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Abstract Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades
justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of
this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and
biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom
dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of
the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition,
were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea
ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a
concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving
current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice
biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal
motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution.
(v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types
studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP
and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the
Arctic Ocean.

Plain Language Summary important changes in the ice regime of the Arctic Ocean have occurred
over the last decades with reductions in the summer sea ice extend and thickness. These changes and the
importance of sea ice to the global climate system, the ecology of the Arctic Ocean, and the global
biogeochemical cycles have justified the development of mathematical models to forecast sea ice evolution
regarding its physical, chemical, and biological properties. In this work we test one such model—the Los
Alamos Sea Ice Model—with data collected during the Norwegian young sea ICE expedition. Our results
show that the model is capable of predicting accurately sea ice thickness, temperature, and salinity during a
period of several weeks. However, it is not so accurate for biological variables. We suggest some aspects that
may be investigated in trying to improve model performance, with emphasis on a better understanding of
the behavior of ice algae that have an overwhelming importance for the Arctic marine food webs. Our results
point to future changes in Arctic sea ice primary production associated with a more dynamic ice cover and a
higher frequency of refrozen leads.

1. Introduction

Over the last decades, the sea ice regime of the Arctic Ocean has changed from a thick perennial multiyear ice
(MYI) to predominantly thinner first-year ice (FYl) concomitant with a dramatic decline in summer sea ice
extent [e.g., Maslanik et al., 2011; Barber et al., 2015]. The physical properties of FYI are different from those
of MYI [Hudson et al., 2013], suggesting that the changing ice regime may affect the feedbacks between
sea ice, atmosphere, and ocean. Atmospheric changes seem to be the main driver of sea ice change, with
positive feedbacks linked to reduced ice concentration, surface albedo, and ice thickness leading to
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additional local atmospheric and oceanic influences and self-supporting feedbacks [Ddscher et al., 2014].
Melnikov et al. [2002] presented evidence of differences in the physical-chemical and biological characteris-
tics of sea ice in the Arctic Ocean between the 1970s and late 1990s, including a major reduction in
biodiversity of sea ice biota. The evolution of the icescape has and will continue to impact primary and
secondary production and the geographical distribution of several species, as suggested by empirical and
modeling studies [Slagstad et al., 2011, 2015; Jin et al., 2012, 2013; Vancoppenolle et al., 2013a; Ardyna et al.,
2014; Arrigo and van Dijken, 2015]. Several studies have emphasized the role of sea ice in global biogeochem-
ical cycles and fluid and gas exchanges with the sea and the atmosphere [e.g., Vancoppenolle et al., 2013b].
Primary production has increased in the Arctic Ocean over the last years [Jin et al., 2012; Arrigo and van
Dijken, 2015]. However, future trends in primary production for the Arctic Ocean are less certain, depending
on the interplay between an expected decrease in light limitation—following the reduction of sea ice extent
and thickness—and trends in nutrient limitation—depending on changes in upper ocean
stratification/mixing and inputs from land [Popova et al., 2012; Vancoppenolle et al., 2013a; Slagstad et al.,
2015].

The importance of physical properties of sea ice combined with a changing ice regime has stimulated the
development of several mathematical models attempting to simulate sea ice dynamics and thermodynamics
such as the Granular Sea Ice Model [Sedlacek et al., 2007], the Louvain-la-Neuve Sea Ice Model [Vancoppenolle
et al., 2009], and the Los Alamos Sea Ice Model (CICE) [Jeffery et al., 2011; Hunke et al., 2015]. Models were also
developed to simulate sea ice biogeochemistry, coupled with the cited physical models or as stand-alone
applications. Tedesco and Vichi [2014] presented a synthesis of ice biogeochemical models published over
the last 10 years (see Table 1 of the cited authors). These models can be classified in three groups, according
to how the vertical distribution of ice algae and associated biogeochemical processes were represented
[Duarte et al., 2015]: (a) one-layer models of fixed thickness, (b) one-layer models of variable thickness, and
(c) multilayer models.

Validation studies have been carried out to test some of the available sea ice models. Some of these studies
focused on large spatial scales, attempting to test how accurately different models predicted sea ice concen-
tration, distribution, and thickness in the Arctic Ocean or Southern Ocean [e.g., Sedlacek et al., 2007;
Vancoppenolle et al., 2009; Shu et al., 2015], whereas others tested models against observations at a local scale
[e.g., Arrigo et al., 1993; Arrigo and Sullivan, 1994; Huwald et al., 2005; Sedlacek et al., 2007; Vancoppenolle et al.,
2007; Jeffery et al., 2011; Pogson et al., 2011; Turner et al., 2013; Jeffery and Hunke, 2014; Wang et al., 2015], with
a focus on different aspects of sea ice physics and biology.

Over the past 20 years thermodynamic and biogeochemical sea ice models have undergone a methodologi-
cal evolution: (i) modeling sea ice as a pure solid phase, even though parameterizing the effects of brine on
thermodynamic properties, to mushy layer dynamics (e.g., Huwald et al. [2005] versus Turner et al. [2013]); (ii)
neglecting the effects of salinity on thermodynamics or prescribing a fixed salinity profile toward attempting
to simulate salinity using different parameterizations (e.g., Arrigo et al. [1993] versus Jeffery et al. [2011]); and
(iii) modeling biogeochemistry at the bottom ice toward vertically resolved biogeochemical models (e.g., Jin
et al. [2008] versus Pogson et al. [2011]).

Synthesis of the modeling approaches employed so far also highlights the challenges in modeling sea ice
thermodynamics, tracer dynamics, and biogeochemistry despite the achievements in recent years. We
believe that these challenges are mainly related to processes that are more dependent on parameterizations,
such as tracer dynamics and biogeochemical phenomena, where concepts are still poorly described [Steiner
et al., 2016], compromising model accuracy. Therefore, studies that provide insight into the strengths and
weaknesses of available models are required. In spite of those challenges, models may be useful to test
concepts and get insight into ongoing changes in the Arctic sea ice. Accordingly, the main goal of this study
is to answer the following questions:

1. How accurately can we simulate sea ice physical and biogeochemical variables at time scales of a few
weeks, in different types of ice?

2. Which are the most problematic prognostic variables and processes?

3. What are the main differences in ice algal bloom dynamics between different types of ice?

To address these questions we used forcing data obtained during the Norwegian young sea ICE (N-ICE2015)
expedition carried out in the Arctic Ocean north of Svalbard from January to June 2015 [Granskog et al., 2016].
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The N-ICE2015 data sets include all necessary forcing time series to simulate sea ice thermodynamics and
biogeochemistry of the ice floes monitored during the expedition at relevant temporal and spatial scales
(floe scale).

2. Materials and Methods

During the N-ICE2015 expedition, RV Lance was used as a research platform to establish drifting ice camps in
the southern Nansen Basin of the Arctic Ocean. The observational platform was designed to collect compre-
hensive data sets of the atmosphere-snow-ice-ocean-ecosystem interactions in a thinner Arctic sea ice
regime. During the campaign, altogether four ice camps (Floes 1 to 4) were established that drifted with
the ice pack [Granskog et al., 2016]. This study uses data collected during the N-ICE2015 expedition, as
described in detail in other papers [Cohen et al., 2017; Kauko et al., 2017; Meyer et al., 2017a; Olsen et al.,
2017; Peterson et al., 2017], to force simulations with version 5.1 of the Los Alamos Sea Ice Model (CICE)
and to analyze the resulting output. The model applies mushy layer thermodynamics and vertically resolved
biogeochemistry in a one dimensional (1-D) stand-alone mode [Turner et al., 2013; Hunke et al., 2015; Jeffery
et al., 2016].

2.1. Sea Ice Conditions and Study Period Used for Modeling

The origin and age of the oldest ice in the study region were examined by sea ice back trajectories based on
the daily sea ice motion satellite product from ASCAT and SSS/I [Girard-Ardhuin and Ezraty, 2012]. The ice
could be tracked back to the Laptev Sea in autumn 2013; thus, the oldest ice in the study area was
second-year ice (SYI) [Itkin et al., 2017]. Based on salinity and §'80 profiles at the study site, the ice was found
to be a mix of first-year (FYl) and second-year ice (SYI) with lower salinity in SYI [Granskog et al., 2017].
Remnants of low salinity and §'20 surface layers indicate that some ice survived one summer melt period,
while other cores had typical FYI features [Granskog et al., 2017]. Modal sea ice thickness in the area was
1.5 m for the FYl and SYI, and snow depth was 30 cm for the FYl and 50 cm for the SYI [Résel et al., 2016a;
Rosel et al., 2016b].

Model simulations of a refrozen lead (RL) and SYI sites were carried out in this study. For details of observa-
tions see Kauko et al. [2017] and Olsen et al. [2017]. These were part of a larger floe (Floe 3) that was monitored
between 18 April and 5 June 2015 during the N-ICE2015 expedition, while the camp drifted from the Nansen
Basin across and to the west of the Yermak Plateau (Figure 1). Simulations were carried out from 24 April,
when the lead began refreezing, until 4 June.

