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Abstract

Background: Systems Biology Markup Language (SBML) is the standard model representation and description
language in systems biology. Enriching and analysing systems biology models by integrating the multitude of
available data, increases the predictive power of these models. This may be a daunting task, which commonly requires
bioinformatic competence and scripting.

Results: We present SBMLmod, a Python-based web application and service, that automates integration of high
throughput data into SBML models. Subsequent steady state analysis is readily accessible via the web service
COPASIWS. We illustrate the utility of SBMLmod by integrating gene expression data from different healthy tissues as
well as from a cancer dataset into a previously published model of mammalian tryptophan metabolism.

Conclusion: SBMLmod is a user-friendly platform for model modification and simulation. The web application is
available at http://sbmlmod.uit.no, whereas the WSDL definition file for the web service is accessible via http://
sbmlmod.uit.no/SBMLmod.wsdl. Furthermore, the entire package can be downloaded from https://github.com/
MolecularBioinformatics/sbml-mod-ws. We envision that SBMLmod will make automated model modification and
simulation available to a broader research community.
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Background
Theoretical models of complex biological entities are
fundamental to systems biology and systems medicine
research [1, 2]. They provide summaries of metabolic,
signalling or gene regulatory networks including infor-
mation on e. g. stoichiometry or kinetic rate laws. To
gain new biological insights into pathways of interest
it is nevertheless crucial to integrate experimental data.
The type of appropriate data is context dependent: While
dynamic signalling or metabolic pathway studies may
require metabolome or time course data, gene regula-
tory networks commonly ask for gene expression datasets.
Such data are increasingly available from data reposito-
ries such as the Gene Expression Omnibus (GEO) [3], the

*Correspondence: ines.heiland@uit.no
†Equal contributors
3Department of Arctic and Marine Biology, UiT The Arctic University of Norway,
Tromsø, Norway
Full list of author information is available at the end of the article

NCI-60 tumour cell line screens [4, 5] and The Cancer
Genome Atlas (TCGA, https://cancergenome.nih.gov).
Theoretical model generation and distribution itself is

commonly achieved via multiple toolboxes and databases.
Pathway Tools [6] and CellDesigner [7] are examples
of software packages for biological model construction.
Whereas COPASI [8] and Data2Dynamics [9] are tool-
boxes for investigating dynamic behaviour, the COBRA
toolbox [10] is suited for constraint-based model anal-
yses. Theoretical models are stored in public databases
such as the BioModels database [11], which mainly cov-
ers small to medium scale models, or the BiGG model
database (http://bigg.ucsd.edu/) for genome-scale mod-
els. Model accessibility is achieved by model definition
standards, such as the Systems Biology Markup Language
(SBML) [12].
Both vast amounts of data and standardised models are

readily available, yet integrating and analysing data with a
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given model can still be a discouraging task. Nevertheless,
programmatic access is commonly necessary to perform
more complex operations than loading and simulating the
initial model.
In recent years software packages have been made

available to simplify model manipulation and simula-
tion tasks [10, 13–15]. A Taverna workflow published by
Li et al. [14] focuses on reconstruction, model manip-
ulation and simulation. Data integration is realised via
accessing the enzyme kinetics database SABIO-RK [16],
or via an in-house database for specific metabolomics
and proteomics datasets. It does not, however, include
the possibility to integrate gene expression data. Set-
ting up the workflow itself requires programmatic con-
figuration including resolving software dependencies on
e. g. the libSBML package [17]. Yizhak et al. [13] intro-
duced a method termed IOMA, which quantitatively
integrates proteomic andmetabolomic data with genome-
scale metabolic models and calculates steady state solu-
tions. IOMA assumesMichaelis-Menten-like kinetics and
delivers steady state flux distributions, but no metabo-
lite concentrations. GAM presented by Sergushichev et al.
[15] provides a convenient network analysis platform to
analyse metabolic networks. So far it covers four pre-
assembled models and is specifically tailored towards
identification of the most regulated subnetwork between
two conditions.
These toolboxes are appropriate ways to create, modify

or simulate theoretical models. Yet because they require
a minimum level of programming proficiency, they are
all effectively restrictive for scientists with little or no
computational biology background.
We present and describe SBMLmod, a slim and eas-

ily accessible SBML model loading, data integrating and
model simulation platform. SBMLmod can be accessed
within any common web browser, circumventing the need
to install or program software. Any valid SBMLmodel and
a dataset for parametrisation can be chosen to perform
model modification and simulation operations. Advanced
users can access SBMLmod programmatically via its Web
Services Description Language (WSDL) interface. The
WSDL interface circumvents the need to resolve software
dependencies and allows for the integration of SBMLmod
into analysis pipelines. Finally, the complete package can
be downloaded, installed, set up locally and accessed from
any Python shell prompt.

