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ABSTRACT 
A numerical approach for modelling of shear dilation 
of existing fractures in hydraulic stimulation of 
geothermal reservoirs at low elevated pressures is 
presented. 

The fractured rock in the reservoir is modelled as a 
combination of explicitly represented fractures and the 
rock matrix surrounding these fractures.  The efficient 
modelling of slip-induced permeability enhancement 
requires coupling of the fluid flow in fractured rock 
with the mechanical deformation of the rock matrix 
and the shear dilation of the fractures. For flow 
simulations, conductive fractures are represented in 
the domain as high-permeable discontinuities; 
therefore they dominate the overall flow behaviour. 
The rock matrix is represented by a low permeability, 
capturing the effect of small-scale fractures. For the 
mechanical deformation problem, the rock matrix is 
assumed to be a linear elastic material, while the 
fractures in the rock matrix are introduced as internal 
boundaries. The shear dilation of the fractures is 
calculated by a joint deformation model (JDM), which 
connects the shear slip in the fracture surfaces and 
additional permeability caused by shear displacement. 
The flow simulations and the mechanical deformation 
of the rock matrix are both obtained by finite volume 
discretizations.  

Several numerical experiments designed by 
resembling realistic reservoir parameters are 
conducted to provide better understanding of the shear 
dilation mechanism. Moreover, fractures present in 
different scales in a geothermal reservoir. Ignoring the 
effect of small-scale fractures to the fluid flow in the 
matrix may result in an overestimate of the 
permeability enhancement. Hence, the influence of 
rock matrix permeability on fracture aperture and the 
overall flow behaviour of the reservoir are examined.  

1. INTRODUCTION  
Enhanced Geothermal Systems (EGS) can facilitate 
increased heat production from low-permeable rocks, 

and thus make geothermal resources where natural 
permeability is inadequate commercially viable. The 
permeability enhancement in EGS can be created by 
three main stimulation methods, as hydraulic, 
chemical and thermal stimulation. The most 
commonly used method is hydraulic stimulation 
(Breede et al. 2013). Two main approaches to 
hydraulic stimulation are denoted hydraulic fracturing 
and shear dilation stimulation (a.k.a. shear stimulation, 
hydroshearing or low-pressure stimulation). Hydraulic 
fracturing involves the injection of fluid at a high 
pressure to overcome the minimum principal stress. In 
this method, fractures are initiated and propagated by 
induced fluid pressure and commonly retained by 
proppants. However, Zhang et al. (1997) has shown 
that hydraulic fracturing is not efficient enough for 
formations where the differences between maximum 
and minimum horizontal in-situ stresses are large and 
natural fractures already exist. In these reservoirs, 
shear dilation of fractures has been identified as the 
dominant mechanism responsible for the enhancement 
of permeability (Pine and Batchelor 1984, Murphy 
and Fehler 1986). Shear dilation stimulation is 
performed by elevating fluid pressures in pre-existing 
fractures in low permeability rock. As opposed to 
hydraulic fracturing, the injection pressures are below 
the minimum in situ principle stress of the reservoir, 
but above the threshold required for shearing of 
fractures. The increase in fluid pressure reduces the 
normal force on the fracture surfaces, allowing them 
to slip and dilate. The shear dilation in the fracture 
surfaces leads to a permeability enhancement since the 
asperities on the fracture walls slide over each other 
and resist the fracture surfaces sliding back.  

The progression of EGS relies on the ability to predict 
how the reservoir will behave under the stimulation 
process. Therefore, there is a need for a reliable 
reservoir simulation model. There have been a number 
of worthwhile modelling studies in the relevant 
literature from modelling of individual fracture 
deformation (Barton et al. 1985, Barton and Choubey 
1977) to simulations including the effect of several 
fractures on larger scale domains (Willis-Richards et 
al. 1996, Jing et al. 2000, Rahman et al. 2002, Min et 
al. 2004, Tezuka et al. 2005, Bruel 2007, Tao et al.  
2011, McClure and Horne 2011, McClure and Horne 
2014, Norbeck et al. 2016). Modelling studies related 
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to shear stimulation of EGS are challenging due to 
several reasons, of which we emphasize three: 1) 
Although natural fractures can occur on all scales, the 
domain is generally modelled either as a combination 
of fractures and impermeable surrounding rock, or 
using an approximated continuum model to represent 
the flow properties of the fracture network. This will 
have the effect of respectively over- or 
underestimating fluid pressure in the fracture. 2) 
Coupling of flow, mechanical deformation and 
fracture deformation in fractured porous media, is 
challenging both from a modelling and from a 
numerical perspective. 3) As the elastic properties of a 
geothermal reservoir may not be homogenous, several 
numerical approaches have limitations. 