2.2. Model Concepts and Approaches

Version 5.1 of CICE resolves physical processes vertically and biogeochemical processes in a single layer at the
ice bottom and has been used in pan-Arctic biogeochemistry simulations coupled with ocean circulation
models [Jin et al., 2012]. It includes several interacting components to simulate ice transport, mechanical rid-
ging, and thermohaline dynamics [Hunke et al., 2015]. In addition, a 3-D sea ice biogeochemical module has
been added to CICE [Jeffery et al., 2016]. Only the thermohaline dynamics and the vertically resolved biogeo-
chemistry components are active in 1-D simulations and are thus relevant to the present work.

The various components, algorithms, and software used in CICE are documented in technical manuals [Hunke
et al., 2015], and, more specifically, the biogeochemical processes, equations, and parameter values used in
the present study are described in Jeffery et al. [2016]. Several papers have described and discussed in depth
the modeling approaches followed in CICE: e.g., Jeffery et al. [2011] tested different ways of simulating the
transport of tracers in sea ice; Elliott et al. [2012] presented results of a biogeochemical bottom layer model
implemented in CICE; Turner et al. [2013] described a new parameterization of gravity brine drainage that is
used in the present study; and a thorough sensitivity analysis of CICE v5.1 physical components was carried
out by Urrego-Blanco et al. [2016].

Several upgrades were integrated in the code over time using more advanced approaches to simulate
various sea ice components and processes. The configuration used in the present study includes mushy layer
thermodynamics [Feltham et al., 2006; Hunke et al., 2015], a Delta-Eddington approach for albedo and short-
wave radiation fluxes [Hunke et al., 2015], the gravity drainage approach described in Turner et al. [2013], and
the vertically resolved biogeochemical model described in Jeffery et al. [2016]. For the biogeochemical com-
ponent, a generic ice algal group (diatoms) was selected. Its growth is limited by light, temperature, nitrogen
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algal group in sea ice samples collected
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In the case of 1-D stand-alone simula-
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series that in the present study include
the data sets listed below (see
section 3). One of the forcing variables
is the mixed-layer temperature (equiva-
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simulations described in this study is shown in red.
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tially controlled by the mixed layer
depth (MLD) parameter. Thus, SST and
the salinity-dependent freezing temperature influence the exchange of heat between the ice and the ocean,
based on the short wave radiation that reaches the sea through snow, ice, and open water; the heat
exchanges between the water and the ice and atmosphere; and heat fluxes across the mixed layer. Water
temperature is, however, also influenced by lateral and vertical mixing, not accounted for in the present
model configuration. CICE includes a restoring time parameter that is used to assimilate measured water tem-
peratures and bring values calculated by the slab-ocean mixed-layer parameterization close to observations,
compensating for those processes not accounted for in the calculation of water temperature in the stand-
alone configuration. In the present study, after testing several values, a restoring time scale of 1 day is used,
similar to Jeffery and Hunke [2014]. An alternative could be forcing water temperature with observations and
not attempting to modify it. However, this may not be a good solution since temperatures measured in the
water are, by definition, above its freezing point, preventing the formation of frazil ice in the model. CICE
calculates a freezing potential that allows the formation of frazil ice and is a function of the ocean-water
energy budget. After some test runs, it became apparent that MLD, based on observed density gradients,
may not be appropriate to reproduce ice thermodynamics, especially at short time scales, when the time
required to modify the water temperature by the slab-ocean mixed-layer parameterization becomes too
large and the formation of frazil ice in the RL simulation occurs almost 2 weeks later than in reality. We
abbreviate the depth used in the simulations as hmix, implying a mixing depth range distinct from that
of the MLD, as a way to parameterize vertical small-scale stratification and related thermodynamic pro-
cesses. hmix was set to 15 m for all simulations. This mixing depth range reflected the typical range within
which wind forcing penetrated and homogenized the surface layer during the N-ICE2015 expedition [Meyer
et al., 2017b]. The turbulent ocean heat flux measured at 1 m below the ice-ocean interface [Peterson et al.,
2016], which is used to force the simulations, is therefore assumed to be valid within this 15 m mixing-depth
range. Ideally, the mixing-depth range would vary over time to better reflect observations, with larger values
during storms and smaller values during quiet periods. However, the chosen mixing depth range provides
reasonable results and is kept as a constant so as not to introduce additional complexity with respect to the
interpretation of results.

Another forcing time series is that of current velocity relative to the ice. In its default configuration, the 1-D
CICE setup uses a minimum default current velocity of 0.001 ms™' to provide background-level shear
between the water and the ice and thereby force heat exchanges. In the present study, we implemented cal-
culation of shear in the 1-D mode from velocities measured at 1 m below the ice-ocean interface to better
mimic realistic forcing. The shear calculation is done exactly in the same way as in the dynamical
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component of CICE [Hunke et al., 2015], thus allowing for results from this 1-D setup to be comparable with
results from coupled CICE-ocean model simulations.

In CICE it may be assumed that diatoms may avoid ice melting to some extent due to the gliding capacity of
some pennate species [Aumack et al., 2014]. However, motility is not calculated as a function of environmen-
tal gradients. Motility may be an adaptation to optimize between vertically opposing factors, such as light
and nutrients, as has been suggested for some microphytobenthic diatoms [Saburova and Polikarpov,
2003]. In the present study ice algal motility was implemented in CICE based on two different paradigms:
(i) assuming that vertical motion is purely random but with a realistic velocity (default value used in CICE is
43 cm d™', within the velocity ranges reported in Aumack et al. [2014]), implying that ice algae may move
up or down independent of any environmental gradients (“neutral model”) and (ii) assuming that algae move
toward the closest best conditions that minimize the impact of all limiting factors considered (light intensity,
temperature, nitrate, and silicic acid concentrations), with the same velocity mentioned before (“determinis-
tic model”). Therefore, if the minimum of all limiting factors is higher (closer to one) in a layer above or below
the current layer, part of the algae migrates toward the “better” layer following an upwind scheme. The com-
parison between simulations with and without algal motion allows evaluating the possible effect of motility
behavior, and the contrast between the “random” and the “deterministic” models allows testing the potential
importance of vertical gradients in limiting environmental factors.

Equation (1) describes changes in ice algal concentration due to algal motion, and equation (2) is the numer-
ical upwind version of (1).
dC  d(v-C) _AC A(v+C)

T dx A M (M

AC A(v-C)@
At Ax 2
CEA b 05 [[(v+ V)Gl + (v = V)G ] = [V + V)G + (v = [v)-Cis ]

At Ax

where Cis ice algal concentration (mM N m ™), v is ice algal velocity (m s~") (positive downward following
CICE sign convention for fluxes), x is vertical distance (m), i is layer index in the biological grid (biogrid is
the grid that is used in CICE for biogeochemistry), and the asterisk is the time at which concentrations are
reported (t in the case of using an explicit method and t + At in the case of using an implicit method).

Model results for the periods described above (see section 2.1) are compared with observations of the
following variables: sea ice thickness, temperature, salinity, nitrate, silicic acid, and chlorophyll (Chl a). CICE
calculates biomasses in nitrogen units, and the conversion to Chl a (2.1 mg Chl a mmol N~ ') was chosen from
the range reported by Smith et al. [1993]. The observed data show no significant correlation (p > 0.05)
between particulate organic nitrogen (PON) and Chl a, not surprisingly, considering that the detritus and
other nonalgal life forms also contribute to PON. However, the use of Chl a as a proxy for microalgal biomass
is also questionable considering the high variance of the carbon:Chl a ratios. Jergensen et al. [1991] report
weight ratios in the range 22 to 288. This also implies a large variability of the nitrogen:Chl a ratio, making
a proper comparison of the CICE output with Chl a data less reliable. The types and resolution of the data
available from the RL and the SYI are not identical (Table 1), limiting the comparisons between model and
observations. In some cases, data are vertically resolved, while in other cases, only vertically averaged data
are available.

2.3. Model Simulations

The main purpose here it to disentangle the feedbacks between physical, chemical, and biological factors, in
order to better understand some of the results observed during the N-ICE2015 expedition and also to
pinpoint model shortcomings and possible improvements. Synergies between this study and several others
included in this volume are frequently referred to.

