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Abstract. A computationally efficient, open-source feature-
tracking algorithm, called ORB, is adopted and tuned for sea
ice drift retrieval from Sentinel-1 SAR (Synthetic Aperture
Radar) images. The most suitable setting and parameter val-
ues have been found using four Sentinel-1 image pairs repre-
sentative of sea ice conditions between Greenland and Sever-
naya Zemlya during winter and spring. The performance of
the algorithm is compared to two other feature-tracking al-
gorithms, namely SIFT (Scale-Invariant Feature Transform)
and SURF (Speeded-Up Robust Features). Having been ap-
plied to 43 test image pairs acquired over Fram Strait and
the north-east of Greenland, the tuned ORB (Oriented FAST
and Rotated BRIEF) algorithm produces the highest num-
ber of vectors (177 513, SIFT: 43 260 and SURF: 25 113),
while being computationally most efficient (66 s, SIFT: 182 s
and SURF: 99 s per image pair using a 2.7GHz processor
with 8GB memory). For validation purposes, 314 manually
drawn vectors have been compared with the closest calcu-
lated vectors, and the resulting root mean square error of ice
drift is 563m. All test image pairs show a significantly better
performance of the HV (horizontal transmit, vertical receive)
channel due to higher informativeness. On average, around
four times as many vectors have been found using HV po-
larization. All software requirements necessary for applying
the presented feature-tracking algorithm are open source to
ensure a free and easy implementation.

1 Introduction

Sea ice motion is an essential variable to observe from re-
mote sensing data, because it strongly influences the distri-
bution of sea ice on different spatial and temporal scales.

Ice drift causes advection of ice from one region to another
and export of ice from the Arctic Ocean to the sub-Arctic
seas. Antarctic sea ice is even more mobile and its strong
seasonality is linked to the ice transport from high to low
latitudes (IPCC, 2013). Furthermore, ice drift generates con-
vergence and divergence zones that cause formation of ridges
and leads. However, there is still a lack of extensive sea ice
drift data sets with sufficient resolution to estimate conver-
gence and divergence on a spatial scaling of less than 5 km.
The regions of interest are the ice-covered seas between

Greenland and Severnaya Zemlya, i.e. the Greenland Sea,
Barents Sea, Kara Sea and the adjacent part of the Arctic
Ocean. This area is characterized by a strong seasonal cycle
of sea ice cover, a large variation of different ice classes (mul-
tiyear ice, first-year ice, marginal ice zone etc.) and a wide
range of drift speeds (e.g. strong ice drift in Fram Strait).
With systematic acquisition of space-borne Synthetic

Aperture Radar (SAR) data over sea ice areas, Kwok et al.
(1990) have demonstrated that high-resolution ice drift fields
can be derived from SAR data. SAR is an active microwave
radar which acquires data independently of solar illumination
and weather conditions. Sea ice motion fields of the Arc-
tic Ocean with a grid spacing of 5 km have been produced
on a weekly basis between 1997–2012 using Radarsat and
ENVISAT (Environmental Satellite) SAR data and the geo-
physical processor system introduced by Kwok et al. (1990).
Thomas et al. (2008a) have used pattern recognition to cal-
culate sea ice drift between successive ERS-1 (European
remote-sensing satellite) SAR images with a resolution of
400m. This work has been continued by Hollands and Dierk-
ing (2011) using Advanced SAR (ASAR) data from EN-
VISAT. Komarov and Barber (2014) used a similar pattern-
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matching technique to evaluate ice motion results from dual-
polarization Radarsat-2 images.
With the successful launch of Sentinel-1A in April 2014

and the planned launch of Sentinel-1B in early 2016, high-
resolution SAR data will be delivered for the first time with
open and free access for all users and unprecedented revisit
time of less than one day in the Arctic (ESA, 2012). This in-
troduces a new era in SAR Earth observation. Sea ice drift
data with medium resolution (10 km) are provided opera-
tionally via the Copernicus Marine Environment Monitoring
Service (CMEMS, http://marine.copernicus.eu), but no sea
ice drift algorithm using Sentinel-1 data has been published
so far. The objective of this paper is to identify and develop
the most efficient open-source algorithm for high-resolution
sea ice drift retrieval from Sentinel-1 data.
Our goal is to exploit recent improvements and devel-

opments in computer vision by adopting a state-of-the-art
feature-tracking algorithm to derive sea ice drift (i.e. vec-
tors of sea ice displacement). Current pattern-matching al-
gorithms constrain the high-resolution vectors with low-
resolution estimates for practical reasons. Using feature
tracking, drift vectors can be derived independently from
the surrounding motion, which leads to better performance
e.g. along shear zones. For application on large data sets and
for operational use, we considered a computationally effi-
cient algorithm, called ORB (Oriented FAST and Rotated
BRIEF) (Rublee et al., 2011), tuned it for sea ice drift re-
trieval from Sentinel-1 imagery and compared the results
with other available feature-tracking algorithms and existing
sea ice drift products.
The software requirements necessary for deriving ice drift

fields from Sentinel-1 data (Python with OpenCV and the
Python toolbox Nansat) are all open source to ensure a free,
user friendly and easy implementation.
The paper is organized as follows: Sect. 2 introduces the

used Sentinel-1A data product. The ORB algorithm descrip-
tion and the used methods for tuning, comparison and valida-
tion are presented in Sect. 3. The recommended parameter set
including the tuning, comparison and validation results are
provided in Sect. 4. The discussion can be found in Sect. 5.

