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Abstract 

In chemical synapses, neurotransmitter molecules released from presynaptic vesicles activate 

populations of postsynaptic receptors that vary in functional properties depending on their 

subunit composition. Differential expression and localization of specific receptor subunits 

are thought to play fundamental roles in signal processing, but our understanding of how 

that expression is adapted to the signal processing in individual synapses and microcircuits 

is limited. At ribbon synapses, glutamate release is independent of action potentials and 

characterized by a high and rapidly changing rate of release. Adequately translating such 

presynaptic signals into postsynaptic electrical signals poses a considerable challenge for the 

receptor channels in these synapses. Here, we investigated the functional properties of 

AMPA receptors of AII amacrine cells in rat retina that receive input at spatially segregated 

ribbon synapses from OFF-cone and rod bipolar cells. Using patch-clamp recording from 

outside-out patches, we measured the concentration dependence of response amplitude and 

steady-state desensitization, the single-channel conductance and the maximum open 

probability. The GluA4 subunit seems critical for the functional properties of AMPA 

receptors in AII amacrines and immunocytochemical labeling suggested that GluA4 is 

located at synapses made by both OFF-cone bipolar cells and rod bipolar cells. Finally, we 

used a series of experimental observables to develop kinetic models for AII amacrine AMPA 

receptors and subsequently used the models to explore the behavior of the receptors and 

responses generated by glutamate concentration profiles mimicking those occuring in 

synapses. These models will facilitate future in silico modeling of synaptic signaling and 

processing in AII amacrine cells. 
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Introduction 

Neurotransmitter receptors play a fundamental role in the signal processing that takes place 

in different synapses, circuits and networks of the nervous system. Understanding how their 

differential expression and localization are adapted to and contribute to this processing is of 

fundamental importance (Silver et al., 2016). Neurotransmitter molecules released from 

synaptic vesicles can bind to and activate heterogeneous receptor populations, including 

ligand-gated ion channels, located in the membrane of the postsynaptic neuron. This 

heterogeneity is expressed both within a single postsynaptic density, at different synapses 

received by a single neuron, and at synapses made by the same neuron onto different 

postsynaptic targets (Shepherd and Grillner, 2010; Smart and Paoletti, 2012). The different 

types of receptor channels that recognize a given neurotransmitter typically differ in 

functional properties such as affinity for the neurotransmitter, single-channel conductance, 

kinetics, selectivity and permeability for specific ions, developmental regulation, and 

influence on downstream signaling pathways (Higley and Sabatini, 2012; Smart and Paoletti, 

2012). There is strong evidence that the subunit composition of ligand-gated ion channels is 

of critical importance for the specific functional and signaling properties of a given receptor 

channel (Traynelis et al., 2010). However, despite strong evidence for differential expression 

of receptor subunits, little is known with respect to how this is adapted to or mediates the 

signal processing taking place in specific synapses, microcircuits and networks. 

 In the retina, synaptic release of glutamate from both photoreceptor and bipolar cells 

(Massey and Maguire, 1995; Thoreson and Witkovsky, 1999) is not triggered by presynaptic 

action potentials which are largely absent from these cells. Instead, synaptic transmission is 

characterized both by transient release and by continuous variation of an overall high release 

rate that can be maintained over longer periods of time (Heidelberger et al., 2005). Similar to 

sensory neurons in the auditory and vestibular systems, photoreceptor and bipolar cells have 

evolved specific structural components, known as synaptic ribbons, that seem to be of crucial 

importance for this specialized release (Lenzi and von Gersdorff, 2001; Lagnado and 

Schmitz, 2015). Whereas our understanding of synaptic release at ribbon synapses has made 

major advances in recent years, the complementary understanding of the postsynaptic 

mechanisms at ribbon synapses is far from complete. Specifically, the high and rapidly 
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changing rate of vesicle release poses a considerable challenge with respect to how the 

presynaptic signals can be processed by glutamate receptors and adequately translated into 

electrical signals in the postsynaptic neurons. To elucidate molecular events and signaling in 

these synapses will require computational modeling at the microphysiological level (e.g. 

Coggan et al., 2005), but developing realistic models requires detailed knowledge of 

molecular mechanisms, reaction kinetics and ultrastructural organization. The AII amacrine 

cell in the rod pathway of the mammalian retina is a particularly interesting case as it 

receives glutamatergic input at ribbon synapses made by both rod and OFF-cone bipolar 

cells to spatially distinct regions of the dendritic tree. Here, we investigated the functional 

properties of AMPA receptors of AII amacrine cells in rat retina and developed kinetic 

models that reproduce a range of experimental observations. In addition, we investigated the 

molecular basis for the distinct functional properties with immunocytochemical labeling of 

the AMPA receptor subunit GluA4, together with pre- and postsynaptic markers. Taken 

together, the functional properties and location of the GluA4 subunit suggests that it plays 

an important role in determining the functional properties of AMPA receptors expressed by 

AII amacrine cells and is involved in mediating synaptic input from both rod and OFF-cone 

bipolar cells. 

 

Materials and methods 

Retinal slice preparation and visual targeting of neurons 

General aspects of the methods have previously been described in detail (Hartveit, 1996). 

Female albino rats (4 - 7 weeks postnatal) were deeply anaesthetized with halothane or 

isoflurane in oxygen and killed by cervical dislocation (procedure approved under the 

surveillance of the Norwegian Animal Research Authority). Retinal slices were visualized 

with a ×40 water immersion objective and infrared differential interference contrast (IR-DIC) 

videomicroscopy (Axioskop FS2; Zeiss). Patch pipettes were pulled from thick-walled 

borosilicate glass (outer diameter, 1.5 mm; inner diameter, 0.86 mm; BF150-86-10; Sutter 

Instrument). When filled with intracellular solution, the recording pipettes typically had 

resistances of 5 - 7 M! for recordings from both outside-out patches and nucleated patches. 

Outside-out patch recordings were established by slowly withdrawing the pipette after 
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establishing the whole-cell configuration. To establish nucleated patch recordings (Sather et 

al., 1992), we applied continuous light suction (~ -50 mbar) during the withdrawal. In both 

cases, successful isolation of a patch was indicated by a reduction in membrane capacitance, 

revealed as current transients of the opposite polarity of those electronically cancelled in the 

whole-cell configuration. Readjustment of the Cslow neutralization circuitry of the patch-

clamp amplifier cancelled the capacitance transients. For most recordings, pipettes were 

coated with dental wax (to reduce capacitance) and fire-polished immediately before use. 

The reference electrode (Ag - AgCl wire) was immersed directly in the recording chamber or 

connected to the recording chamber via an electrolyte-agar or a solution bridge. Recordings 

were carried out at room temperature (22 - 25 °C). 

 

Solutions and drugs 

The extracellular perfusing solution was continuously bubbled with 95% O2 - 5% CO2 and 

had the following composition (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 

10 glucose (pH 7.4). For recordings from conventional and nucleated outside-out patches, the 

pipettes were filled with (in mM): 125 CsCl, 10 Hepes, 1 CaCl2, 8 NaCl, 5 EGTA, 4 MgATP, 

15 tetraethylammonium chloride (pH was adjusted to 7.3 with CsOH). Lucifer yellow was 

added at a concentration of 1 mg/ml to the intracellular solutions for visualization of cells at 

the end of the recordings. Theoretical liquid junction potentials were calculated with the 

computer program JPCalcW (Molecular Devices) and holding potentials were corrected for 

the liquid junction potentials on-line by the data acquisition software (see below). 

 Extracellular solutions with different concentrations of glutamate were prepared as 

follows. First, we made a stock solution with 100 mM glutamate by adding equimolar 

amounts of L-glutamic acid (Tocris Bioscience) and NaOH to a solution containing (in mM): 

45 NaCl, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 5 hemiNa-Hepes, and 10 glucose (pH was adjusted to 

7.4 with HCl). Different concentrations of glutamate, ranging from 2.5 µM to 30 mM, were 

obtained by diluting the 100 mM glutamate stock solution with a solution containing (in 

mM): 145 NaCl, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 5 hemiNa-Hepes, and 10 glucose (when 

necessary, pH was adjusted to 7.4 with HCl).  
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Ultrafast drug application 

Ultrafast application of glutamate to outside-out patches (Jonas, 1995) was performed as 

previously described (e.g. Veruki et al., 2003). Glutamate pulses were applied with ≥ 4 s 

intervals from a theta-tube application pipette (nominal septum thickness ~117 µm; final tip 

diameter ~300 µm; Hilgenberg). The pipette tip with the outside-out patch was positioned 

~100 µm away from the tip of the application pipette, close to the interface between control 

solution (without glutamate) and glutamate-containing solution continuously flowing out of 

each barrel. One barrel of the theta-tube application pipette was connected to a six-channel 

manifold that allowed switching between different test solutions, the other barrel was 

connected to the control solution. The control solution had the following composition (in 

mM): 145 NaCl, 2.5 KCl, 2.5 CaCl2, 1 MgCl2, 5 hemiNa-Hepes, and 10 glucose (pH adjusted to 

7.4 with HCl). The solution flow rate (4 - 5 ml/h) was maintained by syringe pumps 

(KDS220; KD Scientific) controlled by the data acquisition software (see below). 

Concentration jumps of glutamate to the patch were performed by rapidly moving the 

position of the application pipette and thus the interface between the two solutions. The 

application pipette was mounted on a piezo actuator (LSS-3100/PZS-100HS; Burleigh 

Instruments Inc.) operated by an amplifier (PZ-150M; Burleigh Instruments Inc.) that 

received square-wave voltage pulses from the ITC-16 interface (see below). Before being fed 

to the amplifier, the voltage pulses were conditioned by an electronic circuit consisting of an 

RC-filter and an inductive element to avoid sharp voltage transients.  

 The solution exchange time was measured as the change in liquid junction current of 

an open-tip patch pipette upon a change from normal, Hepes-buffered extracellular solution 

to the same solution diluted to 10% with distilled water. Rise time was calculated as the 

interval between 20% and 80% of the peak amplitude relative to baseline and, under optimal 

conditions, ranged between 100 - 400 µs. The optimal position of the patch pipette in relation 

to the application pipette was mapped out at the start of each experiment. For some 

recordings, the patch was blown away at the end of the recording and the solution exchange 

time was verified by switching to the 10% dilute solution. 

 For nucleated patch recordings, the same equipment and procedures as described 

above were used. However, because of the larger size of nucleated patches, the solution 
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exchange times were slower than predicted from the measurements of open-tip patch pipette 

responses in these recordings. Nucleated patch recordings were used to measure steady-

state (plateau) responses during longer-lasting applications of glutamate. 

 

Data acquisition. Voltage-clamp recordings were made with an EPC9-dual amplifier (HEKA 

Elektronik) controlled by Pulse or Patchmaster software (HEKA Elektronik). Cells and 

patches were held at a potential of -60 mV. Application of voltage stimuli and digital 

sampling of the analog signals were performed via an ITC-16 interface built into the EPC9 

amplifier. Before sampling, the signal was low-pass filtered (analog 3- and 4-pole Bessel 

filters in series) with a corner frequency (−3 dB) typically set to 2 kHz (in general between 

1/12.5 and 1/3 of the inverse of the sampling interval; 10 - 100 µs). Capacitative currents 

caused by the recording pipette capacitance (Cfast function of the PatchMaster software) and 

the cell membrane capacitance (Cslow function of the PatchMaster software) were measured 

with the automatic capacitance neutralization network feature of the EPC9-dual. 

 

General data analysis 

Electrophysiological data were analyzed with FitMaster (HEKA Elektronik), IGOR Pro 

(WaveMetrics), AxoGraph X (AxoGraph Scientific), Excel (Microsoft) and GraphPad Prism 

(GraphPad Software). If required, recorded current signals were low-pass filtered at 2 kHz 

before analysis (-3 dB; digital non-lagging Gaussian filter). 

 The decay time-course of responses evoked by ultrafast application of agonist was 

estimated by curve fitting with exponential functions. For single exponential functions, we 

used the function: 

 

€ 

I(t) = Aexp(− t τ ) + Iss         (1) 

where I(t) is the current as a function of time, A is the amplitude at time 0, τ is the time 

constant, and Iss is the steady-state current amplitude. For double exponential functions, we 

used the function: 

 

€ 

I(t) = A1 exp(− t τ1) + A2 exp(− t τ 2) + Iss       (2) 

where I(t) is the current as a function of time, A1 and A2 are the amplitudes at time 0 of the 

first and second exponential components, τ1 and τ2 are the time constants of the first and 
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second exponential components, and Iss is the steady-state current amplitude. Fitting was 

started 50 - 700 µs after the peak amplitude. For double exponential functions, the amplitude 

contribution for Ax (A1 or A2) was calculated as 100% × (Ax/(A1+A2)). The relative amplitude 

of fitted exponentials depends on the definition of time 0, which we defined as the start of 

the response, determined by eye as the point in time at which the current rose from the 

baseline noise. 

 The amplitude of glutamate-evoked current responses was calculated as either the 

peak or the mean current between vertical cursors positioned on the current traces. For each 

patch, the response at each concentration of glutamate was typically calculated from the 

average of 5 - 25 repetitions. Concentration-response data were normalized to the response 

at a fixed concentration and fitted with a Hill-type equation of the following form: 

 

 ! = !!"#
!!!" !"#!" !"!" !!"#!" ! !!        (3) 

 

where I is the current at a given concentration of agonist ([A]), Imax is the maximum current, 

EC50 is the agonist concentration giving rise to half-maximal current, and nH is the Hill 

coefficient. As the best-fit parameters were subsequently used for kinetic model fitting, it is 

important to realize that the Hill equation is an empirical description which cannot be 

derived from any realistic physical mechanism and the parameters EC50 and nH have no 

direct physical significance. Importantly, there is no reason to suppose that nH will be an 

integer and it cannot be interpreted as the number of molecules that combine with a receptor 

(e.g. Wyman and Gill, 1990). To obtain symmetric confidence intervals, the log10(EC50) was 

used as the variable for fitting rather than the EC50 (see "Confidence intervals of the EC50", 

GraphPad Software, http://www.graphpad.com/guides/prism/6/curve-

fitting/index.htm?reg_why_prism_fits_the_logec50_rat.htm). For experiments with steady-

state desensitization following pre-exposure to agonist, the agonist-evoked response to 

application of a fixed concentration of agonist was normalized to the response obtained 

without pre-exposure to agonist. Data points were plotted as agonist-evoked response vs. 

log10 of the concentration of agonist during pre-incubation. Concentration-inhibition curves 

were generated by fitting with an equation equivalent to Eq. 3 giving values for log10(IC50) 
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(log10 of the pre-incubation agonist concentration giving rise to half-maximal inhibition) and 

nH. Curve fitting of concentration-response and concentration-inhibition data (GraphPad 

Prism) took into account the number of patches and the response amplitude scatter among 

the replicates for each concentration of glutamate (see Colquhoun et al., 1992, for a similar 

approach). 

 Data are presented as means ± SEM (or SE where appropriate) and percentages are 

presented as percentage of control. Statistical analyses were performed using Student's two-

tailed t tests (unpaired, unless otherwise stated) and differences were considered significant 

at the P < 0.05 level. The bias of a parameter estimate (a') relative to the nominal (true) 

parameter value (a) was calculated as: 100% × (a' - a)/a. For illustration purposes, most raw 

data-records were either low-pass filtered (-3 dB; digital non-lagging Gaussian filter at 0.5 - 2 

kHz) or smoothed by a binomial smoothing function (IGOR Pro) to emphasize the kinetics of 

the response. Unless otherwise noted, the current traces shown in the figures represent 

individual traces. 

 

Non-stationary noise analysis 

We applied non-stationary noise analysis to responses obtained by ultrafast application of 

brief (~1 ms) pulses of glutamate (3 mM) to outside-out patches in order to estimate the 

apparent single-channel conductance and open probability of the glutamate receptors (for 

details, see Hartveit and Veruki, 2007). The ensemble mean for a series of consecutive 

responses without run-down was binned into 20 segments along the ordinate, with each bin 

corresponding on average to an equal number of channel closings during the decay phase. 

Data points for ensemble variance versus mean current for the decay phase were fitted with 

the following function: 

 !! ! = !" − !! ! + !!!        (4) 

where i is the apparent single-channel current, I is the mean current, N is the number of 

available channels in the patch and !!! is the background variance. The open probability of 

the receptor channels in the patch is determined at any given point in time by:  

 !!"#$ = ! !"          (5) 
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where Popen is the open probability of the receptor channels, i is the apparent single-channel 

current, I is the mean current and N is the number of available channels. The single-channel 

chord conductance was calculated as: 

 ! = ! !! − !!"#          (6) 

where i is the apparent single-channel current, Vm is the holding potential (-60 mV) and Erev 

is the reversal potential (set to 0 mV; Mørkve et al., 2002; Veruki et al., 2003). 

