secondary structure see Fig. 3 and in Suppl. Fig. S2 F.

Holotype: Permanently preserved strain SAG 2523.
Authentic strain: AB98.122B1 = Sammlung für Algenkulturen Göttingen (SAG) 2523.
Etymology: The specific epithet (fuscideae) refers to the lichen genus Fuscidea.

Type locality: Austria: Styria, 40 km SW of Graz; Koralpe Mountain range, Handalpe. 1730 m alt. $46^{\circ} 50^{\prime} \mathrm{N} 15^{\circ} 01^{\prime} \mathrm{E}$. On a vertical, south-facing rock, about 1.5 m above the ground. Collected on 13.08.1998 by A. Beck, no. 130; M-0154470.

Host: Fuscidea kochiana (Hepp) V. Wirth \& Vězda is a crustose lichen with grey to brown tinged, deeply cracked thallus. Apothecia are brown, lecideine, immersed having asci of the Fuscidea-type. Ascospores broadly ellipsoid, becoming brown when mature. Chemical constituent is divaricatic acid. It occurs on acid rock and is widely distributed (Gilbert et al. 2009).

## Discussion

## Apatococcus is the Fuscidea photobiont and placed within the Trebouxiophyceae

The Fuscidea photobionts are identified as Apatococcus, the most prominent epiphytic algae in temperate regions (Gärtner and Ingolic 1989). Except for the report by Watanabe et al. (1997), which is based on morphological methods only, A. lobatus has not been reported as photobiont in any lichen genus.

Apatococcus belongs to the Trebouxiophyceae with uncertain position. It might be closely related to Symbiochloris (Hallmann et al. 2013a,b; 2016; Neustupa et al. 2013) or to Leptosira Borzì (Škaloud et al. 2016), whereas in the present study, Myrmecia bisecta and/or the Trebouxiaceae are related to this genus. Yet, the exact phylogenetic position of Apatococcus remains uncertain.

The sequence of A. lobatus CCALA 213 (KF355939), nested in the Chlorella-clade 2, probably indicates a permutation of strains, because microscopic analysis of the strain (see photo at: http://ccala.butbn.cas.cz/en/apatococcus-lobatus-chodat-jb-petersen) is consistent with an identification as Chlorella s.l. Consequently, CCALA 213 should not be treated as A. lobatus.

To conclude, the genus Apatococcus is clearly a member of the Trebouxiophyceae, but its further classification remains unresolved.

## Interspecific relationships between lichenized Apatococcus

Two different lichenized Apatococcus groups were found; group F with the sequences of A. fuscideae and group E with the photobiont of F. lightfootii with free-living Apatococcus. Their relationships differ between the genes, i.e. in the 18 S phylogeny group F appears as sister to group A and group E as sister to group D, while in the ITS phylogenies group F is the first diverging lineage and group E is alike closely related to group D .

One can argue that the observed internal groups within Apatococcus in fact represent several distinct species, i.e. one already known, A. lobatus (group A), the one described here, A. fuscideae (group F), the photobiont in F. lightfootii together with free-living Apatococcus (group E), and three further free-living species (group B, C, D). Nevertheless, the hypothesis about the putative free-living species could not be verified, because this is outside the scope of this paper.

## Apatococcus fuscideae (group F)

The clade with the lichenized A. fuscideae receives significant support in all phylogenies. To facilitate further work we generated a reference culture from F. kochiana clone AB98.122B1 and deposited it in the Sammlung für Algenkulturen Göttingen as SAG 2523.

The species, A. fuscideae is not only delimited by molecular findings, but is also accompanied by morphological characters in its chloroplast, which is typical reticulate, thus netlike, in mature cells, while A. lobatus has uninucleate cells with single, often lobed, parietal chloroplast without pyrenoids (Brand and Stockmayer 1925; Ettl and Gärtner 2014). When using the secondary structure of the ITS2 operon (see Figs. 3 and S2 A, F), A. lobatus has three CBCs and one hemi-CBCs on helix I, one hemi-CBCs on helix II, four CBCs and six
hemi-CBCs on helix III (i.e. three CBCs and five hemi-CBCs on the conserved part of helix III) that are distinct from A. fuscideae (see Figs. 3 and S2 A, F).

Low genetic variation is observed between the photobiont sequences of group F (18S: 99.9\% and ITS $99.5 \%$ pairwise identity). The uniformity of photobionts in Fuscidea distributed in distant localities may be due to the high mycobiont selectivity (e.g. Beck et al. 2002) to preserve their tight and ecological successful associations (e.g. Muggia et al. 2013). The reasons why algal partners are less variable in comparison with their compatible fungal partners could be also explained by the genotypic fixation in the algae caused by different evolutionary processes, e.g. a higher mutation rate in the mycobiont, or a longer time of divergence of the photobionts (Nuismer et al. 1999; Piercey-Normore and DePriest 2001).

## Apatococcus in F. lightfootii (group E)

The clade contains both free-living and lichenized Apatococcus associated with F. lightfootii, which is phylogenetically distinct from Apatococcus fuscideae. When using secondary structure of ITS2, the photobiont of $F$. lightfootii differs from A. fuscideae in having two CBCs on helix I, seven CBCs and three hemi-CBCs on helix III from which four CBCs and three hemi-CBCs on the conserved part of helix III (see Figs. 3 and S2 E, F).

When Hallmann et al. (2016) studied free-living Apatococcus from suburban surfaces, they recovered several fungal clones that might represent lichenized fungi. The free-living Apatococcus associated with F. lightfootii could therefore be lichenized. In order to describe this species in detail, its culture and a detailed study are needed.

## Comparison of the individual ITS analyses

Due to variable ITS sequences, it was difficult to use them for determining phylogenies within Trebouxiophyceae. As no previous studies have targeted the issue about alignment depended and alignment independent analysis of ITS sequences among non-congeneric species within Trebouxiophyceae, we compare the resulting ML phylogenetic trees calculated from four individual matrices containg different amount of ambiguous sites, and thus investigate the errors of these matrices. Interestingly, all retrieved topologies show only minor differences, i.e. they are almost identical. Even in the R matrix, restricted to the conserved alignment parts with highest homology assessment, all the deep and most of the recent nodes are recovered, but their support are weak probably due to the low number of informative characters. The aligning of the variable ITS is difficult and time consuming especially when taking homology assessment by secondary structure analysis into account. In the phylogeny of the $S$ matrix, group A and B are intermixed as the sequence of uncultured Apatococcus (GenBank Acc. No.: KX25118) appeared in group B. Thus the resolution of groups is slightly reduced in the most stringent matrix.

The alignment independent approach by SATé-II provides faster and obviously reliable results indicated by similar phylogenies as compared to the alignment based approach. In the present study, the ML tree calculated from SATé-II resolves six groups in the Apatococcus-clade and two main clusters in the Trebouxia-clade. The sequence of uncultured Apatococcus (GenBank Acc. No. KX025118) is nested in group B, and group C is the first diverging lineage within the Apatococcus-clade.

## Conclusion

Based on our data presented here, Apatococcus is unequivocally identified as a lichenized alga of the lichen genus Fuscidea and placed within the Trebouxiophyceae, albeit with uncertain


#### Abstract

position. All retrieved groups in Apatococcus are unique in ITS sequence and CBCs are observed in the secondary structure of ITS2. In the present study, two lichenized Apatococcus species are found, of which are found, of which Apatococcus fuscideae is described as new based on molecular and morphological characters.


## Appendix A. Supplementary Data

Appendix B. Alignments of 18S and ITS manually adjusted (not included here)
Supplementary data associated may be found in the online version of this study at http://........