2 Data

The Sentinel-1 mission, an initiative of the European Union
and operated by the European Space Agency (ESA), is com-
posed of a constellation of two identical satellites sharing
the same near-polar, sun-synchronous orbit: Sentinel-1A,
launched in April 2014, and Sentinel-1B, planned to launch
in early 2016. Sentinel-1 carries a single C-band Synthetic
Aperture Radar (SAR) instrument measuring radar backscat-
ter at a centre frequency of 5.405GHz and supporting dual
polarization (HH+HV, VV+VH). With both satellites op-
erating, the constellation will have a revisit time of less than
one day in the Arctic. Radar data are delivered to Coperni-

cus services within an hour of acquisition with open and free
access for all users (ESA, 2012).
The Sentinel-1 product used in this paper is called

Extra-wide Swath Mode Ground Range Detected with
Medium Resolution. These images cover an area of
400 km× 400 km with a pixel spacing of 40m× 40m (reso-
lution: 93m range× 87m azimuth; residual planimetric dis-
tortions: within 10m; Schubert et al., 2014) and provide both
HH (horizontal transmit, horizontal receive) and HV (hori-
zontal transmit, vertical receive) polarization.
Four image pairs (Table 1) representative of our region of

interest have been chosen for parameter tuning. Furthermore,
43 image pairs acquired over Fram Strait and north-east of
Greenland (Fig. 8) have been used to test the performance of
different feature-tracking algorithms. To ensure an indepen-
dent evaluation, the 43 test image pairs have not been used
for parameter tuning. The two considered sets of image pairs
cover both a range of different sea ice conditions (pack ice,
fast ice, leads, ridges, marginal ice zone, ice edge etc.) and
intervals between the acquisitions. We focused on winter and
spring data, since our area of interest experiences the highest
sea ice cover during this period.

3 Method

Sentinel-1 data sets were opened and processed with the
open-source software Nansat (see Appendix A; Korosov et
al., 2015, 2016). Nansat is a scientist-friendly Python tool-
box for processing 2-D satellite Earth observation data. It is
based on the Geospatial Data Abstraction Library (GDAL)
and provides easy access to geospatial data, a simple and
generic interface to common operations including reading,
geographic transformation and export. Nansat proves to be
efficient both for development and testing of scientific al-
gorithms and for fast operational processing. To extend the
functionality of GDAL, Nansat reads metadata from XML
files accompanying Sentinel-1 data and supplements the
GDAL data model with georeference information stored as
ground control points (GCPs). Originally GCPs are pairs of
latitude/longitude and corresponding pixel/line coordinates.
In order to increase the accuracy of the geographic transfor-
mation, the projection of GCPs is changed from cylindrical
to stereographic, placed at the centre of the scene. The re-
projected GCPs are then used by GDAL to calculate geo-
graphic coordinates of any pixel in the raster using spline
interpolation. Reprojection of GCPs does not require much
additional computational effort, but improves the result sig-
nificantly, particularly at high latitudes.
The normalized radar cross section (σ 0) is calculated from

raw Sentinel 1A data using the following equation:

σ 0 = DN2i /A
2
i , (1)

where DNi is the digital number provided in the source TIFF
file, Ai is the value of normalization coefficient from the ac-
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Table 1. Sentinel-1 image pairs used for parameter tuning.

Region First image acquisition Second image acquisition Time
time, UTC time, UTC gap

Fram Strait 28 Mar 2015 07:44:33 29 Mar 2015 16:34:52 33 h
Svalbard North 22 Apr 2015 06:46:23 23 Apr 2015 13:59:03 31 h
Franz Josef Land 24 Mar 2015 03:21:13 24 Mar 2015 11:30:06 8 h
Kara Sea 22 Apr 2015 11:37:16 24 Apr 2015 11:20:59 48 h

companying calibration metadata and i is an index of a pixel
(Anonymous, 2014). No additional preprocessing of SAR
data was performed.
Our algorithm for sea ice drift detection includes three

main steps: (a) resampling of raw data to lower resolution,
(b) detection and matching of features and (c) compari-
son/validation.

a. To decrease the influence of speckle noise and increase
the computational efficiency, the resolution is reduced
before applying the ice drift algorithm from 40 to 80m
pixel spacing using simple averaging.

b. For detection and tracking of features on large data sets
and for operational use, a computationally efficient al-
gorithm, called ORB (Rublee et al., 2011), has been
used. In our numerical experiments we tuned the param-
eters of ORB for optimal SAR sea ice drift application.
The most suitable parameter set (including spatial res-
olution of SAR image, patch size of FAST descriptor,
number of pyramid levels, scale factor, etc.) has been
evaluated for our area and season of interest.

c. The introduced ORB set-up is compared to other avail-
able OpenCV feature-tracking algorithms, CMEMS
data and manually drawn vectors for performance ap-
praisal and validation.

