(Jrjan Bergmann

Discrete event simulation in Java with
applications in rodent navigation

DEPARTMENT OF INFORMATICS
UNIVERSITY OF BERGEN

N-5020 Bergen, Norway
and

NEUROINFORMATICS AND IMAGE ANALYSIS GROUP
DEPARTMENT OF PHYSIOLOGY
UNIVERSITY OF BERGEN

Arstadveien 19, N-5009 Bergen, Norway

Thesis for the Degree of Candidatus Scientarium in Informatics

6th September 2002

Abstract

In this thesis we will examine models which describe navigation behavior
in a rat. Models describing cognitive behavior often use neural networks to
account for the learning aspects of the animals they aim to describe. We will
in this thesis examine a model which instead introduce abstractions taken
directly from rat physiology (such as PlaceCells and GoalCells) and which
facilitates learning in a more explicit way.

In order to examine this model we will create a discrete event simula-
tion, implemented in a relatively new object-oriented programming language
called Java. Simulations can be implemented effectively in many different
languages, but object-orientation is a methodology which promises several
advantages, especially for discrete event simulation. Although implemented
in Java, we will present our discussion as language-neutrally as possible so
that the analysis holds true for other object-oriented languages as well.

Using data extracted from real rats, we will demonstrate that it is possible
for simulated animals to navigate successfully in an environment containing
obstacles, using the model we describe.

Contents

1 Introduction

1.1 Why this work? oo

1.1.1 Motivation o o
1.2 Goals for this thesis
1.3 Organization of the thesis

I A general framework for simulation

2 Simulation and object-orientation

2.1 Models and simulation
2.2 Softwareo
2.2.1 Desirable virtues
2.2.2 Object-Orientation
223 Java e e
2.3 Terminology
2.3.1 Simulation entities
232 Time.

3 Introducing the elements by two examples

3.1 Anelevator example
3.1.1 Themodel.
3.1.2 Theevents

3.2 A small rat simulation
321 Themodel.
3.22 Theevents

3.3 Thetimeline.

4 A general structure for discrete event simulation
4.1 Theelements

4.1.1 Timeline
412 Event
413 Comntext e
414 Subjecto

i

11

4.2 The final framework
4.3 Efficiency considerations L.
4.4 A few words about implementation
4.5 Other simulation frameworks in Java,

A comprehensive example

5.1 The elevator simulation
5.2 The protocol o
5.3 Choice of strategy
54 Results and analysis 0.

An extension for rodent navigation simulation

Adaptation of the framework

6.1 Abstractions.
6.2 Themodel
6.21 Cage e
6.2.2 Rat

6.3 Theevents.
6.3.1 TheInputEvents
6.3.2 TheMoveEvent
6.3.3 Reoccurence.
6.3.4 Handlingspeed

Defining input

7.1 Touch
72 Smell.
7.3 Vision e

7.3.1 The problem defined
7.3.2 From global to local coordinates
7.3.3 Efficiency considerations

Evaluating the framework

8.1 Sample strategieso
8.1.1 Deterministic strategies
8.1.2 Non-deterministic strategies

8.2 Validation of the components
8.2.1 Custom strategies for validation

IIT Simulation of rodent navigation

9

About the simulations
9.1 Why simulation o000

il

42
42
42
43
43
45
46

48
48
48
49
50
51

54

56

9.2 The purpose of these simulations

10 Basic principles of rodent navigation

10.1 Exploration
10.2 Path integration

11 A model for exploration —Tchernichovski-Benjamini

11.1 A model for exploratory behavior
11.2 Minor modifications of the model
113 Results

12 Simrat navigation —The Trullier-Meyer model
12.1 The exploration phase and the learning model

12.1.1 Representing positions
12.1.2 Building a cognitive graph
12.1.3 Learning goals
12.2 Returning to thegoal
12.2.1 Single goal path-integration
12.2.2 Multiplegoals
12.2.3 Path-integration summary
12.3 Problems
12.3.1 Creating subgoals

12.3.2 Navigation using multiple subgoals

124 Results

IV Experimental data and analysis

13 Hippocampus and place cells

13.1 Placecells

14 Experiment method and data acquisition

14.1 Rat surgery
14.1.1 Surgery
14.1.2 Adjustment

14.2 The testlabsetup

14.3 A typical session

144 Thedata.

15 Data analysis

15.1 Positional data
15.2 Spikedata
15.2.1 Clustering
153 Maps oo oo
15.3.1 Time-maps

v

58
58
99

60
60
61
63

64
64
65
68
71
72
72
74
75
76
76
76
78

82

84
85

87
87
87
88
88
90
92

15.3.2 Ratemaps. 96

15.3.3 Smoothed rate-maps 97

15.3.4 Fieldmaps, 98

16 Fitting our model to real data 100
16.1 The problem defined 100
16.1.1 Discussion of the parameters 102

16.1.2 The final optimization problem 103

16.2 Results o 103
17 Path integration with real data 107
17.1 Field-maps e 107
17.2 Deterministic results 108
17.2.1 Handling silent areas 108

17.2.2 Inaccuracies and errors 111

18 Evaluating path integration 112
18.1 The shortest-path direction map 112
18.2 Evaluating error L oo 112
183 Results. e 114
19 Verifying the results with simulation 118
20 Conclusion 122
20.1 Results o . o 122
20.2 Future worko 123

A Mathematical details 125
B Image acknowledgements 127

List of Figures

4.1
4.2

4.3

5.1

5.2

6.1

6.2
6.3

7.1
7.2
7.3

8.1

8.2

8.3
11.1

12.1
12.2
12.3

12.4
12.5

The life-cycle of an Event
A class diagram showing the relationship between the various
components in the simulation framework.
The expected running time for a heap and linked-list driven
timeline.o

Graph of average waiting time from first floor to all the other
floors.
Graph of average waiting time from first floor to all the other
floors in a crowded elevator. oL

Input file which defines a cage with obstacles, landmarks, start

and goal positions.o o oo
The interaction pattern for the InputEvent.
The interaction pattern for the MoveEvent.

The map describing the scene
The point/line-representation of the scene
A class diagram showing the relationship between the various

components in the rat extension of the framework.

Plot of the smell marks left by a Rat using the Deterministic-
AvoidSmellStrategy. oL
Plot of the smell marks left by a Rat using the DepthFirst-
Strategy.
The interaction pattern of the TestStrategy.

Plot of distance to home base vs speed for 6 excursions.. . . .

Activation function of PlaceCell where 0 =0.1.
Activation function of two PlaceCells.
Two place-cells, u; and ug, drawn in the position they repre-

sent in the cage, relative to two landmarks, ¢ and b.
Basiccageplot
Idealized cognitive graph for basic cage.

vi

12.6 Rat in the center of the basic cage.
12.7 Cognitive graph representation of rat in the center of cage. . .
12.8 Sumerizing figure of Trullier-Meyer path integration.
12.9 Simrat in corner ready for path-integration.
12.10Direction to goal.o
12.11The suggested implementation hierarchy.
12.12Plot of heading of the rat in empty cage.
12.13Plot of heading of the rat in cage with obstacles.
12.14Plot of heading of the rat using multiple subgoals.

13.1 The Hippocampus in the rat brain.
13.2 Example of a complex-spike firing pattern.

14.1 Rat surgery; The skin retracted and the scull exposed.
14.2 Rat surgery; Attachment of the platform.
14.3 After rat surgery.
14.4 The connections and signal flow of the recording setup.

15.1 Sample rate-map
15.2 Sample smoothed rate-map.
15.3 Sample field-map. Lo oo

16.1 Activation function fitted to real rat data.

17.1 Fyy plotted with ¢, =0.001
17.2 Fyy plotted with ¢, =0.0001
17.3 Direction plot for simrat using real rat data.
17.4 Direction plot for simrat using real rat data.

18.1 Shortest-path direction map for a cage without obstacles, with
a goal in position (20,1).

18.2 Success-rate for path-integrators.

18.3 Plot of &, evaluated for all positions u in the cage.

18.4 The difference map between the shortest-path direction map
and the map from the adjusted Trullier-Meyer strategy.

18.5 Plot of &, evaluated for all positions u in the cage.

19.1 Deterministic simrat movement.
19.2 Probabilistic simrat movement.

vii

73
73

Acknowledgements

Upon completion of this thesis I would like to thank Professor Trond Steihaug
for always being available for answering my questions, for guiding this thesis
in the right direction and for giving invaluable feedback. I would also like to
express my gratitude to Associate Professor Arvid Lundervold for inspiring
me to choose an exciting field of study, for supplying me with numerous
papers and articles and for all comments over the course of this thesis.

Also thanks to Associate Professor Bolek Srebro and Eirik Thorsnes for
ideas and for allowing me to base parts of this thesis on their results.

Finally, I would like to thank Silje M. Kalsaas for always being patient,
and for reading this thesis.

I dedicate this thesis to my father

(@rjan Bergmann
Bergen, 3rd September 2002

viii

Chapter 1

Introduction

1.1 Why this work?

In the fall of 1998 a team of researchers lead by Bolek Srebro opened a lab
at the Department of Physiology at the University of Bergen devoted to the
exploration and examination of rat brain activity. Among the results pro-
duced from this lab was the Master thesis of Eirik Thorsnes [Thorsnes, 2001],
describing the dynamic behavior of rat brain when introduced to a new and
open environment. An important part of that thesis was describing how a
special type of cells in the rat brain seemed to encode the physical position
of the rat in the cage. These cells are appropriately called “place-cells”, and
there has been many attempts to model their behavior since they were first
discovered in 1971.

Today results describing place-cell behavior has become readily available
for examination from several research facilities around the world. This has
prompted the need to find and examine models describing place-cells and
their uses.

1.1.1 Motivation

Modeling is a powerful tool for examining complex systems. We model sys-
tems in order to learn more about a systems behavior. Modeling is one of
our most fundamental tools to that end.

Complex systems which depend on input and produce output are some-
times termed information-processing systems.

Depending on how much details is known about the transformation from
the input data to the output data, one can attempt to model the system
either as a input-output mapping without implementing the actual processes
taking place in between or, if enough information is available, by modeling
each of the systems constituent parts.

David Marr [Marr, 1982] formalizes these two mentioned approaches, and

ix

introduces a third level at which information-processing systems can be un-
derstood.

Computational theory A top down view of the system describing it as
a mapping of one type of information to another. At this level of
understanding it is important to consider what the goal of system is
and why it is appropriate.

Representation and algorithm This level of understanding is primarily
concerned with how the computational theory can be achieved. In
particular, what is the representation of the input and output, and
what is the algorithm for the transformation?

Implementation At the most detailed level of understanding we are con-
cerned with how the representation and algorithm can be realized in
the context of interest. The context may require either physical (hard-
ware) or software implementation.

Biological motivation

There exist several models describing navigation in rodents. Some models
are very specific and model the entities they describe in a detailed mathemat-
ical language and focus on hardware specific implementation. Other models
instead propose general principles and focus on why they are appropriate.

We will think of the rat as a machine which, provided with input, will
produce response (output) characteristics. The purpose of this is to gain
deeper insight into the information-processing system which is the rat; we
want to know how the rat navigates. Knowledge of this would probably pro-
vide important insight into how the brain of rat works, and could eventually
lead to the tantalizing prospect of direct animal-machine interaction at the
physiological level.

Additional thoughts But we might also wonder about what the purpose
of the rat is. For each input, the rat will perform an action, but what is
the rats ultimate goal in life? Why does it have behavior? It is generally
believed that the rat has instincts which helps it survive. When hungry, it
will search for food. When tired, it will find a place to sleep. But these
simple motivations cannot explain all of the rats choices. There might be
an element of randomness involved, or there might be incentives that we as
humans simply cannot understand. The truth is that we do not know what
motivates the rat, we simply assume that something does. Later on we will
assume that the rat wants to go to a given place in the cage, but why it
would want to do so we leave for others to speculate on.

Often when examining models of biological origin, the principles learned
are applicable to a other areas of science as well.

The case of rat navigation can in many instances have direct implica-
tions to navigation in robotics. Experiments are continually being carried
out by the military to find new and efficient ways of guiding rockets and
missiles. Space-exploration is also an area which can benefit greatly from
improvements in automatic guidance systems. When exploring relatively re-
mote planets such as Mars (or even the moon) it is impractical to rely solely
on remote control of exploration vehicles from earth. One of the main prob-
lems is that it simply takes too long time for the signals to travel. Therefore
robots which are able to learn an environment, and navigate on its own are
of special interest. See [Burgess et al., 1997] for more details.

But a model can also have important implications for its originating sys-
tem. By experimenting with a model it is often possible to make predictions
about how the real system should behave in certain situations. When these
predictions are paired with new examinations of the original system, this can
lead to important discoveries.

Motivation for computation

There exists many tools in computer science for analyzing a model describing
a complex system. The tools that are appropriate for one model are often
not appropriate for another.

Models are often divided into continuous or discrete models. In contin-
uous models there exist a continuous relationship between the input to the
model and the model output. Typically, such models use a large number
of linear or non-linear equations which can be solved by analytical or ap-
proximation methods. Models describing the currents in the North Sea is a
typical example of a continuous model which depend on several continuous
variables such as time and temperature.

In discrete models on the other hand there exist no continuous relation
between the models input and output. The model output can only be eval-
uated at discrete values for its input parameters. Such problems are often
difficult to solve, since many of the classical analytical tools developed for
continuous models fail for discrete models. However, if the number of vari-
ables in the discrete model can be made small, then discrete models allows us
to test the output for some especially selected values of its input parameters
in a systematic manner.

This process of examining a models output for certain values of its input
is called simulation. Simulation has the great advantage that data produced
from the model can easily be compared to data gathered from the real system.
This offers a clear way to falsify the model: if the model and the system
produce “too different” results for the same input, then the model is false,
and must be discarded. Otherwise, the model may be correct.

xi

Since experimental data describing the real system behavior is available,
we believe simulation is a good way to test our models. The experimental
data is sampled at discrete points in time, and at a resolution which with the
current equipment cannot be made finer. There is some evidence that parts
of the underlying physiology in rats is discontinuous. Other characteristics
of the rat is continuous, such as position and direction. Nevertheless it is
generally believed that movement below a certain threshold value cannot be
attributed to a conscious decision by the rat. This suggests that if we in-
troduce a fine enough resolution, then we can capture the important aspects
of movement, while excluding details most likely caused by randomness. All
things considered we believe that a discrete model seems reasonable for the
systems we would like to model.

Discrete event simulation (DES) is one classical and well understood
method for examining a model. It has previously been showed that DES
can be applied successfully for a large range of complex problems. DES is a
method which can benefit greatly from object-orientation |[Ziegler, 1991].

Java is one relatively new object-oriented computer programming lan-
guage. We would like to examine if Java is a suitable language for im-
plementing our models. The object-oriented features of the Java language
should be ideal for the implementation of a DES. We hope to show that the
models we will simulate can be easily implemented and simulated in Java.

1.2 Goals for this thesis

There exists several models describing physiological phenomenons in the
rat ranging from neural networks and artificial intelligence to mathematical
models involving large sets of equations. These models describe a complex
system, which involves several components often not well understood (even
by researchers in the field of physiology or medicine). We will in this thesis
show that simulations implemented in the Java programming language is a
good way of examining such systems.

In order for us to examine the models describing rat behavior, we first
need to create a framework in which the simulations can take place. This
should be done by implementing a discrete event simulator in the Java pro-
gramming language. This framework should be general enough to be used
for simulation of a large range of problems. We will also need some problem
specific extensions to implement the rat simulations.

An important aspect of all simulations is to see whether the simulations
indeed does provide reasonable results for the models they attempt solve.
Given that experimental data from rats during exploration in an open en-
vironment is available, we should attempt to see if real rats could use the
models we describe for navigation.

Therefore the goals for this thesis can be summarized as follows.

xii

I. Create a robust and general framework for discrete event simulation in
Java.

IT. Use the general framework to create an extension for simulation of a
rat moving freely in a cage.

ITI. Examine models describing rodent navigation by implementing them
in our framework.

IV. Check whether the models can be used for describing rodent navigation
in real rats.

There is one part of this thesis devoted to each of these goals.

1.3 Organization of the thesis

This thesis is divided into four parts. In Part I we start by examining a
few examples of simulations, in order to determine their constituent parts.
We then design and implement a general software library (or framework) for
simulation from scratch. We will use this framework to implement a small
version of a classical simulation; The ElevatorSimulation [Knuth, 1969].

In Part II we will extend the general framework created in Part I to be
especially adopted to the simulation of a rodent moving freely in a cage. We
will specify and implement each of the components in the rat simulation, and
describe how we generate input in the form of vision, smell or touch for the
simrat. After this part we will have a testbed in which we can experiment
with various models describing both physical and cognitive rat behavior.

Part III is dedicated to modeling and simulation. We will consider two
models [Tchernichovski and Benjamini, 1998, Trullier and Meyer, 2000] de-
scribing various aspects of rat behavior and implement them in the extended
framework developed in Part II. We will give an overview of our implementa-
tion, and show results from the simulations performed with the two models.

In Part IV of the thesis we will examine experimental data gathered from
real rats |Thorsnes, 2001]. We will give an overview of the data collection
and refinement process involved. We will then use the data collected to
adjust the free parameters of one of our models, so that the simrats internal
representation of the environment is similar to those found in real rats. This
adjusted model will then be simulated once more, and we discuss the results
in comparison with those produced in Part III.

xiii

Part 1

A general framework for
simulation

We will start off this thesis by creating a general framework for discrete
event simulation. This will be done by creating a custom class-library im-
plemented in the Java programming language.

Although we have chosen to implement the framework in Java, the ideas
presented in this thesis have been described as language-neutral as possible,
so that the framework could easily be ported to a different object-oriented
language, if the need for implementation in a different programming language
should arise.

All the later simulations in this thesis will use this class-library, or frame-
work as we will call it, extensively. In order for the framework to be as good
as possible, we will first discuss what goals we strive for when creating com-
puter programs. This will be done in Chapter 2 of the thesis. There we will
also define a few quantities which are essential in discrete event simulation.

In Chapter 3 we will consider two examples of simulation; the elevator
and the simrat simulation. We take a look at the elements (later referred
to as simulation entities) which are needed in the two models. This chapter
will introduce examples which we will later use as a basis for generalization.

Chapter 4 describes the structure for our simulation framework. Each
element in a discrete event simulation will be described in detail. We also
describe how each of the simulation components relates to each other in a
class-hierarchy. Some notes on how efficient the framework is, and how it is
implemented is also included.

The final chapter in Part I describes and implements the elevator simu-
lation introduced in Chapter 3. The aim of this chapter is to exemplify the
ideas described in the previous chapters. The results presented in this chap-
ter will show that the framework we have created is sound and is working

properly.

Chapter 2

Simulation and
object-orientation

2.1 Models and simulation

Models and simulations of various types are tools for dealing with com-
plex systems and the interactions of their constituent parts. Scientists and
engineers have long used models to better understand the systems they are
studying, for analysis and quantification, performance prediction and design.

According to Carson and Cobelli [Carson and Cobelli, 2001] a model is a
representation of reality involving some degree for approximation. In classi-
cal scientific terms, modelling can be used to describe, interpret, predict or
explain.

Simulation is the process of solving a model to examine its output behav-
ior. When carried out on a model, simulation yields output responses that
provide information on system behavior. Depending on the modelling pur-
pose, this information assists in describing the system, predicting behavior
or yielding additional insights (i.e., explanations).

Simulation offers a way forward in situations in which it might not be ap-
propriate, convenient or desirable to perform particular experiments on the
system. Such situations could include those in which experiments cannot be
done at all, are too difficult, are too dangerous, are not ethical, or would
take too long to obtain results. Therefore, we need an alternative way to ex-
periment. Simulations offers an alternative that can overcome the preceding
limitations. Such experimenting can provide information that, depending on
the modelling purpose, aids description, prediction or explanation.

There are two fundamental goals that we try to achieve in all simulations.

o Correctness

e Efficiency

Correctness is important in all models describing reality. We say a model
is correct if it can be validated. Validating a model is essentially examining
whether it is good enough in relation to its intended purpose. This assumes
that, in a Popperian sense, that it can be tested and be falsified; it must
be readily capable of bringing about its own downfall. However; clearly no
model can have absolute unbounded validity given that a model is essentially
an approximation of reality.

As simulations becomes large, the need for efficiency becomes paramount.
Often simulations will be run over and over again in order to examine how
a model behaves and changes with the model parameters. Running time is
here one measure of efficiency. Although the running time of a simulation
is of extreme importance, it is not the only measure of efficiency. It is also
important that the implementation of the model is simple to understand,
so that verification and changes to the model can be done efficiently. Since
simulation often involves alteration of the model implementation, it is vital
that the simulation is implemented in such a way that changes does not pro-
duce unintended errors or require unreasonably long implementation time.
If a simulation is inefficient, this may force us to accept results which are
less than optimal because of time requirements imposed by outside factors.

In the next sections we will examine guidelines which will help us achieve
our two goals of correctness and efficiency.

2.2 Software

The simulations we will create will all be implemented on a computer. We
will create several software packages, and it is important that these packages
will be written according to guidelines that will make them as good as pos-
sible. We will therefore next discuss what we expect from good computer
software.

2.2.1 Desirable virtues

Whenever one sets out to create computer software, there are, according to
Goodrich and Tamassia [Goodrich and Tamassia, 1998] a few basic imple-
mentation goals that one should always try to achieve

e Robustness
o Adaptability
o Reusability

Every good programmer wants to produce software that is robust, which
means that a program produces the correct output for all input, and when
run on different hardware platforms. Robustness is especially important

when for instance a user tries to exceed the limitations of a given piece of
software. It is then important that the software recovers gracefully from such
an incident.

Software programs are typically expected to last for a long period of
time, often over many years. In order for this to be possible the software
needs to be able to evolve over time in response to changing conditions in
its environment. These changing conditions could be anything from need for
better utilization of a faster CPU to more functionality. It is important for
good software to be adaptable enough to allow all this.

Developing software is both a very time-consuming and expensive pro-
cess. If we allow for our software to support reusability both factors can be
significantly reduced.

2.2.2 Object-Orientation

Many implementation methodologies have been developed that attempts to
allow a programmer to easily produce software that meets the implemen-
tation goals listed above, while at the same time being powerful enough to
allow a programmer to fully express efficient high-level solutions. Object-
orientation is one such methodology, that promises both simplicity and
power. Among the most important principles of object orientation are

e Abstraction
e Encapsulation
o Modularity

According to Goodrich and Tamassia [Goodrich and Tamassia, 1998], the
notion of abstraction is an important concept in computer science. The
main idea of this concept is to distill a complicated system down to its most
fundamental parts and describe these parts in a simple, precise language.
Typically, describing the parts of a system involves naming the different
parts and describing their functionality. This functionality will become the
abstract interface which other components can work with. This combination
of clarity and simplicity benefits robustness, since it leads to understandable
and correct implementations.

Another important principle of object-oriented design is the concept of
encapsulation or information hiding. This principle states that different com-
ponents of a software system should implement an abstraction, without re-
vealing the internal details of implementation. One of the main advantages
of this is that it give the programmer freedom to implement the details of the
system as long as the abstract interface that the other components see is the
same. Thus, encapsulation yields adaptability, since it allows the program-
mer to change only certain parts of the software without having to change
all the other.

The final aspect of object-orientation that we will discuss is modularity.
Modularity refers to an organization structure, in which different compo-
nents of software systems are divided into separate functional units. This
structure enables software reusability, for if software modules are written in
an abstract way to solve general problems, it is likely that instances of these
same general problems may arise in other contexts. Additionally, object-
orientation allows for the organization of modules into an hierarchy, where it
groups together common functionality at the most general level, and views
specialized behavior as an extension of the general one. Thus the organiza-
tion concepts of modularity and hierarchy enable software reusability.

2.2.3 Java

According to SUN Microsystems, Java is a "pure" object-oriented language,
and it therefore supports all of the object-oriented principles mentioned in
the previous section.

Classes and objects in Java presents to the outside world a concise and
consistent view of the objects that are instances of a class, without
going into too much unnecessary detail or giving access to the inner
workings of the objects. This corresponds to the object-oriented prin-
ciple of abstraction.

Interfaces and strong typing are important features of the Java lan-
guage. Both at run-time and during compilation the virtual machine
checks that parameters that are passed to methods rigidly conform to
the type specified in the interfaces. Although having to define inter-
faces and them having those definitions enforced by the strong typing
places an extra burden on the programmer, this burden is offset by the
rewards that it provides, for it enforces the encapsulation principle.

Inheritance and polymorphism in Java allows one to simply create both
general and more specialized classes. These aspects of the Java lan-
guage corresponds directly to the object-oriented principles of modu-
larity and hierarchy.

Additional advantages

Java’s clear and unambiguous language will help us to avoid possible er-
rors by disallowing some of the more "tricky" language features found in
other object-oriented languages (for instance multiple inheritance and op-
erator overloading). Although these features may be convenient in certain
types of applications, they may also introduce errors if used without precau-
tions. Java avoids these errors by not supporting such language features.

2.3 Terminology

Before we start discussing the various components of an discrete event sim-
ulation, we take time to define few terms that will be used often throughout
this thesis.

2.3.1 Simulation entities

We will follow the definitions given in [Helsgaun, 2000]. We start by defining
what we mean by simulation.

Definition 1 (Simulation)
Simulation is experimentation with a model in order to obtain information
about the dynamic behavior of a system.

Instead of experimenting with the system, the experiments are performed
with a model of the system.

The system components chosen for inclusion in the model are termed
entities. Associated with each entity are zero or more attributes that describe
the state of the entity.

Definition 2 (System state)
The collection of all attributes in a simulation at any given time is called the
system state at that time.

We name changes to the state of a simulation a state change. Each state
change will in our simulations be performed by an Fvent.

Definition 3 (Event)
Object especially created for the altering of the state of a simulation.

