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Abstract

The Advanced Encryption Standard is probably the most used symmetric encryption cipher in
use today, which makes it particularly interesting for cryptanalysis. This thesis attacks small-
scale variants of AES through a particular branch of algebraic cryptanalysis known as Com-
pressed Right-Hand Sides. We see some success, as we are able to break for the first time three
rounds of a 32-bit small-scale variant. We also make an interesting discovery, in that we get

indications that some plaintext values result in easier-to-break small-scale instances.
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Chapter 1

Introduction

The internet has become enormously large and complex, with billions of everyday users. These
users expect things to work, and they expect to use it without becoming subject to malicious
intent. For instance, they expect that the right amount is drawn from their account when paying
someone online, and that only themselves and their bank know how much they have on their
account. There are numerous mechanisms in place attempting to ensure that using the internet
is safe as possible. This thesis aims to take a closer look at one of those mechanisms, namely
the Advanced Encryption Standard, or AES. To understand what the AES is, we need to explain
what encryption is and how encryption is relevant to safe usage of the internet. Therefore, we
also find it natural to talk about how we gauge the security of encryption, which will eventually
lead us to what is known as cryptanalysis. I will then take the opportunity to give the problem
statement in general terms. A more detailed problem statement comes at the start of chapter
5, as it is leans on background covered in chapters 2 til 4. We will then round of this chapter by

giving an overview of the remainder of this thesis.

1.1 The Concept of Encryption

Encryption is the art of rendering readable text into something that looks like garble. When
talking about digital messages, then ideally the garble should look no different than the random
noise that naturally occurs when transferring data digitally. Hence we aim for the garbled mes-

sage to look completely random. When designing modern ciphers there are two aspects related
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to this perceived randomness which we will consider after we have got some terminology in
place.

Text that is readable to anyone is called plaintext. Plaintext that has been encrypted into a
seemingly random string of letters (or bits, in case of computers), is called ciphertext. Creating
a ciphertext from a plaintext is called to encrypt the plaintext. Making it back to readable form
is called to decrypt. The steps taken to transform a plaintext to a ciphertext and back again is
called an encryption algorithm, or a cipher. As we will see when we consider the application of
encryption, we need one more component to make this useful, namely the key. A key is needed
both to encrypt plaintext and to decrypt a ciphertext. No one who does not know the key should
not be able to extract any information about the plaintext from the ciphertext. Keeping the key

secret is therefore important. An illustration of the encryption process is given in Figure 1.1.

Encryption Decryption

Cipher Text \

Plain Text Plain Text

Figure 1.1: Encryption

The inclusion of keys ties in neatly with the randomness we want in the ciphertexts. As-
suming the key is chosen at random, the randomness in the key should be enough to make the
plaintext and the ciphertext seem completely unrelated. More generally, given two plaintexts
encrypted under the same key, the resulting ciphertexts are supposed to yield no useful infor-
mation at all about the two plaintexts. Even if only of bit, the smallest electronical building block
of computers, is changed, the difference in the ciphertexts must look the same as if all the bits,
or any other number of bits, were changed. More precisely, changing just one bit in one end
(plaintext or ciphertext) should result statistically in the change of approximately half the bits in
the other end.

There are two more principles important to modern-day ciphers. The first one is arguably
the most important one, namely Kerckhoff’s principle: If nothing but the key used is secret, the
cipher should still be secure to use. This implies that even if some malicious third party knows

every single detail about the cipher, not just how it works but also both the plaintext and the

3
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corresponding ciphertext under a key, but not the key itself, this third party should still not be
able to somehow figure out the key in use.

The second principle is known by some as Schneier’s Law, but, as Schneier himself points
out [16], this principle outdates him. The principle states that ‘anyone, from the most clueless
amateur to the best cryptographer, can create an algorithm that he himself can’t break.” [16]. What
he means by this is that not being able to break your own cipher does not mean it is unbreakable.
As trivial as that may seem, it still is important to bear in mind. For the modern day ciphers we
use, there is no formal proof that they are unbreakable.

Because of these two principles, it is widely accepted as best practice to always publish a
new cipher into the wild, so to speak, for others to scrutinize the cipher. If many clever people
have tried hard to break a cipher, but failed, we can be relatively certain that no one can break

it. This is also why this thesis is possible and relevant in the first place.

1.1.1 Symmetric vs. Asymmetric Encryption

As mentioned, encryption is only one of many security mechanisms in play. Its most noteworthy
application is the end-to-end protection it offers messages sent over the internet. Imagine that
Alice wants to talk to her online bank, Bob. If Alice were to send her message to Bob in plaintext,
anyone along the way could read her message. Naturally, Alice would rather like that no other
entity than Bob can read their communication. As most people do, she prefers her financial
details to remain confidential, and she therefore decides to encrypt her message. She applies
her chosen cipher combined with her secret key on her plaintext. Alice then sends the created
ciphertext instead. This way no one that does not know the secret key can read the message.
Since Bob also knows this secret key, he can decrypt and read Alice’s message. Likewise, Bob
can use the secret key to encrypt messages to Alice. This kind of encryption, where the same
key is used to both encrypt and decrypt the message, is known as symmetric encryption and is
illustrated in Figure 1.2.

A very useful consequence of using symmetric ciphers, is that it provides an indirect way for
Alice to identify who she is talking to. If she trusts Bob not to share the key with anyone else, she
can trust that it is Bob she is talking to. Since no one else but Alice and Bob have the key, no one

else can encrypt a message that their secret key decrypts.
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Symmetric
Encryption Decryption
3
Plain Text Cipher Text Plain Text

Alice

Figure 1.2: Symmetric Encryption.

This raises the question; how can Alice and Bob exchange the secret key in the first place?
One way would be to send the key by some means in the “snail-mail". Fortunately, there exists
a way to exchange keys online: By using asymmetric cryptography.

Asymmetric
~ Encryption ~ Decryption -
=l [= = =
-
Plain Text Cipher Text Plain Text

Alice

Figure 1.3: Asymmetric Encryption.

In asymmetric cryptography, see Figure 1.3, we use two keys instead of just one as in the
symmetric case. One key, the public key is used to encrypt the message while the other key, the
private key decrypts the message. In other words, the key that encrypted the message is not also
capable of decrypting it!

As the names suggest, one key is shared publicly to anyone who wants it, while the other is
kept utmost secret. If Alice wants to communicate with Bob, she can look up Bobs public key
online and use that key to encrypt her message. She then sends the message to Bob, and if Bob
has not shared/lost his private key, she can be confident that only Bob can decrypt the mes-
sage using his private key. The drawback with asymmetric cryptography is that it is significantly
slower than many symmetric cryptographic ciphers. Therefore, it is common to use asymmet-
ric ciphers to exchange the symmetric key with the recipient, and then to switch to a symmetric
cipher. Asymmetric ciphers are also useful to “prove” one’s identity, but that must stay a topic

for another time. We will deal only with a symmetric cipher in this thesis, namely the Advanced
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Encryption Standard.

1.2 Benchmark for the Security of Encryption

Since encryption is such an important part in staying safe while using the internet it is only
natural to wonder about the strength of it. The first thing that we need to realize when talking
about the security of ciphers is that no matter which one we choose, it may always be broken.
This may sound odd at first, that we willingly use something we know may be compromised,
and we even claim that is it safe to use. The explanation to that lies in the nature of the keys.
A key is a string of bits of a length predetermined by the cipher in question. In other words, it
is simply a long string of 0’s and 1’s, and anyone with the key can decrypt any ciphertext made
under that key. This means that an attacker can attempt to decrypt any ciphertext by trying all
possible variations of 0’s and 1’s of the specified length. Such an attempt is known as a brute
force attack. A brute force attack will always be possible against any cipher that uses a secret
key, in other words all ciphers in use today, but that does not mean brute force is viable. For
example, the smallest key size used by AES is 128 bits long. Basic combinatorics tells us that

2128

since we have 128 places that each can hold eithera 0 or a 1, we have possible keys. In other

2128 chance to succeed.

words, guessing a key at random gives a 1/
Even the fastest supercomputer alive today does not come close to brute-forcing 128 bit
keys. The Sunway TaihuLigth supercomputer currently holds the title of fastest supercomputer

2% flops. Let us assume that we can test one key per flop.

[1], and can do = 100 petaflops, or =
This is a simplification which allows for more keys to be tested at one time than realistic, yet let
us increase our capabilities even further by assuming that we have 1000 such supercomputers.

Then we can test a staggering 256 keys per second! In terms of years, that is:
66 — 990
277 x 60 x 60 x 24 x 365 = 27" keys a year. (1.1)

Even accounting for the fact that we may expect to find a match after testing approximately
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half of the possible keys, we do not come close:

2128/2
290

= 237 = 137 billion years is needed to find the key. (1.2)

Therefore, we define a cipher as secure if it is computationally infeasible to guess the key.
Furthermore, we define a cipher as broken if there exists a method to find the key faster than by
brute force. Notice that a cipher may still be regarded as secure even if it is broken, since it may

still be computationally infeasible to find the key.

1.3 Cryptanalysis

We know that brute force is always possible, even though not practical. We would like to assure
ourselves that brute force is the best attack we can do. In most cases we cannot know if there
exists a better, more efficient way to find the secret key. The best we can do is to look for a better
way. This is known as cryptanalysis, the science or art of breaking cryptosystems. Currently this
is the best way of gauging and ensuring the security of cryptographic algorithms.

Because of the somewhat vague definition of cryptanalysis, we can divide these efforts into
roughly three categories. It is important to note that opinions differ on whether the second and
third category is included or excluded.

Classical cryptanalysis deals with attempting to recover the secret key from the associated
ciphertext only, or from both the plaintext and ciphertext encrypted under some unknown key.
This is usually done through various mathematical techniques and rigorous analysis of the algo-
rithm in question. These techniques may be of a highly advanced level, or as simply as counting
the frequency of letters. Brute force is an example of a technique in this category. Because it sets
the bar for “worst-case” it also serves as a benchmark for how well the other techniques do. This
is the category that everybody agrees on to be cryptanalysis.

Implementation attacks, or side-channel attacks is the second category. This one tries to ob-
tain the key in use by exploiting weaknesses in how the cipher is implemented in a real-world
application. This category is more debated since there are two kinds of exploitation possible:

The one that looks for the key, and the one that looks for a way to bypass the key. Most cryp-
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tographers agree that the first one is regarded as cryptanalysis, while the second exploitation is
more debated as to whether it should be considered cryptanalysis. To give an example, finding
a key through the means of monitoring the power usage of a CPU during execution of a cipher
is attempting to acquire the key, while exploiting race-condition to bypass an authentication
process may be outside what many cryptographers consider to be cryptanalysis. Therefore, the
group is somewhat debated.

The last group is social engineering. Bluntly said, this group encompasses all attempts to
lure the victims into giving their keys to the attacker. A typical example of this is a phishing
attack, where the victim is lured onto a website it believes belongs to credible company, when
in reality it is the attacker’s own website made to look like the credible company. If the victim
attempts to log in with the credentials they use on the site they believe they are on, instead of
actually logging in they give their credentials to the attacker. Since this way of obtaining the key,
or equivalently, access to the system in question, is more of a bypass than an actual attack on
the mathematics or implementation of the system, most cryptographers do not consider this
category as part of cryptanalysis. However, in [10] they do.

Those who argue that it belongs to the term 'cryptanalysis’ argues that the secret ingredient
was acquired, and also that the system needs to take into account the human element. No
matter what your opinion on this matter is, for a system to be secure overall, we need both
strong ciphers and to make sure that successful implementation and social engineering attacks

are as unlikely as possible.

When we use the term “cryptanalysis” in the remainder of this thesis, we think of it as “classical

cryptanalysis” as defined above.

One last thing before we are ready to state our problem. As we will see in Chapter 4, attacking
“normal” AES will take so much time that we cannot get any useful results from it. Therefore,
in the second part of Chapter 3, we will consider small-scale variants of AES. In a nutshell, we
vary several of the parameters set for the AES algorithm to create new, but similar, encryption
algorithms that may actually be broken. Itis believed that these small-scale variants retain much
of the structure of “full” AES, and that any weaknesses found in a small-scale variant may give
insight on the security of the full version. Using small-scale variants enables us to get useful data

to analyze within a practical time frame. The details will be covered in Chapters 3 and 4.
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1.4 Problem Statement for the Thesis

This thesis considers a particular branch of cryptanalysis known as algebraic cryptanalysis, ap-
plied to small-scale variants of the AES. We build on earlier work done in [3, 12, 11], and try to
extend the results found there by attacking more AES variants with newer methods for algebraic
attacks. The results show when we are successful in breaking small-scale versions of AES, and
fill a small gap in our knowledge about the security of the AES.

We decided to put the full problem statement at the beginning of Chapter 5, as we feel that

the full problem statement need more background covered.

1.5 Thesis Outline

Chapter 2 is intended to give a recap of important concepts relevant to the subsequent chap-
ters: Abstract and linear algebra, Boolean functions, block ciphers, and cryptanalysis. Then we
will move onto the Advanced Encryption Standard in Chapter 3, going into the details of the
encryption algorithm. Here we will also cover small-scale AES, a common framework for the
analysis of AES-like equation systems [3]. Chapter 4 covers the background and theory of the
algebraic cryptanalysis branch we will use; Multiple Right-Hand Sides (MRHS) and Compressed
Right-Hand Sides (CRHS). In here we also introduce three different solving strategies that uti-
lizes CRHS. Next, Chapter 5 starts of by explaining the project setup and configurations. It then
summarizes our results, before we discuss these findings. Lastly, in Chapter 6 we give some

closing remarks and work for the future.



Chapter 2

Background

This chapter introduces the basic mathematics necessary to understand AES and the algebraic
cryptanalysis of it that comes later in the thesis. Much of the content here is learned from the
book "The design of Rijndael" by Daemen and Rijmen [13]. Furthermore, both the Boolean
Functions and Block Cipher sections are inspired by the same book, though most, if not all, may

be considered common knowledge in the field.

2.1 Abstract Algebra

The mathematical foundation of the Advanced Encryption Standard, as for many other cryp-
tosystems, are based upon the field of abstract algebra. This section aims to give a recap of the
most relevant concepts of abstract algebra as it pertains to this research, and is adapted from
[13]. For a more comprehensive treatment of abstract algebra, consult an algebra book such as

(4]

2.1.1 Group

In abstract algebra, groups are the basic construction on which more advanced mathematical

constructs are built. It is therefore natural to begin by defining a group.

Definition 1. A group < G, + > consists of a set G and an operation defined on its elements, here

10
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denoted by +:
+:GxG—G:(a,b)— a+b,

fulfilling the following conditions:
* Closed: Va,be G:a+beG
e Associative: Va,b,ce G:(a+b)+c=a+ (b+c)
¢ Neutral element: 30 € G, suchthatVae G:a+0=a
* Inverse elements: Va € G,3be Gsuchthata+b=0

Another possible condition the operation may satisfy is commutativity:

Commutative:VYa,be G:a+b=b+a

If the operation also is commutative, we call the group an Abelian group.

Example 1. There are two well known examples of Abelian groups that we use every day: the
first is the set of integers under addition: < Z,+ >. The second is the structure < Z,4, + >, which
is used in 24 hour watches. It contains the integer numbers 0-23. The operation is addition
modulo 24. This last example can be generalized to the structure < Z,,+ > which contains the

set of integers from 0 to n — 1, with addition modulo 7 being its operation.

Since the set of integers under addition is the best-known example of a group, it is com-
monplace to use “+” to denote an arbitrary group operation. Also, “+” is often referred to as
“addition”. We will adhere to this practice in this thesis both when talking about an arbitrary
group operation as well as talking about integer addition. The context should make it clear what

operation the symbol is referring to.

2.1.2 Ring

The next structure to define is the ring. A ring is essentially an Abelian group that has been

“expanded” with a second operation. The second operation needs to have a neutral element,

11
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associativity and closedness, but it needs not have inverses. Therefore, the set under the second

operation only, needs not be a group by itself.

Definition 2. A ring < R, +, x > consists of a set R with two operations defined on its elements,
here denoted by + and x. In order to qualify as a ring, the operations have to fulfill the following

conditions:
* The structure < R, + > is an Abelian group
e The operation x is closed, and associative over R. There is a neutral element for x in R

e The two operations + and x are related by the law of distributivity: Va,b,ce€ R: (a+b)xc =

(axc)+(bxc).

The operator x is often referred to as “multiplication”, and its neutral element is usually de-

noted by 1. If x is commutative, the ring < R, +, x > is called a commutative ring.

Example 2. Example: If we include multiplication in the set of integers under addition from
the previous example, we get the ring < Z, +, x >, the set of integers under addition and mul-
tiplication. This ring is commutative. Another well known ring is the set of matrices over Z
with 7 rows and 7 columns under “matrix addition” and “matrix multiplication”. This ring is not

commutative for n larger than 1.

2.1.3 Field

The next structure, the field, will expand the concept of a ring. Simply said, a field is a commu-

tative ring that also has inverse elements with respect to multiplication.
Definition 3. A structure < F, +, x > is a field if the following two conditions are satisfied:
* < F +,x > is acommutative ring.

e For all elements of F, there is an inverse element in F with respect to the operation x,

except for the element 0, the neutral element of < F, + >.

12
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A field can be thought of as a set that is an Abelian group both under addition alone and
under multiplication alone, except for 0. More formally, a structure < F, +, x > is a field if both
< F+ > and < F\{0}, x > are Abelian groups and the law of distributivity applies. The neutral

element of < F\{0}, x > is known as the unit element of the field.

Example 3. The set of real numbers under addition and multiplication is the best-known exam-
ple of a field. When a set is a field, it is possible to do addition, subtraction, multiplication and
division without leaving the set. Subtraction is done by adding inverses: a-b = a + (—b), where
—b is the additive inverse of b. Division uses the multiplicative inverses: a/b = a x b~!, where

b~! is the inverse of b with respect to multiplication.

2.1.4 Finite Fields

A finite field is a field with a finite number of elements. The number of elements in the set of
the finite field is known as the order of the field. There can only exist finite fields for which
the order is a prime power. More formally, there can only exists fields of order m if and only if
m = p" for some integer n and p being a prime integer. This has to do with the need for inverses
for both operations in the field. It is also worth noting that p is known as the characteristic of
the finite field. An important property of finite fields is the fact that fields of the same order
are isomorphic: Even though the elements of two fields of the same order may differ in their

representation, their underlying algebraic structure is exactly the same.

Definition 4. Two finite fields F and F’ are isomorphic if there exists a one-to-one function ¢

mapping F onto F’ and the following conditions are satisfied:
e px+y)=px)+e(),Vx,yeF
s pxxy)=@x)x@(y),Vx,y€F.

This means that for each prime power there exists exactly one finite field, denoted GF(p").
The perhaps easiest form of finite fields to grasp are the ones where n = 1. When this is the
case, the finite field has order p, and due to isomorphism, the finite field can be represented by

<Zp,+,%x>.

13
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When the order is not prime, i.e. n > 1, things are a bit more complicated. The operations
can no longer be modulo p, nor will they be modulo p”. Instead we will represent GF(p") as
polynomials over GF(p) of degree n. This is not the only way to represent GF(p") with n > 1, but
it is the one we will use in this thesis. The reason for this is that these polynomials in GF(2%) can
easily be represented using Boolean vectors, which can conveniently be stored as 8-bit values, or
bytes. This is opportune for us, since we will only be working with fields of characteristic 2, with
ne{l,4,8}. Table (2.1) gives GF 2% as numbering the elements using hexadecimal notation and

the corresponding 4 bit Boolean vector.

Hexadecimal | Boolean vector
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

i O O E oo oals|w N - o

Table 2.1: Table of the elements of GF(2%). Use equation (2.1) to go from Boolean vector form to
the corresponding polynomial.

2.1.5 Polynomials over a Field

A polynomial is a sum of a finite number of terms, where each term is a constant multiplied with
one or more variables to the power of a positive integer exponent. A polynomial b over a field F

is an expression of the form

b(x) = by 1 X" Y+ by ox"?+ ...+ byx + by,

14
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where the b; € F are known as the coefficients. There is no need to evaluate the polynomials in
this thesis, and we will therefore treat them as abstract elements only. The degree of a polynomial
is the largest exponent in the polynomial which have a non-zero coefficient.

The set of polynomials over a field F is denoted F[x]. A compressed, efficient way of writing
polynomials is to store only the coefficients as an ordered string. Since we will use polynomials
with coefficients from GF(2) in this thesis, the coefficients may only be 0 or 1. This enables us

to store polynomials up to degree 8 in a single byte:

b7 bgbsbybsbaby by — b(x) = byx” + bex® + bsx® + byx* + bsx® + byx? + by x + by. 2.1)

Bytes are often written in hexadecimal notation.

2.1.6 Operations on Polynomials

Addition of polynomials consists of summing the coefficients of equal powers of x, where the
summing of the coefficients occurs in the underlying field F. The neutral element for addition is
the polynomial in which all coefficients are equal to zero. The additive inverse of a polynomial
is easily made by replacing each coefficient by its additive inverse element in F. For the poly-
nomial representation of the elements in GF(2"), each polynomial will be its own inverse under

addition.

Definition 5. A polynomial d(x) is irreducible over the field GF(p) if and only if there exist no
two polynomials a(x) and b(x) with coefficients in GF(p) such that d(x) = a(x) x b(x), where

both a(x) and b(x) are of degree > 0.

Definition 6. The multiplication of two polynomials a(x) and b(x) is defined as the algebraic

product of the polynomials modulo an irreducible polynomial m(x):

c(x)=a(x) -b(x)  c(x) = alx) x b(x) (modm(x)).

This makes the multiplication operation closed.
With respect to addition of polynomials, multiplication of polynomials is associative, com-

mutative and distributive. The neutral element is the polynomial of degree 0 and with coeffi-
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cient of x° equal to 1. In order to find the inverse for the multiplication, the Extended Euclidean

Algorithm may be utilized (see e.g. [7, p. 81]).

2.1.7 Some Observations on Finite Fields with Characteristic 2

* Elements of finite fields with characteristic 2 may be represented as binary polynomials.

This makes them easy to store and process digitally.

» Multiplication by x is fast when byte representation is used, as it is the same as a left-
shift of the bits, followed by an addition of the chosen reduction polynomial if the highest

coefficientis 1.

2.2 Linear Algebra

As linear algebra is one of the main pillar of MRHS and CRHS, this section will briefly cover some
core aspects of it. This section is based upon [6]. For a comprehensive treatment, see [6] or some
other linear algebra textbook.