## Acknowledgements

We want to thank to Jiří Malíček, Academy of Science of the Czech Republic, for lending us his material, Louise Lindblom, University of Bergen, for technical help with molecular work, Yasmin Sophia Lermer, Munich, for the art drawings of Apatococcus fuscideae, and to anonymous reviewers for their helpful comments. This work forms a part of the doctoral thesis of MZ. This project was granted from the University Museum of Bergen and Grolle Olsen fund. The molecular work was done at the Biodiversity Laboratories, University of Bergen, and at the Botanische Staatssammlung München (for the culture).

## References

Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709720.

Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317-326

Beck A, Koop H-U (2001) Analysis of the photobiont population in lichens using a singlecell manipulator. Symbiosis 31:57-67

Brand F, Stockmayer S (1925) Analyse der aerophilen Grünalgenanflüge, insbesondere der proto- pleurococcoiden Formen. Arch für Protistenkd 52:265-355
Buchheim MA, Sutherland DM, Schleicher T, Föster F, Wolf M (2012) Phylogeny of Oedogoniales, Chaetophorales and Chaetopeltidales (Chlorophyceace): inference from sequence-structure analysis of ITS2. Ann Bot 109:109-116

Caisová L, Marin B, Melkonian M (2011) A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol Biol 11:262

Caisová L, Marin B, Melkonian M (2013) A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164:482-496

Catalá M, del Campo EM, Barreno E, García-Breijo FJ, Reig-Armiñana J, Casano LM (2016) Coordinated ultrastructural and phylogenomic analyses shed light on the hidden phycobiont diversity of Trebouxia microalgae in Ramalina fraxinea. Mol Phylogenet Evol 94:765-777

Coleman AW (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151:1-9

Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370-375

Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35:3322-3329

Coleman AW (2009) Is there a molecular key to the level of biological species in eukaryotes? A DNA guide. Mol Phylogenet Evol 50:197-203

Culberson CF (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. J Chromatogr 72:113-125

Culberson CF, Kristinsson H-D (1970) A standardized method for the identification of lichen products. J Chromatogr 46:85-93

Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C (2014) Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae) a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol 202:455-470

Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:1

Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797

Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft- und Flechtenalgen. Springer-Verlag, Berlin, 773 p

Friedl T (1995) Inferring taxonomic positons and testing genus level assigments in coccoid green lichen algae: A phylogenetic analysis of 18S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov.). J Phycol 31:632-639

Friedl T (1997) The evolution of the green algae. Plant Syst Evol 11:87-101
Friedl T, Zeltner C (1994) Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18s ribosomal rna gene sequence comparisons1. J Phycol 30:500-506

Galloway DJ (1985): Flora of New Zealand - Lichens. Hasselberg, Government Printer, Wellington, New Zealand, 662 p

Gärtner G, Ingolić E (1989). Ein Beitrag zur Kenntnis von Apatococcus lobatus (Chlorophyta, Chaetophorales, Leptosiroideae). Plant Syst Evol 164:133-143

Gilbert OL, Purvis OW, Skjolddal LH, Tønsberg T (2009) Fuscidea V. Wirth \& Vězda (1972). In Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (eds) The Lichens of the Great Britain and Ireland. British Lichen Society, London, pp 407-411

Gile GH, Stern RF, James ER, Keeling PJ (2010) DNA barcoding of Chlorarachniophytes using nucleomorph ITS sequences. J Phycol 46:743-750

Hadi SI, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, Oliveira MEC, Silva FCP, Brasil BSAF (2016) DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters. PloS one 11: e0149284

Hallmann C, Hoppert M, Mudimu O, Friedl T (2016) Biodiversity of green algae covering artificial hard substrate surfaces in a suburban environment: A case study using molecular approaches. J Phycol 52:732-744
Hallmann C, Stannek L, Fritzlar D, Hause-Reitner D, Friedl T, Hoppert M (2013a) Molecular diversity of phototrophic biofilms on building stone. FEMS Microbiol Ecol 84:355-372

Hallmann C, Wedekind W, Hause-Reitner D, Hoppert M (2013b) Cryptogam covers on sepulchral monuments and re-colonization of a marble surface after cleaning. Environ Earth Sci 69:1149-1160

Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3-20

Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73-86

Högnabba F, Stenroos S, Thell A (2009) Phylogenetic relationship and evolution of photobiont associations in the Lobariaceae (Peltigerales, Lecanoromycetes, Ascomycota). Bibl Lichenol 100:157-187
Honegger R (2000) Great discoveries in bryology and lichenology - Simon Schwendener (1829-1919) and the Dual Hypothesis of Lichens. Bryologist 103:307-313

Inoue M (1981) A taxonomic study on the Japanese species of Fuscidea (Lichens). Hikobia Suppl 1:167-175

James PW, Henssen A (1976) The morphological and taxonomic significance of cephalodia. In Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: Progress and Problems. Academic Press, London, pp 27-77
Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511-518

Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286-298
Leavitt SD, Kraichak E, Vondrák J, Nelsen MP, Sohrabi M, Perez-Ortega S, St Clair LL, Lumbsch T (2016) Cryptic diversity and symbiont interactions in rock-posy lichens. Mol Phylogenet Evol 99:261-274
Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, Linder CR (2012) SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 61:90-106

Mai JC, Coleman AW (1997). The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol 44:258-271

Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MAG, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132-168
Muggia L, Vančurová L, Škaloud P, Peksa O, Wedin M, Grube M (2013) The symbiotic playground of lichen thalli - a highly flexible photobiont association in rock inhabiting lichens. Microbiol Ecol 85:313-323
Müller T, Philippi N, Dandekar, T, Schultz J, Wolf M (2007) Distinguishing species. RNA 13:1469-1472
Neustupa J, Němcová Y, Veselá J, Steinová J, Škaloud P (2013) Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms. Phycologia 52:411-421
Nuismer SL, Thompson JN, Gomulkiewicz R (1999) Gene flow and geographically structured coevolution. Proc R Soc Lond Ser B 266:605-609

Nyati S, Scherrer S, Werth S, Honegger R (2014) Green-algal photobiont diversity (Trebouxia spp) in representatives of Teloschistaceae (Lecanoromycetes, lichenforming ascomycetes). Lichenologist 46:189-212
Oberhollenzer H, Wirth V (1984) Beitrage zur Revision der Flechtengattung Fuscidea. Beih Nova Hedwiga 79:538-592
Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490-1498

Posada D (2008) jModelTest: phylogenetic model averaging. Mol Phylogenet Evol 25:1253-1256
Poulíčková A, Veselá J, Neustupa J, Škaloud P (2010) Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kütz (Bacillariophyceae) and morphologically similar taxa. Protist 161:353-369

Pröschold T, Darienko T, Silva PC, Reisser W, Krienitz L (2011) The systematics of Zoochlorella revisited employing an integrative approach. Environ Microbiol 13:350-364

Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Online available at http://beast.bio.ed.ac.uk/Tracer
Rambold G, Friedl T, Beck A (1998) Photobionts in lichens: Possible indicators of phylogenetic relationships? Bryologist 101:392-397

Rampersad SN (2014) ITS1, 58S and ITS2 secondary structure modelling for intra-specific differentation among species of the Colletotrichum gloeosporioides sensu lato species complex. SpringerPlus 3:684
Rindi F (2007) Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer-Verlag, Dordrecht, pp 619-638

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572-1574

## SandersWB, Pérez-Ortega S, Nelsen MP, Lücking R, de los Ríos A (2016)

Heveochlorella (Trebouxiophyceae): A little-known genus of unicellular green algae outside the Trebouxiales emerges unexpectedly as a major clade of lichen photobionts in foliicolous communities. J Phycol 52:840-853
Schwendener S (1867) Über die wahre Natur der Flechtengonidien. Verh schweiz naturforsch Ges 57:9-11
Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F (2016) Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). J Phycol 52:599-617
Škaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and Actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36-46