In the context of Java programming this means objects that implements the
bergmann.simulation.Event interface.
2.3.2 Time

In all simulations, time plays an important part, and we therefore now define
a few quantities related to time.

Definition 4 (User time)
User time, Tyser, is time as perceived by an observer watching the simulation
from outside the computer, independent of what goes on inside the computer.

The difference between start-time and end-time of the simulation (expressed
in user time) is often called the running-time of an application. Often we

would want to keep the running-time as small as possible. The term "wall-
clock" is also often associated with the user-time. This term is used to
emphasis that user-time progresses independently from the simulation.

Definition 5 (Simulation time)
Simulation time, Ts;p,, is time as perceived by the simulation entities.

Simulation time will in a discrete event simulation be discontinuous (hence
the word discrete), and we call each update of the simulation time a tick.

Definition 6 (CPU time)
CPU time, Tip,, refers to the amount of user-time, Ty, that passes between
each tick of simulation-time, while an event is being executed.

Conversely, the accumulated CPU time over an entire simulation is the user-
time it takes to execute the simulation, disregarding the overhead imposed
by the simulation framework. The running-time of a simulation, on the
other hand, is the amount of user-time it takes to execute the simulation
altogether.

Definition 7 (Time complexity)
Time complexity is user time expressed as a function of the input size, n.

The input size n will, unless specified otherwise, refer to the total number of
events in the simulation.

Time complexity is usually expressed using asymptotic notation (O(-)
or ©(-)). Asymthotic notation shows how user time varies if the size of
the input, n, becomes large (n — o0). This implies that time complexity
expressed in this notation is only valid as a measure of user time when the
input size is large.

Corollary 1 From the definitions 4, 5 and 6 we may express the following
relation

n
Tyser = Z Tczpu + fZ (n)
=1

where n is the total number of ticks in the simulation and f'(n) is a value
associated with finding and preparing event i for erecution. Ty, is the CPU
time it takes to erecute event .

Although we would rarely need to calculate the user time from corollary
1, the formula is useful in determining which part of the system should be
optimized if one would want to reduce running-time.

Chapter 3

Introducing the elements by
two examples

I order for us to create a good framework for simulation we will, inspired by
Jacobsen et al. [Jacobson et al., 1999], start off by looking at a few examples?
in order to determine some of the structure and requirements we are faced
with in discrete event simulation.

In Chapter 4 we will develop the final, more formal and general framework
for these types of simulations.

3.1 An elevator example

The elevator simulation is a well known computer science problem, also dis-
cussed in the classic work "The Art of Computer Programming" [Knuth, 1968|.

The elevator will reside in a building with many floor, and will be ex-
clusively devoted to transporting people between floors. Based on this sim-
ulation we wish to determine the average time from when a person presses
the elevator-button in one floor until he leaves the elevator in another floor.
This time will include time waiting for the elevator, time entering and leav-
ing the elevator and time inside the elevator. Among the parameters that
the user of the simulation should be able to specify are the number of floors
in the building, the number of people using the elevator and over how many
time-units (of simulation time) the simulation will run over. Details of how
the elevator will prioritize the different floors should be possible to specify
(and change) easily.

Because the elevator example is one we all have first hand experience
with from real life, it is ideal for validation of the general framework. By
experimenting with elevator simulations of different sizes, we also hope to
be able to determine how scalable the framework is. An important aspect in
determining scalability is time complexity.

1 . . .
also known as "use-cases" in various literature

A similar but more elaborate example over the same theme is discussed
in Chapter 5.

3.1.1 The model

In accordance with the design principles presented in Section 2.2.2, we start
making abstractions over the elements involved in a real-life elevator. The
building will map to an object in the simulation. Noting that in real life,
a building consists of several floors each (possibly) populated by people, we
give the building a table called "floors". Next we give each floor a list of
Persons. These people are the ones that will reside in that floor. In real life,
an elevator resides inside the Building, so we will make the Building have
a property called "elevator". Actually, now we have already introduced our
two next abstractions; the Person and the Elevator.

The aspects of a person that are important for us in our simulation will
now need to be addressed. Among them are which floor the person starts
in and which floor the person wants to travel to. This person should also
have a property which registers what (simulation-) time it is when he presses
the elevator button, and what the time is when he exits the elevator. These
values will later become important when one wants determine the average
time between floors.

The next abstraction we describe will be the Elevator itself. The eleva-
tor will need to have a property called "peoplelnsideElevator", that will be
a list of all the people currently inside the elevator. We will need a value
that will specify which floor the elevator is in and another value that speci-
fies the current state of the elevator ("Moving", "LettingPeopleInOrOut" or
"Stopped"). An important property which the elevator will also need is our
final abstraction; the ElevatorController.

The ElevatorController is an abstraction over the real-life computer that
controls real-life elevators. It is this objects job to determine which floor will
be visited next. Whenever somebody presses the button to go to a certain
floor, the Elevator will notify the controller object of this request. An answer
will then be given back to the elevator, so that it can move or stand still,
as specified by the controller. We note that this ElevatorController object
could also strictly speaking have been "hard-coded" into the Elevator, but
this would violate our design principles about encapsulation, and prevent
modularity. Because of our choice of making the ElevatorController an ab-
straction, it can more easily be swapped with another ElevatorController
which behaves differently, but allows the same operations.

3.1.2 The events

The Events in this simulation should attempt to capture the real-life events
that can alter the state of the simulation. We start by noting that real-

10

life events such as pressing the move-to-this-floor button or buttons inside
the elevator most certainly would do so. We therefore should create Event-
objects for these events.

The same is also true for all floors we stop in: people must get in or out
of the elevator, and since this would also most certainly change the state of
elevator, we should also create an Event-object here.

Finally, we need some way to move the elevator up or down. This has
been solved by having the elevator generate a special move up or down Event-
object a given time after the elevator reaches a floor. This MoveEvent will
query the Elevator, which in turn will query the ElevatorController, about
what to do. The Elevator will then move one floor up, one floor down or
stand still depending on the answer. The abstraction of the MoveEvent is
therefore our last Event in this simulation.

We should also be able to verify the elevator simulation. One possible
way of doing this is by calculating average values for the quantities we need
to produce the average waiting time. We will in Chapter 5 show how this
can be done.

3.2 A small rat simulation

We now present a simplified version of the rodent navigation problem pre-
sented in Part II, to show the similarity with the elevator simulation, and to
simplify the later discussion about rodent navigation.

We would like to create a model of a rat moving in a cage. The rat
will become stimulated by its surroundings, and base its behavior on these
stimulations. The purpose of this simulation is to see if one can develop a
good description of the rat navigation strategy, so that the simulated rat
behaves similar to real, living rats.

Notice how this specification also implies some sort of validation of the
simulation results. This will be performed in Part IV, using data from real
rat experiments.

3.2.1 The model

Our first abstraction in this model is that of the cage. The cage will need to
have properties such as length and width. We will also allow for the cage to
have obstacles placed in various places, through which the rat cannot move.
Since, in real-life, the rat resides in a cage, we choose to make the rat position
and which direction it is facing a property of the cage. What direction the
rat is facing is important in determining what input the rat should be given
(for instance what the rat will see).

The next abstraction we make is that of the rat. The rat will need to be
able to change its position in the cage, and to turn around, making it face
another direction.

11

As with the elevator simulation, we also make an abstraction out of the
decision-making part of the active part, and create a RatController object.
This Controller object will be responsible for deciding what to do (move or
stand still), based on input from the environment. In this respect we hope
that it will behave similar to the brain of real rats.

3.2.2 The events

Probably the most important type of event that would occur in this simula-
tion is when the rat receives input from its environment. This will happen
over and over again. Although a real rat will receive this information contin-
uously (or at least as long as it has its eyes open, or it is listening), we hope
that as long as we give input often enough per time unit, we will approximate
a continually input source.

Although the input to the rat is continuous, there is some evidence pre-
sented by Wallge [Wallge, 1968] to suggest that the real rats does not process
the input as a continuous stream of data. Instead all inputs are processed in
the rat brain by nerve-cells which are either in an active or non-active state.
If this is true, then a discrete representation of the input in our simulations
would not seem unreasonable. Actually, Wallges work on neural processing
in animals was one of the first applications of discrete event simulation.

Additionally the rat will need to determine what to do, at certain inter-
vals. We have solved this by abstracting a special Move-object. It will also
be called at regular intervals as with the InputEvent.

3.3 The timeline

As described in both examples above; a series of events will take place, all
possibly altering the state of the simulation. But in order for these changes
(or events) to take place and make sense the events will need to be handled
sequentially, and one at a time. Humans are accustom to think and plan
in terms of time, and we adopt this notion in the timeline. The timeline’s
mission is therefore to store each event that should happen in the future in
an internal buffer, and then execute them sequentially and one at a time
according to their registered execution time.

Conversely, the timeline will be used to keep track of which event will
occur next.

12

Chapter 4

A general structure for discrete
event simulation

According to the authors of "Design Patterns" [Gamma et al., 1995], one of
the most difficult tasks of computing is that of creating a good and reusable
general framework for the solution of a whole class of problems. When
creating such a framework it is important that it be both robust, simple to
use, fast, powerful and, perhaps most importantly of all, be general enough
for it to be usable for a whole range of problems. The choices made about
the architecture of a framework, will dramatically influence what the final
program will be like.

4.1 The elements

There are a few elements that one can expect to be needed when creating a
discrete event simulation. In the following sections we will describe the most
important of them.

4.1.1 Timeline

The timeline is probably the single most important part of an discrete event
simulator. It is truly the heart of the simulation and the one thing that
brings the simulation forward. The timeline will need to be notified of all
events and when they are to be executed. A method that will execute the
"next" event (that is the one with the smallest time greater or equal than
the current time) must also be defined.

The Timeline will typically use a PriorityQueue to keep track of the
registered Events.

13

Program 4.1.1 From Timeline.java

public class Timeline {
public void activate (Event event, Object time){...}
public Event tick O{...}
public Object currentTime (){...}

PriorityQueue

A priority queue is formally defined as an abstract data type (ADT) that
imposes a structure upon its previously submitted elements. This ADT will
upon request return the smallest element registered. This formal level of
abstraction allows for a modular design pattern. By not tying ourselves
down to any specific priority queue, we allow for parts of the program to
be changed (even possibly at runtime), which in turn gives greater freedom
of choice and easier problem specific adaption of the simulation framework.
This can greatly improve performance.

Traditionally [Dahl and Nygaard, 1966] a linked-list has been the prior-
ity queue of choice for discrete event simulation. This because its ease of
implementation and speed (under certain assumptions. See Section 4.3).

The problem of concurrency

Given that two events are scheduled to take place at the same time, which
of them should occur first? Unfortunately there is no easy answer for this
question, and there is no general strategy here that will always produce
correct results. One might suggest always returning equal elements from the
priority queue in the order in which they were inserted, (also referred to as
first-in/first-out) but this would restrict our choice of priority queue to only
those that could be implemented in such a manner (for instance not the
heap).

Therefore we can make no assumption about the order in which equal
elements are returned in. This means that if events should occur in a certain
order then the user should not insert them into the queue with equal values.

Sometimes a situation might arise, during which you would want a series
of events to occur sequentially, without any other events being executed in
between them. Because of our above choice, the strategy of inserting all the
events at the same time, will generally not work. There are many possible
solutions to this problem, but we propose the following two. Firstly, the m
elements may be "spread out" in time by scheduling them to occur at time
to, to+0,t0 + 20, ...,t0+ (m —1)d instead. For a small enough value of 4 this
should ensure that the events are processed uninterruptedly, in sequential

14

order. However, now we cannot guaranty that other events won’t be activate
in between. The other approach is to create a special MultiEvent object,
that keeps reference to the sequence of events you would want executed,
and then register this object for activation. Upon its activation, it should in
turn activate all events it has reference to. With this approach, however, one
should keep in mind that the simulation time will stand still during execution
of the internal event-list. For more information about this approach, see page
16.

4.1.2 Event

Events are crucial in an simulation since they are the ones that change the
state of the simulation. There can be given no default action for the events,
since how they actually will change its context will always be problem spe-
cific, and therefore left for its subclasses to implement. All events therefore
only need to provide us with one functionality; how to activate it.

Program 4.1.2 From Event.java

public interface Event {
public void activate ();

The states of an event

Upon realizing that, even for a medium sized simulation, the number of
Event objects will be very large, and the noting that each single event often
does not do very much, we suggest later (Section 4.3) a means of improving
performance. In order for us to take advantage of this we should first make
some simple changes to the suggested interface.

Created Asleep Active Terminated

Figure 4.1: The life-cycle of an Event

Dahl and Nygaard [Dahl and Nygaard, 1966] suggest that each event has
a life-cycle: It is first created, then given to the timeline for later activation,
then activated and, eventually, terminated. If one were to keep track of these
states one could, upon reaching a certain state (for instance terminated),
perform some action. As we will later show, this could be used to improve
performance for large simulations.

15

MultiEvent

As mentioned on page 14 sometimes situations arise, in which it would be
convenient to treat a series of events as just one single Event. The MultiEvent
does exactly this.

When creating a MultiEvent object, one has to supply as series of other
events, in the order they should become activated. Then the MultiEvent
can be scheduled for activation in the Timeline. When the MultiEvent is
activated, it will in turn activate each of its registered events.

All of the events stored in the MultiEvent will be executed on the same
tick of the timeline (the activation time of the MultiEvent itself) and we
know that they will be activated in an uninterrupted sequence, without any
other events in between.

ReoccuringEvent

The ReoccuringEvent is a special type of Event that is designed for reuse.
When the ReoccuringEvent is created one must supply it with another Event
which should be activated at regular intervals, as well as how long the inter-
vals in between the activations should be. Then the ReoccuringEvent can
be scheduled for activation in the Timeline.

When the ReoccuringEvent is activated it will activate the Event that it
was supplied with. After activation (when it has reached the "Terminated"
state) the ReoccuringEvent will schedule itself for activation again after a
time period of the given interval. The ReoccuringEvent will thus be activated
at regular intervals throughout the simulation, or until it is cancelled.

For flexibility, we also allow the interval between each activation of the
ReoccuringEvent to be altered during runtime. This can be done by a call
to its setInterval(-) method. This will later become useful when we will need
to model speed.

One of the main advantages of using an ReoccuringEvent is that it will
reuse the same Event object over and over again, and not have the overhead
from creating new events.

4.1.3 Context

All simulations must take place in an environment. The important feature
of this context is that it has the ability to be changed by events, or formally;
to have its state altered. We can keep track of these states by allowing
this object to store a (property, value) pair. This can be done easily using a
dictionary ADT. An effective way to implement this is by using the hashtable
ADT.

We should also, in designing this class, take into consideration that as
time passes certain properties may not be applicable anymore, and the prop-
erty in the context should become unset. We also note that this object may

16

(and probably should) in turn be shared by several objects in a simulation.
A context can obviously be divided up into individual objects (for instance
the house or people in the elevator example), but doing so does not violate
the idea of a context. The idea of a context merely provides us with an extra
level of abstraction, so that our framework can be as general and simple as
possible.

In our later simulations, we let the Context-class have references to all
main simulation entities, so that all objects that are a part of the environment
can be accessed from the Context.

4.1.4 Subject

There is often an active part present in a simulation. Most often this active
part is the very thing we want to simulate, and from now on we formally refer
to it as a Subject. A simulation may have any number of subjects involved.

The key property of the subject is that it is able to make decisions, and
most often cause events to occur based on these decision. In order to do so it
needs to have some internal state that drives its choices. This internal state
is updated by events, and when a decision is to be made, the internal state
is examined, and a choice takes place.

The elevator is one example of a typical subject. The elevator receives
input in the form of the press of various buttons inside or outside the elevator,
and the elevator stores these clicks in an internal data structure. When the
MoveEvent queries the elevator of what to do, the elevator itself examines
its internal data structure, and gives a reply depending on how it interprets
the data.

Strategy

Often when modelling a subject, it is desirable to have a means through
which behavior can be changed easily between (or perhaps even, during)
runs. The best way to ensure this is to encapsulate all the decision-making
into one part of the system, with a well defined interface to the subject. We

Program 4.1.3 From Strategy.java

public interface Strategy {
public void processInput (int type, Object input);
public int recomendMove ();

}

formally call this object the Strategy which the subject uses. The interface
should be simple but still allow for all sorts of input and output. It will also
later become evident that if we were to allow input to be of a particular type,
this will simplify usage, and prevent unnecessary testing.

17

So when the state of the simulation changes in some way important
to the Subject, the Subject is notified of this (by an event). The Subject
then forwards this information to the Strategy which stores it. When the
framework later queries the Subject of what to do, the Strategy examines
its stored information, and returns an answer to the Subject. The Subject
then returns this reply to the framework, which acts on it or ignores it (if it
for instance is illegal).

4.2 The final framework

Based on the previous sections we suggest the class diagram presented in
figure 4.2.

In creating these class diagrams, we have decided to use an "UML like"
notation. These diagrams were created mainly to provide a simple overview
of the classes and their relationship, and does not show all details surrounding
the classes. We considered using standard UML for these diagrams, but
decided that it would clutter up the diagrams with too much details.

We let each class be represented by a box divided into two parts. The top
part displays the class name (for instance "Subject" or "Timeline"). The
lower portion of the parts shows the methods which the class provides. Each
line here represent one method. The first character in each line denotes the
visibility of that method, + means public, # means protected and - means
private. The word before the starting parenthesis is the method name. The
method parameters is shown in the parenthesis behind the method name. The
parameters are separated with a comma, and are on the form [name]:[type].
The word after the closing the parenthesis is the return type. If the method
does not return a value, then this field is left empty.

Interfaces are represented in the class diagram in the same way as a
class, except that the class name is preceded by the interface keyword. Our
simple notation does not distinguish between abstract classes and (ordinary)
classes.

The white-headed arrows between boxes represents an inheritance re-
lationship. A class which implements all members of an inherited class is
marked as an implementation class.

The black-headed diamond-arrows is in standard UML used to symbolize
aggregation. We have in our notation relaxed this a little bit, and we let this
symbol represent "references". The "diamond-relation" from Simulation to
Subject indicates that the Simulation class holds a reference to an instance
of the Subject class. The Subject class in turns holds a reference to an object
which implements the interface Strategy, since there is a "diamond-relation"
from Subject to Strategy.

The classes Simulation, Subject, Strategy and Context are all intended to
be extended, implemented or overwritten before actual use in a simulation.

18

Simulation

Timeline

+activate(in event : Event)

+activate(in event : Event, in time : Object)
+currentTime() : Object

+getContext() : Context

+setContext(in context : Context)
#getSubject(in number :int) : Subject
#addSubject(in subject : Subject, in number :int)
#tick() : Event

+activate(in event : Event)

+activate(in event : Event, in time : Object)
+tick() : Event

J+currentTime():0bje(t

+isEmpty() : boolean

+size() :int

«interface»
PriorityQueue

+insertElement(in element : Object, in key : Object)
[+minKey() : Object
+minElement() : Object

+removeMinElement() : Object

fireset()
L2 (]

=R

«implementation class»

«implementation class»

Heap InsertionPriorityQueue
«nterface»

Subject

Context

+stimulate(in type :int, in input : Object)
[+makeMove()
+isSet() : boolean

+isSet(in property : Object) :boolean
+set(in property : Object, in value : Object) :boolean
+get(in property : Object) : Object

Comparator

+equals(in a : Object, in b : Object)
+isSmallerThan(in a : Object, in b : Object)
+isGreaterThan(in a : Object, in b : Object)

+set(in property : Object, in value : Object)
+get(in property : Object) : Object
+handleMove(in move :int)

+perform(in action :int)

AbstractEvent
+state() :int «interface»
+setState(in state :int) Event
B S
Strategy ‘ +setState(in state :int)

‘ReoccuringEven(‘ ‘Mul(iEven(‘

+recomendMove() :int ‘ MoveEvent
‘+activat8() ‘ +activate()

‘+acﬂvate()

+processinput(in type :int, in input : Object) ‘

Figure 4.2: A class diagram showing the relationship between the various
components in the simulation framework.

4.3 Efficiency considerations

The PriorityQueue

Corollary 1 states that here are two main factors that affect the speed of a
simulation, for a given problem of a fixed size: the complexity of the events
and the effectiveness of the priority queue.

For certain types of simulation, each individual event will only perform
a constant number of operations. This could be simple testing and setting
of only a constant number of properties. If so, then we may disregard the
activation of the events contribution to running time as constant and the
choice of priority queue will be important for the total running time.

Conversely the choice of priority queue determines, among other things
how much user time passes between each execution of events. As mentioned
in Section 4.1.1, the classical choice of the priority queue has often been
a linked-list. The linked-list data structure has several desirable qualities
that, under certain assumptions, makes it good for simulation. Being able
to provide constant-time access and removal of the minimum element, is an
optimal time-complexity for this task. This property implies that if using a
linked-list driven timeline, the time between each execution of an event is
constant (assuming no insertions into the timeline takes place during that
event). Insertion, on the other hand, is not as quick using a linked-list. In
order to determine how deep into the priority queue the next event should
be inserted, O(n) elements needs to be examined.

A good alternative to the linked-list priority queue is the heap. The heap

19

40

T T T
= Insertion PriorityQueue
—— Heap PriorityQueue

351

30

251

Minutes
N
o
T

151

101

Number of events x 10°

Figure 4.3: Example of the expected running time of a timeline using linked-
list and heap priority queues. These results are interpolated from the results
of several runs from the elevator simulation example in Section 5.4. Note that
each Event only perform a constant number of operations and therefore the
implementation of the priority queue has a a large impact on performance.

20

allows for both ©(logn) insertion an retrieval for elements. Although the
heap takes ©(logn) time to retrieve the minimum element, as opposed to
the linked-lists O(1) time for the same task, the heap should still perform
better on the whole because of its ©(logn) complexity for insertion versus
the O(n) for the linked-list.

Of course all of these observations are under the assumption that the size
of the input (n) is large.

Optimality with respect to time complexity

Corollary 1 states that the overall running-time of a discrete event simulation
equals > © Tcipu + fi(n) = O(nf(n)) if Tcipu is a constant. n is the total
number of ticks in the simulation and f(n) = max f*(n),7 € [1,...,n]. f(n)
is now a value determined by which priority queue you choose. It therefore
follows from the discussion in the previous section that the overall time-
complexity for using a linked-list is O(n?) and for a heap, ©(nlogn). This
is, as we will show, not always optimal.

We observe that if the events had always been kept in sorted order on in-
creasing activation time, then finding the next event scheduled for activation
would be simple; it would be the first element in the sorted sequence. Any
sorting algorithm therefore seems to be a good choice for our priority queue
—~but since all the elements that needs to be sorted are not known at the
beginning of the simulation (since some events will usually be added during
simulation), we need to add one requirement; that the sorting algorithm does
not need to resort all elements, if just one more element is added. Quick-sort
and merge-sort are examples of common sorting algorithms which does not
have this property.

If we accept this proposal, then we may view discrete event simulation
as "sorting and execution of events". We can think of the linked-list based
timeline as driven by an insertion sort, and the heap-based timeline as driven
by a heap sort.

We note that the time complexity for the execution of n events in a
discrete event simulation cannot be done quicker than the fastest sorting
algorithm. According to the proof given by [Cormen et al., 1990] general
sorting by comparison cannot be done faster than O(nlogn). In this light,
the heap implementation is optimal.

But, as also stated in the above reference, this lower bound on sorting
can be improved if it is possible to make further assumptions about the
input elements (and in the case of discrete event simulation, when they will
occur). Interestingly enough, this may very well be the case in certain types
of discrete event simulations. For instance, if one can assume that the largest
and smallest element is known to begin with (that is the activation time of
the first and the last Event), then it is possible to sort in O(n) time using
for instance bucket-sort. If needed, there should be no problems involved

21

with implement an priority queue based on this sorting algorithm in our
framework.

Recycling the events

One of the drawbacks of using objects (and object oriented programming as
opposed to structured programming) is that objects take time to initialize,
and when they are discarded, their resources need to be given back to the
system. Often when dealing with many "small" objects, the time it takes
to clean up after them (in Java known as "garbage collect"), may severely
decrease system performance. If one therefore were to keep a record of
terminated events (and thereby making then uneligable for garbage collect),
these events could instead be reused and one would save computing time.
This would of course require a bit more memory, but should have impact
on performance, depending on the number of events and objects used in the
simulation.

4.4 A few words about implementation

When implementing the classes used in this thesis, we have made extensive
use of abstract data types (ADT). This has been done to ensure modularity
and flexibility in the design. For instance, this allows us to freely change the
details of the timeline implementation, without having to alter any other
code. This is a great advantage that both shortens development time and
keeps the design of the program simple.

The ADT’s themselves, has been implemented from scratch in Java, in
the bergmann.structure.* package. This package is loosely based on the ideas
and examples presented in [Goodrich and Tamassia, 1998] and [Cormen et al., 1990].
Implementing ADTs may seem like a waste of time given the large number
of free and commercial implementations available, but we have chosen to do
so for several reasons:

1. Simplicity. The package provides an easy and understandable interface
to all its functionality.

2. Readability. As follows from the previous item, a simple interface to
the functionality makes the the code that uses it simpler to use, which
is highly desirable in a thesis.

3. Extensibility. Having complete and free access to all the source code of
the package is a great advantage. This allows us, among other things,
to add more or change functionality if needed.

4. Interchangeability. Because the package focus on simplicity, it provides
functionality that most other packages provides. If one needed to, it

22

would be simple to migrate to another ADT collection, since they would
most certainly also provide all of the functionality of the basic ADTs.

5. Completeness. Although effort has been put on making the interfaces
as easy to use as possible, several advanced structures such as several
dictionaries, graphs and trees have been included, which are rarely a
part of more commercial packages.