A linear equation in the variables x1,..., X, is an equation that can be written in the form
axX1+axxy+---+apx,=b (2.2)

where ay, ..., a, are called the coefficients. A system of linear equations (or a linear system) is a

collection of one or more linear equations involving the same variables.

Example 4.

X1+x2+x3=0

X1+x3=1

The coefficients of a system of linear equations may be written as a matrix, in what is known

as the coefficient matrix.

1 11
Example 5. The coefficient matrix of Example 4:

1 01
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The size of a matrix is the number of rows and columns that comprises it, denoted m x n.
A matrix with only one column is called a vector. If b is included in the coefficient matrix of

Example 4, we have the augmented matrix.

1 110
Example 6. The augmented matrix of Example 4:

1 011

Reducing the augmented matrix in Example 6 into echelon form (see [6, ch 1.2]) quickly tells
us if there exists a solution to Example 4. If there exists no row in the reduced augmented matrix
ontheform [0 ... 0 1]thenthereexistsatleastone solution. Otherwise we have no solution.
Further reducing the matrix into reduced echelon form makes it easy to tell if the solution is
unique. If there are no free variables the solution is unique. Otherwise we have more than one
solution, depending on the field we are in. For R we have infinitely many solutions, while for
GF(2), which is the one we will operate in, we have 2* solutions for k free variables.

Given vectors vy, ...,v, in GF (2)" and given scalars cy,..., Cp, the vector y defined by

y=cCivi+--+CpVp (2.3)

is called a linear combination of vy, ...,v, with weights cy, ..., cp.
The matrix equation Ax = b is the linear combination of the columns of A using the corre-

sponding entries in x as weights, that is

X1
X2
AX=|a; ap ... a, = Xx1a; + Xpaz + -+ + Xpan
Xn
5 | x1
1 11 0
Example 7. Ax =b form of Example 4: X | =
1 01 1
o

A n-vectorxis said to be a solution if it satisfies Ax = b, meaning thatb is alinear combination

of the columns of A using the entries of x as weights. A system is said to be consistent if it contains

17



2.3. BOOLEAN FUNCTIONS Chapter 2

norowsontheform [0 ... 0 1| whenin echelonform. In other words, when there is at least
one solution to the system. Otherwise it is said to be inconsistent.

A set {vy,...,vp} of two or more rows of A is said to be linearly dependent if there exists
weights cy, ..., ¢, such that

OZCIV1+"'+Cpr,

where not all ¢; are 0. If there is no combination that forms the zero row, {vy,...,v,} are said to

be linearly independent of each other.

2.3 Boolean Functions

2.3.1 Bits and Boolean Vectors

The smallest finite field, GF(2) has only two elements, 0 and 1. These elements are known as
bits, or Boolean variables, depending on context. The two operations of this finite field, addition
and multiplication correspond to the logical operations of XOR and AND respectively. XOR is a
binary function that returns 1 if and only if the two input values differ, see Table (2.2). AND is a

binary function that on the other hand returns 1 if and only if both input values are 1, see Table

(2.3).
XOR | 0
0
1 1

Table 2.2: Table for XOR of two bits.

AND |0 |1
0
1 01

Table 2.3: Table for AND of two bits.

A vector whose coordinates are bits is called a Boolean vector. Often a Boolean vector is
represented as a binary string of equal length to the vector. One can XOR or AND two Boolean
vectors of equal size by XORing/ANDing the corresponding bits from each vector, called bitwise

XOR and bitwise AND.
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2.3.2 Function, Transformation and Permutation

A Boolean function b = ¢(a) is a function that maps a Boolean vector to another Boolean vector.
¢:GF(2") - GF(2™):a—b=¢(a)

where a is called the input vector and b is called the output vector. If the output vector b has
only one bit, that is m = 1, then ¢ is known as a Boolean function. When the input vector a
has the same length as the output vector b, or n = m, ¢ is known as a Boolean transformation.
A Boolean transformation may be viewed as a function that operates on a state. If the Boolean
transformation also is one-to-one and onto, which makes it invertible, then we call ¢ a Boolean
permutation. Onto means that every possible output vector is mapped to by some input vector
to ¢. One-to-one means that different input vectors always maps to different output vectors.
Summarized, a Boolean permutation is a Boolean function that is invertible, and that has input

vectors a of same length as its output vectors b.

2.3.3 Partition Bundles

When dealing with sets of binary variables, it is often useful to partition them into disjoint sub-
sets known as bundles. This allows us to express functions in terms of these bundles instead of
in terms of each individual bit. We will deal only with ordered sets, which has the effect that the
bits within the bundles also will be ordered, and that the bundles among themselves, at least ini-
tially, will be ordered. We normally use indexes to keep track of the order, and the index scheme
in use will be explained when needed.

By bundling together bits one can easily represent extensions of GF(2). For instance, a bun-
dle of 4 bits can be thought of as an element in GF(2%), with indexing starting at 0 and rightmost.
Thus it corresponds with the indexing convention used in polynomials over a field, like in (2.1).

Table (2.4) shows a bundle of four bits, and its corresponding polynomial in GF(2%).

Bundle Polynomial
0101 | 0x’+x*+0x+1

Table 2.4: A 4-bit bundle and its corresponding polynomial.
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2.3.4 Transposition and Bundle Transposition

A transposition b = ma is a function that changes the order of an ordered set, without changing
the values of the elements.

b; = apq),

where i is an index and p(i) is a permutation of the indices. When the set is a set of bundles,
this means that a permutation of the bundles will be executed, but the order of the internal bits
of each bundle will remain the same. So even if the bundle order is changed, the values stay the

same. This is known as a bundle transposition, and Figure (2.1) gives an example.

Figure 2.1: Example of a bundle transposition. From [13, p. 21].

2.3.5 Bricklayer Function

A similar, yet fundamentally different Boolean function to the bundle permutation, is the brick-
layer function. The bricklayer function also works on smaller partitions of a set, but unlike the
bundle permutations, it may, and usually do, change the values of the bits of its bundles. One
may view it as a Boolean function that may be decomposed into a number of Boolean functions,
each of whom operate in parallel on a partition. Note that these decomposed functions may be
different from one another.

These decomposed functions are known as S-boxes when the function is non-linear, and
D-boxes when they are linear. S stands for substitution while D stands for diffusion. When the
input vector is of the same length as its output vector, we call the overall function for a bricklayer
transformation. If the partitions/bundles within the input vector a and b are denoted by a;
and b; respectively, this can be represented as b; = ¢;(a;). It is worth noting that the parallel
operations of the S-/D- boxes are independent from each other.

The non-linear step of the AES-candidate Serpent is an example of a bricklayer function. As

are all AES’ Boolean transformations, as we will see in the next chapter. If the S- / D- boxes of
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the bricklayer transformation are all invertible, the bricklayer transformation is also invertible,

and thus known as a bricklayer permutation.

2.3.6 Iterative Boolean Transformation

One may apply Boolean transformations on a Boolean vector, one after another, creating a se-
quence of Boolean transformations known as an iterative Boolean transformation. Figure 2.2
shows the form of an iterative transformation, in where p'” represents the individual transfor-

mations.

B= p(r)O...op(z)Op(l)(al)

The value of p(i) 0...0 p(l) (aq) for 1 < i < r is known as an intermediate state. If all the intermedi-
ate functions are Boolean permutations, the whole function is an iterative Boolean permutation,

and is thus invertible.

S S N S N S O

Py b vy

Figure 2.2: Tllustration of an iterative Boolean transformation. From [13, p. 23].

2.4 Block Ciphers

Ablock cipher is a permutation that transforms plaintext blocks of a fixed length n;, to ciphertext

blocks of the same length, under the influence of a cipher key k. One may view a block cipher
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as a set of operations that works on fixed length vectors. The key vector may be of a different
length ny.

For a fixed plaintext vector and a key vector of size nj there are 2"t possible permutations
for the block cipher. The act of transforming an input vector, or plaintext block, into an output
vector, or ciphertext block, under the influence of the key k, is known as encrypting the plain-
text under k. Transforming the ciphertext back into the plaintext using the key k, is known as
decrypting the ciphertext under k.

The specification of the block cipher gives the encryption algorithm. The encryption algo-
rithm specifies the operations to be used, and the sequence in which they will be applied to the
plaintext in order to obtain the ciphertext. In this thesis we will only be dealing with plaintexts,
keys and ciphertexts represented as Boolean vectors. This means that the only operations we
will be dealing with are Boolean functions. Since encrypting a plaintext without the ability to

decrypt it again is of little use to us, all Boolean functions will be Boolean permutations.

2.4.1 Key-Iterated Block Ciphers

According to [13], AES belongs to a class of block ciphers known as key-iterated block ciphers.
In a key-iterated block cipher, the cipher is defined as the alternating application of round-
transformations and key additions. One application of the round-transformation, or the key-
independent Boolean transformation, and one key addition is one round of the cipher. It is
normal to have a key addition step before the first round as well. The keys for each round are
usually specified in a part of the encryption algorithm known as the key schedule. How the key
schedule and round transformations are designed vary from block cipher to block cipher.
Key-iterated block ciphers’ key addition step is simply to XOR in the round key. Further-
more, each round transformation, with the possible exception of the first or last round, need
be the same. This makes for efficient implementation in both hardware and software. Key-
iterated block ciphers belong to the class of key-alternating block ciphers. Figure 2.3 illustrates

two rounds of a key-alternating block cipher.
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Figure 2.3: Key-alternating block cipher with two rounds. From [13, p. 26]

2.5 Cryptanalysis

Analysing ciphers to assess their strength is known as cryptanalysis. As already noted in Section
1.3 we only consider classical cryptanalysis in this thesis, i.e., only studying the abstract descrip-
tion of the cipher in question and not taking any particular use or implementation into account.
There are some known standard techniques for doing cryptanalysis of block ciphers. The most

well known (modern) cryptanalytic methods are called differential and linear cryptanalysis.

In differential cryptanalysis one considers two plaintexts at the time, usually with some
small, known, difference between them. The crucial observation is that adding the same round
key onto the two plaintexts will not change this difference! So when only considering differences
of two cipher blocks, key additions behave like the identity mapping. Linear operations in the
cipher change the difference of a cipher block, but in a known way. The only operations in a
cipher that can change a difference in an unpredictable way are the non-linear ones, such as
S-boxes. In a differential attack the attacker tries to predict what the difference of the two cipher
blocks will be at some point in the encryption operation. If the attacker knows that a difference
has a relatively high probability of occurring at some particular point close to the ciphertext, he
can use this information to find what the value of at least parts of the last round key(s) must be.

This is usually enough to break the cipher.

In linear cryptanalysis the attacker studies linear combinations of bits from the cipher block
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as it progresses through the cipher. Starting with a known plaintext, the attacker knows what the
sum of some of its bits will be. After adding the first round key, the attacker knows that the sum of
the same bits in the cipher block will have the same value if the corresponding bits in the round
key sum to 0, and will be flipped otherwise. The crucial thing is that repeating this for many
plaintexts, the attacker knows that the 0/1-distribution of the particular linear combination will
be the same, or flipped, after adding key material. Applying linear transformations on the cipher
block does not change this, the attacker still knows how skewed the 0/1-distribution is for some
linear combinations at the output of a linear transformation. Again, the only component that
defends against linear cryptanalysis are the non-linear ones, i.e. S-boxes. Different S-boxes gives
better or worse protection, and linear cryptanalysis is most famous for being the best attack on
the Data Encryption Standard (DES) that was the predecessor of AES. The S-boxes in DES do not

give optimal protection against linear cryptanalysis.

The topic of the rest of this thesis is algebraic cryptanalysis. In algebraic cryptanalysis the
attacker treats the unkown bits of the key as variables, and models the whole encryption algo-
rithm as an equation system using the knowledge of one plaintext/ciphertext pair. The question
of breaking the cipher then becomes a question of solving the equation system. In order to keep
the equations of a manageable size the attacker normally needs to introduce more variables
that represent the bits of the cipher block at certain points in the encryption process.Therefor
the total number of variables in the system is usually quite a bit larger than just the size of the
user-selected key. If all operations in a cipher are linear, the equation system describing the ci-
pher would also be linear and hence very easy to solve. So for algebraic cryptanalysis as well, it

is the non-linear components of the cipher that gives protection against this attack method.
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AES and Small-Scale Variants

On November 26th. 2001, the National Institute of Standards and Technology (NIST) published
the Advanced Encryption Standard [9]. This was following a four year long process, where 15
candidates had been evaluated and dwindled down to just one. The global cryptographic com-
munity had been invited to analyse and to try to find weaknesses in the candidates, and after a
thorough process, Rijndael was selected as the new standard [13].

Rijndael and AES as specified in [9] are not quite the same, as Rijndael has more flexibility
to block sizes than what was required for AES. This chapter will therefore concentrate on AES as
it is probably the most widely uesd symmetric cipher today. The first section will explain how
AES transforms a plaintext into ciphertext and back again. As full AES is beyond what we are
currently able to attack using the techniques in the next chapter, we spend the next section on
small-scale versions of AES. Small-scale AES is a common framework for the analysis of AES-
like equation systems [3]. This will allow us to attack smaller AES-like ciphers and see how small
they must be for attacks to actually succeed on a normal computer. Any weakness found in any

small-scale AES version would however need to be verified for the full AES.

3.1 Overview

The Advanced Encryption Standard falls into the key-iterated block cipher category, as it has
N, number of rounds consisting of the application of three Boolean permutations on the state

followed by XORing the round key and the state. For the ease of use, and since it has no practical
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implications, we will include the addition of the round key, also known as the subkey, in the
round transformation, even though this is inconsistent with the definition of key-alternating
block ciphers from Section 2.4.1.

The AES encrypts blocks of 128 bits of plaintext into blocks of 128 bits ciphertext, and back.
Since any message larger than 128 bits can be broken into bundles of 128 bits and encrypted/decrypted

in parallel, AES may also be considered a bricklayer permutation.

A | A A, A [A\l A A | A, Ay | A 1AWl Ay [Au ALl ALl A
 TTIT IIIT IIIT II1]
T PETY I@?@FW TTTY IWCTDC‘?

ShiftRows

MixColumn

Key Addition G}— k,

Figure 3.1: Graphical overview of rounds 1 to N, — 1 of AES. From [10, p. 100].

Depending on the key size N, AES will have 10, 12 or 14 rounds. The N,-1 first rounds all
starts with the state going through the nonlinear SubBytes before going through a transposition
of its bytes in ShiftRows, and then dependencies are created between the bytes in MixColumn.
Finally, the round key is XORed onto the intermediate state. The step of XORing in the round
key is named AddRoundKey. The last round follows the same pattern, except that Mix Columns

is omitted. Lastly, before the first round and in what we have chosen to call the “pre-round”, the
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initial round key is XORed with the plaintext, creating the first intermediate state.

All the round keys are derived in the Key Schedule, an algorithm designed for the expansion
of the original key into N, + 1 round keys. The legal key sizes for AES are only three; 128 bits,
192 bits and 256 bits, all divisible by 32. The key size determines the number of rounds AES
will utilize: 10, 12 and 14 rounds, respectively. The key schedule may have fewer rounds itself,
though it will always produce precisely the needed number of subkeys. The concatenation of all

the subkeys is called the expanded key.

AES(plaintext, key)

{
KeySchedule(key)

AddRoundKey(plaintext, expandedKey[0])

for(i=1;1<N_;i++){
Round(state, expandedKey(i]
}

FinalRound(state, expandedKey[N ]

return ciphertext

}

Figure 3.2: Pseudo code: high level overview of the AES. From [10].

Round(state, expandedKey[i])

{
SubBytes(state)

ShiftRows(state)
MixColumns(state)
AddRoundKey(state, expandedKey[i])

FinalRound(state, expandedKey[N ])
SubBytes(state)

ShiftRows(state)
AddRoundKey(state, expandedKey[N ])

}

Figure 3.3: Pseudo code: Round and FinalRound. From [10].
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3.2 Mathin AES

Math in AES is done in the finite field GF(28). All elements may be represented as integers,
hexadecimal, binary or as polynomials. We will mostly use binary strings or polynomials. The
primitive polynomial that defines the AES instance of GF(28) is x® + x* + x® + x + 1. We quickly
remind that multiplication by x, or 00000010 is the same as a left shift in binary, where an “over-
flow” results in an addition of the binary representative of the primitive polynomial: 00011011.
Multiplication by x + 1, or 00000011, is equal to multiplication by x followed by an addition of

the original element itself. This may be done efficiently in both software and hardware.

3.3 Indexingin AES

AES is known as a byte oriented block cipher. This means that the main size of the bundles in
AES are 8 bits large, or exactly one byte. All other bundle sizes are multiples of the byte. This is
also true for the state, which is 128 bits large, or in terms of the bundles, 16 bytes.

When dealing with the state in AES’ Boolean functions, the state will always be arranged in
a four by four matrix. The indexing convention used to enumerate these bundles starts at the
top-left bundle, naming it 0. Then it follows the column downwards, incrementing by one as it
goes. Upon reaching the bottom of one column, it will proceed to the next column to its right,
continuing the incrementation where it left off, until it reaches the bottom of the fourth column.
See Figure (3.4) for an illustration. Note that this is contrary to what we are used to when reading,

where we go top right and finishing the row before moving downwards.

AU A4 AB A1 2

A, Ag A A

Figure 3.4: AES state indexing scheme.

It should be specified that whenever an element of GF (28) is written in binary and as a col-
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umn, the enumeration will always start at by at the topmost bit. When written as a row, we start
enumeration from the rightmost bit towards the left. Again we start indexing with 0. The bit
in position 0 is considered the least significant bit, bearing the same implications as the least
significant digit in a ordinary number.

When enumerating the AES rounds, we will count the “pre-round”, where only AddRound-
Key is performed, as round 0, even though it is technically not a round. The first full round will
be designated round 1, and so forth. The final round is indexed by N;.

The fourth indexing scheme is that of the subkeys. The first 128 bit subkey is the one who
will be used in the “pre-round”, and will be designated subkey 0 or round key 0. Then follows the
normal incrementation, where the last subkey is subkey N;. This ends up giving N, + 1 subkeys

in total.

3.4 Round Operations

3.4.1 SubBytes

The SubBytes permutation is a bricklayer permutation that applies 16 parallel S-boxes on the
input vector. Each s-box Sb takes a byte as input and then substitutes it with a predefined byte,
hence the name S(ubstitution) — box. This permutation is the only non-linear permutation in
AES. The construction of this mapping is a two-fold process, based upon the strong algebraic
properties that GF(28) offer. First step is mapping the bytes, regarded as elements in GF(2%),
to their inverse in GF(28) under the irreducible polynomial P(x) = x8+x*+x3+ x+1. Since 00
has no multiplicative inverse, it is mapped to itself. In the next step each byte is regarded as a
vector over GF(2) and multiplied by a fixed binary matrix and then added to a fixed 8-bit vector,
shown in Figure 3.5. This step is known as an affine mapping. The resulting mapping is shown
in Figure 3.6. Note that no bundle transposition is done on the state during this permutation.
The application of the affine mapping turns an otherwise simple algebraic expression of the
S-box into a complex algebraic expression with no fixed or opposite fixed points. This is done to
make it harder to use algebraic manipulations to mount attacks on AES. Implementation wise,

the implementer is free to implement the S-box as a look-up table, to follow the mathematical
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Figure 3.5: Second step in constructing the S-box. Note that B} (x) = Al.‘1 (x). From [10, p. 103].

y

0 1 2 3 4 5 6 7 8 9 a b c d e f
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d0 | ef | aa| fb | 43| 44| 33 | 85| 45| £9 | 02| 7£| 50| 3c | 9f | a8
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70| 3e | b5 | 66| 48| 03| f6 | Oe| 61 | 35| 57 | b9 | 86 | cl1 | 1d | %e
el | f8| 98| 11 | 69| d9| 8e | 94| 9b | 1le | 87 | e9 | ce | 55| 28 | Af
8c| al| 89| 0d| bf | e6| 42 | 68| 41| 99| 2d| Of | bO | 54 | bb | 16
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Figure 3.6: AES S-box: Substitution values for the byte xy (in hexadecimal format). From [9].

description, or to implement it in hardware instead of software. The 16 applications of the S-box
may also be done sequentially or in parallel. This gives flexibility to AES, as it is easily adaptable
to the various needs that arise in the real world.

When decrypting, one uses Sb~!, the inverse S-box instead. The permutation Sb~!is ob-
tained through a two-step operation. First the inverse of the affine mapping is applied. There-
after, the bytes are mapped to their inverse, same way as when encrypting. This inverse S-box is

also called InvSubBytes.

3.4.2 ShiftRows

ShiftRows is a bundle transposition. It cyclically rotates row s of the state matrix N positions to
the left. The values for N; are simply given as N = s, so the top row (indexed by 0) is left in place.

The row second to top is rotated one position to the left, next one two positions and the bottom
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Figure 3.7: ShiftRows rotation of the rows of the state matrix.

row three positions. This ensures that all the new columns contain exactly one byte from each
of the previous columns, setting up the stage for MixColumn. See Figure 3.7.

The inverse procedure of ShiftRows, the InvShiftRows, rotates the rows 0, 1, 2 and 3 posi-
tions to the right, again starting from the top. This simply sets the bytes back to their original

positions.

3.4.3 MixColumn

As with SubBytes, MixColumn is a bricklayer function. But where SubBytes works on 16 bytes
at a time, MixColumn works on a bundle partition of four. Each column in the state matrix is
considered a bundle and forms the input to MixColumn. Similar to SubByte, one can process
one columns at a time or all four in parallel, depending on the needs of the implementer. As
one can see in Figure 3.8, the D-box of MixColumn performs a matrix multiplication between
the input column and a fixed matrix. Each element is one of the state bytes, and considered to
be an element of GF(28).

The elements of the fixed matrix are 01, 02 and 03 and were chosen for their simplicity to
implement in software and into dedicated hardware. Multiplying with 01 just gives the element
itself, and as mentioned earlier multiplying with 02 is just a left-shift of the coefficients in the
respective element. Multiplying with 03 is a left-shift followed by an XOR of the original element.
Alternatively, a look-up table for multiplication with 02 and 03 may be used.