Smith CW, Aptroot A, Coppins BJ, Fletcher A, Gilbert OL, James PW, Wolseley PA (eds) (2009) The Lichens of Great Britain and Ireland. British Lichen Society, London, 1046 p

Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform 10.1093/bioinformatics/btu033
Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and Other Methods) 4.0 beta. Sinauer Associates, Sunderland, Mass

Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564-577

Vargas R, Beck A (2012) Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol 116:665-676

Vischer W (1960) Reproduktion und systematische Stellung einiger Rinden- und Bodenalgen. Schweiz Zeitsch Hydrol 22:330-349

Voytsekhovich A, Beck A (2016) Lichen photobionts of the rocky outcrops of Karadag Nature Reserve (South-East Crimea, Ukraine). Symbiosis 68:9-24

Watanabe S, Nakano T, Deguchi H (1997) Photobionts isolated from maritime lichens. J Mar Biotechnol 5:103-112

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, San Diego, pp 315-322



Figure 2. Phylogenetic relationships between members of Apatococcus and its closely related genera shown on the $50 \%$ majority-rule consensus tree ( $-\operatorname{lnL}=9,684.21$ ) obtained with a Bayesian approach of ITS partitions aligned by Geneious. The values from the relaxed and stringent masking alignments are depicted here. Posterior probabilities (PP) are reported above branches and bootstrap values (BS) below in this order: aligned by Manually adjusted/Relaxed masking/Stringent masking. Robust support values (i.e. 1.0 of PP and/or $100 \%$ of BS) are indicated by asterisk on corresponding branches. Values lower than $50 \%$ are not shown.


Figure 3. The secondary structure of ITS2 operon based on Apatococcus fuscideae
A.Beck \& Zahradn. Capitals indicate Compensatory base changes (CBCs), small letters hemi-CBCs when compared to the other five Apatococcus groups.


Figure 4. Light micrograph (A, B) and schematic drawings (C, D) of Apatococcus fuscideae A.Beck \& Zahradn. (isolated from Fuscidea kochiana [AB130; M-0154470]). Scale bar: $10 \mu \mathrm{~m}$. (A) Lichenized state. (B) Axenic culture: Optical median section (cell in the center) and surface view (cell on the left side). (C) Diads, Tetrads, and cells with reticulate chloroplast. (D) Magnified reticulate chloroplast.

Table 1. List of voucher specimens with their GenBank accession numbers.

| Species | Authors | Locality | Substrate | Collection Date | DNA Vouchers | Herbarium <br> Number | GenBank Accesion Number <br> 18S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ITS |  |  |  |  |  |  |  |

${ }^{\text {a) }}$ isolated photobiont culture only

Table 2. Best-fit models for each data matrix of 18 S and partitioned ITS calculated in jModelTest. Three different approaches were applied in the alignment of ITS: Geneious, Relaxed and Stringent Gblocks masking.

| Locus nrDNA | Data matrix | No. of <br> characters | Best fit model | Calculated -lnL |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 8 S}$ | Manually adjusted | 962 | GTR+I+G | $10,099.64$ |
| ITS1 | Manually adjusted | 267 | GTR+I+G | $5,731.89$ |
|  | Relaxed masking | 250 | GTR+I+G | $4,606.69$ |
| $\mathbf{5 . 8} \mathbf{S}$ | Manually adjusted | 159 | SYM+I | 606.3083 |
|  | Relaxed masking | 158 | K80+G | 570.4275 |
|  | Manually adjusted | 238 | GTR+G | $3,983.89$ |
|  | Relaxed masking | 213 | GTR+G | $3,230.98$ |
| ITS | Manually adjusted | 664 | GTR+I+G | $10,710.00$ |
|  | Stringent masking | 199 | GTR+I+G | 859.7838 |
|  |  |  |  |  |

Table 3. Calculated parameters of Gblocks masking. Asterisk indicates the percentage of selected base pairs by Gblocks masking from the manually adjusted data matrix.

| Locus <br> Masking | ITS1 <br> Relaxed | Stringent | Relaxed | Stringent | ITS2 <br> Relaxed | Stringent |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Min. no. seq. for conserved positions | 39 | 39 | 39 | 39 | 39 | 39 |
| Min. no. seq. for flank positions | 39 | 65 | 39 | 65 | 39 | 65 |
| Max. no. seq. for nonconserved positions | 8 | 4 | 8 | 4 | 8 | 4 |
| Min. length of block | 5 | 10 | 5 | 10 | 5 | 10 |
| Alowed gap positions | with Half | none | with Half | none | with Half | none |
| Gblocks alignment | $250\left(93 \%^{*}\right)$ | $0\left(0 \%^{*}\right)$ | $157\left(10 \%^{*}\right)$ | $155\left(98 \%^{*}\right)$ | $221\left(9 \%^{*}\right)$ | $41(17 \% *)$ |

Table 4. Overview of CBCs and hemi-CBCs on the conservative parts of helix II (in brackets) and III within the six ITS groups of Apatococcus. Grey shade divides CBCs and hemi-CBCs.

|  | hemi-CBCs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Group A | Group B | Group C | Group D | Group E | Group F |  |
|  | CBCs |  | 5 | $5(1)$ | 4 | 4 | 5 |
|  | Group A |  |  | $1(2)$ | 6 | 6 | 6 |
|  | Group B | x |  |  | $5(1)$ | $3(1)$ | $4(1)$ |
|  | Group C | x | 1 |  |  | 2 | 2 |
|  | Group D | 2 | 4 | 3 | 5 |  | 3 |
|  | Group E | 2 | 5 | 3 | 5 | 4 |  |
|  | Group F | 3 | 2 | 1 | 6 |  |  |

## Appendix A: Supplementary material



Figure S1. Phylogenetic relationships between members of Apatococcus and its closely related genera based on the most likely tree $(-\operatorname{lnL}=9,753.9922)$ obtained with a SATé-II tree estimation under the GTR $+\mathrm{I}+\mathrm{G}$ substitution model.


Figure S2. The overview of the secondary structures based on ITS2 operon of six ITS internal groups. The reference sequence of each ITS group was generated from or chosen from available sequences in GenBank: Group A - Apatococcus lobatus (GAN: KY587804), B Uncultured Apatococcus clone GLB_K898 (GAN: KX0255114), C - Uncultured Apatococcus clone GOGs_K48 (GAN: KX025111), D - Uncultured Apatococcus clone GLB_K910 (GAN: KX025116), E - Fuscidea lightfootii MSC0050473 (GAN: KY587810), and F - Fuscidea kochiana AB130 (GAN: KY587801). The grey colour indicates the missing part of the reference sequence, which was substituted by another sequence from the same group.