In this study, the effect of multiscale fractures is 
handled by applying a discrete fracture matrix (DFM) 
model (Karimi-Fard et al. 2004), wherein the fractures 
that constitute the main flow paths are explicitly 
represented, while smaller scale fractures are 
represented by an averaged matrix permeability. The 
DFM model provides avoiding inaccurate 
approximation of permeability increase due to the 
wrong pressure estimations. 

In the related literature, the simulation strategies 
generally rely on coupling different numerical 
discretization methods for two individual problems. 
The flow problems were generally treated by finite 
volume discretization (Chen et al. 2006) whereas the 
mechanical problem was most commonly solved 
either by finite element discretization (Jha and Juanes 
2014, Garipov et al. 2015) or an indirect boundary 
element method (Crouch and Starfield 1983, McClure 
and Horne 2011, McClure and Horne 2014, Norbeck 
et al. 2016) called displacement discontinuity method 
(DDM). Using different discretization for flow and 
mechanics problems requires additional coupling 
strategies (Kim et al. 2011) and different data 
structures. Moreover, DDM has limitations regarding 
to boundary conditions, being not suitable to 
implement heterogonous elastic properties and 
restriction to two-dimensional analysis. Therefore, for 
both flow and mechanics problem, cell-centred finite 
volume discretization is used in this study. In this 
study, the fluid flow is modelled by two-point flux 
approximation (TPFA) whereas mechanical behaviour 
of fractured rock matrix is handled by the multi-point 
stress approximation (MPSA). MPSA was proposed 
recently as a compatible counterpart to finite-volume 
flow calculations in porous media (Nordbotten 2014). 
MPSA is further extended effectively to allow for 
inclusion of fractures through internal boundary 
conditions in the discretization (Ucar et al. draft 
manuscript), which naturally enables the 
implementation of fracture deformation in the present 
study. Moreover, MPSA provides to include the effect 
of possible heterogeneities in the elastic properties 
however that is not yet the scope of the current study. 

The main purpose of the current work is to provide 
efficient modelling of shear dilation stimulation for 

EGS. The model equations and coupling scheme are 
presented in Section 2. The numerical approach used 
in this study is described in Section 3. Section 4 shows 
a detailed numerical example of simulation strategy 
based on realistic reservoir parameters. Moreover, we 
want to stress the effect of permeability in the regions 
surrounding the explicitly modelled fractures. A 
numerical example that shows the effect of the matrix 
permeability is, hence, also provided in this section. 
Finally, conclusions and comments related to further 
work are given in Section 5. 

2. GOVERNING EQUATIONS 
In this section, we introduce the governing equations 
to model low-pressure stimulation in a fractured 
porous domain, such as EGS systems. Before 
presentation of the modelling equations, let Ω be our 
domain of interest and ∂Ω be its boundary. The 
modelling includes coupling of fluid flow, mechanical 
deformation and a constitutive relation for 
permeability enhancement in the considered domain. 
Therefore, conservation equations for mass and 
momentum for both rock matrix and fractures are 
presented. Moreover, the joint deformation model, 
which is used to estimate resulting permeability 
evolution caused by deformation, is presented. 

2.1 Conservation of Mass 
The fractured rock in the reservoir is considered as a 
porous media that includes high permeable slit-like 
discontinuities, namely fractures. In this study, it is 
assumed that the fractured porous domain is 
stimulated by injecting an isothermal, single-phase, 
slightly compressible fluid at elevated pressures. 
Under these assumptions, the mass balance equation 
for fluid can be written as 

∂m/∂t+∇· (ρf w) = q. [1] 

The time derivative term in equation [1] represents 
mass accumulation in a control volume where m is 
fluid mass and ρf is the fluid density. q stands for the 
source terms and the Darcy flux, w, can be calculated 
by introducing Darcy’s law without gravity vector: 

w = -K/η (∇p),  [2] 

where K, η and p are intrinsic permeability of porous 
media, dynamic viscosity of fluid, pore fluid pressure, 
respectively.  