Since one input byte influences four output bytes, MixColumn is a major contributor to-
wards the diffusion in AES. Combined with ShiftRows, one byte has influenced all 16 bytes after

two rounds of the AES. It also means that the influence of the previous round’s AddRoundKey is
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Co 0203 01 01\ /By
¢ | [o1020301]| [Bs
G| = lotoro0203| | B
Cs 0301 0102/ \Bs

Figure 3.8: Overview of the MixColumn D-box. The leftmost vector is the output vector. From
(10, p.105].

diffused over four bytes this round, contributing to confusion.
For decryption, the InvMixColumn simply uses the inverse matrix given for MixColumn to
undo the effect of MixColumn. It should be noted that the first round of decryption undoes the

last round of encryption, and therefore no InvMixColumn should be applied.

3.4.4 AddRoundKey

This step is the most straightforward one in AES. The state is modified by XORing it with a round-
key. Since XORing again with the same roundkey is the inverse operation, the only care needed
to be taken when decrypting is to ensure that one remembers to add the roundkeys in reverse

order.

3.4.5 Key Schedule

The user-selected key in AES is 128, 192, or 256 bits long. The key is partitioned into bytes and
arranged in a state with four rows, similar to the cipher block state. The key schedule of the
AES treats each column of the state as one bundle. The state itself will have four, six or eight
columns, depending on which key size is in use. The next round is then created one column at
at time, where the basic concept is that column C]T (column j in the r’th round key) is created
by XORing C;—1 and C]T‘l. The exception to this rule is the first column in each round Cj. This
column is created by XORing C}~! with g(C]~!) where C] ! is the last column from round r - 1.

The function g() is a non-linear function with a four byte input and output, regarded as a
column. The four bytes are rotated cyclically one position downwards, and then each byte goes
through the S-box. Finally, a round constant is added to the topmost byte of the output column.

This round constant is an element of GF(2%), and Table 3.1 shows the round constants for each
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Round | Round Constant
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00011011
00110110

[—

(<R NN N NepR &) JRE ORI NS

[—
(=)

Table 3.1: Round constants for GF(28).

round.

The values of the initial state is the given key. Since each round key is 128 bits large, the given
key may constitute one subkey, one and a half or two subkeys, for the 128-bit, 192-bit and 256-
bit key sizes respectively. This means that the rounds of the key schedule will not necessarily
correspond to those of the AES rounds for the 192 and 256 key sizes.

The key schedule for 256 bits is slightly more complicated than for 128 and 192 bits. It in-
troduces another non-linear function /(). The /() function takes four input bytes and gives four
output bytes by applying the S-box to each of the four bytes. The function k() is applied after
the fourth column created in the each key schedule round. Figure (3.9) gives a graphical repre-
sentation of the 256-bit key schedule. Note however that the indexing direction here is right to

left, opposite of the indexing direction used otherwise in this thesis.

3.4.6 Decryption

Decryption in AES is essentially a reversal of the encryption process, using the inverse func-
tions of each step. That means that the order of a normal round starts with AddRoundKey, then
InvMixColumn, InvShiftRows and ends with InvSubBytes. Note that the very first round of de-
cryption omits InvMixColumn, and that the very last thing that happens is the application of

AddRoundKey, corresponding to the AddRoundKey of the “pre-round” when encrypting.
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3.4.7 Design Criterias

AES is designed to be secure, simple, efficient and versatile. Security and simplicity should walk
hand in hand, as does efficiency and versatility. As we have seen, many of the choices that
makes AES efficient also makes it versatile. The algorithm needs to be as simple as possible, as
that makes it easier to analyse and as such indirectly improves the security.

The security aspect is the most important one for any cipher. A good cipher needs to be non-
linear, as linear systems are easily breakable. Furthermore, it needs to show resilience towards
known cryptanalysis techniques known at the time, especially towards differential and linear
cryptanalysis. A cipher also needs to attempt to take future development in cryptanalysis into
account. In [13] the two authors of AES explain their reasoning behind their design of AES in
more detail, explaining a strategy they call “the wide trail strategy”. It is a recommended read for

anyone who wants to know more about AES’ design and thought process.

3.5 Small Scale Variants of the AES

One approach to attacking iterated block ciphers is to define a series of round-reduced versions
of the cipher, and to see how many rounds one can break. This approach may yield information
about potential weaknesses in the cipher at question, as well as information with regards to how
large the security margin of that cipher is. Any weaknesses discovered by a round-reduced attack
may not apply in the full cipher, but this will give valuable information with regards to where
one should look for good attacks. For this thesis, we have chosen to use the fully parameterized
framework from [3]. This paper allows for more variation than only reducing the rounds. Also,

the small scale versions of the round operations of AES follow the full AES’ design pattern.

3.5.1 Parameters

Two sets of small scale variants, SR(n, 1, c,e) and SR*(n,r,c, e) are defined in [3]. The only dif-
ference between them lies in how the final round is defined. In SR(n,r, ¢, e) the final round is
no different than any other round, meaning that the MixColumn permutation is performed,

while SR*(n, r, ¢, e) follows the AES standard of omitting MixColumn in the last round. The four
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parameters n, 1, ¢, e are as follows:

¢ nis how many rounds are performed when encrypting/decrypting. In this thesis we con-

sider 3 < n <10.

r is the number of rows in the state matrix: r = 1,2, or 4.

¢ is the number of columns in the state matrix: ¢ = 1,2, or 4.
¢ ¢isthe number of bits in a finite field element: e =4 or 8.

Note also that the size of the cipher state no longer is fixed to 128 bits but is now defined
as r x ¢ x e. Indexing of the state array follows the same pattern as with full AES, one column
at a time, starting from the topmost element. Normal 128-bits AES is defined as SR*(10,4,4,8).
The cipher blocks produced by SR(n, r, ¢, e) and SR*(n, r, ¢, e) are equal up to ShiftRow in the last
round, and the ciphertexts differ only by an affine mapping. Hence, if we can attack one of them
we can immediately use the same attack on the other, just by adjusting the key schedule in the
last round to compensate for this difference.

Further note that this parameterization does not exceed 10 rounds, and thus only considers
keys of 128 bits. Even though it is possible to build upon [3] to include the key sizes of 192 and

256 bits, 128-bit key size is considered a good starting point for our attack.

3.5.2 GF(2*) and Small-Scale Round Operations

With the introduction of elements in GF(2%) in addition to the standard GF(2®) we also need to
adopt the round operations to GF(2%). The polynomial used to define GF(2%) is x* + x + 1. For
the creation of the S-boxes the same approach as for GF(2%) is taken. First the inverse of the
input is computed, followed by a GF(2)-affine mapping. Fig (3.10) shows the S-box summary
for both GF(2%) and GF(28). Fig (3.11) gives the resulting look-up table for GF(2%). There will be
as many S-boxes in SubBytes as there are elements in the state array, r x c.

ShiftRows differ from the original only in the fact that there may be less rows and/or less
columns to rotate. The matrices to be used in MixColumn depend on the number of rows and
the finite field in use. Use Figure (3.12) to choose the right one. Here p is a root of x* + x + 1 and

6 is a root of the actual AES polynomial defining GF(2?).
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As with normal AES, we need a total of n + 1 round keys for all reduced versions, and all
small scale variants of AES also begins with a round 0, or “pre-round”, where only AddRoundKey
is performed. Round keys are added as normal, simultaneously XORing the elements of the
subkey array and the corresponding elements of the state array (as elements of GF(2°9)).

For the key schedule, a user supplied key of size (r x ¢) x e forms the initial subkey. Each
preceding subkey is then derived from the previous one in the same way as for full AES, taking
the number of columns ¢ into account. See Figure (3.13). If the finite field is GF 2%), we use the

round constants given in Table 3.2.

Round | Round Constant
1 0001
0010
0100
1000
0011
0110
1100
1011
0101
1010

QOR[N |G =W

—
(=]

Table 3.2: Round constants for GF(2%).
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Figure 3.9: AES schedule for 256-bit AES. Ky to K3; are the bytes of the given key. From [10,
p.107].
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| S-Box Summary || GF(2%) | GF(27) |
Irreducible polynomial]] X* + X +1 X+ X'+ X"+ X +1
l,r‘l[l'[lﬂllll\l
11000111
1110 11100011
L 0111 11110001
GF(2)-linear map 1011 11111000
1101 01111100
00111110
\ooo11111/
Constand & &3

S-Box over GF(2%)

Input |0|1

2

3(4|5(6

7

8(9|A|B|C|DIE|F

Chutput|6|B

b

4(2|E|7

A

9(DIF|C|3|1{0|8

Figure 3.11: Look-up table for S-box under GF(2%). From [3].

Figure 3.10: Irreducible polynomial, affine mapping and constant used in creation of the two
S-boxes. From [3].

”Nlllﬂbﬂ[‘ of Ruws” GF(2%) | GF(2%)
r=1 (1) (1)
. p+1 p #+1 #
v (p pll) (Hﬁ}l
pop+1 1 1 g #+1 1
o 1 p o op+1 1 1 g 8+1
r=4 1 1 p p+l 1 1 8 8+1
p+1 1 1 p g+1 1 1

Figure 3.12: MixColumn matrix for various parameters. From [3].
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Figure 3.13: One round of key schedule for the different values of c. From [3].
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Multiple Right-Hand Sides and Compressed
Right-Hand Sides Equations

Much of the research done in the field of algebraic cryptanalysis has been about SAT-solvers and
Grobner basis computation.

The first task for a researcher in the field of algebraic cryptanalysis is to convert the encryp-
tion algorithm in question to a system of polynomial equations. The next part, usually the hard-
est part, is then to solve these systems of polynomial equations. Many researchers in the field
of algebraic cryptanalysis has had, and perhaps still have, high hopes to algorithms based upon
Grobner basis and SAT-solvers. However, even though much research has been done, and much
progress made, they have yet to live up to the hopes.

This chapter will use a different algebraic approach. AES, our encryption algorithm in ques-
tion, will be modeled using linear systems of equations. This is step one, and the hardest part in
this step is to model the non-linear S-boxes in a way that works with linear systems of equations.
This is solved by introducing the concept of Multiple Right-Hand Sides, which is a technique
that opens up for having multiple vectors on the right hand side in a system of linear equations.
One needs initially one such Multiple Right-Hand Side for each S-box present. Through mainly a
technique called gluing, one is then able to "merge" all this various systems of linear equations
into one. Through this process vectors in the right-hand side that would render the equation
system inconsistent are identified and removed. This is the topic of the first section.

Unfortunately, the size of such Multiple Right-Hand Sides equation systems tend to grow ex-
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ponentially during the gluing process, halting the process due to computer memory limitations.
In an attempt to remedy this problem, [14] introduces the concept of Compressed Right-Hand
Sides (CRHS). This is the topic for the second section. In a CRHS equation, the set of right hand
sides is structured as a directed acyclic graph (DAG) instead of a matrix, ordered in levels, and
with linear combinations associated with the levels. With some added details, this data struc-
ture is known as a Binary Decision Diagram (BDD). CRHS equations can be used to represent
encryption algorithms, and with the accompanying techniques for "merging" BDDs and identi-

fying and removing inconsistent paths it is a promising tool for doing algebraic cryptanalysis.

4.1 Multiple Right-Hand Sides

4.1.1 MRHS Equation

An equation on the form

Ax=Dby,by,...,b; (4.1)

is known as a Multiple Right Hand Side (MRHS) equation if A is a matrix of size k x n and rank
k, and by, by, ..., bs are column-vectors of length k. They first appeared in [12]. The vector x
consists of all » unique Boolean variables in use when modelling the cipher, represented as a
column-vector with n entries. To simplify notation, we will denote by,...,bg as [L] to emphasize
that this is no normal system of linear equations. An n-vector Xy is said to be a solution if and
only if it satisfies Axg = bj, for some i and hence a single MRHS equation has at least s solutions,
and often much more than that. In this thesis we only consider matrices and vectors over GF(2),

though the general principles are applicable for GF(q).

4.1.2 From AES to MRHS Equations

All operations in the AES except for SubBytes are linear so the encryption algorithm has much
inherent linearity. The MRHS representation is therefore an efficient way to represent the AES
encryption. We will need one MRHS equation for each S-box present in AES (or small-scale vari-
ant). This effectively gives us a system of MRHS equation, which we will explain solving strate-

gies for later. To construct the MRHS equations, one must first map variables strategically to bits
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in the cipher block at various points in the encryption procedure. This must be done in such a
way that the bits of the input and output of any S-box can be written as a linear combination of
the variables defined.

Figure 4.1 and Figure 4.2 shows what this looks like for the key schedule and the encryption
in the SR*(3,2,2,4) small-scale variant. This variant has 16 unkown bits in the user-selected key;,
denoted ky, ..., k15. We introduce new variables representing the state at the output of every S-
box, except for the layer of S-boxes in the last round. For the three round version these variables
are labelled kg, ..., k39, while in the actual encryption we label them ay, ..., a;5 for the S-boxes
in the first round and ay, ..., as; for the second round. The bits in the state output from the S-
boxes in the last round can be written as linear combinations of the known ciphertext bits and

the last round key, which we already have defined variables for.

Round 1 Round 2 Round 3

k1o — — k6 koo + kg + k12 — — Koy kog + k12 — — k3o

ki3 — Sk(l) — k17 ko1 + ks + k13 — Sk% — ko5 koo + k13 — Skjg — k33

kig — — kis i koo + ke + k14 — — kag 1 k3o + k14 — — k34
k15 — — kig i kag + k7 + k15 — — kar :L k31 + k15 — — k3s
kos — — kao i k16 + koo + kos +1 — — kos l‘: ko + kos — — k36
koo = |SKI| = ko Fir+ kot + koo = |SKE| = koo Fos + koo +1—  |SK| = ksr
k1o — — kao i kis + ko2 + k1o — — k3o % kse + k1o — — kas
ki1 — — kos i k19 + ko + k11 — — k31 i ko7 + k11 — — k3o

Figure 4.1: S-boxes in the key schedule of SR*(3,2,2,4) with associated variables.

Next we construct one MRHS equation A; jx = [L;, ;] for each S-box Sklj in the key schedule
and each S-box §; ; in the encryption. The input linear combinations of Sklj and S; ; make up
the first four rows of each A; ; and the output linear combinations make up the four bottom
rows of each A; j. When e = 4 each matrix A; ; will be an 8 x n matrix.

Finally, we make a list of all possible inputs to the S-boxes and their corresponding outputs.
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Each input/output pair becomes a b-vector in [L; ;]. Since every S-box of the AES is the same,
every [L; ;] will initially also be the same. The vector x contains all unique variable present
across all A; j’s.

The set of different MRHS equations leaves us with a system of MRHS equations that de-
scribes the whole encryption process. For the SR*(3,2,2,4) example in figures 4.1 and 4.2 we get
18 MRHS equations in 72 variables, while the full 128-bit AES, would leave us with 200 MRHS

equations; 160 from the encryption process itself and 40 from the key schedule.

4.1.3 Solving a System of MRHS Equations

We are given a system of MRHS equations
Ax=[L1],..., ApX = [Lp] (4.2)

where A; and [L;] are matrices with k; rows. The matrix A; has n columns, and the number of
columns in L; is s;. Not all variables appear in all equations, and the related columns in the A;’s
are zero. A solution to (4.2) is an assignment to the variables of x such that x is a solution to every
MRHS equation in (4.2).

A column in an [L;] that is never produced for any solution to (4.2) may be thought of as
wrong, while a column in [L;] that is produced for a solution to (4.2) may be thought of as right.
The challenge when dealing with systems of MRHS equations is to identify and remove wrong
columns while keeping only the right ones. When a solution Xy is identified, we can simply look-
up the values for the key variables k; in Xy, and we have found a valid key. This is the same as
breaking the cipher.

For one given plaintext/ciphertext pair, some ciphers may have more than one key that en-
crypts the given plaintext into the given ciphertext. The likelihood of this occurring is related to
the bit-size of the key and the plaintext. If the block size is larger than the key size we have more
constraints than free variables in the system. In this case, with large probability there is only one
solution to the system, and the key can be determined uniquely. If the block size is smaller than
the key size we do not get enough constraints to uniquely determine the key, and solving (4.2)

will give a whole set of possible keys. When the block and key sizes are equal, we may or may not
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get unique solutions. For the small-scale AES variants with equal block and key sizes we have
often seen that more than one key fit in a system defined by a given plaintext/ciphertext pair.

Let A;x = [L;] and A;x = [L;] be two MRHS equations in the system of MRHS equations.
There are two main operations used when trying to solve a system of MRHS equations.

Agreeing: The first operation is called agreeing. For a thorough explanation of agreeing,
see[12]. The idea behind agreeing is to temporarily merge two MRHS equations. Then, by iden-
tifying any linear dependencies among the rows of the two matrices A; and A;, we may identify
some wrong columns in [L;] and [L;], and remove them. If there are no linear dependencies
then no columns in [L;] or [L;] can be shown to be wrong, and agreeing will give us no new
information towards a solution. Otherwise, we examine all pairs b;, b; where b; € [L;],b; € [L;].
If the joined right-hand side (bj,b;) does not give a consistent system for the joined [A;, A;]-
matrix, then b; and b; do not agree. At least one of them must be a wrong right-hand side. If b;
does not agree with any of the columnsin [L;], then certainly b; must be wrong and can be safely
deleted, and the same of course applies to bj and [L;]. The MRHS equations are then “decou-
pled”, meaning that both A-matrices revert back to their original form but with possibly fewer
right-hand sides in the MRHS equation. They are now free to agree with other MRHS equations.

All MRHS equations of AES and small-scale AES starts out in an agreed state, meaning that
no two inital MRHS equations agreed together will identify any wrong columns. In order to
make any progress towards finding a solution we then need to use gluing.

Gluing: We will present the general idea behind gluing here, as this will make some of the
observations later more apparent. For a more mathematical view, we refer to [12]. The purpose
of gluing is to permanently merge two MRHS equations into one MRHS equation. In this pro-
cess, any linear dependencies will be solved, removing any wrong columns by, in the resulting
merged [L].

Gluing A; and A; into A s straightforward, stack A; on top of A;. Then make a list [L] of right
hand sides where each column of [L;] is paired with each column of [L;]. If [L;] had n; columns
and [L;] had n; columns, then [L] contains n;n; columns. If there are linear dependencies
among the rows of A, we find all columns in [L] that gives an inconsistent system and remove
them as they must be wrong. We then get the glued MRHS equation Ax = [L]. We create [L]

the way we do since any present column b; in [L;] could be a solution to A;x = [L;], any present
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column b; in [L;] could be a solution to A;jx = [L;], and thus any combination of b; and b; could
be a solution to Ax = [L]. Lastly we check for any linear dependencies and remove inconsistent

columnsin [L].

4.1.4 Size of MRHS Equations After Gluing

Since AES only uses one S-box, all MRHS equations will have the same initial right-hand sides
(RHS). For the first and last round, plaintext and ciphertext constants will then alter their re-
spective RHS’s. Each matrix starts off as a 2e x n matrix, where n is the total number of unique
variables of the system. Every [L;] will start off with 2° columns, and each row in [L;] has an
equal number of 0’s and 1’s since the S-box is a permutation. XORing in constants does not
change this, as each value in each row is XORed with the constant. As XORing rows may be done
as a binary function recursively as many times as we want, we see that we may expect half of the
columns in [L] to be inconsistent when solving a linear dependency. Let s; be the cardinality
of [L;] and s; the cardinality of [L;]. Then gluing these RHS’s as part of a gluing operation will
result in 2% x 2%/ columns before removing columns due to inconsistencies. Let A(s;, s;) be the

number of linear dependencies in the corresponding glued matrix A. Then we may expect

2$i+8j

SAGHS) 2ty A) (4.3)
columns in [L] after solving the linear dependencies. We see that the size of [L] is expected
to grow when s; + s; > A(s;, s;), stay the same when s; + s; = A(s;, s;) and finally shrink when
si+58; <A(s;, s5).

We may use this to calculate how many columns we may expect in the final [L] after gluing
all MRHS equations together. In the case of the full AES, we have 1600 unique variables and
3200 rows in the final A, conceived after gluing all 200 MRHS equations together. This gives us
(at least) 1600 linear dependencies since there are 1600 more rows than columns in the final A.

The equation:
28 x200

T = 21600-1600 _ { (4.4)

tells us that we can expect a unique solution when all gluing operations finish.

Even though this seems promising, (4.3) tells us that when any [L] grows due to gluing, it
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grows exponentially, and needs exponentially more memory to store all the RHS’s. In an attempt

to circumvent this problem, [14] introduces the concept of Compressed Right-Hand Sides.

4.2 Compressed Right-Hand Sides

A Compressed Right-Hand Side (CRHS) system [14] is a MRHS system where the right-hand
sides are stored using a binary decision diagram instead of multiple independent vectors. Both
CRHS and MRHS represent the same abstract concept of modeling a cipher. Where MRHS dis-
plays more explicitly the changes done to the right-hand sides of the system, CRHS will have less
or equal memory requirements for large numbers of right-hand sides. Since a BDD is very differ-
ent as a structure than a matrix, the gluing operation from MRHS must be replaced: To remove
any linear dependencies within a BDD the concept of linear absorption will be introduced.
Where MRHS was developed for crytpanalysis, BDDs were designed for other purposes and
see a wide variety of use in the computer science community [5]. In this thesis a BDD is un-
derstood as a way to represent the right hand sides of a MRHS system, and as such will differ
somewhat from the traditional understanding. Where traditionally only a single variable may
be associated with each level of a BDD (explained below), we allow for linear combinations to

be associated as well.

4.2.1 Binary Decision Diagrams and Compressed Right-Hand Sides Equa-

tions

A Binary Decision Diagram (BDD) is a Directed Acyclic Graph (DAG) with exactly one source
node and one sink node. The nodes, except the sink, have at least one and at most two outgoing
edges, named the 0-edge and the 1-edge. As the name suggests, these represents the values 0
and 1. All nodes except the sink are considered internal nodes. If the source is at the top and
the sink at the bottom, all the remaining nodes are in between, and all the edges are directed
downwards. The nodes are arranged in levels, with no edges between any two nodes of the
same level. Each internal level, that is all levels except the sink level, has either one variable, or

a linear combination of variables, associated with it. See Figure 4.3 for an example.
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0.x1+x5

I x1 + x4+ x5+ x6

2.x1 +x3+ x5

4. %2 4 X3+ x4+ x6

Figure 4.3: BDD with 5 levels.