Table S1. List of used taxa with their GenBank accession numbers. ITS groups are indicated for the Apatococcus sequences generated by Hallmann et al. (2016).

| Species Name | GenBank Accession Number |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  | ITS group |
|  | 18S | ITS |  |
| Chlorella luteoviridis | AB006045 | _ |  |
| Chlorella agustoellipsoidea | AB006047 | - | - |
| Chlorella trebouxioides | AB006048 | - | - |
| Pseudochlorella sp. CCAP 264-2 | AB006049 | - | - |
| Pseudochlorella subsphaerica | AB006050 | - | - |
| Muriella terrestris | AB012845 | - | - |
| Coenocystis inconstans | AB017435 | - | - |
| Stichococcus bacillaris D10-1 | AB055865 | - | - |
| Stichococcus bacillaris K4-4 | AB055866 | - | - |
| "Chlorella" saccharophila MBIC10067 | AB058306 | - | - |
| Uncultured Chlorophyta DA-09 | AB257664 | - | - |
| Uncultured Chlorella 1660/10 | AB260895 | - | - |
| Uncultured Trebouxiophyceae | AB260896 | - | - |
| Pseudochlorella sp. (Chlorella ellipsoidea) CCAP 211/1ANIES-2150 | AB488583 | - | - |
| Choricystis sp. NIES-2342 | AB488587 | - | - |
| Chlorella saccharophila NIES-640 | AB488790 | - | - |
| Chlorella saccharophila NIES-2352 | AB488791 | - | - |
| Parachlorella beijerinckii | AB517729 | - | - |
| Trebouxia corticola | - | AB627399 | - |
| Uncultured freshwater eukaryote RW5_2010 | AB721029 | - | - |
| Coccomyxa sp. KGU-D001 | AB742451 | - | - |
| Prasiola fluviatilis | AF189072 | - | - |
| Prasiola mexicana Mex 12 | AF189075 | - | - |
| Prasiola mexicana CR24 | AF189076 | - | - |
| Raphidonema nivale | AF448477 | - | - |
| Stichococcus sp. B2VFF10 | AF513370 | - | - |
| Coccomyxa sp. SAG 2325 | AJ302939 | - | - |
| Raphidonema nivale CCAP 470/4 | AJ306532 | - | - |
| Raphidonema sempervirens CCAP 470/6 | AJ309939 | - | - |
| Stichococcus mirabilis CCAP 379/3 | AJ311638 | - | - |
| Raphidonema pyrenoidifera CCAP 470/5 | AJ311640 | - | - |
| Prasiola crispa SAG 43.96 | AJ416106 | - | - |
| Stichococcus bacillaris SAG 397-1b | AJ416107 | - | - |
| Pabia signensis SAG 7.90 | AJ416108 | - | - |
| Raphidonemopsis sessilis UTEX 1711 | AJ431667 | - | - |
| Elliptochloris bilobata SAG 245.80 | AM422984 | - | - |
| Pseudochlorella pyrenoidosa SAG 18.95 | AM422985 | - | - |
| Coccomyxa sp. CPCC 508 | AM981206 | - | - |
| Catena viridis | AY158204 | - | - |
| Muriella sp. AS 2-4 | AY195969 | - | - |
| Choricystis sp. AS 5-1 | AY195970 | - | - |
| Choricystis sp. AS-29 | AY195972 | - | - |
| Meyerella planktonica Itas 2/24 S-12w | AY195973 | - | - |

Gloeotila sp. JL11-10
Chlorella sp. Mary 9/21BT-10w
Choricystis sp. MDL1/12-8
Chlorella sp. NDem 9/21T-13d
Choricystis sp. Pic8/18P-11w
Chlorella sp. MDL5-18
Diacanthos belenophorus
Stichococcus sp. BCP-SRS2-14
Gloeotila contorta
Choricystis sp. Itas 9/21S-1w
Prasiolopsis ramosa SAG 26.83
Myrmecia incisa SAG 2007
Trebouxiophyte sp. UR47/4
Choricystis minor SAG 17.98
Trebouxiophyte sp. UR55/3
"Chlorella" ellipsoidea
Stichococcus deasonii UTEX 1706
Stichococcus jenerensis D 4
Uncultured marine eukaryote FV23_CilD6
Elliptochloris bilobata SAG 245.80
Uncultured Chlorodendraceae Amb_18S_460
Salicaceae Amb_18S_571
Phytolaccaceae Amb_18S_747
Rosenvingiella radicans Rrad4
Rosenvingiella polyrhiza Rpol2
Prasiola calophylla Pcal1
Prasiola sp. GALW015488
Rosenvingiella sp. GALW014367
Prasiola stipitata Psti2
Rosenvingiella constricta Rcol
Prasiola crispa Pcri3
Uncultured Eukaryote rtCF18sti
Heveochlorella hainangensis FGG01
Elliptochloris bilobata var. corticola
Uncultured Banisveld eukaryote P1-3m10
Uncultured Banisveld eukaryote P1-3m11
Uncultured Banisveld eukaryote P1-5m3
Uncultured Banisveld eukaryote P2-3m7
Coccomyxa sp. Flensburg fjord 1
Coccomyxa sp. Flensburg fjord 2
Coccomyxa sp. Kragero
Chlorella sp. 594-GA375
Parietochloris alveolaris UTEX 836
Chloroparva pannonica ACT0608
Elliptochloris MR-L2009 ZC113
Elliptochloris MRL-2009 ZC102
Elliptochloris MRL-2009 ZC108
Uncultured Trebouxiophyceae C_41
Uncultured Trebouxiophyceae C_45

| AY195976 | - | - |
| :---: | :---: | :---: |
| AY197620 | - | - |
| AY197623 | - | - |
| AY197628 | - | - |
| AY197629 | - | - |
| AY197632 | - | - |
| AY323837 | - | - |
| AY377441 | - | - |
| AY422074 | - | - |
| AY543052 | - | - |
| AY762600 | - | - |
| AY762602 | - | - |
| AY762604 | - | - |
| AY762605 | - | - |
| AY762606 | - | - |
| D13324 | - | - |
| DQ275460 | - | - |
| DQ275461 | - | - |
| DQ310282 | - | - |
| DQ530055 | - | - |
| EF023169 | - | - |
| EF023266 | - | - |
| EF023408 | - | - |
| EF200518 | - | - |
| EF200519 | - | - |
| EF200521 | - | - |
| EF200522 | - | - |
| EF200523 | - | - |
| EF200526 | - | - |
| EF200529 | - | - |
| EF200532 | - | - |
| EF591011 | - | - |
| EF595524 | - | - |
| EF688289 | - | - |
| EU091836 | - | - |
| EU091837 | - | - |
| EU091846 | - | - |
| EU091854 | - | - |
| EU127470 | - | - |
| EU127471 | - | - |
| EU127472 | - | - |
| EU282453 | - | - |
| EU878373 | - | - |
| FJ013257 | - | - |
| FJ217361 | - | - |
| FJ217366 | - | - |
| FJ217367 | - | - |
| FJ490210 | - | - |
| FJ490214 | - | - |



| FJ490215 | - | - |
| :---: | :---: | :---: |
| FJ490217 | - | - |
| FJ490221 | - | - |
| FJ490228 | - | - |
| FJ490229 | - | - |
| FJ490231 | - | - |
| FJ490232 | - | - |
| FJ490233 | - | - |
| FJ490234 | - | - |
| FJ490236 | - | - |
| FJ490237 | - | - |
| FJ648513 | - | - |
| FJ648515 | - | - |
| FJ648516 | - | - |
| FJ648517 | - | - |
| FJ648518 | - | - |
| FJ790649 | - | - |
| FJ790655 | - | - |
| FJ946881 | - | - |
| FJ946882 | - | - |
| FJ946883 | - | - |
| FJ946884 | - | - |
| FJ946886 | - | - |
| FM205833 | - | - |
| FM205840 | - | - |
| FM205861 | - | - |
| FM205884 | - | - |
| FM946017 | - | - |
| FM946021 | - | - |
| FM958479 | - | - |
| FM958481 | - | - |
| FN298923 | - | - |
| FN298926 | - | - |
| FN298928 | - | - |
| FN298929 | - | - |
| FN562436 | - | - |
| FR693368 | - | D |
| FR717539 | - | - |
| FR850476 | - | - |
| FR865615 | - | - |
| FR865652 | - | - |
| FR865653 | - | - |
| FR865663 | - | - |
| FR865664 | - | - |
| FR865668 | - | - |
| FR865669 | - | - |
| FR865676 | - | - |
| FR865678 | - | - |
| FR865679 | - | - |