Combining equation [1] and [2] leads to the mass 
conservation equation for single-phase flow of a 
slightly compressible fluid. Note that the time 
derivative term in equation [1] can be written as 

∂m/∂t = ϕct ∂p/∂t,  [3] 

where ϕ is porosity, assuming that the fluid 
compressibility is small and constant. The total 
compressibility, ct, is sum of fluid compressibility, c, 
and pore-volume compressibility, cf.  
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The discrete fracture matrix (DFM) model (Karimi-
Fard et al. 2004, Sandve, et al. 2012) provides the 
basic conceptual model in the present study. In DFM 
models, explicitly represented fractures are combined 
with an effective low permeability tensor defined in 
the surrounding porous medium (the porous medium 
excluding big scale fractures) to capture flow in pores 
and small-scale fractures not represented explicitly. 
Then by assuming the fracture surfaces are smooth 
parallel walls separated by a uniform aperture, e, the 
permeability of the explicitly modelled fractures can 
be calculated by the ‘cubic law’ (Jaeger 2007): 

K = e2/12,  [4] 

According to several studies (Barton et al. 1985, Chen 
et al. 2000, Olsson and Barton 2001), the void 
between fracture surfaces, mechanical aperture, can be 
different then hydraulic aperture. In reality, the 
hydraulic aperture between fracture surfaces depends 
on several parameters such as roughness, tortuosity or 
contacts between the fracture surfaces (Zimmerman 
and Bodvarsson 1996). In this study, we ignore this 
inequality, however it can be easily be included in our 
approach. 

2.2 Linear Momentum Balance  
The considered problem is assumed to be quasi-static, 
thus the inertial effect and time dependence can be 
ignored. Under the quasi-static assumption, the 
stresses induced by fracture slip can be calculated by 
using equation for linear momentum balance of an 
elastic medium as 

∇·σ =0,   [5] 

where σ is the Cauchy stress tensor. In addition, we 
assume a linear relation between strain and stress 
through Hooke’s law, 

σ = ℂ:ε,   [6] 

where ℂ is the symmetric fourth-rank stiffness tensor 
and ε is the symmetric part of the displacement 
gradient tensor as 

 ε = ((∇u + (∇u)T ))/2,  [7] 

where u is the displacement of a point.  

For an isotropic medium, one can write the symmetric 
fourth-rank stiffness tensor in terms of constants as µ 
and λ then obtain isotropic form of Hooke’s law as 

σ = 2µε+λ tr(ε) I.   [8] 

In equation [8], I is identity matrix. µ and λ are known 
as Lamé constants, µ being the shear modulus that 
relates shear stress to shear strain. 

It is important to note that, we do not consider the 
effect of flow while solving the mechanics problem. 
We assume that the timescale of the mechanical 
deformation to be much shorter than one relevant for 
the flow. Any perturbation in the elastic domain, in the 

current case shear slip, immediately propagates across 
the whole domain. Similarly, motivated by the 
assumption of hard rocks, which are the common 
target formation for EGS operations, we ignore poro-
elastic effects when solving the flow equation. 

2.3 Mechanics of Fracture Deformation 
In this study, the fracture surfaces are exposed to 
displacement discontinuities due to the pressure 
increase. We implement the deformation of the 
fractures through internal boundary conditions by 
using the method proposed by Ucar et al. (draft 
manuscript), which naturally allows defining 
displacement jumps between the fracture surfaces. In 
line with Aagaard et al. (2013), the fracture surfaces 
are considered as line pairs for 2D (faces for 3D) 
studies, which displaces relative to one another as 
illustrated in Figure 1. Following the notation for 
fracture surfaces from, for example, Aagaard et al. 
(2013) and Crouch and Starfield (1983), we denote 
two sides of discontinues by subscripts + and -.  Slip 
at the fracture surfaces Γ can be defined as 
displacement of the ‘+’ side relative to ‘-‘ side such as 

u+-u- = d on Γ,  [9] 

where u+ and u- are the displacements on the positive 
and negative side fracture surfaces and d is 
displacement jump vector. The tractions on the 
fracture surfaces are continuous and satisfy 
equilibrium,  

T+-T- = 0 on Γ,  [10] 

where the surface tractions are defined as 

σ·n =T,   [11] 

for any surface has normal n. The surface traction 
acting normal direction to a fracture surface 
represented as σn and the surface traction acting 
tangential direction to a fracture surface represented as 
τ in the following equations. 