Choosing an outgoing edge from the associated level is the same as assigning that edge’s
value to the variable/linear combination. A BDD with k + 1 levels has k variables or linear equa-
tions associated with it, there is nothing assigned to the bottom level with only the sink node in
it. A path through the graph from source to sink assigns values to all levels, and is k edges long.
This path then may be thought of as equivalent to a column vector in [L] of a MRHS equation,
and all paths in the graph is then equivalent to some [L]. The associated variables and linear

equations may be though of as the matrix A. Then we have:

Definition 7 (CRHS equation. [14]). A Compressed Right-Hand Side equation is written as Ax =
D, where A is abinary k x n-matrix with rows [y, ..., lx—; and D a BDD with (from top to bottom)
ly, ..., lx—1 attached to the levels. Any assignment to x such that Ax is a vector corresponding to
a path in D, is a satisfying assignment. If C is a CRHS equation then the number of nodes in the

BDD of C is denoted B(D).

Any assignment to x such that Ax gives a path in D may be though of as right, while assign-

ments Ax giving a vector that is not a path in D may be thought of as wrong.
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Figure 4.4: The BDD representing a 4-bit S-box.

4.2.2 BDD Construction

The construction of a CRHS based upon an S-box with n input bits and m output bits follows the
same pattern as for MRHS. The BDD itself is based upon the substitutions defined in the S-box
and will have n + m levels. This is constructed as follows: Create a complete binary tree from
the top node based on the 2" possible input values of the S-box. The source node is associated
with the LSB of the input. Then build a “reverse”, or bottom-up, complete binary tree based on
the 2™ possible output values, from the sink node. The final step is then to link the two binary
trees, which is done based on the substitutions defined by the S-box. Each internal level has
their appropriate variable or linear combination associated with it. Figure 4.4 shows the BDD of

a 4-bit S-box.

4.2.3 Solving Systems of BDDs: Merging BDDs

As with MRHS, one CRHS equation is created for each S-box in the cipher, and as with MRHS

we get a system of CRHS equations describing the whole cipher:
AoX:Do,Alxle,...,AmX: Dm (45)

A solution to 4.5 is an assignment to the variables of x such that every CRHS equation in 4.5

has a solution. There is no concept of agreeing in CRHS, but CRHS equations may be merged
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in a similar fashion to gluing. Merging two CRHS equations into one is even simpler than for
MRHS: If T, is the terminal node for Dy and Uj is the source node for D;, remove T, from Dy
and let all the edges that used to go to Tj instead go to U;. Now the two BDDs are connected
and represent the BDD D for a single CRHS equation. This joining operation does not produce
any new nodes (in fact, it removes one), and we see that B(D) = B(Dg) + B(D;) — 1. This new
CRHS equation has all combinations of paths from Dy and D, without needing any additional
memory!

As it is possible to hold all 200 BDDs from full AES in memory at once, we may easily build
a single CRHS equation that represents the full AES. Unfortunately, the BDD of this CRHS equa-
tion would hold 2!6%° paths, where all but maybe one or two are wrong. We need a way to remove

the wrong paths.

4.2.4 Tools for Solving CRHS Equation System: Swapping and Adding Levels

Where matrix operations for resolving linear dependencies and identifying wrong vectors is
fairly speedy in MRHS, identifying and removing wrong paths in a BDD is more demanding.
The solution to this issue is known as linear absorption, and was introduced in [15]. Linear
absorption is comprised of two subroutines, swapping and adding levels. It also uses the fact
that for a fixed order of linear combinations, there exists a unique reduced BDD. Running the
reduction algorithm [2] on a BDD removes unnecessary nodes and reduces a BDD to its unique
state. Simplified, the reduction algorithm will absorb nodes and paths representing equivalent
paths, essentially removing duplicates. It will also look for internal nodes (except the source)
that has no incoming or outgoing edges. These will be removed, as they are not parts of com-
plete paths. For the rest of this work we will assume that a BDD may always be reduced, and
that the reduction algorithm is run whenever necessary.

In order for any linear dependencies to be resolved in a CRHS equation, the linearly depen-
dent rows and corresponding levels in the BDD needs to be adjacent. In order to achieve that,
we need to either “bubble” lower levels, or “sink” higher levels into position. This is achieved
through the swapping subroutine. When swapping two adjacent levels, we must ensure that we
do not lose nor add any new paths. Swapping achieves this by clever rebinding of the involved

nodes and edges, and when done, the two involved levels have swapped places, without chang-
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ing the solution space of the CRHS equation. This is then repeated until the level we wish to
move has arrived where we want it.

Where swapping rearranges the BDD and corresponding matrix, the subroutine for adding
two levels together replicates the XORing of two rows in a MRHS equation. As with swapping, we
must keep the solution space intact in the process. The addition of levels needs the two levels
to be adjacent. Then it will XOR a copy of the highest level onto the level below through clever
rebinding of the involved nodes and edges. This process resembles that of swapping, although
the rebinding follow different rules.

The drawback of the operations of swapping and adding levels is that new nodes usually
needs to be created during the process. Hence the memory requirements grow when apply-
ing these operations. The memory increase is not as dramatic as with gluing MRHS equations
though, and we can solve larger systems in practice using the CRHS representation than we can

with MRHS representation.

4.2.5 Resolving Linear Dependencies in BDDs: Linear Absorption

We are now ready to utilize linear absorption to get rid of the wrong paths. Let (ly, I1,..., lx-1) be
the ordered set of linear combinations associated with the levels. Assume that [; +1;,+---+1;, =0
is a linear dependency, where i; < ip <--- < i,. We can then utilize swap repeatedly, moving /;,
to just above [;, before using level addition to replace /;, with [;, +[;,. Then we utilize swap again
to move [;, +1;, to the level just above [;, and replace I;;, with [;, +1;, + I;;. We then keep repeating
this process, picking up each lij along the way, until we have replaced [;, with [;, +1;, +---+1; .
We call this level a zero-level, because the linear dependency indicates the linear combination
for this level is 0. Then we may remove any 1-edges out of the zero-level, as any path that choose
any 1-edge would make the CRHS equation inconsistent via the 0 = 1 assignment. This leaves
us with a level with only outgoing 0-edges. There is no longer any choice to be made for any
path going through the zero-level, and thus we may redirect any incoming edges to the correct
nodes in the level below. We can then delete all nodes on the zero-level and the corresponding
0-row in the matrix, decreasing the number of levels in the CRHS by one. We say that the linear

dependency [;, +[;, +---+[;, = 0 has been absorbed.

We can repeat this process, absorbing one linear dependency at a time, until all linear de-
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pendencies in the CRHS equation has been absorbed. Any remaining path in the BDD will now

yield right-hand sides that give a consistent linear system, which can readily be solved.

4.2.6 Complexity

Experimental results on the cipher Trivium suggests that the number of nodes in the BDDs grow
very slowly when absorbing the first linear dependencies, but increase more rapidly when fairly
large BDDs are joined, with many linear dependencies in them [15]. Though from (4.4) we know
that we may expect one path in the BDD when all CRHS equations have been merged and all
linear dependencies absorbed. A one-path BDD only has n + 1 nodes, which is very small. This
tells us that there exists some tipping point where the number of nodes is at a maximum, and
must start to decrease when further absoptions and reductions are applied. At this tipping point
the BDD will contain its maximum number of nodes, and we will use this maximum, or peak,

number as our measure of memory complexity in the next section.

4.3 Order of Joining

When and how many linear dependencies arise in joined CRHS equations relies heavily on the
order the CRHS equations are joined in. The optimal order for joining CRHS equations (and
MRHS equations) is an unsolved problem. However, in [11] three strategies are proposed:

Automatic Ordering. This strategy can be applied to any system, and is as such reckoned
as a default strategy. It does not require any knowledge of how the CRHS equations has been
made. This procedure looks for the subset of CRHS equations that contains the smallest num-
ber of nodes, while still having linear dependencies. The CRHS equations of this subset is sub-
sequently joined and the linear dependencies absorbed. This is a greedy approach that always
tries to make a minimal CRHS equation to absorb dependencies in, which should then not be-
come too big after absorption. This will decrease the number of CRHS equations by at least
one, and we continue this process until we only have one CRHS equation left with no linear
dependencies.

Divide-and-Conquer. The thought behind this strategy is that it is always easier to join two

big CRHS equations and absorb their dependencies when there are few dependencies. The as-
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sumption is that we will only have a minimum of dependencies left when the last (maybe big)
BDDs are forced to be joined together. Basically, the earlier we can absorb linear dependencies
the better, as this would keep the number of nodes low since we absorb most dependencies only
in small BDDs.

This strategy proposes to divide the system into two roughly equally sized halves, where we
want as few linear dependencies between CRHS equations in opposite halves as possible. We
may do this recursively on the halves, ending the splitting ideally when the "half" only contains
one or two original CRHS systems. These halves are then joined and all dependencies absorbed.
This will leave us with only one CRHS equation with no dependencies in each half. We then join
the next halves, and absorb the relatively few remaining linear dependencies. This is repeated
until all CRHS equations are joined and all dependencies absorbed.

The challenge is to find the optimal way to split a system into two equally sized parts. This
seems to be a hard problem, and knowledge of the cipher should be utilized.

Finding Good Joining Order by Cryptanalysis. This strategy is to use knowledge of the cipher
represented by the CRHS system to decide a good order to join the equations. The order of the
joining should be such that each linear dependency only involves linear combinations on levels
that are relatively close to each other. This makes the absorption process somewhat local, which

should help keeping the complexity down.
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Experiments and Findings

This thesis considers a particular branch of cryptanalysis known as algebraic cryptanalysis, ap-
plied to small-scale variants of the AES. We build on earlier work done in [3, 12, 11], where a few
small-scale AES systems have been tried solved using different techniques. In [3] MAGMA with
its implementation of the F4-algorithm was used, while in [12] and [11] Multiple Right-Hand
Sides and Compressed Right-Hand Sides were used. Here we extend the results from these pa-
pers by trying to solve many systems from almost all SR-variants with the latest version of the
software made for solving equation systems in the CRHS representation.

These experiments seek to gain knowledge about what the complexity is for solving these
types of systems, and how it varies in the different systems. In particular, we try to answer the

following questions:

* How does the memory complexity vary with different rounds in a small-scale variant of

AES?
* How does execution time vary with rounds in a small-scale variant of AES?

* Are there differences in solving complexity in variants with the same key size, but with

different state array dimensions?
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5.1 Setup

5.1.1 Software

For each version of small-scale AES with bundle size of 4 bits, a set of eight fixed values were
used for both plaintext and key. The respective values for 16-, 32- and 64-bit systems are given
in Appendix A. These strings were not carefully chosen. We just wanted some control over the
plaintext and keys hoping that something interesting would come out of it.

We limited ourselves to only consider variants with 4-bit S-boxes. This still gives many SR-
variants to consider, most of which give systems that are hard to solve on the computer re-
sources available for these experiments.

For 16-bit keys, we considered block arrays of sizes 1 x 4, 2 x 2 and 4 x 1. For 32-bit keys there
are two variants of cipher blocks, namely 4 x 2 and 2 x 4. For 64-bit keys there is only the 4 x 4
state to consider. For each of these we made systems for 3 to 10 rounds, i.e. 8 variants for each
state array. With both plaintext and key taking all different combinations from a set of 8 values
means that we can generate 64 instances for each small-scale variant. With both SR and SR* this
gives a grand total of (3+2+ 1) * 8 % 64 * 2 = 6144 instances.

We had limited access to hardware to run the attack on, and it was therefore decided to only
run the SR* versions. The SR* versions were chosen as full AES itself is a SR* version. This left
us with 3072 instances to run. All the different system instances were generated by Java code
developed by myself.

The actual attacks on the instances were carried out by C-code developed by Raddum over
the course of 10 years. This code has been used in previous work [14]. The solving strategy of
this C-code uses the “automatic ordering” gluing strategy, which join BDDs that has the fewest
number of nodes, while still containing linear dependencies. Furthermore, a limit to the max-
imum node count of any BDD was set to 226 With the size of each node in this C-code, that
means a memory limit of roughly 8 GB. No two BDDs would be glued together if their combined
node count exceeded 225. Also, if the node count in a BDD exceeds 22° after absorbing a lin-
ear dependency, the program would abort and report "not solved". If no BDDs can be glued
together without exceeding this limit, the attack would be aborted and considered “not solved”.

If the memory limit is not reached, the program will always solve the system within reasonable
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time.

5.1.2 Hardware

For the execution of the attacks a virtual machine (VM) was borrowed from UH IaaS (http://www.uh-
iaas.no/), an organization that provides infrastructure-as-a-service for academia in Norway.
The exact specifics of the underlying hardware are unknown, but we know that we were given a

VM with 8 GB of RAM.

5.1.3 Attack Execution

The whole process was controlled by a master script, written in Python for this purpose. After
setting up the output files, one .txt and one .csv, it would call the C-code with a system instance
as parameter. This would instantiate a so-called run-through. A run-through would run in its
own thread and execute an attack on the given instance. Upon completion of the attack, but be-
fore returning control to the master script, the instance identifiers, time consumption, solving
complexity in terms of nodes, as well as 1 for "solved" or 0 for "not solved", would be written to
the output files. This process was then repeated for all instances, and progress could be moni-

tored through a log file maintained by the master script.

5.1.4 Known Sources of Error

First, a misconfiguration in the master script meant that no n = 10 variants were run, so we only
ran 2688 instances instead of the intended 3072.

For reasons that are not completely known, many run-through results have not been written
to the output files, despite being logged as instantiated by the master script. We can not be
certain of the explanation of this behavior, but it is our belief that they were killed by the VM
when a run-through required more than 8 GB of RAM. We do have some reported results which
required slightly more than 8 GB of memory, but our belief is that when exceeding the 8 GB
of RAM, the constant read and write to the Hard Disk Drive (HDD) could violate some other

restriction and result in killing the process.
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Our belief is primarily based upon two things: This behavior has not been experienced be-
fore in this C-code’s history. Furthermore, in January we were able to repeat the experiment for
one of the most affected system variants on a laptop with 16 GB memory and an Intel i7 pro-
cessor, without any loss. (These results are not included in this thesis as they are not directly
comparable to the initial results). This indicates that the issue lies with the VM and not with the
C-code.

We have not compensated for the loss of instances in the results and discussion, unless other-

wise stated.

5.1.5 Potential Sources of Error

A natural potential source of errors would be the software itself, both through design flaws and
bugs, although we have taken steps to mitigate this risk. The C-code has been developed and
tested for more than ten years, and some of its results have been verified by others. The genera-
tion of instances in Java have both utilized JUnit testing, as well as comparing output of certain
variations with already known instances used in earlier work. The master script was never in-
volved in the actual attacking, it only administered the order of run-throughs.

A second potential source of error would be the virtual RAM of the VM, if such exist. Virtual
RAM is a feature in which less frequent used data in RAM is written to the HDD when approach-
ing the limit of the actual RAM. The computer would swap data back and forth between RAM
and HDD as needed, usually without the user noticing. However, reading and writing to HDD
is significantly slower than reading and writing to RAM. That means that if a BDD or system of
BDDs grew above 8 GBs, constant reading and writing to HDD would be needed, significantly
slowing down the attack and reporting inflated numbers for execution time. As we do not know
the internal handling procedure of the VM, nor even if virtual memory was enabled, it is hard to
asses the significance of this issue.

Last, we have no way of knowing how, or even if, varying workload of the underlying software

and hardware would affect the run-time of the various run-throughs.
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5.2 Findings and Results

5.2.1 Reported and not Reported Instances

As pointed out in 5.1.4, many instances have not reported their metrics. We think of them as
“lost”. Out of 2688 instances, we did not get reports on 1313 of them. This gives us a 51 percent
report rate. These will be treated as not solved, however they will be kept out of all metrics,
unless otherwise stated.

64-bit systems have the largest number of lost instances, with only two instances reported of
512 expected, giving = 0.4 percent reporting rate. For the 32-bit systems 842 out of 896 expected
are reported, which gives = 94 percent reporting rate. The 16-bit systems come in between, with

531 reported instances out of the 1344 expected, for an approximate 40 percent reporting rate.

5.2.2 64-bit Systems

We have two reported instances, and not surprisingly, none of them were solved. They are both
of the SR*(3,4,4,4) variant. Their average run-through time was 110 seconds and both exceeded

the 225 node limit. Both systems were generated using the same plaintext value. See Figure 5.1.

- - - - - - - -

SRstar(3,4,4,4) -837287465.bdd 118 26,034 0 ffffffff00000000 7c17471ab3fd9edc 174ca832174ca832
SRstar(3,4,4,4) 2017809514.bdd 102 26,022 o ffffffff00000000 9e176f39d47fedbb 00000000ffffffff

Figure 5.1: Data for the 64-bit system instances.

5.2.3 32-bit Systems

Here we have 842 reported instances, out of 896 expected. Six variants lost no instances, and
among the others only one system has lost more than 10 instances. Out of the 842 reported in-
stances, 9 were solved. All the solved instances were of the SR*(3,2,4,4) system variant. The av-
erage times of the run-throughs vary between 56 and 402 seconds. Figure 5.2 shows the average
time and number of nodes for each individual system variant, while Figure 5.7 shows the distri-

bution of solved/non-solved instances based on the plaintext used to generate the instances.
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Sys. Variant ~ | Reported Instanci Nr. of solved Average of Time (s) Average of Nodes (log2)
SRstar(3,2,4,4) 64 9 93,41 24,188
SRstar(3,4,2,4) 64 0 55,80 24,748
SRstar(4,2,4,4) 64 0 177,98 24,642
SRstar(4,4,2,4) 61 0 143,26 24,466
SRstar(5,2,4,4) 64 0 194,39 24,648
SRstar(5,4,2,4) 62 0 133,55 24,459
SRstar(6,2,4,4) 64 0 168,83 24,528
SRstar(6,4,2,4) 62 0 244,10 24,680
SRstar(7,2,4,4) 58 0 307,69 24,314
SRstar(7,4,2,4) 63 0 322,84 24,676
SRstar(8,2,4,4) 54 0 353,20 24,483
SRstar(8,4,2,4) 64 0 374,36 24,684
SRstar(9,2,4,4) 42 0 243,45 24,902
SRstar(9,4,2,4) 56 0 478,02 24,360
Grand Total 842 9 231,06 24,585

Figure 5.2: Metrics for the 32-bit system variants.

5.2.4 16-Bit Systems

We have 531 reported instances out of 1344 expected. We have 15 system variants that contains
reports, which leaves 6 variants that lost all instances. We solved in total 482 instances, which
is 90.7 percent out of the reported instances and 35.9 percent of the total instances. Figure 5.3

gives details of the metrics for the 16-bit system variants.

5.3 Discussion on Findings

The first thing we notice, is that whether the 64 systems within one variant are solved or not
actually depend on the fixed values of the plaintext and the key. This may be a feature of the
particular solving strategy used, where some of the constants from the plaintext and ciphertext
can give more "structure" or "order" in some of the initial BDDs, and hence fewer nodes in these.
So different plaintexts/ciphertexts may lead to different orders for joining BDDs, as always the
BDDs with fewer nodes are preferred, and some joinings may turn out to be more fortunate than
others.

Other observations are in large part based on the instances with a 16-bit block, as these are

mostly the ones where we were able to solve anything.

58



5.3. DISCUSSION ON FINDINGS Chapter 5

Sys. Variant  Reported InstancesNr. of Solved Average of Time (s} Average of Nodes (log2

SRstar(3,1,4,4) 64 64 4,02 17,176
SRstar(4,1,4,4) 64 64 65,34 21,910
SRstar(5,1,4,4) 64 64 167,88 22,779
SRstar(6,1,4,4) 48 48 559,46 23,867
SRstar(7,1,4,4) 10 2 637,70 26,001
SRstar(8,1,4,4) 2 0 450,50 26,001
SRstar(9,1,4,4) 1 0 785,00 26,060
SRstar(3,2,2,4) 64 64 48,58 21,322
SRstar(4,2,2,4) 64 64 388,56 23,456
SRstar(5,2,2,4) 56 56 867,07 23,882
SRstar(6,2,2,4) 52 50 965,75 24,112
SRstar(7,2,2,4) 32 2 1068,06 26,080
SRstar(8,2,2,4) 4 4 3395,25 24,792
SRstar(9,2,2,4) 0 0 - -

SRstar(3,4,1,4) 1 0 330,00 26,060
SRstar(4,4,1,4) 5 0 468,60 26,031
SRstar(5,4,1,4) 0 0 - -

SRstar(6,4,1,4) 0 0 - -

SRstar(7,4,1,4) 0 0 - -

Srstar(8,4,1,4) 0 0 - -

SRstar(9,4,1,4) 0 0 - -

Grand Total 531 482 428,03 22,580

Figure 5.3: Metrics for the 16-bit system variants.

5.3.1 SR*(n,4,1,4)

The SR*(n, 4, 1,4) variants stand out, as four of the missing six variants are all from this set, for
n>4. For n =3 and n =4 we have 1 and 5 reported instances, respectively, none of which were
solved. The fact that the instances with 4 x 1 block were the hardest to solve is not so surprising
when one looks into how the encryption algorithm works in this case.

When the cipher block only has one column we get full diffusion after only one round of
encryption, instead of the two rounds needed for normal AES. Moreover, the key schedule be-
comes fully non-linear as every column in the round keys pass through the g()-function when
producing the next column. This gives more variables in the key schedule than the other in-

stances of the same bit size.

59



5.3. DISCUSSION ON FINDINGS Chapter 5

5.3.2 SR*(n,2,2,4) and SR*(n, 1,4,4)

For the other two 16-bit block variants, SR*(n, 2,2,4) and SR*(n, 1,4,4), we see a change for n =
7. The fraction of reported instances as well as solved instances drops, from an average 59.5
percent reported and 59.25 percent solved to an average 9.8 percent reported and 1.6 percent
solved. Also, up until round seven, all reported instances but two are solved. So with the 225-
limit on complexity we can solve most 2 x 2 and 1 x4 instances up to seven rounds, but for higher
number of rounds the solving complexity is very often too high for our limit.

There appears, however, not to be a big difference between the hardness of solving SR*(n,2,2,4)-
instances and SR*(n,1,4,4)-instances, in the sense that we can solve roughly the same fraction
of instances, see Figure 5.4. This is maybe more surprising as the variants with 1 x 4 block are
rather degenerate compared to those with 2 x 2 block. The encryption algorithm with a 1 x 4
block does not give any diffusion at all as both ShiftRows and MixColumn become the identity
mapping. Hence the variants with a single row in the cipher block state are vulnerable to differ-
ential attacks and probably several other attacks as well. This is in clear contrast to the variants
with 2 x 2 cipher block, which is completely in line with the full AES’ square cipher block and
has the same diffusion properties.