6. Uniformness. For reasons of complexity it is an advantage to limit the
number of different packages used.

Using a good collection of ADTs is often a good way to ensure quick
development, avoid program complexity and reduce the size of the overall
program. Although we have chosen to use the bergmann.structure.* package,
there are a great number of other ADT collection available that could also
be used. ADTs are often a matter of personal taste. Which one you choose,
should at least in theory, not matter.

4.5 Other simulation frameworks in Java

Although we have chosen to implement our simulation framework from scratch,
there exists several Java based discrete simulation environments. They are
mostly Java versions of existing simulation languages.

Simjava Simjava is a process based discrete event simulation package for
building models of complex systems. It includes some graphical capa-
bilities, which for instance allows simulation entities to be displayed on
the screen as animated icons or "live diagrams" in web documents. The
package has been designed for simulating fairly static networks of ac-
tive entities which communicate by sending event objects via ports and
is therefore appropriate for hardware and distributive software system
modelling. Each of the simulation entities runs in their own thread,
and a central system class controls all threads, advances simulation
time and delivers the events from object to object. www.dcs.ed.ac.uk/
home/hase/simjava

Silk Silk is a commercially available general-purpose simulation language
based around a process-interaction approach and implemented in Java.
Silk is designed as a tool for building self-contained, reusable mod-
elling components and domain specific simulations. It provides a visual
modelling environment where Silk-based modelling components can be
graphically assembled using JavaBeans to create simulation applica-
tions in software environments such as Symantec’s Visual Café, IBM’s
VisualAge and Microsoft’s J++. www.threadtec.com

23

JavaSim JavaSim is a component-based, compositional simulation environ-
ment. It has been built upon the notion of the autonomous component
programming model similar to COM/COM+, JavaBeans, or CORBA.
This packages special architecture allows simulations to be interactively
defined using a terminal environment similar to the Unix/Linux com-
mand prompt. Especially for large network simulations the JavaSim
simulation environment has proven scalable both in terms of memory
consumption and running time. www.javasim.org

One of the top most common uses for discrete event simulation today is
network simulations. This is to a large degree also evident in many of the
frameworks available for discrete event simulation. These frameworks often
introduce abstractions such as "ports" on each of the simulation entities, and
use events to pass information between ports on different entities. Such an
approach is ideal for modelling networks of entities, and their communication
patterns. Often the simulation frameworks are designed to handle multi-
threading and each entity operates in its own thread.

Since there already exist powerful and specialized simulation environ-
ments, we have opted for the creation of a more general and "open" frame-
work. One example of the generality of our simulation framework is how
we represent time in the timeline. Most implementations we have examined
represent time as a java.lang.double. Although a double value should be good
enough for most practical applications, we have chosen to represent time by
a general java.lang.Object. Our representation allows, in addition to repre-
senting time as a double, that time can be any java.lang.Object. It can be
a java.util.Date (24/3-49, 28/7-77, etc), a java.math.Biglnteger (integer larger
than java.lang.Long.MAX VALUE), or even a general java.lang.String ("Jan",
"Feb", etc) as long as the user also provides a way to compare two object
of the implemented type. The use of an Object rather than a double value
also allows direct use of any standard PriorityQueue implementation.

Another difference between our framework, and many of the existing
frameworks is that we have not included thread-support. Although it would
be relatively simple to extend the framework to also be thread-compatible,
we have chosen not to do so since it would incur an unnecessary overhead as-
sociated with handling the thread (and the infamously slow "synchronized"
keyword) in simulations which does not need threads (such as the ones we
have implemented in this thesis). Instead we allow our framework to be ex-
tended with thread-safe wrapper classes, if thread-safety is important. This
technique is also used by Sun Microsystems in their implementation of the
Collection package: the collections themselves are not thread-safe since that
would incur an overhead if thread-safety is not needed, but there exists
special wrapper classes which are thread-safe and "wraps" around the col-
lections. The wrapper class provides the same functionality as the collection
class (actually it is uses an instance of the collection) but also implements

24

thread-safety in an appropriate manner.

A final note is that we would not like our base simulation package to
become too large. According to Jacobson [Jacobson et al., 1999] one should
always be careful before adding functionality which "might be nice to have"
but is currently not really needed. One should bear in mind that more classes
usually means more complexity and that it is usually a lot simpler to add
functionality later on when it is needed than it is to remove uneccessary fea-
tures, since removing something from a package often will break compability.
It is a good general rule to be conservative about what to add to a package.

We aim to create a general framework, and believe it to be wrong to
favor many features and complexity over simplicity and elegance in our im-
plementation.

If more functionality really is needed, then we believe it would be better
to create a new package and import and extend the bergmann.simulation
framework. This way the packages becomes small, manageable and easier
to learn and use. In the next part we will do exactly this when we create a
package especially adapted to modelling a simulated rat in a cage. But first
we will test our basic simulation package on a classical example.

25

Chapter 5

A comprehensive example

We will now examine the problem presented in Section 3.1 more closely. In
addition to the problem specified there, we will also wish to test out different
strategies for the elevator to use, so that one has more control over how the
elevator moves. This could for instance be to give certain floors priority at
certain times of the day, if one in advance knew that this floor would be
especially crowded a that time.

For instance: In an office building in the morning, one would expect more
people to come to work than leaving. Therefore we believe that it would be
advantageous if the elevator went to the floor with the main entrance when
empty, so that the next people to arrive at work did not have to wait for
the elevator to arrive. We will in this chapter create a strategy which will
handle this.

5.1 The elevator simulation

In order for us to take advantage of the code defined in the Simulation
superclass, we choose to extend it, creating subclass ElevatorSimulation.
This will ensure that the ElevatorSimulation class will have easy access to
the Timeline.

The Elevator will most certainly be an important abstraction. The key
property with an Elevator is that it will also be needing some choice-making-
capabilities. We therefore find it most reasonable to extend Subject.

The other objects in the simulation (House and Person) are implemented
and stored as objects in the Context. The choice of not making Person extend
Subject is perhaps not obvious (since we are used to thinking in terms of
relatively intelligent people) but in this simulation (where they may just as
well have been boxes or cars), no intelligence is needed. If, however, the
problem specification changed to also include that a person might grow tired
of waiting after a certain time and take the stairs instead, then this would
probably have to be changed.

26

We have decided to inherit from Strategy, and to create a common El-
evatorStrategy. All implemented strategies in this simulation will in turn
inherit from ElevatorStrategy. This is done for flexibility and to ensure that
all strategies are uniform and adjusted to this simulation. Also, functionality
can more easily be added to all of the strategies simultaneously this way.

As for events, all events inherit from Event directly. We have decided to
create just a few events in order to ensure simplicity and readability. These
are the PersonEvent, for when a person enters an Elevator, and PressButton-
Event, for when a Person presses a button (regardless of whether the button
is outside or inside the elevator).

5.2 The protocol

In this simulation a number of people will move between floors using the
elevator. We assume that all people and all strategies participating in the
simulation adopts the following protocol.

1. Person P; in floor j presses the "come to this floor" elevator button.
The person logs the current time.

. The elevator registers this request, and takes necessary actions.

. Upon reaching floor j the elevator stops, and person P; enters.

. The elevator registers this request, and takes necessary actions.

2

3

4. Person P; pushes the button to go to floor k.

5

6. The elevator reaches floor k. Person P; exits the elevator.
7

. Person P; logs the current time.

The difference between the logged time will be used to calculate the
average waiting time for each floor. It follows from the above protocol that
the waiting time for a person moving between floors will be

Twait =2- Tenter&leave + (a' + b) ' Tbetween +c- Tenter&leave
= (a + b) * Thetween + (2 + C) * Tenter&leave

where Tepter&ieave 18 the time the elevator stops in each floor, Theiween 1 the
time it takes for the elevator to move one floor up or down. a is the number
of floors person P; wants to move, b is the number of floors the elevator has
to move to get to floor j where person F; is and c is the number of stops the
elevator makes.

We here assume that the elevator travels at the same speed going up,
as going down, regardless of how many people are in the elevator, and that
it always takes the same amount of time to stop in each floor, regardless of
how many people wants to enter or leave.

27

5.3 Choice of strategy

There are many possible strategies that can be implemented by an elevator,
using the protocol from the previous section. We have here chosen to present
a tour of a few significally different strategies. Their performance analysis
will be discussed in the next section.

UpDownStrategy This strategy is based on the "pater noster" elevator. Move
continuously from the first to the top floor and down again. For each
floor you pass: if someone wants on or off, let them do so.

ReturnStrategy This strategy gives special priority to a permanent prede-
termined floor, called floor k. The elevator starts in floor k. It lets
people on and registers to what floor they want to go to. It then visits
those floors in a suitable order. Then the elevator returns to floor k.
If new travelers entered while the elevators visited the other floors, the
elevator transports them to their destination after floor k£ has been
visited. If the elevator in floor k is empty, then the elevator picks up

travelers from another floor and delivers them, before returning to floor
k.

NormalStrategy Register all buttons that are pressed (clicks) in a "need-
to-visit-floor" table. The indexes of this table refers to the floor where
the buttons has been pressed. Then move to the floor associated with
the largest index in the table that has been pressed, halting underway
in floors, if needed. Then perform the same procedure moving down-
wards, to the floor associated with the smallest pressed button index
in the table. Unmark each floor as they are visited in the table. If the
table contains no clicks, then stop.

EmptyReturnStrategy This is an minor change to the NormalStrategy. It
behaves the same way, but upon finding no more clicks in the table,
returns to a predetermined floor, and stops there.

5.4 Results and analysis

In our simulations we have used that the travel time between floors (Tyeit) is
2 time-units, and that the amount of time stopped in each floor (Tentersicave)
is 5 time-units.

Using these constants and the strategies described in Section 5.3 pro-
duced the results presented in figures 5.1 and 5.2.

In fig 5.1 we have simulated 100 000 people inside a 10 floor building.
The people has been uniformly distributed over all 10 floors. Over a time
frame of approximately 10 000 000 time-units all people will travel from their

28

starting floor to a random destination floor. The starting time of each person
is chosen at random inside the specified simulated time-frame.

We let the elevator use one of the strategies described in the previous
section, and we measure the average simulation time from when a person first
presses the "come-to-this-floor" button to when he arrives in his destination
floor.

It is possible to validate the results in fig 5.1 using the formula presented
i Section 5.2. Using that Tepterssicave = 9, Thetween = 2, that the person
wants to travel from first to sixth floor (¢ = 5) and that (now assuming
NormalStrategy) on the average, the Elevator will be on the fifth floor (b = 4)
whenever the person wants to use it. We also assume that the elevator makes
no stops other than the ones for the person in question (¢ = 0). This gives
us the following result:

Twait = (a + b) . Tbetween + (2 + C) : Tenter&leave
=(+4)-2+(2+0)-5
= 28

Comparing this to the result obtained in fig 5.1 we see that our simulations
are about right.

Under the same assumptions it is also possible to calculate the average
number of people inside the elevator. We assume that in a building with
10 floors the average person using the elevator travels 5 floors. From our
simulation and our calculated estimate we have concluded that the average
time it takes to travel 5 floor with the elevator is 28 time-units. Therefore,
on the average, each person will spend 28 time-units in the elevator. There
are 100 000 who wants to use the elevator, so in 10 000 000 time-units each
person has % = 100 time-units per person. Only 28 time-units out of
these will actually be used, so there will be people inside the elevator 28%
of the time.

Figure 5.2 shows the results from a similar simulation. We have again
simulated 100 000 people inside a 10 floor building, but this time the simula-
tion will run over only 1 000 000 time-units. Conversely this means that each
person will have only %th of the time they had in to get to their destination
compared to the previous simulation.

100 000 people are again uniformly distributed over the 10 floors in the
building, and each one of them will at a random point in time start their
trip towards a predetermined floor. Fig 5.2 shows the average time from
each person presses the "come-to-this-floor" button to when he arrives in his
destination floor.

We observe that if 100 000 people are to use the elevator over 1 000 000
time-units, then each person will one the average have only % =10
time-units to use the elevator by himself. From our simulation we see that it

29

[1 EmptyReturn
[Normal
B Return
Il UpDown

w
()]

w
o

N
[&)]

=
4]

=
o

Average time from 1st floor
N
o

10

1 1 Target floor

Figure 5.1: Graph of average waiting time from first floor to all the other
floors. We see that it takes about 28 time-units to travel to the fifth floor
with the NormalStrategy.

takes about 57 time-units to travel 5 floors when the elevator is this crowded.
This implies that there on the average is % = 5.7 people inside the
elevator. We note that the elevator is a lot more crowded in this scenario.
Reducing the available time to %th leads to about 20 times more people
inside the elevator per time-unit.

As a curiosity we might mention that the average running time for each
strategy was a little less than one hour!, and that each run generated about
45 MB of output data?. Actually, the sample running time of different time-
line implementations shown in figure 4.3 were interpolated from several runs
of this simulation of various sizes.

As expected we see that the simple UpDown strategy usually results
in longer average waiting-time compared to the other strategies, unless the

!On a SUN Microsystems Ultra SPARC 10 Creator 3D computer.

2Generating a grand total of about 300 MB of raw data in a little less than 8 hours of
computing time. Fortunately all the simulations of the different strategies are independent
of each other, and may be run in parallel if multiple computers are available.

30

[] EmptyReturn
[Normal
I Return
Il UpDown

~
o

(2]
o

a1
o

IN
o

w
o

N
o

Average time from 1st floor

10

=
o

o

1 Target floor

Figure 5.2: Graph of average waiting time from first floor to all the other
floors. The same amount of people as in fig 5.1 is using the elevator in ll—oth
of the time. This means that there generally will be more than one person
inside the elevator.

31

elevator is very crowded. Then it performs similarly to the other strategies.
The ReturnStrategy seems to give low waiting-time in figure 5.1 and 5.2,
but its strong priority of the ground floor results in longer waiting-time for
the other floors (not shown in the figure). As expected, the NormalStrategy
will ensure lower waiting-time, if no particular floor is given priority. The
EmptyReturn strategy, always favoring the first floor (although never at the
expense of the other floors), has the lowest average waiting time out of the
strategies we have implemented in our simulation.

Although it is hard to determine a strategy that will perform opti-
mally under all conditions we nevertheless expect, as our simulation has
shown, that the Normal and EmptyReturn strategy generally will provide
low waiting-time. Their average simulation waiting time is shown in figure
5.1 and 5.2.

32

Part 11

An extension for rodent
navigation simulation

33

In the first part of thesis, we created a general framework for discrete
event simulation. Now, in Part II, we will extend? this general framework to
create a framework which is specifically designed to handle rat exploration
and navigation. The rest of this thesis will primarily describe the simulations
performed in this framework.

Note that we have already introduced a simplified version of the rat
simulation in Chapter 3.

In the first chapter in Part IT we investigate the simulation entities needed
in the rat simulation, and show how they will be implemented. We describe
each of the entities, and some of the events that will be needed in this
simulation.

The Rat will during exploration of the cage need to get stimuli from the
environment in the form of touch, smell and vision. How these inputs are
created is described in Chapter 7.

In Chapter 8 we will test out the framework for rat simulation we have
created so far. We will develop basic strategies for moving the rat around
the cage, and show plots of the output of the simulations. We hope that
this chapter will help to convince the reader that the framework and stimuli
generated by the extended framework are sound, and that small simulations
in the framework provide reasonable results.

3We use the term "to extend" to describe the process of redefining old or adding new
functionality to a package. Adding such functionality augments and enhances the original
package. In this thesis we do this by introducing problem specific classes which specializes
the original functionality of the framework. This is not to say that there was anything
wrong with the original package, in fact we believe that it was correct enough to be reused
in our extension. As stated in Section 2.2.1 reuse can be used to significally reduce both
complexity, development-time and development-cost in computer software.

In the context of Java programming, the keyword extends denotes inheritance or sub-
classing of another class.

34

Chapter 6

Adaptation of the framework

In this chapter we will attempt to use the general framework defined in Part
I for creating a simulation as described in Chapter 3.2. Being able to use the
same framework is a great advantage since we have already tested it (with
the elevator simulation) and we therefore know that it works. Additionally,
the framework has, from testing with elevator problems of different sizes
proved itself to be quite scalable, with a good choice of priority queue. This
is important since we don’t know in advance how large the rat simulation
will become.

6.1 Abstractions

As with the elevator-simulation in Chapter 5, we start by creating a subclass
of the Simulation superclass. This will allow us to use the functionality
defined there, and to extend it with more functionality which is specific to
the rat simulation. For instance, the new RatSimulation class will probably
be the best place to add support for a graphical user interface (GUI), since
this class will be used to start, stop and pause the simulation.

Our next, and probably most interesting abstraction, is that of the simrat
or simply Rat. The simrat will move around in its surroundings, and receive
input from its environment. Since this object will need some guiding strategy
in order to determine where to move, we choose to extend Subject. The
notion of a Strategy object that controls how the Subject move also fits
well with an abstraction of a "brain-object", which guides the Rat based on
input. By encapsulating the decision-making into a single object, we can
easily change how Rat behaves and responds to various input.

The details of the input will be defined later, and we are now only con-
cerned with what types of input we would need. Both humans and rats
share the same basic 5 types of input: Vision, smell, touch, hearing and
taste. Out of these five, we assume that our strategies for navigation can
be done successfully with only three of these: Vision, smell and touch, and

35

therefore choose to ignore hearing and taste for now.

As suggested in Section 3.2.1, we need some sort of abstraction that
will handle the environment the rat will move in. We extend the Context
superclass from the framework, and to create a Cage abstraction. This allows
us to reuse all functionality related to the general simulation framework while
we can define new functionality which handles the simrat specific parts of
the simulation.

The Cage class will be responsible for keeping track of where the Rat is
at all times, that the Rat does not perform any illegal moves while in the
cage (such as for instance walking through a wall, or outside the cage) and
to keep a record of properties forced upon the environment (such as smell
and visits per grid-point inside the cage). The Cage abstraction will also be
important when determining what input the simrat should receive.

6.2 The model

6.2.1 Cage

The cage is a very important abstraction in our simulation. We choose to
represent the cage as a two dimensional rectangular grid.

We let each grid-point (z,y) in the cage (also referred to as a position)
hold a value. The values we allow for each position are one of the following: "
" (a space, representing an empty position), "Start" (s), "Goal" (x), "Wall"
(#) or a letter a through j, representing landmarks. For convenience we
allow the position of all these values in the cage to be read from a text-file.
A sample text-file can be seen in figure 6.1. The value of position (z,y) is
returned by the element (x,y) method in the Cage-class.

Start and goal

The position in the map marked with "s" is the position in which the rat
will be in at the beginning of the simulation. We will always assume that
the rat is facing in the north direction at the start of a simulation.

The position marked with "x" is the place the rat should try to return
to in the path integration phase. More on this later.

Obstacles

The obstacles, or walls in the cage, are marked with #’s in the map. It
should be impossible for a simrat to visit a position marked as a wall, or to,
from input alone, determine what lies directly behind a wall.

36

e
d g
c £
RERRRBERBRRBRBRB RS
RERRRBERBRRBRRRR RS
RERRRBBRBRRBRBRR RS
RERRRRERBRRRRRRB RS
RERRRBBRBRRBRRRBES
RERRRBERBRRBRBRB RS
RERRRBERBRRBRRRR RS h
RERRRBBRBRRBRBRR RS
b RERRRRBRBRRBRRRR AR
HERBBRERBRRBRRRBREH
RERRRRBRBRRBRRRRER
RERRRBBRBRRBRRRRER
RERRRRBRBRRBRRRRER
RERRRRBRBRRBRRRR AR
HERBBRERBRRBRRRBREH
HERRRURBRRBRERRRRSR 1
RERRRBERBRRBRBRB RS
a XHRBRRBRBERBRRERRRYE s

Figure 6.1: Input file which defines a cage with obstacles, landmarks, start
and goal positions.

Landmarks

Landmarks are in the map marked with the letters a through j. Each land-
mark has a distinct position in the cage, and for each position in the cage
there is a most one landmark. These landmarks are the basic components
which will be used for navigation.

Rat

The cage will keep a record of the current position and direction of the Rat

in the cage. We only allow the simrat to face in the north, east, south or

west direction. That we only allow the simrat to make turns of £90 degrees

corresponds nicely with our implementation of the cage as a rectangular grid.
See next section for more information about the Rat.

6.2.2 Rat

There are two properties of the Rat that are important. The first is the
opportunity to process input (from the environment), and the second is the
ability to make choices based on those inputs. In this respect the Rat is not
very different from the Elevator defined in the ElevatorSimulation.

However, it is important to remember that the Strategies that will guide
the Rat are very different. After all it is the strategies that perform all of
the analysis of the input, and that actually decides what the simrat should
do.

37

Strategies

Each of the strategies implemented attempts to capture some specific aspect
of the simrat. The aspects we would like to model can be anything from
relatively simple behavior (such as the simrat always turning left at corners)
to more complex (as is the case if we want the simrat to create an internal
representation of the environment from input). We hope the framework
is general enough to let the strategies implement just about any type of
behavior that we could want to model.

The strategies must be able to handle the inputs that the framework will
give. The strategies must also return well-defined values to indicate what
moves the strategy recommends.

Handling input As for input we assume that a strategy will receive in-
put of three different types ("vision", "smell" and "touch"). Note that the
strategy will not receive its current (z,y) position in the cage as input. All
information about the position of the rat in the cage will have to be deduced
from the three types of input we allow. This is more difficult because there
is the possibility that simrat misinterprets the input and believes it is in
another position than it actually is. The exact details of the inputs will be
discussed later.

Giving output The values that we allow the recommendMove () method
to the Strategy class to return should be one of the following:

MOVE_NORTH FACE_NORTH TURN_LEFT
MOVE_SOUTH FACE_SOUTH TURN_ RIGHT
MOVE_EAST FACE_EAST MOVE_FORWARD
MOVE_WEST FACE_WEST NO_MOVE

Most of these legal moves should be self-explanatory, except perhaps for
the TURN LEFT and TURN RIGHT return values. Both of these will
take into consideration the direction the rat is currently facing, and then
change the heading £90 degrees relative to that. Similarly, the MOVE FORWARD
takes into consideration the direction the rat is facing, and requests that the
rat be moved in that direction.

Note however that the values returned by the recommendMove () method
to the environment are only requests. If the move requested is illegal for some
reason (a move in the northern direction would force the rat through a wall),
then that request will be ignored. In such a situation, the strategy should
be robust enough to recognize the situation so that when it receives input
the following time and finds that it has not moved, it should recommend a
different mowve.

38

Timeline InputEvent Subject Strategy
| |

activate() I
| .

stimulate(type, input)

[

[}
|

|
)
J
J
\;processlnput(type input)
|

Figure 6.2: The interaction pattern for the InputEvent.

6.3 The events

We have now defined the two basic components in the simulation: the Rat
and the Cage. Next we need a way to pass information between the two
objects. Since we would like all information to pass through a common
interface and to be generated in a standard way, we define Events to handle
this task. This has the added bonus that if we wanted to add support for
other types of inputs, the interface between the two objects would not have
to be changed, only more Events added.

6.3.1 The InputEvents

We call all of the events that carries information from the environment to
the simrat InputEvents. For each of the types of input we allow, we create
one InputEvent: VisionFEvent, SmellEvent and TouchFEvent.

Each of these InputEvents will examine the state of the cage, and in turn
pass selected pieces of information on to the Rat as input. The details of
what information we will give to the rat for each of the three types of input is
covered in the next chapter. The interaction pattern for all the InputEvents
is the same, and shown in figure 6.2. Since we assume that all the input will
happen at the same time and it may be convenient to have precise control
over the exact order in which the input events will be activated, we choose
to create a MultiEvent, as described in Section 4.1.2. This MultiEvent will,
upon its activation, activate each of the input-events in a predetermined,
sequential order.

6.3.2 The MoveEvent

After the simrat has been given input, the MoveEvent should be activated,
to query the simrat what to do, or more specifically: where to move. The

39

Timeline MoveEvent Rat Strateqy Cage
B I

| |

activate() I I
1 l |

) |

|

A

makeMove()

recomendMove()

[

move
é—_—— -
|

> handlef_/love(move)
‘

perform(action)
1

y

Figure 6.3: The interaction pattern for the MoveEvent.

3

simrat will now pass this request on to its Strategy-object, which then will
make a decision. This decision will then be sent back to the simrat, which
will further pass it back to the MoveEvent. The MoveEvent will now give
this information to the Cage, which will alter it’s state to reflect the move.
The interaction pattern for the MoveEvent is shown in figure 6.3.

6.3.3 Reoccurence

An important feature of the RatSimulation is that the events will re-occur
at certain intervals. First an InputEvent should be activated, to inform the
simrat of the current state of the environment, and then the MoveEvent
should be activated to cause the simrat to move. Next we would like new
input to be given to the rat, a new decision to be made, and so on. This
type of repetitive pattern can be efficiently handled by a ReoccuringEvent,
as described in Section 4.1.2.

6.3.4 Handling speed

One of the strategies we will later discuss will need some way to represent
speed in our framework, so that it can model a rat’s speed-distance profile
(see Chapter 11 for more information).

In our framework, we will model speed by manipulating the Reoccuring-
Event, which in turn controls the MoveEvents.

Speed is defined as "change in position" per "time" (‘(55—1;). We observe
that if we change the time between each MoveEvent, then the speed will

40

also change (assuming that the strategy actually does recommend a move
and not just recommends to stand still). So if we reduce the time between
MoveEvents, then speed will increase, and if we let the MoveEvent be further
apart in time, speed decreases.

For simplicity, we will only allow speed to assume 10 discrete values, 1
through 10. Speed 0 is not handled in our framework, but can be achieved
by having the strategy recommend "NO_ MOVE". Speed 1 means that the
MoveEvent will become activated every 10th time unit. Speed 10 means that
MoveEvent is activated once per time unit.