It would be impractical to list here all the simulations that were carried out or even to present results for all
the variables that were analyzed in each simulation. Thus, Table 1 synthesizes the main model simulations.
The RL had more variables monitored with a higher temporal resolution than the other ice types. An ice mass
balance buoy (IMB) [Jackson et al., 2013] was used to monitor SYI providing snow and ice thickness and snow,
sea ice, and surface seawater temperature with high temporal (6 h) and vertical resolutions (2 cm). Case
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Table 1. Main Model Simulations®

Type of Ice Variables Used for Model Evaluation Simulations
Refrozen lead (RL) Ice thickness, vertically averaged salinity, bottom RL_Sim_1: standard CICE parameter values; RL_Sim_2:
nitrate and silicic acid concentrations, and diatom Si:N ratio reduced from 1.8 to 1.0 within ranges
vertically averaged ice algal Chl a concentration reported in Brzrezinzki [1985] (0.25-4.38) and Hegseth

Second-year ice (SYI) with IMB data

Second-year ice (SYI) with coring data

[1992] (0.50-1.30); RL_Sim_3: diatom half saturation
constant for silicon uptake reduced in the same
proportion as the Si:N from 4.0 to 2.2 uM within the
range (1.1-4.6 uM) reported in Nelson and Tréguer
[1992]. Other parameters as in the standard simulation;
RL_Sim_4: algal recruitment increased in the same
proportion as previous parameters. Other parameters
as in the standard simulation; RL_Sim_5: decreased Si:N
ratio and half saturation constant for silicon uptake as
before and decreased recruitment in the
same proportion

Ice and snow thickness and vertically resolved ice SYI/IMB: standard CICE parameter values
temperature
Bottom nitrate and silicic acid concentrations and SYI_Sim_1: standard CICE parameter values, except for the
vertically resolved salinity and ice algal Chl a sigma coefficient for snow grain (R_snow) [Urrego-
concentration Blanco et al., 2016] that was changed from 1.5 to 0.8 (see

section 4.4); SYI_Sim_2: “random” algal motion
implemented; SYI_Sim_3: “deterministic” algal motion
implemented; SYI_Sim_4: “deterministic” algal motion
combined with lowered Si:N ratio and reducing the half

saturation constant for silicon uptake as above

*The refrozen lead (RL) was monitored for more variables and with a higher temporal resolution than the remaining ice types. An area with SYI was monitored
with minimal disturbance, using an ice mass balance (IMB) buoy (SIMBA-2015c) [Jackson et al., 2013] that provided sea ice and surface seawater temperature data
with high temporal (6 h) and vertical resolution (2 cm). Ice cores were collected at another location of the floe with SYI, and simulations were carried out for com-
parison with obtained biogeochemical data (refer to text).

simulations focus on comparing observed and simulated physical variables only. In another part of the ice
floe—the main coring site—SYI was cored regularly and available biogeochemical data [Kauko et al., 2017;
Olsen et al., 2017] are compared with simulations. Hereafter the main simulation sets will be identified as
“RL,” “SYI/IMB,” or “SYl/coring.”

Biogeochemical simulations were carried out changing ice algal recruitment, i.e., the flux of ice algae from the
water to the ice, considering its very high uncertainty and importance for the RL simulations that started with
no ice. Recruitment is based on the ice algal nitrogen concentration difference between the bottom ice and
the ocean. A default value of 0.002 uM N is used for the ocean boundary in CICE [Jeffery et al., 2016]. This value
was increased/decreased in different simulations. Silicon-related limiting parameters—silicon:nitrogen (Si:N)
ice algal ratio and the half saturation constant for uptake of silicic acid—were changed within ranges
reported in the literature after strong evidence for silicon limitation, both from the empirical and the model
data. The effects of algal motion were also investigated, using the approaches described in section 2.2.

Atime step of 450 s was used in all simulations. Tests conducted with shorter time steps lead to similar results.
Fifteen ice layers were used in all simulations and one snow layer for the RL or five for the SYI simulations. The
RL simulations started with no ice, whereas SYI simulations were initiated with snow and ice conditions as
similar as possible to the observed ones, after spinning up the model for some time to allow the production
of ice. Initial ice contents for RL result from the incorporation of water properties during ice formation.
Therefore, when frazil ice is formed, it has bulk properties similar to those of seawater at the same date.
The model reads seawater salinity, temperature, and nutrient concentration (ammonium, nitrate, and silicic
acid) values from the forcing function files. The SYI initial conditions were set to match observations of ice
and snow thickness, salinity, nitrate, silicic acid, and ice algal biomass.

2.4. Evaluation of Model Performance

Several criteria synthesized in Allen et al. [2007] were used to evaluate the model results: (i) the Nash-Sutcliffe
efficiency (ME) [Nash and Sutcliffe, 1970], which is a measure of the ratio of the model error to the variability of
the data; (i) the absolute value of the percentage of model bias |Pbias|—a measure of whether the model is
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Figure 2. (a-f) Model forcing time series. (left and right) Atmospheric and ocean forcing, respectively. Air temperature is shown in °C in Figure 2a, but the input to the
model is in °K. The graph also includes shaded areas indicating storm events [Cohen et al., 2017]. Current velocity relative to the sea ice in Figure 2d, heat fluxes at T m
below the ice-ocean interface in Figure 2e (negative heat fluxes are upward following CICE convention), and sea surface salinity data presented in Figure 2f were
derived from a turbulence instrument cluster (TIC). Sea surface temperatures (SSTs) were also obtained from the TIC and from an ice mass balance buoy. Data are
provided to the model with a daily frequency, except for incident short and longwave radiation data, which is used at 6 h frequency. The model interpolates forcing
data to the defined time step (see section 3 data time series used for model forcing and evaluation).

systematically underestimating or overestimating the observations; (iii) the cost function (CF) that is a
measure of the goodness of fit between different data sets [Convention for the Protection of the Marine
Environment of the North-East Atlantic (OSPAR) Commission, 1998]; (iv) the root-mean-square error (RMSE);
and (v) the squared correlation coefficient (%), which is a measure of the data variability explained by the
model. Whenever available in the literature, qualitative criteria were adopted (Table S1 in the supporting
information). Prior to apply any of the these measures of model reliability it was necessary to average
empirical data for the same depth ranges as the model data and, in the case of vertically resolved data, it
was necessary to interpolate both the empirical and the model data with the same spatial resolution to
allow pairing of both data sets. When different measures of skill lead to controversial quality evaluations,
the visual comparison of model and empirical data was also considered in judging model performance.

The variables selected for model evaluation with the above criteria were those for which there were more
than five observations at different times coinciding spatially with the model results. These included the
variables listed in Table 1, except vertically resolved salinity, nitrate, and silicic acid concentrations.
Variables not fitting into the mentioned criteria were still visually compared with the best available data.
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Figure 3. Results for the RL: observed (dots) and simulated (lines) (a) ice . . T .
thickness and (b) vertically averaged bulk ice salinity (refer to text). and ice, sea ice salinity, Chl g, nitrate and
silicic acid, and snow thickness were

also used. These have been described
and discussed in other papers of this volume [Gerland et al., 2017; Taskjelle et al., 2017; Kauko et al., 2017;
Olsen et al., 20171.

All forcing data sets and monitored sea ice data were obtained on, in, and below the same ice floe, within a
radius of a few hundred meters. For the purposes of model forcing, data sets were interpolated linearly to fill
in gaps and/or to properly synchronize with model data input routines.

4, Results

The forcing function time series are presented in section 4.1. Model results are described in sections 4.2-4.5.
Due to space constraints, the results are not shown for all simulations. Unless otherwise stated, graphs that
are not shown depict the same type of patterns across all simulations. Model results are daily averaged.

4.1. Forcing Functions

Forcing time series with daily frequency, except for radiation data that are presented with 6 h frequency, are
shown in Figure 2. During the simulation period, there were nine storm events [Cohen et al., 2017] indicated
by the gray shaded areas in Figure 2a. Wind speed and air temperature ranged between 1.6 and 14.1 m s~
and between —20.2 and +0.8°C, respectively (Figure 2a). Snow precipitation varied between 0 and
92 x 1072 kg m~2 57, and specific humidity varied between 6 x 107* and 4 x 1073 kg~' (Figure 2b).
Incident short and longwave radiations were in the ranges 0-500 and 170-310 W m™2, respectively
(Figure 2c). Horizontal water velocity relative to the ice floe, measured at 1 m depth, varied from 0 to
0.22 m s~ (Figure 2d). SST was between —1.9 and 0.6°C (Figure 2e). Daily heat fluxes at 1 m below the ice-
ocean interface, measured with the TIC, ranged from slightly positive values to —180 W m™2 (Figure 2e).
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Table 2. Model Performance for the Simulations Synthesized in Table 1 and for Selected State Variables According to the Nash Sutcliffe Model Efficiency (ME) [Nash
and Sutcliffe, 1970], the Absolute Value of the Percentage Model Bias |Pbias|, the Cost Function (CF) [OSPAR Commission, 1998], the Root-Mean-Square Error (RMSE),