     

Figure 1: Fracture representation in a porous 
medium.  
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2.4 Fracture Deformation and Permeability 
Evolution (Joint Deformation Model) 
Fractures in the rock matrix can be considered as 
planes of weaknesses in an elastic material and the 
stress conditions on these planes of weaknesses can be 
calculated for any given principal stresses (Jaeger et 
al. 2007). 

In this study, we use Mohr- Coulomb theory to define 
the shear stability criterion for the fractures (Jaeger et 
al. 2007). The shear slip between the fracture surfaces 
occurs when the shear traction of the fractures is larger 
than the frictional resistance to slip (also called shear 
strength). The frictional resistance is a function of the 
material property of fractures and effective stress 
state. In the case of two rough surfaces sliding over 
one another with fluid in between, the effective 
normal thrust transmitted through the points of contact 
is 

σeff = σn-P,  [12] 

where σeff, σn, P are effective stress, normal stress and 
pressure, respectively. 

The frictional resistance can be decreased by elevating 
the fluid pressure inside of a pre-existing fracture by 
injection of fluid. When the pressure inside the 
fracture increases, the fluid in the fracture is pushing 
back opposite to the normal stress. Therefore, 
increasing fluid pressure in the fracture leads to shear 
displacement between fracture surfaces. When the 
asperities on opposite fracture surfaces slide over each 
other due to the shear displacement, the motion creates 
additional void due to aperture increase, called shear 
dilation. The shear dilation of fractures can be 
increased by increasing the pressure inside the 
fractures. However, the injection pressure can only be 
increased up to the limit of minimum principal stress. 
If the pressure inside the fractures exceeds the 
minimum principal stress, the fracture surfaces loose 
contact and the fracture then propagates along a plane 
perpendicular to the minimum principal stress 
direction. This phenomenon is known as conventional 
hydraulic fracturing and beyond the scope of this 
study. Therefore, the injection pressure is kept lower 
than minimum principal stress throughout the 
stimulation in the present work. 

In the literature, there are documented numerous 
constitutive models for fracture behaviour under stress 
conditions (e.g. Barton et al. 1985, Willis-Richards et 
al.1996). In the current study, shear displacement and 
shear dilation based on normal and shear tractions of 
fractures are calculated following the procedure 
discussed by Willis-Richards et al. (1996). Based on 
the Mohr-Coulomb criterion, shear displacement 
occurs when the shear stress component acting parallel 
to the fracture surfaces is greater than shear strength of 
each fracture, 

τ ≥ τp,   [13] 

where τp is the shear strength. In the model of Willis-
Richards et al. (1996), the shear strength of each 
fracture can be calculated by using the Mohr-Coulomb 
criterion coupled with effective stresses and cohesive 
forces on the fracture,  

 τp = σeff tan (ϕbasic+ϕdil
eff)+c, [14] 

where c is cohesion, ϕbasic  is basic friction angle (a 
material property of the fractures, which typically 
alters between 30 and 40 (Willis-Richards et 
al.,1996)). The effective shear dilation angle, ϕdil

eff, is 
a property of both the fracture surface asperities and 
the normal stress, and may be written in terms of the 
laboratory measured shear dilation angle as 

ϕdil
eff  = ϕdil/(1+9(σeff  ⁄σnref ) ),  [15] 

where ϕdil is dilation angle measured at zero, or at least 
at very low, effective stresses and σnref is the effective 
normal stress applied to cause a 90% reduction in the 
compliant aperture. 

The difference between shear strength and shear stress 
acting parallel to the fractures surface is denoted 
“excess” shear stress. The amount of shear 
displacement, us, can approximately be calculated by 
using relation between available “excess” shear stress, 
∆τ, and shear stiffness, Ks, based on linear elastic 
theory, 

us=∆τ/Ks,  [16] 

where the shear stiffness, Ks, is a material property.  
The final aperture increase, as, due to shear 
displacement can be calculated by 

as = us tan (ϕdil
eff). [17] 

2.5 Boundary and Initial Conditions 
To complete the model, initial and boundary 
conditions for both the flow and the mechanics 
problem must be defined. Constant pressure boundary 
condition is used for the flow equation while constant 
displacement boundary condition is used for the 
mechanics problem. The domain is extended enough 
to reduce spurious boundary effects for both flow and 
mechanics problem. Additionally, the initialization of 
the problem is carried out under the assumption of 
flow and mechanical equilibrium with constant 
pressure and zero displacement fields. 