3.1 ORB algorithm

ORB (Oriented FAST and Rotated BRIEF) is a feature-
tracking algorithm introduced by Rublee et al. (2011) as
“a computationally efficient replacement to Scale-Invariant
Feature Transform (SIFT) that has similar matching per-
formance, is less affected by image noise, and is capable
of being used for real-time performance”. ORB builds on
the FAST keypoint detector (Rosten and Drummond, 2006)
and the binary BRIEF descriptor (Calonder et al., 2010)
with many modifications to enhance the performance. It uses
FAST to find multiscale keypoints on several pyramid levels
and applies a Harris corner measure (Harris and Stephens,
1988) to pick the best keypoints. To achieve rotation invari-
ance, the orientation of the keypoint is calculated by using
the intensity-weighted centroid of a circular patch with the
located keypoint at the centre. Rublee et al. (2011) states
that the ORB descriptor performance is equal to SIFT (Lowe,

2004) and higher than Speeded-Up Robust Features (SURF)
(Bay et al., 2006). Like Rublee et al. (2011), we use a brute-
force matcher and Hamming distance for feature matching.
Unlike SIFT and SURF, ORB is an open-source software and
use and distribution are not limited by any licenses.
Before the feature-tracking algorithm can be applied to a

satellite image, the SAR backscatter values σ 0 have to be
transformed into the intensity i range (0≤ i ≤ 255 for i ∈R)
used in OpenCV. This transformation is done by using Eq. (2)
and setting all intensity values below and above the range to 0
and 255.

i = 255 · σ 0− σ 0min

σ 0max− σ 0min

, (2)

Lower and upper brightness boundaries σ 0min and σ 0max are
user defined and chosen to be constant in order to limit
the influence of speckle noise and be independent e.g. of
high backscatter values σ 0 over land. Converting the lin-
ear backscatter values before the transformation into deci-
bel units has been tested, but decreased the algorithm perfor-
mance for both channels.
After the transformation into intensity values, keypoints

are detected on both SAR scenes using the FAST-9 keypoint
detector (Rosten and Drummond, 2006). FAST-9 compares
the intensity Ip of a centre pixel to the intensities of pixels on
the surrounding circle with a perimeter of 16 pixels (Fig. 1).
If there exists a set of nine contiguous pixels in the circle
which are all brighter than Ip+ t , or all darker than Ip− t ,
the centre pixel is recognized as a keypoint. The threshold t

is set low enough to get more than the predefined amount N
of keypoints.
To detect features of different scales, the keypoint search is

performed on several pyramid levels. The number of pyramid
levels in combination with the scale factor defines the range
and increment of the keypoint detection scaling. A scale fac-
tor of 2 means that each next pyramid level has four times
fewer pixels, but such a large-scale factor degrades the fea-
ture matching score. On the other hand, a small-scale factor
close to 1 means to cover a certain scale range needs more
pyramid levels and hence, the computational cost increases.
FAST does not produce a measure of cornerness and

Rublee et al. (2011) have found that it has large responses
along edges. Harris corner measure (Harris and Stephens,
1988) is used to order the FAST keypoints according to their
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Figure 1. Subset of the first image from Fram Strait pair (Ta-
ble 1) with centre at 2.31◦W, 81.70◦ N and pixel spacing of 80m.
The centre pixel (red) is recognized as keypoint since � 9 contigu-
ous pixels (bold blue) of the surrounding blue circle have inten-
sity values smaller than the centre minus threshold t . The orienta-
tion θ of the keypoint is shown with a green arrow. The displayed
area (34× 34 pixels) around the keypoint represents the considered
patch p used for feature description. The yellow 5× 5 pixels sub-
windowsX and Y are an example for a possible binary test sampling
pair with p(X) <p(Y ) and hence, τ(p; X, Y ) = 1 (Eq. 7).

cornerness and reject less reliable keypoints. Considering a
window w(x, y) around the keypoint, the intensity deriva-
tives Ix , Iy in x and y direction can be written in a matrixM:

M=
∑
x,y

w(x,y)

[
I 2x IxIy

IxIy I 2y

]
. (3)

The eigenvalues λ1 and λ2 ofM contain the intensity deriva-
tive in the direction of the fastest and slowest change respec-
tively. Based on λ1 and λ2, a score R can be calculated for
each keypoint:

R = λ1λ2− k(λ1+ λ2)
2, (4)

with k being an empirical constant. A high intensity variation
in both dimensions returns a high R value. The top N key-
points with the highest R values are used and the rest is re-
jected.
FAST does not include orientation, but ORB adds a di-

rection to each keypoint using the intensity-weighted cen-
troid from Rosin (1999). The momentsmpq of a circular area
around the keypoint are used:

mpq =
∑
x,y

xpyqI (x,y). (5)

The intensity-weighted centroid has its location at the fol-
lowing:

C =
(

m01

m00
,
m10

m00

)
. (6)

The orientation θ (e.g. green arrow in Fig. 1) represents
the direction of the vector connecting the keypoint with the
intensity-weighted centroid. The momentsmpq are computed
with x and y remaining within a circular region of radius r ,
where r is chosen to be the size of the patch p used for the
following feature description Rublee et al. (2011).
After locating and adding orientation to the best N key-

points, a patch p around each keypoint is used for feature
description (NB: keypoint refers to 1 pixel, feature refers to
description of p). ORB applies a modified version of the bi-
nary descriptor BRIEF (Calonder et al., 2010). Rublee et al.
(2011) defines a binary test τ for a patch p as follows:

τ(p;X,Y ) :=
{
1 if p(X) < p(Y )

0 if p(X) ≥ p(Y ),
(7)

with p(X) and p(Y ) being the intensities at test points X

and Y . ORB uses 5× 5 sub-windows as test points (e.g. in
Fig. 1). Applying n binary tests on a single patch, Rublee et
al. (2011) derive a binary feature vector f :

f n(p) :=
∑
1≤i≤n

2i−1τ (p;Xi,Yi) . (8)