Chlorella vulgaris CCAP 211/79
Phlanophila sp. CCAP 462/1
Uncultured Eukaryote BT57_1
Kalenjinia gelatinosa CCAP 222/8
Mucidosphaerium pulchellum ACOI 755
Mucidosphaerium pulchellum CCAP 222/2a
Mucidosphaerium palustre CB 2008/6
Mucidosphaerium sphagnale CB 2008/19
Mucidosphaerium sphagnale CB 2008/44
Dictyosphaerium sp. CCAP 211/86
Parachlorella sp. CCAP 206/1
Hindakia tetrachotoma CCAP 222/69
Symbiochloris symbiontica SAG 27.81
Asterochloris phycobiontica SAG 26.81
Dictyochloropsis sp. SAG 2073
Symbiochloris reticulata SAG 53.87
Symbiochloris symbiotica SAG 12.86
Symbiochloris sp. SAG 2069
Symbiochloris splendida SAG 244.80
Symbiochloris symbiontica SAG 46.85
Symbiochloris reticulata CAUPH 8602
Dictyochloropsis splendida SAG 2153
Dictyochloropsis splendida SAG 2305
Symbiochloris irregularis SAG 2036
Symbiochloris splendida UTEX 2612
Symbiochloris symbiontica CAUPH 8603
Dictyochloropsis asterochloroides SAG 2098
Symbiochloris splendida UTEX 2599
Symbiochlori irregularis NIES-378
Symbiochloris irregularis SAG 2154
Uncultured Choricystis ESS220206.010
Catena viridis KR 1991/4
Pseudococcomyxa simplex CAUP H 102
Pseudococcomyxa simplex CAUP H 103
Coccomyxa sp. KN-2011-C4
Coccomyxa sp. KN-2011-C15
Coccomyxa sp. KN-2011-T2
Coccomyxa sp. KN-2011-T4
Coccomyxa sp. KN-2011-U2
Choricystis sp. GSE4G
Coccomyxa sp. KN-2011-E5
Leptochlorella corticola I2e
Parachloroidium lobatum CAUP H8502
Parachloroidium lobatum CAUP H8503
Coccomyxa simplex SAG 216-3b
Mucidosphaerium sphagnale CB 2008/15
Mucidosphaerium sphagnale KR 2009/1
Chlorella chlorelloides CB 2008/1101
Chlorella volutis CB 2008/691

| FR865683 | - | - |
| :---: | :---: | :---: |
| FR865753 | - | - |
| GQ462874 | - | - |
| GQ477061 | - | - |
| GQ487198 | - | - |
| GQ487199 | - | - |
| GQ487216 | - | - |
| GQ487218 | - | - |
| GQ487219 | - | - |
| GQ487242 | - | - |
| GQ502287 | - | - |
| GQ867590 | - | - |
| GU017644 | - | - |
| GU017647 | - | - |
| GU017648 | - | - |
| GU017650 | - | - |
| GU017651 | - | - |
| GU017652 | - | - |
| GU017653 | - | - |
| GU017654 | - | - |
| GU017655 | - | - |
| GU017657 | - | - |
| GU017658 | - | - |
| GU017659 | - | - |
| GU017660 | - | - |
| GU017663 | - | - |
| GU017664 | - | - |
| GU017665 | - | - |
| GU017670 | - | - |
| GU017671 | - | - |
| GU067789 | - | - |
| GU592792 | - | - |
| HE586504 | HE586504 | - |
| HE586505 | - | - |
| HE586508 | - | - |
| HE586512 | - | - |
| HE586514 | - | - |
| HE586516 | - | - |
| HE586517 | - | - |
| HE586518 | - | - |
| - | HE586504 | - |
| HE984579 | - | - |
| HF586460 | - | - |
| HF586461 | - | - |
| - | HG972980 | - |
| HM066006 | - | - |
| HM066007 | - | - |
| HQ111432 | - | - |
| HQ111434 | - | - |

Uncultured Eukaryote N1TE_01
Uncultured Chlorophyta PA2009C7
Coccomyxa sp. KR 1988/12
Elliptochloris reniformis SAG2200
Compactochlorella kochii CCAP 222/61
Compactochlorella kochii CB 2008/104
Trebouxiophyceae sp. A42
Chlorella saccharophila KMMCC FC-29
Chlorella vulgaris KMMCC EC-5
Chlorella saccharophila var. saccharophila KMMCC FC-5
Pseudochlorella prigsheimii KMMCC FC-6
Chlorella vulgaris KMMCC FC-41
Ulva prolifera LYG-HT
Myrmecia irregularis CCAP 221/8
Uncultured Eukaryote CA-1-6-2d
Heveochlorella roystonensis ITBB A3-8
Stichococcus bacillaris siva2011
Stichococcus minutus NJ-17
Elliptochloris sp. Amtoft s.n.
Elliptochloris sp. W0975
Diplosphaera sp. W1196
Stichococcus bacillaris KMMCC 20
Stichococcus bacillaris KMMCC 36
Stichococcus bacillaris KMMCC 47
Stichococcus bacillaris KMMCC 169
Stichococcus bacillaris KMMCC 199
Stichococcus bacillaris KMMCC 1480
Stichococcus sp. KMMCC 293
Stichococcus sp. KMMCC 313
Stichococcus sp. KMMCC 364
Stichococcus sp. KMMCC 246
Stichococcus sp. KMMCC 881
Stichococcus bacillaris KMMCC 18
Stichococcus sp. KMMCC 365
Uncultured Chlorophyta B1_4_1E_66
Uncultured Chlorophyta A2_4b_1E_31
Uncultured Chlorophyta A2_4b_1E_35
Coccomyxa sp. XDL-2012
Uncultured Xylochloris AEW2R-K255
Uncultured Xylochloris HEG9B-K2617
Xylochloris sp. SAG 2382
Uncultured Trebouxia photobiont Buellia frigida s187
Uncultured Trebouxia photobiont Rhizoplaca macleanii s207
Chlorella sp. ZJU0205
Chlorella sp. ZJU0204
Chlorella sp. ZJU0208
Chlorella sp. ZJU0209
Uncultured Apatococcus 3GSCRE_K20
Uncultured Stichococcus 3GB 18_K125

| HQ143746 | - | - |
| :---: | :---: | :---: |
| HQ191364 | - | - |
| HQ287928 | - | - |
| HQ317305 | - | - |
| HQ322125 | - | - |
| HQ322126 | - | - |
| HQ418418 | - | - |
| HQ702277 | - | - |
| HQ702321 | - | - |
| HQ702322 | - | - |
| HQ702324 | - | - |
| HQ702325 | - | - |
| HQ850569 | - | - |
| HQ902935 | - | - |
| HQ999103 | - | - |
| JN003601 | - | - |
| JN168788 | - | - |
| JN400256 | - | - |
| JN573866 | - | - |
| JN573884 | - | - |
| JN573885 | - | - |
| JQ315605 | - | - |
| JQ315606 | - | - |
| JQ315608 | - | - |
| JQ315611 | - | - |
| JQ315613 | - | - |
| JQ315614 | - | - |
| JQ315616 | - | - |
| JQ315617 | - | - |
| JQ315618 | - | - |
| JQ315619 | - | - |
| JQ315620 | - | - |
| JQ315623 | - | - |
| JQ315624 | - | - |
| JQ627438 | - | - |
| JQ627445 | - | - |
| JQ627446 | - | - |
| JQ946088 | - | - |
| JQ988938 | - | - |
| JQ988940 | - | - |
| JQ988942 | - | - |
| - | JX036213 | - |
| - | JX036231 | - |
| JX097055 | - | - |
| JX097056 | - | - |
| JX097060 | - | - |
| JX097061 | - | - |
| JX127160 | - | A |
| JX127161 | - | - |