Implementation
Every SBMLmod task is based on a theoretical biolog-
ical model encoded in SBML, which might be down-
loaded from e. g. the BioModels database [11]. Single or
multiple data sets on either kinetic rate law or species
concentration can be provided by the user. Steady state
simulations can be calculated by making use of the web

service COPASIWS from COPASI [8] to obtain system
wide concentration and flux solutions feasible at steady
state. SBMLmod can be accessed as a web application or
as a web service for customised workflows. The respective
WSDL file guarantees the same functionality as the web
application.
SBMLmod is written in Python 2.7. Accessing andmod-

ifying SBML models is enabled via libSBML [17]. All
model modification and simulation features are computed
on the fly and scale efficiently with the number of data sets
and data volume.

Web application guarantees OS independent access of
SBMLmod
The welcome screen of SBMLmod’s web application is
organised into two panels: A) choosing the input files;
B) choosing the task to perform (Fig. 1a). The general
workflow is shown in Fig. 1b.
Input files are comprised of a mandatory SBML model

file and optional data files. The latter may concern either
parameters of reaction rate laws or the initial concentra-
tions of considered species in the model. An additional
mapping file is mandatory whenever the identifiers given
in the data file do not match the identifiers of the respec-
tive species or reaction in the model file. This may be the
case, if, for instance, different identifier standards (e. g.
ensembl, or entrez gene id) are used in the model and data
file(s), or if different synonyms for the same species or
reaction are used.
Users may furthermore choose to analyse multiple data

sets by selecting the ‘batch mode’ option. If selected, each
column of a given data file is processed individually and
will yield a separate data specific model or simulation.
After selecting the necessary files, the user can either

calibrate or simulate the given model by selecting the
respective options (Fig. 1a, panel B). Calibrating themodel
parameters is accomplished by replacing or scaling reac-
tion parameters such as the total amount of available
enzyme concentrations. Replacing and scaling reaction
parameters can be accomplished system-wide (globally)
or on a per-reaction basis (locally). Should multiple rows
of a given data file be associated with the same reaction
(e. g. if isozymes are considered in the data file, but not in
the model), the user may choose a specific merge mode.
All merge options (e. g. maximum value selection) are
described in detail in the online documentation and in the
Additional file 1: S1. The initial concentrations of model
species can also be modified. The most recently modi-
fied models are always available for download. They are
identified by the respective column header in the data file
(cf. Fig. 1c and Additional file 1: S1 for details on the data
file format).
A warning feedback functionality is established and

ensures that models are correctly encoded, all identifiers
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Fig. 1 SBMLmod: basic workflow and input data outline. aWelcome screen of the web application. SBMLmod is organised into two panels. Input
files are chosen in panel a. Mapping files are optional. Model modification and/or steady state analysis may be chosen in panel B. b Simplified
workflow scheme of web application. An SBML model might be calibrated based on available data. Optionally, IDs might be mapped, if SBML model
and data differ in the used identifier standard. Steady state concentration of metabolites and reaction flux analysis is feasible with COPASIWS [8].
c Basic outline of data file format. The first column comprises data specific IDs (e. g. gene identifier). The first row contains identifiers of the data in
the respective column

are assignable and mappings are unambiguous. The web
application of SBMLmod is set up using Python Django
[18] and is hosted at http://sbmlmod.uit.no. To demon-
strate data format and warning feedback, example files are
available at the website and in Additional file 2: S2.
Calculation of steady state concentrations and fluxes are

enabled by linking the web application to the COPASI
web service. Our web application returns the original
output file(s) generated. In addition, results of generated
and simulated models (in batch mode) are returned as

accumulated, tab separated tables for the calculated con-
centrations and fluxes. To allow an initial inspection of
the results, the web application generates a customis-
able graph showing all non-constant metabolite con-
centrations and fluxes (cf. Additional file 3: Figure S3
for an example output). Customisation includes select-
ing metabolite species and fluxes to be shown and also
allows for grouping together different values (if batch
mode was selected). See Additional file 1: S1 for details of
customisation options.