The considered set of n binary tests with test points (Xi , Yi)
can be written in a 2× n matrix (Rublee et al., 2011):

S=
(

X1, . . ., Xn

Y1, . . ., Yn

)
. (9)

To be invariant to in-plane rotation, Rublee et al. (2011)
steers S according to the orientation θ using the correspond-
ing rotation matrix Rθ :

Sθ = RθS. (10)

A good set S of sampling pairs needs to be uncorrelated, so
that each pair adds new information to the descriptor and they
must have high variance to make features more discrimina-
tive. Rublee et al. (2011) applied a greedy search to a large
training data set to obtain a set for ORB with n = 256 rela-
tively uncorrelated tests with high variance.
After the feature description, OpenCV allows different

matching procedures for ORB. Like Rublee et al. (2011), we
use brute-force matching and compare each feature of the
first image to all features in the second image.
As a comparison measure, we use the Hamming distance,

which is equal to the number of positions in which the two
considered feature vectors have a different value.

b1 = 1011101

b2 = 1001001, (11)

For example, comparing the two binary vectors b1 and b2
returns the Hamming distance d = 2, since the third and fifth
position have a different value.
Our setting returns the best two matches and applies the

ratio test from Lowe (2004) to decide whether the best match
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is accepted or rejected. The match is accepted if ratio of the
distances d1

d2
< is below a given threshold. The ratio test elim-

inates a high number of false matches, while discarding only
few correct matches.

3.2 ORB setting and parameter tuning

Achieving the best possible performance of ORB for sea ice
drift from Sentinel-1 images requires a good setting and tun-
ing of the parameters shown in Table 2.
It is not recommended to reproject one image onto the pro-

jection of the second image before applying the ORB algo-
rithm, since this is computationally very expensive. Instead,
geographic coordinates of the matched start and end point
shall be calculated independently using the georeference in-
formation from GCPs of the first and second image.
Manual interpretation of ice drift results (using the training

data from Table 1) reveals that a good compromise between
amount of vectors and correct results can be achieved with
a Lowe ratio test threshold equal to 0.75. That means that
the Hamming distance of the best match has to be less than
0.75×Hamming distance of the second best match. Tested
on the image pairs from Table 1, the ratio test showed a
clearly better performance and is computationally less ex-
pensive than the alternative cross-check, where features are
matched in both directions (first image to second image and
vice versa) and rejected if the drift vectors are too different.
Unreasonably high sea ice displacements (e.g. above

40 km for a time difference between two scenes of ∼ 30 h)
are removed in a post-processing step from the drift field. In
addition, displacements below 2.5 km are rejected during the
testing to disregard matches over land. This does not influ-
ence the number of correct matches, since the sea ice dis-
placement in all considered test images is above 2.5 km.
Based on our observations we assume that the proportion

of wrong matches does not increase with increasing total
number of matches. Under this assumption the algorithm per-
formance refers to the total number of matches and is used to
tune the algorithm parameters in Table 2. ORB is computa-
tionally more efficient, enabling testing the parameters over
a wide range with high-resolution using both HH and HV
polarization.
As a starting point, the tested parameters were set as

follows: resize factor= 0.5, patch size= 31, pyramid lev-
els= 8, scale factor= 1.2, HH limits= [0,0.12], HV lim-
its= [0, 0.012] and ratio test = 0.8. As a compromise be-
tween performance and computational efficiency, the max-
imum amount of retained keypoints is set to 100 000. Tested
range and parameter meaning are shown in Table 2.
In order to find an optimal value for the tested parameter, it

is varied in a reasonable range, the feature-tracking algorithm
is applied and the total number of matched vectors is found.
Once the most suitable value for a tested parameter is found,
it is applied for further testing.

3.3 Comparison of ORB to SIFT and SURF

The presented ORB algorithm has been compared to other
OpenCV feature-tracking algorithms, namely SIFT (Lowe,
2004) and SURF (Bay et al., 2006), using 43 image pairs ac-
quired over Fram Strait and north-east of Greenland (Fig. 8).
SIFT and SURF were used in standard mode and the frame-
work conditions were set to equal for the comparison. Image
preprocessing has been carried out as described above, brute-
force matching including the Lowe ratio test with thresh-
old 0.75 has been applied for all three algorithms as well
as the removal of unreasonably high sea ice displacements
in a post-processing step. Since SIFT allows for defining the
number of retained keypoints, this parameter has been set
to 100 000 as done for ORB. The further tuning of SIFT and
SURF is not the aim of this paper, since these two algorithms
are not open source and computationally less efficient.
The distribution and reliability of the calculated vector

fields have been assessed for each image pair using two pa-
rameters on a grid with cell size 1◦ longitude× 0.2◦ latitude:
number of derived vectors per grid cell (N ) and root mean
square distance (D) of all vectors in a gird cell computed as
follows:

D =

√∑
i

(ui − ũ)2+ (vi − ṽ)2

N
, (12)

where i is the index of a vector inside the grid cell, ui and
vi are the eastward and northward drift components and ũ,
ṽ the corresponding mean values. To combine the results of
several image pairs, the sum of N and the mean of D is con-
sidered.