3. NUMERICAL IMPLEMENTATION 
In this section, the numerical discretization of the 
equations given in Section 2 is presented. We start 
with the spatial discretization of conservation of mass 
and linear elasticity, including the fracture 
implementation. Thereafter, the time discretization 
and the solutions methods for the resulting system of 
equations are presented, respectively. 

3.1 Grid Structure and Spatial Discretization 
We apply finite volume discretizations for both the 
flow and the mechanics problem to ensure consistency 
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between the two. By using cell-centered discretization 
for both problems, we take advantage of having the 
primary unknowns (pressure for flow problem and 
deformation for mechanics problem) at the same 
location; that is, the cell centers of the developed 
computational grid. For both the flow and the 
mechanics problem, we use same unstructured 
computational grid generated by Delaunay 
triangulations for the matrix which conforms to the 
fractures (Shewchuk J. R. 2002).  

In the following sections, we give a short review of 
the discretization methods. Further details on the 
discretization of the flow problem can be found in 
Karimi-Fard, et al. (2004) and Sandve, et al. (2012), 
and details on the discretization of the mechanics 
problem can be found in Nordbotten (2014), 
Keilegavlen and Nordbotten (2015) and Ucar et al. 
(draft manuscript). 

3.1.1 Discretization of Flow Problem 

For each cell in the computational grid, Ωi, the mass 
conservation reads 

!
!"

m dV +!!
ρ!w𝐧dA = q dV!!𝑒𝑖,𝑗

, [18] 

where ei,j  denotes shared boundary between cell Ωi 
and nearby cell Ωj, wn is the fluid flux through a 
surface with normal vector n. The flux wn associated 
with an edge ei,j can further be approximated with 
considering contributions in the nearby cells, 

𝒘𝒏 ≈ 𝑡!  𝑝!!
!!! ,  [19] 

where n is considered number of contributed nearby 
cells and tj is the contribution from the cell j. In this 
study, the flux terms in equation [19] is approximated 
by two-point flux approximation (TPFA). The 
discretization for TPFA considering hybrid grids is 
described in detail by Karimi-Fard, et al. (2004). To 
implement TPFA, a computer code based on the 
Discrete Fracture Matrix module of MATLAB 
Reservoir Simulation Toolbox (MRST) (Lie 2011) is 
developed and used to perform numerical simulations 
on the flow behaviour of fractured. 

3.1.2 Discretization of Mechanics Problem 

Recently, Nordbotten (2014) proposed a cell centered 
finite volume method for elastic deformation in porous 
media as a compatible counterpart to finite volume 
flow calculations in porous media. In this approach, in 
order to construct a finite volume formulation, 
equation [5] was reformulated to obtain a relation for 
discrete momentum conservation as, 

𝐓dA + 𝐟dV = 0!!!!,!! .  [20] 

Further, by defining volume averaged force, fi, over 
the cell volume, V, and the surface average stress 
equation, Ti,j , over face, ei,j, the equation [20] was 
rewritten as, 

!
!

e!,!  𝐓𝐢,𝐣 + 𝐟𝐢 = 0.!   [21] 

The surface average stress was further expressed as 
linear function of displacement, that is, 

𝐓!,! = t!,!,!𝐮!! ,   [22] 

where ti,j,k are referred as stress weight tensors. The 
stress weight tensors are then calculated by using 
information from more than two neighboring cells 
surrounding the considered cell.  

The deformation relations for fracture (equation [9-
10]) should be integrated in to the discretization 
method to model the deformation in fractured porous 
domain. Therefore, the cells sharing faces with 
fracture surfaces need a slightly more elaborate 
approach. Ucar et al. (draft manuscript) have further 
extended MPSA to include fracture deformation. 
Following Ucar et al. (draft manuscript), the fracture 
deformation is implemented through internal boundary 
conditions in this study. 

3.2 Time Discretization 

The stress changes are assumed to propagate 
instantaneously and are, thus, calculated under the 
quasi-static assumption. In quasi-static mechanics, the 
time derivative terms appears only in the mass balance 
equation, equation [1]. The implicit backward Euler 
scheme is used to approximate the mass accumulation 
as 

∂m/∂t = (mn+1-mn)/δt,  [23] 

where n denoted current time level, n+1 is next time 
level and δt is the time step. 