 

Kinetic model fitting and simulations 

Macroscopic (deterministic) simulations of ion channel current responses were based on two 

different experimentally derived Markov-type kinetic models. One model was originally 

developed for glutamate receptors expressed by cerebellar Purkinje cells (Häusser and Roth, 

1997) and the other model was originally developed for specific AMPA receptors 

heterologously expressed in HEK 293 cells (Robert and Howe, 2003). Macroscopic 

simulations were programmed in Matlab (MathWorks) and IGOR Pro, with the Matlab code 

used for fitting models to our experimental data. We calculated state occupancies by 

numerical integration of a set of coupled first-order ordinary differential equations. Since the 

system of equations is stiff, i.e. it contains time constants that differ by several orders of 

magnitude, the equations were solved using Matlab's ode15s (a solver for stiff differential 

equations using a variable time step). The algorithm was set to return the output at time 

points with a fixed interval of 0.1 ms. The absolute and relative tolerances were set to 10-4 

and we checked that further decreasing these values did not significantly change the 

calculated model output (less than 0.1% change was observed when the tolerances were 

reduced by a factor of 10). 

 The agonist waveform was modeled as the product of two error functions to mimic 

the finite rise and decay times in physiological experiments: 

 

 ! ! = !× ! !"#$× 1 + !"# ! ! − ! × 1 + !"# −! ! − ! + !   (7) 

where [A](t) is the agonist concentration profile as a function of time, f is a scaling factor (set 

to 0.25), [A]peak is the peak concentration of agonist, erf is the error function, a determines the 

steepness of the rise and decay phases (set to 4.8 ms-1 to generate a 20-80% rise time of 0.25 
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ms), t is time, b is the delay to onset of the pulse, and c is the pulse duration (full width at 

half maximum). The resulting traces of the open probability were low-pass filtered at 2 kHz 

(-3 dB cut-off) by convolving them with a Gaussian function: 

 !×!(!!/!)!          (8) 

(with w = 93.7 µs) before analysis to match the analysis of experimental data. The simulation 

results were analyzed using built-in functions of Matlab, including non-linear curve fitting, 

with the goal of matching the procedures used to analyze the experimental data. 

 The goal of the model optimization was to find a set of rate constants for each of the 

two kinetic models that would minimize the difference between the model output and the 

experimental results (target) for a given set of observables obtained in the present and a 

previous study from our laboratory (Veruki et al., 2003). During model optimization, the 

observables and their deviation from the target observables were calculated for a given set of 

parameters. The model optimization minimized an objective function E, defined as the sum-

of-squares of the deviations of the model output Xmod from the experimental target 

observables Xexp (see Results), normalized by the corresponding experimental standard error 

(SE): 

 

 ! = !!"#!!!"#
!"!

!
!          (9) 

To aid in interpreting the goodness of a particular fit, we also calculated the square root of 

the mean of the squares of the normalized deviations (root-mean-square; RMS): 

 

!"# = !
!

!!"#!!!"#!
!"!

!
!          (10) 

where N is the number of observables. In addition, to prevent the algorithm from selecting 

very different rate constants for the binding (or unbinding) of glutamate by receptors in the 

non-desensitized and desensitized states, the ratios of these rate constants (see Results for 

each kinetic model) were softly constrained such that a ratio of 1:10 in the rate constants 

would be penalized as much as an error of 1 SE. This was accomplished by adding the log10 

of these ratios to the observables, with a target value of 0 and a weight value of 1. With this 

constraint, the fitting routine preferred slightly larger errors in the observables over very 
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disparate rate constants and in practice constrained the relevant ratios to a maximum of 

approximately 1:10. 

 For the model optimization, we used the MultiStart algorithm in Matlab to obtain the 

location and objective function value of local minima in the search space. Multiple local 

minima are found by performing local optimization from multiple starting points. Starting 

points were randomly selected from an even distribution of points in a bound region of 

parameter space. The MultiStart algorithm was executed in parallel on 12 processor cores. 

 For the local optimization, we let MultiStart use the Levenberg-Marquardt algorithm 

(Marquardt, 1963) implemented in Matlab's lsqnonlin function (function tolerance set to 10-4, 

position tolerance set to 10-5, and minimum step for approximation of the Jacobian set to 

10-4). This algorithm uses the information of all individual deviations rather than the sum-of-

squares alone, and typically converges after 5 - 10 iterations. 

 Bounds on the region from which starting points were sampled were selected after 

initial manual fitting and exploration of the parameter space. The center of the search space 

was set at a point around which reasonable fits were obtained and low and high search 

bounds were set by multiplying these rate constants by 0.5 and 2, respectively. These bounds 

did not constrain the local optimization. Maintenance of microscopic reversibility (Hille, 

2001) differed between the two models which we used for fitting (see Results). To ensure 

proper scaling of the optimization problem, the search space was log-transformed, i.e. the 

algorithm searched in the space of {x01, x12, ...} = {log10(k01), log10(k12), ...}, where kab is the rate 

constant for the transition from state A to state B. For each optimization we typically let the 

algorithm run for a day, resulting in at least 300 local optimizations from which the local 

minimum with the smallest sum-of-squares deviation was selected. In practice, this was 

sufficient to obtain an optimal fit, as the objective function did not improve more than 10% 

after the first ~30 local optimizations. The best fit, i.e., the local minimum with the smallest 

sum-of-squares deviation was selected as the optimal model. 

 

Stochastic simulations 

For non-stationary and covariance analysis of simulated ion channel responses, we used 

stochastic (Monte Carlo or microscopic) simulations with AxoGraph X. The number of 
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receptor channels (N) was set to 50; the driving force (membrane potential minus reversal 

potential; Vm - Erev) to -60 mV; the time interval to 10 µs; and for each condition an ensemble 

of events was generated by repeating the simulations 1000 times (n). To mimic one source of 

quantal variability, some simulations were run by varying the number of available receptor 

channels randomly between trials (Nmean = 50; Gaussian distribution with SD = 10). The 

single-channel conductance was specified for each model.  

 

Bootstrap analysis 

For simulated events, we estimated statistical errors in the best-fit parameters by bootstrap 

analysis (Efron and Tibshirani, 1993). We performed balanced resampling by generating 100 

random lists of 1000 event numbers (from 1 to 1000) with custom routines in IGOR Pro. Each 

number corresponded to an event in the original ensemble of simulated events, and each list 

of numbers was subsequently used to generate a new (synthetic) data set with 1000 events. 

 

Autocovariance analysis 

Autocovariance (for simplicity, henceforth referred to as covariance) functions were 

calculated from an n-by-m event matrix (n events and m sample points for each event) in 

IGOR Pro (see Hartveit and Veruki, 2006). The resulting m-by-m covariance matrix is a 

measure of the linear strength between the m variables and can be stated as, 

 Cn t1, t2( ) = 1
n−1

yi t1( )−µ t1( )⎡⎣ ⎤⎦ yi t2( )−µ t2( )⎡⎣ ⎤⎦
i=1

n

∑      (11) 

where the yi are the current values from the ith event and the µ are the means of the nyi 

values. Each value in the covariance matrix, σ2
ij, corresponds to the covariance between the 

corresponding columns i and j in the original event matrix. The diagonal of the covariance 

matrix (i=j) corresponds to the variance values for the n columns of the event matrix. For a 

given center point (tc), the decay of a covariance function, C(t1, t2), can be estimated by fitting 

with exponential functions such that each decay time constant corresponds to a correlation 

time (termed tcorr). 
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Calculating an apparent maximum Popen (Popen, max) for a kinetic scheme with multiple open 

states 

From the experimental data, Popen, max was determined by non-stationary noise analysis (see 

above). This analysis assumes a single open state (or multiple open states with the same 

conductance) and will not give the correct Popen for a channel with multiple conductance 

levels. We can, however, calculate an apparent Popen, max for a receptor channel model with 

multiple conductance levels, i.e. the Popen, max that would be obtained if the analysis procedure 

were applied to experimental data. Although there is no clear physiological interpretation of 

the apparent Popen, max, it can be used to correctly fit the model to the experimental 

observations. 

 To determine the apparent Popen, max, we calculated the average current and its 

variance predicted by the state occupancies in the model from a single simulation run of the 

model. The simulation provides a probability distribution, at each point in time, for a 

receptor channel to be in a certain state and to conduct a certain current. The average and 

variance for a single-channel current (I1) are given by the mean and second moment around 

the mean, respectively, of the probability distribution: 

 !! = !!!!!           (12) 

 !! !! = !!(!! − !! )!
!        (13) 

where .  denotes the expectation value (average), σ2(.) denotes the variance, Pn denotes the 

probability of the channel to be in state n and in denotes the current conducted by state n. For 

N identical channels, these are multiplied by N: 

 ! = ! !!!!!          (14) 

 !! ! = ! !!(!! − !! )!
!        (15) 

Any states that have the same conductance can be treated as a single state, with identical 

conductance and a summed probability of the receptor channel being in that state, without 

affecting the value for current and its variance. Thus, for a receptor for which all open states 

conduct a current i0 and all closed states conduct zero current, the equations reduce to their 

familiar form as used in non-stationary noise analysis: 

 ! = ! !!"#$!! + !!"#$%& !×!0 = !!!!"#$!!!      (16) 

 !! ! = !! !!"#$ !! − !!"#$!!!
! + !!"#$%& 0 − !!"#$!!

!     (17) 
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  = !!! ! !− ! ! !/!        (18) 

where Popen and Pclosed are the sum of probabilities for each of the open and closed states, 

respectively, and Pclosed = Popen - 1. Note that for experimental data, a constant !!! representing 

baseline noise is added to the variance (Eq. 4). 

 To determine Popen, max for the model, we simulated the response evoked by a brief 

agonist pulse and calculated I and !! !  for all points in time according to Eq. 14 and Eq. 15 

with N = 1. Then, the apparent Popen, max was calculated by a procedure similar to that used for 

analysis of the experimental data. The peak current (Ipeak) was found and data points of I and 

!! !  following Ipeak were selected. !! !  was plotted against I and re-sampled at 100 evenly 

spaced points (in I) to avoid overweighting the current values in the tail of the response. A 

quadratic function, equivalent to Eq. 4, was fitted to the data points, giving values for the 

apparent N (Nap) and i0 (i0,ap): 

 ! = !!!,!"!! − ! !!/!!" + !!        (19) 

Finally, Popen, max was calculated as: 

 !!"#$,!!!!"# = !!"#$ !!,!"!!"         (20) 

We verified that when all open states were set to the same conductance, corresponding to the 

current i0, this method resulted in the correct value for i0, calculated Nap = 1, and yielded a 

value for Popen, max that was equal to the sum of the occupancies of the open states. For a 

model with different conductances for the open states, i0,ap will be between the currents of the 

different open states, whereas Nap will deviate from 1 and will have no clear interpretation 

(cf. Hartveit and Veruki, 2006). 

 

Cell injection and immunocytochemical labeling 

For injecting AII amacrine cells with fluorescent dye, retinal slices were prepared as 

described earlier for electrophysiological recording. The live slices were visualized with a 

×60 water immersion objective and Dodt gradient contrast on an Olympus BX51 WI 

microscope. Using a simultaneous combination of transmitted light and epifluorescence 

optics (filter set 49011 with the emission filter replaced with the long-pass filter ET510lp; 

Chroma), visually targeted AII amacrine cells were impaled with sharp microelectrodes with 

the tip filled with 5 mM Alexa Fluor 488 (Invitrogen / Thermo Fisher Scientific) dissolved in 
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200 mM KCl and backfilled with 200 mM KCl without dye. Microelectrodes were pulled 

from thin-walled borosilicate glass (outer diameter, 1.0 mm; inner diameter, 0.78 mm; BF100-

78-10; Sutter Instrument). When filled with dye solution, injection pipettes typically had 

resistances of 125 - 175 M!. For injection, the microelectrode was connected to an 

intracellular amplifier (SEC-05LX; npi electronic) in bridge mode. For pipettes with 

resistances in the lower range, we sometimes applied a retaining current of +100 to +200 pA 

to reduce leakage of dye. After successful impalement, cells were injected with a current 

of -500 pA for 3-5 min (1 Hz; 900 ms on / 100 ms off). After injection, slices were fixed at 

room temperature for 10 - 15 min in 4% paraformaldehyde in 0.1 M phosphate buffer (PB; 

0.081 M Na2HPO4 / 0.019 M NaH2PO4, pH = 7.4). Following fixation, slices were washed 

three times (5 min each) in 0.01 M phosphate-buffered saline (PBS; 0.01 M PB with 8.76 g 

NaCl and 0.2 g KCl per liter, pH = 7.4). Next, slices were incubated for 1 h at room 

temperature in antibody incubation solution (AIS) consisting of PBS with 5% normal goat 

serum (NGS; Sigma-Aldrich), 0.5% Triton X-100 (Sigma-Aldrich) and 1% NaN3. Slices were 

then incubated overnight (at 4 °C) with primary antibody in AIS (for a summary of the 

primary antibodies used in the present study, see Table 1). The next day, slices were washed 

three times (10 min each) in PBS and incubated at room temperature with secondary 

antibody in AIS for 2 - 3 h. Secondary antibodies included goat anti-mouse and goat anti-

rabbit coupled to Alexa 555 or Alexa 647 (Invitrogen / Thermo Fisher Scientific) used at a 

dilution of 1:500. Subsequently, the slices were washed three times (15 min each) in PBS and 

mounted in Vectashield (refractive index 1.450; Vector Laboratories) between two precision 

coverslips (0.17 mm thickness, tolerance ± 0.01 mm; Karl Hecht Assistent) separated by a 0.12 

mm thick spacer disk (Electron Microscopy Sciences).  

Table 1 near here 

 

Confocal microscopy and image acquisition 

Cell-injected and immunolabeled retinal slices were imaged on a TCS SP5 confocal 

microscope (Leica) equipped with a ×63 oil immersion objective (HCX PL APO CS UV, 1.4 

NA; Leica). For fluorescence imaging, we used the following lasers and laser lines: Argon 

488 nm (for Alexa Fluor 488 in the first channel), DPSS 561 nm (for Alexa Fluor 555 in the 
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second channel) and HeNe 633 nm (for Alexa Fluor 647 in the third channel). The emission 

bandwidths for the three channels were set to 498-530 nm, 570-595 nm and 650-700 nm, 

respectively. For each acquisition channel, offset and gain of the corresponding 

photomultiplier tube were adjusted to maximize the dynamic range, with minimal 

saturation at the highest intensities. An image stack was acquired as a series of optical slices 

(each slice 1024 × 1024 or 2048 × 2048 pixels, depending on the size and orientation of the 

injected cell) by sequential scanning (between frames) of the three different channels for each 

slice. For each of the three frames (corresponding to the three channels), each line was 

scanned two times and averaged to increase the signal-to-noise ratio (SNR). The confocal pin 

hole was set to one Airy unit (calculated for 580 nm light). To obtain well-sampled image 

stacks that could be processed with deconvolution (see "Image processing, deconvolution 

and analysis"), images were sampled at a rate close to the ideal Nyquist rate. The Nyquist 

sampling distance in the lateral direction was calculated as: 

 

 ∆!= ∆!=
!!""

!!× !"#!         (21) 

and for the axial direction, the Nyquist sampling distance was calculated as: 

 

 ∆!=
!!""

!!× !!!"#!          (22) 

 

where !!"" = 1 !
!!"

+ !
!!"

, λex is the wavelength of the excitation light, λem is the wavelength 

of the emission light, n is the lens medium refractive index (1.518 for the immersion oil), and 

α is the half-aperture angle of the the objective (reviewed by Heintzmann, 2006; see also 

https://svi.nl/NyquistRate). Depending on the digital zoom and the number of pixels in 

each image slice, the XY pixel size was either ~40 or ~43 nm. The focal plane interval was 

~126 nm. All values were sufficient to satisfy Nyquist rate sampling according to the stated 

equations. All image stacks were acquired at 12 bit resolution and acquisition was controlled 

by LAS X software (Leica). 

 For one slice, we had access to a TCS SP8 confocal microscope (Leica) equipped with 

HyD detectors and a ×63 glycerol immersion objective (HC PL APO CS2 glycerol, 1.3 NA; 

Leica). Imaging was performed as described above, except that the confocal pinhole was set 
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to 0.5 Airy unit, the XY pixel size was set to ~45 nm, and the focal plane interval was set to 

~150 nm, satisfying Nyquist rate sampling. 

 

Image processing, deconvolution and analysis 

Huygens Essential (version 14 - 16, 64 bit, Scientific Volume Imaging) was used to digitally 

deconvolve each channel in the image stack to remove noise (effectively increasing the SNR) 

and decrease axial and lateral blurring. The software reassigned out-of-focus light with a 

theoretically calculated point spread function, using the classic maximum likelihood 

estimation (CMLE) deconvolution algorithm. For each image stack, we estimated an optimal 

value for the user-selectable SNR parameter by repeating the deconvolution for several 

values of the SNR while keeping all other parameters and settings constant (see Zandt et al., 

2017). In addition to reducing noise and decreasing blurring, deconvolution with Huygens 

Essential also (partially) compensates for spherical aberration that is aggravated by refractive 

index mismatch (between the lens immersion medium and the specimen embedding 

medium). In our case, the refractive index mismatch can be considered moderate and we 

observed moderate, but distinctly noticable spherical aberration at imaging depths of 

approximately ≥10 µm into the retina slices. 