| Uncultured Stichococcus 3GSG1RE_K41 | JX127162 | - | - |
| :---: | :---: | :---: | :---: |
| Uncultured Myrmecia 3GSG3RE_K13 | JX127163 | - | - |
| Uncultured Trebouxiophyceae 3GB14_K3762 | JX127167 | - | - |
| Uncultured Pabia 3GB1314RE_K32 | JX127170 | - | - |
| Apatococcus lobatus SAG 2037 | JX169825 | - | A |
| Apatococcus lobatus SAG 2359 | JX169826 | - | A |
| Uncultured Apatococcus GOGsM_K45 | JX169827 | - | D |
| Uncultured Apatococcus GOGs_18S_K42 | JX169828 | - | D |
| Uncultured Apatococcus GOGs_18S_K50 | JX169830 | - | D |
| Uncultured Apatococcus GOGsk_K17 | JX169831 | - | D |
| Coccomyxa sp. GOGrp_K07 | JX169832 | - | - |
| Radiococcaceae sp. SAG 2384 | JX169833 | - | - |
| Coenochloris signiensis CCAP 176/3 | JX169834 | - | - |
| Radiococcaceae sp. SAG 2375 | JX169835 | - | - |
| Pabia sp. SAG 2374 | JX169837 | - | - |
| Chloroidium ellipsoideum | JX169838 | - | - |
| Chloroidium sp. GOGrp_K10 | JX169839 | - | - |
| Chloroidium sp. GOGrp_K11 | JX169840 | - | - |
| Heterochlorella sp. GOGrp_K46 | JX169841 | - | - |
| Heterochlorella sp. GOGrp_K01 | JX169842 | - | - |
| Uncultured Trebouxia GOGs_18S_K02 | JX169843 | - | - |
| Uncultured Trebouxia GOGsk_K6 | JX169844 | - | - |
| Trebouxia sp. GOGre_K46 | JX169845 | - | - |
| Uncultured Trebouxia GOGsM_K51 | JX169846 | - | - |
| Pseudochloris wilhelmii SAG 5587 | JX235962 | - | - |
| Chloroparva sp. ACT 0602 | JX235963 | - | - |
| Uncultured Stichococcus FGSsan_K35 | JX391005 | - | - |
| Uncultured Apatococcus FGSwa_K32 | JX391013 | - | A |
| Uncultured Apatococcus FGSwa_K16 | JX391014 | - | E |
| Uncultured Apatococcus HP1 | JX877575 | - | D |
| Chlorella sorokiniana | JX910111 | - | - |
| Coccomyxa sp. AC1 | KC155323 | - | - |
| Coccomyxa sp. AH4 | KC155324 | - | - |
| Dictyochloropsis splendida SAG 2071 | KC333456 | - | - |
| Dictyochloropsis splendida CAUP H8601 | KC333457 | - | - |
| Dictyochloropsis splendida SAG 2097 | KC333458 | - | - |
| ex Catillaria chalybeia SCH-AB08.002d | KC333461 | - | - |
| ex Lobaria pulmonaria AB06.006A2 | KC333463 | - | - |
| ex Lobaria patinifera SCH-17084 | KC333467 | - | - |
| ex Crocodia aurata SAG 46.85 | KC333470 | - | - |
| ex Sticta canariensis SCH-6057 | KC333471 | - | - |
| Symbiochloris symbiontica CAUPH 8603 | KC333473 | - | - |
| ex Chaenotheca brunneola SAG 244.80 | KC333474 | - | - |
| Symbiochloris reticulata CCHU5616 | KC333476 | - | - |
| ex Lobaria oregana SCH-1998 | KC333477 | - | - |
| Symbiochloris reticulata CAUPH 8602 | KC333479 | - | - |
| ex Chaenothecopsis consociata SAG 27.81 | KC333480 | - | - |
| ex Sticta sp. SCH-22386 | KC333481 | - | - |
| ex Brigantiaea leucoxantha MP124 | KC333485 | - | - |

ex Megalospora sulphurata MP167
ex Lobariella sp. MPN168
ex Crocodia aurata MP169
ex Pseudocyphellaria lividofusca NZ1568
ex Pseudocyphellaria multifida NZ6009
ex Sticta latifrons NZ6021
ex Lobariella pallidocrenulata SA5417
ex Lobariella pallidocrenulata SA5513
ex Sticta pulmonarioides SA5533
ex Sticta aff. neopulmonaria SA5523
ex Sticta aff. neopulmonaria SA5534
ex Sticta sp. SA5538
Symbiochloris sp. SAG 2069
Symbiochloris irregularis SAG 2036
Uncultured Symbiochloris SA5420
Symbiochloris reticulata SCH-1069
Symbiochloris reticulata SCH-2339
Heveochlorella hainangensis SAG 2360
Apatococcus lobatus CCALA 213
Chlorella sorokiniana KU-1019
Nephroselmis pyriformis CCMP 717
Watanabea sp. BCP-SEV1VF9
Uncultured Eukaryote CMH 220
Uncultured Symbiochloris SCH-1524
Uncultured Symbiochloris SCH-22499
Uncultured Symbiochloris bSCH-18864
Dictyochloropsis splendida SAG 2069
Uncultured Trebouxia photobiont S65
Uncultured Trebouxia L174
Uncultured Apatococcus N2C_K33
Trebouxia sp. LM2014 L1660
Trebouxia sp. LM2014 L1668
Chloroidium ellipsoideum FG2/4.5E
Trochisciopsis tetraspora SAG 19.95
Uncultured Trebouxia photobiont 4H9
Coccomyxa sp. SAG 2040
Stichococcus sp. SAG 2119
Heterochlorella luteoviridis SAG 2133
Heterochlorella luteoviridis SAG 2213
Chloroidium angustoellipsoideum SAG 2041
Pabia signiensis SAG 2110
Uncultured Trebouxia AWH1
Uncultured Trebouxia A548
Uncultured Trebouxia APeel2
Uncultured Trebouxia photobiont ARam23
Trebouxia sp. IDH-2015 ANTLBCC7C
Uncultured Apatococcus AEW6B_K237
Uncultured Apatococcus AEW7R_K37
Uncultured Apatococcus AEW4B_K311

| KC333486 | - | - |
| :---: | :---: | :---: |
| KC333487 | - | - |
| KC333488 | - | - |
| KC333490 | - | - |
| KC333496 | - | - |
| KC333498 | - | - |
| KC333502 | - | - |
| KC333503 | - | - |
| KC333504 | - | - |
| KC333505 | - | - |
| KC333506 | - | - |
| KC333507 | - | - |
| - | KC333509 | - |
| - | KC333522 | - |
| - | KC333529 | - |
| - | KC333557 | - |
| - | KC333559 | - |
| KC470085 | - | - |
| KF355939 | - | - |
| KF444207 | - | - |
| KF615768 | - | - |
| KF693804 | - | - |
| - | KF800311 | C |
| - | KF960681 | - |
| - | KF960685 | - |
| - | KF960686 | - |
| KF960690 | - | - |
| - | KJ576667 | - |
| - | KJ576675 | - |
| KJ639847 | - | A |
| - | KJ754297 | - |
| - | KJ754298 | - |
| KM020071 | - | - |
| KM020112 | - | - |
| - | KM062106 | - |
| KM116459 | - | - |
| KM116460 | - | - |
| KM116461 | - | - |
| KM1 16462 | - | - |
| KM116463 | - | - |
| KM116465 | - | - |
| - | KM369502 | - |
| - | KM369523 | - |
| - | KM369692 | - |
| - | KM369710 | - |
| - | KM987344 | - |
| KP081318 | - | A |
| KP081319 | - | D |
| KP081320 | - | D |