3.3 Methods of Solution 

The two problems of flow and mechanics are solved in 
sequence in this study. At the beginning of each time 
step of the simulation, the flow problem is first solved 
using implicit time discretization. Next, the Mohr 
Coulomb criterion is checked for each fracture. For 
any fracture faces violating the Mohr Coulomb 
criterion, the shear displacement jump between the 
fracture surfaces are computed by the joint 
deformation model (JDM) equations (equations (13)-
(16)). Further, the permeability increase of the fracture 
due to shear dilation is calculated by equation [17]. 
Subsequently, the estimation of stress redistribution in 
the domain is calculated by solving for the elastic 
response of the medium to the fracture slip by using 
the shear displacement jumps between the fracture 
surfaces as restrictions on internal boundaries 
representing the slipped fracture surfaces. Moreover, 
the Mohr Coulomb criterion is rechecked after the 
stress redistribution on ground of possible induced 
additional shear displacements, in what is referred to 
as ‘shear avalanches’. The Mohr Coulomb criterion 
check is repeatedly performed until the avalanches 
stop inducing additional displacements and the next 
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time step is performed. Figure 2 summarizes the 
solution strategy for each time step n. 

  
Figure 2: The solution strategy for each time step. 

4. NUMERICAL SIMULATIONS 
As outlined in the introduction, the aim of this study is 
to establish an efficient modelling of shear dilation 
stimulation in fractured rock domains. Moreover, we 
also wish to underline the effect of permeability in the 
medium surrounding the explicitly represented 
fractures. To that end, a two-dimensional 40m x 40m 
square fractured porous domain is generated. The 
generated domain, the unstructured mesh used in both 
flow and mechanics problems and the injection 
wellbore (shown by red colour) are presented in 
Figure 3. The fractures are positioned with different 
angles intentionally to capture the effect of fracture 
orientation relative to the stress field. The maximum 
and minimum principle stress directions are parallel to 
x and y directions respectively. Fluid is injected at a 
constant pressure below the minimum principal stress, 
ensuring that tensile fractures would not propagate. 
The model parameters, presented in Table 1, are 
configured to loosely resemble reservoir parameters 
found in the literature.  

Only mechanically closed fractures are considered in 
this study, which means that fracture walls are in 
contact. Moreover, we do not allow for fracture 
growth at the tips.  

 

 

Table I. The properties of fractured geometry.  

Porosity Φ 0.01 

Matrix 
permeability K 10-20 and  10-21 m2 

Initial aperture a0 10-6 m 

Viscosity η 1cP 

Maximum 
principal stress σ1 23.8x106 Pa 

Minimum 
principal stress σ2 14.5x106 Pa 

Initial pressure Pi 8.7x106 Pa 

Fracture shear 
stiffness Ks 5x108  Pa/m 

Dilation angle φdil 3° 

Basic friction 
angle φbasic 40° 

90% closure 
stress σnref 20x109 Pa 

Lamé's first 
parameter µ 2.4x1010 Pa 

Lamé's second 
parameter λ 2.4x1010 Pa 

 

 
Figure 3: Considered domain with unstructured 

gridding. The black solid lines represent 
fracture while the red one represents 
wellbore. 

As an illustrative example, we start with presenting 
the results of each sequentially coupled physical 
process. Figure 4 shows the pressure distribution and 
corresponding induced displacement in the domain 
after 1000s.  The constant pressure injection is 
provided from the middle of domain that is shown as a 
red line in Figure 4 (middle and bottom figures). For 
the sake of illustration, in figures showing mechanical 

x 

y 
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deformation, fracture faces are marked as white or 
black depending on whether they have slipped or not. 
The deformation in the matrix due to the shear 
displacement jump between face pairs is also shown in 
Figure 4. The colouring indicates the magnitude of 
deformation and the arrows show both magnitude and 
the direction of deformation. As expected, the 
magnitude of induced slip depends on to the 
orientation of fractures. The direction of deformation 
and the magnitude are different across the fracture 
because of the geometry and the fracture orientation to 
one another.  

We also expect that the face pairs, which have a shear 
displacement jump, have lower shear stress than the 
ones next to them. This effect can be seen better at the 
next time step, shown in Figure 5, which depicts the 
pressure distribution and corresponding mechanical 
deformation at time level 2000s. The effect of shear 
displacement jumps that occurred at the previous time 
step can be clearly seen in this figure. The shear 
stresses at the previously slipped face pairs are lower 
thus they are exposed to lower shear jump. However, 
the neighbouring face pairs have increased shear stress 
and consequently have higher shear jumps.  