3.4 Validation

The ORB algorithm has been validated against drift data
from two independent sources using the image pair Fram
Strait (Table 1). First, 350 features were identified by a
sea ice expert in both images and manually connected us-
ing ArcGIS. Second, sea ice drift vectors were taken from
the Copernicus Marine Environment Monitoring Service
(CMEMS, http://marine.copernicus.eu). The SAR ice drift
product of CMEMS is operated by the Technical University
of Denmark (DTU) and drift data are provided with a reso-
lution of 10 km using pattern-matching techniques (Pederson
et al., 2015, http://www.seaice.dk/).
Since the starting locations of ORB, manual and CMEMS

vectors do not coincide, the corresponding (ORB) reference
vectors were found as nearest neighbours within 5 km radius
from the (CMEMS or manual) validation vectors.
Three parameters were considered for the comparison:

root mean square error (E), slope (S) and offset (O) of the
linear fit between the reference and validation vectors.E was
calculated as follows:
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Table 2. Recommended set of parameters for retrieval of sea ice drift from Sentinel-1 data using ORB.

Parameter Meaning Tested range Recommended
(increment) setting

Amount keypoints Maximum number of keypoints to retain – 100 000
Resize factor Resolution reduction during pre-processing 0.5–1 (0.5) 0.5
Patch size Size of descriptor patch in pixels 10–60 (1) 34
Pyramid levels Number of pyramid levels 1–15 (1) 7
Scale factor Pyramid decimation ratio 1.1–1.4 (0.1) 1.2
[σ 0min, σ 0max] (HH) Brightness boundaries for HH channel [0–0.04, 0.01–0.2] (0.01) [0, 0.08]
[σ 0min, σ 0max] (HV) Brightness boundaries for HV channel [0–0.007, 0.001–0.02] (0.001) [0, 0.013]
Ratio test Threshold for ratio test 0.5–1 (0.1), 0.7–0.8 (0.01) 0.75

E =

√∑
i

(ui − Ui)
2+ (vi − Vi)

2

n
, (13)

where i is the index of a vector pair (reference and validation
vector) inside the entire sample, ui and vi are eastward and
northward drift components of the validation vector, Ui and
Vi are eastward and northward components of the reference
vector and n is the number of vector pairs.
In addition, the CMEMS data have been validated against

manual vectors in order to understand the credibility of the
reference data.

4 Results

4.1 ORB parameter tuning

Table 2 shows the recommended parameter set for ORB
Sentinel-1 sea ice drift application for our region and period
of interest. Using these parameters yielded the best compro-
mise between performance and computational efficiency for
the four representative image pairs from Table 1.

4.1.1 Patch size

Figure 2 shows that changing the size (length and width) of
the considered patch p between 10 and 60 pixels can mod-
ify the resulting amount of vectors by an order of magnitude.
To resolve drift gradients with high resolution, the patch size
shall be as small as possible. Taking this into account and the
performance represented by the amount of matches, the most
suitable patch size was chosen to be 34 pixels. For our train-
ing data set (Table 1), this yields on average around 1 and
4 vectors per 10 km2 for HH and HV respectively. The four
image pairs respond similar to a patch size variation. Franz
Josef Land has the highest number of HH matches and the
lowest for HV.

-2

Figure 2. Patch size of descriptor vs. number of matches of the
four test image pairs from Table 1. Solid and dashed lines represent
results for HH and HV polarization respectively. Mean values of the
four image pairs are shown in black and the sum of the mean values
in red. Vertical grey line at 34 pixels represents chosen parameter.

4.1.2 Brightness boundaries

The performance of the algorithm (represented by the
amount of matches) for different backscatter limits σ 0max
(Eq. 2) for HH and HV polarization is shown in Fig. 3.Within
the chosen backscatter range, the amount of vectors can vary
by an order of magnitude. As a compromise between the dif-
ferent results of the four image pairs, we suggest setting the
upper brightness boundary σ 0max to 0.08 and 0.013 for HH
and HV. The chosen lower boundary σ 0min is 0 for both HH
and HV, because the number of matches decreases for in-
creasing values of σ 0min (not shown). Applying this setting on
the training data set yields on average around 1 and 4 vectors
per 10 km2 for HH and HV.

4.1.3 Pyramid levels and scale factor

We calculated the number of matches using 1 to 14 pyramid
levels and the scale factors 1.1, 1.2, 1.3 and 1.4. As a com-
promise between performance, i.e. number of matches, and
computational efficiency (linked to the number of pyramid
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-2

Figure 3. Upper brightness boundary σ 0max (Eq. 2) vs. number of
matches of the four test image pairs from Table 1. Solid and dashed
lines represent results for HH and HV respectively. Black lines
are the mean values of the four image pairs. Vertical grey lines at
0.08 (HH) and 0.013 (HV) represent chosen parameters.

-2

Figure 4. Number of pyramid levels vs. number of matches of the
four test image pairs from Table 1 for a scale factor of 1.2. Solid and
dashed lines represent results for HH and HV polarization. Mean
values are shown in black and the sum of the mean values in red.
Vertical grey line at 7 represents chosen number of pyramid levels.

levels), a scale factor of 1.2 with seven pyramid levels was
chosen. As shown in Fig. 4, the number of matches does not
increase significantly when using more than seven pyramid
levels and even decreases towards 14 pyramid levels.