http://sbmlmod.uit.no
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Web service accessibility enables automated high
throughput data integration and analysis
Next to the web application, a web service function-
ality of SBMLmod is available. It can be accessed via
the WSDL interface, either from http://sbmlmod.uit.
no/SBMLmod.wsdl or by downloading the whole pack-
age including the WSDL file at https://github.com/
MolecularBioinformatics/sbml-mod-ws. The web service
enables complete analysis workflows including a full
sequence of model modification and simulation opera-
tions of the aforementioned features. By providing the
WSDL file, we enable more advanced users to run data
integration without the need to install software pack-
ages and resolve software dependencies. SBMLmod can
thus be integrated into other existing or newly developed
workflows for model manipulation or steady state simu-
lation. Alternatively the web service can be installed and
run locally (source files and technical documentation are
available at https://github.com/MolecularBioinformatics/
sbml-mod-ws). This enables faster processing especially
for large datasets. Simulation results are summarised in
textual output files. These can be further processed using
our Python toolbox PyCopasi for parsing and manipulat-
ing COPASI files. PyCopasi is available at https://github.
com/MolecularBioinformatics/PyCopasi.
Feasible model manipulations and basic scripts to run

the data integration are exemplified by files provided in
the ‘testClient’ folder of the package.

Results & discussion
To demonstrate the usage of SBMLmod we analysed two
publicly available datasets by integrating them into an
existing model of tryptophan metabolism [19] (https://
www.ebi.ac.uk/biomodels-main/MODEL1310160000).
Tryptophan, an essential amino acid, has received increas-
ing interest in recent years, since it is the precursor of
several bioactive metabolites such as serotonin, kynure-
nine, melatonin and NAD. Consequently, imbalances
in tryptophan metabolism have been related to several
diseases, including neurodegeneration, gastrointestinal
disorders and cancer. Tryptophan metabolism underlies
tissue specific regulation [20], resulting in a remarkable
difference in metabolite concentrations and fluxes. In our
earlier analyses we focused on differential tryptophan
pathway activity in two human tissues (brain and liver),
as well as the metabolite exchange between these tissues
and its consequences for neurodegenerative diseases and
potential treatments [19]. We implemented a data driven
modelling approach [21, 22] by scaling maximal reaction
velocities based on expression data [19]. By integrating
data from a tissue specific expression profiling study [23],
we showed that we were able to quantitatively reproduce
metabolite concentrations measured in vivo as well as
qualitative flux changes reported upon treatment with

inhibitors specific for enzymes of sub-pathways in mice.
Since the tryptophan catabolite kynurenine has been
associated with increased malignancy in brain tumours
[24], we recently applied our model to calculate changes
in tryptophan metabolism in different subtypes of breast
cancer patients using RNA-sequencing datasets from The
Cancer Genome Atlas (TCGA: https://cancergenome.
nih.gov). We were able to show that our predictions are
in agreement with kynurenine concentrations measured
in patients [25]. Thus, incorporating theoretical model
predictions allows us to predict patient specific diagnostic
markers important for further treatment, emphasising
the need for easily accessible data integration tools.

Tissue specific differences in tryptophanmetabolites
Kynurenine and serotonin are products of competing
branches of tryptophan metabolism (see simplified path-
way scheme Fig. 2). Their ratio has been recognized to
be important in depressive disorders, especially in the
context of chronic inflammation [26].
Here we extend our earlier analysis [19] to bet-

ter understand the tissue specific activity of trypto-
phan metabolism. For this purpose we integrated a
published tissue specific gene expression dataset from
32 human tissues [23] (dataset: https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE7905) and calculated
steady state concentrations of kynurenine and serotonin
with SBMLmod.
Our modelling approach predicts that liver as well as