 After deconvolution, we used the Object Analyzer module in Huygens Essential to 

analyze the spatial relationships between fluorescent structures corresponding to the (dye-

filled) AII amacrine cell and immunolabeled punctae. To segment the structures of interest, 

we applied simple (global) thresholding. For optimal adjustment of the threshold intensity 

separately for each channel, we exported the deconvolved image stacks (in 16 bit TIFF 

format) to Amira (version 6, FEI / Thermo Fisher Scientific). As a first step, we selected the 

threshold automatically estimated according to Otsu's criterion (Otsu, 1979), using the "Auto 

Thresholding" function of Amira and increased or decreased this as was found necessary 

during visual inspection of the segmentation results using the "Edit Label Field" function and 

"Segmentation Editor" of Amira. When satisfactory threshold values were selected for each 

channel in the image stack, they were used for segmentation and subsequent object analysis 

in Huygens Essential. For segmentation of fluorescence signals corresponding to synaptic 

punctae, we also applied watershed segmentation (as implemented in Huygens Essential) to 
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separate merged objects arising from discrete overlapping punctae. We also applied the 

"sigma setting" to avoid over-segmentation by smoothing the image intensities with a 

Gaussian filter (σ = 1.0 µm). Following segmentation, objects smaller than 50 voxels were 

regarded as noise and were removed before analysis. 

 For segmented immunolabeled GluA4 punctae, we first used the Object Analyzer in 

Huygens to isolate all punctae that overlapped (intersected) spatially with an object 

belonging to the segmented AII amacrine cell. Overlap (intersection) means that two objects 

share one or more voxels within the segmented volumes. For the population of segmented 

and overlapping punctae the Object Analyzer then calculated a series of parameters, 

including center of mass (after intensity weighing of voxels), distance from the center of 

mass to the surface of the segmented AII amacrine, and the relative colocalization (measured 

as the fraction of the volume of a segmented punctum object, based on the number of voxels, 

that intersected with an object belonging to the segmented AII amacrine cell). To estimate the 

average signal around segmented objects corresponding to immunolabeled punctae in the 

same or the other channel(s) of an image stack, we used custom-written routines in IGOR 

Pro. For each 3D coordinate (corresponding to the center of mass of a specific 

immunolabeled punctum in the isolated population of punctae overlapping with the AII 

amacrine), a volume (corresponding to a square prism) centered around the coordinate was 

extracted from the image stack and combined with all the other extracted volumes to 

calculate the average across all 3D coordinates (for a given channel). The extracted volumes 

measured either 3 µm along the X and Y axes and 4 µm along the Z axis or 6 µm along the X 

and Y axes and 8 µm along the Z axis. We preferred the approach described here for object-

based analysis of colocalization over alternative methods that involve rotating one imaging 

channel relative to the other(s) for several reasons. First, for image stacks acquired from 

vertical retinal slices, the anisotropy of the tissue means that rotation around the X or Z axis 

will reposition neuronal processes to locations where they do not belong (e.g. arboreal 

dendrites could end up in the outer plexiform layer). For rotation around the Y axis (along 

the major vertical axis of the cell), even minor asymmetries in branching could mean that 

processes would be relocated above the surface of the retinal slice. Second, when the density 

of punctae is high, there could easily be spatial overlap between segmented punctae and 
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neuronal processes for several alternative positions after rotation (for discussion, see Hoon et 

al., 2013). 

 

Results 

Identification of AII amacrine cells in retinal slices 

AII amacrine cells in retinal slices were visually targeted for recording according to the 

following criteria: (1) location of the cell body at and across the border between the inner 

nuclear layer and the inner plexiform layer; (2) medium size of the cell body; and (3) a thick 

primary dendrite that tapers as it descends into the inner plexiform layer (Fig. 1a). 

Immediately after breaking into a cell and establishing the whole-cell recording 

configuration, the characteristic unclamped action currents (Mørkve et al., 2002), occurring 

both spontaneously and when evoked by 5 mV depolarizing voltage steps (Fig. 1b), 

confirmed the identity of the cell as an AII amacrine cell. In every case, when a cell was 

targeted according to the criteria indicated above and also displayed the characteristic 

unclamped action currents, fluorescence microscopy after the recording allowed 

morphological identification based on the presence of lobular appendages in sublamina a 

and arboreal dendrites in sublamina b of the inner plexiform layer. 

Figure 1 near here 

 

Concentration-response properties of glutamate receptors: peak responses 

In the first set of experiments, the concentration-response properties were studied by 

ultrafast application of long pulses (100 ms) of glutamate (50 µM - 30 mM) to conventional 

outside-out patches. The responses evoked in a patch by application of four different 

concentrations of glutamate are illustrated in Fig. 1c. At these concentrations, glutamate 

pulses evoked responses that rose rapidly to a peak followed by a slower decay, 

corresponding to desensitization. At a glutamate concentration of 500 µM, the 20-80% rise 

time was ~785 µs and at 10 mM (the highest concentration tested for this patch), the rise time 

was ~378 µs (Fig. 1e). At lower concentrations of glutamate (≤50 µM), the response is 

expected to rise more slowly to a plateau (e.g. Häusser and Roth, 1997), without response 

reduction during the period of application. However, because of low channel density in most 
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patches, we often did not observe responses to the lowest concentrations tested (50 - 100 µM) 

which precluded further analysis at these concentrations. Importantly, the responses evoked 

by glutamate applied to outside-out patches from AII amacrine cells are mediated by AMPA 

receptors, as these cells do not express kainate receptors (Mørkve et al., 2002) and NMDA 

receptors expressed by AII amacrines (Hartveit and Veruki, 1997) are virtually absent from 

the cell body (Zhou et al., 2016). 

 All patches included in the analysis were tested with a reference concentration of 5 

mM glutamate in addition to one or more other concentrations of glutamate. Only patches 

that displayed a peak response to 5 mM glutamate of ≥4 pA were included in the analysis. 

To construct concentration-response curves, the peak amplitude of the response at each 

concentration was normalized to the response at 5 mM. To correct for rundown during the 

period between application of the reference (5 mM) and test concentrations of glutamate, 

application of the test concentration was followed by another application of the reference 

concentration. For each patch, the peak current evoked by each test concentration was 

normalized to the expected response (evoked by 5 mM glutamate) at the same point in time, 

obtained by a linear curve fit to the data points obtained from 5 mM glutamate pulses before 

and after the test pulses. For each concentration of glutamate, we averaged the normalized 

responses of 4 - 16 patches. The data points were fitted with Eq. 3, yielding values for EC50 of 

1.53 mM and nH of 0.987 (Fig. 1e; n = 16 patches). 

 In a second series of experiments, the concentration-response properties were studied 

by ultrafast application of short pulses (nominal duration ~1.2 ms) of glutamate (50 µM - 30 

mM) to conventional outside-out patches (Fig. 1f). For higher concentrations of glutamate, 

the peak responses evoked by short and long pulses should be identical (cf. Veruki et al., 

2003), but for lower concentrations of glutamate, it could be expected that the maximum 

obtainable response would not be reached during the duration of the pulse. Nevertheless, 

when the data were analyzed in the same way as described for long pulses, we obtained 

similar values for EC50 (1.76 mM) and nH (0.998; n = 1 - 7 patches for each data point; Fig. 1g). 
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Concentration-response properties of glutamate receptors: steady-state responses 

For conventional outside-out patches, the strong desensitization observed for AMPA 

receptors of AII amacrine cells (Mørkve et al., 2002; Veruki et al., 2003) generated steady-

state current responses that were too small to be adequately analyzed. Accordingly, to 

examine concentration-response properties for steady-state responses, we recorded instead 

from nucleated patches that contain a larger number of receptors. For nucleated patches, it is 

not possible to obtain ultrafast solution exchange with the technique used here, but for 

measurement of the steady-state response such rapid exchange is also not needed. Examples 

of glutamate-evoked responses from nucleated patches from AII amacrine cells were 

illustrated in a recent study from our laboratory (Castilho et al., 2015). We obtained 

responses to one or more test concentrations of glutamate (range 2.5 µM - 25 mM) from a 

total of 19 nucleated patches. All nucleated patches were also tested with a reference 

concentration of 1 mM glutamate and only those that displayed a steady-state response ≥ 1 

pA to 1 mM glutamate were included in the analysis. For each nucleated patch, application 

of the various test concentrations was always preceded and followed by application of the 

reference concentration of glutamate (1 mM). Normalization of the response to each test 

concentration to the response to the reference concentration was performed as described 

above for experiments with conventional outside-out patches. For each concentration of 

glutamate, we averaged the (normalized) responses from 2 - 5 patches. The data points were 

fitted with Eq. 3, yielding values for EC50 of 693 µM and nH of 0.554 (Fig. 1h; n = 19 patches). 

A lower EC50 for the steady-state response than for the peak response is a common 

observation for AMPA receptors (e.g. Robert and Howe, 2003) and reflects that for a peak 

response component to be observed, the rate of binding and activation must be sufficiently 

fast for a large fraction of the population of receptors to open simultaneously, before onset of 

desensitization. 

Figure 2 near here 

 

Concentration-dependence of response kinetics 

We also analyzed a series of response parameters as a function of the glutamate 

concentration. Because of the low number of glutamate receptor channels in the outside-out 
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patches and the small responses at the lowest concentrations tested, we only included 

responses evoked by glutamate concentrations between 100 µM and 30 mM in the kinetic 

analysis. For short pulse application of glutamate, we analyzed the deactivation kinetics and 

the 20-80% rise time. For long pulse application of glutamate, we analyzed the 

desensitization kinetics (by fitting the decay with a single or a double exponential function) 

and the 20-80% rise time. As illustrated in Fig. 2, the concentration of glutamate had little 

influence on either deactivation τ (Fig. 2a), desensitization τ (Fig. 2b) or the relative 

amplitude contributions (when fitting the decay of desensitization with a double exponential 

function; Fig. 2c). For the 20-80% rise time there was a small reduction with increasing 

concentration of glutamate (Fig. 2d). These results are overall similar to those obtained for 

non-NMDA receptors in patches from cerebellar Purkinje cells (Häusser and Roth, 1997) 

where the authors found little influence of the glutamate concentration except at the very 

lowest concentrations, at which our responses were too small to be reliably analyzed. 

Figure 3 near here 

 

Concentration-response properties of glutamate receptors: equilibrium desensitization 

There is evidence that glutamate might be present in the extracellular space between neurons 

and glial cells at concentrations sufficient to give rise to equilibrium (steady-state) 

desensitization of AMPA receptors (Häusser and Roth, 1997; Cavelier et al., 2005; Herman 

and Jahr, 2007; Tzingounis and Wadiche, 2007). Furthermore, we have previously found 

evidence for spill-over activation of glutamate transporters on axon terminals of rod bipolar 

cells presynaptic to AII amacrine cells (Veruki et al., 2006), suggesting that the 

microenvironment around the corresponding synapses is not isolated from the surrounding 

neuropil. Accordingly, we were interested in examining the steady-state desensitization 

properties of the AMPA receptors of AII amacrine cells. 

 To examine the equilibrium desensitization properties, outside-out patches were 

exposed to different concentrations (0.3 µM - 100 µM) of glutamate for 1.75 s prior to 

ultrafast application of a pulse of 3 mM glutamate (duration 100 ms). For each patch, we first 

measured a control response to 3 mM glutamate without pre-exposure to glutamate (i.e. with 

glutamate-free solution as the control solution in the theta tube). This response was also used 
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to normalize the responses obtained after pre-exposure to glutamate (Fig. 3a). To correct for 

rundown, responses to 3 mM glutamate following pre-exposure to different glutamate 

concentrations were interleaved with responses to 3 mM glutamate following exposure to 

glutamate-free control solution. Normalization was calculated relative to the response to 3 

mM glutamate expected for the same point in time obtained by curve fitting to a linear 

function in the same way as described above. We obtained results for 14 outside-out patches, 

with each patch contributing data for pre-exposure to 1 - 3 test concentrations of glutamate 

and for each concentration, we averaged the (normalized) responses from 3 - 11 patches. The 

data points were fitted with Eq. 3, yielding values for IC50, i.e. the concentration giving rise to 

half-maximal desensitization, of 10.5 µM and nH of 0.838 (Fig. 3b). 

Figure 4 near here 

 

Non-stationary noise analysis of glutamate-evoked currents in outside-out patches 

To estimate the apparent single-channel current and Popen, max of AMPA receptors of AII 

amacrine cells when activated by physiologically relevant concentrations of glutamate, we 

employed non-stationary noise analysis of responses evoked by ultrafast application of brief 

(~1.2 ms) pulses of glutamate (3 mM) to outside-out patches. Fig. 4a shows three individual 

responses evoked by glutamate in the same patch, together with the superimposed ensemble 

mean response (Fig. 4c; n = 20 responses used for the analysis). Fig. 4b illustrates the 

corresponding differences between each individual response and the ensemble mean (Fig. 

4c), used to calculate the ensemble variance (Fig. 4d). The variance versus mean plot 

(corresponding to the decay phase after the peak response) displayed a partially parabolic 

shape with the ensemble variance falling slightly at the highest values of mean response, 

corresponding to Popen > 0.5 (Fig. 4e). When the data points were fitted with Eq. 4, the 

apparent single-channel current was 1.4 pA, corresponding to an apparent single-channel 

chord conductance of 23 pS. The number of available channels was 34, corresponding to a 

Popen, max at the peak inward current of 0.62 (Fig. 4e). The average single-channel chord 

conductance was 24.5 ± 2.7 pS (range 17.3 - 38.3 pS; n = 7 patches), the average number of 

available channels was 21.8 ± 5.0 (range 5.2 - 42.3), and the average Popen, max was 61.3 ± 2.0% 

(range 54.1 - 70.2). For two patches (both with 20-80% rise time of the average response ≤ 400 
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µs) we obtained variance versus mean curves with apparent Popen, max < 0.5, precluding 

adequate curve fitting (with Eq. 4). This could suggest, however, that a Popen, max of 61% 

represents an overestimate of the true value. The considerably lower value for Popen 

estimated in a previous study from our laboratory (~0.3) can be explained by the use of 

nucleated patches and a system with slower speed of solution application (Mørkve et al., 

2002). The lower single-channel conductance reported in our previous study (15. 2 ± 2.9 pS) 

could be related to the use of 1 mM (as opposed to 3 mM) glutamate in that study if the 

receptors display multiple conductance levels and agonist concentration-dependent 

occupancy (cf. Rosenmund et al., 1998; Smith and Howe, 2000; Gebhardt and Cull-Candy, 

2006). 

Figure 5 near here 

 

Development of kinetic models for AMPA-type glutamate receptor channels 

Our understanding of the synaptic connections between postsynaptic AII amacrine cells and 

presynaptic rod bipolar cells (Singer and Diamond, 2003; Veruki et al., 2003, 2006; Snellmann 

et al., 2009, 2011; Mehta et al., 2013, 2014) and OFF-cone bipolar cells (Veruki et al., 2003) is 

still rudimentary at the microphysiological level. While rapid advances are being made with 

respect to understanding the detailed structure of the complex morphological relationships 

between e.g. rod bipolar cell axon terminals and arboreal dendrites of AII amacrines (Mehta 

et al., 2014), further progress in improving our understanding of structure-function 

relationships is hampered by the lack of an adequate kinetic model for the AMPA-type 

glutamate receptors of AII amacrines. Several kinetic models with varying complexity, i.e. 

number and interconnections between states, have been proposed for AMPA receptors 

expressed in different neurons, but none have so far been adapted or modified with the goal 

of reproducing the properties of the AMPA receptors expressed by AII amacrine cells. An 

added advantage for such simulations is that once the receptor properties have been 

generalized into a kinetic scheme, a receptor population can be stimulated with arbitrary 

concentration profiles of agonist, such as might occur in the complicated 3D environments of 

the synapses between rod bipolar cells and AII amacrine cells and between OFF-cone bipolar 

cells and AII amacrine cells. 
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 We were particularly interested to see if two different, previously published, AMPA 

receptor kinetic schemes could be adapted for AMPA receptors expressed in AII amacrine 

cells, based on experimentally observed data (Veruki et al., 2003; this study). The first 

scheme is that of Häusser and Roth (1997), henceforth referred to as HR97, and was 

developed to model AMPA receptors of cerebellar Purkinje cells (Häusser and Roth, 1997; 

Momiyama et al. 2003). This scheme has successfully been used to develop a kinetic model 

for AMPA receptors expressed by different types of OFF-cone bipolar cells in ground 

squirrel retina (DeVries et al., 2006). The scheme is based on the one originally proposed by 

Jonas et al. (1993) for hippocampal CA3 pyramidal neurons and later modified by Geiger et 

al. (1999) for hippocampal basket cell interneurons. Whereas the kinetic scheme of Jonas et 

al. (1993) contained seven states, including one open state and two glutamate binding sites, 

Häusser and Roth (1997) extended the scheme with two additional (closed) states (C6 and 

C7; Fig. 5a) to reproduce the double-exponential desensitization observed for AMPA 

receptors in Purkinje cells, similar to that observed for AMPA receptors in AII amacrine cells 

(Veruki et al., 2003). The second scheme investigated is that of Robert and Howe (2003), 

henceforth referred to as RH03, which was developed to model heterologously expressed 

AMPA receptors. The RH03 model (Fig. 6a) contains a larger number of states (16) than the 

HR97 model (9), but is considered more realistic with four glutamate binding sites and three 

open states (O2, O3, and O4) with different conductances, consistent with experimental 

observations of multiple conductance levels in AMPA receptors (Rosenmund et al., 1998; 

Smith and Howe, 2000; Smith et al., 2003; Gebhardt and Cull-Candy, 2006). We optimized 

the rate constants of these two kinetic schemes for AII amacrine AMPA receptors by model 

fitting, during which we simulated the model responses evoked by the same kind of agonist 

stimuli that were used in physiological experiments with application of glutamate to 

outside-out patches in our laboratory (Veruki et al., 2003; Table 2). 