4.2 HH and HV comparison

Figures 2, 3 and 4 display the HH and HV results with
solid and dashed lines. All image pairs show significantly
better performance of the HV channel. On average, around
four times as many vectors have been found using HV. Even
the image pair Franz Josef Land (Table 1), which has the
best HH and the worst HV performance, shows more than
two times as many vectors using HV channel. However, due
to the different appearance of sea ice in the HH and HV im-

Figure 5. Sea ice drift of the Sentinel-1 image pair Fram Strait (Ta-
ble 1). (a)Manually drawn vectors are shown in white and the com-
puted ORB vectors in red. (b) shows ORB vectors in comparison to
the drift vectors from the CMEMS/DTU data (blue).

age, the spatial distribution of the resulting drift vectors is
also slightly different.
Figure 6 shows the spatial distribution of identified key-

points and matched features in a 200× 200 pixels sub-image
from image pair Fram Strait (Table 1). The results for HH
and HV are displayed in two separate panels. The density of
identified keypoints in HH (11 keypoints per 10× 10 pix-
els window) is in the same order of magnitude as in HV
(15 keypoints per 10× 10 pixels window). This is expected,
since the number of retained keypoints for both channels is
set to 100 000 for the entire scene. However, the number of
matched features in HH is significantly lower (0.15 features
per 10× 10 pixels window) than in HV (1.6 features per
10× 10 pixels window). The observed difference in match-
ing success can be explained by looking at the frequency dis-
tribution of the radar backscatter standard deviation in a slid-
ing window with same size as used for feature description
(34× 34 pixels). The comparison in Fig. 7 shows that HH
provides a few windows with very high variability, i.e. high
standard deviation, but the majority have very low backscat-
ter variability (sharp peak with mode 20). On the HV im-
age, however, most of the windows have a medium to high
backscatter variability (wide peak with mode 25) which is
more favourable for keypoint detection.
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Figure 6. Identified keypoints (blue) and matched features (red) on a 200× 200 pixels sub-image from the pack ice area in image pair Fram
Strait (Table 1). Results of HH are shown in the left panel and HV in the right panel.

Figure 7. Frequency distribution of radar backscatter standard de-
viation using a 34× 34 pixels sliding window (step= 1 pixel) on
a 1000× 1000 pixels sub-image from image pair Fram Strait (Ta-
ble 1). The radar backscatter is scaled to range 0–255 using Eq. (2).
The considered sub-image covers pack ice, marginal ice zone and
small parts of open water. Results for HH are shown in blue and HV
in green.

4.3 Comparison with SIFT and SURF

A total of 177 513, 43 260 and 25 113 vectors are found for
the 43 test image pairs (Fig. 8) using ORB, SIFT and SURF
respectively (Fig. 9a). Comparing the vector fields using the
sum of N and the mean of D, as described in Sect. 3, shows
that ORB covers the largest area with close to 1000 vectors
per grid cell and lower root mean square distance values.
Comparing the distributions ofN (Q-Q plot in Fig. 10, left

panel), shows that ORB derives in all cases around five times
as many vectors than SIFT and SURF. The Q-Q plot in the
right panel of Fig. 10 considers the distributions of D. For
D < 500m, the vectors derived by ORB exhibit a higher
variability within one grid cell (slightly higher D), proba-
bly due to a larger number of vectors N . For the higher root

Figure 8. Overlapping area of 43 Sentinel-1 image pairs used to
compare ORB, SIFT and SURF. The image pairs have been ac-
quired between 2 January and 21 March 2015 with time gaps vary-
ing between 7 and 48 h.

mean square values (D > 500m), SIFT and SURF vectors
are much less consistent than ORB vectors (higher D).

4.4 Computational efficiency

The OpenCV feature-tracking algorithms ORB, SIFT and
SURF in combination with the Python toolbox, Nansat, are
computationally efficient (total processing time on regular
MacBook Pro: 2–4min) and allow high-resolution sea ice
drift retrieval from data sets with large temporal and spatial
extent. The processing times shown in Table 3 are based on
testing the algorithms on a MacBook Pro from early 2013
with a 2.7GHz Intel Core i7 processor and 8GB 1600MHz
DDR3 memory. Applying the introduced ORB algorithm
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ORB SIFT SURF

Figure 9. Sea ice drift derived from 43 Sentinel-1 image pairs (Fig. 8) using both HH and HV channel and ORB (first column, 177 513 vec-
tors), SIFT (second column, 43 260 vectors) and SURF (third column, 25 113 vectors) algorithm. The panels show the sum of the number of
vectors per grid cell N (green, first row) and mean root mean square distance D in km (red, second row).

SIFT
SURF
One-to-one

SIFT
SURF
One-to-one

Figure 10. Q-Q plot of number of vectors N (left panel) and root
mean square distance D (right panel) from results shown in Fig. 9.
Tuned ORB algorithm (x axis) compared to SIFT (y axis, blue dots)
and SURF (y axis, green dots).

needs 36 and 67% of the processing time to compute drift
fields with SIFT and SURF.

4.5 Validation

Since reference vectors were searched only within a given
radius of the validation vectors, the number of matches de-
creased for the ORB vs. manual comparison from 350 possi-
ble matches to 314, for ORB vs. CMEMS from 560 to 436
and for CMEMS vs. manual from 350 to 201 (Table 4).
The average distances between compared vectors were 1702,
2261 and 3440m for ORB vs. manual, ORB vs. CMEMS and
CMEMS vs. manual respectively.
The validation of ORB vectors with manually derived vec-

tors (Fig. 5a, Table 4) reveals a high accuracy of our tuned
ORB algorithm with root mean square error E = 563m,
slope S = 1.02 and offset O = −372m. Given the displace-

Table 3. Processing times for sea ice drift computation from one
channel.