immuno-active tissues like lung and spleen have high
kynurenine concentrations (Fig. 2a). In lung and spleen
the activity of the kynurenine pathway depends on the
induction of indoleamine 2,3-dioxygenase (IDO), espe-
cially during infection (for review cf. [27, 28]). The
tryptophan pathway activity in the liver is regulated
via the expression of tryptohpan 2,3-dioxygenase (TDO)
catalysing the same reaction as IDO. TDO is furthermore
known to be down-regulated when peripheral kynure-
nine levels are increased, for example during infection
[29]. Changes in tryptophan metabolism during preg-
nancy have been described previously, for example high
expression of IDO in the placenta might play a role in
immune tolerance [30]. The calculated concentrations for
the placental model resemble these observations. In con-
trast, brain tissues are predicted to have a low activity of
the kynurenine branch in healthy individuals. This is rea-
sonable as several intermediates of the kynurenine branch
are known to be neurotoxic [31].
Serotonin production is predicted to be high in neu-

roendocrine tissues such as the prostate, but low in tissues
with high kynurenine pathway activity (Fig. 2b) due to the
competition for the substrate tryptophan. The compara-
tively high serotonin production in prostate epithelial cells
has been described in the literature [32]. Our modelling
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Fig. 2 Calculation of steady state concentrations of kynurenine and serotonin. A simplified scheme of tryptophan metabolism (including network
location of kynurenine and serotonin) is depicted in the middle. All depicted kynurenine and serotonin concentrations were calculated by
integrating gene expression data into a model of mammalian tryptophan metabolism [19]. a, b Calculated steady state concentrations of
kynurenine (a) and serotonin (b) for models of ten different tissues [23]. Bar height equals mean, error resembles standard error of the mean (SEM),
three replicates per tissue. c, d Calculated steady state concentrations of kynurenine (c) and serotonin (d) for models derived by intergration of
expression data from five different cancer types (data downloaded from the cancer genome atlas TCGA). Asterisks show statistically significant
differences in comparison to acute myeloid leukemia. (BRCA: Breast invasive carcinoma, n=805; OV: Ovarian serous cystadenocarcinoma, n=228;
PRAD: Prostate adenocarcinoma, N=441; COAD: Colon adenocarcinoma, n=421; LAML: Acute myeloid leukemia, n=51; Box plots represent median
and the 75% and 25% percentiles. Whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the
box. Outliers are omitted for the sake of visibility)

approach furthermore predicts serotonin production to
be high in the colon, but in this tissue the kynurenine route
of the tryptohpan pathway is also partially active. This
dual pathway activity in the colon has been reported ear-
lier [33] and imbalances between the two branches might
cause the development of irritable bowel syndrome [34, 35].
For a full overview of steady state concentrations

of kynurenine and serotonin in all 32 available tis-
sues see Additional file 4: Figure S4. Details on the
statistical procedure are provided in the Additional
file 5: S5. All pairwise statistical test results between
all tissues are provided in Additional file 6: Table S6.
The full dataset, mapping file and model are provided
in Additional file 2: S2 and as example files in the
web application (limited to the 10 tissues presented in
Fig. 2a and b).

Different cancer types possess notable differences in
kynurenine and serotonin concentrations
In a second analysis, we integrated RNA-sequencing data
from approx. 2000 patients available at TCGA (https://

cancergenome.nih.gov; corresponding TCGA-IDs are
provided in Additional file 7: S7). Using this approach,
we predicted activation of the kynurenine pathway
and thus increased kynurenine production for ovar-
ian, prostate and colorectal cancer (Fig. 2c). Whereas
the serotonin branch appears to be activated in acute
myeloid leukemia, the kynurenine branch is largely inac-
tive (Fig. 2d). This is supported by statistical analysis
showing that the distributions of kynurenine and sero-
tonin concentrations are significantly different between
the different cancer types (Kruskal-Wallis test, p=1.5e-93
and p=7.2e-33, respectively). Subsequent pairwise com-
parison reveals that kynurenine concentrations are pre-
dicted to be significantly higher in breast, ovarian,
prostate and colorectal cancer as compared to acute
myeloid leukemia (Fig. 2, Bonferroni corrected p-values
2.6e-42, 2.3e-83, 8.2e-32, 3.5e-56, respectively). In con-
trast, pairwise comparison of serotonin concentrations
among different cancer types shows significantly lower
concentrations of serotonin in ovarian, prostate and col-
orectal cancer, but not in breast cancer, when compared

https://cancergenome.nih.gov
https://cancergenome.nih.gov
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to acute myeloid leukemia (Fig. 2, Bonferroni corrected
p-values 1.1e-4, 2.2e-5, 1.7e-9, 1, respectively). This is in
agreement with known changes in these tumour types
[24, 25, 36, 37]. An extended statistical analysis is provided
in Additional file 8: Table S8.