  Figure 6 near here 

  Table 2 near here 

 To reduce the number of free parameters in the HR97 model, we calculated three rate 

constants, one for each cycle in the kinetic scheme (Häusser and Roth, 1997; Fig. 5a), from the 

other rate constants in the same cycle. This was done by adhering to the principle of 
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microscopic reversibility (Hille, 2001), such that the products of the rate constants in both 

directions (clockwise and counterclockwise) of each cycle were identical (Colquhoun et al., 

2004). Without additional constraints, however, the fitting procedure for the HR97 model 

obtained a rate constant for glutamate unbinding from the doubly liganded state (kC2C1; Fig. 

5a) that was ~800 times faster than that for unbinding from the singly liganded state (kC1C0; 

Fig. 5a), which is unrealistic. Therefore, we further constrained the rate constants of binding 

and unbinding of glutamate to the two sites in the model, reasoning that the following 

relationships should approximately hold (physical interpretations are indicated in 

parentheses): 

 kC0C1 = 2 × kC1C2 (glutamate binds to the two sites with equal rates and  

    independently, i.e. no cooperative binding) 

 kC1C0 = kC2C1 / 2 (glutamate unbinds from the two sites with equal rates and 

    independently) 

 kC3C4 = kC1C2  (glutamate binds to the single-liganded states with equal rate 

    constants irrespective of whether the states are desensitized or 

    not) 

 kC4C3 = kC2C1 / 2 (in the desensitized state, one glutamate molecule is trapped 

    whereas the other unbinds with the rate constant for unbinding 

    from the doubly liganded, non-desensitized state) 

 

These relationships were enforced either as soft constraints by adding the log10 of the ratios 

of the above left-hand and right-hand sides to the total error, or as hard constraints by 

calculating kC0C1, kC1C0, kC3C4 and kC4C3 from kC1C2 and kC2C1. We compared the results of the 

model optimization without (additional) constraints to those obtained with either of these 

two types of additional constraints by assessing the RMS of the normalized deviations. 

 As expected, the best fits were obtained without additional constraints imposed. In 

this case, the properties of the fitted model deviated from the experimental values with an 

RMS deviation of 0.35 SEs. However, as stated above, the best fit generated an unrealistic 

ratio of ~800 for the two unbinding rate constants (kC1C0 / kC2C1). Imposing soft constraints on 

the binding and unbinding rates of glutamate only slightly decreased the goodness of fit, 
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with an RMS deviation of 0.48 SEs. Importantly, none of the fitted properties displayed any 

marked deviation compared to the unconstrained model fitting and none of the above-

mentioned relationships for the binding and unbinding rates deviated more than by a factor 

of ~10. When we imposed hard constraints, this strongly reduced the goodness of fit, with an 

RMS deviation of 1.4 SEs. Arguably these fits were still acceptable, but the average 

deviations were too large to be explained simply by experimental errors. Based on these 

results, the fits obtained from the softly constrained model seemed optimal, with only 

slightly increased deviations from the experimental observables and reasonable ratios for the 

binding and unbinding rates of glutamate. The corresponding rate constants are indicated in 

Fig. 5 (legend). 

Figure 7 near here 

 Model fitting to the RH03 model was also performed to reproduce the experimentally 

observed response properties as closely as possible. The rate constants were constrained as 

suggested by Robert and Howe (2003; see Fig. 6a), taking into account molecular 

mechanisms of AMPA receptors. This included calculating the rate constant k-2 from the 

other constants in the cycle containing the ground state (Fig. 6a), based on considerations of 

microscopic reversibility (Hille, 2001). The properties used to fit the model contain no 

information concerning the absolute magnitudes of the single channel conductances, i.e. 

multiplying all conductances by the same factor would result in the same properties. We 

therefore used normalized values for the conductances of the open states and set the largest 

conductance (γO4; Fig. 6a) to 1. The model responses were simulated in the same way as was 

done for fitting to the HR97 model, with two notable changes. First, the model's response, i.e. 

the normalized current (analogous to Popen for the HR97 model) was calculated as the sum of 

the state occupancies (P) of the three open states multiplied by their (normalized) 

conductances (PO2 × γO2 + PO3 × γO3 + PO4 × γO4). Second, to account for the presence of multiple 

open states with different conductances, an apparent Popen, max was calculated by a procedure 

similar to that used for the experimental data (see Materials and methods) and is illustrated 

for clarity in Fig. 7. First, the average occupancies (Fig. 7a) of the individual open states 

during a step response were calculated from the model and the corresponding average 

current (Fig. 7b). From these results, the variance of the current was calculated (Fig. 7c). 
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Finally, the variance was resampled at evenly spaced time intervals and fitted with Eq. 4 to 

obtain apparent values for N, i and Popen,max (Fig. 7d; see Materials and methods). 

 Initially, we let the conductances γO2 and γO3 be tuned by the optimization algorithm. 

However, this resulted in a near zero conductance of the corresponding states O2 and O3, 

resulting from an attempt of the optimization routine to increase the model's Popen, max. We 

considered this unlikely, given the published observations of multiple conductance levels for 

AMPA receptors (Rosenmund et al., 1998; Smith and Howe, 2000; Smith et al., 2000; 

Gebhardt and Cull-Candy, 2006). Therefore, the two conductances were set to fixed values of 

0.333 (γO2) and 0.667 (γO3), using ratios observed for GluA4 homomeric receptors (Robert and 

Howe, 2003). 

 With the weights used for optimizing the HR97 model, the optimization routine was 

unable to obtain acceptable fits for the RH03 model (RMS deviation > 2 SEs). We found that 

the model could only closely reproduce the experimentally observed Popen, max when the 

values for EC50, maximum desensitization and rise time (Table 2) deviated markedly from 

the experimentally observed values (> ~3 SEs). To obtain acceptable fits to the other 

properties, while still obtaining a reasonable Popen, max of ~0.5 or larger, we decreased the 

weight for Popen, max by a factor of 2. This resulted in an optimized model (Fig. 6) with a Popen, 

max of 0.47 and an RMS deviation for the other properties of 1.27 SEs, with no marked 

deviation from the experimentally observed values for any single property (Table 2). It is to 

be expected that the RH03 model was not able to fit the data as closely as the HR97 model, 

since it has far fewer free parameters to fit (10, compared to 19 for the HR97 model). 

 

Responses of kinetic models to pulses and synaptic waveforms of glutamate 

Next, we used the two kinetic models fitted to the AMPA receptors of AII amacrine cells 

(henceforth termed AII-HR97 and AII-RH03) to simulate responses to glutamate pulses of 

varying concentration and duration, as well as to hypothetical glutamate concentration 

profiles evoked by release of single synaptic vesicles into a synaptic cleft. To mimic synaptic 

glutamate concentration profiles, we used an instantaneously rising function with a double-

exponential decay (parameters τ1 = 0.1 ms, A1 = 3 mM, τ2 = 1 ms, A2 = 0.5 mM), estimated 

from experimental measurements using low-affinity antagonists (Clements et al., 1992; 
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Clements, 1996; Diamond and Jahr, 1997; Scimemi and Beato, 2009) and from Monte Carlo 

simulations of glutamate release and diffusion in the synaptic cleft of a retinal ribbon 

synapse (Sikora et al., 2005). Since the parameters of the AII-HR97 and AII-RH03 models 

were fitted to reproduce the same data, their responses were very similar, both with respect 

to brief and long pulses of varying concentration and fixed-concentation pulses of varying 

duration (Fig. 5b, 6b). Both models generated responses that closely mimicked the responses 

obtained with outside-out patches (Fig. 1, Table 2). When stimulated with glutamate 

concentration profiles that mimicked release of single synaptic vesicles, both models 

generated similar responses (Fig. 5c, 6c) with kinetic characteristics resembling those of 

spontaneous excitatory postsynaptic currents (spEPSCs) recorded in AII amacrines (e.g. 

Veruki et al., 2003). When stimulated with a glutamate concentration profile that mimicked 

release of 10 synaptic vesicles in rapid succession (500 Hz), the responses generated by the 

two models differed slightly in the kinetics of the onset and around the peak (Fig. 5c, 6c). 

Figure 8 near here 

 

Non-stationary noise analysis of responses generated by kinetic models of AII amacrine 

AMPA receptors 

Non-stationary noise analysis can be used to estimate the single-channel current, the Popen, max 

and the number of available channels involved in mediating the response to agonist 

application (see above; for review, see Hartveit and Veruki, 2007). However, the presence of 

quantal variablity complicates the use of conventional non-stationary noise analysis. Peak-

scaled non-stationary noise analysis was introduced to compensate for the quantal 

variability (Traynelis et al., 1993), but the resulting variance versus mean relationships can be 

transformed from parabolic to skewed (Momiyama et al., 2003; Hartveit and Veruki, 2006, 

2007). In that condition, fitting with Eq. 4 to a range of the variance versus mean relationship 

can still be used to obtain an estimate for the single-channel current, but the estimate for N 

has no physical interpretation. In a previous study from our laboratory, we investigated a 

series of different kinetic schemes for neurotransmitter receptor channels and demonstrated 

that the shape of the variance versus mean relationships is a consequence of the temporal 

structure of the fluctuations of the ion channel gating during the responses (Hartveit and 
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Veruki, 2006). Specifically, covariance analysis indicated that peak-scaling generates a 

skewed relationship when the covariance function decays rapidly and a parabolic 

relationship when it decays more slowly. In each case, the decay of the covariance function is 

compared to the decay of the average response waveform. Rapid decay or slow decay means 

that there is low or high correlation between fluctuations at the peak and during the decay 

phase, respectively. 

 We next investigated these properties for the two different kinetic schemes developed 

for AMPA receptors of AII amacrine cells, using stochastic simulations to generate an 

ensemble of responses (n = 1000 events) evoked by 1 ms square-wave pulses of five different 

concentrations of glutamate (0.3, 1, 3, 5, and 100 mM). For the AII-HR97 kinetic scheme (Fig. 

5a), we obtained variance versus mean relationships that closely followed the expected 

theoretical relationship predicted by Eq. 4, and for the three highest concentrations, Popen, max 

was > 0.5 (Fig. 8a). For each concentration of glutamate, estimates for i and N were obtained 

by fitting with Eq. 4. We estimated the statistical errors in two different ways, first by 

repeating the stochastic simulations 10 times (n = 1000 events in each ensemble) and then by 

analyzing 100 bootstrap "synthetic" data sets re-sampled from one of the original data sets 

(see Materials and methods for details). The results displayed in Table 3 indicated that 

overall both procedures generated similar error estimates (both for i and N). The coefficient 

of variation (CV) was typically between 5 and 10% and the bias was typically <5%. As 

expected, the CV for estimates of N at the lowest glutamate concentrations (0.3 and 1 mM) 

were considerably larger, corresponding to a Popen, max < 0.5 (Fig. 8a). 

 To mimic a source of quantal variability, we repeated the simulations with stochastic 

variation of the number of available channels from trial to trial. As expected, the stochastic 

variation of the number of available channels increased the variance (for a given mean 

response value) over that generated by the stochastic channel gating itself and the resulting 

variance versus mean curves deviated strongly from a parabolic shape (Fig. 8b). It was still 

possible to obtain a good estimate for i by fitting the initial part of the curve with a straight 

line, in which case the CV was < 5% and the bias was < 7% (Table 3). When we compensated 

for the increased variability caused by the stochastic variation in the number of available 

channels by scaling the peak of the ensemble mean to each individual response before 
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calculating the difference traces (cf. Fig. 5), the variance was strongly reduced (Fig. 8d). 

Although the variance versus mean relationships became somewhat skewed, the peak scaling 

almost perfectly adjusted the variance versus mean relationships such that they followed the 

theoretical relationship predicted by Eq. 4 (Fig. 8d). As observed previously for other kinetic 

schemes (Hartveit and Veruki, 2006), the variance versus mean relationships generated by 

peak scaling were observed irrespective of whether the responses were generated with a 

constant or variable number of available channels (Fig. 8c, d). By excluding the rightmost 

points of the variance versus mean relationships, curve fitting with Eq. 4 yielded good 

estimates not only of i (for all glutamate concentrations), with CV around 5% and bias < 4% 

(Table 3), but for the three highest glutamate concentrations (3, 5 and 100 mM), the estimates 

for N corresponded to the average number of available channels (cf. Fig. 8c, d), with CV 

typically between 5 and 10% (Table 3). 

 We also performed non-stationary noise analysis of simulated responses based on the 

kinetic scheme derived from the Robert and Howe (2003) model (AII-RH03). In this model, 

the ion channels have concentration-dependent, multiple conductance levels and this is 

implemented as multiple, non-identical open states corresponding to doubly, triply and 

quadruply liganded states (O2, O3 and O4, respectively; Fig. 6a). In the original model the 

three open states were assigned single-channel conductances of 8, 16 and 24 pS, respectively 

(Robert and Howe, 2003). When we fitted our experimental results to the RH03 model, we 

were not able to assign absolute conductance values to the different open states, and set the 

relative conductance values to 0.333, 0.667 and 1 for the doubly, triply and quadruply 

liganded states, respectively. Here, when we set the absolute conductance values for these 

states to 12, 24 and 36 pS, respectively, non-stationary noise analysis of simulated responses 

evoked by brief (1.2 ms; 20-80% rise and decay time 0.25 ms) pulses of 3 mM glutamate 

generated an apparent single-channel conductance similar to that obtained experimentally in 

outside-out patches (Table 2). 

 With stochastic simulations to generate ensembles of responses (n = 1000 events) 

evoked by 1 ms square-wave pulses of five different concentrations of glutamate (0.3, 1, 3, 5, 

and 100 mM), we obtained variance versus mean curves that followed intermediary paths 

compared to those predicted from Eq. 4 and the three different single-channel conductances 



 

 
33 

 

(Fig. 8e). Overall, the curves were closest to the theoretical relationship predicted by the 

intermediate open state with single-channel conductance of 24 pS, but the curve generated 

with 100 mM glutamate followed the theoretical relationship corresponding to the highest 

conductance at the largest values of mean current (Fig. 8e). Importantly, when the variance 

versus mean relationships in Fig. 8e were fitted with Eq. 4, we obtained larger values of 

apparent single-channel current (i) with increasing concentration of glutamate (Table 4). The 

concentration-dependent increase of the estimated value for the apparent unitary current (i) 

is likely to correspond to increasing occupancy of the higher conductance states with 

increasing glutamate concentration (Rosenmund et al., 1998; Smith and Howe, 2000; Smith et 

al., 2000; Gebhardt and Cull-Candy, 2006). 

 When we repeated simulations and varied the number of available channels 

stochastically, the variance versus mean curves deviated strongly upwards (Fig. 8f). A linear 

fit to the initial part of the curve resulted in concentration-dependent estimates of i ranging 

from ~1.0 to ~1.5 pA (Table 4). When we applied peak scaling to the non-stationary noise 

analysis, the variance versus mean curves were moderately skewed (irrespective of whether 

peak scaling was applied to simulations with constant or variable number of available 

channels (Fig. 8g, h). With peak scaling, the estimates for i were slightly lower than those 

obtained without peak scaling, for a given concentration of glutamate, but still increased 

with increasing concentration of glutamate (Table 4). 

Figure 9 near here 

 

Covariance analysis of responses generated by kinetic models of AII amacrine AMPA 

receptors 

To understand the consequences of peak scaling and the generation of skewed variance 

versus mean relationships during non-stationary noise analysis, it can be useful to calculate 

the covariance functions for the response ensembles (Hartveit and Veruki, 2006). The 

coveriance function (in the time domain) characterizes how well the fluctuations are 

correlated at different times and is equivalent to the power spectral density function in the 

frequency domain (e.g. Bendat and Piersol, 2000). We were particularly interested to see how 

the covariance functions for responses simulated with either of the two different kinetic 
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schemes developed for AII amacrine AMPA receptors compared with each other and with 

the same kind of functions calculated from experimental responses using outside-out 

patches. 