In our implementation we have handled this by creating a special Speed-
Control object which the strategy has access to. The strategy then specifies
which speeds it wants to have to the SpeedController (speed 1 through 10),
and the SpeedController modifies the interval between each activation of an
MoveEvent, by altering the ReoccuringEvents interval.

41

Chapter 7
Defining input

All of the types of input we would like to give to the Rat will depend on the
current position of the Rat in the cage. Some inputs will also depend on the
orientation of the Rat. Upon activation the InputEvents will examine the
Cage, and call the stimulate (type, input) method of the Rat. The "type"
parameter is simply which type of input we are giving (either "TOUCH",
"SMELL" or "VISION"), and the "input parameter is the actual input. In
the next sections we will examine more closely what this input, that the
events should generate and give to the Rat, actually is.

7.1 Touch

Touch is probably the most basic type of input we have in our model. If
the Rat is in position (z,y) then the input this InputEvent will give is the
character determined by the cage method element (x,y). Specifically; if the
Rat is standing on landmark a, then the input given to the Rat is a. If no
particular value is stored in this position (the map in figure 6.1 contains a
space), then 0 is given as input.

7.2 Smell

Smell is a type of input which will become important when the Rat explore
the environment. As with touch, the smell value is a value associated with
a (r,y) coordinate in the cage. Initially the smell-value of each position in
the cage is 0. This value can never become less than 0. Each time the Rat
visits a position in the cage, the smell-value associated with that position is
incremented by Sincrease-

At regular intervals, the smell-value of all positions in the cage should be
reduced with Sqecrease- This is done with a DecreaseSmellEvent, which upon
activation will subtract Sqecrease from all smell-values in the cage, or set it
to 0 if the resulting smell-value of a position becomes less than 0.

42

The Rat should give as input the smell-value of the position the Rat is
currently in, the position in front of it, behind it, to the left and to the right
of the Rat. This input can be used to determine where the Rat has been
before.

7.3 Vision

Vision is one of the more advanced, and computationally heavy inputs to
generate. The vision input should return the visible cage-positions, relative
to the Rat’s current position. By wisible cage positions we refere to the
positions in the cage that are inside the Rat’s wision radius and are not
behind any obstacles (i.e. there exist a direct line of sight to the position
from the Rat). That we are interested in the relative position of the Rat,
means that we should not be given the absolute position in the cage of the
landmarks, but rather should express all landmark positions in the cage with
the Rat’s current position as the origin, and a predetermined direction as
reference. This is so that the Rat cannot obtain global information (such as
a landmarks position relative to a global origin) simply by looking at local
information. Instead, all global information will have to be deduced from
information learned about the relationship between various local landmarks.
This is more difficult than being given global coordinates explicitly.

7.3.1 The problem defined

Let’s assume that the Rat’s current position is s in a cage containing ob-
stacles (#’s) and landmarks (a and b). We now wish the VisionEvent to
determine which of the positions in the cage are visible (is on a direct line
of sight from the Rat), and which are not.

Finding candidates The first thing the VisionEvent should do is discard
all points in the cage that are too far away from the current position of the
Rat (i.e. outside of the vision-radius). This can be done by examining the
Euclidean distance between each position in the cage, and the Rat’s position.
If this distance is less than the vision-radius, then this position is a candidate,
and it must be stored for later analysis. Otherwise it can be discarded. If
the cage is large, then this simple step can often prevent much unnecessary
computation.

We now have a set of candidate position that may or may not be visible
inside the cage from the Rat’s current position. Therefore, the next thing we
need to calculate is if each candidate position is hidden behind some obstacle
or not.

Representation This problem can be solved by considering lines and in-
tersection between lines in a plane. We start by transforming the map de-

43

L
-3 S
b °
e
- SRR
o
Figure 7.1: The map describing the Figure 7.2: The point/line-
scene representation of the scene

scribing the scene (figure 7.1) into points and lines in a plane (figure 7.2) in
the following manner:

The positions We represent each position, (z,y) in the map, as a midpoint
(z + 0.5,y + 0.5) in the plane.

The obstacles We represent an obstacle in position (z,y) in the map, as a
pair of line segment in the plane

1. the line in the plane from (z,y) to (z + 1,y + 1)
2. the line in the plane from (z,y + 1) to (z + 1,v)

It is now possible to check if a direct line of sight exists from the position
of the Rat to any candidate in the map, by checking whether the line from
the Rat to the candidate intersects any of the obstacles. If there exist an
intersection, then no direct line of sight exist.

Finding intersecting lines If we have two lines, ab and cd, both defined
by their endpoints (a, b and ¢, d respectively, ordered by increasing x-value),
then we can check for intersection between them by solving the following
equation for the variables s and ¢

s
a-9) @] [}] = [a-¥
Since we are only dealing with two dimensions (all points are described

by a z and y coordinate) this equation turns into the following set of linear
equations:

o ol =g

44

This set of equations can be solved directly by substitution!. If the values
of s and ¢ both are in the range [0, 1], then the lines intersect.

Unfortunately, this set of equations does not necessarily have a solution.
If the lines are parallel or collinear, the system becomes singular and other
tests are needed; If the slope of the two lines are the same (i.e. they are
parallel), then we should not use the equations given above directly. Now
the two lines will fall into one of two categories:

Parallel and not collinear If so, then the lines do not intersect. This
situation can be checked by testing whether the line from b to ¢ also
has the same slope as that of ab and cd. If so, then the lines are collinear
and we must do more testing. Otherwise, they do not intersect.

Collinear If the lines are collinear then the lines intersect only if they over-
lap. They overlap only if any of the following is true:

e the point @ or b lie on the line cd

e the point c or d lie on the line ab

Both of these cases can be tested by using the procedure described
above (by testing if the line aa or bb lie on the line ¢d and vice versa).

7.3.2 From global to local coordinates

We now have a set of positions in the cage. With each position (z,y) in
this set we should associate the touch value of position (z,y) in the cage.
This gives us a new set containing both positions and their associated touch
values.

Each position in the set is represented by global coordinates. This means
that the coordinates of each positions is expressed relative to a global origin,
i.e. (0,0). If we were to give this input to the Rat, then we would also have
to supply the Rat with its position in global coordinates in order to position
it relative to the input. Otherwise it would for instance not be able to tell
what is in front of, or behind it. When we choose not to do this, it is because
we would like to implement a biological system. It is not believed that a real
rat operates by using a global coordinate system for navigation. We find
it more plausible that real rats operate by observing distances, and angles
between landmarks. This corresponds to a polar coordinate system, with
the Rat as origin. But since there is a one-to-one correspondence between
Cartesian coordinates and polar coordinates, and we have already used a
Cartesian system in our implementation of the cage, we choose to give input
in the form of Cartesian coordinates, with the Rat as origin. If needed,

!We have also implemented a Gauss-Jordan equation solver which can be used for this
and larger sets of equations in bergmann.numerical.GaussJordan

45

Context «interface» Subject
= = —— Strategy = = — ~
+isSet(in property : Object) :boolean Hstimulate(in type :int, in input : Object)

+set(in property : Object, in value : Object) :boolean +processinputfin type :int, in input : Object) FmakeMove()

+get(in property : Object) : Object +recomendMove() :int HisSet() : boolean
+perform(in action :int) A [+set(in property : Object, in value : Object)
H-get(in property : Object) : Object
|§ t-handleMove(in move :int)
Cage implementation class» | implementation class»

Fwidth(int DepthFirstStrategy AvoidVisitedStrategy

[+height() :int Rat

+currentRatPosition() : Point - -

. N . t-handleMove(in move :int)
+currentRatDirection() :int N
+element(in x :int,in y :int) :int - - - - [rmakeMove(:int |

o e <implementation class» «implementation class»
+smell(in x:int,in y :int) :int | TMStrategy | | TBStrategy

Figure 7.3: A class diagram showing the relationship between the various
components in the rat extension of the framework.

the conversion from Cartesian to polar coordinates could be implemented
trivially in the Rat.

After having found the set of all positions in the cage that are visible from
the Rat’s current position (with a touch value associated for each position)
all positions in this set should be translated so that the Rat’s current position
becomes the origin in this set. If the Rat’s current position is (Zrat, Yrat),
then all positions (z;,;) in the set should be set to (x; — Zrat, ¥ — Yrat)-

This translated set of coordinates representing positions in the cage
should be given as input to the Rat.

Note here that we are actually also giving the Rat the cardinal directions
implicitly, since we for instance know that position (0,1) in the set is to the
north of the Rat, position (0, —1) is to the south etc. We could have solved
this by rotating the positions in the set about the origin a random number
of degrees, but since we later assume that the Rat is able to determine the
cardinal directions from its vision input, we do not bother with this detail.

7.3.3 Efficiency considerations

Unfortunately the above procedure is not very efficient. It is essentially an
O(nm) algorithm, where n is the number of candidate positions in the cage
and m is the number of obstacles 2. In addition there is a relatively large
constant involved with solving the linear equations (note however that this
is only a constant since we only solve a set of two linear equations with two
unknowns. This can be done in constant time).

% Actually there is some room for improvement here. We observe that it sometimes is
possible to represent many neighboring obstacles as one large obstacle. Consider the cage
in figure 6.1. It would be possible to consider the set of all walls (marked with "#") in
that map as one large obstacle, defined by the #’s bounding box. Then, instead of then
having to test for intersection between the line of sight and each of the lines in each of the
walls, we could simply test for intersection between the line of sight and the four lines of
the bounding obstacle box. However, it is not always fruitful searching for such shortcuts.
In the worst case it is not possible to reduce the number of obstacles in the cage in this
manner, and one will have to test for each one of them, as described earlier.

46

Fortunately there is room for optimization. Since we are dealing with a
stationary environment, where the Rat will always see the same thing if it
returns to the same position in the same map, it is therefore possible to store
the input that should be given to the Rat every time the Rat returns to the
same position. This way the above computation only has to be calculated
once for each visitable position in each map.

By storing previously calculated results we were able to cut the running-
time of the simulation down to a quarter of the original running-time.

47

Chapter 8

Evaluating the framework

8.1 Sample strategies

In this Section we will create a few basic strategies to guide our Rat. Fach
strategy is given the inputs defined in the previous sections but may or may
not choose to use any one of them. The basic strategies will become the
basis which we will later use for development of better and more advanced
strategies.

8.1.1 Deterministic strategies

Deterministic strategies are the first group of strategies we now present. In
the context of this thesis, we let the meaning of the term "deterministic
strategy" be "a strategy that will not use any form of stochastic or pseudo-
random criteria as a basis for choice-making". Conversely, this means that
a deterministic strategy will generally produce the same result, if given the
exact same input twice.

Depth-first strategy

This is an adaptation of the well known graph traversal algorithm by the
same name, covered in e.g. [Cormen et al., 1990] and [Goodrich and Tamassia, 1998|.
The basic idea of this algorithm is to systematically visit all of the visitable
nodes in a graph exactly once, by keeping track of nodes that have previously
been visited.

We have chosen to adopt the algorithm in the following manner: For
each position visited in the cage, the Rat should always attempt to first
move South, then East, then North and finally West, always disregarding
positions that has been previously visited.

We also note that this strategy will eventually stop when it finds a posi-
tion where all neighboring positions have been visited.

48

Avoid-visited strategy

Given that the Rat moves around in the Cage, and leaves a trail of smell-
marks behind it, we can create a strategy that will attempt to avoid places
it has previously visited.

For each point (referenced by an (z,y) pair) in the cage we associate a
value, called the "smell" of this point. For each time-unit the Rat spends
on this point, this smell-value is increased. We can then for each choice
of which direction the Rat should move in, always choose to move in the
direction where the "smell" value is the smallest. We hope that this over
time will ensure that the Rat visits all points in the cage.

We also note that this strategy can be viewed as a discrete version of the
well known "Method of steepest decent", covered in e.g. [Nocedal and Wright, 1999]*.

In the context of the RatSimulation framework we can use this algorithm
for exploration of the environment.

8.1.2 Non-deterministic strategies

We name all strategies which will not necessarily generate the same output,
given the same context and input, non-deterministic strategies. At the heart
of these strategies often lies some sort of random number generator, which
will somehow affect the choices made by the strategy. In the context of rat
simulation, we may use the notion of randomness to account for impulsive-
ness, unpredictable behaviour or irrational choices made by the rat.

Probabilistic strategies

The probabilistic strategies (PS) can be formed by defining a set S of some
strategies. The actual implementation of these strategies are irrelevant for
the PS. A probability P; is then associated with each strategy s € S.

When the PS is queried for what move the Rat should make, the PS
should choose one of the strategies s in §. The probability that s is chosen
should be Ps. The PS then call the recommendMove() method of s and
return the result to the Rat.

Input given to the PS should be forwarded to all of the strategies in S
alike, so that all of them may give reasonable recommendation if they should
later be chosen.

!There are of course some important differences. Firstly, the cost function we here
attempt to minimize is determined by where the Rat has previously been, and will therefore
change with time, as the Rat moves around in the Cage. Secondly, we note that the
algorithm will never stop since if a point has been found which is currently optimal (that
is, all smell values around it is greater) the Rat will stand still, causing the optimal value
to increase, and eventually; no longer be optimal. This will then force the Rat to start
moving again.

49

Now different types of behavior can be defined using the strategies S and
different probabilities P,s € S.

Uniform The probability that strategy s € S is chosen is Ps; = ﬁ This
means that every strategy has the same chance of being chosen.

Weighted This strategy assign each of the strategies s € S a predetermined

and constant weighted probability of P, so that) s P = 1.

a-probability In some cases it is possible for each of the strategies in S
to provide an indication of how "good" its recommendation is. Let
oy denote how "good" strategy s € S rates itself. Then this strategy
should have probability P, = Zs:; @ This probability distribution
will give those strategies which return high a-values higher probability
of being chosen.

Vote Let each strategy s € S recommend a move, and let the PS return the
move that the most strategies recommends.

Sum Let each strategy s € S recommend a direction to move, and let the
PS return the vector-sum of these directions.

Weighted sum Let each strategy s € S recommend a direction to move,
and let the PS return the vector-sum of these directions weighted with
each strategy’s a-value.

Deviation The DeviationStrategy starts with one "Master strategy", § €
S, and a few other strategies which are dependent on §. The other
strategies in § will when queried for a move in turn query § and then
each alter § recommendation in some way. One alteration for a strategy
in § could be to recommend the direction that § recommended plus
a random number of degrees. Another strategy might recommend the
same move minus a random number of degrees. Fach strategy s € S
is then assigned a predetermined probability weight of Ps, as in the
Weighted PS.

Later on in this thesis we will use some of the probabilistic strategies de-
scribed above in an attempt to create some more "realistic" (meaning less
deterministic, and thus more biologically plausible) results from our simula-
tions.

8.2 Validation of the components

The deterministic strategies suggested in Section 8.1.1 are ideal for simple
validation of the various components in the simulation so far. Since we always
know how the deterministic strategies will behave in a given situation, it is

50

relatively easy to compare the output of the program to what we know
should be the correct result. If the Rat walks through a wall, or starts
moving outside the cage, hopefully the deterministic strategies will reveal
this. Since the strategies are so regular and predictable, any unexpected
behavior because of errors in the framework becomes easier to detect.

Figure 8.1 and 8.2 are examples of plots produced from such output. The
plots show output from two simulations which use different strategies in a
100x100 grid-sized cage. The Rat starts in position (0,0) facing north (up)
in both simulations.

The figures on page 52 shows what we from now on will refer to as a
smell map. The grid in these types of maps represents the cage (at a given
resolution), and each visitable point in the grid is marked with a color which
indicates the "smell-value" of that point. Points with higher smell-value are
marked with darker grey, and those with lower value with lighter grey. As
mentioned earlier, the smell-values are additively increased for each time unit
the subject is at a given point. All smell-values across the grid are reduced at
regular and given time intervals, so that points recently visited will appear
darker, and positions visited a long time ago will appear brighter.

Figure 8.1 is taken after about 10 000 steps with the DeterministicAvoid-
SmellStrategy. Notice that the smell marks is stronger in a diagonal band
between the corners. This is because the strategy will always use 1 extra time
unit to turn the Rat 90 degrees. We also not that the smell mark decreases
towards the edges (where it started), and is stronger nearer the center of the
cage (where the Rat is now moving).

Similarly?, figure 8.2, shows a plot of the smell map left by a subject
using the DepthFirstStrategy. We note that the subject behaves as expected,
always first attempting to go southwards, then eastwards then northwards,
and finally westwards, and avoiding previously visited grid points.

8.2.1 Custom strategies for validation

To further ensure that the different various components behave as we expect
them, we define the following strategies.

TestStrategy

The TestStrategy is created to monitor the input and output to another
strategy. When you create a TestStrategy, you must supply another strategy
that you would like to test.

Then, each time the TestStrategy is given input, it will display what
input is given to the screen, and forward the input to the strategy being
tested. Similarly, each time the TestStrategy is queried for a move, the

2Note that for illustration, the rate at which the smell is decreased is different in the
two figures.

51

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Figure 8.1: Plot of the smell Figure 8.2: Plot of the smell marks
marks left by a Rat using the left by a Rat using the DepthFirst-
DeterministicAvoidSmellStrategy. Strategy.

A darker color indicates a stronger

(higher) smell-value.

TestStrategy queries the strategy being tested, and display the result, before
it returns it to the Rat. The TestStrategy’s interaction pattern is shown in
8.3. Although not a very large class, it has proven extremely useful in that
it can in a simple manner be used to examine all input and output given to
a strategy. This type of simple logging of what the strategy actually does is
a good way to detect possible errors. This type of testing (where you only
observe input and output to a software component) is commonly referred to
as black-boz testing.

ManualStrategy

One of the great advantages of discrete event simulation, is that simulation-
time can be stopped, so that no further updates to the simulation will occur
for an arbitrary amount for user-time. The ManualStrategy takes advantage
of this fact.

Given the above strategy for logging of input and output, it would be
convenient to see how a subject behaves in a certain situation. The Manual-
Strategy will upon each call to recommendMove() query the user to type
(in using the keyboard) how the subject should move. While the simulation
is waiting for the user to type in the answer, simulation-time is effectively
stopped. This strategy can for instance be used to maneuver the subject
into all positions and situations in the cage.

In the next part we will discuss and develop more advanced and sophis-
ticated strategies, which model behavior in rat which is more "realistic".
Although the implementation of these strategies will be a lot more complex
than the strategies we have developed and shown so far, they will implement

52

Rat TestStrateqy

Strateqy System.Out

recomendMove()

move

recomendMove()

TS WD WIS w—

e S

Figure 8.3: The interaction pattern of the TestStrategy.

the same simple bergmann.simulation.Strategy interface presented in Program
4.1.3. This ensures that exactly the same extended framework can be used
in the simulations in the next part, as in this part.

Therefore, in the following, we will focus less on the extended framework
itself (since it is the same as discussed in this part) and focus more on
a precise presentation of how the strategies actually work. We have also
chosen to focus less on the Java implementation of the strategies, since the
strategies can be more easily described and understood when formulated in
a more formal and mathematical language.

53

Part 111

Simulation of rodent navigation

54

In Part IIT we will use the rat simulation framework created in Part II
and develop strategies which model more realistic rat behavior.

We start off in Chapter 9 with a discussion about why we simulate the rat
behavior on a computer and what we hope to achieve with the simulations.

In Chapter 10 we introduce two important aspects of rat behavior that
we will examine; exploration and path integration. Exploration is the phase
where the rat learns about the environment, and path integration is where
the rat attempts to return to a goal in the cage.

Chapter 11 presents a published model which aims at describing explo-
ration behavior in the rat. We implement the model as a strategy, simulate
and present the results. We also do some comparison with the results pre-
sented in the original papers [Tchernichovski et al., 1998, Tchernichovski and Benjamini, 1998].

Our final strategy implements the Trullier-Meyer | Trullier and Meyer, 2000]
model describing path integration in the rat. This is a relatively extensive
model and there are some empirical evidence from real rat behavior to sup-
port it. This will be furthered studied in Part IV of the thesis. In Chapter
12 we present the model, we implement it and show sample output from the
simulations.

55

Chapter 9

About the simulations

In this section we will use the framework for discrete event simulation devel-
oped in Part I and II of the thesis, for more advanced simulation of rodent
navigation. Each of the two simulations we carry out will model different
aspects of a rat’s behavior.

9.1 Why simulation

As stated in Section 2.1, simulation is often used when it is too expensive,
not ethical or simply not possible to experiment with the system we attempt
to model. In the case of rat navigation, all of these reasons for simulation
are to some degree applicable.

It is very difficult to alter how a free-running rat behaves when exploring
an environment, although some progress has been made, as reported by IEEE
Spectrum [Moore, 2002] recently ("The brain as a user interface"). As far as
knowledge of the representation of the environment that the rat builds up
goes, we can only rely on a relatively modest number of electro-physiological
recordings from the rat brain. Currently, no good method for altering this
internal representation of a rat’s environment exists, and theories about how
a rat stores and uses data can therefore only be tested out in some sort of
simulated environment.

Given that we cannot perform extensive and invasive experiments on
the brain in freely moving rat without running the risk of being unethi-
cal or mutilating the system we want to study, the question becomes how
to best simulate the aspects of the rat we would like to model. Burgess
[Burgess et al., 1997] propose using a mobile robot, placed inside a cage. Al-
though they can show good results from their simulations, we believe that it
is both easier, faster and cheaper to implement a simulation on a computer.
We also believe that a computer simulation of rat navigation is easier to
change, if the need should arise for simulation of other aspects of the rat
than that originally intended or new empirical data needs to be taken into

56

account. Easier implementation does not always provide better results, but
it most certainly means quicker implementation and lower cost.

The final reason for not experimenting directly on animals, or at least
reduce experiments, is one of empathy. It is a good principle that if an
operation and examination poses a strong danger to the life or health of an
animal, and there exists other ways of obtaining the same information, then
the operation should not be carried out. This is especially true, if we do not
know what effect the procedure will have on the animal in the first place, or
whether the data so obtained will for sure improve scientific understanding
of the system we are studying.

9.2 The purpose of these simulations

In the next two chapters we will show two published models describing two
different aspects of rat behavior. These two models will both use the same
simulation framework and the same simulation entities.

We will implement these two models as two different Strategies (imple-
menting bergmann.simulation.Strategy). Therefore they will both, each in a
separate simulation, dictate the behavior of the simrat, without needing any
other changes made to the simulation framework itself. This is a good exam-
ple of how the object-orientation principles of modularity and polymorphism
saves us from having to do the same work twice (implement the simulation
environment more than once).

What we hope to achieve by implementing these two models as strategies
is to verify that these models are indeed sound, and that they are successful in
describing the various aspects of what they attempt to describe. In order to
help determine how good the simulations actually are, we will later introduce
quantitative measures as a reference.

o7

Chapter 10

Basic principles of rodent
navigation

Rat navigation is often divided into two phases
e Exploration
e Path-integration

In the next chapters we will introduce one model which describes each of
these two phases.

10.1 Exploration

Exploration is the process through which the rodent familiarizes itself with
the environment. The rat makes excursions into the environment in order
to learn more about it. According to [Tchernichovski et al., 1998] there are
a few basic properties that hold true for rat exploration:

1. During exposure, the excursion length changes according to the follow-
ing pattern
(a) Each rat is characterized by a typical excursion length.

(b) Excursion length increases during a session at a similar rate for
all rats.

(c¢) Excursion length increases from one session to the next at a sim-
ilar rate for all rats.

2. The speed profile of the rat changes from a home base attraction profile
to a home base repulsion profile. This change progresses from the home
base and out.

The model introduced in the next chapter attempts to describe all of these
features with a small algorithm.

58

10.2 Path integration

According to Redish [Redish, 1999], path integration is the ability to return
directly to a starting point (sometimes called a home base or a goal) from
any location in an environment, even in the dark or after a long circuitous
route. Path integration, sometimes called dead reckoning, has been showed
in hamsters, house mice, rats, birds, insects, dogs, cats and humans (see
[Redish, 1999] for references).

Path integration in animals has been the subject of argument for more
than a century, including a notable debate in 1873 between Alfred Wallace
and Charles Darwin in which Wallace suggested that animals find their way
back via sequences of smells and Darwin argued that animals must be using
dead reckoning. The carefully controlled experiments of Mittelstaedt and
Mittelstaedt (1980) and Etienne (1987) have demonstrated conclusively that
this ability is a consequence of integrating internal cues from various input
signals and movement information.

The basic idea of path integration is that if one knows one’s location as
well as one’s speed and direction at time ¢;, then the position at time ;11 can
be calculated. The main problem with path integration is that if your speed
and direction is wrong, your representation of position will be increasingly
inaccurate.

Path integration has been used in shipboard navigation for thousands of
years. Polynesian navigators used path integration techniques to cross the
Pacific Ocean over distances of thousands of miles, with no land in sight.
Even as late as the eighteenth century, European navigators were still us-
ing dead reckoning to determine longitude, often with disastrous effects.
With modern technology and much more accurate time pieces, however,
submarines can navigate under the polar ice cap using dead reckoning with
errors of less than a mile per week ([eb9, 1994]).

Because error in the path integrator can be corrected from local view,
there may be some systematic error in the path integrator that is corrected
by external cues. When Miiller and Wehner (1988) examined desert ants and
Seuinot, Maurer and Etienne (1993) tested hamsters, they found systematic
error depending on specifics of the path taken. However, a path integrator
that drifts too much will be useless.

In Chapter 12 we will describe and simulate a model for path integration
which makes extensive use of vision for determining its position, and which
makes it possible for a simrat to find its way back to a goal, from all positions
in the cage.

59

Chapter 11

A model for exploration
—Tchernichovski-Benjamini

Tchernichovski and Benjamini (TB) [Tchernichovski and Benjamini, 1998|
suggests a discrete analytical model which describes exploratory behavior in
the rat. The model attempts to describe the relationship between speed and
distance from a "home base", and assumes that the rat has a basic motivation
for exploration that will decrease as the distance to its home base becomes
larger. This model represents both positions and the time frame in discrete
values. This corresponds nicely with our framework.