and the %
2

Simulations Variables ME |Pbias| CF RMSE r
RL_Sim_1 Ice thickness Poor (—1.45) Good (21.79) Good (1.30) 0.05 0.45
Vertically averaged salinity Poor (—0.48) Very good (19.78) Good (1.00) 1.78 0.77
Vertically averaged ice algal Chl a concentration Poor (—0.32) Poor (57.94) Very good (0.85) 2.83 0.71
Top ice algal Chl a concentration Poor (—6.52) Poor (90.28) Reasonable (2.45) 1.50 0.85
Bottom ice algal Chl a concentration Poor (—1.52) Poor (73.63) Good (1.35) 6.97 0.77
Chl a standing stock Poor (—0.27) Poor (55.4) Very good (0.82) 0.64 0.58
RL_Sim_2 Vertically averaged ice algal Chl a concentration Good (0.23) Poor (42.26) Very good (0.62) 217 0.72
Top ice algal Chl a concentration Poor (—5.51) Poor (85.16) Reasonable (2.31) 1.40 0.93
Bottom ice algal Chl a concentration Poor (—1.00) Poor (66.06) Good (1.21) 6.21 0.74
Chl a standing stock Good (0.27) Poor (42.08) Very good (0.63) 0.48 0.56
RL_Sim_3 Vertically averaged ice algal Chl a concentration Good (0.47) Good (38.70) Very good (0.57) 1.79 0.66
Top ice algal Chl a concentration Poor (—6.36) Poor (88.78) Reasonable (2.41) 1.49 0.64
Bottom ice algal Chl a concentration Poor (0.05) Poor (45.81) Very good (0.84) 4.26 0.81
Chl a standing stock Good (0.42) Poor (42.54) Very good (0.63) 043 0.46
RL_Sim_4 Vertically averaged ice algal Chl a concentration Poor (0.01) Poor (48.88) Very good (0.72) 246 0.69
Top ice algal Chl a concentration Poor (—6.35) Poor (88.81) Reasonable (2.41) 1.48 0.71
Bottom ice algal Chl a concentration Poor (—0.90) Poor (63.74) Good (1.17) 6.06 0.79
Chl a standing stock Poor (0.04) Poor (48.60) Very good (0.72) 0.55 0.52
RL_Sim_5 Vertically averaged ice algal Chl a concentration Excellent (0.66) Good (35.22) Very good (0.52) 1.43 0.67
Top ice algal Chl a concentration Poor (—5.42) Poor (84.45) Reasonable (2.30) 1.39 0.89
Bottom ice algal Chl a concentration Poor (0.18) Poor (40.14) Very good (0.74) 3.98 0.81
Chl a standing stock Very good (0.54) Good (37.71) Very good (0.56) 0.38 0.55
SYI/IMB Vertically resolved temperature Excellent (0.81) Excellent (9.89) Very good (0.36) 047 0.96
SYI_Sim_1 Chl a standing stock Good (0.36) Good (25.05) Very good (0.62) 0.56 0.86
Vertically resolved ice algal Chl a concentration Poor (—0.27) Poor (56.75) Very good (0.73) 1.15 0.00
SYI_Sim_2 Chl a standing stock Good (0.40) Good (24.40) Very good (0.61) 0.54 0.85
Vertically resolved ice algal Chl a concentration Poor (—0.01) Poor (50.29) Very good (0.65) 1.02 0.02
SYI_Sim_3 Chl a standing stock Good (0.38) Good (25.00) Very good (0.62) 0.55 0.69
Vertically resolved ice algal Chl a concentration Poor (—1.22) Poor (77.67) Good (1.00) 1.52 0.00
SYI_Sim_4 Chl a standing stock Excellent (0.78) Very good (14.73) Very good (0.37) 0.32 0.94
Vertically resolved ice algal Chl a concentration Poor (—0.31) Poor (59.98) Very good (0.78) 117 0.02

aQuality levels for the first three parameters are based on data presented in Table S1 following Maréchal [2004] and Radach and Moll [2006]. Variables were
selected for the evaluation of model performance depending on data availability and quality (see section 2.4). Regarding the refrozen lead simulations (RL Sim
1-RL Sim 5), model performance for the variables ice thickness and vertically averaged salinity is presented only for RL Sim 1 because model results are similar to
the other four simulations. All values are dimensionless except the RMSE that is given in the same units of the variables shown in the second column—m for ice
thickness, mg m~ for Chl a concentration, and mg m~ “ for Chl a standing stocks. “Top” and “bottom” Chl a concentrations refer to values that were averaged
for the bottom 10 cm and for the remaining of the ice column, respectively.

Here the negative sign indicates an upward flux, following CICE convention. Salinity varied between 33.6 and
34.3, at the surface, whereas nitrate and silicic acid varied between 0.4 and 10.4 uM and between 2.4 and
4.2 uM, respectively (Figure 2f).

4.2. Refrozen Lead

Measured ice thicknesses of RL reached 0.27 m [Kauko et al., 2017]. Measurements began approximately a
week after ice started to build up in the lead that opened next to RV Lance. Simulated ice thickness ranged
from zero, on the date corresponding to the opening of the lead (24 April), and a maximum in excess of
0.3 m, with a positive bias of up to 0.05 m (Figure 3). Minimum ice buildup is forecasted when assuming hmix
variable and equal to the MLD (not shown), with frazil ice forming only on 9 May. Using hmix values <15 m
leads to overestimation of ice melting toward the end of the simulation (not shown). Model performance is
poor regarding ME and good for both |Pbias| and CF. RMSE was 0.05 m, and r? implies that the model explains
45% of the data variability (Table 2).

Measured bulk salinities varied between 4.6 and 11.8. Observed and simulated salinities show a decreasing
trend over the study period. Model performance is poor regarding ME, very good for |Pbias|, and good for
CF.RMSE is 1.78 and r* 0.77 (Table 2). Shortwave transmittance simulated by the model is in accordance with
measured values and around 0.2 [Kauko et al., 2017] (not shown).
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Figure 4. Results for the RL: simulated evolution of (a) ice salinity; (b) temperature; (c) nitrate; (d) ice algae Chl g; (e) silicic
acid from RL_Sim_1 (Table 1); and (f) silicic acid in a simulation without biological uptake (not shown in Table 1), as a
function of time and depth in the ice (refer to text).

Vertically resolved model outputs for sea ice bulk salinity show a sharp increase toward the bottom, with sali-
nities up to 32.6, a slight increase near the top and with an almost uniform profile by the end. Minimum
values (~5) are roughly midway between top and bottom ice (Figure 4a). During the period of ice melt, bot-
tom salinity decreases to <10. Simulated sea ice temperature is between —11.5 and —0.4°C. Temperature
increases from the ice top toward the bottom until 14 May when the air temperature became higher.
Subsequently, there are two sea ice warming events that are in parallel with peaks in air temperature
(Figures 2a and 4b). During these periods vertical temperature gradients fade away. After 24 May, the tem-
perature gradient becomes opposite to that observed during the period of ice growth (between 24 April
and 14 May), with surface values close to 0°C following the increase in air temperature (Figure 2a).
Modeled nitrate concentrations are maximal at bottom ice with values of up to 5.8 uM and correlate with
the evolution of measured sea-water values during the period of ice growth (Figures 2f and 4c). The model
simulates an increase in ice algae at the ice bottom after the onset of melting toward the end of the simula-
tion period, with concentrations in excess of 50.0 mg Chl a m™>. Model-calculated silicic acid concentrations
are strongly reduced by biogeochemical activity as seen when contrasting two simulations with and without
biogeochemical uptake of silicic acid, respectively (Figures 4e and 4f). A similar comparison for nitrate shows
no significant differences (not shown). The color patterns of Figures 4c and 4f show the time-dependent
vertical extent of the biological grid (biogrid) of CICE. Vertical transport equations for biogeochemical

DUARTE ET AL.

SEA ICE PHYSICS AND BIOGEOCHEMISTRY 1641



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2016JG003660

a ) Light limitation b) Temperature limitation
o]

0.05

1 0 1

0.05;

0.8 08
0.10

06 0.15 ; B~

04 s 020 | 04
025

0.2 02
030

o | 0

2404 29-04 0405 09-05 14-05 1905 24-05 2005 03-06

0.10;

0.15;

0.20-

Ice thickness (m)
Ice thickness (m)

0.25:

0.30

2404 2904 0405 0905 1405 1905 24.05 20.05 0306

C) Nitrogen limitation d ) Silicic acid limitation
0 1 0 1
005 0.05
08 038
010/ _ 010
E E ’
2 015/ | 08 2 015 ' T | los
2 2 :
- 2 020 |
& 02 0.4 s D I o4
8 3
025/ = 025
0.2 02
030/ 030
2404 2004 0405 0905 1405 1905 2405 2005 0306 ° 2404 2004 0405 0005 1405 1905 2405 2005 0306 °
Dates in 2015 Dates in 2015

Figure 5. Results for the RL: simulated evolution of limiting factor values for (a) light; (b) temperature; (c) nitrogen; and (d)
silicic acid from RL_Sim_1 (Table 1), as a function of time and depth in the ice. The upper regions of the graphs with zero
values for all limiting factors correspond to the levels that are above the CICE biogrid and where there is no brine network
(refer to text).

tracers are defined only where brine is present [Jeffery et al., 2016]. The brine network extends roughly from
0.05 m from the ice top, at the beginning of the simulation, and almost from 0.15 m, toward the end, until the
ice bottom. Brine nutrient concentrations (including ammonium) are shown in Figure S1 in the supporting
information with values ranging from near 0 to 1 order of magnitude higher than maximal bulk values
(Figure 4).