 To mimic the experimental conditions, the simulations used pulses of glutamate (3 

mM, 1 ms duration) with finite rise and decay times (20-80% rise and decay times of 0.25 ms; 

Fig. 9a, d). Each covariance function was calculated from 1000 repetitions. Apart from a 

difference in absolute magnitude, the covariance functions for the two sets of responses 

simulated with either the AII-HR97 or the AII-RH03 kinetic schemes were relatively similar 

(Fig. 9b, e). We also analyzed the corresponding correlation functions with center point set to 

the peak of the mean response waveform (Fig. 9c, f; red traces). For both AII-HR97 and AII-

RH03, the correlation functions displayed an initial component with extremely fast decay, 

most pronounced for AII-RH03 (Fig. 9f). Following this component, the decay of both 

correlation functions could be fitted with a single exponential function, with a time constant 

of 1.1 ms for both AII-HR97 and AII-RH03. The time constants of deactivation for the 

corresponding mean responses were approximately the same (Fig. 9a, d; Table 2). For three 

outside-out patches, we obtained a sufficiently large number of responses under stable 

conditions without rundown to allow calculation of covariance functions with reasonably 

low noise. The single-exponential time constants of decay of the correlation functions (with 

center point at the peak of the mean) were 1.0 (Fig. 9i; red trace), 0.8 and 0.5 ms. The 

deactivation time constants for the ensemble mean responses for the same patches were 1.1 

(Fig. 9g), 0.7 and 0.9 ms, respectively. The similarity between the time constants of the decay 

of the correlation function and the deactivation of the mean response most likely explains 

why peak scaling only gives rise to moderately skewed variance versus mean relationships 

(Fig. 8c, d, g, h). When we applied peak scaling to the non-stationary noise analysis of the 

responses obtained in outside-out patches, the results were fairly similar, with the variance 

versus mean relationship approximately skewed for two patches, approximately parabolic for 

two patches and intermediary for three patches. In summary, both of our kinetic models are 

able to reproduce an extensive set of specific functional properties of AMPA receptors of AII 

amacrine cells. 

Figure 10 near here 
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Association of the GluA4 subunit with glutamatergic input to both arboreal and lobular 

dendrites of AII amacrine cells 

Certain functional properties (kinetics of deactivation, desensitization and recovery from 

desensitization) of homomeric glutamate receptors composed of the flip variant of the 

AMPA receptor GluA4 subunit are very similar to those observed for glutamate receptors in 

outside-out patches of AII amacrine cells (Veruki et al., 2003). Interestingly, 

immunocytochemical investigations, both at the light and electron microscopic level, have 

suggested the location of GluA4, as well as GluA3, but not GluA1 or GluA2, in the synapses 

made by rod bipolar cells on the arboreal dendrites of AII amacrine cells (cat: Qin and 

Pourcho, 1999; rabbit: Ghosh et al., 2001; Li et al., 2002; monkey: Ghosh et al., 2001). In 

addition to input from rod bipolar cells at the arboreal dendrites, however, AII amacrine 

cells also receive input from some types of OFF-cone bipolar cells targeted to the lobular 

dendrites and the lobular appendages (Kolb and Famiglietti, 1974; Strettoi et al., 1992; Chun 

et al., 1993). Very little is known with respect to the glutamate receptors that mediate input 

from OFF-cone bipolar cells to AII amacrine cells, except that they are likely to correspond to 

AMPA receptors, as all spEPSCs can be blocked by AMPA receptor-selective antagonists 

(Veruki et al., 2003) and kainate receptors have not been detected on these cells (Mørkve et 

al., 2002). In addition, in recordings of spEPSCs from AII amacrine cells, there is no evidence 

for any heterogeneity that would suggest two distinct populations of spEPSCs 

corresponding to synaptic input from rod and OFF-cone bipolar cells, respectively (Veruki et 

al., 2003). Because the GluA4 subunit seems to play an important role for the functional 

properties of AMPA receptors in AII amacrines and seems to be expressed in synapses made 

by rod bipolar cells in other species, we focused on the potential location of this AMPA 

receptor subunit to elucidate the properties of the synaptic input not only from rod bipolar 

cells to the arboreal dendrites, but also from OFF-cone bipolar cells to the lobular dendrites 

and appendages of AII amacrines. 

 To examine the relationship between GluA4 expression and processes of AII 

amacrine cells, we acquired confocal image stacks of slices with cells injected with Alexa 488 

and immunolabeled for GluA4 (Fig. 10a). We observed strong, punctate labeling of GluA4 
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across the inner plexiform layer, with roughly similar density of punctae in sublaminae a and 

b, consistent with previous results for cat, rabbit and monkey retinae (Qin and Pourcho, 1999; 

Ghosh et al., 2001). It is generally assumed that each fluorescently labeled punctum 

corresponds to a cluster of receptors, potentially corresponding to a synaptic location. Visual 

inspection of single slices of the confocal stack, with both channels (AII and GluA4) overlaid, 

identified several examples of GluA4 punctae that overlapped with the AII amacrine cell, 

both for lobular processes in sublamina a (Fig. 10b) and for arboreal processes in sublamina b 

(Fig. 10c). 

 For a quantitative, object-based colocalization analysis (Bolte and Cordelières, 2006; 

Dunn et al., 2011), we used simple threshold segmentation to identify structures in both the 

AII channel and the GluA4 channel. Following segmentation, we isolated all segmented 

GluA4 objects that overlapped (intersected) with structures belonging to the segmented AII 

amacrine cell. Although the physiological experiments with outside-out and nucleated 

patches indicate that AMPA receptors are present at the cell body of AII amacrine cells, there 

is no evidence for input from bipolar cells directly onto the cell body of AII amacrine cells 

(e.g. Tsukamoto and Omi, 2013). In addition, the fluorescence intensity of the cell body was 

very high and with simple threshold segmentation that captures as many as posible of the 

thinner processes of AII amacrine cells, the cell body will typically be considerably over-

segmented. Accordingly, this region was excluded from the morphological analysis. By 

chance, some punctae will most likely overlap with AII processes without having a synaptic 

relationship to the same cell. This means that the total population of overlapping GluA4 

punctae is likely to include false positives when the minimum criterion for being classified as 

overlapping was sharing a single voxel between the segmented volumes of a GluA4 

punctum and an object belonging to the segmented AII amacrine. However, with adequate 

immunolabeling it is highly likely that the population of overlapping punctae will include 

punctae representing synaptic receptor clusters. For the AII amacrine illustrated in Fig. 10, a 

total of 167 GluA4 objects overlapping with AII processes were detected (Fig. 10d). For each 

overlapping GluA4 object we analyzed the distance from its intensity-weighted center of 

mass (CM) to the nearest point of the surface of the segmented AII amacrine cell and the 

relative fraction of the object (punctum) volume that was occupied by the AII amacrine (as a 
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measure of colocalization), illustrated by the histograms in Fig. 10e and 10f, respectively. For 

94 of the overlapping punctae, the CM-to-surface distance was ≤100 nm, suggesting that the 

punctae could correspond to synaptic clusters on the AII amacrine. For 37 of the overlapping 

punctae, the relative colocalization was ≥50% (Fig. 10d), also suggesting that the punctae 

could correspond to synaptic clusters. Plotting the relative colocalization versus the CM-to-

surface distance, indicated that when the colocalization increased from 0 to 50% the CM-to-

surface distance decreased and that when the colocalization increased from 50 to 100% the 

surface distance slightly increased again (Fig. 10g), most likely because the CM of the 

corresponding punctae was located on the inside of the segmented AII structures and further 

from the surface. 

Fig. 11 near here 

 For a total of eight AII amacrine cells, the average number of overlapping punctae 

was 402 ± 61 (range 167 - 684). The average number of punctae with CM-to-surface distance 

≤100 nm was 190 ± 36 (range 60 - 362) and the average number of punctae with relative 

colocalization ≥50% was 132 ± 21 (range 38 - 218). Fig. 11 shows the distribution of the 

number of punctae with relative colocalization ranging between >0 and 100%, plotted for 

overlap increments of 10%, for all eight AII amacrine cells. When we increase the criterion 

for genuine colocalization between an overlapping GluA4 punctum and an object belonging 

to the AII amacrine higher than >0%, the number of false positives will decrease, but at the 

same time the number of false negatives will increase, i.e. we are likely to miss some GluA4 

punctae that are genuinely located at the process of the AII cell. 

 We next extracted the average signal in the AII channel in a volume corresponding to 

a square prism surrounding the CM coordinates of all GluA4 punctae that overlapped with 

the segmented AII amacrine cell. As a control, we also performed the same analysis for the 

signal in the GluA4 channel itself. Fig. 10h shows the central slice and corresponding line 

profile through the averaged signal in the GluA4 channel around the spatially aligned CM 

coordinates of the GluA4 punctae that overlapped with the AII amacrine, essentially 

displaying the point spread function of the imaging system in the XY plane (assuming that 

the signal source of each GluA4 punctum is too small to be resolved by light microscopic 

imaging as used here). The corresponding average signal in the AII channel around the CM 
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coordinates for the overlapping GluA4 punctae is shown in Fig. 10i and indicated a clear 

increase above background. When we repeated the same analysis separately for overlapping 

punctae located in sublamina a (n = 64 punctae) or b (n = 103 punctae; sublaminae a and b 

demarcated from each other by the location of the arrow head in Fig. 10a), both regions 

displayed increased signal from the AII amacrine around the overlapping GluA4 punctae 

(Fig. 10j, k). For the lobular dendrites, the signal in the AII channel displayed a broad profile 

(Fig. 10j), corresponding to the thicker lobular dendrites and appendages. For the arboreal 

dendrites, the signal in the AII channel displayed a narrow profile (Fig. 10k), corresponding 

to the overall thinner arboreal processes. When we repeated this analysis by including only 

the CM coordinates of GluA4 punctae with ≥50% overlap, the results were qualitatively very 

similar, both for the average signal in the AII channel as a whole (n = 38 punctae; Fig. 10l) 

and when we performed the analysis separately for overlapping punctae located in 

sublamina a (n = 17 punctae; Fig. 10m) or b (n = 21 punctae; Fig. 10n). 

Figure 12 near here 

 If the GluA4 punctae overlapping with the AII amacrine cell correspond to synaptic 

clusters of receptors, it is expected that they should be spatially correlated with the presence 

of the postsynaptic scaffold protein PSD95 (Ghosh et al., 2001) and presynaptic ribbon 

proteins like ribeye (Schmitz et al., 2000; Lagnado and Schmitz, 2015). To investigate this, 

retinal slices with injected AII amacrine cells were double immunolabeled with antibodies 

against either GluA4 and PSD95 or GluA4 and CtBP2 (identical with the B domain of ribeye; 

Schmitz et al., 2000). The maximum intensity projection of the AII amacrine cell illustrated in 

Fig. 12a is from a slice immunolabeled for GluA4 and PSD95. Visual inspection of single 

slices in the confocal stack identified several examples of apparent overlap between the AII 

amacrine and GluA4 with associated punctate labeling for PSD95, both in the lobular region 

(sublamina a; Fig. 12b) and arboreal region (sublamina b; Fig. 12c). We then used the CM 

coordinates of the GluA4 punctae overlapping with the AII amacrine (n = 500 punctae) to 

estimate the average signal in and around the punctae, both in the AII channel and in the 

PSD95 channel. The presence of a GluA4 punctum resulted in a localized signal increase 

above background not only in the AII channel (similar to Fig. 10i-k), but also in the PSD95 

channel, strongly suggesting that clusters of GluA4-containing receptors are associated with 
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PSD95 (Fig. 12d). The correlation between GluA4 and PSD95 was also observed when we 

repeated the analysis separately for overlapping punctae located in sublamina a (n = 154 

punctae) or b (n = 346 punctae; sublaminae a and b demarcated from each other by the 

location of the arrow head in Fig. 12a), with increased PSD95 signal around the overlapping 

GluA4 punctae both for lobular (Fig. 12e) and arboreal processes (Fig. 12f). When we 

repeated the analysis by including only the CM coordinates of GluA4 punctae with ≥50% 

overlap, the results were qualitatively very similar, both for the average signal in the PSD95 

channel as a whole (n = 149 punctae; Fig. 12g) and when we performed the analysis 

separately for overlapping punctae located in sublamina a (n = 38 punctae; Fig. 12h) or b (n = 

111 punctae; Fig. 12i). This suggests that AMPA receptors involved in mediating input to AII 

amacrine cells from OFF-cone bipolar cells and rod bipolar cells both contain the GluA4 

subunit and are likely to have similar functional properties. Virtually identical results were 

observed for another injected AII amacrine cell in a slice labeled for GluA4 and PSD95. These 

results reflect the average signal of PSD95 associated with a GluA4 receptor cluster on an AII 

amacrine cell. When we manually examined the confocal stack, we also found several 

examples of GluA4 punctae that did not seem to be closely associated with a cluster of 

PSD95 labeling (e.g. Fig. 12b, c). 

Figure 13 near here 

 The colocalization of AII amacrine-associated GluA4 receptor clusters with PSD95 

suggested that these receptors are generally located at synapses. A synaptic location predicts 

that the GluA4 punctae should also be associated with ribbon proteins located in the 

corresponding presynaptic bipolar cells. Thus, we also examined retinal slices with dye-

injected AII amacrine cells and double immunolabeled for GluA4 and CtBP2. Fig. 13a shows 

maximum intensity projections of an AII and fluorescently labeled punctae of GluA4 and 

CtBP2. Visual inspection of single slices in the confocal stack identified several examples of 

apparent overlap between the AII amacrine, GluA4 punctae and CtBP2 punctae, both in the 

lobular region (sublamina a; Fig. 13b) and arboreal region (sublamina b; Fig. 13c). When the 

CM coordinates of the GluA4 receptor clusters overlapping with the AII amacrine cell (n = 

377 punctae) were used to extract the average signal in the AII amacrine and CtBP2 channels, 

we observed increased signal not only for the AII amacrine (similar to Fig. 10i-k), but also for 
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CtBP2 (Fig. 13d). When the population of overlapping GluA4 punctae was divided into two 

groups corresponding to lobular processes in sublamina a (n = 85 punctae; Fig. 13e) and 

arboreal dendrites in sublamina b (n = 292 punctae; Fig. 13f; sublaminae a and b demarcated 

from each other by the location of the arrow head in Fig. 13a), both populations displayed 

enhanced signal for CtBP2. When we repeated the analysis by including only the CM 

coordinates of GluA4 punctae with ≥50% overlap, the results were qualitatively very similar, 

both for the average signal in the CtBP2 channel as a whole (n = 154 punctae; Fig. 13g) and 

for overlapping punctae located in sublamina a (n = 28 punctae; Fig. 13h) or b (n = 126 

punctae; Fig. 13i). These results suggest that clusters of GluA4 receptors associated with both 

lobular and arboreal dendrites of AII amacrine cells are postsynaptic at ribbon synapses of 

bipolar cells. Similar results were seen for a second AII amacrine cell injected in a slice 

immunolabeled for GluA4 and CtBP2. 

 

Discussion 

Understanding synaptic transmission at ribbon synapses requires a knowledge of both the 

presynaptic machinery specialized for releasing synaptic vesicles at high rates for extended 

periods of time, as well as how the postsynaptic receptors translate the spatiotemporal 

concentration profiles of glutamate into electrical signals. In this study we used an extensive 

series of experimental observables to develop kinetic models for AMPA receptors of AII 

amacrine cells. Such models are essential for developing realistic computational models to 

explore synaptic signaling at the nanoscale level. We verified the ability of these kinetic 

models to reproduce a series of experimental results and explored the models' behavior in 

relation to simple glutamate concentration profiles and conditions of physiological 

relevance. In addition, we investigated the molecular basis for the unique properties of 

AMPA receptors of AII amacrine cells with a focus on the GluA4 subunit. Using 

immunolabeling, we demonstrated that this subunit was present not only at synapses made 

by rod bipolar cells, but also at synapses from OFF-cone bipolar cells. This suggests that 

AMPA receptors at both synaptic locations use similar mechanisms to adapt their functional 

properties to respond to ribbon synapse release patterns. 
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Functional properties of AMPA receptors of AII amacrine cells and adaptation to ribbon 

synapses 

We now have extensive quantitative information about the functional properties of AMPA 

receptors expressed in AII amacrine cells. This includes information about Ca2+ permeability, 

activation kinetics, deactivation kinetics, kinetics and extent of desensitization, kinetics of 

recovery from desensitization, concentration-response properties, concentration dependence 

of equilibrium desensitization, Popen, max, and single-channel conductance (Mørkve et al., 2002; 

Singer and Diamond, 2003; Veruki et al., 2003; this study). For AMPA receptors at ribbon 

synapse input to AII amacrines, two properties seem to be of particular relevance: the IC50 for 

equilibrium desensitization and the fast recovery from desensitization. 

 First, the IC50 of 10.5 µM for equilibrium desensitization is relatively similar to 

observations made for AMPA receptors in neurons with action potential-mediated 

glutamatergic input, such as cerebellar Purkinje cells (8.7 µM; Häusser and Roth, 1997) 

dentate gyrus basket cells (2.2 µM; Geiger et al., 1999) and hippocampal (CA3) pyramidal 

neurons (9.6 µM; Colquhoun et al., 1992). It is difficult, however, to predict the functional 

consequences of these values for the transmission in specific synapses. The extent to which 

synaptic receptors undergo steady-state desensitization will depend both on the time-

averaged vesicle release rates, which can vary considerably between synapses, as well as on 

the clearance rate of glutamate after release into the synaptic cleft. The clearance could 

depend strongly on the ultrastructure and synaptic environment, either promoting or 

preventing pooling of neurotransmitter at concentrations giving rise to steady-state 

desensitization. In addition, the extent to which the microenvironment of postsynaptic 

densities is protected from ambient glutamate via ensheathment by glial cell membranes 

seems to be highly variable and region-specific. In other regions of the central nervous 

system, the ambient concentration of glutamate in the extracellular space is uncertain, with 

estimates ranging from ~0.02 to ~20 µM (Herman and Jahr, 2007; Moussawi et al., 2011), but 

to our knowledge similar estimates for the retina are not available. This remains an 

important goal for future investigations. 