In the next chapter this model will be used extensively to guide the simrat
during exploration.

11.1 A model for exploratory behavior

The model starts by defining a point in its cage, ug, known as the home
base. The model assumes that the rat has a basic motivation, M; < 1,
which describes its willingness to explore. The rat will continue to advance
as long as this motivation is positive, and will retreat towards the home base,
%y, when it is less than or equal to 0.

The index ¢ € 1,2,... will refer to the time. Thus M; will be the mo-
tivation of the rat at time ¢ and wu; will be the position of the rat in the
cage at time-step 7. Speed also plays an important part in this simulation.
See Section 6.3.4 for more information about how we handle speed in our
framework.

The rat has a built-in "level of uncertainty" (or fear), P(||u; —ugl|), which
depend on the distance from where the rat is, u;, and the home base, ug.
P(z) has it’s minimum value at 0 and is convex. This function will be used
as a basis for reducing the motivation M;, in time-step 7. A function W (-) is
expressed to describes the change in the rat’s "level of fear" from time-step
i — 1 toi, for i > 1. a(u;) is a measure of how much accumulated time the

60

simrat has spent in position u;.
For each time-step ¢: u;, M; and W; should be updated according to the
following rules

Ui = advance(u;) if M; >0 . (11.1)
retreat(u;) if M; <0
M; — W (u;) if u;p1 = advance(u;)
M1 = M; if u;y1 = retreat(u;) - (11.2)
1 if Uij+1 = U
W () = afu) W (u;) if u; has been visited before
" | Plus = woll) = P(Jlui—1 — uoll) otherwise
(11.3)
a(u;) c (11.4)

~ Number of times the rat has visited U;

where advance (-) should generally (this may not always be possible) ensure
that |lu; — ug|| > |Jui—1 — upl| and similarly retreat (-) that ||u; — ug|| <
i1 — uol|-

11.2 Minor modifications of the model

In the original article, the TB model uses an angular component (between
a wall and the simrat as seen from a corner in the cage) as a measure of
the distance from the simrat to the home base. We have chosen not to use
this measure, and instead opted to use the Euclidean distance since this is
a standard measure already implemented in our framework. Furthermore,
if we place a landmark in the position of the home base, then the simrat is
able to calculate the distance from the home base to itself using its vision
input.

Also, instead of using equation 11.4 directly as specified, and count the
number of visits to each point, we will use the the smell value as a basis
instead. This will make our model slightly more realistic, because we do not
place on the simrat the responsibility of remembering the coordinates of all
the positions that it has previously visited. The smell value will instead pro-
vide us with an estimate of the accumulated time the simrat has previously
spent on each of the positions in the cage.

In our simulations we have used 8 = 0.1 and ¢ = 1. The simrat starts
facing north in the upper left hand corner of the cage. We use a Uniform-
RandomStrategy which moves either to the south or east (with the same
probability) when advancing, and a UniformRandomStrategy which moves
north or west when retreating. See Section 8.1.2 more about the Uniform-
RandomStrategy.

61

10 10 10

5 5 5

0 0 0

-5 -5 -5

-10 -10 -10
0 5 10 0 5 10 0 5 10

10 10 10

5 5 5

0 0 0

-5 -5 -5

-10 -10 -10
0 5 10 0 5 10 0 5 10

Figure 11.1: Plot of distance to home base vs speed for 6 excursions. Each
plot shows an excursion starting at the home base ug and moving out into the
environment, and ending as the simrat returns to ug. The x-axis represents
distance, and the y-axis, velocity. The top three excursions are the results
presented in [Tchernichovski and Benjamini, 1998], and the lower three are
generated from our simulations. Time in each of the two sets is increasing
from the first plot (to the left) to the third plot (to the right), i.e. the
leftmost excursion was take before the rightmost. Notice that the plots from
our simulation is more "jagged" then the results from TB’s simulations. This
is because of the way our framework handles speed. See Section 6.3.4 for
more information.

62

11.3 Results

Using the model mentioned in Section 11.1 we were able to produce the
results in figure 11.1. As described in [Tchernichovski and Benjamini, 1998]
we observe that the excursion length increases as a function of the excursion
number. The movement pattern of the simrat changes concurrently with
increases in excursion length: in the first ones which are short, the movement
pattern indicates home base attraction; for every location visited by the
simrat, speed is higher on the way back to the home base. This pattern is,
according to TB, typical for early excursions in real rats.

During later excursions, the simrat leaves the home base at high speed,
then the velocity decreases until it starts its return. While returning the
speed is initially high, but when the simrat approaches the home base, its
speed decreases again. Therefore the movement pattern of the simrat is
reversed (becomes higher on in the way out) in the vicinity of the home base.
There the velocity pattern falls into the category of home base repulsion
pattern - it is higher on the way out. In the distant portion of each excursions,
the velocity pattern remains primitive, i.e., it is higher on the way back. Both
the change in excursion length as exploration progresses and the change in
kinematics described above are, according to TB, quantitatively similar to
the main findings observed in the real rats.

As shown in figure 11.1, we believe our results to be comparable to those
produced by TB.

63

Chapter 12

Simrat navigation —The
Trullier-Meyer model

Olivier Trullier and Jean-Arcady Meyer (TM) [Trullier and Meyer, 2000]
presents a "model based on biologically plausible mechanisms ...that makes
it possible for a simulated rat to navigate in an continuous environment con-
taining obstacles". The strategy works in two phases: first ezploration and
later path-integration.

During the exploration phase, the simrat will move through the cage and
attempt to create an internal representation of the environment as accurately
as possible. It will build up a data structure that will become the basis on
which later decisions are based on.

The actual movement of the simrat during the learning phase is deter-
mined by the Tchernichovski-Benjamini model for exploration, discussed in
the previous chapter.

When the simrat later will wish to move from one position in the cage
to another, it will enter the path-integration phase. It will now attempt to
utilize the data it has learned during the exploration phase, and use these
data to reach a goal.

12.1 The exploration phase and the learning model

During exploration of the environment, the rodent will attempt to build a
"mental graph" representing the environment. This is in correspondence
with how researchers believe that real rodents navigate ("The Hippocampus
as a Cognitive Graph" [Muller et al., 1996]).

The basic idea of the Trullier-Meyer model for learning the environment
is that the rat learns distances between itself and landmarks'. Landmarks
are placed at various positions in the cage. As the simrat moves around in

1See Section 6.2.1 for definition of landmarks.

64

the cage, the simrat will attempt to learn the distances from the simrat to
each landmark. For each one of the positions in the cage that the simrat
visits, the distance to all visible landmarks are calculated. The simrat will
store these sets of distances for each position. Each set of distances will
identify one position in the cage.

The next step in the Trullier-Meyer model for navigation is to identify
how each pair of positions learned (and stored as distances), relates to each
other. During this step the simrat will build a (cognitive) graph where each
vertex will correspond to a position, and an edge between a pair of vertices
indicates that these two positions in the cage are physically close to each
other.

As the simrat moves around, it will eventually find a goal. A goal is a
position in the cage, that the rat should be able to return to from all other
positions in the cage. When the simrat finds a goal, the vertices in the
cognitive graph will be marked with the direction in which to move to reach
the goal.

Eventually, the simrat will reach the path-integration phase. During this
phase we would like the simrat to return to the goal found during the learning
phase. This will be done by examining the cognitive graph in order to find
the direction to the goal.

In the next sections we will describe the details of the Trullier-Meyer
model.

12.1.1 Representing positions

We start off by defining how positions in the cage are represented in "rat
memory".

This model uses vision as its primary source of input (see Section 7.3 for
information about how we represent vision). The simrat’s vision will provide
the simrat with information about the position of the landmarks relative to
the simrat’s current position.

From the vision input we assume that the simrat is able to determine the
distance to all visible landmarks, as well as the angle between each of the
landmarks.

Let u = [:v y] be the position of the simrat in the cage. Let d(u) be
a function that returns a vector containing the Euclidean distance from u
to each of the landmarks. If there are a total of n landmarks, then d(u)
will have n elements, and element ¢ of this vector will contain the distance
to landmark ¢. If landmark 7 is not visible then some predetermined value
(in our implementation set to -0.1), will be used at position ¢ in the vector
instead. Under reasonable assumptions d(u) : 82 — R" will uniquely define
the position u in the cage. See appendix A for further details.

Let O(u) : |2 — 9®™*". This function returns a matrix with nxn ele-
ments, where element (7,j) € 1,2,...,n is the angle between landmark 4 and

65

landmark j from position u. If an angle cannot be determined, we assign
a predetermined value (in our implementation set to oo). 6(u) will later
become important when we need to calculate which direction to move in to
get to a given position.

Let i be a PlaceCell. We store the matrix returned by 8(u) in 8, and the
vector returned by d(u) in d}. The PlaceCell is an important abstraction in
our implementation. It is used for storing information about positions in the
cage that has been previously visited. The PlaceCells are named after actual
cells found in the Hippocampus area of the brain, and believed by Trullier-
Meyer to have a similar function in real rats (storing spatial information)?.
The PlaceCells in our simulations will model these real PlaceCells found in
rats.

We name the set of all PlaceCells P = {1,2,...}. We hope to generate
just enough PlaceCells to accurately represent the cage, that is to make the
set P as small as possible while still maintaining a good representation of the
cage. Later on the set P will be examined extensively over and over again,
so by minimizing |P| we not only save memory, we also make the algorithm
(and simulation) faster.

The activation function

Let us now assume that the learning phase is complete and let the current
position of the simrat be wu.

In Chapter 7 we assumed that the simrat left a trail of "smell marks"
and that the simrat could use these marks to tell whether it had been in
a given position u before. We will now examine a more general method
based on vision to detect whether the simrat has been in position u before.
The method used in [Trullier and Meyer, 2000] for testing this is with an
activation function.

An activation function, a; : 2 — [0, 1], compares two distance vectors,
and returns a scalar value between 0 and 1. The hypothesis is that if there is
little difference between the two distance vectors, d(u) and df, then the two
positions in the cage, 4 and wu;, must be physically close together. Similarly,
if there were large differences between d(u) and d}, then we believe that u
and u; are far apart.

The activation function Trullier-Meyer propose is

_lld(w) — d; |

a;(u) = exp(5) (12.1)

o
where u is the current position of the rat in the cage and d} is the distance
vector corresponding to PlaceCell 7 € P (we say that «; is the activation
function associated with PlaceCell 7).

2See Chapter 13 for more information about the "biological" PlaceCells.

66

a(xy)

Figure 12.1: Activation function of PlaceCell ¢. The distance vector
df = d([20 30]) and ¢ = 0.1. For each position u = [z y],(z,y) €
{1,2,...,40}, a;(u) has been computed and plotted at position u. There
are 4 landmarks, one located in each corner.

o is a value which roughly determines the "width" of the activation func-
tion. A small value for o will create a very steep and narrow shape, and a
large value for o will create a wide and large curve on the plot. Various
values for o can be seen on figure 12.2.

The activation function has the property that it will return a value equal
to 1 if the two distance vectors d and d* are equal, a value close to but less
than 1, if the vectors are "similar", and close to but greater than 0, if the
vectors are very "different".

Unwanted properties

This activation function also introduces some possible inaccuracies into our
model. If two positions in the cage are physically close together, but from
one of the position one cannot see landmark &, and from the other position
one can®. If so, then one distance-vector will have the default value of -0.1
in element %k, and the other distance-vector will have the actual distance, in
element k of the vector. Depending on the distance to the visible landmark
from the unobscured position, the difference between element k of the two
distance vectors will vary. If the difference between the elements is large
(landmark k is far away) then the value of a(-) would be about as if land-
mark k was visible from both positions. However, if the difference is small

3This will be the case if the cage contains obstacles hiding the view to a landmark.

67

\‘\‘\
RPN
G

QRIRY
S
S 0009%
SRR
0
t‘:::.::.o

o o

Figure 12.2: Same parameters as in figure 12.1, but the leftmost plot has
o = 0.025, and the rightmost plot has o = 0.25.

(landmark & is close), then value of the activation function may change dra-
matically. This may introduce discontinuities in the shape of the activation
function.

This situation only becomes worse if even more landmarks are not visible
from the position represented by one of the PlaceCells, but visible from the
other. The activation function might eventually classify the two positions as
not physically close to each other, even though they are, if the differences in
the vision input becomes too large. This is a possible source of error in our
model.

A possible solution to this problem could be to only consider distances
to landmarks visible from u and disregard all other landmarks. However, we
believe that the discontinuity is an integral part of the navigation model and
further clinical studies are needed.

12.1.2 Building a cognitive graph

Now the Trullier-Meyer strategy for rodent navigation attempts to build a
explicit relationship between each of the PlaceCells. This is done by first
building a (cognitive) graph, G = (V, E), where the PlaceCells will corre-
spond to vertices and an edge between two vertices indicate that the physical
position the vertices represents, are close together.

For a given position u, o;(u) and o;(u) are measures of "closeness" to
PlaceCell ¢ and j. If both are large, then u is assumed to be physically close
to u; and u;, and hence u; and u; must be close (i.e. u; = u;).

We now introduce a threshold value 0 <, < 1. Let v; € V and v; € V
be the vertices in the cognitive graph G associated with PlaceCell ¢ and 7,

68

respectively, and u be the current position of the simrat. We add an edge
between v; and v; if o;(u) > ¢, and if aj(u) > t,. We say that PlaceCell i
is active at u if a;(u) > tq.

We are now ready to start to consider in detail what will happen during
exploration.

The exploration phase

For each position, u, the simrat visits during exploration the simrat should
attempt to find a set M C P containing the m active PlaceCells ¢ € P
with largest a;(u). m is a given predetermined integer. In other words;
if ai(u),...,qp(u) are the values of the activation functions at u, let
a1(u), ..., &p|(u) be the sorted values in descending order. Then the neigh-
borhood of w is the set M = {j € P : &;(u) > t, for all j < m}.

In attempting to find M, there are four possible situations that can arise,
each relating to whether the position, or the neighborhood of the position has
been previously visited. We say that a neighborhood of w is visited if the
set M exists and each of the PlaceCells in M is active. We also say that a
position u is known if 3i € P : o;(u) > T,. Ty is a threshold-value which
satisfies 0 < to < Ty < 1.

The four possible situation that can arise, follows.

Unknown position, unvisited neighborhood The set M C P does not
exist, and no PlaceCell i € P satisfies a;(u) > T,. Since the simrat
has neither been in position u or in the neighborhood of u before, it
should create a new PlaceCell, k. The following updates to should take
place: P < P U{k}, 0; = 0(u) and dj = d(u).

Known position, unvisited neighborhood The set M C P does not
exist, but PlaceCell i € P satisfies a;(u) > T,. The simrat previ-
ously visited this position in the cage, and the position u is already
represented by a PlaceCell. We should do nothing.

Known position, visited neighborhood The set M C P exists, and
PlaceCell k € P satisfies ag(u) > Ty.

We should now update the cognitive graph, G = (V, E). For each
PlaceCell 1 € M we should create the vertex v; if it does not already
exist. If v; € V', then V < V U {v;}. For each ordered PlaceCell pair
(,7) € M,i # j, we should create the edge e = (v;,v;). If e € E, the
E <+ E U {e}.

After this procedure, all PlaceCells that are in the same neighborhood,
M, has corresponding edges between them in the cognitive graph. See
the next section for more about adding edges to the graph.

69

Unknown position, visited neighborhood The set M C P exists, but
no PlaceCell i € P satisfies «;(u) > Ty,

We do not know whether the simrat has been in position u before,
but since this neighborhood is already represented well enough by m
PlaceCells, we assume that we do not need to represent it further.

Instead we update the cognitive graph, G = (V, E). For each PlaceCell
1 € M we should create the vertex v; if it does not already exist. If
v; € V, then V < V U{wv;}. For each ordered PlaceCell pair (7,j) €
M,i # j, we should create the edge e = (v;,v;). If e € E, then
E + E U{e}. Also, see the next section for more about adding edges
to the graph.

Creating an edge between PlaceCells

To every edge in the cognitive graph we will define a direction, called the
edge direction.

The edge direction will later become important as we examine the cogni-
tive graph. This direction should roughly indicate which direction to move
from the position represented by the one PlaceCell to the position repre-
sented by the other.

We will assume that the simrat is able to determine the direction between
two landmarks from its vision input. In other words, we assume that the
simrat is able to tell cardinal directions ("North", "South", "East", "West"),
as if it had a compass.

Unfortunately, determining the direction between PlaceCells might not
be as easy as it sounds, since we assume that the simrat does not know the
explicit cage coordinates to the positions that the PlaceCells represent.

Let 7 and j be two PlaceCells € P that represents position u; and u; (i.e.
d; = d(u;) and d; = d(u;)). We would now like to calculate the direction
uj — uj, only knowing the 0* and d* values of the two PlaceCells and the
direction between two visible landmarks.

The figure shows two PlaceCells (1 and 2, at position u; and ug in the
cage), and two landmarks (a and b). To simplify the discussion, we assume
that the direction from a to b corresponds to the cardinal direction "East"
4

We now need to determine the angle between the two lines wjug and
ab. This would give us the direction from u; to us relative to the "East"
direction.

Calculating the direction between PlaceCells Assume that |uial,
|u1b|, |uea| and |ugb| are known (the distances to the landmarks, stored

* Actually, any consistent absolute direction in the cage would do.

70

U2
U1

Figure 12.3: Two place-cells, u; and ug, drawn in the position they represent
in the cage, relative to two landmarks, a and b.

in d} and d3), as well as Zauib and Zaugb (the angles between the land-
marks, stored in 0} and €3). From Aau;b with two known sides and one
known angle, we are able to calculate |ab| and Zujab. Knowing |ab| we can
also calculate Zugba. We arbitrarily choose a to be the origin, and place b at
position (|ab|,0). Next we look at the projection of u; and ug onto ab. We
name these projection-points onto ab u] and uwj. The coordinate of u] and
uj are then (|auy|cos Zujab,0) and (|ab| — |buz| cos Zugba, 0), respectively.

We now apply the Phytagorean theorem to Aauju} and Aaugul to find
|luiuf| and |ugul|. This gives us that |ujul| = /|aui|? — |au}|? and that
|lugul| = +/|bug|? — [bud|?. We now have enough information to express
uy and ug relative to the line ab. w; is at point (|au}|, |uju}|) and ug at
(laus], [usual)-

The vector u; — ue will now give us the direction, relative to landmarks
a and b, to move in from uq to us.

Our simulation does not need a precise direction, so all angles are classi-
fied relative to the "East" cardinal direction. Angles in the range [—22.5,22.5)
are classified as "East" (class 1), in the range [22.5,67.5) as "NorthEast"
(class 2), in [67.5,112.5) as "North" (class 3), and so on. Class s will con-
tain angles in the range [—22.5 + 45(s — 1),22.5 4+ 45(s — 1)). We store the
classification of the angle between landmark 7 and j from the position uy
associated with PlaceCell k in ¢ (%, 7). Note that we express angles so that
ce(i,5) €1,2,...,8

12.1.3 Learning goals

To introduce a way for the simrat to learn positions that the simrat should
be able to return to (from all positions in the cage), we introduce goals. In
order to simplify the discussion, we will first consider the case when there is
just one goal in the cage.

Let ¢ = [ac y] be a position in the cage that the simrat should be
able to return to. |[Trullier and Meyer, 2000]| introduces a set of directions
G associated with g. We follow the notation used by TM and name each
element in G a GoalCell. As with PlaceCells, GoalCells are named after
actual cells found in the Hippocampus area of the brain, and believed by

71

TM to be used by the rat in determining its current position relative to a
goal. The GoalCells in our model will serve a similar purpose.

Each GoalCell 1 € G = {1,2,...,8} will represent a direction relative to
g. 1 will represent "East", 2 will represent "NorthEast", 3 will represent
"North" and so on, giving a total of 8 directions.

In the previous section, the simrat created a cognitive graph G = (V, E),
which contained vertices v; € V corresponding to PlaceCell i representing
positions u;. The simrat then added edges, (v;,vj) € E between the vertices
associated with PlaceCell 7 and j, if it believed that u; and u; were physically
close together. Now we would like to augment the graph G to also include
information about each position u; and its physical relationship to the goal
g. This is done by introducing a vertex g; to the graph G, for each of the
GoalCells j € G. We add an edge (v;,g;) to E if u; is in direction j from g.
In this way we hope to classify all the PlaceCells ¢ € P relative to a goal g.

Let G = (V, E) be the cognitive graph described in the previous section.
When the simrat reaches g for the first time during exploration of the cage, it
should create the set G, and set V <- VU{g, : j € G}. Next the simrat should
find a PlaceCell i € P : a;(g) = maxgep ag(g). For each of the GoalCells,
j € G, the simrat should perform a depth-first graph-search starting at vertex
v; € V, and only following edges (vg,vy) € E so that cg(z,y) = j. For each
of the vertices, v, found in this manner, F < E'U {(v,,g;)}.

Finally, we define a function

Bi(u) = [{i € P: a;(u) > ta, (vi,g;) € E}|

associated with GoalCell j € G. B;(u) returns the number of active Place-
Cells which have an edge to the direction j at position w.

12.2 Returning to the goal

After having spent some time exploring and learning the environment, the
simrat will attempt to return to a goal in the cage. The next sections de-
scribes how this can be done.

12.2.1 Single goal path-integration

We start by considering the base case when there is only one goal in the
cage. The simrat will now attempt to return to this goal. This process is
known as path-integration.

Let u = [m y] be the current position of the simrat in the cage, and
let G = (V, E) be the cognitive graph constructed during exploration and
learning of the goals in the previous sections.

Then the direction to the goal is a weighted sum of directions represented
by the GoalCells j € G. Let D(j) be a function which returns the direction

72

4

C D

Figure 12.4: Cage with 4 land-
marks, (A, B, C and D), a goal (G)
and a simrat in the lower left cor-
ner.

Figure 12.6: The simrat has moved
to the center of the cage, where it
has found goal G. It wishes to learn
this position.

73

Figure 12.5: Idealized cognitive
graph, showing the PlaceCells and
edges corresponding to the cage.
The lines represent edges, and the
dots, PlaceCells. Simrat has com-
pleted the learning phase, so the
cognitive map is relatively com-
plete.

Figure 12.7: The rat creates a set
of GoalCells for goal G. From
the PlaceCell representing the cur-
rent position (the ones in the cen-
ter of the cage) it finds all Place-
Cells reachable in each direction

dictated by the GoalCells, and as-
sociate these with the correspond-
ing GoalCell. For simplicity we
have here only shown two Goal-
Cells corresponding to the "North-
West" and "NorthEast" direction.

Activation value of GoalCells

o N & o ®

GoalCells
SouthWest West NorthWest North South NorthEast East SouthEast
[J [[[J ([
Active
PlaceCells

PlaceCells

Figure 12.8: We see the active set of the PlaceCells, M, and the GoalCells
they are associated with. The bar-chart on top shows the current £ values
for each of the GoalCells. The simrat is currently in the upper left hand
corner of the cage, as seen in figure 12.9.

that GoalCell j represent. Then the direction z to the goal is

z=-Y Bij(u)D(j)

JjEG

12.2.2 Multiple goals

In the previous section we only considered the case where there was one goal
in the cage. The model extends to more than one goal. If more than one
goal needs to be represented in the cognitive graph, then the above procedure
must be repeated for each new goal.

Let g8 = [ack yk] be one of the goals that we need to represent. Then,
the first time the simrat visits position g*, the simrat should create the set
GF containing 8 GoalCells representing directions relative to g¥. We also
define a function ﬁf (u) associated with GoalCell 5 € G¥. Now the procedure

given in the previous sections can be followed by using G* instead of G, and
ﬁf() instead of f;(:).

Path-integration also works in the same way, but we work with the set
G* and function ﬂ}“(-), associated with goal ¢¥, instead of G and B;(-) when

74

A B
b NW
G Path to
goal

c D
Figure 12.9: The simrat is in the
upper left corner of the cage and Figure 12.10: The direction to fol-
wants to return to the goal G. low in order to return to goal G.

The direction is found by taking
the opposite of the vector-sum of
the directions given by the Goal-
Cells weighted by their respective
B values. See figure 12.8 for more
details.

evaluating z*. Thus, the direction to goal k is

2 == BF(u)D(j)

JEGHk

12.2.3 Path-integration summary

Since it may be difficult to follow all the steps needed to evaluate the sum
presented in Section 12.1.3, we provide the following summary. In order to
simplify our notation, we only assume one goal in the cage.

Let u = [:v y] be the current position of the simrat in the cage. Let g
be the goal in the cage. The simrat has already created the cognitive graph
G = (V, E) and learned goal g (see Section 12.1.3).

1.

Find the set S = {i € P : a;(u) > to}. Notice that d} is used to
calculate a;(u).

For each GoalCell j € G count the number of edges (v, g;) € E where
1 € §. Let this count for each GoalCell j be called f;.

For each GoalCell j € G, find the direction D(j) that j represents.
D(1) =1 0], D22) = [v2 V2], D(3) = [0 1] and so on at 45°
intervals around the circle of unity.

. Evaluate the vector sum and find the direction z to the goal g: z =

— 2 jeg BiD()-

75

12.3 Problems

Notice in Section 12.1.3 that the function £;(u) is defined to return the
number of active PlaceCells which have an edge to GoalCell j.

If no PlaceCells are active or no active PlaceCells have edges to GoalCell j
then 3;(u) will return 0. If no GoalCells has and edge to an active PlaceCell,
then z = [0] and the simrat will not have any direction to the goal. This can
happen if there are obstacles in the cage, which will cause some positions to
not be represented in the map.

In this situation, the Trullier-Meyer model states that the simrat cannot
take a direct route to the goal. Instead, a series of subgoals will need to be
visited in sequence to reach the goal.