| Uncultured Apatococcus AEW2R_K261 | KP081321 | - | E |
| :---: | :---: | :---: | :---: |
| Uncultured Apatococcus AEW2B_K100 | KP081322 | - | E |
| Uncultured Apatococcus AEW6R_K299 | KP081323 | - | A |
| Uncultured Apatococcus AEW1B_K142 | KP081324 | - | A |
| Uncultured Apatococcus AEW7R_K193 | KP081325 | - | A |
| Uncultured Trebouxia AA1 | - | KP282148 | - |
| Uncultured Trebouxia VO2 | - | KP282194 | - |
| Uncultured Trebouxia A05 | - | KR053366 | - |
| Uncultured Trebouxia A21 | - | KR053382 | - |
| Trebouxia sp. OTU A01 ID 446 | - | KR912507 | - |
| Trebouxia sp. OTU A03 ID 4083 | - | KR912786 | - |
| Trebouxia sp. OTU A03 ID 4092 | - | KR912820 | - |
| Trebouxia sp. OTU A05 ID 8721 | - | KR912929 | - |
| Trebouxia sp. OTU A05 ID 6715 | - | KR912932 | - |
| Trebouxia sp. OTU A08 ID 6759 | - | KR913113 | - |
| Trebouxia sp. OTU A32 ID 075 | - | KR913269 | - |
| Trebouxia sp. OTU G02 ID 3747 | - | KR913282 | - |
| Trebouxia sp. 14a | - | KT715659 | - |
| Trebouxia sp. 28 | - | KT715660 | - |
| Trebouxia sp. 87 | - | KT715661 | - |
| Trebouxia sp. 406 | - | KT715662 | - |
| Trebouxia cretacea AV066 | - | KT819919 | - |
| Trebouxia gigantea AV093 | - | KT819923 | - |
| Trebouxia jamesii AV005 | - | KT819971 | - |
| Trebouxia jamesii AV031 | - | KT819977 | - |
| Trebouxia cretacea AV090 | - | KT819978 | - |
| Trebouxia simplex AV082 | - | KT819984 | - |
| Trebouxia jamesii 4174 | - | KT827704 | - |
| Uncultured Eukaryote B4_57 | KU579454 | - | E |
| Uncultured Eukaryote B5_234 | KU579631 | - | E |
| Uncultured Eukaryote B4_313 | KU579710 | - | E |
| Apatococcus sp. SAG 2145 | KX025108 | KX025108 | A |
| Uncultured Apatococcus GOGs_K08 | - | KX025109 | B |
| Uncultured Apatococcus GOGs_K15 | - | KX025110 | A |
| Uncultured Apatococcus GOGs_K48 | - | KX025111 | C |
| Uncultured Apatococcus GOGs_K52 | - | KX025112 | D |
| Uncultured Apatococcus GOGs_K31 | - | KX025113 | D |
| Uncultured Apatococcus GOGs_K31 | - | KX025113 | D |
| Uncultured Apatococcus GLB_K898 | - | KX025114 | B |
| Uncultured Apatococcus GLB_K925 | - | KX025115 | D |
| Uncultured Apatococcus GLB_K910 | - | KX025116 | D |
| Uncultured Apatococcus GLB_K896 | - | KX025117 | E |
| Uncultured Apatococcus GLG_K1044 | KX025118 | KX025118 | A |
| Uncultured Apatococcus GLG_K1068 | - | KX025119 | D |
| Uncultured Apatococcus GLG_K1050 | - | KX025120 | D |
| Uncultured Apatococcus GLG_K1042 | KX025121 | KX025121 | E |
| Chlorella saccharophila SAG 211-9a | X63505 | - | - |
| Chlorella luteoviridis SAG 211-2a | X73998 | - | - |
| Chlorella mirabilis Adreyeva 748I | X74000 | - | - |

Myrmecia biatorellae UTEX
Dictyochloropsis reticulata
Myrmecia bisecta
Trebouxia usneae UBT-87.019A1
Trebouxia arboricola SAG 219-1a

Z28971
Z47207
Z47209
Z68702
Z68705

Table S2: Calculated parameters of the 18S and individual partitioned ITS data matrices from the Bayesian inference. In the columns, the values without and with brackets indicate mean and variance, respectively.

| Parameters | 18S | ITS1 |  | 5.8 S |  | ITS2 |  | ITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data matrix |  | Manually adjusted | Relaxed masking | Manually adjusted | Relaxed masking | Manually adjusted | Relaxed masking | Stringent masking |
| Frequency A | 0.2347 (0.0001) | 0.1785 (0.0001) | 0.1825 (0.0002) | 0.3092 (0.0011) |  | 0.1986 (0.0002) | 0.1817 (0.0002) | 0.2396 (0.0007) |
| Frequency C | 0.2358 (0.0001) | 0.2981 (0.0002) | 0.3030 (0.0003) | 0.2357 (0.0009) |  | 0.2885 (0.0003) | 0.2895 (0.0004) | 0.2728 (0.0007) |
| Frequency G | 0.2661 (0.0001) | 0.2966 (0.0003) | 0.2926 (0.0003) | 0.2305 (0.0009) |  | 0.2729 (0.0003) | 0.2857 (0.0004) | 0.2731 (0.0007) |
| Frequency T | 0.2634 (0.0001) | 0.2268(0.0002) | 0.2219 (0.0002) | 0.2246 (0.0008) |  | 0.2401 (0.0003) | 0.2431 (0.0003) | 0.2144 (0.0006) |
| Gamma shape (G) | 0.1916 (0.0002) | 3.3108 (0.4160) | 3.3481 (0.5083) | 0.1121 (0.0001) | 0.1235 (0.0001) | 1.2100 (0.0219) | 1.2590 (0.0285) | 0.1053 (0.0000) |
| Proportion of invariant sites (I) | 0.2777 (0.0006) | 0.0467 (0.0002) | 0.0487 (0.0003) |  |  |  |  | 0.3187 (0.0038) |
| R-matrix [A-C] | 0.1102 (0.0001) | 0.1433 (0.0003) | 0.1525 (0.0003) |  |  | 0.1138 (0.0003) | 0.1149 (0.0004) | 0.0486 (0.0004) |
| R-matrix [A-G] | 0.2621 (0.0004) | 0.2196 (0.0004) | 0.2075 (0.0004) |  |  | 0.2726 (0.0008) | 0.3074 (0.0010) | 0.2223 (0.0024) |
| R-matrix [A-T] | 0.1111 (0.0001) | 0.2048 (0.0004) | 0.2031 (0.0004) |  |  | 0.1894 (0.0005) | 0.1822 (0.0006) | 0.1643 (0.0019) |
| R-matrix [C-G] | 0.0908 (0.0001) | 0.0509 (0.0001) | 0.0538 (0.0001) |  |  | 0.0444 (0.0001) | 0.0424 (0.0001) | 0.1021 (0.0008) |
| R-matrix [C-T] | 0.3680 (0.0004) | 0.2730 (0.0004) | 0.2749 (0.0005) |  |  | 0.2748 (0.0006) | 0.2591 (0.0008) | 0.3873 (0.0029) |
| R-matrix [G-T] | 0.0577 (0.0001) | 0.1083 (0.0002) | 0.1082 (0.0002) |  |  | 0.1050 (0.0002) | 0.0940 (0.0002) | 0.0754 (0.0011) |
| Kappa (K) |  |  |  |  | 2.7198 (0.5376) |  |  |  |

Table S3. Tree statistics of individual ITS data matrices calculated by maximum parsimony method.

| Parameters | ITS Data matrix <br> Manually adjusted | Relaxed | Stringent |
| :--- | :--- | :--- | :--- |
| No. of total characters | 664 | 621 | 199 |
| No. of constant characters | 176 | 174 | 141 |
| No. of parsimony-informative characters | 448 | 408 | 45 |
| Tree length | 2002 | 1700 | 109 |
| Consistency index | 0.4995 | 0.5039 | 0.7431 |
| Homoplasy index | 0.5005 | 0.4951 | 0.2569 |
| Retention index | 0.8739 | 0.8771 | 0.9548 |
| Rescaled retention index | 0.4365 | 0.4428 | 0.7096 |

## Errata for

Taxonomy and phylogeny of the family Fuscideaceae (Umbilicariales, Ascomycota) with special emphasis on Fuscidea.