 Second, whereas the AMPA receptors of AII amacrines display fast and extensive 

desensitization and a glutamate-sensitivity of equilibrium desensitization that is similar to 
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that observed for other AMPA receptors, the recovery from desensitization is surprisingly 

fast, with τrecovery ~13 ms (Table 2). This property is likely to be of particular importance for 

enabling the postsynaptic AMPA receptors to continue to respond to glutamate even when 

vesicles are released continuously at a high rate. For rod bipolar cells, the maximum 

sustained release rate at an individual release site (ribbon) can be estimated to be 

approximately 30 - 45 Hz (see Oltedal and Hartveit, 2010 for a discussion). For OFF-cone 

bipolar cells, we are not aware of corresponding estimates. For several other neurons, the 

kinetics of recovery from brief-pulse desensitization of AMPA receptors is typically much 

slower. In Purkinje cells, τrecovery is ~33 ms (Häusser and Roth, 1997), in dentate gyrus basket 

cells the recovery is bi-exponential with time constants of 34 and 387 ms (Koh et al., 1995), 

and in CA3 pyramidal neurons τrecovery is ~48 ms (Colquhoun et al., 1992). Few neurons 

express AMPA receptors with recovery almost as fast as for the AMPA receptors of AII 

amacrines. One example is for neurons in the chick nucleus magnocellularis (τrecovery ~16 ms; 

Raman and Trussell, 1995). Another example is for a particular type of OFF-cone bipolar cell 

in tree shrew retina (b2, τrecovery ~18 ms; DeVries, 2000). Other types of OFF-cone bipolar cells 

investigated in the same study displayed much slower recovery, suggesting that fast 

recovery is not a general characteristic of AMPA receptors at ribbon synapses. The kinetic 

models developed in the present study will allow detailed computational exploration of the 

functional consequences of the fast recovery from desensitization for the synaptic 

transmission between bipolar cells and AII amacrine cells.  

 A limitation of this and most other kinetic models for receptor channels expressed by 

specific neurons is that because synaptic receptors are typically located in the dendrites, their 

kinetic properties are difficult to investigate. For technical reasons, most of the kinetic 

properties are therefore measured in experiments with membrane patches that allow 

activation by ultrafast application of agonist to mimic the temporal concentration profile of 

neurotransmitter in a chemical synapse (Clements, 1996). Except for a relatively small 

number cases when neuronal processes are thick enough to permit excision of outside-out 

patches, most investigations have employed somatic patches. Such patches may have a 

different subunit composition and may exist in association with different accessory proteins 

or cytoskeletal elements than the synaptic receptors (for a discussion, see Hartveit and 
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Veruki, 2007). For AII amacrine cells, there is no evidence for synaptic input from bipolar 

cells directly onto the cell body and the receptors that are located there must be considered 

extrasynaptic. However, for kinetic parameters that can reasonably be compared for synaptic 

and extrasynaptic receptors (e.g. the decay time constants of spEPSCs and brief pulse patch 

responses), the properties of extrasynaptic (somatic) and synaptic AMPA receptors of AII 

amacrine cells seem to be reasonably similar (see Veruki et al., 2003, for a detailed 

discussion). 

 

Kinetic modeling 

Early kinetic models of AMPA receptors assumed that each receptor had two binding sites 

which both had to be occupied for the channel to open. However, there is strong evidence 

that AMPA receptors are tetramers and contain four binding sites for glutamate (reviewed 

by Plested, 2015). In addition, there is strong evidence that AMPA receptors show multiple 

conductance levels and that increasing occupancy increases the single-channel conductance 

(Rosenmund et al., 1998; Smith and Howe, 2000; Smith et al., 2000; Gebhardt and Cull-

Candy, 2006). Here, we used ultrafast application of glutamate to outside-out patches to 

extend the functional characterization of AMPA receptors of AII amacrine cells, enabling us 

to generate computational models in the form of Markov-type kinetic schemes. Rate 

constants were obtained by model fitting to reproduce the experimental data. Such models 

are not only a compact representation of the dynamic properties of the receptor channels (cf. 

Häusser and Roth, 1997), but also provide convenient and unique possibilities for 

computational modeling. 

 Typical for the kind of optimization problem involved in model fitting, the resulting 

rate constants were relatively poorly constrained. This was evidenced by the fact that the 

same local minimum (with a tolerance of 10%) was never obtained twice by the local 

optimization algorithm when simulations were started from > 300 random starting points. 

Accordingly, values of individual rate constants obtained in this way for a given model 

structure should not be compared between different types of receptors. More reliable 

determination of specific rate constants will require single-channel recording (Colquhoun 

and Hawkes, 1995), which has had limited success for AMPA receptors due to their 
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extremely fast kinetics. Nevertheless, the obtained kinetic models faithfully reproduce a 

series of experimental observables without any obvious erroneous properties and are thus 

succinct representations of the dynamics of the receptors that will enable in silico modeling 

and experimentation. 

 For two reasons, the EC50 and Hill coefficient for the steady-state concentration-

response relationship were not used for model fitting. First, the steady-state responses are 

low even for nucleated patches and high concentrations of glutamate. For outside-out 

patches, the amplitude of the steady-state, non-desensitizing response is only ~4% of the 

peak amplitude. Second, the dependence of this response component on glutamate 

concentration is most likely not important for normal functioning of synaptic AMPA 

receptors. Accordingly, we chose not to fit the concentration-dependence of the steady-state 

conductance in favor of a better fit to other properties which are functionally more relevant. 

 Of the two models, the AII-RH03 incorporates our current understanding of the 

molecular structure of AMPA receptors with four binding sites, three open states and three 

conductance levels. This model fits the experimental observables only slightly worse than the 

AII-HR97 model, accordingly, we believe that the AII-RH03 model should be preferred for 

future in silico experiments. On the other hand, because the AII-HR97 model has fewer states 

and therefore is considerably faster computationally, it might be preferred for certain 

studies. With fewer states and an overall simpler structure, it is also easier to extend with 

additional states to accommodate experimental measurements of the effect of antagonists 

(e.g. Wadiche and Jahr, 2001). 

 It is a limitation of the kinetic models developed in this study that the physiological 

measurements were performed at room temperature (22 - 25 °C). The different processes and 

phenomena underlying synaptic transmission (transmitter diffusion, receptor kinetics, 

single-channel conductance, etc.) display marked dependence (roughly exponential) on 

temperature (for reviews, see Hille, 2001; Roth and van Rossum, 2010; Sterratt et al., 2011). 

The temperature dependence of synaptic kinetics is in general very steep, with a Q10 

temperature coefficient (the experimentally determined change for a 10-degree difference in 

temperature) typically of about 2 - 3 (Roth and van Rossum, 2010). This is similar to the Q10 

for time constants of activation and inactivation of voltage-gated ion channels (e.g. Destexhe 
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and Huguenard, 2010), rate coefficients of gating of ion channels, and many enzyme 

reactions (Hille, 2001). In contrast to gating, the (maximum) conductance of an open ion 

channel is considerably lower, with a Q10 of only 1.2 - 1.5 (similar to that for aqueous 

diffusion of ions; Hille, 2001). If the channel kinetic data were obtained at room temperature, 

but a model for the channel will be used at a higher temperature that is physiologically more 

relevant, the kinetic properties of the channel must be scaled accordingly. In the ideal case, 

the Q10 has been measured, but often this is not the case and one must resort to scaling by 

default values. One possibility is to scale all the reaction rate constants of the different 

transitions in a Markov-style model uniformly by the same multiplicative factor 

(corresponding to a specific value for Q10; e.g. Postlethwaite et al., 2007). Unfortunately, this 

is not always appropriate, as there is evidence, at least for some receptor channels, that the 

Q10 for different transitions can differ substantially (Cais et al., 2008). Whereas we have not 

obtained estimates for the temperature-dependence of glutamate-evoked responses of 

receptors in patches from AII amacrine cells, our laboratory has previously published 

estimates for the Q10 of spEPSCs, with a Q10 of 1.5 for the τdecay, 1.3 for the 10-90% rise time, 

and 1.4 for the peak amplitude (Veruki et al., 2003). The Q10 for τdecay is similar to that found 

for cerebellar granule cells (1.7), but both values are lower than the Q10 for τdecay of patch 

responses from cerebellar granule cells (Silver et al., 1996). It is possible that Q10 values for 

EPSC decay kinetics are underestimated because of electrotonic filtering that effectively sets 

a lower limit for the experimentally measured values.  

 

Immunolabeling and morphological analysis of synaptic proteins 

Because of previous evidence for involvement of the AMPA receptor subunit GluA4 in the 

synaptic input from rod bipolar cells to AII amacrine cells (Qin and Pourcho, 1999; Ghosh et 

al., 2001; Li et al., 2002) and the similarity between several functional properties of the 

AMPA receptors of AII amacrine cells and homomeric GluA4 receptors, we focused the 

morphological investigations on this subunit. Our analysis used immunolabeling for the 

GluA4 subunit in retinal slices with AII amacrine cells filled with fluorescent dyes. After 

threshold segmentation of the fluorescent cell and immunolabeled GluA4 punctae, we 

isolated all punctae that overlapped with an object belonging to the cell. As the minimum 
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criterion for overlap corresponded to sharing a single voxel, the population of GluA4 

punctae isolated in this way is likely to include a number of false positives, i.e. punctae that 

do not correspond to a cluster of receptors located in the membrane of the dye-filled AII 

amacrine cell. In addition, our analysis also included overlap in the axial direction where 

resolution is lower (than in the lateral direction). When we graphed the number of 

overlapping GluA4 punctae as a function of the relative overlap with the AII amacrine, the 

number of overlapping punctae decreased smoothly as a function of overlap, with an 

average of 132 punctae with ≥50% overlap. This number will include fewer false positives, 

but is unfortunately likely to include a larger number of false negatives, i.e. it will have 

missed punctae corresponding to receptor clusters located in the cell membrane of the dye-

filled cell. This can happen when a given process is undersegmented because of low intensity 

or when a GluA4 punctum is located at a particularly thin process such that the segmented 

volume of the process occupies a (relatively) small fraction of the segmented volume of the 

GluA4 signal. 

 A rough guide to the expected number of synaptic punctae might be found in the 

recent results obtained for AII amacrine cells in mouse retina with complete reconstructions 

of three cells from electron microscopic images (Tsukamoto and Omi, 2013). On average, the 

AII amacrines received input at 173 ribbon synapses. From the average relation between the 

relative overlap (colocalization) of a GluA4 punctum and the number of associated punctae 

in our light microscopic data, this would correspond to an overlap of about ≥40% (Fig. 11). 

For a considerable range of values for relative overlap between segmented GluA4 punctae 

and objects belonging to the segmented AII amacrine, there is considerable variability of the 

total number of overlapping GluA4 punctae between different AII amacrines, approximately 

3- to 4-fold range (Fig. 11). Some of this variability could be explained by a corresponding 

variability of cell size. In a recent morphometric study from our laboratory (Zandt et al., 

2017), we found that the length of the total arborization of AII amacrine cells varied over 

3-fold (range 500 - 1630 µm). Although the presence of an overlapping GluA4 punctum 

predicted a locally increased intensity for both postsynaptic PSD95 and presynaptic ribbons 

(CtBP2), it is difficult to exclude the possibility that some of the GluA4 punctae could be 

extrasynaptic and corresponding to clusters of GluA4 receptors outside the PSDs of ribbon 
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synaptic input. It remains an important question to investigate the total number of ribbon 

synapses in AII amacrine cells, how it scales with cell size and the length of lobular and 

arboreal dendrites. This will require complete morphological reconstruction (cf. Zandt et al., 

2017) and, ideally, validating the classification of overlapping punctae as colocalized or not 

by correlation with images obtained by super-resolution light microscopy (e.g. Sigal et al., 

2015). Whereas ultrastructural imaging with electron microscopy can prove synaptic 

localization, it seems unrealistic that such methods can be used to image complete AII 

amacrine cells immunolabeled for synaptic proteins. 

 Irrespective of the problems related to light microscopic imaging of fluorescent cells 

and immunolabeled synaptic proteins, our analysis indicated a consistent pattern of 

colocalization between GluA4 and processes of AII amacrine cells when we increased the 

criterion for overlap from >0% to ≥50%. This was also the case when the analysis was 

performed separately for arboreal and lobular dendrites, suggesting that GluA4 could be 

involved in mediating input from both rod bipolar cells (at the arboreal dendrites) and OFF-

cone bipolar cells (at the lobular dendrites). By double labeling for GluA4 and markers for 

postsynaptic densities (PSD95) or presynaptic ribbons (CtBP2), we observed colocalization 

for both combinations at both arboreal and lobular dendrites, suggesting that the GluA4 

punctae overlapping with AII amacrine cells include synaptically located receptors. 

 

Molecular basis for functional properties of AMPA receptors of AII amacrine cells 

For AII amacrine cells, the kinetics of responses evoked by ultrafast application of glutamate 

to outside-out patches and the kinetics of spEPSCs are very similar (Veruki et al., 2003). 

Comparing the kinetic properties of AMPA receptors in AII amacrines with those reported 

for recombinant receptors, reveals that both GluA1 and GluA4 homomeric receptors display 

deactivation kinetics similar to those of AII amacrines. For GluA4 receptors, both flip and 

flop splice variants display deactivation time constants of ~0.6 ms, but for desensitization, 

GluA4 flop is faster (τdecay ~0.9 ms) than GluA4 flip (τdecay ~3.6 ms) (Mosbacher et al., 1994). 

The latter value is similar to the dominant (faster) time constant of desensitization for AII 

AMPA receptors (~3.5 ms), suggesting that only GluA4 flip is likely to contribute 

substantially to AII receptors. GluA1 receptors display deactivation (τdecay ~1.1 ms for both 
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flip and flop) and desensitization kinetics (~3.4 ms for flip and ~3.7 ms for flop; Mosbacher et 

al., 1994) comparable to AII receptors, but their rate of recovery from desensitization (τrecovery 

~147 ms; Partin et al., 1996) is considerable longer than that observed for GluA4 (~6-43 ms; 

Lomeli et al., 1994) and AII receptors (~13 ms). Importantly, however, τrecovery for GluA4 flip 

(6-14ms), but not τrecovery for GluA4 flop (31-43 ms), is very similar to that observed for AII 

amacrines. Taken together, these observations suggest that GluA4 flip subunits make a 

substantial contribution to AMPA receptors mediating synaptic input to these cells. This 

interpretation is also consistent with the sensitivity of AMPA receptors of AII amacrines to 

cyclothiazide (Mørkve et al, 2002; Veruki et al., 2003) which more strongly potentiates the 

flip than the flop receptor variants (Partin et al., 1994). 

 In addition to GluA4, there is evidence that AII amacrine cells also express the GluA3 

subunit at ribbon synaptic inputs made by rod bipolar cells. Compared to GluA4, the 

evidence for GluA3 is more indirect, as it is based on immunolabeling with an antibody that 

binds both GluA2 and GluA3 (GluA2/3), but lack of labeling with an antibody that is 

selective for GluA2 (Ghosh et al., 2002; Li et al., 2002; Qin and Pourcho, 1999). Nevertheless, 

it is pertinent to address the question of the potential contribution of GluA3 to the functional 

properties of the corresponding synaptic receptors and whether GluA3 might also be 

involved in mediating glutamatergic input from OFF-cone bipolar cells. From physiological 

experiments with recombinant receptors, GluA3 flip (with glycine at the R/G site) display 

time constants for desensitization (τdecay ~4.9 ms; Lomeli et al., 1994) and recovery from 

desensitization (τrecovery ~15 ms; Lomeli et al., 1994) that are similar to those for receptors in 

AII amacrines. Both GluA3 flip (with arginine at the R/G site) and GluA3 flop seem less 

likely to be involved, with either too slow recovery from desensitization (τrecovery ~36 ms for 

GluA3 flip (R); Lomeli et al., 1994) or too fast desensitization (τdecay ~1.4 ms; Mosbacher et al., 

1994). To our knowledge, the relevant data for deactivation kinetics for GluA3 flip (G) are 

unfortunately not available.  Important topics for future investigations will be to determine 

the exact composition (GluA3 vs. GluA4 and homomeric vs. heteromeric receptors), 

including potential associated auxiliary proteins, of the AMPA receptors at ribbon synaptic 

input from both rod and OFF-cone bipolar cells, the spatial distribution and density of 

specific types of receptors and the functional role of their kinetic properties for signaling and 
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synaptic integration in AII amacrine cells. 
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Figure legends 

Fig. 1 Concentration-response relationships of AMPA receptor-mediated currents activated 

by application of glutamate to outside-out patches from AII amacrine cells. a Morphological 

identification of an AII amacrine cell body (arrow) in a retinal slice imaged with infrared 

differential interference contrast videomicroscopy. Scale bar: 10 µm. b Physiological 

identification of an AII amacrine cell with electrophysiological "signature" observed during 

whole-cell recording in the rat retinal slice preparation. Notice inward action currents during 

escape from voltage clamp evoked by 5 mV depolarizing pulses (top trace; 5 ms duration) 

from the holding potential (-60 mV). c Currents (bottom traces) activated in an outside-out 

patch by long (100 ms), ultrafast application of glutamate (concentrations as indicated). Here 

and later, the top trace represents the idealized exchange time course. Each trace is the 

average of 15 - 25 responses. Here and later, unless noted otherwise, recordings from 

outside-out patches are from conventional outside-out patches. d Same responses as in c, but 

each trace has been normalized to its peak amplitude to better visualize decreasing rise time 

with increasing glutamate concentration. e Concentration-response relationship of the peak 

response of glutamate-activated currents evoked by ultrafast application of long (100 ms) 

pulses to outside-out patches. Here, and in subsequent figures, the glutamate-activated 

current at each concentration is plotted as mean ± SEM. Data points normalized to the 

current at 5 mM (n = 4 - 16 patches for each data point). Data points have been fitted with Eq. 