As noted above, the slip of face pairs can cause slip 
avalanches. This is due to the direct effect of increased 
shear stress on the neighbouring faces. This effect is 
displayed in Figure 6, which shows the update from 
the second mechanics solve at t=2000s.  The results 
show how the slip events cause additional slip events, 
affecting fracture apertures and displacements in the 
domain. 

To stress the effect of matrix permeability, two 
numerical simulations are conducted. Both of the 
simulations have same properties except from the 
matrix permeability values. First, we present figure 7 
that shows the aperture increase at the end of 10 days 
of constant injection process. As anticipated, the 
fractures near the injection well have more aperture 
increase than the others. Moreover, favourably 
oriented fractures have a larger tendency to slip. As 
can be seen from the figure, even though the 
horizontal fracture is exposed high pressure, there is as 
expected no aperture increase, as the fracture is 
aligned with a principal stress direction. 

 

 

 

 

 

 

Figure 4: The pressure distribution (top) and 
induced displacement (middle) after 1000s. 
To have better inspection of the 
displacements, the bottom figure shows 
closer look of grey dashed lined area of the 
middle figure. 
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Figure 5: The pressure distribution (top) and 
induced displacement (middle) after 2000s. 
To have better inspection of the 
displacements, the bottom figure shows 
closer look of grey dashed lined area of the 
middle figure. 

The effect of small-scale fractures can easily be seen 
by comparing Figure 7 and Figure 8.  Figure 7 show 
the induced apertures when the matrix has 
permeability of 10-21 m2 whereas Figure 8 shows the 

induced apertures when the matrix has permeability of 
10-20 m2. The difference between two figures is caused 
by the different pressure distributions in the domain. 
The flow is more dominated by the fractures when the 
permeability in the matrix is lower (Figure 7). The low 
matrix permeability provides high pressures in the 
fractures by preventing the diffusion of fluid flow in to 
the matrix. Therefore the fractures are exposed more 
pressure increase consequently more aperture increase. 
However, the aperture increase is lower if the 
permeability is higher in the matrix (Figure 8). In 
Figure 8, the flow has not diffused yet to the regions 
far from injection well. Therefore, the aperture 
increase occurs mainly the area near the injection well. 
Moreover, because of the higher permeability in the 
matrix, the flow is less dominated by the fractures.   

 

Figure 6: The slip avalanche happens at time step 
2000s. The top figure shows the whole 
domain and the bottom figure shows closer 
look of grey dashed lined area of the whole 
domain. 

Results of this analysis show that the aperture value 
and consequently permeability of fractured rock is 
significantly affected by the permeability of matrix. 
Therefore, the assumption of zero permeability value 
for matrix, which commonly is made for several 
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studies in the literature, may not be precise for 
prediction of the global flow behaviour of rocks.  

 

Figure 7: The increase in apertures at the end of 10 
days of constant injection process (matrix 
permeability: 10-21 m2). 

 

Figure 8: The increase in apertures at the end of 10 
days constant injection process (matrix 
permeability: 10-20 m2). 

5. CONCLUDING REMARKS 
We have presented a mathematical model and a 
numerical approach as an effective technique to model 
shear stimulation in geothermal reservoirs. Our 
approach couples fluid flow, mechanical deformation 
and fracture deformation. We presented the results of 
the sequentially coupled physical processes step by 
step. The limitations of the current approach are that 
1) the elastic deformation is assumed to be quasistatic, 
2) the poroelastic and thermoelastic deformations are 
neglected during the simulations, and, 3) the effect of 
out of plane dimension is ignored, as only two-
dimensional domains are considered. Although MPSA 
allows for including possible heterogeneity in elastic 
properties, the elastic properties of the rock were 

assumed as homogeneous and constant in the current 
test cases. 

Most notably, the (DFM) model for flow used in the 
current study ensures to investigate the effect of 
matrix permeability to the global flow behaviour. 
Consequently, since capturing the effect of the small 
scale fractures in the matrix influence the precision of 
the flow approximation, the DFM model  avoid 
inaccurate approximation of permeability increase due 
to wrong pressure estimates. Moreover, we note that 
the method can successfully be extended to 3D studies 
that include heterogeneous elastic properties.  
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