Conclusion
We presented SBMLmod, an SBML model modification
and simulation tool. The platform-independent web appli-
cation of SBMLmod allows for the automated integra-
tion of experimental data into theoretical models with-
out requiring programming knowledge from the user.
SBMLmod has two major advantages over existing meth-
ods: first, data integration and analysis are possible with
a minimal number of user required operations; second,
all operations can be performed without further software
or programming dependencies. The easy accessibility of
SBMLmod is accomplished by focusing on a limited num-
ber of essential model modification functions. These are
complemented with steady state calculations of metabo-
lite concentrations and fluxes. Additional flexibility is
offered by accessing the application as a web service.,
which allows to further optimise and accelerate data inte-
gration and subsequent theoretical analyses.
Even though SBMLmod minimises the effort required

by the user, we emphasise the need to ensure an accu-
rate reaction or gene identifier mapping. Though mod-
els of sizes up to a genome-scale can be calibrated and
simulated, ensuring correct mapping files is increasingly
challenging if thousands of identifiers must be handled.
Furthermore, increased simulation times due to the size of
largemodels alone have to be considered; thus, SBMLmod
is more suited for the manipulation and simulation of
small and medium scale models. Of note, SBML is an
XML format and is therefore not designed to be human
readable. This can be compensated for by making use of
the recently developed SBtab [38], which allows users to
read and filter SBML files for relevant information such as
metabolite names or reaction identifiers.
We demonstrated the usefulness of SBMLmod by cal-

ibrating a given tryptophan model to recapitulate an
existing analysis of tryptophan metabolism and by eval-
uating the steady state concentrations of kynurenine and
serotonin, two potential prognostic biomarkers in differ-
ent diseases including cancer. We expect that SBMLmod
will contribute to further improve data integration
into modelling approaches especially with respect to
accessibility.

Availability and requirements:
Project name: SBMLmod
Project home page: http://sbmlmod.uit.no and https://
github.com/MolecularBioinformatics/sbml-mod-ws
OS: any

Programming language: Python 2.7
Licence: GNU General Public License v2.0

Additional files

Additional file 1: S1— documentation. Documentation of the usage and
file formats of SBMLmod. Also available at http://sbmlmod.uit.no.
(PDF 49 kb)

Additional file 2: S2— example files. Zipped example files usable to
review specific data file format or to check SBMLmod web application and
service functionality. These files resemble the first use case with 32 tissues
in the manuscript. Note that mapping files, the SBML model and the data
file limited to 10 tissues, can also be downloaded from the web application
(http://sbmlmod.uit.no) using the download link at the lower part of the
webpage under ‘Example Files’. (ZIP 32 kb)

Additional file 3: Figure S3— visualisation of results by the web
application. Example for the result visualisation of the 10 tissues (shown in
Fig. 2a and b) that is provided as part of the web application. (PDF 87 kb)

Additional file 4: Figure S4— steady state concentrations of all 32
tissues. This figure provides a comprehensive overview over all 32 tissues
that have been analysed. The figure complements Fig. 2a and b, where 10
selected tissues are shown. (PDF 103 kb)

Additional file 5: S5 – details of statistical analysis. This file provides
details of statistical analysis applied for the two use cases in this
manuscript. (PDF 71 kb)

Additional file 6: Table S6— detailed statistical results for dataset of 32
tissues. This file provides ANOVA and post hoc pairwise test statistics for all
32 tissues that have been analysed and described in the subsection ’Tissue
specific differences in tryptophan metabolites’. (XLS 71 kb)

Additional file 7: S7— TCGA sample IDs. List of TCGA sample IDs used to
calculate the results presented in Fig. 2c and d. (TXT 76 kb)

Additional file 8: Table S8— statistics for TCGA dataset. This table
provides ANOVA and post hoc pairwise test statistics for the TCGA data
application as described in section ‘Different cancer types possess notable
differences in kynurenine and serotonin concentrations’. (XLS 11 kb)
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IDO: Indoleamine 2,3-dioxygenase; TDO: Tryptohpan 2,3-dioxygenase
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