3. f Currents (bottom traces) activated in an outside-out patch by brief (~1.2 ms), ultrafast 

application of glutamate (concentrations as indicated). Each trace is the average of 23 - 25 

responses. g Concentration-response relationship of the peak response of glutamate-

activated currents evoked by ultrafast application of brief (~1.2 ms) pulses to outside-out 

patches. Data points normalized to the current at 5 mM (n = 1 - 7 patches for each data 

point). Data points have been fitted with Eq. 3. h Concentration-response relationship of the 

steady-state response of glutamate-activated currents evoked by application of long (100 ms) 

pulses to nucleated patches. Data points normalized to the current at 1 mM (n = 2 - 5 patches 

for each data point). Data points have been fitted with Eq. 3 
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Fig. 2 Concentration dependence of kinetic parameters of AMPA receptor-mediated 

currents activated by glutamate currents in outside-out patches from AII amacrine cells. a 

Deactivation time constant (decay phase fitted with single-exponential function, Eq. 1) for 

responses evoked by brief (~1.2 ms) pulses of glutamate at five different concentrations (0.5, 

1, 5, 10, 30 mM; n = 4 - 6 patches for each data point). b Amplitude-weighted desensitization 

time constant (decay phase fitted with double-exponential function, Eq. 2) for responses 

evoked by long (100 ms) pulses of glutamate at six different concentrations (0.1, 0.5, 1, 5, 10, 

30 mM; n = 3 - 15 patches for each data point). c Relative amplitude contribution of the two 

amplitude components: A1 for the fast component (open circles) and A2 for the slow 

component (filled circles) after fitting decay phase of glutamate-evoked desensitization with 

double-exponential function (Eq. 2) for six different concentrations (as in b; n = 3 - 15 patches 

for each data point). d Rise time (20-80%) of responses evoked by short (~1.2 ms; S, open 

circles) or long (100 ms; L, filled circles) pulses of glutamate at six different concentrations (as 

in b; n = 3 - 15 patches for each data point). Because of unequal weighting related to variable 

number of patches for each data point, rise times were first normalized to that at 5 mM for 

each patch, averaged and multiplied again with the mean rise time at 5 mM 

 

Fig. 3 Equilibrium desensitization of AMPA receptors in AII amacrine cells. a Currents 

(bottom traces) activated in two different outside-out patches by long (100 ms), ultrafast 

application of glutamate (3 mM) after pre-exposing the patches to different concentrations of 

glutamate (as indicated) for 1.75 s. Traces labeled "Control" evoked by glutamate without 

pre-exposure to glutamate. Notice how pre-exposure to increasing concentrations of 

glutamate reduces the peak amplitude of the response evoked by 3 mM glutamate. Top 

traces represent pre-exposure to glutamate (dashed line) and ultrafast application of 

glutamate (continuous line). Each trace is the average of 4 - 25 responses. b Concentration-

inhibition relationship (filled circles) of the peak response of glutamate-activated (3 mM) 

currents evoked by ultrafast application of long (100 ms) pulses to outside-out patches pre-

exposed to different concentratios of glutamate (0.3 to 100 µM; n = 3 - 11 patches for each 

data point). Data points normalized to the current evoked by glutamate (3 mM) without pre-

exposure to glutamate such that "1" and "0" correspond to no and complete equilibrium 
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desensitization, respectively. Data points have been fitted with Eq. 3. For comparison, graph 

also shows concentration-response relationship (as in Fig. 1e; open circles; data points fitted 

with Eq. 3). The graphs of the two fitted curves have been scaled such that the maximum for 

the concentration-inhibition relationship (1; left Y-axis) coincides with the maximum for the 

concentration-response relationship (1.35; right Y-axis) 

 

Fig. 4 Single-channel conductance and maximum open probability (Popen, max) of AMPA 

receptors in AII amacrine cells obtained by non-stationary noise analysis of glutamate-

evoked responses in an outside-out patch from an AII amacrine cell. a Three individual 

responses (black traces) obtained by brief (~1.2 ms) pulses of glutamate (3 mM), the ensemble 

mean waveform (red trace) has been superimposed on each trace. Horizontal scale bar (5 ms) 

also applies to traces in b - d. b three difference currents calculated from corresponding 

individual records (displayed in a) and mean waveform (red trace in a). c Ensemble mean of 

all glutamate-evoked responses (n = 20 repetitions). Broken horizontal lines indicate 

amplitude intervals used for binning mean current and variance such that each bin on 

average corresponds to a constant number of channel closures. d Ensemble current variance 

(without binning) of all glutamate-evoked responses, calculated from the differences 

between individual records and the ensemble mean waveform (as in b). e Ensemble current 

variance (from d) versus mean current (after binning, from c; bottom axis) and open 

probability (Popen; top axis). Time range used for the variance versus mean graph corresponds 

to the data points from the peak of the mean waveform to the end of the decay phase. Data 

points were fitted with Eq. 4 

 

Fig. 5 Kinetic scheme and model responses (AII-HR97) for AMPA receptors in AII amacrine 

cells. a Kinetic scheme of a model proposed for AMPA receptor gating in AII amacrine cells 

(original scheme with different rate constants proposed for gating of AMPA receptors in 

cerebellar Purkinje cells; Häusser and Roth, 1997). C0: unbound state; C1: singly liganded 

state; C2: doubly liganded state; O: open state; C3: singly liganded, desensitized state; C4, 

C5, C6 and C7: doubly liganded, desensitized states. A rate constant labelled kAB indicates the 

transition rate from state A to state B. Here and later, when a rate constant has the unit of M-1 
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in addition to s-1, it indicates a ligand-binding step. The rate constants were as follows: kC0C1 = 

19.7 × 106 M-1 s-1, kC1C0 = 845 s-1, kC1C2 = 2.16 × 106 M-1 s-1, kC2C1 = 20.8 × 103 s-1, kC2O = 117 × 103 s-1, 

kOC2 = 5.87 × 103 s-1, kOC7 = 148 s-1, kC7O = 68.6 s-1, kC1C3 = 708 s-1, kC3C1 = 161 s-1, kC2C4 = 184 s-1, 

kC4C2 = 3.29 s-1, kOC5 = 82.3 × 10-3 s-1, kC5O = 50.3 × 10-3 s-1, kC7C6 = 57.9 s-1, kC6C7 = 4.06 s-1, kC3C4 = 

6.99 × 106 M-1 s-1, kC4C3 = 5.30 × 103 s-1, kC4C5 = 53.7 s-1, kC5C4 = 92.0 s-1, kC5C6 = 4.62 × 103 s-1, kC6C5 = 

246 s-1. b Macroscopically simulated responses evoked by brief pulses (1 ms; left) or steps 

(middle) of glutamate (0.3, 1, 3, 10 and 30 mM) and to variable duration (1, 5, 10, 20, 30 and 

100 ms; right) pulses of glutamate (3 mM). Time course of glutamate application indicated 

above response traces. c Macroscopically simulated response (bottom) evoked by a glutamate 

concentration profile (top) designed to mimick a synaptic concentration profile generated by 

release of a single transmitter vesicle (instantaneous rise followed by double-exponential 

decay with parameters τ1 = 0.1 ms, A1 = 3 mM, τ2 = 1 ms, A2 = 0.5 mM). d Macroscopically 

simulated response (bottom) evoked by a glutamate concentration profile (top) designed to 

mimick a synaptic concentration profile generated by release of 10 transmitter vesicles at a 

frequency of 5 kHz (with temporal summation of individual concentration profiles as in c) 

 

Fig. 6 Kinetic scheme and model responses (AII-RH03) for AMPA receptors in AII amacrine 

cells. a Kinetic scheme of a model proposed for AMPA receptor gating in AII amacrine cells 

(original scheme with different rate constants proposed for gating of recombinant, 

homomeric AMPA receptors composed of GluA4 subunits; Robert and Howe, 2003). R0: 

unbound state; R1: singly liganded, closed state; R2: doubly liganded, closed state; R3: triply 

liganded, closed state; R4: quadruply liganded, closed state; O2: doubly liganded, open state; 

O3: triply liganded, open state; O4: quadruply liganded, open state; D0-D4 and D22-D24: 

desensitized, closed states, liganded as indicated. The rate constants were as follows: α = 808 

× 103 s-1, β = 2.34 × 106 s-1, k1 = 9.77 × 106 M-1 s-1, k-1 = 4.13 × 103 s-1, k-2 = 3.05 × 10-6 s-1, δ0 = 1.64 × 

10-9 s-1, γ0 = 0.631 s-1, δ1 = 806 s-1, γ1 = 76.4 s-1, δ2 = 19.8 s-1, γ2 = 6.71 s-1. The relative single-

channel conductances were as follows: γO2 = 0.333, γO3 = 0.667, γO4 = 1. b Macroscopically 

simulated responses evoked by brief pulses (1 ms; left) or steps (middle) of glutamate (0.3, 1, 

3, 10 and 30 mM) and to variable duration (1, 5, 10, 20, 30 and 100 ms; right) pulses of 

glutamate (3 mM). Time course of glutamate application indicated above response traces. c 
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Macroscopically simulated response (bottom) evoked by a glutamate concentration profile 

(top) designed to mimick a synaptic concentration profile generated by release of a single 

transmitter vesicle (instantaneous rise followed by double-exponential decay with 

parameters τ1 = 0.1 ms, A1 = 3 mM, τ2 = 1 ms, A2 = 0.5 mM). d Macroscopically simulated 

response (bottom) evoked by a glutamate concentration profile (top) designed to mimick a 

synaptic concentration profile generated by release of 10 transmitter vesicles at a frequency 

of 5 kHz (with temporal summation of individual concentration profiles as in c) 

 

Fig. 7 Determining the apparent Popen, max for the AII-RH03 kinetic model with multiple open 

states and multiple conductance levels. a Macroscopically simulated state occupancies for 

the doubly, triply and quadruply liganded open states O2, O3 , and O4 (see kinetic scheme in 

Fig. 6a) evoked by a brief pulse of glutamate (1.2 ms, 3 mM; top trace). b Macroscopically 

simulated current response for the same stimulus as in a. The relative conductances for states 

O2, O3, and O4 were set to 0.333, 0.667 and 1, respectively. The rate constants were set to the 

values stated in Fig. 6. The current generated by a fully populated state O4 was normalized 

to 1. C, Variance of the current response in b. The part from just before the peak to the end of 

the response (marked by the thicker line) was used for the determination of Popen, max. d Plot of 

variance (as in c) versus mean current (as in b) after resampling at evenly spaced points (open 

circles). Data points were fitted with Eq. 4 (continuous line) 

 

Fig. 8 Non-stationary noise analysis of responses generated by the AII-HR97 (a - d) and AII-

RH03 (e - h) kinetic schemes for AMPA receptors in AII amacrine cells. a Variance versus 

mean curves for stochastically simulated responses after conventional non-stationary noise 

analysis of responses evoked by square-wave pulses of glutamate (1 ms duration) at five 

glutamate concentrations (0.3, 1, 3, 5, and 100 mM) for the AII-HR97 kinetic scheme. N 

(number of available channels) = 50, single-channel conductance (γ) = 24.5 pS, driving force 

= -60 mV, single-channel current = 1.47 pA, n (number of repetitions) = 1000. Here and 

below, continuous lines represent results for the different glutamate concentrations and the 

broken line represents the theoretical curve calculated according to Eq. 4. b Variance versus 

mean curves for stochastically simulated responses with trial-to-trial variation (Gaussian) in 
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the number of available channels (N = 50 ± 10 (SD); n = 1000) after conventional non-

stationary noise analysis. c Variance versus mean curves for stochastically simulated 

responses (N = 50; n = 1000) after peak-scaled (PS) non-stationary noise analysis. d Variance 

versus mean curves for stochastically simulated responses with trial-to-trial variation 

(Gaussian) in the number of available channels (N = 50 ± 10; n = 1000) after peak-scaled non-

stationary noise analysis. e Variance versus mean curves for stochastically simulated 

responses after conventional non-stationary noise analysis of responses evoked by square-

wave pulses of glutamate (1 ms duration) at five glutamate concentrations (0.3, 1, 3, 5, and 

100 mM) for the AII-RH03 kinetic scheme. N = 50, single-channel conductances (γ) = 12 (O2), 

24 (O3) and 36 (O4) pS, driving force = -60 mV, single-channel currents = 0.72 (O2), 1.44 (O3) 

and 2.16 (O4) pA, n = 1000. f - h, as in b - d, but for the AII-RH03 kinetic scheme 

 

Fig. 9 Covariance functions for responses to brief pulses of glutamate generated by two 

different kinetic schemes (AII-HR97 and AII-RH03) for AMPA receptors of AII amacrine 

cells. a Ensemble mean response generated by AII-HR97 kinetic scheme (bottom trace). Here 

and in d, 1 ms glutamate pulses (3 mM) with 20-80% rise and decay time 0.25 ms (top traces). 

N (number of available channels) = 50, single-channel conductance (γ) = 24.5 pS, driving 

force = 60 mV, single-channel current = 1.47 pA, n (number of repetitions) = 1000. Here, and 

in d and g, the decay time constant (τdecay) indicated in panel. b Two-dimensional covariance 

function for responses generated by AII-HR97 kinetic scheme (a), variance coded according 

to color bar to the right of panel, diagonal (top left to bottom right) corresponds to ensemble 

variance (c). Here, and in e and h, scaling of top axis is identical to X-axis scaling of a, d, and 

g, respectively. c Variance (black continuous trace) for AII-HR97 response ensemble and 

covariance function (red trace) with center point (tc) corresponding to location of peak 

response of ensemble mean waveform. Single-exponential fit (broken line) overlaid on 

covariance function, decay time constant (τdecay) indicated in panel. d Ensemble mean 

response generated by kinetic scheme AII-RH03 with multiple open states and conductance 

levels. N = 50, single-channel conductances (γ) = 12 (O2), 24 (O3) and 36 (O4) pS, driving 

force = 60 mV, single-channel currents = 0.72 (O2), 1.44 (O3) and 2.16 (O4) pA, n = 1000. e 

Two-dimensional covariance function for responses generated by AII-RH03 kinetic scheme 
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(d), variance coded according to color bar to the right of panel h, diagonal (top left to bottom 

right) corresponds to ensemble variance (f). f Variance (black continuous trace) for AII-RH03 

response ensemble and covariance function (red trace) with center point (tc) corresponding to 

location of peak response of ensemble mean waveform. Single-exponential fit (broken line) 

overlaid on covariance function, decay time constant (τdecay) indicated in panel. g Ensemble 

mean response (n = 52 repetitions) activated in an outside-out patch from an AII amacrine 

cell by brief (~1.2 ms), ultrafast application of glutamate (3 mM). Small notch during decay 

phase represents a brief oscillation of glutamate application. h Two-dimensional covariance 

function for responses activated in outside-out patch (g), variance coded according to color 

bar to the right, diagonal (top left to bottom right) corresponds to ensemble variance (i). 

Small "lobes" occurring at ~22 ms correspond to response oscillation in g. i Variance (black 

continuous trace) for outside-out response ensemble and covariance function (red trace) with 

center point (tc) corresponding to location of peak response of ensemble mean waveform. 