Limiting factor values for light intensity, temperature, nitrogen (ammonium + nitrate), and silicic acid
concentrations in the brine (Figure 5), in the RL standard simulation (Table 1), vary between zero (maximum
limitation) and one (no limitation), with lowest values/higher limitation for silicic acid, especially after 14
April, when ice algae concentration begins to increase. The upper regions of the graphs with zero values
for all limiting factors correspond to the ice levels that are above the CICE biogrid and where there is no
brine network.

The model underestimates bulk nitrate concentrations at the bottom 10 cm (Figure 6a). Empirical data show
an increase in the averaged chlorophyll concentrations for the whole ice core and for the bottom 10 cm,
until the end of the simulated period (Figures 6b and 6c). Model data, irrespective of the simulation, show
also an increasing trend for the former but not for the latter. The standard simulation (RL_Sim_1) underes-
timates the observations. This underestimation is decreased by reducing the Si:N ratio (RL_Sim_2) from 1.8
to 1.0 or the silicon half saturation constant from 4.0 to 2.2 uM (RL_Sim_3) or increasing recruitment in the
same proportion (refer to Table 1). Recruitment and the half saturation constant are the least and the most
influential in the model output. Combining a reduction in recruitment with a decrease in both the Si:N ratio
and the silicon half saturation constant in the same proportions as before holds a better fit between model
and observations (RL_Sim_5). The improvement in the model goodness of fit and the reduction in the
model bias as a function of some of the described parameter changes are reflected in the ME, CF, and
|Pbias| values for vertically averaged Chl a concentrations, with emphasis on the results of RL_Sim_5
(Table 2), where all quality criteria are between good and excellent. Model skill for Chl a concentrations at
(Figure 6c¢) or above (not shown) the bottom 10 cm is lower than that for vertically averaged Chl a. Chl a
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Figure 6. Results for the RL: (a) observed and simulated (RL_Sim_1) nitrate and silicic acid concentrations at the bottom 10 cm of the sea ice; (b) observed and simu-
lated depth-averaged Chl a concentration for the whole ice column (all simulations); (c) observed and simulated Chl a concentration values averaged for the ice
bottom 10 cm and for all simulations; (d) observed and simulated Chl a standing stocks (vertically integrated concentrations for the whole ice column) and simulated
net primary production (NPP) for simulations RL_Sim_1 and RL_Sim_5 (refer to Table 1).

standing stocks (vertically integrated Chl a concentrations) and net primary production (NPP) are shown
only for RL_Sim_1 and RL_Sim_5 (Figure 6d). In both cases the standing stock increases steeply, followed
by a plateau, with a slightly negative trend. Observed standing stocks have a very large scatter but are
comparable with RL_Sim_5 results. Sharp and narrow NPP peaks match the increase of the standing
stocks. Model skill patterns for Chl a standing stocks are expectably comparable to those for vertically
averaged Chl a (Table 2). However, the former are also influenced by any bias in simulated brine volume
vertical distribution.

4.3. Second-Year Ice/lce Mass Balance Buoy

IMB data for SYI show a depth-gradient trend in the sea ice temperature profile, with values increasing from
the low atmospheric temperatures to warmer ocean levels. This gradient decreases during the measurement
period (Figure 7a), and the ice becomes nearly isothermal at the end of the time series. Similar trends are
reproduced by the model (Figure 7b). The observations and the model also show a gradual warming from
the atmosphere connected to the positive air temperatures toward the end of the time series. Model perfor-
mance for vertically resolved sea ice temperature is the best of all shown in Table 2 and is between very good
for the CF and excellent for ME and |Pbias]|.

4.4, Second-Year Ice/Main Coring Site

The model baseline simulation underestimates irradiance below the sea ice. Changing the default value of the
sigma coefficient for snow grain (R_snow)—a delta-Eddington parameter that gives the standard deviation of
the snow grain size [Urrego-Blanco et al., 2016]—has a strong effect on simulated light intensity. The best fit
was obtained with R_snow = 0.8 (Figure 8a). Therefore, this value was used in the SYI simulations. For most of
the simulation period, ice-transmitted PAR was <2 umol photons m~2 s~ [Taskjelle et al., 2016]. The model
calculates a considerable increase in under-ice PAR toward the end of the simulation when melting occurred.

DUARTE ET AL.

SEA ICE PHYSICS AND BIOGEOCHEMISTRY 1643



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2016JG003660

a) Sea ice temperature (°C) Salinity measurements show a large
f scatter, making it difficult to properly
0 assess model performance. In spite of
= R that, model results are within the range
g s of observations before the onset of
£ melting. Also, the simulated vertical gra-
§ i dients are similar to those observed
2 -4 (Figure 8b). Modeled and observed
B 5 silicic acid at the bottom 10 cm of SYI
8 !” s exhibit very low values <1.0 uM that
1.5 are very close to the detection limit of
| il the method used for silicic acid quantifi-
20 29104 04.‘05 09105 14:05 19105 24_‘05 2905 o@los ] cation (0.7 IJ.M) [GI’GSShOff, 1965], reason
why measures of model skill were not
b) ‘o Sea ice temperature (°C) applied here. For nitrate, model results
1 are within the range of the few observa-

0 tions available (Figure 8c).
% i Chl a standing stocks and net primary
9 -2 production (NPP) are shown for
3 5 SYLSIm_1, 3, and 4 (Figure 8d). In all
% cases the standing stock increases,
‘E r followed by a plateau, with a slightly

c
o S positive trend in SYI_Sim_4, before a
= . 6 final decline. Simulated standing stocks
7 underestimate observations toward the
20l ‘ . . . ‘ ‘ b end of the simulated period with the
29-04 0405 0905 1405 1905 2405 2005 03-06

exception of SYI_Sim_4, which shows a
later and higher NPP maximum. NPP
peaks match the increase of the stand-

Dates in 2015

Figure 7. Results for the SYI/IMB: (a) observed and (b) simulated sea ice

and snow thickness and sea ice temperature. Observed values are from ing stocks. More or less, recruitment
a SIMBA ice mass balance buoy. The blue line above each plot shows has no effects on the model outputs
snow height (refer to text and Table 1). because SYI contains Chl a in excess

relative to that assumed for the ocean.
Model performance for Chl a standing stocks is between good for ME and |Pbias|, very good for the CF for
all simulations but SYI_Sim_4, where it is excellent for ME, and very good for the other two parameters
(Table 2).

Vertically resolved model outputs for sea ice salinity show a relatively stable profile along the simulation
period, except for the bottom layers where variability is larger. Salinity increases toward the bottom ice to
values of 15 (Figure 9a). Temporal and vertical variabilities and ranges in sea ice temperature (Figure 9b)
are very similar to what was described before for the SYI/IMB. Nitrate bulk concentrations (Figure 9c) are
higher at the bottom ice and decrease to values <2 uM toward the end of the simulation period, at the onset
of ice melting. Silicic acid shows the most noticeable decrease over the simulation period (Figure 9d), espe-
cially at intermediate layers where it decreases from 0.6-0.7 uM to nearly zero values. Maximum values (close
to 0.8 uM) are observed at the bottom layer and the two layers closest to the ice top. A comparison between
results obtained with and without biological uptake shows no significant differences in simulated nitrate
concentrations but much larger silicic acid values in the former simulation (Figure S2). Observed Chl a ranged
between <0.1 and 9.0 mg m~>. Maximum values were observed at ice bottom or within 0.2 m from the
bottom (Figure 9e). On several occasions more than one peak of Chl a was observed. The model
(SYI_Sim_1) calculates a slight increase in Chl a values in the ice interior (approximately from 0.4 to 1.0 m from
the ice upper surface) (Figure 9f). The simulated patterns are not similar to those observed. Implementation
of random algal motion (SYI_Sim_2; Table 1) results in a considerable vertical displacement of the initial Chl a
(Figure 99). Using deterministic algal motion (SYI_Sim_3; Table 1) two maxima emerge at top and bottom ice
(Figure 9h). Tests conducted with other model setups combined with deterministic algal motion also led to
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Figure 8. Results for the SYl/coring: (a) observed (red line, 15 s interval) and simulated daily averaged (SYI_Sim_1)
photosynthetically active radiation (PAR) under the ice. Observed data were obtained with a TriOS Ramses sensor under
~1.4 m of ice and ~0.4 m of snow, between 26 April and 4 June, but values before 1 May were close to zero or below the
instrument sensitivity [Taskjelle et al., 2016]. Model data were obtained using 1.5 and 0.8 for the parameter R_snow. (b)
Observed and simulated (SYI_Sim_1) salinities as a function of depth in the ice on 4 June. (c) Observed and simulated
(SYI_Sim_1) nitrate and silicic acid concentrations at the bottom 10 cm. (d) Observed and simulated Chl a standing stocks
and simulated net primary production (NPP) for simulations SYI_Sim_1, SYI_Sim_3, and SYI_Sim_4. Refer to Table 1 for a
description of model simulations.

more than one maximum, including one at the bottom ice. Model performance for vertically resolved Chl a
concentration is poor for ME and |Pbias| and for all simulations. The results obtained with CF are between
good and very good (Table 2).