A subgoal is a goal in the cage, that the simrat will need to visit before
it can go to its final goal.

12.3.1 Creating subgoals

Let the ¢* be the goal that the simrat should return to, but no PlaceCells
are active (fBj(u) = 0 for all GoalCells j € G) then z; = [0]. In this situation
TM states that the simrat should start to move at random in the cage, until
it finally finds a position where, when calculated, zj # [0]. At that position
in the cage, a new (sub-)goal, [, should be created. This is done by following
the procedure given i Section 12.1.3. Then the simrat should follow the
direction given by z.

If this proves succesfull, and the simrat is able to reach goal g*, then goal
I should be used as a subgoal for goal k in the future: if zx = [0] at a given
position, then the simrat should check if z; # [0]. If this holds true, then the
simrat should follow direction z;, until it finally finds z; # 0. Upon finding
zi # 0, the direction zj, should be followed to goal g*.

If however, after creating subgoal [, the simrat follows the direction given
by zx, and this does not lead to goal k, then the subgoal [and G; should
be removed from the cognitive graph; it does not lie one the path to goal k
as it should. This can happen if z; leads the simrat to a position which is
not represented by enough PlaceCells. Now the process must be repeated,
the simrat should again move randomly about, until z; # 0 is found, a new
subgoal is created and so forth.

We hope that over time this procedure will generate enough subgoals for
the simrat to return to goal k from all positions in the cage.

12.3.2 Navigation using multiple subgoals

Often when dealing with large cages with several obstacles, the simrat needs
to visit several subgoals in turn before reaching our final goal g*. In order to

76

«interface»
Strategy

+processinput(in type :int,in input : Object)
+recomendMove() :int

1 L‘

«implementation class»
TMStrategy

+processinput(in type :int,in input :int)

L @ +recomendMove() :int

+goalDirection() : Vector

¢

1

CognitiveGraph

+goalDirection() : Vector
+findActiveGoalCells() : Collection

-+findActivePlaceCells(in number :int) : Collection
+recruitNewPlaceCell() : PlaceCell
+connectAll(in placecells : Collection)

«interface»
Graph

+numberOfVertices() :int

+numberOfEdges() :int

+degree(in v :Vertex) :int
+adjacentVertices(in v : Vertex) : Collection
+incidentEdges(in e :Edge) : Collection
+insertEdge(in v1 :Vertex, in v2 :Vertex) : Edge
+insertVertex(in element : Object) : Vertex
+removeEdge(in e :Edge) : Object
+removeVertex(in v :Vertex) : Object

+edges() : Collection

+vertices() : Collection
«interface»

DirectedGraph

+inDegree(in v :Vertex) :int
1 +outDegree(in v :Vertex) :int

<implementation class»
AdjacencyMatrix

+inIncidentEdges(in v :Vertex) : Collection
+outincidentEdge(in v : Vertex) : Collection
+inAdjacentVertices(in v : Vertex) : Collection

+outAdjacentVertices(in v : Vertex) : Collection
+destination(in e : Edge) : Vertex

+origin(in e :Edge) :Vertex

Edge
+destination() : Vertex N Cell
+origin() : Vertex +activate() :int
Vertex ;‘

-+element() : Object
PlaceCell GoalCell

1 +inEdges() : Collection

1 5 [routEdges():Collection
+addIncoming(in e : Edge)
+addOutgoing(in e :Edge)
+remove(in e :Edge)
+element() : Object

+isActive() :boolean
+angle(in landmark :int) :double
+distance(in landmark :int) : double

PlaceCellEdgelnfo

+direction() :int

Figure 12.11: The suggested implementation hierarchy.

facilitate this the simrat must order the subgoals according their respective
distances to the goal.

It should assign goal g* (which is its final goal) a distance of 0, subgoals
which are close a "low" value, and subgoals which are far away a "large"
value.

One possible way to find such a value for a subgoal is to consider the
time this subgoal was created. Subgoals which are closer to the goal g, will
probably have been created before subgoals which are further away from the
goal, and therefore creation-time may be used as a measure of the distance®.

The simrat should now always move towards the (sub-)goal j with the
smallest distance to goal g¥ which has z; # [0]. If, at any point in time while
on the way back, the simrat enters an area in which no GoalCells are active,
the simrat should start creating subgoals, as described above.

Figure 12.11 shows a brief overview of our suggested Java implementation.
Note that we make extensive use of the ADTs we have implemented in the
bergmann.structure package. See Section 4.4 for more about our reasons for
doing so. Both Graph, DirectedGraph, AdjacencyMatrix as well as Edge and

SUnfortunately, there are also several difficulties involved with this measure of distance.
Several situations can be constructed for which this heuristic will fail. Other strategies
for measuring distances must then be used.

7

SS S /,//»//»/7»//»/»/7»////7»////7»
PSSO
R e R D S N SRR
R R DN SRR
///////»///////////////////
Av//v//v///////////////////////
IR R R N R N N
R R R R e R O N N A
R R A SRR R RN RN
/v//v//v//»/v/»/v/////////////////////
Av//v//v//»/v/»/////»/////////»/////////
/v//v//v//»/v/»/v//v//»/w/v///v//v//v/»/»/»//////
I e e NS AUNNNY
////////////v//»//v///v//v//v//»/v///////
//////////////////////////////////
e R R A SN S SR
I e R D SN W,
R e e D S SN SN
T N N N IO
//v///v/v/»/v/»/v/»/v//»//v//»////»///»//»//»/v///v/////
T e e e e e e e N N N S NN
I e e e e N e N e e N S S NN NS NN N\
[T T S OO S NN
NN AR RN\
e e N N N N NN NN
SNSRI MNMSNSSSANNNNN
S S NN
S RS SN
B NN
RTINS

N\
AN\
N
NN
N
N
NN
NN
N\
N
N
N\

S S S il
Ve S S S Ssiiiil

LA i i e e A e e

i e e i i e i e
P et e et et o
W et e e

A s s e e
//‘//‘/(((((,.—&&&&e&&&_

////././.—.'.»e

\
\
\
\
N
\
N

P et
P
i s

b s i

i i e

S SN

A B

v A A A AT]
I S PP VA
v araA A AT]
eerrrrm g a S]]
I

H

RS

vt A AT]
v A A AT
errrrrrr A A AATITIP]
rervmr e A A IS S
ISP VIS
$$$$$$$$$$ S S S Y S YIS
LvlvLvlvtvtvi\vlvlvlv\v\v\\\\\\\\\\«\\\\\\-\\\\\\\
££££££££ rrrrr it rr i A A A AT
e S S S Y . Y I
llvlvlwlv\v\v\v\v\n\v\\\\\\\\\\\\\\\\\\\\\\\
s rovvrrrrr s s A A AATAIAT]S
I S S S S S O S IS I
I S S S S S I S
- e s Al rrrArrr gl 2 I

X

B R N
e

e

\\\\\\\\\
NN

\
/
!
I
f
!
!
!
i
i
i
i

ERRR RN

/7
/7
7/
A
I
I
)
1t

OSNNNN

NN\ [Y e

T SN B e e

15

o n o Ln o n o
wn < < ™ ™ N N

5

10 =N

15

50

45

40

35

30

25

20

10

Figure 12.12: Plot of heading of the rat for all points in the cage. The cage

is currently without obstacles of any type.

We let the CognitiveGraph class hold a

reference to a DirectedGraph implemented by the AdjacencyMatrix. We choose
to extend the Vertex class, and create a common Cell class. This Cell class

Vertex are implemented in the bergmann.structure, along with many other
is then in turn extended by both PlaceCell and GoalCell.

ADTs we have used in this thesis.

We let the single

activate(-) method of Cell return o when implemented in PlaceCell, and g in

GoalCell.

The TMStrategy is the "main" class which implements the bergmann.
simulation.Strategy interface. The TMStrategy holds a reference to another
strategy (in our implementation an instance of the TBStrategy class, dis-
cussed in the previous chapter). The TMStrategy makes extensive use of the

CognitiveGraph class, which it also holds a reference to.

12.4 Results

From the algorithm presented in this chapter we were able to produce the

following output.

Figure 12.12 shows a direction plot for a simrat attempting to return to

78

50

]
]

VY T 17
v I
v Pl
W P
N
ST N A A A A A A A A O A A O T N
NN AR
I T T A 2 A S A A S A S
RS A S!
Y NNV A L
NNNANANV VL bbb
SRR S R S R A0 A A A0 A A AR
NN A A A A A A A A A
ot T S A A O S A A A i
NNNNNNN VL
NNNNMNNN VNV
NNENEENENE VR
NNNNNNNNN VR
el T A A A A A A A i
NNNMNNNNNN NV bbb
R S e A S A S
NNNNNNNNNN Y bbb
NNNNNNNNNNVV Vb
S5 RNNN VNN LN i
NNNNNNNNNNN Vbbb bbb
NNNNNNNNNNN Vbbb
NNNNNNNNNNN NV bbb
NNNNNNNNNNNN VAV VL P T
SORRRANIN LN NN VAL i
RONNNNNNNNNNNN VN VLT
NN N T R N 0 A
AR T o O L
R N
25 I IRNANNNNNN N NN NN L i
R R R R R RN
I N T S
TSNSV VNV VNV e
RN AN N
P S N N A i
[T T NOONNN N VN VN L
Lo o o o o TTISTSNNNNANNNA Y o s
T SSNNNN N L N
T TITITITI I SNNNNN N N b
5 =SNINNN L [i
RN D
IO\ I
R
—S\0
[| =N\ I | I I I
5 10 15 20 25 30 35 40 45 50

Figure 12.13: Plot of heading of the rat for all points in the cage. We
have placed a wall in the lower part of the center of the cage. Notice that
single goal path integration is unable to determine the path to the goal from
anywhere behind the obstacle, although a path to the goal does exists. The
solution to this problem is that we should now start to search for subgoals.

a goal in position (20,1). The 50x50 grid sized cage is without obstacles of
any kind, and there is a landmark located in each corner of the cage. The
arrows shows the direction the simrat believes the goal is in for each position
in the cage. By visually inspecting the direction plot we observe that the
simrat seems able to find its way back to the goal from all positions in the
cage. In Chapter 18 we introduce a quantitative measure of how good this
direction plot actually is.

Figure 12.13 shows a direction plot of the cage when an obstacle is in-
troduced. The obstacle has the shape of a rectangle with its lower left hand
corner in position (21, 1), and its upper right hand corner in position (31, 30).
The edges of the obstacles are parallel to the corresponding edges of the cage.
The goal is in position (20,1). We observe that the simrat is unable to find
a direct path to the goal from positions behind the obstacle using single goal
path integration. In order for the simrat to return to the goal, the simrat
needs to introduce subgoals to the cognitive graph.

79

I

v\v\v\»\v\i\»\»\»\»\i\»\»\»\\i\\»\»\
Y
\\\\\\\\\\\\\\\\\\\
e e e e e
A E L Car s
YL L
\\\\\\\\\\\\\\\\\\\\\
\\»\;\»\»\»\»\»\»\»\»\»\»\;\.\;\.\‘\.\»\.\
\\»\»\»\»\.\»\»\»\\»\»\\.\;\TTA\TTTT
\\\\\\»\.\\\\\\\\TTTTTTTTT

\\\\\\\\\\\\\\TTTTTTTTTTT -

T
AL
L
Y
RIS
Il
iy
il
/i
/v
/

v\r\;\»\»\»\»\\\A\A\\A\\TTTTTTTTTTTT

\\\\\\\\\\&___7
NN S S S e e

L L LN LA LS
LA LA A
PP

i i i s]
i s i ke i i |
P e e et
~—————————— . |

|
|
|
|
|
|
\
\
\
\
\
\
\
\
\
\
\
\
\

P e

RSSO,
PSSO
R M
¢1v1vlw/y/»/v/v/»/r/r/v/»///// R FE

\\\x\\xxx
, I e
N\ VA g
RN WAL VLSS
AN AL [/
AN Yeanns
NSNS T
AR R S 0 A .
B R
R
N\
\\
\

\ e
[.
A o

N

B NN\

SN
B el el el el al el S Pty
rrrrmr A2 7]/
IS S S S S I
\v\\\\\\\\\\\\\\\\“ “
tt

eerrram AT A S]]

S S IS Y IIAN)
v AL
errrrrrr A A AATITIP]
rervmr e A A IS S
ISP VIS
$$$$$$$$$$ B S S S S S I I
LvlvLvlvtvtvi\vlvlvlv\v\v\\\\\\\\\\«\\\\\\-\\\\\\\ \
££££££££ st A A AP AIA]]
e S S S Y . Y I
llvlvlwlv\v\v\v\v\n\v\\\\\\\\\\\\\\\\\\\\\\\
s rovvrrrrr s s A A AATAIAT]S
ererrrrrmrr s r A m A A A A AAAAATS S]]
v rrrrmmmrr s s s mmammmd AAIAA PSS
- e s Al rrrArrr gl 2 I

== X
N

————

\
7
AN
777111
21T
1t
At
A1t
S

\
\
/
\
/

t
o n o Ln o n o n o
wn < < ™ ™ N N — -

50

45

40

35

30

20

15

10

Figure 12.14: Plot of heading of the rat for all points in the cage. The simrat

has now added subgoals at position (20,31) and (32,31). It is now able to

return to the goal from all positions in the cage, using this subgoal.

80

Figure 12.14 shows a direction plot of the same cage as the one in figure
12.13. The simrat has now introduced several subgoals into the cognitive
graph. There is one subgoal above the north-west corner, and one subgoal
above the north-east corner of the obstacle. These subgoals ensure that the
simrat is able to find its way back to the goal at position (20,1) from all
positions in the cage.

81

Part IV

Experimental data and analysis

82

In Chapter 12 we introduced the Trullier-Meyer model for path integra-
tion. We also hinted that there were some empirical evidence from real rats
to support it. In this part we examine data from real rats, and let our imple-
mentation of the Trullier-Meyer model use this data representation to learn
a goal.

In Chapter 13 we give some background information about the areas of
the rat brain that the Trullier-Meyer model deals with. We also introduce
the "biological counterparts" of the abstractions Trullier-Meyer use.

Chapter 14 gives an account of how information is recorded from the
areas of the rat brain discussed in Chapter 13 of the thesis.

After having collected the data from the rats in Chapter 14, we in Chapter
15 refine and analyze it and create the plots (or maps as we will call them)
which will be used throughout the rest of this thesis when comparing data
from real rats to the simrat.

In Chapter 16 we will take the data maps originating from the real rat
experiments and adjust our internal representation in the Trullier-Meyer
model to it. We wish to test whether the data representation we gathered
from the rats is sufficient to guide the simrat in our simulation of directed
behavior.

In Chapter 17 we again perform the same simulation done in Chapter 12,
but we use the representation gathered from the rat as our simrat’s internal
representation. We present the result, and discuss them.

Now that we have created several simulations, we in Chapter 18 introduce
a way of comparing output in order to provide descriptive statistic about how
good a simulation really is.

In Chapter 19 we use probabilistic strategies developed earlier in the
thesis to show sample plots of how the simrat behaves in the cage if we
introduce an element of randomness into our simulations.

The final chapter, Chapter 20, is dedicated to summarizing our results,
and to suggest possibilities for improvements and future work.

83

Chapter 13

Hippocampus and place cells

Hippocampus is also referred to as Ammon’s horn, or Cornu Ammonis. This
name refers to its resemblance in the human brain to ram horns (the ancient
god Ammon who had rams head.) In humans, the Hippocampus is located
at the floor of the lateral ventricle in the medial part of the temporal lobe.
The entire extent of the Hippocampus is connected to a number of fore-brain
structures.

Much of the present information known about brain functions has been
learned from experimental lesions in the animals and brain injuries in hu-
mans. This is also the case with the Hippocampus.

Scoville and Milner [Scoville and Milner, 1957] have inspired many scien-
tific studies with their study of a patient referred to as "H.M.". To alleviate
his symptoms of severe temporal lobe epilepsy, he had his hippocampi, amyg-
dala and parts of the temporal lobe surgically removed. After surgery, they
discovered that H.M. was incapable of remembering new events and verbal
content (known as anterograde amnesia). He also had retrograde amnesia (of
things in the past) that was more severe close to the time of surgery. This
specific finding lead to the hypothesis that the Hippocampus was largely
responsible for storing new information.

Studies of other patients that had undergone similar surgery confirmed
these findings. People with Alzheimers disease (which affects the hippocam-
pal formation) exhibit spatial orientation deficits as one of their first symp-
toms. It has also been shown [Redish, 1999] that animals with lesions to the
hippocampal formation exhibit deficits in different forms of spatial tasks.

A wealth of experimental and clinical data accumulated over the years
has indicated that the Hippocampus must be involved in spatial orientation
behavior. It is now a generally accepted hypothesis that the Hippocampus
is a key component in the brain for the processing of spatial information.

For more details about the Hippocampus structure and functions, see
[Redish, 1999].

84

Figure 13.1: The Hippocampus in the rat brain. "S" marks the septal
pole, "T" the temporal pole and "TRANS" the fibers connected to the Hip-
pocampi, which run transverse to the fimbria-fornix. The Hippocampus is
located in the medial part of the temporal lobe.

13.1 Place cells

O’Keefe and Dostrovsky [O’Keefe and Dostrovsky, 1971] presented in 1971
the first preliminary data that showed that there are cells in the Hippocam-
pus area of the brain that only is active at specific places of the environment.
These findings were important in that they eventually lead to the conclu-
sions of what the Hippocampus area of the brain is used for. O’Keefe and
Dostrovsky named these cells place cells and O’Keefe [O’Keefe, 1979] later
introduced the following definition of them.

Definition 8 (Place cell)
"Cell whose firing rate or pattern consistently discriminate between different
parts of an environment."

Observe that this definition uses the term firing. That a place cell fires
means that it becomes active and emits a signal.

In the previous part we used the term PlaceCell to refer to an object in
our simulation which was responsible for supplying a scalar value depending
on the position of the simrat in the environment. We observe that our
implementation of the PlaceCell also falls under definition 13.1.

In our simulations the PlaceCells supply a constant value when active.
Real place cells, on the other hand, often exhibit a special firing pattern,
known as complex-spike when active. We will use the following definition of
a complex-spike firing pattern.

Definition 9 (Complex spike)
"A cell that sometimes has a spontaneously occurring burst of about 2-10

85

300 -

250

200 A

150 -

100 -

uv

50 4

Myl g M il /M

s "NW\J ZW‘N\W””W \f V Y Www

-100

S}

-150 -
ms

Figure 13.2: Example of a trace of a complex-spike firing pattern. The
sample was collected using a digital oscilloscope with 100 kHz sampling rate.
The x-axis shows time in milliseconds, and the y-axis voltage in microvolts.

action potentials of decreasing amplitude and increasing duration recorded
extracellularly, with very short (< 5 ms) inter-spike intervals."

Figure 13.2 shows one typical example of complex spike activity. We
observe that when the place cell is active (or fires), it emits a series of signals
over time, of decreasing amplitude. The value supplied by our simulation
PlaceCells can be thought of as a scaled count of the number of spikes over
a given time period.

86

Chapter 14

Experiment method and data
acquisition

Since the reader may not have any prior experience with surgery protocol,
we here present a short description of the steps involved in obtaining the
experimental data for analysis. We hope that this chapter will help the
reader understand the biological origin of the sampled data. In order to
complete the analysis of the data in the next chapter, it is important to
know how the acquired data relates to the actual experiments. We hope this
will help us eliminate possible errors in the next chapter. Knowledge of the
assumptions made during data acquisition can be vital for later analysis.

14.1 Rat surgery

For a detailed description of the surgery procedure, see [Thorsnes, 2001]. We
here only present a short summary of the procedure.

14.1.1 Surgery

The rat was kept in a temporal animal housing in the lab for at least 5
days. If the animal during this period showed no symptoms to indicate any
problems, it was prepared for surgery. The rat was given half of its daily
portion of food before surgery.

The rat was deeply anaesthetised, its head shaved from behind the eyes
to 3 cm behind the ears, and the head fixed to a stereotaxic apparatus. An
incision 4 cm long was made in the skin with a scalpel, and the skull exposed
(figure 14.1). The muscles surrounding the top of the scull were carefully
retracted and the scull surface cleaned thoroughly. The scull was drilled
open at several positions using an 1.8 mm burr, and three securing screws
(with the sharp tip cutted off) were inserted in the skull to help support the
implant (figure 14.2).

87

Figure 14.1: The skin retracted and the scull exposed. Screws has be at-
tached to the skull to support the implant.

The electrode platform was placed in the position, and the canula with
the ten micro-electrodes inserted into the brain. The electrodes were lowered
to a depth of 1.3 mm from touchdown on the dura.

The openings in the skull were then filled, and the platform rods cemented
to the skull using (biologically neutral) dental cement. The finished result
can be seen on figure 14.3.

The rat was allowed at least ten days of recovery after surgery, during
which the tissue surrounding the implant was smeared with anti-bacterial
ointment.

14.1.2 Adjustment

After the rat had regained the weight lost after the implantation surgery,
the descent of the electrode platform was started. The home cage of the
rat was placed on the table in the recording room, and the electrodes on
the implant attached by cable to a 10-channel FET preamplifier (see 14.2).
All of the electrodes were then systematically checked for the presence of
electrical activity resembling complex-spike activity. The signal displayed
on a digital oscilloscope were used to determine the final electrode-waveform
reference pair. If no units were found, the rat was detached from the cable,
and the screw on the platform were turned by % to % of a rotation. This
procedure was repeated for several weeks before stable units were found on
several electrodes.

14.2 The testlab setup

The testlab is divided into two rooms, the testing room and the recording
room, separated by a door. The testing room is where the actual experiments

88

Figure 14.2: Attaching the platform to the scull. The platform can later be
adjusted up or down by tightening the screws seen on top of the picture.

Figure 14.3: Picture of the rat after surgery. On top of the platform is a
10-pin jack which can be attached to the registration device.

89

take place, and signals acquired in the testing room during experiments are
then sent to the recording room where they are stored on a computer for
analysis.

The recordings we have used in this thesis were done in an open field in
the testing room. This open field corresponds to the cage in our simulations.
The open field is a 100 cm x 100 cm X 50 cm box without ceiling, elevated
20 cm above the floor. The walls of the cage were painted flat black to avoid
reflections. The cage was placed in the center of a 100 cmx 100 cm enclosure
of black curtains. The curtains were suspended 250 cm above the floor. The
walls above the curtains were painted flat black, as was the ceiling.

A black plastic disc, 80 cm in diameter was suspended from the ceiling,
centered above the open field below. The disc is non-reflective, and is posi-
tioned at equal height with the top of the curtains. Six Halogen lights were
distributed along the edge of the disc and the light cones adjusted to ensure
even illumination of the open field. The Halogen lights were 20 W each, but
the light intensity was dimmed with a potentiometer.

The custom made, lightweight recording wire from the rat was attached
to a commutator in the center of the disc and suspended in a counter-weight
system made in the lab. A black and white CCTV-camera was mounted to a
modified camera-stand attached to the ceiling. The zoom and position of the
camera lens was adjusted to cover the entire open field. An automatic pellet
feeder was placed on top of the disc, and a hole made to allow the feeder to
randomly drop small food pellets into the open field. The pellet feeder was
connected to a control-panel in the equipment rack in the recording room,
next door. This pellet feeder is activated if the rats stands still for a long
period of time to stimulate movement. Figure 14.4 shows the connections
and signal flow in the testlab.

The recording room contains a Analog/Digital conversion board which
samples spike data at 300 kHz. Positional data is extracted from the video
feed at 50 Hz.

14.3 A typical session

The rats are ordinarily kept in their cages placed on a series of shelves next
to the door in the testing room. The rats cannot see the enclosure in which
they will be tested from their home cage. When a rat is to be tested it and its
cage is taken in to the recording room, and placed on a table. While the rat
is still in its transportation cage, a wire is connected from its FET-implant
to the registering equipment in the recording room. It is ensured that the
recording equipment is able to pick up signals from several of the probes in
the rat’s brain.

The experiment is ready to begin if all seems okay at this point. The wire
attached to the implant is removed, and the rat taken out of its cage and into

90

PF | PF-CTR

TV-MON

| SW-2 —{ TR-BOX |—

CAM

CAPT SPEAK

Figure 14.4: The connections and signal flow of the recording setup. Ab-
breviations: A/D, Analog/Digital conversion board; CAM, CCTV-camera;
CLOCK, Clock-board; COM, Commutator; FET, Headstage with Field-
Effect-Transistors; Lynx 8, Lynx 8 amplifier; O-scope, Digital storage os-
cilloscope; Panel, Panel for selecting electrodes and references; PF, Pellet
Feeder; PF-CTR, Pellet Feeder Controller; SPEAK, Loudspeaker; SW 1,
Switch for shielded cable input; SW 2, Switch for video signal; CAPT, Cap-
ture of oscilloscope traces on a computer; TV-MON, TV-Monitor; VCR,
Video-cassette recorder.

91

the testing room. The rat is placed in the open field, which has been cleaned
since the last experiment. The rat implant is attached to commutator in
the ceiling by a wire. The curtains are drawn, and all researchers leave the
testing room leaving the rat alone to explore the testing cage for 16 minutes.

The researchers watch the exploration from a monitor in the recording
room. The exploration is also recorded by a standard VHS video recorder.
A speaker is attached to the computer receiving data from the implant, and
each time the computer receives a signal a clicking sound is heard from the
speakers. At regular and frequent intervals the position of rat is recorded
by a tracking box and forwarded to the computer. If the rat stops moving
during exploration, the researchers press a button which controls the pellet
dispenser in the cage. This causes small food pellets to be dropped at random
places in the cage, and this usually encourages the rat to start moving again.

After 16 minutes the session is over, the rat is released from its wires and
taken back to its home cage. The data collected by the computer is stored
in a file. A log is also kept on written paper, and stored along with the video
recordings.