Single-exponential fit (broken line) overlaid on covariance function, decay time constant 

(τdecay) indicated in panel. When fitting the decays in g and i with single-exponential 

functions, the period corresponding to the brief oscillation was ignored during the fit 

 

Fig. 10   Colocalization between AII amacrine cells and immunolabeled punctae of the 

AMPA receptor subunit GluA4. a Maximum intensity projection of confocal image stack of 

retinal slice with an AII amacrine cell injected with Alexa Fluor 488 (green) and 

immunolabeled for GluA4 (magenta). Here and later, all images and graphs were generated 

from digital data after deconvolution (for details, see Materials and methods). Cell appears 

compressed along the vertical axis due to distortion around apical dendrite during tissue 

processing. Here and later, arrow head (right) marks division between sublamina a (above) 

and sublamina b (below) of inner plexiform layer with lobular and arboreal processes of AII 

amacrine, respectively. All images and graphs (b - n) from same cell as in a. Scale bar, 5 µm. 

b Examples of colocalization (arrow heads) of GluA4 punctate (magenta) with AII amacrine 

lobular processes (green) in sublamina a. Here and in c, each image taken from a single 

confocal slice. Scale bar, 2 µm. c Examples of colocalization (arrow heads) of GluA4 punctate 

(magenta) with AII amacrine arboreal processes (green) in sublamina b. Scale bar, 2 µm. d 
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Three-dimensional (3D) surface rendering of AII amacrine cell and locations of 

immunolabeled GluA4 punctae overlapping with the AII amacrine (after threshold-based 

segmentation). Each punctum is visualized by a sphere of arbitrary size with center located 

at the intensity-weighted 3D (XYZ) center-of-mass coordinates of the punctum. GluA4 

punctae with overlap between 0 and 50% displayed as smaller yellow spheres and punctae 

with ≥50% overlap displayed as larger magenta spheres. e Frequency histogram of distance 

from center-of-mass coordinates of thresholded GluA4 punctae overlapping with AII 

amacrine cell (d) to nearest point on surface of segmented AII amacrine cell. Bin width 0.1 

µm. f Frequency histogram of relative colocalization between segmented GluA4 punctae 

(that overlapped with the segmented AII amacrine cell) and the AII amacrine cell. Bin width 

10%. g Scatter plot with data in e and f of relationship between distance from GluA4 punctae 

(center of mass) to AII amacrine surface and relative colozalization between GluA4 punctae 

and AII amacrine. h Average signal in GluA4 channel around 3D coordinates (XYZ; center of 

mass, CM) of thresholded GluA4 punctae (overlapping with AII amacrine cell), displayed as 

2D image (top) through center of extracted volume of average signal (in XY plane) and linear 

intensity profile (bottom; measured in arbitrary units, a.u.) across center of displayed 2D 

image. Here and later, spatial scale of line profile also applies to corresponding 2D image. 2D 

images in h - n displayed with same intensity range. i Average signal in AII amacrine 

channel around 3D coordinates of all thresholded GluA4 punctae overlapping with AII 

amacrine cell, displayed as 2D image (top) through center of extracted volume of average 

signal and linear intensity profile (bottom) across center of displayed 2D image. j As in i, but 

only for GluA4 punctae located at AII amacrine lobular processes in sublamina a. k As in i, 

but only for GluA4 punctae located at AII amacrine arboreal processes in sublamina b. l - n 

As for i - k, but only for GluA4 punctae with ≥50% overlap with AII amacrine cell 

 

Fig. 11   Number of immunolabeled GluA4 punctae overlapping AII amacrine cells as a 

function of relative overlap between the segmented GluA4 punctae and each cell (from >0% 

to 100%, increments of 10%). Relative overlap for a given GluA4 punctum measured as the 

fraction of the total volume of the segmented punctum occupied by an object belonging to 

the segmented AII amacrine cell. Data points for individual AII amacrine cells (n = 8) are 
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represented by gray circles and data points for the same cell are connected by lines. Black 

circles (connected by lines) represent mean ± SEM for each value of overlap 

 

Fig. 12   Colocalization between AII amacrine cells, immunolabeled punctae of the AMPA 

receptor subunit GluA4 and immunolabeled punctae of the postsynaptic scaffold protein 

PSD95. a Maximum intensity projection of confocal image stack of retinal slice with an AII 

amacrine cell injected with Alexa Fluor 488 (green) and immunolabeled for GluA4 (magenta) 

and PSD95 (blue). All images and graphs (b - i) from same cell as in a. Scale bar, 5 µm. b 

Examples of colocalization (arrow heads) of GluA4 punctae (magenta; displayed separately in 

b2) and PSD95 punctae (blue; displayed separately in b3) with AII amacrine lobular processes 

(green; overlaid with GluA4 and PSD95 signals in b1) located in sublamina a. Here and in c, 

each image taken from a single confocal slice. Scale bar, 1 µm. c Examples of colocalization 

(arrow heads) of GluA4 punctae (magenta; displayed separately in c2) and PSD95 punctae 

(blue; displayed separately in c3) with AII amacrine arboreal processes (green; displayed with 

GluA4 and PSD95 signals overlaid in c1) located in sublamina b. Scale bar, 1 µm. d Average 

signal in PSD95 channel around 3D coordinates (XYZ; center of mass, CM) of all thresholded 

GluA4 punctae (overlapping with AII amacrine cell), displayed as 2D image (top) through 

center of extracted volume of average signal (in XY plane) and linear intensity profile 

(bottom) across center of displayed 2D image. 2D images in d - i displayed with same 

intensity range. e As in d, but only for GluA4 punctae located at AII amacrine lobular 

processes in sublamina a. f As in d, but only for GluA4 punctae located at AII amacrine 

arboreal processes in sublamina b. g - i As for d - f, but only for GluA4 punctae with ≥50% 

overlap with AII amacrine cell 

 

Fig. 13   Colocalization between AII amacrine cells, immunolabeled punctae of the AMPA 

receptor subunit GluA4 and immunolabeled punctae of the presynaptic ribbon protein 

CtBP2. a Maximum intensity projection of confocal image stack of retinal slice with an AII 

amacrine cell injected with Alexa Fluor 488 (green) and immunolabeled for GluA4 (magenta) 

and CtBP2 (blue). All images and graphs (b - i) from same cell as in a. Scale bar, 7.5 µm. b 

Examples of colocalization (arrow heads) of GluA4 punctae (magenta; displayed separately in 
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b2) and CtBP2 punctae (blue; displayed separately in b3) with AII amacrine lobular processes 

(green; overlaid with GluA4 and CtBP2 signals in b1) located in sublamina a. Here and in c, 

each image taken from a single confocal slice. Scale bar, 1 µm. c Examples of colocalization 

(arrow heads) of GluA4 punctae (magenta; displayed separately in c2) and PSD95 punctae 

(blue; displayed separately in c3) with AII amacrine arboreal processes (green; overlaid with 

GluA4 and CtBP2 signals in c1) located in sublamina b. Scale bar, 1 µm. d Average signal in 

CtBP2 channel around 3D coordinates (XYZ; center of mass; CM) of all thresholded GluA4 

punctae (overlapping with AII amacrine cell), displayed as 2D image (top) through center of 

extracted volume of average signal (in XY plane) and linear intensity profile (bottom) across 

center of displayed 2D image. 2D images in d - i displayed with same intensity range. e As in 

d, but only for GluA4 punctae located at AII amacrine lobular processes in sublamina a. f As 

in d, but only for GluA4 punctae located at AII amacrine arboreal processes in sublamina b. g 

- i As for d - f, but only for GluA4 punctae with ≥50% overlap with AII amacrine cell 

 



 

Table 1. Primary antibodies 

 
Antibody name Immunogen Source, cat #, RRID Antibody type Dilution 

GluA4 C-terminus 
of GluA4 
receptor 

Millipore 
AB-1508, AB_90711 

Rabbit, polyclonal 1:1600  

PSD95 Clone 6G6-
1C9, purified 
recombinant 
rat PSD-95 

ThermoFisher 
Scientific 
MA1-045, 
AB_325399 

Mouse, monoclonal 1:3200  

CtBP2 Mouse CtBP2 
aa. 361-445 

BD Biosciences 
Cat# 612044 
AB_399431 

Mouse, monoclonal 1:1000 

 
RRID is Resource Identification Portal: https://scicrunch.org/resources 
 

The table summarizes antibodies used in the present study. The specificity of the 

rabbit antiserum against the AMPA receptor subunit GluA4 was demonstrated by 

the manufacturer. The antibody detects a single band of ~100 kDa in western blots of 

rat brain lysate. The same antibody has been used in a number of studies carried out 

in the mammalian retina, including Haverkamp et al. (2000), Witkovsky et al. (2008) 

and Kalloniatis et al. (2013). The specificity of the mouse monoclonal antibody 

against purified recombinant rat PSD95 was demonstrated by the manufacturer. This 

antibody has been used in the retina in numerous studies including Koulen et al. 

(1998), Barker et al. (2009) and Bleckert et al. (2013). The specificity of the mouse 

antibody against the C-terminal Binding Protein-2 (CtBP2) has been characterized by 

the manufacturer. It detects a single band of ~48 kDa in western blots of BC3H1 cell 

lysate (mouse brain smooth muscle-like cells; ATCC CRL-1443). The antibody has 

been used in several studies in the retina to detect synaptic ribbons, including 

Morgans et al. (2005) and Maxeiner et al. (2016). 

 



Table 2. Experimental observables for ionotropic non-NMDA (AMPA) type glutamate 
receptors of AII amacrine cells in rat retina

Observable Experiment
(Mean ± SEM/SE)

Used for 
fitting

Model
AII-HR97

Model
AII-RH03

20-80% rise time (ms), [Glu] = 3 mMa 0.274 ± 0.024 x 0.279 0.328

Deactivation τ (ms), [Glu] = 3 mMa 1.07 ± 0.12 x 1.08 1.12

Desensitization τ1 (ms), [Glu] = 3 mMa 3.52 ± 0.46 x 3.58 2.95

Desens. τ1 (ms), [Glu] = 3 mM, rel. contribution (%)a 74.0 ± 5.9 x 73.4 70.3

Desensitization τ2 (ms), [Glu] = 3 mMa 20.8 ± 3.9 x 21.0 22.4

Desens. τ2 (ms), [Glu] = 3 mM, rel. contribution (%)a 26.0 ± 5.9 26.6 29.7

Non-desensitizing current (%), [Glu] = 3 mMa 4.23 ± 0.95 x 4.24 4.50

Recovery τ from brief pulse desensitization (ms), 
[Glu] = 3 mMb

13.3 ± 1.9 x 14.1 16.2

Recovery invTau from brief pulse desensitization 
(ms-1), [Glu] = 3 mMb

0.075 ± 0.011 0.071 0.062

Maximal depression of second pulse after brief 
pulse desensitization (%)c

61.8 ± 5.2 x 61.0 53.8

Po, max [Glu] = 3 mM 0.613 ± 0.020 x 0.602 0.468

Single-channel conductance (γ) from non-stationary 
noise analysis of outside-out patches (pS), [Glu] = 3 
mM

24.5 ± 2.7

Peak concentration-response EC50 (mM) 1.53 1.05 0.82

Peak concentration-response log10(EC50) -2.82 ± 0.11 x -2.98 -3.09

Peak concentration-response Hill coefficient 0.99 ± 0.17 x 1.07 0.85

Steady-state concentration-response EC50 (µM) 693 77 56

Steady-state concentration-response log10(EC50) -3.16 ± 0.39 -4.11 -4.25

Steady-state concentration-response Hill coefficient 0.55 ± 0.18 1.14 1.16

Equilibrium desensitization IC50 (µM) 10.5 11.3 10.0

Equilibrium desensitization log10(IC50) -4.98 ± 0.12 x -4.95 -5.00

Equilibrium desensitization Hill coefficient 0.84 ± 0.17 x 0.87 0.94

a From Veruki et al. (2003)
b Reanalyzed from Veruki et al. (2003). The SE of the recovery τ was calculated from the SE of 
the inverse time constant (invTau) such that the relative SEs of τ and invTau were the same.
c Reanalyzed from Veruki et al. (2003).



 

Table 3. AII-HR97 

A 

 

  

Parabolic fit: 

300 µM 1 mM 3 mM 5 mM 100 mM 

i mean ± SEM (pA) 

CV 

Bias (%) 

 

1.50 ± 0.025 

0.052 (0.068) 

1.9 

1.44 ± 0.051 

0.112 (0.066) 

-1.8 

1.43 ± 0.024 

0.053 (0.049) 

-2.5 

1.43 ± 0.023 

0.051 (0.045) 

-2.7 

1.49 ± 0.011 

0.023 (0.049) 

1.2 

N mean ± SEM 

CV 

Bias (%) 

48.5 ± 6.0 

0.391 (3.505) 

-3.0 

56.3 ± 5.2 

0.291 (0.174) 

12.6 

52.8 ± 1.2 

0.074 (0.081) 

5.6 

51.7 ± 1.0 

0.062 (0.064) 

3.4 

49.2 ± 0.4 

0.022 (0.052) 

-1.5 

 

B 

 

A, AII-HR97, simulations (1 ms square-wave agonist pulses with concentration as 

indicated) with constant number of channels (γ = 24.5 pS; i = 1.47 pA; N = 50; n = 

1000). Here and later, i (unitary current) and N (number of channels) calculated with 

  300 µM 1 mM 3 mM 5 mM 100 mM 

Linear fit: 

i mean ± SEM (pA) 

CV 

Bias (%) 

 

1.50 ± 0.013 

0.028 (0.041) 

1.8 

1.50 ± 0.019 

0.039 (0.044) 

1.8 

1.53 ± 0.016 

0.033 (0.043) 

4.2 

1.56 ± 0.021 

0.043 (0.046) 

6.2 

1.57 ± 0.022 

0.043 (0.044) 

6.5 

Parabolic fit (after peak-scaling): 

i mean ± SEM (pA) 

CV 

Bias (%) 

1.50 ± 0.030 

0.063 (0.046) 

1.9 

1.42 ± 0.023 

0.050 (0.050) 

-3.2 

 

1.46 ± 0.030 

0.066 (0.044) 

-0.91 

1.50 ± 0.031 

0.065 (0.056) 

1.8 

1.46 ± 0.021 

0.045 (0.042) 

-0.83 

N mean ± SEM 

CV 

 

9.03 ± 0.20 

0.071 (0.058) 

 

28.7 ± 1.3 

0.139 (0.096) 

 

53.5 ± 1.9 

0.114 (0.077) 

 

51.0 ± 1.3 

0.080 (0.077) 

 

53.0 ± 1.0 

0.058 (0.049) 

 



 

conventional non-stationary noise analysis, curve fit with parabolic function (Eq. 4). 

Here and later, CV calculated from analysis of 10 repetitions, CV in parentheses 

obtained from bootstrap re-sampling of 100 synthetic data sets from one of the 

original data sets. 

 

B, AII-HR97, simulations with stochastic trial-to-trial variation of the number of 

channels (γ = 24.5 pS; i = 1.47 pA; N = 50; SD = 10; n = 1000). Here and later, upper 

row (i) indicates results from non-stationary noise analysis with no peak-scaling and 

linear fit to initial part of the variance versus mean curve, lower two rows (i and N) 

indicate results from peak-scaled non-stationary noise analysis and parabolic fit (Eq. 

4). 

 



 

Table 4. AII-RH03 

A 

 

  

Parabolic fit: 

300 µM 1 mM 3 mM 5 mM 100 mM 

i mean ± SEM (pA) 

CV 

 

 

1.01 ± 0.053 

0.053 (0.044) 

 

1.21 ± 0.017 

0.043 (0.045) 

 

1.29 ± 0.016 

0.040 (0.048) 

 

1.31 ± 0.016 

0.039 (0.044) 

 

1.46 ± 0.016 

0.035 (0.035) 

 

N mean ± SEM 

CV 

 

67.5 ± 3.2 

0.150 (0.120) 

 

86.7 ± 2.9 

0.104 (0.090) 

 

100.5 ± 2.2 

0.070 (0.088) 

 

101.2 ± 2.3 

0.073 (0.087) 

 

84.1 ± 1.0 

0.037 (0.048) 

 

 

B 

 

A, AII-RH03, simulations (1 ms square-wave agonist pulses with concentration as 

indicated) with constant number of channels (γ = 12, 24 and 36 pS; i = 0.72, 1.44 and 

2.16 pA; N = 50; n = 1000). 

  300 µM 1 mM 3 mM 5 mM 100 mM 

Linear fit: 

i mean ± SEM (pA) 

CV 

 

 

1.02 ± 0.013 

0.040 (0.042) 

 

1.28 ± 0.018 

0.043 (0.043) 

 

1.36 ± 0.016 

0.038 (0.039) 

 

1.46 ± 0.019 

0.040 (0.037) 

 

1.47 ± 0.026 

0.056 (0.037) 

 

Parabolic fit (after peak-scaling): 

i mean ± SEM (pA) 

CV 

 

0.91 ± 0.009 

0.031 (0.052) 

 

1.07 ± 0.013 

0.038 (0.057) 

 

 

1.25 ± 0.026 

0.066 (0.048) 

 

1.28 ± 0.022 

0.053 (0.041) 

 

1.38 ± 0.020 

0.046 (0.040) 

 

N mean ± SEM 

CV 

 

48.5 ± 2.1 

0.140 (0.135) 

 

80.8 ± 2.6 

0.103 (0.143) 

 

112.1 ± 6.3 

0.178 (0.112) 

 

119.0 ± 4.4 

0.117 (0.097) 

 

109.2 ± 3.1 

0.089 (0.076) 

 



 

 

B, AII-RH03, simulations with stochastic trial-to-trial variation of the number of 

channels (γ = 12, 24 and 36 pS; i = 0.72, 1.44 and 2.16 pA; N = 50; SD = 10; n = 1000). 
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