## Martina Zahradníková



Thesis for the degree philosophiae doctor ( PhD ) at the University of Bergen


## Errata

Page 91: $\quad$ Johnson $\rightarrow$ Johnsen
Page 92: $\quad$ to examine their phylogenetic relationships $\rightarrow$ for species delimitation supported by $80 \%$ bootstrap value $\rightarrow$ with high support sorediate and fertile taxa $\rightarrow$ sorediate and fertile taxa the so-called species pairs

Page 94: the sentence is corrected: A concatenated data set of ITS region divided in four partitions, i.e. ITS1, 5.8S, ITS2, and LSU, and mtSSU was used to...

Page 95: equal to or above $0.9 \rightarrow$ equal to or above 0.95
equal to or above $80 \% \rightarrow$ equal to or above $70 \%$
Individual fragments were inspected... $\rightarrow$ Individual trees were inspected... the same settings as described. $\rightarrow$ the same settings as described. No significant conflicts were detected.

Page 96: equal to or above $0.9 \rightarrow$ equal to or above 0.95
raxmlGUI $\rightarrow$ raxmlGUI version 1.3
22 taxa $\rightarrow 12$ taxa
added: 17 sequences were newly acquired.
Page 97: $\quad$ occurred together $\rightarrow$ was related
Fuscidea cyathoides (Ach.) V. Wirth \& Vězda. $\rightarrow$ Fuscidea cyathoides (Ach.) V. Wirth \& Vězda, although lacking support.
82 taxa $\rightarrow 13$ taxa
placement of $F$. cyathoides $\rightarrow$ placement of $F$. pusilla BG-L-98625
with moderate support $\mathrm{PP}=0.62 / \mathrm{ML}=57 \% \rightarrow$ unsupported lineage
Page 100: Fuscidea gothoburgensis BG-L-96934 $\rightarrow$ Fuscidea gothoburgensis BG-L100245

Page 101: Fuscidea gothoburgensis BG-L-96934 $\rightarrow$ Fuscidea gothoburgensis BG-L100245

Page 113: Johnson $\rightarrow$ Johnsen
CZECH REPUBLIC. W Bohemia. ... S Bohemia. ..... $\rightarrow$ CZECH REPUBLIC. S Bohemia. ..... W Bohemia. ... IRELAND. Co. Waterford. ... Co. Kildare. ... $\rightarrow$ IRELAND. Co. Kildare. ... Co. Waterford. ...

Page 114: T. Tønsberg 44870 (BG-L-98665) $\rightarrow$ T. Tønsberg 44871 (BG-L-98666)
Page 119: ...Zschacke, 1927). $\rightarrow$...Zschacke, 1927) (see Table 1).
Page 121: the colour of the thalli. The ratio ... (Table 2). $\rightarrow$ the colour of the thalli (Table 2). The ratio...

Page 142, Figure 2: Fuscidea gothoburgensis BG-L-96934 $\rightarrow$ Fuscidea gothoburgensis BG-L-100245
Fuscidea pusilla BG-L-96935 $\rightarrow$ Fuscidea pusilla BG-L-96938
Page 146, Table 2: the column "Variety" was added
the values of the standard deviation were corrected for some calculations as were a few values of the mean of the given parameters, numbers of single measurements per one parameter were added

Page 147, Table 3: Herbarium/Collector number $\rightarrow$ Collection/Accession number. Fuscidea pusilla BG-L-96935 $\rightarrow$ Fuscidea pusilla BG-L-96938 Fuscidea austera E. Timdal $4174 \rightarrow$ Fuscidea austera E. Timdal 4177

Page 149: in Abstract, the first sentence: Knowledge about recognition and delimitation of lichenized algae and consequently algal systematics... $\rightarrow$ The knowledge of the taxonomy and classification of algae (including lichenized)...

Page 150: in Abstract, the last sentence: The photobiont of most Fuscidea species, Apatococcus fuscideae A. Beck \& Zahradn., was circumscribed... $\rightarrow$ The most common photobiont of Fuscidea species, Apatococcus fuscideae A.Beck \& Zahradn., was described as new to science.

Page 151: $\quad$ (Smith et al. 2009) $\rightarrow$ as complied from Smith et al. (2009)
Page 152: the citation of Piercey-Normore 2006 was deleted
Page 153: in Material and Methods: explanation was added: (abbreviations according to Index Herbariorum; http://sweetgum.nybg.org/science/ih/) in Material and Methods: TLC $\rightarrow$ thin-layer chromatography (TLC)

Page 159: Visher $\rightarrow$ Vischer
Page 160: $\quad$ Description: with Cells $\rightarrow$ Description: Cells
Page 161: in Taxonomy: with grey, to tinged brown $\rightarrow$ grey to brown tinged in Taxonomy: ..., occurring on acid rock in Europe. $\rightarrow$ It occurs on acid rock and is widely distributed (Gilbert et al. 2009).
in Discussion: morphological methods $\rightarrow$ morphological methods only, genera $\rightarrow$ genus
in Discussion: the following sentence was deleted: A new alga species, Apatococcus fuscideae, is described for the photobionts of selected Fuscidea species, except for $F$. lightfootii.

Page 162: in Apatococcus fuscideae: "Group F only consists of ..." $\rightarrow$ "The clade with

Page 163: In Apatococcus in F. lightfootii: This group ... distinct from the lichenized photobionts nested in group F. $\rightarrow$ The clade ... distinct from Apatococcus fuscideae.

Page 164: the third sentence was changed: ...are almost identical with only minor differences... $\rightarrow$...show only minor differences, i.e. they are almost identical. in the fourth sentence, two words were changed: shallow $\rightarrow$ recent, lowest $\rightarrow$ weak the fifth sentence was corrected: Aligning the variable ITS... $\rightarrow$ The aligning of the variable ITS...

Page 165: in Conclusion, the last sentence was shortened: is described. Its delimitation is based on... $\rightarrow$...is described as new based on...

Page 167: microthamniales (chlorophyte) $\rightarrow$ Microthamniales (Chlorophyte) Green Algae $\rightarrow$ green algae

Page 173: $\quad$ Apatococcus fuscideii $\rightarrow$ Apatococcus fuscideae
Page 175: $\quad$ Apatococcus fuscideii $\rightarrow$ Apatococcus fuscideae
Page 176: four hemi-CBCs were added to the terminal loop of Helix III
Page 179, Table 4: in parenthesis $\rightarrow$ in brackets
added: Grey shade divides CBCs and hemi-CBCs.


[^0]:    ${ }^{1}$ Martina Zahradníková (corresponding author): Department of Natural History, University Museum, University of Bergen, Allégaten 41, P.O.Box 7800, N-5020 Bergen, Norway, email: Martina.Zahradnikova@uib.no, phone: 004745125 030, fax: 004755589667