In the context of this thesis we say that a session is a "good session" if
the accumulated time the rat has spent in each part of the cage is about the
same, and if one or more of the probes show complex spike activity in certain
parts of the cage. We have only used "good sessions" in our analysis.

14.4 The data

The data acquired during a session is stored in a binary ".UFF" file format.

Each datafile is named after the ID number of the rat, and a session ID
number. The UFF-file will contain all inputs received from the rat, as well
as the positional data gathered by the monitoring camera in the cage.

All inputs which are gathered during the session, are marked with a
time stamp, which indicates the time this input was received. Each input
received at a given time is referred to as an input event. It is interesting to
note that the data-acquisition software uses an abstraction analogous to our
input-events in our simulation.

In our analysis of a rat sessions we will be concerned with only two types
of input events; those describing cell-firing in the brain (spike events), and
those describing the rat’s position (position events). As mentioned above,
these input events are marked with the time each input was recorded (a time
stamp).

92

Chapter 15

Data analysis

As mentioned in the previous section, the data acquisition software will ex-
port all the results of each session to a ".UFF" file format. Each input event
will be stored in the UFF-file as a record. This UFF-file will contain a large
number of records, each consisting of several fields.

We will next describe the two types of records which we will utilize
throughout the rest of this thesis.

15.1 Positional data

For each input event which describes movement in the cage (positional data),
a record in the UFF-file is created. This record will contain several fields.
Among the fields contained in this record are the time stamp field, x-position
field and y-position field.

The x and y position fields will contain the x and y position of the rat
at the time indicated by the time stamp. Ordinarily, the position of the rat
in the cage is checked and logged every 200 millisecond.

Similarly, all other events which are received will be stored in different
records.

15.2 Spike data

We use the term spike data to describe all events coming from the various
probes implanted in the rat brain. The spike data record contains the fol-
lowing fields: a time stamp field, a probe number field, an optional cluster
number (more on this later) and 32 discrete samples of the signal received
on this probe number. We say that the 32 samples form a waveform.
When a place-cell (which is close enough to a probe) in the brain becomes
active, the probe receives a signal from this place-cell. This signal is mea-
sured in microvolts(uV') and forwarded to the data acquisition software. The
software creates a record in the UFF file for this input event. The time this

93

signal was received on is stored in the time stamp field, the probe number is
stored in the probe number field, and 32 discrete voltage-samples from the
signals are saved in the last 32 fields in the record. The 32 samples will be
distributed evenly in time after the signal was received. How far the samples
are apart in time will be determined by the total length of the signal.

The sampling software is also able to sample several consecutive spikes
(or complez spikes) correctly. Each spike will be stored in a separate record.
For instance, the signal showed in figure 13.2, will be stored as 5 separate
spikes in 5 separate records.

The cluster number field will at this time not be set.

Actually the term "spike data" comes from the graph which can be cre-
ated by plotting the waveform (the 32 samples), where time is along the
x-axis and the voltage, is along the y-axis. Typically, this signal will rise
quickly once the signal begins, and the drop equally fast, once the signal has
reached its peak, thus forming a "spike". A sample of several such consecu-
tive spikes can be shown in figure 13.2.

15.2.1 Clustering

Unfortunately, the data collected from each probe may actually come from
several different cells’. This is because the probe itself may be (and almost
certainly is) in direct physical contact with several cells.

But since we would like to have information about each individual cell
we need to perform some sort of filtering, to differentiate between signals
from different cells received on the same probe.

Our goal is therefore to separate signals from the same cell into one group,
or cluster. This will mean that we, for each probe, may have several clusters.
We hope that all signals in each cluster originates from the same cell.

The filtering of a signal into several different clusters is done using a
principal component analysis method implemented in the commercial soft-
ware package "Off-line Sorter" by Plexon Inc (www.plexoninc.com). A brief
discussion follows about how this software works.

The basic assumption is that signals originating from the same physical
cell will have "similar" waveforms. The term template-signature is important
when explaining what we mean by "similar".

From a set of signals received on one probe, the software is able to create
a few template-signatures. Each signature has some key features that is
shared by many of the signals. The assumption is that signals coming from
the same cell will have many of the same features. With some help from the
user, the software is able to assign each of the signals to the one template-
signature that is the most similar. At the end of the filtering, each signature

!Note that there are several different types of cells in the rat brain. A few examples
are the theta cells and place cells. The probes may pick up signals from either ones of
these.

94

is assigned a positive cluster number. We hope that all signals belonging to
one cluster (identified by a positive number) originates from the same cell. A
few signals, however, does not fit any of the signature templates. These are
assigned to cluster number 0 and will, in the rest of our analysis, be discarded
as noise. For a more detailed description of the principal component analysis,
see |Lewicki, 1998].

The software saves the results back in a ".UFF" file format. After this
clustering is done, there exists a custom made computer software package
called "Sess-anal" developed by Dr Matt Stead, New York, which can be used
for calculating various parameters from the clustered data. Eirik Thorsnes
has done some further development on this package, that allows it to export
the data as (ASCII) text, which is needed for the rest of our analysis.

The text output, is further refined and parsed by a series of Bash and
GNU Awk scripts created for this thesis. The final analysis is done with
Matlab.

Before the Matlab analysis, the positional data is available in a text file
on the following form

[timestamp] [x] [y]
and the spike data is available as follows

[timestamp] [probe]_[cluster] [samplel]...[sample32]

15.3 Maps

In order for us to use the data, we need to be able to present it in a under-
standable manner. In this section we show how to convert the raw data into
2D maps?, which can be used for analysis throughout the rest of this thesis.

Originally, the positional data was sampled at 256 x256 pixel grid. Un-
fortunately, it is difficult to utilize all of this tracking resolution in practice.
This is, among other things, because of the problem of perspective (a rat
standing on its rear legs might be classified by the software as actually out-
side of the cage). Also, if the resolution of the cage is too fine, other factors
such as the rat shaking its head or chewing its food may begin to show up
in our positional data, as movement. Clearly, we do not want this.

We will use the same resolution as in [Thorsnes, 2001] and throughout
the rest of this thesis the original 256 x256 grid map is reduced to a 50x50
grid. We will use this resolution both for the plots, and later on, for the
simulations we intend to make and use in this thesis. This reduction in
spatial resolution has the additional advantage that it increases the number

’By map we mean a two dimensional grid (or matrix). We use the term map, since the
maps will always be related to positional data. Typically, each element in the map will
contain information about something that occurred at the corresponding position in the
cage.

95

of samples per grid position. The rat cage is originally 100 cmx100 cm,
so if we use a resolution of 50x50 grid positions, then each grid point will
correspond to a 2 cmX2 cm area in the real cage.

In the next sections of this chapter we will show a few different ways to
represent, summarize and visualize the spike and positional data gathered
so far from the rat.

The plots in the next sections were generated from rat h11, session 26161,
probe 5 and cluster 1.

15.3.1 Time-maps

The time-maps use information about the rat’s position and the time stamps
to show how much time the rat has spent in each grid position in the map.

Imagine attaching a pen to the rat. As the rat moved about in the cage,
the pen would be pulled along the floor of the cage, creating a "track" where
the rat has been. Where the rat has been more often, the lines would become
thicker, and where the rat has only been a few times, the lines would be very
faint.

A time-map is very similar to this rat movement outline in the floor of
the cage. From the positional data, we will calculate how much time (in
milliseconds) the rat has spent in each grid position in the cage. This is
simply a matter of taking the difference in arrival-time and leave-time for
each grid position, and then adding up all these differences for each grid
position. We call such a map, a time-map.

15.3.2 Rate-maps

A rate-map will show information about in which parts of the cage a given
cell is active. We will create one rate-map for each cluster from each probe.
In order to create a rate-map, the spike data must therefore first be clustered.
This procedure was described in Section 15.2.1.

In order to create a rate-map, we must first create a spike map. Since
we will create only one rate-map (and only one spike map) for each cluster
on each probe, we now consider only the spike events originating from one
particular cluster on one particular probe.

As the rat moves around in the cage, the probe will register firing of
the cells at various times. Each time one such firing occurs, and a spike is
registered, the positional data is consulted to determine what the position
the rat was in at that time. This is done by cross checking the time stamps
in the positional data with the spike data. We then count each time a cell
in a cluster on a probe fires on each grid position. We call the resulting map
of spike counts on each position a spike map.

A rate-map is created by doing an element-wise division between the
spike map and the corresponding time-map. A rate-map will show if a cell

96

50

a5

40

35

30

T T
T
It
-

Activation

20

a5

a0

10 20 30 40 50
x

Figure 15.1: Sample of rate-map for rat hll, session 26161, probe 5 and
cluster 1. Notice how this cluster seems to have a "home-base", where the
cell has fired the most, in the area around pixel (33,25).

has fired many times on a given position, relative to the time the rat has
spent on that position.

If this rate of fire is high, this could be a sign that this cell is a place-cell
for that position.

15.3.3 Smoothed rate-maps

A smoothed rate-map essentially shows the same information as a rate-map,
but it attempts to "blur" out some of the irregularities which we typically
find on a rate-map.

To create a smoothed rate-map one starts with a rate-map, as described
in the previous section. One then performs a two dimensional convolution
on the rate-map, with a average kernel. The value of each grid position in
the smoothed rate-map will be equal to a weight on the corresponding grid
position in the rate-map, plus a weighted sum of its neighboring values.

One might argue that it should not really be necessary to create a
smoothed rate-map, since it does not really provide any more information
than the ordinary rate-map, discussed in section 15.3.2. Although this is
true, one should remember that the rate-maps are created from samples
taken over a relatively short time period (the order of 16 minutes).

There are however practical difficulties involved with extending the time
the rat has for exploration in the cage beyond the 16 minutes the rat currently
has available. For instance, the rat will become tired as time progresses,
and once it feels that it has explored the cage "enough", it will be come
increasingly more passive and less willing to explore.

97

50

a5

40

35

30

()
T
T T ISk

Activation

20

a5

a0

10 20 30 40 50
x

Figure 15.2: Sample of smoothed rate-map made from the rate-map in fig
15.1.

15.3.4 Field-maps

A field-map shows information about where a cell is active in many consecu-
tive grid positions. This type of map can be used in determining the location
of what we believe to be a place-cell.

Consider a rate-map. The value of a field-maps grid position is 1, if the
corresponding grid position in the rate-map has k active neighbors, and 0
otherwise. By "active neighbors" we mean grid positions that are adjacent
to the grid position in question, and that has a value higher than a given
threshold value.

This map will discriminate against small groups of active grid positions.
Larger groups of consecutively active grid positions will be shown. Our
hypothesis here is that small groups of active grid positions will most likely
be noise, and relatively large areas of active positions must come from a real
place-cell.

Later on the field-maps will be valuable when we wish to create an initial
guess of where a place-cell might be situated.

98

50

45
aol] .

35

30

Activation

20

15

10

10 20 30 40 50

Figure 15.3: Sample of field-map made from the rate-map in fig 15.1.

99

Chapter 16

Fitting our model to real data

In the previous chapter we showed how to create-maps from the clustered
data from the rat experiments. Each of the rate-maps we created described
the firing pattern of one cell relative to the rat’s position in the cage. Our
hypothesis in this chapter will be that if the cell in question is a place-cell,
then the cell will fire only when the rat is in certain positions in the cage,
and that this firing pattern can be described by an activation function.

In this chapter we will attempt to see if an activation function can success-
fully have its parameters adjusted so that the activation function becomes a
good approximation of the original firing pattern of the cell described in the
rate-map.

16.1 The problem defined

From section 15.3.3 we have for each place-cell created a smoothed rate-map.
Each smoothed rate-map shows where one place-cell in the rat brain is active
relative to the rat position in the cage.

As stated in Chapter 12 the PlaceCells in our simulations models the real
life place-cells found in rats. Both provide a value which indicates if they
recognize a position in the cage.

We create a rate-map from the activation function of our simrat. This is
done by evaluation the activation function for each position in the cage. Such
a map is shown in figure 15.1. By changing the variables that our activation
function depends on we are able to change the "shape" of the activation
function, and thereby the map that can be created from that function.

We hope that by adjusting the parameters of the activation function we
are able to create a map which is relatively similar to the one we found in
the rat. If we are able to do that, then we say that our PlaceCells are a good
model of the real place cells.

In order to do that, we must first define exactly what we mean by "simi-
lar". We will use the element-wise difference between the two maps, and an

100

appropriate norm to express similarity.
We let f(X) denote the error (or difference) function, and define it as
follows.

f(X) = Yo (plu] ~g(X;u))? (16.1)

u€Cagepositions

where p is the smoothed rate-map found in Chapter 14, and g(X;u) is our
activation function, both evaluated at position u = [:E gj] in the cage. For
each position, u, in the cage, we take the difference between the smoothed
rate-map value at that position, p[u], and our activation function evaluated at
that position, g(X;u). Notice that the term Cage positions in our formula
refers to all the discrete grid positions in the cage. The exact number of grid
positions equals the resolution. If the resolution of the cage is wh, the sum
runs over wh differences, one for each grid position in the cage.

We let X be our variables that we wish to adjust so that the difference
between the two maps becomes as small as possible. Notice that if the two
maps, p[-] and g(X;-), are equal, then the difference between each element
in the two maps are 0, so therefore f(X) will also be 0. If the maps are not
equal, f(X) will be greater than 0. Ideally, we would want f(X) to be as
small as possible, since that would mean that the two maps are as close as
possible.

We let our variables, X, be on the following form

X=[z y w - wl]T (16.2)
where = and y represent the position that this place cell should represent in
the cage. One interpretation of the values x and y, is where the "peak", or
maxima, of the activation function will be!.

w; is the weight applied to the distance to landmark 7 € 1,2, ..., out of
a total of [landmarks. In our calculations we will always assume that there
are only [= 4 landmarks, one in each of the four corners of the cage.

It is very difficult to guess exactly what landmarks the real rat actually
use in the cage. But experiments with simulations with different number
of landmarks, as well as landmarks in different positions has produced very
little difference from our current setup, as long as the cage is without ob-
stacles. Therefore we guess that for the rat the corners are the most easily
recognizable landmarks in the cage, and that they are the only ones that the
rat use.

!See Chapter 12 for more information about this, with examples.

101

We define our activation-function in the following way

Yy l
o) =g |91 | s1) =exp(—| Vuntasta) ([T (16
. =1
[@I

where d(-) is a function which returns a column-vector with [elements, con-
taining the distances from the position represented by its arguments in the
cage to each of the [landmarks. d;(-) denotes the ’th element of this vector,
wheres € 1,...,1.

Observe that if the sum of the difference (between the two distance vec-
tors squared) is 0, then g(-) will return 1. This will happen if the two distance
vectors have exactly the same values. Otherwise g(-) will return a value be-
tween 0 and 1. The larger the sum is, the closer the value of g(-) will be to
0.

In the case where we only have [= 4 landmarks, one in each corner of
the cage, d(-) is defined as follows

W — dl|E = (w—)% + g2
o =a(fgh = | S Hed
R

where w and h are the width and height of the cage, respectively. We observe
that regardless of the values of £ and ¢, the distances that are returned from
the d(-) function, are always positive.

Notice that our activation function g(-) is very similar to the one de-
scribed in equation 12.1. The only difference is that we have now introduced
a value, w;, for each landmark, i, instead of weighing all landmarks with the
same value, . We observe that if w; = o for¢ € 1,2,...,] then the two
equations are equivalent. In the following section we will discuss g in more
detail.

16.1.1 Discussion of the parameters

In our above model we have introduced 6 variables for each place cell,
[:1: Yy wp - w4], assuming that we have only 4 landmarks represented
in the cage.

The parameters z and y are also used implicitly in equation 12.1 to
represent the position that the place cell should learn. In both equations
these variables have a very direct affect on the place cells since a change of
+1 to z would result in the maximum (as well as the rest) of the activation
function is moved +1 in x-direction on the map. The y variable has the

102

same property in the y-direction on the map. Although values for z and
y, that are outside the resolution of the grid (40x40 in our simulations, i.e.
z,y ¢ [0,40]) would move the maximum of the activation function outside
the cage, we still allow it, since it might actually be more optimal to do
so. Additionally, there are a few examples in our sampled data, where the
position of the place cells actually seems to be outside of the map, so that
we only only see a small part of the side of the place cell peak.

Strictly speaking, the three variables used in equation 12.1 would be
enough to get reasonable results in our model, but after noting that the
real place cell activation functions are not always symmetrical around their
respective maxima, we introduce the weight w; to the distance to landmark
1, instead of a the same weight to all of them, o. These variables will allow
us to have more control over the exact shape of the activation functions, and
their symmetrical properties. We require that the values of w; be greater or
equal to 0, so that our g(+) function is positive semidefinite? for all allowed
values of the variables. This is requirement will help make our activation
function easier to analyze.

16.1.2 The final optimization problem

Using the requirements on the variables found in the previous section, and
noting that we would like to minimize the difference (or error) between the
two maps, this gives us the following minimization problem.

min f(x,y, w1, ... ,ws)
subject to
w1 Z 0

wyg >0

Solving this minimization problem is done relatively easy with the fol-
lowing Matlab program 16.1.1.

16.2 Results

From the output given to us by the minimization problem in the previous
section, we can plot the results by evaluating the activation function for each
discrete positions in the cage.

Let X; be the optimal variables for smoothed rate-map i. The plots

below shows g(X;; [z y]T) evaluated for all positions in the cage, (z,y) €

>That a quadratic function, g(-) is positive semidefinite means that g(-) > 0 for all
allowed values of its variables.

103

Program 16.1.1 From minimize.m

function [x] = minimize(filename)
data = ratdata(filename);

xdata = data(:, 1:2);
ydata = data(:, 3);
% User variables

b [x y wl w2 w3 w4]

ub = [inf inf inf inf inf inf];
x0=[20 20 1 1 t 117;
1b = [-inf -inf 0 O 0 01];

options = optimset(’Display’, ’Iter’);
x = lsqcurvefit(@f, x0, xdata, ydata, 1b, ub,

options);

Program 16.1.2 From f.m

function [alphal = f(X, xdata)
for row = 1:length(xdata)
% Cage position
x = xdata(row, 1);
y = xdata(row, 2);

alpha(row) = g(X, [x yl, [50 50]);
end

Program 16.1.3 From g.m

function [alphal] = g(X, pixel, size)
% Position of PlaceCell
x=X(1);
y=X(2);

% Weight for distances
w = diag(X(3:6));

v = d(pixel, size) - d([x y], size);
alpha = exp(-sqrt(v? * w *x v));

104

Program 16.1.4 From d.m

function [distance] = d(position, size)
x = position(1);
y = position(2);

width = size(1);

height = size(2);

distance(1) = sqrt(x°2 + y~2);

distance(2) = sqrt((width-x)"2 + y~2);
distance(3) = sqrt((width-x)~2 + (height-y)~2);
distance(4) = sqrt(x~2 + (height-y)~2);

distance = distance’ / sqrt(width"2 + height~2);

[1,40]. The leftmost columns shows the original smoothed rate-map, and
the rightmost column shows our approximation of the map.

105

50
40
30
20
10

50
40
30
20
10

50
40
30
20
10

Cell 0, probe 1
ﬁ
10 20 30 40 50
Cell 1, probe 1
H
10 20 30 40 50
Cell 1, probe 2
o
10 20 30 40 50

50
40
30
20
10

50
40
30
20
10

50
40
30
20
10

Approximate a(x)

10 20 30 40 50
Approximate a(x)

10 20 30 40 50
Approximate a(x)

10 20 30 40 50

Figure 16.1: Comparison between real rat data, and the same plot created
from the optimal solution to our optimization problem.

106

Chapter 17

Path integration with real data

In Chapter 16 we found the activation function which was the most similar
to the rate-maps from the real rat. In the previous chapter we found values
which gave the activation function a similar shape to those found in real
rats. In this chapter we will attempt to use these values as our simrat’s
internal representation of the environment. We hope that this representation
is enough to guide the rat back to a predetermined goal in the cage.

17.1 Field-maps

Remember from Chapter 12 that the Trullier-Meyer model for path integra-
tion is only able find its way back to a given position in the cage when it
has active place-cells representing the position it is currently in. In order to
determine whether a place cell is active, we need to check if its activation
value is higher than a given activation threshold, ¢,. A field-map is one way
to plot where a given place-field is active. See Section 15.3.4 for more about
the field-map.

In our simulations we need to determine whether any of all the place
cells we have represented are active at a given position. This is done by
creating a field-map F; for each individual place-cell %, and then taking an
element-wise OR operation between all the field-maps to create the final map
Fyy;, containing information about where any of the place cells in any of the
maps are active.

Since all elements in a field-map is either 0 or 1, we can perform the above
mentioned OR operation by using, for each grid position, the element-wise
max operator between all the field-maps. In other words,

Fall = max(Fl,FQ,...,Fn) (171)

given that there are n field-maps.
For rat h11, session 11262, we have 9 rate-maps from the real rat show-
ing 9 place-cells. We have approximated these rate-maps by 9 activation

107

5

Figure 17.1: F,y plotted with ¢, = Figure 17.2: F,y plotted with ¢, =
0.001 0.0001

functions. From these activation functions we create 9 field-maps. By per-
forming the above mentioned OR operation between all the 9 corresponding
field-maps, and using t, = 0.001 we created the plot shown in figure 17.1.
Notice that this map does contain a few areas where not any of the place
cells are active.

If we lower t, = 0.00001, we see in fig 17.2 that a larger portion of the
cage has one or more place cells that are active. Ideally we would want to
have as much of the cage as possible covered by an active place cell but there
are, as we will later see, some serious drawbacks of lowering %, in this way.

17.2 Deterministic results

By using our model fitted to the data from real rats, we were able to produce
the results presented in fig 17.3 and 17.4.

Notice in fig 17.1 and 17.2 how there are a few areas in which there are
no active place cells. These areas are white in the two plots. In this section
we will compare the field-maps to the final path-integration maps shown in
fig 17.3 and 17.4.

17.2.1 Handling silent areas

The "white spots" shown in the field-maps has an unfortunate affect on the
path-integration maps. We call these white spots, where no place cells are
active, silent areas.

Consider fig 17.1 and fig 17.3. We see that in the silent areas, the cogni-
tive graph provides the rat with no direction in which to move in order to get
to the goal. So what should the simrat do in this situation? As mentioned in
Chapter 12, there is currently no good solution for this problem. The simrat
should start to move about in an random fashion, and hope that it eventu-
ally finds an area where some of the place cells again are active. Upon doing

108

R R R R NN
DR L AR A R AR
B T | R R R RN
AR
R L L T R A R A
//////////////////////////////////////
AR,
A
v ////////////// A NN
AR R R R RN
AR RN IR RN RN W
\

N\
ALLRLRARARNANNY AR RIRRRRRRRRANN
AT RARY //////////////
/////////////// WW/ /////////
//
/

PSS Ses
PSS SO ees
PSS e ess

LSS

RETLLLNRRINNY
AT LRI
AT TR
ALRLRLLR R A Y
AR D R R S
///////v/v/y//y/y//y//y/y//p//p/////////
AN SR SR R R NN R
N
S\

N
AR
W
AAANNN
ARRNANY
W
N

e e s e e ey

R S SRR NN
A S St .

I:vleV\v\v\vlvlv/v/v/v/v/v///v/v/v/v/v/v/v/»/»/»
..... ’Vlvlvlvli\v\vlvlvlv.lv/v/v/v/v/v/v/v/v/v//v//b/»

D e

—

N
N
N

P

W
\
X
\
,
i
e
i

et

N
\
NN\
\
N
N
Y
it
\ (

\
\
W
\
W
NN
A
i
/) “

AT
...... . IWIV)VIV)VIVIV)VIV\V\V\\\%\%\V\\.\\.*\\\\\\ .

L.

50
45~
40~
35F ..
30

5

0

5
10

50

45

40

35

30

25

20

15

Figure 17.3: The direction the simrat would follow in order to return to grid

point (20,1), using data from a real rat. We have here used ¢, = 0.001

109

A s R,
AT L N R NN NN
A N R R N N N L NN
A N R R N N N NN R RNNY
A R R L SRR NN NN
A N N R R R O N NN R RN
AT T A T A T L L T L T R L NN
A N R R R N NN
A R N N N AR RN R R RSN
ARTIMRR R R N R N L R R N R R R R R R AN
PR AR R R ERERRRRERRRRRRRRR R AR AR AR RS
AARREERR MR RRRRR AR RN SRRRRRRRRA AR RRRRY
MREEEET R RRRRRRERRERRRRR GGG RR AR AR AR RRRRY
R NN RN SRS N N NSNS SRS
S S NSNS
T S S OSSO OO
//v/v/v/v/v/v/v/v/////////////////////////////
S SN NN

Vi S S es
pe e e S S S

N
N
N\
N\
N\
N\
N
N\
N\
N\
N\
N\
N\
W
\
\
\
\
\
\
\
\
\
N

NN
NN
NN
N
N
NN
NN
NN
NN
NN
AN
NN
NN
AN
NN
AN
NN
NN
NN
N
R
NN
RN
AN
W
///

i e e e e e i e i e e e e e e e e
P e S E L GGG LS PP L
f e e e e e e e e e e e e e e e e e e e
VL G S S Ees e
P S

/
7
s

. S S N
Fo = e TS
- 70
- T T .
o O S
PSSy
...... SN .
. 1 o 1 I I I 1 [——— . 1 1 ,
o o o Lo o Lo o Lo o [To) o
n < < ™ ™ N N — —

50

45

40

35

30

25

20

10

Figure 17.4: The direction the simrat would follow in order to return to the

0.00001. Observe that if the simrat starts in position (19,1), it will
never reach the goal. The same is true for many other positions in the cage.