The brine network extends roughly from ~0.05 to 0.1 m from the ice top until the ice bottom. Brine nutrient
concentrations (including ammonium) are shown in Figure S3. Very high values are obtained for nitrate and
silicic acid in the upper parts of the brine network, during an initial period of some ice growth, when air tem-
perature remained <—10°C (Figure 2a), with concentrations 3-4 orders of magnitude higher than maximal
bulk values (Figures 9c and 9d).

Limiting factor values for light intensity, temperature, nitrogen (ammonia + nitrate), and silicic acid concen-
trations in the brine (Figure 10) show lowest values for silicic acid, especially after 13 April, and for light inten-
sity before the onset of snow and ice melt.

4.5. Energy Budgets

Sea ice energy budgets computed from CICE results for the RL and for both SYI simulations are shown in
Figure S4. In all cases, longwave fluxes are dominant, while down and upward fluxes practically cancel each
other out. The amount of shortwave radiation absorbed by the RL is higher than that absorbed by the thick
ice due to the thick snow cover on the latter. In the RL case, there is a positive correlation with a time lag
between latent heat exchanges, the net energy budget, and the ice/snow-atmosphere sensible heat fluxes.
In the SYI cases, the magnitude of these fluxes is much smaller, except after the onset of melting, when
ice-ocean heat flux drives a large net positive flux.
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Figure 9. Results for the SYI/coring: simulated (a) bulk ice salinity; (b) temperature; (c) nitrate; (d) silicic acid; (e) observed
Chl g; simulated (f) Chl a in SYI_Sim_1; (g) Chl a in SYI_Sim_2; and (h) Chl a in SYI_Sim_3. The blue line represents snow
height (refer to Table 1). Note the differences in the color range between Figure 9¢, on one hand, and Figures 9f, 9g, and 9h,
on the other hand.

5. Discussion

5.1. Model Forcing and the Importance of Storms

Model forcing time series showed large increases in wind speed and air temperature during or close to storm
events (Figure 2a). The same applied to current velocities and ocean heat exchanges (Figures 2d and 2e). The

importance of these events on the variability of atmospheric and oceanographic conditions has been dis-
cussed in Cohen et al. [2017], Meyer et al. [2017a, 2017b], and Peterson et al. [2017]. Storms transport heat

DUARTE ET AL.

SEA ICE PHYSICS AND BIOGEOCHEMISTRY 1646



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2016/G003660

a ) Light limitation b ) Temperature limitation
0.5 1 1 1
T 08 E ‘ 08
E £,
@ 2
g g
S 06 = - 06
£ £ 05
3 3 9
13 0.4 13 o4
: 2
@ 1. o 10
2 0.2 = 0.2
23-04 28-04 03-05 08-05 13-05 18-05 23-05 28-05 02-06 0 23-04 28-04 03-05 08-05 13-05 18-05 23-05 28-05 02-06 0
C) d)
Nitrogen limitation e Silicic acid limitation .
0.5/ 1 =1
- I3 08
E 0.8 _E_
"] w
0 @
o c
£ 06 S ‘06
5
z z
% 0.4 g 04
g z
© ©
8 0.2 3" 02
1 ]
23.04 2804 0305 08-05 1305 1805 23.05 2805 0206 23-04 28-04 03-05 08-05 13-05 18-05 23-05 28-05 02-06
Dates in 2015 Dates in 2015

Figure 10. Results for the SYI/coring: simulated evolution of limiting factor values for (a) light, (b) temperature, (c) nitrogen,
and (d) silicic acid as a function of time and depth in the ice in SYI_Simulation_1. The blue line represents snow height.
The upper layers of the graphs with zero values for all limiting factors correspond to the levels that are above the CICE
biogrid and where there is no brine network (refer to text).

and moisture from lower latitudes, and the strong winds associated with them drive sea ice drift and upper
ocean mixing, increasing the heat flux from the ocean by an order of magnitude with potential consequences
for sea ice melting. Storms also cause sea ice divergence and the opening of leads such as the RL discussed
here [ltkin et al., 2017].

Model results for the RL case, representative of new ice growth, showed the effects of storm events on sea ice
thermodynamics in the form of two temperature peaks around May 19-20 (Figure 4b). This rapid ice warming
is partly explained by low insulation due to the simulated snow accumulation (not shown) of just a few milli-
meters, due to the low snow precipitation during the simulation period. The observed accumulation reached
maximal values of 0.02-0.06 m [Kauko et al., 2017] but was very heterogeneous, presumably due to snow
redistribution by wind. Jeffery and Hunke [2014] discussed the sensitivity of the ice physical state to snow
cover and ran simulations with a prescribed snow fall to reproduce the observed snow cover and avoid
the model bias caused by an inaccurate snow forecast. The insulating effect of snow explains the lack of
warming “peaks” in the case of the SYI/IMB observations and model results (Figure 7). Here warming is
strongly related to an increase in the ice-ocean heat exchanges as RV Lance drifted across the Yermak
Plateau encountering warm Atlantic Water closer to the surface [Meyer et al., 2017a; Peterson et al., 2017].
The same applies to the SYl/coring case. In both SYI simulations, there is a small snow depth variability
explained by the low snow fall rates. Observed variability was larger and likely related to wind redistribution,
which is not taken into account in CICE.

The relatively high air temperature, precipitation, and specific humidity associated with the storm event that
took place between 14 and 19 May (Figure 2a) contributed to reduced latent heat losses from the RL in two
occasions during the mentioned period (see the two peaks of the red line in Figure S4a), leading to an
increase in the net energy budget from negative to slightly positive, ice warming (Figure 4b) and an increase
in sensible heat losses to the atmosphere. Therefore, one of the fluxes of smaller magnitude may have a
determinant effect in shifting the net energy budget from negative to positive. The magnitude of the

DUARTE ET AL.

SEA ICE PHYSICS AND BIOGEOCHEMISTRY 1647



@AGU Journal of Geophysical Research: Biogeosciences  10.1002/2016JG003660

ice-ocean heat exchanges increased both in the RL and the SYI simulations at the end of June. Also, slightly
positive air temperatures explain some snow melting that leads to an increase in absorbed shortwave radia-
tion in the SYI cases. The downward migration of the brine channel network in the RL resulted first from the
low temperatures at the ice top and, at a later stage, from refreezing of melted snow ice. RL warming events
in mid-May were driven by atmospheric forcing, while those at the beginning of June were ocean driven. The
former are not apparent in the SYI simulations due to snow insulation. The impact of these sudden warming
events on biogeochemical processes is not yet well understood. However, by changing ice temperature, they
may have implications on ice salinity, density, and on the brine channel network, thereby influencing the
exchange of nutrients and the organisms depending on them.

5.2. Sea Ice Thickness and Salinity

The results presented in Table 2 concerning model performance suggest that the CF is too optimistic in
classifying all model results between reasonable and very good. Ice thickness seemed adequately repro-
duced for both the RL and the SYI/IMB cases (Figures 3a and 7). However, ME values show that model error
is relatively large when compared with data variability (Table 2). On the other hand, model bias is relatively
low and the RMSE is small (5 cm). Considering this somewhat controversial evidence from the various
measures of model skill and the graphical model output, one is tempted to classify model results as, at
least, reasonable.

Model-calculated ice thickness, heat exchanges, and melt rates are quite sensitive to surface current velocity,
which is used to compute the heat transfer coefficient in the CICE model [Hunke et al., 2015]. Simulations per-
formed without the effects of current velocity underestimated ice melting (not shown). The timing of frazil-
ice formation and initiation of ice growth in the RL case was quite sensitive to the depth of hmix (not shown)
due to the time required to cool down the water to the freezing temperature. Depending on the vertical reso-
lution of circulation models coupled with CICE, some positive bias may be anticipated in the time required for
freezing open leads if the surface model layer is very thick. These small-scale processes may be quite impor-
tant not only for simulations of the energy budget of the Arctic Ocean but also for biogeochemical processes.
Indeed, refrozen leads that are covered with thin ice and a thin snow layer have a different thermodynamic
behavior than thick ice with thick snow cover, as shown in Figure S4. They also act as “windows” allowing
greater penetration of shortwave radiation into the water column compared to the thicker snow-covered
ice [Kauko et al., 2017], with local enhancement of phytoplankton primary production in the water column
[Assmy et al., 2017]. Observations and sampling conducted by divers under the RL identified assemblages
of ice algae covering submerged ice blocks and some vertical ice walls at pressure ridges that had formed
at the transition zone between the RL and the thicker ice. Also, empirical data show that Chl a concentration
grew rapidly in thin ice from early May to the beginning of June (Figure 6b) [Kauko et al., 2017], and estimated
growth rates were up to 0.27 divisions per day [Olsen et al., 2017].