Process Time [s]
Create two Nansat objects from Sentinel-1 image pair 21.1
Read matrixes from two Nansat objects 48.8
Apply feature-tracking algorithm – ORB 65.8
Apply feature-tracking algorithm – SIFT 181.8
Apply feature-tracking algorithm – SURF 98.5

ment range for the used image pair of 10–35 km, the relative
error of the algorithm (ratio of E to mean drift) is 2.5%.
The vector distributions of ORB and CMEMS (Fig. 5b)

are similar. ORB covers a larger area in total, but in a few
regions only CMEMS provides drift information. The ORB
vs. CMEMS comparison gives an error E = 1641m, slope
S = 1.03 and offset O = 265m (Table 4).
Validating CMEMS using manual data results in the high-

est root mean square error E = 1690m with slope S = 0.98
and offset O = −415m (Table 4) .
Decreasing the threshold radius between reference and

validation vectors does not influence the errorE significantly
but reduces the number of found matching vectors, especially
when comparing CMEMS and manual vectors.

5 Discussion and outlook

The open-source feature-tracking algorithm ORB (Oriented
FAST and Rotated BRIEF) has been tuned for sea ice drift
retrieval from Sentinel-1 SAR imagery and used for pro-
cessing winter and spring data in the ice-covered oceans
between Greenland and Severnaya Zemlya. Validating cal-
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Table 4. Comparison of ORB, CMEMS and manually derived sea
ice drift data from image pair Fram Strait (Table 1). The total num-
bers of derived vectors are 6920 (ORB), 560 (CMEMS/DTU) and
350 (manual). The # vector pairs is the number of used vector pairs
for comparison, i.e. vector pairs with maximum 5 km distance. The
average distance refers to the starting locations of the used reference
and validation vectors. E is the root mean square error, S andO are
slope and offset of the linear fit.

Algorithm E S O # vector Average
[m] [m] pairs distance [m]

ORB vs. manual 563 1.02 −372 314 1702± 1325
ORB vs. CMEMS 1641 1.03 265 436 2261± 1247
CMEMS vs. manual 1690 0.98 −415 201 3440± 1105

culated drift results against manually derived vectors, we
found that our algorithm (EORB= 563m) had a distinctly
higher accuracy than the drift data set provided by CMEMS
(ECMEMS= 1690m). The given root mean square errors E

represent a combination of three error sources:

– error of manual ice drift identification introduced by the
sea ice expert

– difference between derived and reference vector due
to different geographical location of the starting point
(maximum 5 km)

– actual error of the algorithm.

Hence, the actual error of the tuned ORB algorithm is ex-
pected to be even lower than 563m.
As expected, the application of the tuned ORB algorithm

is much more efficient than manual ice drift assessment,
e.g. 6920 vectors have been calculated within 3min, whereas
identifying 350 sea ice drift vectors manually takes several
hours. The number of calculated vectors can be increased
by returning a higher number of keypoints (e.g. 1 000 000).
However, the processing time increases proportional to the
square of the considered keypoints and the algorithm perfor-
mance becomes suboptimal at some point.
The presented ORB algorithm also outperforms other

available feature-tracking algorithms, such as SIFT and
SURF not only in processing time, but also in quantity and
quality of drift vectors, measured by the two introduced in-
dexes N and D. This proves that ORB is the best option for
feature-tracking of sea ice on Sentinel-1 SAR imagery.
The algorithm tuning has been performed using winter and

spring data, since our area of interest experiences the high-
est sea ice cover during this period. During summer and au-
tumn, most considered areas have very little or no ice cover
(e.g. Barents Sea and Kara Sea), making ice drift calculation
during this period less meaningful. Nevertheless, some areas,
like the western Fram Strait, experience sea ice cover during
the entire year. Dependence of the algorithm performance on
the season needs to be evaluated in future work. Computing

sea ice drift from summer and autumn data is expected to be
more demanding, since features might be destroyed by melt-
ing.
Comparing the four considered image pairs, Franz Josef

Land yields the highest number of HH matches, accompa-
nied by the lowest number from HV channel. A distinctly
shorter time difference between the acquisitions (8 h for
Franz Josef Land compared to more than 30 for the other
image pairs) might be one reason for an improved HH per-
formance. That would conclude that HH features are less pre-
served over time and increasing the repeat frequency of the
satellite (as planned with Sentinel-1B) will improve the algo-
rithm performance, in particular for the HH channel. The sea
ice conditions are another important factor when comparing
the algorithm performance for different scenes. The image
pair Fram Strait includes the marginal ice zone in the eastern
part and multiyear ice in the north-west. Not many matches
are expected in the marginal ice zone, but the multiyear ice
includes more stable deformation pattern, like ridges, that
lead to a good feature-tracking performance. The image pair
Svalbard North includes a very small part of the marginal ice
zone and the major part is comparable homogeneous pack
ice with long cracks along a prevailing direction. Franz Josef
Land and Kara Sea are clearly less homogeneous and show
a mixture of ice floes with different scales and newly formed
young ice. This paper has focused on finding the most suit-
able algorithm for a range of ice conditions found in the con-
sidered area and we can give an idea how ice conditions and
acquisition time might affect the ORB feature-tracking per-
formance. Further investigations need to be carried out in or-
der to evaluate the algorithm performance for different ice
conditions and other areas like the Beaufort Sea or Antarc-
tica.
Komarov and Barber (2014) have evaluated sea ice drift