This is a problem which comes from lowering ¢, this much.

goal at grid-point (20, 1), using data from a real rat. We have here used
o =

t

110

so, the simrat should recruit a new place cell at that position, and hope that
this new place cell will also be active in part of the silent area which it came
from, so that the next time the simrat walks into this silent area, the silent
area will be smaller, and it will be easier to find the way out. There exists
some physiological evidence to suggest that real rats also dynamically creates
new place cells when in a "silent area". See [Thorsnes, 2001] for details.

17.2.2 Inaccuracies and errors

In fig 17.2, we have lowered the threshold value t,. We have done this hoping
to find that a larger area of the cage will have active place cells, and that
the rat therefore should be able to return to the goal from more positions in
the cage.

From fig 17.4, we see that this is only partially true. Although the
lowering of t, actually does provide the simrat with a direction in which to
go in order to return to the goal for a larger area of the cage, we also see that
the direction is not always as correct as we would want it to be. For instance,
if the simrat starts in position (19,1) then it actually moves away from the
goal. This is because the lowering of ¢, will effectively increase the size of
each place cell’s active area, and it is not always given that the direction
dictated by that place cell which has just "expanded" is also good in the
"expanded area". This is especially true when the rat is near the goal, where
there often are large differences in the direction associated with different
place cells. If however, the distance to the goal is large, one would expect
the directions associated with the place cells to be more or less pointing in
the same direction.

This suggests that there might be something to be said for having t, be
dependent on the distance to the goal, in some manner. This would cause
areas around the goals to be much more heavily populated with place cells,
and areas far from the goal much less populated, thus providing us with a a
way to reduce the total number of place cells.

Indeed, there is some evidence ([Lever et al., 2002]) from real rats to
indicate that areas where there are large changes in the environment (such
as many obstacles) will be represented by more place-cells, and that areas
with little change (such as open areas), is represented with fewer place-cells.

111

Chapter 18

Evaluating path integration

In the previous chapter we let the simrat navigate the cage using a PlaceCell
distribution taken from real rats. We were able to produce plots which
showed in which direction the simrat believed the goal was, for all positions
in the cage.

In this chapter we will introduce a measure of how good a direction map
is relative to a shortest-path direction map.

18.1 The shortest-path direction map

For each position u in the cage, we define the shortest-path direction to
be the direction in which the shortest path to the ultimate goal g of the
path integration is. An shortest-path direction map is then the shortest-
path direction evaluated for each of the positions in the map. If the cage
is without obstacles, the shortest path to the goal is a direct line and the
direction from position u to goal g is g — u.

The shortest-path direction map for the cage used in the previous chapter
is shown in figure 18.1.

18.2 [Evaluating error

Having defined the shortest-path direction map, we may express the error of
another direction map by taking the element-wise angular difference between
the directions to the goal for each position in the two maps.

Let dy be the direction to the goal from position u in one of the direction
maps we created in the previous section. Let d;, be the direction to the goal
in the shortest-path direction map. Then the error (measured in degrees)
between the two maps at position u is

dl - d)
|dul|dy]

&, = cos (

112

000N TLMLNINN
AR
AR A R Y
AR S N R R R RN
AR S AR RN
RN O A RN
AR N NN NAR AR AR R RRRRRAN
AR D HNERR AR R AR RRRRRRRRY
AN NSSRNNRRRRRARRRR AR RRRRRN
SN EEERRRRRR R AR RRRRRN
NI NEERRRRRR AR AR AR RRRS
ARSI NS ERRERRRRRR AR AR R RRRRN
BRI NN SRR R R AR R R R
R SNSSSSRNSRCERRRARRRARR AR RSN
R R R R NN SRR R R RN,
B R R R R R RN
B S SSSCUCCRRRRRR RN A
R I S NG RRRRARRRR
IR NN,
R R ERR R R AR,
i S SO N D RG R
S S S NN
Lo R e RN RN R AR,
R NN,

el S NS NNRNN
SEESSSSSSSSSOSOONNNN
Av/v/v/v/v/v/v/v/v/y/y/r/r//
/v/v/v/v/v/y///
SN

RN
AN
L
AN
R
NN
NN\
N\

N
RN
NRRN
AR
NN
NN
NN
NN
NN
NN
NN
NN
W\
NN\
N

A LA A s e a a7

A
\
N
N
N
N
N
N
N
N
N
N
W
N
N
N\

VDD LT LR sy

/
\
\
\
\
\
\
\
\
\
\
\
\
\
N
3
N\
N\

PP e S e
P P e e

VP D L R
P e

P e e e R e
I e e e e i
G e o o
S
P e

S

B A \
B s 2 2 \ \
IS L)
S S S S I I
I S S S S S 2l
S S S S S S I I I
| 22222 mn2nnsnrnrrrrrrrrrrraZiAAAAATAR 077]
PSS S S S S S S S S S I I S Y I PP I IId
s nn 2 2mnrmrrrrr s A A AT
s nnnrnnnnrzrrssrsia A IAAAAAA A 770)
|2 rnrrmrrrrrrrrrsr sl I A A 777777
rrrrrrrrrrrsrr s 7772777777777/ 7 77777/
Lz rrrmrmrrrrr s A AR A A0 7 S

\
7
/

SIS

2 7rrmrr g s 2722 AAAAA AT AT S S
Lrrrrmr s A AAA AT A N7 0 NS
L rrmraa s s AA A A ARSI S 0 S
L rrrssmr a2 27777777 0777777777777 7
1 1 1 1 1 1

o o S SN,

\
\
/
/
/
!
]
]
m

NSNS\
TN
TN

REEEE RN NRN

/

\
7
A
WAaan)
AAAn
i
\\\\ /

Q [Co] [=] [Tl o te] 0 5
el < < (] ™ 3V 139 =i

10
5

50

45

40

35

30

25

20

15

10

Figure 18.1: Shortest-path direction map for a cage without obstacles, with

a goal in position (20,1).

113

Strategy |K=] 25° 5° 10° 15° 20° 25°
Original ~ Trullier- | 23.12% | 46.32% | 76.40% | 92.32% | 97.12% | 99.52%
Meyer
Adjusted Trullier- | 10.96% | 20.32% | 35.48% | 47.56% | 59.20% | 69.72%
Meyer, t, = 1074
Adjusted Trullier- | 8.96% | 18.44% | 34.28% | 46.40% | 56.36% | 63.00%
Meyer, t, = 1072

Figure 18.2: The number of positions « in the direction map where |&,| < K,
for various values of K. The adjusted Trullier-Meyer strategy is the Trullier-
Meyer model using the PlaceCell positions taken from the lab experiments
on the real rats.

€&, will now be the angular difference between the direction to the goal
suggested by the one map and the direction suggested by the shortest-path
map.

Since we in our model only approximate the direction to the goal for
each position, we should not expect &, to be 0 for all positions u. Instead
we introduce a threshold value, K, and say that if the absolute value of the
angular difference €, is less than K, then our direction map approximates
the direction to the goal well enough.

We can now define the error map between two direction maps. We let
element u of the error map be &, evaluated for each position u in the two
maps.

18.3 Results

Based on the results presented in Chapters 12 and 17, we now show the
error maps between the direction maps produced there and the shortest-
path direction map as defined in the previous section.

Table 18.2 shows for how many position in the various direction maps
that the absolute value of the angular difference is less than K, for different
threshold values K.

We observe that the Trullier-Meyer strategy is able to produce the di-
rection to the goal (within +25 degrees) for 70% of the positions in the
cage, using the PlaceCell representation from real rats. If we allow the
Trullier-Meyer strategy to distribute the Placecells on its own, then it find
the direction to the goal (within £15) for 92% of the positions in the cage.

From the plots in figure 18.3, 18.4 and 18.5, we observe that the strategies
are the most inaccurate around the goal at position (20,1). This is because
around the goal the direction changes a lot with a small change in position.
A move from position (19,2) to position (19,1) causes a change in the angle in
the shortest-path map of 45°. As suggested earlier, we believe the problems
with inaccuracies near the goal could be improved if we allowed the positions

114

50

45

40

35

30

25

20

15

10

5 10 15 20 25 30 35 40 45 50
Figure 18.3: Plot of &, evaluated for all positions u in the cage, between the
shortest-path direction map and the map from the Trullier-Meyer strategy

presented in figure 12.12. A darker color indicates a large value for &, at
position u, and a light color, a low value.

around the goal to be more heavily populated with PlaceCells.

115

50

45

40

35

30

25

20

15

10

5 10 15 20 25 30 35 40 45 50

Figure 18.4: The difference map between the shortest-path direction map
and the map from the adjusted Trullier-Meyer strategy with ¢, = 0.00001.
Positions in which the direction map does not provide a direction has been
assigned an arbitrary angle of 90°. This makes those positions medium gray,
as seen in the upper and lower left-hand corner.

116

50

45

40

35

30

25

20

15

10

[|
5 10 15 20 25 30 35 40 45 50

Figure 18.5: Plot of &, evaluated for all positions u in the cage, between the
shortest-path direction map and the map from the adjusted Trullier-Meyer
strategy with t, = 0.001.

117

Chapter 19

Verifying the results with
simulation

In the previous chapters we have created several direction plots, which shows
the direction the simrat believes the goal is in. In this chapter we will use
theses direction plots to actual navigate the simrat from an arbitrary position
in the cage to the goal.

Figure 19.1 shows how the rat moves in the cage, if following the direction
suggested by the direction plot in figure 17.4. We have placed the simrat in a
given position u, and let it for each position it visits, follow the direction given
by the direction plot. We translate the angles suggested by the direction plots
to movements in the following manner. Angles in the range [—45,45) means
go East. Angles in the range [45,135) means go North, and so on.

Although these deterministic plots are interesting in themselves they are
not really "realistic" in the sense that the movements seem to come from
a real rat. However, we can remedy this situation by using some of the
probabilistic strategies suggested in Chapter 8. Figure 19.2 shows how the
simrat moves using a DeviationStrategy, as described in Chapter 8.

The DeviationStrategy uses the TMStrategy which produced the direction
plot shown in figure 17.4 as its "Master strategy", §. We define two other
strategies, sT and s~. Each of them will take the current direction specified
by §, alter it in some way, and return the resulting direction to the simrat,
when queried. Specifically, sT will take the direction specified by § and
add a random number! of degrees to the direction. Similarly, s~ subtracts
a random number of the degrees from the direction specified by §, when
queried.

We assign § a probability of 10% of being chosen, and give s and s~ a
45% probability each. Conversely this means that when the DeviationStrat-
egy is queried for a direction, then there is a 45% chance that Deviation-

!We let the random number be positive and taken from a normal distribution with
mean zero and variance one.

118

50

45

40

35

30

25

20

15

10

5 10 15 20 25 30 35 40 45 50

Figure 19.1: The deterministic path the simrat would follow from position
(45,45) to (20,1), if using the direction map shown in figure 17.4.

119

50 HF 50

30 30
20 20 =
10 10 o ;"
10 40 50 10 20 30 40 50
50 e 50
40 40
30 30
20 : 20
0 10
10 | 20 30 40 50 10 40 50
50 50
40 40
30 30
20 : .E 20 I g
0 o] F 0 =yl
10 20) 30” 40 50 10 2(; :?IO 40 50

Figure 19.2: The sample paths taken by the simrat from various positions
in the cage to the goal at position (20,1), using a probabilistic deviation
strategy on the direction plot shown in figure 17.4.

120

Strategy will in turn query s—, which then will return the direction in which
to move.

From figure 19.2 we observe that the simrat does not always reach its
intended goal at position (20,1) exactly. This is not surprising given the
inaccuracies shown in figures 17.4 and 18.4. However, it usually produces
reasonable results.

We stop the simulations when the simrat stays on the same position for
9 consecutive time units.

121

Chapter 20

Conclusion

In this thesis we have shown that discrete event simulation implemented in
Java can be used successfully as a means for examining complex systems of
biological phenomenons. We have created a general and open framework for
simulation which has proved itself both scalable and easily extensible.

We started out with relatively simple examples showing basic function-
ality requirements, and gradually expanded our framework to be usable for
simulation of advanced models and complex behavior in a simple and uni-
form manner. We believe that this is a good way of creating good software,
first starting with the simple, then through a series of iterations gradually
expand until the needed functionality is reached. This process involves first
examining the goals of the project, and then consider each constituent part
before implementing from the bottom up. Java supports such an approach,
by allowing all parts of a program to be extended. Although we have imple-
mented in the order of 6 000 lines of Java code in the course of this thesis,
we believe that the Java language along with our architecture has made our
frameworks simple and easy to use even for complex problems.

We have examined two models describing aspects of rat behavior, and
produced results from our simulations comparable to those presented in the
original papers by the creators of those models. In the case of the Trullier-
Meyer (TM) strategy for navigation we have also clarified and formalized
several aspects of the original model. This process has lead to both intro-
ducing new quantities and new calculations into the model. In addition we
have introduced quantitative measures for evaluating how good a model for
path integration actually is, relative to an "ideal map".

20.1 Results

We summarize the results we have obtained in this thesis in the following
list.

e We have created a general and open framework for discrete event sim-

122

ulations in the Java programming language. This framework has been
tested under several simulations, and has shown itself both scalable
and easily extensible.

— We have created an extension to the framework for discrete event
simulation, which can be used for simulation of simrat navigation.

— In the extended framework we have, under reasonable assump-
tions, been able to implement the models described in two pub-
lished papers ([Trullier and Meyer, 2000] and [Tchernichovski and Benjamini, 1998]).
We have produced results from these simulations which are com-
parable to those given in the original papers.

e Traditionally, cognitive functions and behavioural patterns in the rat
has been simulated using neural networks. In this thesis we have
demonstrated a version of the Trullier-Meyer (TM) strategy which can
model these functions using an extensive algorithm.

— We have formalized and clarified the TM strategy for navigation.
For completeness, we have introduced new quantities and calcula-
tions, which are needed for implementation. We have given some
conditions under which the model will fail.

— We have shown that it is possible to use data from real rats as
input to the TM model, and have a simrat successfully complete
navigation in a simulated environment, using it. These results
have not been shown before.

e We have introduced a quantitative measure of how good a simulation
involving path-integration actually is, compare to an "ideal map".

20.2 Future work

The framework we have created for simulation is complete and ready for use.
Although simple and powerful to use, it does not implement many of the
more specialized features often found in discrete event simulation systems.
A good continuation of the work presented in this thesis would be creating
extensions for modelling communication systems, which is one of the top
most important uses of discrete event simulation today. Among the things
that should be introduced in such an extensions is support for threads, ports
on each simulation entity and possibly a graphical user interface (GUI),
which shows the state of the simulation.

In the process of developing the extended framework we made a few
choices which may or may not impose restrictions on future use of the ex-
tension for rat simulation. We chose to represent the cage as a rectangular
grid, and only allowed the rat to turn at 90° angles at a time. This was

123

sufficient for the models we needed to implement in this thesis, but may
hamper future models. One possible future improvement may include allow-
ing the rat to represent both its position and direction as a decimal value.
Nevertheless, our modular design will allow reuse of large portions of our
current framework, and leave only relatively modest amounts of new code to
be implemented.

For a while we considered implementing vision input as a 3D generated
computer image, instead of our symbolic representation of vision, but con-
cluded that that, along with the image recognition algorithms needed, would
incur far to much work for implementation in this thesis. We leave such an
implementation for the future.

In the Trullier-Meyer model for path integration, we used Trullier and
Meyers assumption that the simrat was able to determine cardinal directions
from its vision input. There has recently been discovered some evidence to
suggest that there is a special type of cell, termed "head-direction cells",
which are responsible for this task in the rat brain. The head-direction
cells are active depending on the direction the rat is facing, and seems to
be somewhat analogous to the place-cells which the Trullier-Meyer model
describe. It would be interesting to examine the possibility of creating a
unifying model which models both place-cells, goal-cells and head-direction
cells in one complete model.

124

Appendix A

Mathematical details

In Chapter 12, we made a claim that a given set of distances df = d(u;) could
uniquely define a position u; € $R2. In this chapter we will examine under which
assumptions this holds true. But before we begin there is one result we will need
to show first, which we will need later.

We start by considering two landmarks, z; and x5 in the cage. Let u be the
position of the simrat in the cage, and let |uz;| denote the Euclidean distance from
position u to x;.

Lemma 1
Let 1 and 5 be two distinct points € 2. Let U be the set of all points u € R>
satisfying |uxy| = |uzz|. Then all points u € U will lie on a line £.

Proof Let z; and z» be two points in B2 and let u € %2 be a point that
satisfies |uzi| = |uzz|. Now consider the triangle Auzqzy. Since |uzy| = |uzs|
then Zuzizy = Zuxszi. Let p € R be the projection of u onto z;x5. Then
Zupxy = Zupxs = 90.

Now, by trigonometry, we have the following relation

1. |z1u|cos Zuzip = |21p|
2. |zou| cos Zuzap = |z2p|
Since |uz1| = |uzz| then Zuzip = Zuzop = o and we have that

|[z1p| _ |z2p|
COos & COsS &

|z1p| = |z2p]

V(P —21)2 = /(22 — p)? (A1)

2p=£L'2—.’L'1

1
b= 5(332 — 1)

If |uz1| = |uz2| we observe that
1. p lies on the midpoint between z; and z»

2. up is perpendicular to z;z2

125

We now note that the second proposition holds true for all u satisfying |uz1| = |uzs|
and that therefore all up are perpendicular to z;z2; they are all parallel. From the
first proposition it follows that all parallel lines up goes through point p. Therefore
all the lines up are collinear; they lie in the same line £.

Now we would like turn our attention towards the Trullier-Meyer (TM) model.
TM assumes that a set of distances d(u) to landmarks can uniquely define a position
u € R2. We say that a position u is uniquely defined by d(u) if there exists no
other position v # u so that d(u) = d(v). If a position w is uniquely defined, then
there is a one-to-one correspondence between v and d(u).

We remember from chapter 12 that if there are n landmarks then d(u) : R% —
K™, and the k’th element of d(u), di(u), is the Euclidean distance to landmark k.
We say that landmark k is visible, if dy(u) is defined. Let m denote the number of
visible landmarks from position wu.

We would now like to answer whether a set of distances to landmarks d(u) does
uniquely define a position u, in the cage. We need to check whether there exist
two positions u and v so that d(u) = d(v). If so, then a set of distances does not
uniquely define a position.

Theorem 1
If for every position u in the cage, there are at least 3 visible, non-collinear land-
marks, then position u can be uniquely defined by the distance vector d(u).

Proof Let a,b and ¢ be three visible, unique and non-collinear landmarks in the
cage. Let position ¢ € {a, b, c} be the center in circle S;, with radius r;. Let u and
v be the two intersection points between circles S, and Sy. Position v and v are
now the only positions not uniquely defined.

Assume that S, also intersects S, and Sy in w and v. If so then all positions u
and v are still not uniquely defined.

But since then |ua| = |va| = r,, |ub] = |vb| = 7 and |uc| = |ve| = 7, then,
according to lemma 1, the three landmarks a, b and ¢ must lie on the same line £.
But since they were defined to be non-collinear, our assumption must have been
wrong. The circle S. cannot exist so that it intersects both v and v, and have
|ue| = |ve|. Therefore d.(u) # d.(v), and d(u) # d(v).

We observe that it would not be possible to represent each position in the cage
uniquely if there are only two landmarks in the cage. Let a, b, S,, Sp, u and v be
defined as above. Then there are only two landmarks in the cage, and positions u
and v are not uniquely defined by the distances to those landmarks. Therefore two
landmarks are not always enough to represent all positions in a cage uniquely.

Trivially, just one landmark inside the cage can not represent the cage uniquely
either, since any two positions lying on a circle with the landmark as center will
have the same distance to that landmark.

Therefore we must have at least three landmarks in the cage for unique repre-
sentation of all positions in the cage.

126

Appendix B

Image acknowledgements

I would like to thank the Hippocampus laboratory at PKI, notably Bolek Srebro
and Eirik Thorsnes, for graciously allowing me to use images originating from their
reasearch. Specifically, figure 13.1, 13.2, 14.1, 14.2, 14.3 and 14.4 were used, with
permission from Eirik Thorsnes. For more information about these figures, see
[Thorsnes, 2001].

127

Bibliography

[eb9, 1994] (1994). Encyclopedia Britannica, chapter "Navigation".

[Burgess et al., 1997] Burgess, N., Donnett, J. G., Jeffery, K. J., and O’Keefe, J.
(1997). Robotic and neuronal simulation of the hippocampus and rat navigation.
Technical report, Department of Computer Science, Manchester University, Ox-
ford Road, Manchester, M13 9PL.

[Carson and Cobelli, 2001] Carson, E. and Cobelli, C., editors (2001). Modelling
methodology pf physiology and medicine. Academic Press.

[Cormen et al., 1990] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990).
Introduction to Algorithms. MIT Electrical Engineering and Computer Science.
MIT Press.

[Dahl and Nygaard, 1966] Dahl, O. J. and Nygaard, K. (1966). SIMULA —an
ALGO-based simulation language. Communications of the ACM, 9:671-678.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J., and Booch,
G. (1995). Design Patterns —Elements of Reusable Object-Oriented Software.
Addison-Wesley, first edition.

[Goodrich and Tamassia, 1998] Goodrich, M. T. and Tamassia, R. (1998). Data
Structures and Algorithms in Java. Worldwide Series in Computer Science. John
Wiley & Sons.

[Helsgaun, 2000] Helsgaun, K. (2000). Discrete event simulation in java. Tech-
nical report, Department of Computer Science, Roskilde University, DK-4000
Roskilde, Denmark.

[Jacobson et al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The
Unified Software Development Process. The Addison-Wesley Object Technology
Series. Addison-Wesley.

[Knuth, 1968] Knuth, D. E. (1968). Fundamental Algorithms, volume 1 of The Art
of Computer Programming. Addison-Wesley.

[Knuth, 1969] Knuth, D. E. (1969). Seminumerical Algorithms, volume 2 of The
Art of Computer Programming. Addison-Wesley.

[Lever et al., 2002] Lever, C., Wills, T., Cacucci, F., Burgess, N., and O’Keefe, J.
(2002). Long-term plasticity in hippocampal place-cell representation of environ-
mental geometry. Nature, 416:90-94.

128

[Lewicki, 1998] Lewicki, M. S. (1998). A review of methods for spike sorting: The
detection and classification of neural action potentials. Computational Neural
Systems, 9:R53-R78.

[Marr, 1982] Marr, D. (1982). Vision: A computational investigation into the hu-
man representation and processing of visual information. W.H. Freeman and
Company.

[Moore, 2002] Moore, S. K. (2002). The brain as user interface. IEEE Spec-
trum Online, page http://www.spectrum.ieee.org/WEBONLY /resource/aug02/
brainimplants.html.

[Muller et al., 1996] Muller, R. U., Stead, M., and Pach, J. (1996). The hippocam-
pus as a cognitive graph. Journal of General Physiology, 107:663—694.

[Nocedal and Wright, 1999] Nocedal, J. and Wright, S. J. (1999). Numerical Opti-
mization. Springer Series in Operations Research. Springer Verlag.

[O’Keefe, 1979] O’Keefe, J. (1979). A review of the hippocampal place cells. Prog-
Neurobiol, 13(3):419-39.

[O’Keefe and Dostrovsky, 1971] O’Keefe, J. and Dostrovsky, J. (1971). The hip-
pocampus as a spatial map. preliminary evidence from unit activity on the freely-
moving rat. Brain-Res, 34(1):171-5.

[Redish, 1999] Redish, A. D. (1999). Beyond the cognitive map: From place cells
to episodoc memory. The MIT Press.

[Scoville and Milner, 1957] Scoville, W. B. and Milner, B. (1957). Loss of re-
sent memory after bilateral hippocampal lesions. J-Neurol-Neurosurg-Psychiatry,
20:11-21.

[Tchernichovski and Benjamini, 1998] Tchernichovski, O. and Benjamini, Y.
(1998). The dynamics of long term exploration in the rat. Biological Cyber-
netics, 83:433-440. Part II. An analytical model of the minematic structure of
rat exploratory behaviour.

[Tchernichovski et al., 1998] Tchernichovski, O., Benjamini, Y., and Golani, I.
(1998). The dynamics of long term exploration in the rat. Biological Cyber-
netics, 78:423-432. Part I. A phase-plane analysis of the relationship between
location and velocity.

[Thorsnes, 2001] Thorsnes, E. (2001). Emergence and stability of the hippocampal
place cell activity on a new environment. —an experimental study on the rat.

[Trullier and Meyer, 2000] Trullier, O. and Meyer, J.-A. (2000). Animat navigation
using a cognitive graph. Biological Cybernetics, 83:271-285.

[Wallge, 1968] Wallge, L. (1968). Transfer of signals through a second order sensory
neuron. Technical report, Institute of Physiology, University of Oslo.

[Ziegler, 1991] Ziegler, B. P. (1991). Object-oriented modeling and discrete-event
simulation. Advances in Computers, 33:67-114.

129

	Abstract
	Contents
	List of Figures
	Acknowledgements
	Chapter 1 Introduction
	Chapter 2 Simulation and object-orientation
	Chapter 3 Introducing the elements by two examples
	Chapter 4 A general structure for discrete event simulation
	Chapter 5 A comprehensive example
	Chapter 6 Adaptation of the framework
	Chapter 7 Defining input
	Chapter 8 Evaluating the framework
	Chapter 9 About the simulations
	Chapter 10 Basic principles of rodent navigation
	Chapter 11 A model for explanation - Tchernichovski-Benjamini
	Chapter 12 Simrat navigation - The Trullier-Meyer model
	Chapter 13 Hippocampus and place cells
	Chapter 14 Experiment method and data acquisition
	Chapter 15 Data analysis
	Chapter 16 Fitting our model to real data
	Chapter 17 Path integration with real data
	Chapter 18 Evaluating path integration
	Chapter 19 Verifying the results with simulation
	Chapter 20 Conclusion
	Appendix A Mathematical details
	Appendix B Image acknowledgements
	Bibliography