For the average time it takes to complete a run-through we observe the following: For sys-
tems that largely got solved, the time for run-throughs increases with the number of rounds, as
expected. Another interesting observation is that while we were able to solve roughly the same
fraction of instances both for 1 x 4 and 2 x 2 block sizes, it clearly takes longer time to solve the
2 x 2 instances, and it takes a little more memory as well. This can be seen in Figure 5.5. It
appears that the 2 x 2 instances are harder to solve after all, as they consume more time and
memory, but there is less difference between the 2 x 2 and 1 x 4 instances than there is between

the 2 x 2 and 4 x 1 instances.

5.3.3 Indications of Plaintext Dependencies

Finally, we try to make some observations on which plaintext constants that may give easier
systems to solve. In SR*(7,2,2,4) we solve two instances, while in SR*(8,2,2,4) we solve four. In

Figure 5.6 we see that the four solved instances of SR*(8,2,2,4) all were based on the plaintext
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Figure 5.4: Average complexity with distribution, and number of instances solved.
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with the hexadecimal value ff00, while the two systems solved in SR*(7,2,2,4) were based on
different plaintexts. Looking into the nine instances of SR*(3,2,4,4) we were able to solve we find
that four of them had the plaintext value aaaaaaaa. All of these were solved considerably faster
than the other five.

These observations on plaintexts that seem to give systems that are easier to solve do not
have a strong enough basis to draw any firm conclusions. But I think they indicate something

that is worth to study further.
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Figure 5.5: Average time with distribution, and number of instances solved.
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Conclusion and Further Works

In this thesis we have expanded on the work done in [3, 11, 12], by using Compressed Right-
Hand Side equations to attack small-scale versions of AES. Through this we have gained insight
on the behaviour of CRHS on small-scale AES, and through this hopefully on AES itself. We
have seen that system complexity and execution time has grown for variants with 16-bit key
size as the number of rounds grow (see Figure 6.1 and Figure 6.2). We observe differences in
complexity within variants of 16 bits but with different state array dimensions. It is clear that a
higher number of rows in the state array makes for higher complexity and execution time.

For the 32-bit variants, the hardware limit of 8 GB seems to limit the attacks in such a way
that little useful information can be deduced. The significant exception to this is the nine solved
run-throughs of SR*(3,2,4,4). These solved run-throughs had an average complexity of =~ 22376

232 complexity associated with brute-force. To the authors best

nodes, which is less than the
knowledge this is the first time small-scale versions of 32-bit keys have been broken using MRHS
or CRHS.

Furthermore, we have observed indications that complexity and execution time is depen-
dent on the plaintext value used for the run-through. The cause of this is as of yet undetermined,
and seems to be an interesting topic for further research.

Admittedly, the lost run-throughs skews the results. Although we cannot be sure, we believe
that these lost run-thorugh would have affected the results in a "negative" way. By negative we

mean that they probably would have led to a higher complexity and thus higher execution time.

We base this on our belief that they were lost due to their large total size in the first place.
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Figure 6.1: Average complexity per round for the 16-bit systems, with trend line.

SR*(n,4,1,4) SR*(n,2,2,4) SR*(n,4,1,4)

e fyerage SR*(N,1,14) g f\verage SR*(N,2,2,4)
e AvET 222 SR*(0,4,1,4) —— Ekspon. (Average SR*(n,1,1,4)]

200000 — Ekspon. (Average SR*(n,2,2,4)) ——— Ekspon. (Average SR*(n4,1,4))

3500,00
3000,00

2500,00

s)

2000,00

Time

1500,00

1000,00

500,00

IS
@
~
®
w

Rounds

Figure 6.2: Average time per round for the 16-bit systems, with trend line.
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The limited success on 32- and 64- bit size variants emphasizes the need for further im-
provements and refinements. In [11], cryptanalytic methods was used instead of automatic or-
dering to determine the order the BDDs should be joined in. They only attacked SR*(n,2,2,4)
but reports lower complexity for all rounds. This suggests that the automatic ordering strategy is
sub-optimal. It would therefore be interesting to see what results would come of running these
attacks again, with more emphasis on the ordering strategy. Work with this thesis has also re-
sulted in discussions on how to improve the cryptanalysis strategy used in [11]. This has resultet
in various ideas on possible improvement, though a fundamental question needs answering:
Is it possible to mathematically determine the expected best order of joining BDDs, utilizing
the fact that the initial linear combinations of a CRHS equation stay almost the same for every
run-through?

Furthermore, the discovery of plaintext influence intrigues. Some plaintexts appears to give
easier systems to solve than others. Can we explain this behavior and identify such plaintexts?
Or is it simply that the variables makes for fewer/more nodes in the initial BDD, and thus "tricks"
the automatic ordering into choosing a better/worse gluing order?

I am looking forward for the opportunity to study these and other questions as a PhD candi-

date!
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Appendix A
Plaintext Values

The respective eight values were used both as plaintext and key during the creation of the vari-

ous Small-Scale instances:

16-Bit Plaintext Values:
* bbff
* aaaa
* 5555
e ff00
e 00ff
e 174c
* 94b3

¢ dbch
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32-Bit Plaintext Values:

* bbbbffff

¢ daaaaaaa

® 55555555

* ffff0000

* 0000ffff

e 174ca832

e 94b3de7f

e dbc5a241

64-Bit Plaintext Values:

* bbbbbbbbffffffff

¢ dadaaaaaaaaaaaaaa

® 5555555555555555

* ffffffff00000000

* 00000000ffffffff

e 174caB832174ca832

* 94b3de7f94b3de7f

¢ dbcbsa241dbc5a241
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Raw Data for 16 Bit Systems

Key size
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

System
SR(9,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)

ID
877036381.bdd
2056888506.bdd
1049840918.bdd
431695514.bdd
-1979016437.bdd
635808998.bdd
-341941834.bdd
542282785.bdd
1285464618.bdd
1090601706.bdd
849160217.bdd
-1576663552.bdd
-354322275.bdd
867059130.bdd
1096668442 .bdd
-595509819.bdd
1667731187.bdd
1117324306.bdd
-2097518206.bdd
64064454.bdd
-2125562522.bdd
364003974.bdd
-268649362.bdd
-68429330.bdd
-1688136099.bdd
1905174084.bdd
599260613.bdd
964348422 .bdd
-1305751417.bdd
1197303449.bdd
-1769401851.bdd
-567061330.bdd
1443697430.bdd
-2124400670.bdd
-504295813.bdd
1826310559.bdd
1535557939.bdd
-966862410.bdd
231012934.bdd

time in sec

o
&
OO OOOO0OO0OO0OOO0OO0OO0OO0OO0OO0O0OO0O0O0O0O0O0OoRr Oo-N

w
= o

w
FFN

B O OoON K

36

o

# of nodes, as x in 2/x

26,06
17,158
17,177
16,028
17,286
17,129
17,083
17,125
15,685
16,957
17,081
17,185
17,123
17,023
15,658
17,102

15,59

17,09

17,15
17,271
17,246
15,663
17,185
17,195
17,237
15,673
17,186
21,083
17,123
17,254
20,943

17,23
17,615
17,195
15,629

17,28
21,002
17,238
17,065

1 if solved

plaintext

0 ffoo

1 dbc5
1 dbc5
1 94b3
15555
15555
1 94b3
15555
1 bbff

1 94b3
1174c
1 aaaa
15555
1174c
1 bbff

1 dbc5
1 0Off

1 dbc5
194b3
1 5555
1 aaaa
1 bbff

1 dbc5
1 dbc5
1174c
1 bbff

1174c
1 ffoo

1 aaaa
1 aaaa
1 ffoo

1 aaaa
1 ffoo

15555
1 0off

1 94b3
1 ffoo

1 dbc5
1 94b3

Figure B.1: Raw data for the 16 bit systems.
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ciphertext
cf77
8adl
3438
794d
dc68
8057
450e
1891
lea8
6lad
a7fa
ded3
9353
c25a
2aa8
7a89
c5fa
4el3
e64b
161f
fd3d
21fa
7119
6ed7
7054
2a5b
b662
37b8
0867
d7a5
8dée
b02b
606f
fb79
Oe51
038b
cOc3
921b
61e0

key
bbff
00ff
94b3
00ff
94b3
ffoo
ffoo
00ff
174c
94b3
174c
aaaa
174c
00ff
00ff
bbff
aaaa
174c
174c
5555
174c
aaaa
aaaa
ffoo
5555
bbff
aaaa
aaaa
dbc5
5550)
5555
94b3
bbff
aaaa
94b3
aaaa
dbc5
dbc5
5555
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,1,4,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)

11296926.bdd
898843927.bdd
1201304740.bdd
-406423923.bdd
434798140.bdd
60792208.bdd
-1457576264.bdd
405623711.bdd
-696340381.bdd
-1389792516.bdd
-1080348685.bdd
-910503864.bdd
1428402096.bdd
-780003291.bdd
-1399816292.bdd
-1895016868.bdd
-1487146410.bdd
1828226361.bdd
1444552798.bdd
1849245751.bdd
1191335875.bdd
1424201236.bdd
619189681.bdd
-1458417248.bdd
47842784.bdd
1094615662.bdd
1648748098.bdd
92924584.bdd
494564095.bdd
1561742825.bdd
386387000.bdd
1674629214.bdd
-926554255.bdd
345458712.bdd
410819764.bdd
795322177.bdd
755322870.bdd
-496557060.bdd
1911896056.bdd
-2017578305.bdd
1526096063.bdd
-575670107.bdd
-178908270.bdd
52196201.bdd
1502524563.bdd
1329197860.bdd
-1359039206.bdd
-828327307.bdd
-1861400.bdd
1251261754.bdd
-2023901517.bdd
77806265.bdd
429135174.bdd
2044897112.bdd
116578515.bdd
-91390162.bdd
-9651044.bdd
1582198581.bdd
416054077.bdd
-1248524974.bdd
-223282925.bdd
-1261195292.bdd
1071353089.bdd
-232322026.bdd
562407091.bdd
2071172912.bdd
195081227.bdd
1147944783.bdd
308993133.bdd
-1595153385.bdd
1032936311.bdd
1757559886.bdd
78540416.bdd

w w
N B

O OO0 0000 kr OO0OO0O0 O K K

20,997
21,066
17,131
17,084
17,116
15,619
15,641
17,048
15,691
17,145
17,268
17,206
17,179
15,652
15,637
16,054
17,131
21,095
21,018
15,602
17,129
15,624
15,634
15,684
17,212
15,651
21,336
21,349
21,436
21,199
21,407
21,332
21,196
21,219
21,332
21,273
21,161
21,105
21,249
21,313
21,428
21,418
21,109
21,159
21,178
21,332
21,343
21,393
21,447
21,274

21,37
21,352
21,295
21,417
21,308
21,336
21,337
21,354
21,434
21,331
21,432
21,401
21,325
21,406
21,317
21,349
21,438
21,227
21,351
21,179

21,45
21,328
21,281

1 ffoo
1 ffoo
1174c
15555
1174c
1 bbff
1 00ff
1174c
1 ooff
1 aaaa
1 aaaa
1 dbcS
1 94b3
1 0off
1 00ff
1 94b3
1174c
1 ffoo
1 ffoo
1 bbff
1 aaaa
1 bbff
1 bbff
1 0off
15555
1 00ff
1 aaaa
1 94b3
1 bbff
1 0off
1 dbc5
1 aaaa
1 bbff
1 dbc5
1 bbff
1 aaaa
1 ooff
1 0off
1 00ff
1174c
1 ffoo
1174c
1 ffoo
1 ooff
1 ooff
1 dbc5
1 bbff
1 ffoo
1 bbff
1 ffoo
1174c
1 bbff
1174c
1 aaaa
1 bbff
1 94b3
1174c
15555
1 94b3
15555
15555
15555
1 aaaa
1 ffoo
1 aaaa
1174c
1 94b3
1 ooff
15555
1 aaaa
15555
1 94b3
1 aaaa

Figure B.2: Raw data for the 16 bit systems.
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6019
6cdS
42ba
98e9
39f9

1e95
d5a8
7d70
ef9s

d42f
e464
aebf

1948
0b9b
27b1
e610
bb98
9f06
bal4
ee9b
85aa
8451
b2b1
d75b
de3b
d4a8
e289
870a
b685
baa9
9ce3
0013
bfcc

afc6

ac8b
2fe0

fias

39f0

d90c
1234
32c1
8877
565b
670f
d2dc
0925
0611
1d91
18a2
4747
0Ob2b
ed9a
95b5
539c¢
9dbd
98ed
b869
60ab
56¢1
513e
d2c7
7300
feee

a935
b45e
a2d8
5c14
5c0c

c6bb
ofid

8dda
6873
765b

0off
174c
94b3
bbff
ffoo
ffoo
ooff
dbc5
ffoo
ffoo
ooff
5555
dbcs
5555
dbc5
bbff
bbff
94b3
ffoo
5555
bbff
94b3
dbc5
bbff
dbc5
174c
dbc5
94b3
dbcs
bbff
bbff
ffoo
174c
ooff
ooff
5555
174c
94b3
5555
94b3
94b3
dbc5
bbff
ffoo
ooff
aaaa
ffoo
5555
bbff
ooff
aaaa
5555
ffoo
aaaa
aaaa
ffoo
bbff
dbc5
ooff
5555
174c
ffoo
ooff
dbc5
174c
ooff
dbc5
dbc5
ooff
bbff
bbff
bbff
94b3
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16bits
16bits
16bits
16bits
16bits
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
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16bits
16bits
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,2,2,4)
SRstar(3,4,1,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)

1078283706.bdd
-77957534.bdd
2052666451.bdd
855011747.bdd
1541148326.bdd
-2088886242.bdd
-1464510278.bdd
-696811087.bdd
2078810294.bdd
742048230.bdd
-1881055423.bdd
298560859.bdd
-748261822.bdd
-2011408438.bdd
-80725789.bdd
-1987357920.bdd
1788122704.bdd
273106702.bdd
-1656176334.bdd
665951563.bdd
268309590.bdd
1662921630.bdd
-1116145719.bdd
506164903.bdd
-2036053563.bdd
1214783412.bdd
-941927293.bdd
-1789773861.bdd
363718995.bdd
-363439164.bdd
-212247801.bdd
365360100.bdd
-2003238308.bdd
425730888.bdd
1660040060.bdd
623202040.bdd
-1184431395.bdd
31477427 .bdd
-297671432.bdd
797740944.bdd
-16592029.bdd
-1983702523.bdd
704255381.bdd
-399157084.bdd
1317463770.bdd
537277672.bdd
-659786186.bdd
1164861678.bdd
-1100683743.bdd
-1468911607.bdd
1797440752.bdd
404412836.bdd
-1088133419.bdd
184869129.bdd
834776226.bdd
710682983.bdd
485394522 .bdd
1976972169.bdd
1946609432.bdd
-418468599.bdd
-1694822187.bdd
2121131546.bdd
783548941.bdd
-139038942.bdd
-2032238408.bdd
948105556.bdd
1734050549.bdd
-657701153.bdd
-670233829.bdd
-884551014.bdd
-73961403.bdd
-413546219.bdd
446097532.bdd

46
a1
47
43
46
49
a7
40
48
46
46
48
46
63
a7
48
45

330
60
59
84
67
52
56
64
69
48
70
59
99
60
56
72
58
63
68
62
65
60
69
59
67
56
84
59
54
60
58
55
66
87
61
57
97
59
65
56
60
56
58
69
67
61
66
65
68
60
9%
71
73
a9
65
58

21,449
21,203
21,315
21,263
21,114
21,416
21,429
21,227
21,439
21,333
21,328
21,441
21,309
21,164
21,361
21,453
21,386
26,06
21,925
21,246
21,894
22,1
21,658
21,191
21,844
22,023
21,894
22,137
21,933
21,95
21,93
21,665
22,056
21,916
22,016
21,892
21,181
22,152
22,139
22,026
21,93
21,969
21,26
22,031
21,909
21,79
21,992
21,905
21,808
21,929
21,855
22,019
21,802
21,938
22,029
21,88
21,77
22,164
22,056
21,74
21,945
22,086
21,926
22,065
22,166
22,029
21,926
21,919
22,166
21,946
21,922
21,923
21,918

1 ffoo
1 bbff
1 dbc5
1 5555
1 94b3
1 94b3
1174c
1174c
1 dbc5
1 dbc5
15555
1 94b3
1 ffoo
1 ooff
1 dbc5
1 dbc5
1 ffoo
0 174c
1 94b3
1 ooff
1 ffoo
1174c
1 dbc5
1 bbff
1174c
1 dbc5
1 bbff
1174c
1 94b3
1 ffoo
1 94b3
1 ooff
1 aaaa
1 aaaa
15555
1 aaaa
1 0off
1 94b3
1 94b3
15555
1 aaaa
1174c
1 bbff
1 5555
1 dbc5
1 dbc5
1174c
1 ooff
1 bbff
1 94b3
1 ffoo
1174c
1 dbc5
1 ffoo
1 bbff
1 aaaa
1 dbc5
1 94b3
1 bbff
1 aaaa
1 aaaa
1 94b3
1 00ff
1 aaaa
15555
1174c
1 dbc5
1 ffoo
15555
1 ooff
1 ffoo
15555
1 0off

Figure B.3: Raw data for the 16 bit systems.
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8a74
fefl

6dbf
9996
of8f

69f1

flaf

7fb7

e35a
e803
fdd1

84c8
022c
04c5
6b01
cb78
d213
2def
0e49
980f
ef9b

f19e

19ed
12bf
bc5d
ea’77
62ab
5c78
aldb
6ddb
fbab

7663
27b6
8484
b6c3
a3b8
eObf
3afl

ebcb
4ba3
0041
fa49

doof
edda
92da
8643
5fcl

b40e
c33b
fc28

d5e9
a59b
5033
5833
9e24
3271
c21d
2bd7
90f7

8890
3295
61b9
0124
4608
7213
6da4
8e53
4b3f
3f2d

27ab
d27d
1419
a63b

ffoo
94b3
174c
aaaa
174c
aaaa
174c
5555
ffoo
94b3
94b3
5555
174c
aaaa
5555
dbc5
aaaa
94b3
ffoo
00ff
ffoo
bbff
00ff
94b3
5555
5555
bbff
174c
174c
dbc5
94b3
5555
174c
00ff
ffoo
bbff
94b3
bbff
dbc5
dbc5
5555
dbc5
00ff
bbff
bbff
174c
aaaa
174c
aaaa
aaaa
174c
94b3
ffoo
94b3
dbc5
ffoo
94b3
00ff
ffoo
aaaa
dbc5
5555
dbc5
94b3
174c
ffoo
dbc5
bbff
00ff
bbff
aaaa
aaaa
aaaa
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,1,4,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)
SRstar(4,2,2,4)

-277856836.bdd
-1613768096.bdd
-1041790573.bdd
-1305832440.bdd
1728061883.bdd
-167613546.bdd
351533907.bdd
-230121783.bdd
969350887.bdd
-541968475.bdd
-165296167.bdd
-1653910013.bdd
1785050567.bdd
-283259851.bdd
505735428.bdd
655265440.bdd
-2071017763.bdd
-2092771425.bdd
556448478.bdd
64340202.bdd
958845665.bdd
-603689257.bdd
-1782447345.bdd
1510680003.bdd
1023110422.bdd
122052114.bdd
526668868.bdd
140021630.bdd
-597397680.bdd
349058484.bdd
899134970.bdd
-2083609214.bdd
-1086726051.bdd
-75136493.bdd
1407625764.bdd
-526464191.bdd
565341797.bdd
1125209898.bdd
1853497361.bdd
563616064.bdd
-1669765818.bdd
-1913939042.bdd
104796012.bdd
92923975.bdd
-689073906.bdd
122671592.bdd
5620768.bdd
1526386271.bdd
-990996377.bdd
-2057316225.bdd
-2012960149.bdd
696578144.bdd
1905536864.bdd
-1644518572.bdd
-635318265.bdd
-554433499.bdd
-690887564.bdd
798420386.bdd
-347316852.bdd
-1736149301.bdd
2043552427.bdd
486927984.bdd
-1110471156.bdd
-1428461840.bdd
523785363.bdd
479658979.bdd
-1645304844.bdd
-1943104138.bdd
-1121874403.bdd
-2000334373.bdd
764617991.bdd
-1362638626.bdd
-1138817783.bdd

59
62
54

112
58
82
70
64
59

236

366

602

316

420

465

226

310

395

431

251

426

440

438

377

384

222

390

363

248

438

433

218

458

270

179

436

626

384

233

662

417

434

240

418

271

432

222

381

381

618

252

419

668

657

385

268

387

416

245

371

412

336

392

543

224

409

421

451

443

350

452

380

530

21,863
21,918
22,076
21,909
22,083
22,109
21,882
21,999
21,928
22,615
23,587
24,268

23,38
23,673
23,739
22,587
23,286
23,517
23,937
22,703
23,798
23,759
23,804
23,414
23,845
22,325
23,534

23,75
22,527
23,936
23,558
22,571
23,714
22,983
21,917
23,595
24,271
23,523
22,597
24,492
23,413
23,949
22,615
23,579
22,604
23,799
22,568
23,504
23,521
24,317
22,582
23,621
24,485
24,383
23,517

22,55
23,541
23,406
22,674
23,426
23,538
23,316
23,576
23,802
22,726
23,962
23,736
23,662
23,905
23,631
23,573

23,49
24,978

1174c
15555
1 bbff
1 ffoo
1 bbff
15555
1 ffoo
1 0off
1 dbc5
1 ffoo
1 bbff
1 ooff
1 ffoo
1174c
1 bbff
1 bbff
15555
1 aaaa
1 bbff
15555
15555
1 dbc5
1 dbc5
15555
1 ffoo
1 aaaa
1 aaaa
1 94b3
1 ffoo
1174c
1174c
1 dbc5
1 ffoo
1 94b3
1174c
1 aaaa
1 ooff
1174c
15555
1 0off
1 aaaa
1 aaaa
1 bbff
1 ffoo
1 ffoo
1 dbc5
1 bbff
1 dbc5
1 94b3
1 00ff
15555
1 ffoo
1 ooff
1 0off
15555
1174c
1 bbff
1 94b3
1 dbc5
1 aaaa
1 94b3
15555
1 94b3
1 0off
1 dbc5
1174c
1174c
1 94b3
1 aaaa
1 dbc5
1 bbff
1 94b3
1 ooff

Figure B.4: Raw data for the 16 bit systems.
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b319
932d
1a63
fo4b
160e
ado7
8bcf