results from dual-polarization Radarsat-2 imagery using a
combination of phase and cross-correlation. Comparing the
polarization channels, HH is more sensitive to small-scale
roughness, whereas the HV channel provides more stable,
large-scale features linked to ice topography. Komarov and
Barber (2014) concludes that the combination of HH and HV
is beneficial, since more reliable vectors are provided and
the vector distributions complement each other. They also
found that noise floor stripes in the HV images do not affect
the motion tracking from pattern matching. We can extent
this discussion for feature based algorithms. Using noise re-
moval for HV and angular correction for HH has been tested,
but did not improve the feature-tracking results, i.e. a lower
number of vectors has been found. Like Komarov and Barber
(2014), we recommend the usage of both channels since the
vector distributions are complementary. However, using fea-
ture tracking, HV provides about four times as many vectors
than HH, making HV the more informative channel. The dif-
ferent performance can be explained by a higher variability
of the HV backscatter intensity, considering a window with
the same size as used for feature description (34× 34 pix).
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Figure 11. Sea ice drift anomaly (compared to mean drift of the
scene) detected in a 300× 400 pix (24× 32 km) sub-image from
Fram Strait (Table 1) close to the marginal ice zone.

Contemporary algorithms for calculating sea ice drift vec-
tors from consecutive image pairs are based either on fea-
ture tracking or pattern matching. The feature-tracking ap-
proach detects keypoints on two images based solely on the
backscatter distribution of the images without taking other
keypoints into account. Hence, ORB identifies the keypoints
independently. Based on the keypoint locations, the binary
feature vectors are calculated. During the second step, all
features in the first images are compared to all features in
the second image without taking drift information from sur-
rounding vectors into account, i.e. the matching of features
from one image to the other is also done independently. Al-
though very close keypoints may share some pixels during
the feature description process (i.e. overlap of the considered
patches around the keypoints), the detection of keypoints
and matching of features are done independently. Eventu-
ally, feature-tracking vectors are independent of each other in
terms of position, lengths and direction, allowing very close
drift vectors to point into different directions.
Figure 11 illustrates 430 drift vector anomalies detected

in a 300× 400 pix (24× 32 km) sub-image from Fram Strait
(Table 1) close to the marginal ice zone. The anomalies are
calculated as the difference to the mean drift of the entire
scene. This example shows that very small-scale dynamic
processes, such as the observed rotation, can be detected and
quantified with the feature-tracking approach.
Common pattern-matching techniques limit the indepen-

dence of neighbour vectors for practical reasons. First, pat-
tern matching is usually performed on a regular grid, de-
termining the position and distance between vectors. Sec-
ond, pattern matching often follows a pyramid approach in
order to speed up processing (Thomas et al., 2008a): low-
resolution drift is initially estimated using large subwindows
and large steps. This first guess constrains the following pat-
tern matching to a finer scale. Repeating this procedure in-
creases the resolution of the end product, but length and
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Figure 12. Variogram of drift vectors (black line) on top of 2-D his-
togram of distance between vectors and difference between vectors
estimated from vectors identified on the Sentinel-1 image pair Fram
Strait (Table 1). Colour of the 2-D histogram indicates the number
of vectors.

direction of the high-resolution vectors depend on the low-
resolution estimates, i.e. neighbour vectors depend on each
other. Although pattern matching can be designed to retrieve
independent vectors by varying the extent of the correlation
area and the spacing between vectors, for practical reasons
the overlap between the correlation areas is usually half the
size of the area (Thomas et al., 2008b).
The independence of feature-tracking vectors has positive

and negative implications. On one hand, very close vectors
that are independent in length and direction allow identifi-
cation of ice deformation at very high resolution. The var-
iogram (Fig. 12), which shows how vector differences de-
pendent on the distance between them (Cressie, 1993), in-
dicates that very close vectors may differ significantly, al-
though the difference is generally linearly proportional to the
distance. On the other hand, feature-tracking vectors are not
evenly distributed in space, and large gaps may occur be-
tween clouds of densely located vectors. Spatial irregular-
ity is not optimal for systematic detection of divergence and
shear zones and calculation of deformation.
Therefore, computationally efficient feature tracking

should be complemented by systematic pattern matching
to deliver evenly distributed, high-resolution vector fields.
Combining the two different drift calculation approaches and
making use of the respective advantages is planned as the
next step of our research.
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Appendix A: Open-source distribution

The presented work is entirely based on open-source soft-
ware (Python, OpenCV and Nansat) and satellite images
with open and free access for all users. Sentinel-1 SAR
data can be downloaded at no cost, in near real time under
https://scihub.esa.int/dhus/. The used programming language
is Python, a free and open-source software available under
https://www.python.org. The OpenCV (open-source Com-
puter Vision) programming library includes the ORB algo-
rithm, and a Python-compatible version can be downloaded
under http://opencv.org. To handle and read the satellite data,
Nansat is used, which is a scientist-friendly Python toolbox
for processing 2-D satellite Earth observation data (source
code incl. installation description can be found under https://
github.com/nansencenter/nansat). The presented sea ice drift
algorithm including an application example can be down-
loaded from https://github.com/nansencenter/sea_ice_drift.
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