The representation of the early evolution of the sea ice salinity profile will become more important in models,
as the seasonal sea ice fraction of the Arctic ice pack increases [Turner et al., 2013]. Laboratory and field experi-
ments have been carried out regarding the initial stages of ice formation, including measures of (i) salt and
brine fluxes at the bottom ice/water interface from brine expulsion during sea ice growth [Wakatsuchi and
Ono, 1983]; (ii) vertical profiles of brine volume, salinity, and temperature [Cottier et al., 1999]; and (iii) tem-
perature, porosity, brine and bulk salinities, and liquid fraction [Notz, 2005; Notz and Worster, 2008]. The
results of the former two studies were used by Jeffery et al. [2011] to validate a vertical transport model for
sea ice tracers implemented in CICE. The results of Notz and coworkers were used by Turner et al. [2013] to
test a 1-D parameterization of gravity drainage, based on mushy layer theory and also implemented in
CICE and used in the present study. The results presented in Figure 3 suggest a good fit between simulated
and observed vertically averaged bulk salinities for new ice (RL). The model shows a small positive bias.
However, this bias may not be real because salinity measurements were taken from melted core samples,
and during coring and the sampling procedure, some brine may be lost, leading to an underestimation of
measured salinity. As with ice thickness, model error is relatively large when compared with data variability
(Table 2), whereas model bias is low and the RMSE is small (1.78). Model results show an initial rapid drop
in salinity followed by a slower decrease after 29 April 2015. These two different rates are a result of the
two desalinization modes described in Turner et al. [2013]. After 14 May, there is another increase in desali-
nization related to melting. The lack of vertically resolved salinity data for the RL prevents a comparison
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between vertical profiles. Such a comparison was done for SYI (Figure 8b), but it is not conclusive given the
scatter of some data points.

5.3. Sea Ice Biogeochemistry

RL simulations showed a negative bias in bottom nutrient concentrations with nitrate lower than observed
on 5 May (Figure 6a). However, the relatively high observed values are counter intuitive because the same
brine exchanges responsible for desalinization (Figure 3b) force nutrient exchanges between the seawater
and the ice. These exchanges cannot lead to bulk ice concentrations as high as seawater concentrations since
only the brine volume is exchanged. Therefore, nutrient concentrations should scale with salinity in the
absence of biological consumption. In the presence of ice algal growth, nutrient concentrations should be
even lower, unless recycling could compensate for consumption. However, it seems rather unlikely that
recycling could raise bulk concentrations above sea-water values, unless there was a large reserve of organic
matter in the ice—very unlikely in newly formed ice. Another way to conciliate observed ice bulk nitrate
concentrations with observed and simulated desalinization (Figure 3b) is by means of some differential
retention mechanism of nitrate within the brine network as suggested for ammonium in Antarctic sea ice that
appears to be efficiently adsorbed onto organic matter, with likely consequences to its mobility and
availability [Fripiat et al., 2017]. Thus, the comparatively high observed bulk concentrations of nitrate in the
RL remain to be explained.

Silicic acid concentrations at bottom ice drop to nearly zero in the RL simulations a short while after the onset
of algal growth, around 19 May (Figures 6a-6c¢). The strong effect of biological uptake on silicic acid is empha-
sized by the differences between Figures 4e and 4f. The limiting effect of silicon (Figure 5d) stopped algal
growth in the RL simulations, even after reducing the effect of the silicon limiting parameters (simulations
RL_Sim_2, RL_Sim_3, and RL_Sim_5; Table 1). It can be argued that the increase in Chl a standing stock
shown by the empirical data (Figure 6d) does not support the determining role of silicic acid in stopping
the bloom. It is hard to explain the contradiction between simulated and observed data, considering the
model parameter uncertainties and also the large variability of empirical data. The results presented in
Olsen et al. [2017] suggest that observed cell abundances in the RL cannot be explained solely by local
growth, emphasizing the importance of seeding mechanisms. Therefore, it is important to study seeding
and its relationship with some physical drivers for proper inclusion in ice algal models. The claim about silicon
limitation is consistent with the reported diatom dominance in the RL [Olsen et al., 2017] and with the rela-
tively high nitrate: silicic acid ratios in the water and in the ice, during the first half of the simulation period
(Figures 2f and 6a). The nitrate decrease in the SYI/coring site simulation is dominated by desalinization and
melting, whereas the silicon decrease is dominated by biological uptake (Figures 9c and 9d and S2). In the SY],
ice algae are limited by low light levels until the end of May, and afterward, silicon becomes more limiting
(Figure 10). This is consistent with the observation that during the spring, ice algae are initially limited by light
and later by nutrients [Cota et al., 1991; Leu et al., 2015].

The approaches described in the literature to simulate water-ice nutrient exchanges are based on different
diffusive or advective mechanisms. Arrigo et al. [1993] separated nutrient exchanges due to gravity drainage,
occurring in brine channels at an assumed constant speed, from brine convection in the skeletal layer, depen-
dent on ice growth rate through a relationship proposed by Wakatsuchi and Ono [1983]. In both cases, brine
fluxes were used to compute nutrient exchanges as a diffusive process. Lavoie et al. [2005] computed nutrient
exchanges across the skeletal layer with a diffusion equation. Jin et al. [2006, 2008] used the equation by
Wakatsuchi and Ono [1983] to compute nutrient fluxes across the skeletal layer but in the form of an advec-
tion term. Furthermore, molecular diffusion was added as another exchange mechanism, based on a fixed
diffusion coefficient. Approaches based on the existence of a skeletal layer may be limited to winter periods
of ice growth when such a layer exists [Hunke et al., 2015]. More recently, other authors have attempted to
integrate more physically based formulations in trying to simulate brine drainage and tracer exchanges
between the ice and the seawater. The main motivation of these attempts has been to properly simulate sali-
nity due to its influence on sea ice thermal properties and its relationship with brine dynamics and nutrient
supply [Vancoppenolle et al., 2007]. In line with this, CICE was upgraded first with the thermohaline approach
described in Jeffery et al. [2011] and later with the mushy layer dynamics method of Turner et al. [2013]. While
the former is based on a mixing length diffusion approach, the latter is based on convection and both
attempt to reproduce brine drainage based on vertical density instabilities. The CICE configuration used in
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this study includes brine convection and molecular diffusion as mixing mechanisms. Jeffery et al. [2011] com-
pared the performance of the mixing length diffusion method with enhanced molecular diffusion (EMD) and
found that the former method performed better than the latter by responding to ice growth rates. When
these increase, brine production also increases leading to a rise in density instability and in mixing length dif-
fusivity, while EMD diffusivity is constant. The use of brine drainage methods parameterized as a function of
vertical density instabilities makes sense regarding the physics, but possibly, there is still room for EMD to be
used not as a brine transport and desalinization mechanism but as a complementary process promoting
exchanges at the bottom ice that works as a function of concentration gradients even in the absence of sig-
nificant brine drainage. Ideally, diffusivity should be parameterized as a function of current shear in the same
way as used to compute the heat transfer coefficient in the CICE model.

Empirical and model data synthetized in Figures 6b and 8d suggest that the bloom took place a few days later
in the RL than it did in the SYI. This delay may be explained by the time needed for algae to recruit from the
ocean to the RL and reach a standing stock large enough to produce a bloom, whereas such a stock, probably
of overwintering algae, was available at the upper ice layers of the SYI at the beginning of the simulated per-
iod [Olsen et al., 2017]. The steady increase in observed Chl a standing stocks that lasted until the beginning
of June, after some melting took place, was unexpected, since other studies in the Arctic have suggested that
after melting, there is a rapid flushing of ice algae, with Chl a concentrations dropping rapidly to near zero
values [Leu et al., 2015]. Therefore, it may be hypothesized that ice algae may cope with some melting still
being able to increase their biomasses, possibly taking advantage of more light availability with decreasing
ice and snow thickness. This suggests that the CICE parameterization that takes into account the motility
of diatoms (see section 2.2) is consistent with observations. In fact, preliminary simulations without consider-
ing ice algal motility lead to the loss of Chl a toward the end of the simulations in contrast with observations.
In spite of this, the model calculated a steady increase of the ice algae standing stock until the beginning of
June only for the SYl—silicon limitation became the dominant factor in the RL simulation. Considering all
simulations, model average vertically integrated NPP was in the ranges 0.5-1.0 and 1.0-1.8 mgC m2d™"
for the RL and SYI, respectively. These values are well within ranges reported in the literature [e.g., Mock
and Gradinger, 1999].