28f7

3309
2bf1

ad70
7301
5fod

7cbf

8521
8fc5

99f9

2ebe
67d5
b56e
df2d

b374
Obdc
7a3f
91b4
00ca
9797
993a
971c
ab99
222b
212a
87e9
50ca
e7ed
6da2
6dof
b9a5
fade

248f
foad

c78f

29f3

7088
276¢
825¢
cacl

dcOb
39a5
6458
do8a
9581
ff99

e22f
3084
1f94
7a46
fa7f

d8b2
728
1b5e
87f7

7db5
9973
9952
cbd7
305e
ad43
e048
bOb5
83ec
2484
Oece

00ff
94b3
5555
00ff
174c
5555
5555
ffoo
aaaa
ffoo
174c
ffoo
94b3
dbc5
aaaa
5555
dbc5
174c
dbc5
94b3
174c
174c
dbc5
5555
bbff
dbc5
bbff
ffoo
aaaa
ffoo
174c
aaaa
dbc5
bbff
00ff
ffoo
5555
5555
ffoo
dbc5
5555)
aaaa
ffoo
5555
00ff
00ff
94b3
5555
174c
00ff
aaaa
174c
aaaa
174c
bbff
bbff
00ff
00ff
bbff
00ff
5555
00ff
aaaa
94b3
ffoo
aaaa
94b3
94b3
94b3
94b3
bbff
dbc5
bbff
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(4,4,1,4)
SRstar(4,4,1,4)
SRstar(4,4,1,4)
SRstar(4,4,1,4)
SRstar(4,4,1,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,1,4,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)

1619097554.bdd
1555130172.bdd
-354843854.bdd
-718402091.bdd
-654635616.bdd
821791648.bdd
390666478.bdd
-400870146.bdd
892911082.bdd
590970524.bdd
-1398083709.bdd
905627106.bdd
-1329961330.bdd
-520006932.bdd
1742291917.bdd
-1784143996.bdd
1455256898.bdd
1540162404.bdd
1648015291.bdd
-1935173392.bdd
-285435042.bdd
-1456349124.bdd
46881800.bdd
-207642064.bdd
520557088.bdd
-626359478.bdd
-15372190.bdd
1849174701.bdd
30922365.bdd
-1839819857.bdd
-228530226.bdd
-1798414504.bdd
1632840862.bdd
1091999081.bdd
-546639504.bdd
-1940537469.bdd
-2143043790.bdd
1988854055.bdd
145418467.bdd
-682483283.bdd
-1510374745.bdd
961951772.bdd
-99122853.bdd
-1800414557.bdd
1386738526.bdd
149573257.bdd
-172739961.bdd
-1454252448.bdd
982332903.bdd
-1276223921.bdd
-1261100619.bdd
1521901098.bdd
64070858.bdd
-865148487.bdd
-2133785760.bdd
1463064437.bdd
-1817680871.bdd
-436837571.bdd
1434335335.bdd
330027409.bdd
1168545558.bdd
1342728211.bdd
1716234217.bdd
-2065942346.bdd
1515911603.bdd
1796840753.bdd
-2065960640.bdd
860957806.bdd
-1780674002.bdd
-937744961.bdd
1872773162.bdd
473306293.bdd
-85399513.bdd

203
555
563
510
512
123
116
172
118
115
266
128
201
123
168
158
164
450
147
133
160
77
126
143
137
148
171
148
154
143
128
150
149
145
143
126
137
156
146
157
177
158
166
362
146
144
160
89
93
134
162
167
164
159
121
151
130
155
101
161
150
153
120
162
155
144
127
554
653
419
1936
397
721

26,029
26,031
26,032

26,03
26,032
22,386
22,938
22,824
22,346
22,895
22,768
22,485
22,304

22,98
22,488
22,744
22,744
23,133
22,666
22,548
22,706
22,573
22,345
22,763
22,668
23,391
22,866
22,665
22,779
22,704
22,466
22,641
22,665
22,698
22,714
22,446
22,461
22,718

22,73
22,812
23,442
22,744
22,145

24,77
23,402
22,142
22,754
22,628
22,608
22,583
22,746
22,625
22,812
22,769
23,186
22,771
22,438
22,743
23,044
22,715
22,723
22,708
22,347
22,857
22,751
22,655
22,371
24,086
24,209
23,005
25,617
22,731
24,416

0 ffoo
0 ffoo
0 ffoo
0 ff00
0 ffoo
1 ooff
1 00ff
1 94b3
1 0Off
1174c
1 ffoo
1 ooff
1 ffoo
1 bbff
1 00ff
1 94b3
1174c
1 ffoo
15555
1 bbff
1174c
1 ooff
1 bbff
15555
1 dbc5
15555
1 aaaa
1174c
1 94b3
1 94b3
1 bbff
1174c
15555
1 aaaa
1 aaaa
1 bbff
1 0off
1 dbc5
1 aaaa
1 aaaa
1 94b3
1 94b3
1 ffoo
1 ffoo
1174c
1 ffoo
1 94b3
1 bbff
1 aaaa
15555
1 94b3
1 5555
1174c
1 aaaa
1 dbc5
15555
1 bbff
1 dbc5
15555
1 dbcS
1 dbc5
1174c
1 00ff
1 aaaa
1 dbc5
1 dbc5
1 bbff
1 ffoo
1 ffoo
1174c
1 bbff
1174c
1 0off

Figure B.5: Raw data for the 16 bit systems.
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21c2
ca39
fc85

ebéd
Occe

fe56

0c54
b749
4c90
1181
d2fa

d1b3
56de
c854
a455
8a43
6le2
eaff

0b36
2b55
b526
3d76
f790
27ff

4d77
bba7
621c
a8ef

7957
20f5

3d56
8c2d
87ad
90cc
5d89
352b
f3bc

b726
10ec
b874
0dOa
e6cb
8508
5310
2290
9c46
8926
8e76
lcd7
ab6f
9df2

efef

el21l
47ae
796d
3aeb
c9b3
683d
9déd
0e0f
1b9b
562
402b
d88c
7c5f

156f
dcbc
1cbb
f503

doa7
dfbé
3e5¢
20fa

0off
bbff
94b3
aaaa
174c
aaaa
ooff
94b3
dbc5
ooff
94b3
5555
dbc5
ooff
ffoo
aaaa
174c
5555
dbc5
ffoo
5555
94b3
dbc5
174c
aaaa
aaaa
dbc5
dbc5
174c
dbc5
aaaa
ffoo
5555
aaaa
bbff
174c
bbff
dbc5
5555
ffoo
5555
bbff
bbff
ooff
bbff
174c
ooff
94b3
94b3
bbff
ffoo
94b3
aaaa
ooff
5555
ffoo
5555
ooff
ooff
94b3
ffoo
94b3
174c
174c
bbff
174c
bbff
aaaa
ffoo
94b3
5555
aaaa

bbff
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(5,2,2,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)

-1837371527.bdd
791834372.bdd
1688776110.bdd
-475144831.bdd
958309036.bdd
382764202.bdd
721934437.bdd
-1446373135.bdd
-1682520114.bdd
723458011.bdd
-1774582168.bdd
1172629401.bdd
-2041951243.bdd
2088986362.bdd
-1000378111.bdd
1983037794.bdd
-910329488.bdd
712609918.bdd
-1144659100.bdd
1363830826.bdd
1174126278.bdd
631096774.bdd
1578114204.bdd
1787304584.bdd
1501689895.bdd
72686829.bdd
1328234473.bdd
-827980012.bdd
936474278.bdd
1140667205.bdd
1322498176.bdd
-1634414887.bdd
-1002477012.bdd
1499936664.bdd
-1597376838.bdd
-509100808.bdd
1131231519.bdd
-1327965370.bdd
-1639596009.bdd
1738165623.bdd
-225658626.bdd
1492991979.bdd
-206399321.bdd
1965059597.bdd
-1091678514.bdd
229332947.bdd
1641454672.bdd
1440383459.bdd
842516842.bdd
-1754589561.bdd
680852382.bdd
-1305067570.bdd
-1568378994.bdd
-93085445.bdd
-420386231.bdd
1684229257.bdd
-1154989306.bdd
1830572364.bdd
-806385425.bdd
662416538.bdd
-1060982507.bdd
1152627028.bdd
1508199183.bdd
2119652254.bdd
-740147811.bdd
-1028488178.bdd
-912741365.bdd
-968143343.bdd
933835504.bdd
-2066762666.bdd
-1823199525.bdd
939522083.bdd
1860771129.bdd

2086
434
1313
1516
421
838
2290
389
1956
428
373
1536
438
433
746
428
1141
441
438
422
356
380
403
1534
1917
399
415
755
1191
2041
1125
435
418
431
1345
719
714
1872
2037
693
362
684
899
398
431
425
1910
765
718
371
438
435
512
598
527
607
509
927
862
205
526
507
554
1008
500
645
163
623
600
794
164
573
871

25,36
23,049
24,527
25,058
23,007
23,909
25,501
22,958

25,47
22,998
22,936
25,049
23,109
23,176
24,434
23,188

24,14
23,044
23,059
23,006

23,06

23,02
22,742
25,048
25,516
22,734
23,006
24,424

24,14
25,514
24,511
23,045
23,002
23,034
24,741
24,418
24,445
25,514
25,518
24,181
22,981
23,735
24,042
22,793
23,064
23,012
25,517
24,386
24,356
22,999
23,078
23,082
23,947
23,688
24,006
23,701
23,618
24,514
24,188
23,354

23,97
23,794
23,697
24,608
23,798
23,724
23,494
23,791
23,889
24,124
23,494
23,939
24,247

1 94b3
1 bbff
1 ffoo
1 ffoo
1174c
15555
1 94b3
1 dbc5
1 dbc5
15555
1 bbff
1 ffoo
1 bbff
1 aaaa
1 00ff
1 aaaa
1 ffoo
1 bbff
1 94b3
1174c
1 aaaa
15555
1 aaaa
1 ffoo
1 aaaa
15555
1174c
1 ooff
1 ffoo
1 dbc5
1 ffoo
1 aaaa
15555
1 bbff
1 ffoo
1 ooff
1 ooff
1 bbff
1 dbc5
1 0off
15555
1 94b3
1 94b3
1 dbcS
1 dbc5
15555
1 aaaa
1 0off
1 ooff
1 aaaa
1 dbc5
1 bbff
1 dbc5
15555
1174c
15555
15555
1 94b3
1 94b3
1 ffoo
1 dbc5
1174c
1 dbc5
1 94b3
1 aaaa
1 dbc5
1 ffoo
1 aaaa
1174c
1 94b3
1 ffoo
1174c
1 94b3

Figure B.6: Raw data for the 16 bit systems.
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9976
f750
b70b
4278
8all
ab8b
8774
ead7
1201
ac36
6471
a85e
56f0
fafl
039e
f2f8
1bba
305f
07bc
81d6
82bb
bd80
4bc9
22a%9
da70
8b81
8a69
aec’7
do42
bade
cb12
a345
69f7
1669
0d64
4ab2
6flb
b375
dlcd
1527
3b76
efff
8393
783a
e86e
984b
d3cd
090d
f27a
dos1
f822
adba
0310
fb8a
c209
18al
dcfa
dce5f
3044
7123
74ca
doo1
9cl4
bd9e
2863
5did
e9f3
f489
b1of
90dc
e93d
7290
3651

94b3
dbc5
174c
bbff
ffoo
174c
174c
aaaa
bbff
5555
aaaa
5555
ffoo
5555
dbc5
aaaa
ffoo
94b3
5555
bbff
ffoo
ffoo
bbff
00ff
dbc5
dbc5
00ff
94b3
dbcs
ffoo
aaaa
94b3
00ff
bbff
94b3
174c
00ff
174c
174c
aaaa
94b3
00ff
dbc5
94b3
00ff
aaaa
00ff
ffoo
5555)
174c
5555
00ff
aaaa
5555
94b3
bbff
00ff
dbc5
ffoo
174c
00ff
174c
94b3
aaaa
ffoo
ffoo
94b3
aaaa
bbff
00ff
00ff
ffoo
94b3



Chapter B

16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,1,4,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)

-397910848.bdd
1998020642.bdd
883062747.bdd
-828579492.bdd
1481662390.bdd
515183630.bdd
1360377655.bdd
-1410692294.bdd
-2015914392.bdd
-1847081740.bdd
1163353767.bdd
397944514.bdd
1807363588.bdd
1125563522.bdd
-219534408.bdd
-833678111.bdd
1882700139.bdd
-1702293580.bdd
1641196052.bdd
-1986275585.bdd
947697766.bdd
1991311396.bdd
1572385193.bdd
-23288081.bdd
194797915.bdd
-251543248.bdd
-1632225332.bdd
-975990808.bdd
-1106513277.bdd
-1284882841.bdd
446787315.bdd
1685224536.bdd
-610912093.bdd
895222451.bdd
1218684056.bdd
1827549806.bdd
2047730236.bdd
794244790.bdd
-1713624690.bdd
1584333296.bdd
-1952184093.bdd
1100473349.bdd
-2103509677.bdd
-368625008.bdd
751959252.bdd
2059665119.bdd
-1117521764.bdd
386775495.bdd
-1763465808.bdd
-34580358.bdd
1697797590.bdd
-1875551484.bdd
-932956518.bdd
1749598496.bdd
-1847635636.bdd
-1857577109.bdd
-1534064198.bdd
-532832004.bdd
-891097305.bdd
223766550.bdd
-640835648.bdd
1523717880.bdd
412580699.bdd
837199940.bdd
-756160026.bdd
-1403124802.bdd
499635711.bdd
-2028483296.bdd
2135033965.bdd
-918569101.bdd
952930330.bdd
1083090090.bdd
-311982664.bdd

819
506
522
211
828
1118
525
600
162
528
615
630
208
531
647
669
699
459
207
505
574
466
164
522
533
692
639
987
935
829
1049
1053
906
911
1027
866
1049
891
1664
915
1030
974
940
876
916
1020
754
950
1291
847
997
1047
890
1016
956
997
942
915
822
958
814
1004
878
873
915
829
977
772
855
el
926
784
970

24,091
23,632
23,69
23,974
24,182
24,954
24,034
23,732
23,458
23,738
23,728
23,804
23,941
23,677
23,806
23,896
23,416
23,897
23,914
23,762
23,769
23,817
23,631
23,678
23,885
24,038
23,886
24,144
23,817
24,197
24,783
24,646
24,158
23,591
23,565
24,091
24,712
26,133
24,14
23,746
24,275
23,873
23,649
23,386
24,21
24,344
24,008
23,757
24,503
24,091
24,519
24,291
23,617
23,849
24,228
23,838
23,764
24,153
23,833
23,614
24,205
23,92
23,984
24,053
23,763
24,018
24,249
23,995
24
24,134
23,549
24,022
24,245

1 0Off
15555
15555
1 ffoo
1 0off
1 94b3
1 aaaa
1 aaaa
1 ffoo
1174c
1 dbc5
1174c
1 ffoo
1174c
15555
15555
1 94b3
1 aaaa
1 ffoo
1174c
1 dbc5
15555
1 ffoo
1 dbc5
1 aaaa
1 aaaa
1 aaaa
1 94b3
1 94b3
1174c
1 aaaa
1 aaaa
1 bbff
15555
1 dbc5
1 5555
1 aaaa
0 00ff
1 ffoo
1 bbff
1 dbc5
1174c
1174c
1 5555
1 dbc5
1 94b3
1 bbff
1 bbff
1 bbff
1174c
1 94b3
1 dbcS
1 bbff
1 aaaa
1 94b3
1 dbc5
1 bbff
1 94b3
1 aaaa
1 94b3
15555
15555
1 94b3
1 bbff
1 aaaa
1 aaaa
1174c
1 5555
1174c
1174c
1 dbc5
15555
1 dbc5

Figure B.7: Raw data for the 16 bit systems.
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a25d
€696
aecd
6fas

601a
e3e5
bb97
4f66
7ab0
73d9
1c7c
b610
6ef3

29%el
f88c

faz4
Ofee

ff62

6dcl
af2c

4086
eed0
9176
4731
0544
277b
d778
6a9%b
7731
32ba
94df
4837
ee30
elbc
1735
7a08
343b
b4a19
24c3
7850
1b73
4cdl
2f3a

886f
1f29

7fec

e58a
b429
ladd
8dd3
49f7

9769
49d5
2ebc
5db3
bece
3416
8cla
5d32
ccc9

92b9
8d9a
75d7
7971
e24a
e5d6
91e8
feef

834a
f8da
79ee
9f86
cl7a

aaaa
dbc5
ffoo
ffoo
bbff
bbff
174c
94b3
bbff
dbc5
174c
ooff
5555
aaaa
174c
94b3
174c
dbc5
dbc5
5555
dbc5
aaaa
aaaa
bbff
bbff
ooff
5555
dbc5
174c
dbc5
dbc5
ooff
aaaa
ffoo
dbc5
aaaa
94b3
dbc5
5555
94b3
aaaa
94b3
ffoo
bbff
5555
bbff
174c
ooff
5555
ooff
aaaa
174c
dbc5
5555
ffoo
ffoo
bbff
94b3
174c
5555
dbc5
94b3
ooff
ffoo
bbff
ffoo
174c
5555
bbff
5555
94b3
174c
bbff
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16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits
16bits

SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(6,2,2,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,1,4,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(7,2,2,4)
SRstar(8,1,4,4)
SRstar(8,1,4,4)
SRstar(8,2,2,4)
SRstar(8,2,2,4)
SRstar(8,2,2,4)
SRstar(8,2,2,4)
SRstar(9,1,4,4)

-1026466548.bdd
1911925969.bdd
520469481.bdd
2014459757.bdd
-1210909227.bdd
-1964442753.bdd
414182372.bdd
1065420835.bdd
-107985201.bdd
12459042.bdd
-1323083245.bdd
392642878.bdd
411290652.bdd
-177874554.bdd
-279168845.bdd
301402789.bdd
-1279204063.bdd
-612192286.bdd
313637644.bdd
1253025598.bdd
-1711743268.bdd
497128952.bdd
983332496.bdd
-1097855808.bdd
781467014.bdd
-1899079327.bdd
1851477440.bdd
2039269896.bdd
558707800.bdd
-936760700.bdd
1990710681.bdd
-865755055.bdd
1881367534.bdd
1178393109.bdd
1147184175.bdd
1161658989.bdd
1250383075.bdd
2022182971.bdd
-740398304.bdd
1739328967.bdd
-116725312.bdd
-707616466.bdd
1119538840.bdd
2045024554.bdd
-249999006.bdd
-1707331575.bdd
1196369899.bdd
-1051930352.bdd
-1780401386.bdd
-1813068395.bdd
-9526814.bdd
1109430121.bdd
706176863.bdd
-750177334.bdd
877036381.bdd

1671
1054
895
949
1014
906
112
2733
111
116
114
115
118
115
118
2725
765
708
700
704
1466
703
784
1400
1443
718
1451
2753
771
1410
790
809
810
728
812
810
807
814
2830
1491
1479
822
733
799
746
810
1506
806
456
445
3319
3202
3756
3304
785

24,178
24,591
26,133
23,807

23,88
23,588
26,187
25,277
26,187
26,187
26,187
26,187
26,187
26,187
26,187
25,235
26,103
26,104
26,104
26,104
26,183
26,104
26,103
26,183
26,183
26,104
26,183
25,422
26,103
26,183
26,103
26,103
26,103
26,104
26,103
26,103
26,103
26,103
25,415
26,183
26,183
26,103
26,104
26,103
26,104
26,103
26,183
26,103
26,001
26,001
24,716
24,749
24,943
24,758

26,06

1 ffoo
1 dbc5
0 00ff
15555
1174c
1 aaaa
0 ffoo
1 94b3
0 ffoo
0 ffoo
0 ff00
0 ffoo
0 ffoo
0 ffoo
0 ffoo
1 bbff
0 94b3
0 ffoo
0 ff00
0 ffoo
0 aaaa
0 ffoo
0 174c
0 aaaa
0 aaaa
0 ffoo
0 aaaa
1 0off
0 174c
0 aaaa
0 94b3
0 174c
0 94b3
0 ffoo
0 174c
0 94b3
0 174c
0 174c
1 dbc5
0 aaaa
0 aaaa
0 94b3
0 ff00
0 94b3
0 ffoo
0 174c
0 aaaa
0 174c
0 174c
0 174c
1 ffoo
1 ffoo
1 ffoo
1 ffoo
0 ffoo

Figure B.8: Raw data for the 16 bit systems.
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7106
ef31

5590
5f13

0220
8878
5e23
60c2
49d0
5124
98e3
ce7c

c2af

8343
76f4

fe62

adae
2231
agaf

2dd4
1126
6e92
b31e
2alb
7eab
0a20
6e67
c5¢5

3880
3670
aa3f

2do7
55ec
c570
eec5

3981
9f38

5b7d
e676
2391
b251
963d
7f05

ef34

8710
6bb2
583e
df14

d53a
2908
d6a9
b95e
f4e8

27c4
cf77

94b3
ooff
aaaa
ooff
aaaa
aaaa
174c
5555
ooff
aaaa
ffoo
94b3
dbc5
bbff
5555
aaaa
94b3
ooff
174c
5555
aaaa
aaaa
aaaa
5555
174c
dbc5
dbc5
94b3
bbff
bbff
ooff
174c
ffoo
ffoo
94b3
5555
ffoo
5555
ooff
0off
94b3
dbc5
94b3
bbff
bbff
dbcs
ffoo
0off
bbff
aaaa
94b3
dbc5
5555
aaaa

bbff



Appendix C

Raw Data for 32 Bit Systems

Key size jd System

32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)

866813617.bdd
308055624.bdd
791388415.bdd
-1862325759.bdd
-246928831.bdd
-1878923816.bdd
1398789331.bdd
1512992392.bdd
1014042610.bdd
-1526228221.bdd
2124272418.bdd
2048487260.bdd
-906286794.bdd
-1071215211.bdd
1239107745.bdd
1050666266.bdd
-437595301.bdd
1560645760.bdd
-1557951550.bdd
-1790849786.bdd
-518099671.bdd
759115024.bdd
1950054254.bdd
-724107493.bdd
764643408.bdd
-1217966007.bdd
2107054891.bdd
-1609648258.bdd
-1851340252.bdd
-729336631.bdd
384797757.bdd
253294772.bdd
1225408099.bdd
1654195061.bdd
-1303904149.bdd
-1442363110.bdd
1439198379.bdd
-165443877.bdd
-56624439.bdd

Time (s)

- Nodes (27n)

150
86
114
106
a7
28
37
156
99
59
190
109
145
89
163
51
51
101
163
54
101
89
154
85
118
121
26
95
86
66
103
114
97
66
80
50
a8
48
93