Model performance regarding vertically averaged Chl a concentrations and Chl a standing stocks improved
by lowering the Si:N ratio and reducing the half saturation constant for silicon uptake (Tables 1 and 2). Both
for the RL and for the SYI, these parameter changes lead to quality levels between good and excellent. In
what concerns vertically resolved Chl a concentrations, model performance was much poorer.

5.4. Ice Algal Motility

The “deterministic” algorithm implemented in SYI_Sim_3 and SYI_Sim_4 resulted in vertical Chl a profiles
with more than one maxima (Figure 9h) similar to patterns shown in empirical data (Figure 9e) and reported
in more detail in Olsen et al. [2017]. Algal motion was driven by an optimization search at a realistic speed, and
migration toward the bottom led to access to higher nitrogen concentrations. However, this is a good strat-
egy for part of the algae but not for all of them, depending on environmental gradients in their proximity.
Therefore, some algae remained or moved closer to the ice top, where silicon and light limitations are milder
(Figure 10d). The direction of the motion depends on which factors are more limiting at various depths in the
ice. Figures 10c and 10d show that both nitrogen and silicon limitation are milder at ice bottom and top. In
the former case this is due to exchanges between the ice and the sea, and in the latter case, it is explained
by the very high brine concentrations (Figure S3) and their low utilization due to very low Chl a concentra-
tions at the top layers, for most of the simulation period (Figure 9h).

Previous authors identified the need of including behavior in ice algal growth models [Aumack et al., 2014] as
a way to properly reproduce some of their dynamic responses to environmental variability, with emphasis on
adjustments to light intensity to reduce limitation by low or high light (photoinhibition). Most likely, light
intensity cannot be the sole variable explaining the direction of algal motion. Otherwise, ice algae would tend
to concentrate closer to the ice top under thick ice and snow and only one Chl a maximum would be
expected, unless different taxonomic groups responded quite differently to light. The obtained results
suggest a hypothesis that may be experimentally accessed: “ice algae optimize their vertical position in the
ice as a function of several potentially limiting factors.” Testing this hypothesis may help in explaining the
mechanisms driving ice algal motion and allowing the improvement of ice algal models.
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5.5. Final Remarks

It is well established that the parameters controlling the relationship between primary production and irra-
diance change at variable time scales as result of adjustments of the photosynthetic apparatus to different
light regimes. Chl a per cell may increase 5 to 10 times as irradiance decreases, alleviating light limitation
at low irradiances [Falkowski and Wirick, 1981; Falkowski and Raven, 1997]. If this plasticity is not taken into
account in the production-irradiance relationship of ice algal models, it is more difficult to properly reproduce
algal growth under strikingly different light environments such as the refrozen lead with thin snow cover and
thicker ice with thick snow encountered during this study. Moreover, this plasticity has consequences for the
total amount of chlorophyll and the comparisons between observed and simulated surrogates of ice algal
biomass. This is why some ecosystem models treat Chl a as a prognostic variable [e.g., Fennel et al., 2006;
Vichi et al., 2007]. In line with the above reasoning, we note that the highest Chl a values observed under
SYI correspond to some of the lowest observed particulate organic carbon (POC) and PON values (data not
shown). In spite of the fact that POC/PON includes not only ice algae, it is tempting to speculate that the rea-
son for the apparent discrepancy could be a high Chl a content per cell as a response to low irradiances.

Whatever tuning of ice algal physiological parameters may be attempted, it is difficult to properly reproduce
growth under very different light environments without considering the effects of light acclimation. In fact,
while for the RL one would expect a reduction in photosynthetic efficiency as a result of acclimation to high
light, the opposite would make more sense for the thick ice and snow under which light levels are very low
(Figure 8a). All things considered, we hypothesize that the CICE biogeochemical submodel would benefit
from the incorporation of Chl a dynamics following Fennel et al. [2006] and Vichi et al. [2007].

This work does not include a thorough sensitivity analysis, which generally implies changing each parameter
at a time, running the model and comparing the results with a reference simulation. However, as already
noted by Urrego-Blanco et al. [2016], such an approach cannot identify interactions among parameters and
assumes linearity and additivity. The same authors used a global variance approach with Sobol sequences
to efficiently sample the parameter space of the CICE model. This method provided a thorough analysis of
the CICE model sensitivity to physical parameters [Urrego-Blanco et al., 2016]. A comparative analysis includ-
ing the biogeochemical parameters is beyond the scope of the present work but would certainly shed light
over the complex synergies among these parameters and their interactions with physical processes.

This study is a relatively thorough evaluation of a sea ice model at the floe scale, covering physical, chemical,
and biological variables and using a comprehensive data set of forcing functions with high temporal resolu-
tion. In spite of that, there are limitations in the available data not allowing for an exhaustive analysis of
model performance with the same degree of detail for all variables and for the different types of ice. These
limitations include the low frequency for some observations, such as vertical salinity profiles in SYI and sea
ice bulk nutrient concentrations in the RL, and the lack of replication of SYI data. This last limitation makes
it difficult to evaluate how much of the Chl a variability observed over the simulated period (Figure 9e) is
due to temporal or to spatial trends. Overall, model performance is poor for vertically resolved Chl a concen-
trations and between good and excellent for vertically averaged Chl a concentrations and Chl a standing
stocks, depending on some parameter tuning. In what concerns ice thickness and vertically averaged salinity
the model does reasonably well, with a relatively low bias. The best performance is for vertically resolved sea
ice temperature showing that model thermodynamics performs very well.

The obtained results suggest fundamental differences between pack ice with a thick snow cover and refrozen
leads in what concerns ice algal bloom dynamics. In the former, blooms have the following characteristics
(see also Olsen et al. [2017]): (i) sustained for a longer period due to a higher nutrient “buffer” and a strong
light limitation; (ii) possibly seeded from overwintering ice algae at the upper ice layers; (iii) with possibly sev-
eral Chl @ maximum along the vertical, likely resulting from algal motion as a function of limiting factor gra-
dients; and (iv) higher vertically integrated NPP as a result of larger standing stocks of ice algae. In the latter,
blooms are characterized by (i) rapid nutrient exhaustion, as a result of fast nonlight limited algal growth; (ii)
total dependence on recruitment from the water column; and (i) only one Chl a maximum located at bottom
ice to overcome nutrient limitation.

Over the last decades there has been an increase in drift speeds and sea ice deformation implying stronger
fracturing and more lead opening [Rampal et al., 2009; Kwok et al., 2013; Itkin et al., 2017]. If these trends con-
tinue, it is likely that the frequency of refrozen leads will increase, impacting Arctic Ocean ecology.
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Phytoplankton blooms beneath snow-covered ice might become more frequent and widespread in the future
Arctic Ocean with more lead formation due to thinner and more dynamic ice cover [Assmy et al., 2017]. The
results presented in this work suggest that higher maximal ice algal growth rates in thin ice lead to not only
more pronounced blooms (sharper bloom peak) but also earlier nutrient exhaustion in the high-biomass ice
bottom layer (shorter blooms), which might result in a reduction in ice algal vertically integrated NPP and
standing stocks (per m?) in thin ice relative to what is observed in thicker ice, with an overwintering standing
stock of ice algae. This would lead to important effects on marine food webs and carbon sequestration.

6. Conclusions

Considering the questions behind this study and results obtained, we emphasize the following points: (i) it is
possible to simulate reasonably well sea ice thickness and bulk salinity and to simulate very well vertically
resolved temperature at time scales of a few weeks, with minimum parameter tuning when a complete for-
cing data set of atmospheric and oceanographic conditions is available; (ii) model accuracy is good for verti-
cally averaged Chl a concentrations and Chl a standing stocks depending on parameter tuning and poor for
vertically resolved Chl a concentrations; (i) improving current knowledge about the mechanisms of nutrient
exchanges at the sea ice-ocean interface, ice algal recruitment, and motion within the brine matrix is critical
to improve sea ice biogeochemical modeling; (iv) ice algae may bloom despite some degree of bottom melt-
ing, presumably avoiding flushing due to their motility; (v) ice algal motility driven by gradients in limiting
factors is a plausible mechanism to explain their vertical distribution; (vi) different ice algal bloom and
NPP patterns were identified in the ice types studied, suggesting that ice algal growth rates may be higher
in RLs than in thicker SYI with a thick snow cover but vertically integrated NPP and biomasses are larger in
the latter than in the former; and (vii) these differences combined with the expected increasing trend in the
frequency of refrozen leads may impact Arctic Ocean primary production with possible effects on marine
food webs and carbon sequestration.
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