- 1 if solved - plaintext - ciphertext - key

24,312
24,157
24,301
24,395
24,216
24,485
24,216
24,295
24,171
24,652
24,434
24,293
24,091
24,046
23,769
23,922
23,922
24,154
24,321
24,59
24,24
24,079
23,563
24,286
24,26
24,361
24,536
24,223
24,191
24,174
24,3
24,047
24,165
24,179
24,151
24,216
24,216
24,216
24,37

0 94b3de7f
0 174ca832
0 174ca832
0 dbc5a241
0 55555555
0 55555555
0 55555555
0 0000ffff
0 ffff0000
0 bbbbffff
0 55555555
0 dbc5a241
0 94b3de7f
0 174ca832
1 bbbbffff
1 aaaaaaaa
1 aaaaaaaa
0 dbc5a241
0 94b3de7f
0 bbbbffff
0 aaaaaaaa
0 dbc5a241
1 94b3de7f
0 ffff0000
0 dbc5a241
0 174ca832
0 ffff0000
0 ffff0000
0 ffff0000
0 0000ffff
0 dbc5a241
0 174ca832
0 174ca832
0 0000ffff
0 bbbbffff
0 55555555
0 55555555
0 55555555
0 ffff0000

Figure C.1: Raw data for the 32 bit systems.
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608cc99%e
61dae550
c33e2837
d585c860
8e0580a6
foef200f
738023a5
12abb811
59bfd6le
69de90aa
e78482a7
b7533a45
c822441b
8ad7b5d6
cb378400
7694a4c8
4fdo649b
dac8b170
93963611
0b39fa58
e2021d1d
bb0b917f
fb37cafc
2097ee05
09d774d9
773alell
ab6b1647
77f862e7
9898ca22
537499fb
1f97667e
81706d1d
0f12c224
d6lecf3s
6006923
4f8229c6
62844485
db068216
7837f6bd

94b3de7f
aaaaaaaa
55555555
bbbbffff
0000ffff
aaaaaaaa
94b3de7f
55555555
ffff0000
dbc5a241
bbbbffff
ffff0000
bbbbffff
174ca832
bbbbffff
94b3de7f
bbbbffff
94b3de7f
55555555
94b3de7f
dbc5a241
174ca832
aaaaaaaa
94b3de7f
0000ffff
bbbbffff
aaaaaaaa
dbc5a241
55555555
aaaaaaaa
55555555
94b3de7f
0000ffff
fff0000
ffff0000
55555555
ffff0000
dbc5a241
0000ffff
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,2,4,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)

2116700929.bdd
591115861.bdd
-1580939223.bdd
607164889.bdd
-1428414212.bdd
1028701702.bdd
2075250781.bdd
-272865652.bdd
24303426.bdd
833112377.bdd
1594877367.bdd
1980255000.bdd
2128018016.bdd
-112505789.bdd
-269521588.bdd
1251403808.bdd
602480804.bdd
1817265285.bdd
-1008527876.bdd
-800233613.bdd
1072752201.bdd
2093680366.bdd
-1706759348.bdd
2136101030.bdd
1686808606.bdd
-203286336.bdd
-1865574319.bdd
1068305757.bdd
109374084.bdd
241073700.bdd
891552290.bdd
1103889821.bdd
-1403299813.bdd
213352704.bdd
-525461326.bdd
939910223.bdd
1776837815.bdd
-1423879474.bdd
497828842 .bdd
88369412.bdd
-1855795406.bdd
-336224631.bdd
-1136301097.bdd
301136263.bdd
1481583501.bdd
1666229741.bdd
94858912.bdd
-503218866.bdd
2014481207.bdd
1332792447.bdd
-38713751.bdd
-1625693982.bdd
1122335407.bdd
640851532.bdd
-240434201.bdd
-1475304185.bdd
-317528284.bdd
687875212.bdd
2082378538.bdd
1532611822.bdd
2006681337.bdd
908539847.bdd
-964671630.bdd
-1508546878.bdd
-1691110539.bdd
-1119810339.bdd
831452393.bdd
-1283799139.bdd
455412919.bdd
-405422360.bdd
-1441222427.bdd
-1812044970.bdd
369677124.bdd

63
73
48
97

123
74
65
54

171
80

150

122

317
63
74
77

142

122
a7
80
65
26
20
48

139
83
32
59
36
37
34
34

139
20
91
58
36
94
52
34
36

100
34
37

112
37
22
38

180
34
37
51
80
36
65
37
37
37
37
20

110
37
94
37
37
84
37
36
83
84
98
20
61

24,069
24,197
24,487
24,335
24,042
24,123
24,134
23,527
23,723
24,163
24,213
24,058
25,159
24,156
24,167
24,148

24,48
24,206
23,922
24,176
24,011
24,301
24,223
23,922
23,563
24,972
24,985
24,976
24,994
24,994
24,995
24,995
24,003
24,991
24,015
24,976
24,994
24,609
24,976
24,995
24,995
24,484
24,995
24,995
24,551
24,994

24,01
24,994
24,004
24,995
24,995
24,976
24,012
24,994
24,024
24,995
24,995
24,995
24,996
24,991

24,06
24,995
24,376
24,994
24,995
24,978
24,995
24,995
24,978
24,972
24,063
24,991
24,976

0 94b3de7f
0 0000ffff
0 aaaaaaaa
0 dbc5a241
0 94b3de7f
0 174ca832
0 0000ffff
1 0000ffff
1 55555555
0 bbbbffff
0 aaaaaaaa
0 94b3de7f
0 ffff0000
0 0000ffff
0 0000ffff
0 bbbbffff
0 dbc5a241
0 174ca832
1 aaaaaaaa
0 bbbbffff
0 bbbbffff
0 ffff0000
0 aaaaaaaa
1 aaaaaaaa
1 94b3de7f
0 dbc5a241
0 dbc5a241
0 94b3de7f
0 55555555
0 55555555
0 bbbbffff
0 bbbbffff
0 0000ffff
0 ffff0000
0 0000ffff
0 94b3de7f
0 174ca832
0 aaaaaaaa
0 55555555
0 bbbbffff
0 55555555
0 ffff0000
0 bbbbffff
0 dbc5a241
0 174ca832
0 174ca832
0 0000ffff
0 55555555
0 bbbbffff
0 bbbbffff
0 94b3de7f
0 55555555
0 bbbbffff
0 174ca832
0 0000ffff
0 aaaaaaaa
0 dbc5a241
0 dbc5a241
0 55555555
0 ffff0000
0 0000ffff
0 94b3de7f
0 ffff0000
0 174ca832
0 aaaaaaaa
0 aaaaaaaa
0 dbc5a241
0 aaaaaaaa
0 aaaaaaaa
0 dbc5a241
0 0000ffff
0 ffff0000
0 94b3de7f

Figure C.2: Raw data for the 32 bit systems.
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fa4535da
24097188
379¢5718
30033899
db5662be
205c7284
2068a43c
e05a6c9%e
cf13b0c9
30f2bafe
05ce0948
5ca263a4
2df89720
2e46814c
04541aed
99317d1f
04e83224
22b3d7bd
346a5a6b
5df3b47a
6ddac90f
7c893b45
3dedba05
0249ff3f
db6854dc
dd5be897
af2faaba
d431e673
e2bffff1
d5fe3fbf
c88ffb87
ae7e007d
81bcccel
27159e9d
4248733a
4beS54efd
44e876ca
ffodaff2
a38b9652
60650cla
3c127642
486c0c0c
43c54f39
cfb622dd
e269941d
7d393916
7f504c29
b5ff2052
cf42bclc
39049495
bc7429b0
07c70f6c
e5869fd8
f6ae239¢c
1c74e054
ade62434
73d6a393
7dfe1643
8608de7f
a83ff185
76ed1468
da308146
48c05099
265804ca
904ace27
3ecbcbbe
ab2cee98
d20d13cb
abadef3b
c7a97dda
257f5b51
7e457200
82a7b4of

ffff0000
174ca832
55555555
aaaaaaaa
dbc5a241
dbc5a241
0000ffff
94b3de7f
174ca832
55555555
174ca832
174ca832
bbbbffff
bbbbffff
dbc5a241
0000ffff
dbc5a241
ffff0000
ffff0000
174ca832
aaaaaaaa
174ca832
aaaaaaaa
0000ffff
0000ffff
0000ffff
174ca832
94b3de7f
ffff0000
174ca832
55555555
94b3de7f
aaaaaaaa
aaaaaaaa
dbc5a241
ffff0000
94b3de7f
aaaaaaaa
55555555
aaaaaaaa
0000ffff
0000ffff
ffff0000
ffff0000
55555555
bbbbffff
bbbbffff
94b3de7f
174ca832
0000ffff
0000ffff
bbbbffff
dbc5a241
0000ffff
55555555
dbc5a241
aaaaaaaa
dbc5a241
aaaaaaaa
55555555
94b3de7f
bbbbffff
dbc5a241
aaaaaaaa
0000ffff
94b3de7f
94b3de7f
55555555
174ca832
55555555
0000ffff
bbbbffff
55555555
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32bits
32bits
32bits
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
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32bits
32bits
32bits
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32bits
32bits
32bits
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32bits
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32bits
32bits
32bits

SRstar(3,4,2,4)
SRstar(3,4,2,4)
SRstar(3,4,2,4)
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SRstar(3,4,2,4)
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SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)
SRstar(4,2,4,4)

1382216930.bdd
-1343289191.bdd
326089274.bdd
-1231554500.bdd
121251005.bdd
-814844992.bdd
-2013997961.bdd
1480059095.bdd
510319216.bdd
-166293338.bdd
1276050359.bdd
-1900207751.bdd
-1936746675.bdd
-127812911.bdd
136249116.bdd
-1270330855.bdd
1581540419.bdd
-1990550675.bdd
-775185262.bdd
646523050.bdd
-493571730.bdd
-1376522708.bdd
1419308353.bdd
464093442 .bdd
1770942600.bdd
881264768.bdd
-760787726.bdd
564958435.bdd
1819150145.bdd
-430833798.bdd
715768870.bdd
-1461558619.bdd
675323388.bdd
660894432.bdd
-748925253.bdd
-487521231.bdd
-1093330000.bdd
-905487723.bdd
844009217.bdd
-1786035361.bdd
791367167.bdd
1541576852.bdd
406249906.bdd
-1910641802.bdd
638013596.bdd
1352105105.bdd
1882762524.bdd
1169818564.bdd
-261124066.bdd
-2071170808.bdd
1652988446.bdd
2129737414.bdd
-1905228298.bdd
594121106.bdd
-64526110.bdd
-244176485.bdd
-314698335.bdd
115136379.bdd
1607374970.bdd
71652751.bdd
-573096932.bdd
-884583603.bdd
1813212937.bdd
-1545759252.bdd
-492659372.bdd
365437325.bdd
1829548612.bdd
2109311170.bdd
-1558090944.bdd
-465330006.bdd
-64962141.bdd
-62173803.bdd
21757766.bdd

100
18
14
36
84
61
37

149
37
37
18
53
87
37
18
61

466

370

297
26

406

129
18

428
53
25
25

356

208
50
47
29

230

117

415

164

163

360
26

356

232

334

163

358
24

204
38

404
95
51

297
75
31
17

291

194

199
26
27
28

220

232

292

199

172
30

135

130

434

326

214
23
50

24,496
24,582
24,582
24,995
24,083
24,976
24,994
24,114
24,994
24,994
24,581
24,007
24,083
24,995
24,582
24,976
24,919
24,919
24,928
24,711
25,042
24,652
24,099
24,916
24,502

24,73
24,719
24,919
24,419
24,752
24,308
24,717
24,434

24,35

24,79
24,266
24,517
24,974
24,718
24,878
24,211
24,306
24,454

24,71
24,732
24,754
24,863
24,796
24,327
24,802
24,919
24,292
24,733
24,045
24,919
24,674
24,666
24,723
24,731
24,725

24,23
24,606
24,877
24,686
24,262
24,733
24,054
24,417
24,919
24,919

24,61
24,102
24,752

0 ffff0000
0 aaaaaaaa
0 ffff0000
0 94b3de7f
0 ffff0000
0 94b3de7f
0 174ca832
0 0000ffff
0 174ca832
0 174ca832
0 bbbbffff
0 0000ffff
0 55555555
0 dbc5a241
0 aaaaaaaa
0 94b3de7f
0 174ca832
0 174ca832
0 dbc5a241
0 aaaaaaaa
0 dbc5a241
0 0000ffff
0 0000ffff
0 dbc5a241
0 ffff0000
0 55555555
0 0000ffff
0 174ca832
0 0000ffff
0 174ca832
0 aaaaaaaa
0 bbbbffff
0 ffff0000
0 bbbbffff
0 dbc5a241
0 bbbbffff
0 ffff0000
0 94b3de7f
0 0000ffff
0 94b3de7f
0 94b3de7f
0 dbc5a241
0 ffff0000
0 dbc5a241
0 bbbbffff
0 ffff0000
0 0000ffff
0 dbc5a241
0 aaaaaaaa
0 aaaaaaaa
0 174ca832
0 aaaaaaaa
0 55555555
0 bbbbffff
0 174ca832
0 94b3de7f
0 94b3de7f
0 0000ffff
0 55555555
0 55555555
0 aaaaaaaa
0 ffff0000
0 94b3de7f
0 bbbbffff
0 bbbbffff
0 aaaaaaaa
0 94b3de7f
0 ffff0000
0 174ca832
0 174ca832
0 ffff0000
0 aaaaaaaa
0 55555555

Figure C.3: Raw data for the 32 bit systems.
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3097b0aa
00d9de2c
945070a4
f1f95d2c
390ae331
71072635
940708d9
21386c80
1dde0788
94e34bf2
81fb670c
3ad7d7db
6b951208
9b18ff85
e65f6ead
4673806¢
1d51b9ff
bdb7ecob
95c0b5e5
308b641b
123467e2
303cae25
delfbc04
172a3d45
6e8edbcl
26874494
3d6b75a4
524acl5e
e93ff949
24e78a21
f5f5b9al
ad18f687
7a09c301
41f7e9ec
270d9bde
dd5512e3
52dd8963
150313db
9c3ba84a
068e50d1
e906a0e9
4d1d2eb6
a8639245
ec326b74
73561246
26db30d2
27c667c9
fa841bd2
86e684a8
e67229af
c04c34c3
8a534c44
52f131b1
344fcfa9
8b2deb4d
dob14314
7a96e636
ec6el7c5
91fdbOac
db2daa85
a54bbal2
60f2bcf2
8522570d
8d669cec
7496eb11
e300509¢
d68b9bdb
6a0bede3
39aec4f6
65369598
fcbb44dd
elafc2f1
d903b67e

174ca832
fff0000
94b3de7f
dbc5a241
ffff0000
174ca832
174ca832
ffff0000
ffff0000
dbc5a241
bbbbffff
174ca832
dbc5a241
bbbbffff
bbbbffff
aaaaaaaa
dbc5a241
aaaaaaaa
0000ffff
55555555
aaaaaaaa
0000ffff
94b3de7f
174ca832
55555555
dbc5a241
aaaaaaaa
55555555
55555555
174ca832
174ca832
dbc5a241
bbbbffff
aaaaaaaa
55555555
fff0000
174ca832
aaaaaaaa
dbc5a241
dbc5a241
55555555
fff0000
0000ffff
dbc5a241
94b3de7f
dbc5a241
174ca832
94b3de7f
aaaaaaaa
bbbbffff
ffff0000
94b3de7f
174ca832
0000ffff
bbbbffff
94b3de7f
bbbbffff
fff0000
ffff0000
94b3de7f
dbc5a241
ffff0000
fff0000
55555555
174ca832
0000ffff
174ca832
94b3de7f
0000ffff
94b3de7f
aaaaaaaa
ffff0000
0000ffff
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SRstar(4,2,4,4)
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SRstar(4,4,2,4)
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SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(4,4,2,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)

-878904165.bdd
-2127650231.bdd
-555975757.bdd
-1813877201.bdd
891091462.bdd
1750259366.bdd
-960558418.bdd
1887008287.bdd
1291224545 .bdd
1751944579.bdd
1579229110.bdd
-1015826526.bdd
977176564 .bdd
-1499084401.bdd
1569631347.bdd
846901003.bdd
1991572185.bdd
221930811.bdd
436233204.bdd
-1656289149.bdd
784780534.bdd
-1211501823.bdd
-1184236704.bdd
-1775045540.bdd
28736014.bdd
601561999.bdd
-352938948.bdd
1387382098.bdd
1688100102.bdd
1782131944.bdd
1665433398.bdd
-998143578.bdd
1407073924.bdd
1394828027.bdd
9420818.bdd
-1652544068.bdd
-1356430867.bdd
813629779.bdd
249940372.bdd
1212992798.bdd
743085714.bdd
-1540986558.bdd
1068733499.bdd
-2062224399.bdd
-404785526.bdd
2091591218.bdd
-1692286675.bdd
-420046598.bdd
-246572368.bdd
-846268200.bdd
-343736215.bdd
149857679.bdd
236520574.bdd
955174538.bdd
-964072975.bdd
538387073.bdd
1213359025.bdd
-1923791425.bdd
-557407424.bdd
848718487.bdd
-175568777.bdd
1988852410.bdd
165242284.bdd
1854195829.bdd
-2138570750.bdd
-1756081852.bdd
-528531936.bdd
822950006.bdd
-561393562.bdd
1036138346.bdd
-488573117.bdd
-1554611227.bdd
477046689.bdd

262
197
167
25
369
37
25
104
57
88
207
49
197
50
53
180
52
65
216
58
228
293
119
93
305
26
58
107
214
190
91
290
101
57
54
59
56
83
52
57
282
308
65
254
63
102
60
82
57
276
188
42
232
264
191
210
48
309
163
65
64
119
288
95
217
280
293
213
107
167
209
140
133

24,452
24,599
24,307
24,728

24,85
24,715
24,723
24,905

24,24
24,064
24,726
24,208
24,472
24,133
24,168
24,724
24,092
24,037
24,882
24,747
24,754

24,12
24,641
24,676
24,436
24,002
24,251
24,902
24,784
24,686

24,58
24,359
24,807

24,35
24,215
24,306
24,154
24,451
24,091
24,217
24,913
24,911
24,396
24,837

24,36
24,259
24,136
24,452
24,213
24,249
24,396
24,122
24,712
24,915
24,567
24,725
24,093
24,897
24,352
24,354
24,356
24,178
24,249
24,392
24,635
24,919
24,959
24,722
24,786
24,805
24,628
24,708
24,213

0 94b3de7f
0 55555555
0 55555555
0 bbbbffff
0 dbc5a241
0 55555555
0 0000ffff
0 174ca832
0 94b3de7f
0 94b3de7f
0 174ca832
0 ffff0000
0 bbbbffff
0 aaaaaaaa
0 aaaaaaaa
0 bbbbffff
0 174ca832
0 94b3de7f
0 174ca832
0 dbc5a241
0 bbbbffff
0 0000ffff
0 dbc5a241
0 55555555
0 0000ffff
0 aaaaaaaa
0 bbbbffff
0 94b3de7f
0 174ca832
0 94b3de7f
0 55555555
0 0000ffff
0 ffff0000
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 174ca832
0 aaaaaaaa
0 dbc5a241
0 55555555
0 aaaaaaaa
0 aaaaaaaa
0 94b3de7f
0 dbc5a241
0 174ca832
0 bbbbffff
0 94b3de7f
0 ffff0000
0 ffff0000
0 0000ffff
0 55555555
0 55555555
0 55555555
0 bbbbffff
0 dbc5a241
0 bbbbffff
0 ffff0000
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 174ca832
0 55555555
0 0000ffff
0 94b3de7f
0 ffff0000
0 dbc5a241
0 bbbbffff
0 55555555
0 0000ffff
0 dbc5a241
0 aaaaaaaa
0 0000ffff
0 ffff0000

Figure C.4: Raw data for the 32 bit systems.
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Olccaabb
49fca8ec
9303ded3
b25358ee
23dbc936
5e450009
5216897f
4d888be7
c4e67c7d
024a044e
1f964733
3c86¢cc7e
daeOadeb
8773242f
07461467
20996879
fla5a486
b71619ba
Scfe1715
27f4d9d7
32d80aa2
542eb4a8
ccccld72
alcad29a
269e646e
6d05ab50
c33e6dd8
Occ7ae98
c8c715a5
abf4cd04
d94ff422
de997ae4
b609bd74
b7e91f07
839f0b87
7aab624f
284e297b
298ffc17
a4811d29
dbe5a742
38cclch9
323a8eae
ebcbd74d
70b67fd5
3d5e03eb
c199c31a
5b225102
b5442a04
6cae2a3c
c237e525
3c12bcl4
fc0e4652
bdf67a17
a3b76a44
1a5087bc
3a63a973
934fcfdd
f29f9afb
c823910b
7f2599c8
2aa5760b
fd0c500f
7ea776e6
f74fe9al
45d727ab
02652815
9832e9e3
891e5d39
24105614
94c4c7e9
881538ed
0ae07589
3b81bd22

0000ffff
aaaaaaaa
bbbbffff
bbbbffff
bbbbffff
55555555
bbbbffff
0000ffff
bbbbffff
174ca832
ffff0000
dbc5a241
aaaaaaaa
0000ffff
55555555
dbc5a241
dbc5a241
aaaaaaaa
aaaaaaaa
aaaaaaaa
174ca832
94b3de7f
fff0000
0000ffff
174ca832
dbc5a241
bbbbffff
55555555
94b3de7f
ffff0000
174ca832
ffff0000
0000ffff
fff0000
174ca832
174ca832
174ca832
174ca832
94b3de7f
55555555
bbbbffff
aaaaaaaa
dbc5a241
bbbbffff
bbbbffff
55555555
94b3de7f
aaaaaaaa
55555555
dbc5a241
dbc5a241
bbbbffff
aaaaaaaa
94b3de7f
dbc5a241
0000ffff
ffff0000
94b3de7f
bbbbffff
0000ffff
55555555
94b3de7f
0000ffff
0000ffff
94b3de7f
55555555
ffff0000
fff0000
94b3de7f
bbbbffff
174ca832
ffff0000
174ca832
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SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,2,4,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)

311995734.bdd
240575000.bdd
1789049522.bdd
-855504814.bdd
-1829892226.bdd
-57058683.bdd
-31411888.bdd
-2016678190.bdd
1155185580.bdd
-207742857.bdd
2062182919.bdd
1777489240.bdd
1231966125.bdd
368084363.bdd
338592818.bdd
-1576027243.bdd
1900270776.bdd
331370194.bdd
-1408921692.bdd
-1086584034.bdd
1310435280.bdd
-310868525.bdd
-640865356.bdd
-795980228.bdd
-1184274048.bdd
1812697937.bdd
-321953722.bdd
-1209028421.bdd
-1329719197.bdd
1989737961.bdd
-1971520113.bdd
-504518097.bdd
-1381477916.bdd
-1004398626.bdd
1010787570.bdd
178739492 .bdd
1107899719.bdd
260518758.bdd
-1870286688.bdd
-1428541877.bdd
995631859.bdd
626247888.bdd
1427356057.bdd
346648328.bdd
1197727417.bdd
444235113.bdd
715151884.bdd
674849087.bdd
-379759231.bdd
526579796.bdd
-1151279281.bdd
-262006196.bdd
-709532365.bdd
2107489994.bdd
-1423435862.bdd
1726630223.bdd
-1461974230.bdd
1089769645.bdd
-2024849834.bdd
1732782020.bdd
-1084820820.bdd
1586550753.bdd
1786645622.bdd
1197608450.bdd
1448083459.bdd
-675804931.bdd
868992721.bdd
1186603293.bdd
1017343476.bdd
1337039168.bdd
1998075059.bdd
-1371312261.bdd
1896416303.bdd

196
266

66
439
213

88
188
214
270
101
183
108
297
108
134
121
299
214
448
101
285
228
199
228
257
231
128
245
417
188
122
149
298
122
117
120
119
203
247
200
123
122
257
117
102
198
406
252
186
216
119
183

90
201
236
261
123
215
121
192
173

92
147

96
157
121
214

51
153

55
145
166
123

24,948

24,87
24,579
24,357
24,708
24,631
24,684
24,991
24,692
24,659
24,929
24,716
24,773
24,745
24,568
24,693
24,943

24,44
24,422
24,631

24,66
24,367
24,525
24,574

24,11
24,527
24,264
24,688
24,913
24,351
24,693
24,476
24,862

24,27

24,53
24,468
24,693
24,909
24,976
24,765
24,693
24,172
24,913
24,152
24,592
24,965
24,862
24,721
24,929
24,892
24,693
24,929
24,592
24,525
24,264
24,612
24,693
24,819
24,693
24,538
24,272
24,436
24,761
24,177
24,526
24,501
24,201
24,076
24,742
24,075
24,538
24,574
24,574

0 bbbbffff
0 dbc5a241
0 bbbbffff
0 55555555
0 0000ffff
0 0000ffff
0 aaaaaaaa
0 bbbbffff
0 174ca832
0 94b3de7f
0 aaaaaaaa
0 0000ffff
0 aaaaaaaa
0 bbbbffff
0 174ca832
0 ffff0000
0 dbc5a241
0 94b3de7f
0 aaaaaaaa
0 0000ffff
0 55555555
0 174ca832
0 dbc5a241
0 aaaaaaaa
0 174ca832
0 55555555
0 94b3de7f
0 94b3de7f
0 174ca832
0 55555555
0 ffff0000
0 0000ffff
0 174ca832
0 0000ffff
0 55555555
0 bbbbffff
0 ffff0000
0 bbbbffff
0 55555555
0 174ca832
0 ffff0000
0 94b3de7f
0 55555555
0 bbbbffff
0 94b3de7f
0 bbbbffff
0 174ca832
0 55555555
0 aaaaaaaa
0 dbc5a241
0 ffff0000
0 aaaaaaaa
0 94b3de7f
0 dbc5a241
0 94b3de7f
0 dbc5a241
0 ffff0000
0 dbc5a241
0 ffff0000
0 ffff0000
0 0000ffff
0 94b3de7f
0 dbc5a241
0 174ca832
0 aaaaaaaa
0 174ca832
0 0000ffff
0 dbc5a241
0 ffff0000
0 55555555
0 ffff0000
0 174ca832
0 94b3de7f

Figure C.5: Raw data for the 32 bit systems.
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3ed57817
ae499743
7de2ee2f
88ee479d
761b6edb
e8519dcb
a08fa3ab
269d8bab
c9e7b9aa
4c7039a8
957a4e42
43e010ch
a72bbef0
b8cc8b44
3b048806
fdafcofa
€a90d414
b011a9f5
c60659dc
4c84c406
0f694e06
28fd19f0
5b4a258a
debc4136
3ec84cd5
f3ab0199
39613dbb
33e7431a
78271cd4
7a8010b4
ba252b54
206b2108
3254e680
e92fb859
62f47bb9
979d95¢c8
8eelcc77
f3d13bca
3b80ce68
38a8be89
c3b66adb
afb8189c
70e23ee4
93227b3f
9dae3a39
56f02747
2eb72ab5
3a520c47
91e8f208
7efObaf7
bfbe8b95
fe1208d0
1d6338f8
779d12b5
ce836d29
45e2fedf
07bc3c64
4879975
62ffb460
1a04bf37
1fdOcf8f
6604dea7
6c8ch2bb
6133ce5a
b33fba82
fe957082
331b02ea
b3fdb970
407b4513
4894ba79
fd8795b2
7500e454
a555240e

aaaaaaaa
fff0000
bbbbffff
fff0000
174ca832
dbc5a241
bbbbffff
0000ffff
aaaaaaaa
0000ffff
94b3de7f
55555555
55555555
174ca832
55555555
bbbbffff
55555555
174ca832
0000ffff
aaaaaaaa
0000ffff
dbc5a241
94b3de7f
dbc5a241
94b3de7f
bbbbffff
94b3de7f
55555555
0000ffff
94b3de7f
55555555
0000ffff
ffff0000
bbbbffff
dbc5a241
dbc5a241
ffff0000
55555555
174ca832
bbbbffff
aaaaaaaa
aaaaaaaa
55555555
fff0000
bbbbffff
94b3de7f
174ca832
aaaaaaaa
aaaaaaaa
dbc5a241
94b3de7f
fff0000
dbc5a241
174ca832
fff0000
aaaaaaaa
0000ffff
0000ffff
dbc5a241
fff0000
dbc5a241
aaaaaaaa
0000ffff
0000ffff
ffff0000
fff0000
0000ffff
dbc5a241
dbc5a241
bbbbffff
94b3de7f
94b3de7f
dbc5a241
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(5,4,2,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)

13341228.bdd
-155868276.bdd
387037992.bdd
982225469.bdd
-885923259.bdd
2004640728.bdd
273752045.bdd
-113918680.bdd
680711377.bdd
-1808491624.bdd
628034746.bdd
-1135028320.bdd
-1205996923.bdd
526750509.bdd
140593787.bdd
1542388943.bdd
1965358686.bdd
1971627925.bdd
642757625.bdd
-795356101.bdd
-505530140.bdd
912040708.bdd
386422761.bdd
-94020767.bdd
-849443725.bdd
760461723.bdd
-1567515681.bdd
-820073816.bdd
1830327507.bdd
-909449088.bdd
1539288099.bdd
-696240372.bdd
1528851441.bdd
1548137842.bdd
-1995407539.bdd
1535741499.bdd
202350845.bdd
-1669659307.bdd
-920534754.bdd
-1112619872.bdd
-1158835414.bdd
-1455759848.bdd
981091692.bdd
227530612.bdd
919782430.bdd
-942445108.bdd
-734280719.bdd
590692576.bdd
1401760571.bdd
-226709985.bdd
-407668800.bdd
931660564.bdd
-158879513.bdd
1412079377.bdd
211459824.bdd
-73624616.bdd
891512452 .bdd
-89298611.bdd
769598562.bdd
-1830719260.bdd
-1867347737.bdd
-2019931158.bdd
661242879.bdd
1479373759.bdd
465343446.bdd
-1667000680.bdd
215228750.bdd
-370824289.bdd
865416163.bdd
-1221704994.bdd
-1003602085.bdd
-2052099468.bdd
842580224.bdd

56
125
164

90
176
169

51
132
163
137

57
170
168
168
112
310
149
165
165
133
139

62
170

94
206
166

55

75
141

54
119

56
177
168
172

89

76

68
175

57

53
133
211
169
154
176
201
119
180
242

59
225

61
246

58
316
195
160

73
128
137
267
288
216
246
235

96
180

63

66

64

96
189

24,065
24,859
24,582
24,445
24,604
24,582
24,073
24,538
24,604
24,836
24,075
24,569
24,185
24,468
24,467
24,61
24,835
24,467
24,189
24,538
24,538
24,674
24,604
24,436
24,215
24,522
24,074
24,836
24,538
24,065
24,674
24,071
24,604
24,574
24,604
24,436
24,262
24,668
24,586
24,071
24,073
24,802
24,256
24,604
24,674
24,538
24,184
24,67
25,187
24,869
24,059
24,395
24,079
24,859
24,091
24,567
25,011
24,969
24,017
24,881
25,125
24,395
24,869
24,609
24,6
24,869
24,059
24,796
24,112
24,047
24,059
24,054
24,974

0 dbc5a241
0 174ca832
0 94b3de7f
0 bbbbffff
0 aaaaaaaa
0 55555555
0 55555555
0 ffff0000
0 aaaaaaaa
0 dbc5a241
0 174ca832
0 55555555
0 0000ffff
0 dbc5a241
0 aaaaaaaa
0 0000ffff
0 55555555
0 55555555
0 0000ffff
0 ffff0000
0 ffff0000
0 aaaaaaaa
0 dbc5a241
0 94b3de7f
0 0000ffff
0 bbbbffff
0 174ca832
0 bbbbffff
0 ffff0000
0 bbbbffff
0 94b3de7f
0 bbbbffff
0 bbbbffff
0 aaaaaaaa
0 55555555
0 94b3de7f
0 174ca832
0 dbc5a241
0 aaaaaaaa
0 bbbbffff
0 94b3de7f
0 94b3de7f
0 0000ffff
0 bbbbffff
0 aaaaaaaa
0 ffff0000
0 0000ffff
0 174ca832
0 174ca832
0 bbbbffff
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 0000ffff
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 55555555
0 174ca832
0 55555555
0 174ca832
0 ffff0000
0 bbbbffff
0 ffff0000
0 bbbbffff
0 bbbbffff
0 dbc5a241
0 55555555
0 aaaaaaaa
0 aaaaaaaa
0 174ca832
0 94b3de7f
0 94b3de7f

Figure C.6: Raw data for the 32 bit systems.

86

cdcc8ffe
685785ec
286e6bco
30f15a2a
4bfa3fs54
1752cedc
3bbbba25
1e531667
ad2f4106
7cb3aads8
567e3346
67effc0l
89a5818e
af86b297
blc43cif
0de16f89
cad3d6e8
aab8b71e
593e58b0
deef33cf
27e7eef6
4771cc21
dc82f2f6
6a61594a
b6a2celb
140cle72
c5d80765
3ec33c28
1d8e049b
2bb12133
8aebe43b
99a5d131
f2db8b83
5592ccab
7bdd835b
60e9bb2e
4e685262
6aae8e8e
6de237bc
3c6e79ba
0122c6ec
df543fal
3bcf7027
4782eadc
867fd3df
d39e7000
4d158597
f31b7fob
c7d890d5
07904ef6
120c4c85
72641764
c0fc33f3
0270395¢
24ce4b86
e3f293a3
7b976b14
26326005
7ada98be
4c9d8b80
04c1f87b
d37bc9b3
9d16acf5
2f84dce7
0a015c0e
9349d261
3349c3fa
4bfb7082
ece620c3
65056ee4
1bb5d2fb
163dc034
753d338e

94b3de7f
bbbbffff
bbbbffff
0000ffff
bbbbffff
94b3de7f
dbc5a241
bbbbffff
174ca832
174ca832
55555555
0000ffff
ffff0000
55555555
aaaaaaaa
55555555
ffff0000
55555555
aaaaaaaa
55555555
174ca832
55555555
aaaaaaaa
94b3de7f
174ca832
ffff0000
aaaaaaaa
55555555
aaaaaaaa
dbc5a241
174ca832
174ca832
aaaaaaaa
0000ffff
aaaaaaaa
0000ffff
dbc5a241
bbbbffff
dbc5a241
bbbbffff
55555555
ffff0000
94b3de7f
94b3de7f
94b3de7f
0000ffff
bbbbffff
174ca832
aaaaaaaa
dbc5a241
bbbbffff
ffff0000
ffff0000
bbbbffff
fff0000
dbc5a241
dbc5a241
ffff0000
0000ffff
55555555
174ca832
174ca832
55555555
0000ffff
174ca832
ffff0000
0000ffff
94b3de7f
55555555
0000ffff
dbc5a241
94b3de7f
ffff0000
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32bits
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32bits
32bits
32bits
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32bits
32bits
32bits
32bits

SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
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SRstar(6,2,4,4)
SRstar(6,2,4,4)
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SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,2,4,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)

-1189490594.bdd
-1751123681.bdd
-2023237428.bdd
-376016223.bdd
-1396532786.bdd
-116723395.bdd
1530090247.bdd
1706152745.bdd
-2100280565.bdd
-836283781.bdd
-1012499046.bdd
-1749877345.bdd
-283371556.bdd
-358066794.bdd
39865149.bdd
1755017755.bdd
2035525129.bdd
1781475304.bdd
-833341046.bdd
-29552625.bdd
1783239552.bdd
1198441733.bdd
14471929.bdd
-500731483.bdd
-968905460.bdd
1802408517.bdd
207935197.bdd
1482006631.bdd
1970782937.bdd
-42689060.bdd
1254911974.bdd
-1813738253.bdd
-960092673.bdd
624379193.bdd
1996626199.bdd
1410164745.bdd
-1787004867.bdd
-2095202921.bdd
-1815920932.bdd
1684385661.bdd
316550913.bdd
1431214749.bdd
45986533.bdd
-267260844.bdd
-1062826704.bdd
1529345582.bdd
1976121587.bdd
336564420.bdd
-986409453.bdd
1307993835.bdd
1875749123.bdd
-1575199319.bdd
-1024057389.bdd
-1495853065.bdd
-832269232.bdd
421167436.bdd
-848736106.bdd
530302016.bdd
1305275339.bdd
-118871252.bdd
1655590456.bdd
-935118922.bdd
-427678663.bdd
892895873.bdd
-2134145045.bdd
1323832391.bdd
-489299267.bdd
-233388078.bdd
-1698952723.bdd
-619844976.bdd
1510861855.bdd
-1851632015.bdd
-659080960.bdd

256
253

67

59
282
183
265
196
189
271

99
194
247
245
176
243
193
283

65
244
251

99
254

60

73

62

91
191
169
135

92
268
274

97
186

94

64

83
166
242
259
230
247
241
221
171
236
266
253
256
243
256
260
232
248
254
240
245
283
253
245
207
251
248
182
184
117
234
172
252
239
244
258

24,616
24,869
24,059
24,119
24,869
24,961

24,27

24,38
24,963
24,859

24,04
24,879
24,395
24,597
25,186
24,646
24,936
24,859
24,091
24,443
24,859
24,072
24,859
24,059
24,037
24,017
24,072
24,819
24,712

24,83
24,069
24,869
24,174
24,059
25,226
24,059
24,059
24,034
24,844
24,798
24,871
24,092
24,822
24,823
24,305

24,17
24,178
24,237
24,746
24,873
24,797
24,871
24,848
24,187
24,822
24,785
24,797
24,709
24,813
24,873
24,798

24,34
24,758
24,797
24,231
24,312
24,386
24,771
24,489
24,822
24,871
24,798
24,797

0 ffff0000
0 bbbbffff
0 aaaaaaaa
0 94b3de7f
0 bbbbffff
0 aaaaaaaa
0 bbbbffff
0 55555555
0 94b3de7f
0 0000ffff
0 55555555
0 94b3de7f
0 ffff0000
0 0000ffff
0 174ca832
0 ffff0000
0 55555555
0 0000ffff
0 55555555
0 0000ffff
0 0000ffff
0 174ca832
0 0000ffff
0 dbc5a241
0 174ca832
0 aaaaaaaa
0 dbc5a241
0 94b3de7f
0 aaaaaaaa
0 dbc5a241
0 55555555
0 bbbbffff
0 ffff0000
0 174ca832
0 dbc5a241
0 94b3de7f
0 94b3de7f
0 dbc5a241
0 0000ffff
0 bbbbffff
0 bbbbffff
0 174ca832
0 55555555
0 dbc5a241
0 dbc5a241
0 94b3de7f
0 174ca832
0 bbbbffff
0 55555555
0 dbc5a241
0 aaaaaaaa
0 174ca832
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 aaaaaaaa
0 94b3de7f
0 0000ffff
0 bbbbffff
0 ffff0000
0 ffff0000
0 94b3de7f
0 dbc5a241
0 55555555
0 55555555
0 94b3de7f
0 0000ffff
0 ffff0000
0 0000ffff
0 174ca832
0 94b3de7f
0 aaaaaaaa
0 aaaaaaaa

Figure C.7: Raw data for the 32 bit systems.

87

ala255ef
8f7e6946
36ab0a83
f21fofae
a02c8ecd
b76db0c3
04d239ef
ccde2d15
e85f128d
78f12cd7
63ff09db
f7e31f8a
682745ea
9765082
6fd397d1
af271e03
737a90af
1155c669
d17cd27f
b4f752d5
e57865al
8dbacc72
32744d83
00b3d7bb
44e9bbfl
a38ccc8a
647dfc92
30a51cal
f38d4909
4bd2f8e9
77138330
ab881739
6d9433a9
1cad4cb0
fada7b33
9b300519
a419dff3
542fc898
19765383
1b7479b1
92691851
fad123f6
ad991f32
859f8eb5
ce05817e
ff8b1027
f05e8d2d
3a00caf6
cca9f913
0657808
63e3d6ee
dfd75e92
35c5b414
f028aeab
7e6a5962
8789afd3
ce4119ed
0680c2b5
035311b6
c86f50a3
4f25673e
bc382310
9491dae8
278dcfod
f2319ddd
d31cac2b
abec832e
b3607028
ff222d67
269b4d86
b0Oea26f5
8cf62fca
e5da384b

bbbbffff
bbbbffff
94b3de7f
aaaaaaaa
94b3de7f
dbc5a241
0000ffff
bbbbffff
0000ffff
174ca832
dbc5a241
55555555
aaaaaaaa
ffff0000
94b3de7f
94b3de7f
174ca832
dbc5a241
aaaaaaaa
aaaaaaaa
55555555
55555555
0000ffff
174ca832
bbbbffff
174ca832
bbbbffff
dbc5a241
aaaaaaaa
aaaaaaaa
0000ffff
aaaaaaaa
55555555
fff0000
94b3de7f
bbbbffff
174ca832
55555555
94b3de7f
94b3de7f
0000ffff
174ca832
94b3de7f
bbbbffff
55555555
bbbbffff
55555555
ffff0000
bbbbffff
aaaaaaaa
ffff0000
94b3de7f
94b3de7f
55555555
174ca832
55555555
0000ffff
55555555
55555555
dbc5a241
0000ffff
aaaaaaaa
dbc5a241
55555555
aaaaaaaa
dbc5a241
dbc5a241
94b3de7f
ffff0000
bbbbffff
fff0000
dbc5a241
0000ffff
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
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32bits
32bits
32bits
32bits
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(6,4,2,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)

233921402.bdd
815254587.bdd
1995302341.bdd
-2035562895.bdd
-1804307900.bdd
269924021.bdd
-2130785333.bdd
-1820720570.bdd
-389330097.bdd
1431103022.bdd
1652204337.bdd
-466722864.bdd
-764108127.bdd
1191270898.bdd
-1089493090.bdd
-1906204885.bdd
1743489814.bdd
-1775971615.bdd
-1847203766.bdd
-507716307.bdd
749951400.bdd
-756199914.bdd
-1994153172.bdd
-555482435.bdd
513358821.bdd
-1509620331.bdd
72421568.bdd
600364028.bdd
-1732370947.bdd
253696662.bdd
-103547209.bdd
-561177221.bdd
1863109354.bdd
-902437518.bdd
380485824.bdd
-1369794943.bdd
-1189197623.bdd
170583520.bdd
257385609.bdd
410164843.bdd
948168745.bdd
1650859616.bdd
274850844.bdd
-1955489593.bdd
-299039323.bdd
-442514690.bdd
-681883393.bdd
-1078270450.bdd
626219797.bdd
-1534364330.bdd
-40395889.bdd
-554541795.bdd
524674573.bdd
1053746098.bdd
-1275556658.bdd
-654362937.bdd
-1577106729.bdd
-1457036776.bdd
349921448.bdd
-1545672675.bdd
407948565.bdd
-902319163.bdd
1756073971.bdd
-161037217.bdd
1902777045.bdd
-1916970777.bdd
-1420290378.bdd
-1879413393.bdd
-1955512410.bdd
1411693187.bdd
-8586194.bdd
724585655.bdd
1509413657.bdd

254
232
253
251
244
244
243
286
194
227
251
230
258
256
447
249
256
249
246
249
283
248
157
258
252
258
340
250
507
353
510
232
300
121
215
349
352
498
206
518
275
316
217
499
247
261
291
143
503
125
250
285
180
306
249
290
128
286
284
220
283
291
498
251
335
288
198
287
519
268
351
264
274

24,784
24,745
24,822
24,822
24,785
24,798
24,798
24,813
24,276
24,216

24,81

24,17
24,956
24,848
24,301
24,797

24,81
24,798
24,772
24,822
24,787
24,784
24,901
24,773
24,797
24,785
24,951
24,836

24,89
24,879
24,935
24,509
24,941
24,509
24,578
24,889
24,935
24,578
24,839

24,89
24,879
24,908
24,941
24,839
24,366
24,941
24,833
24,509
24,822
24,509
24,833
24,942
24,509
24,578
24,941
24,908
24,509
24,833
24,935
24,879

24,89
24,941

24,89
24,935
24,866
24,822
24,833
24,919

24,89
24,941
24,656
24,926
24,822

0 174ca832
0 174ca832
0 bbbbffff
0 55555555
0 55555555
0 ffff0000
0 aaaaaaaa
0 174ca832
0 0000ffff
0 ffff0000
0 aaaaaaaa
0 bbbbffff
0 94b3de7f
0 dbc5a241
0 0000ffff
0 dbc5a241
0 bbbbffff
0 bbbbffff
0 174ca832
0 ffff0000
0 aaaaaaaa
0 55555555
0 0000ffff
0 94b3de7f
0 55555555
0 ffff0000
0 dbc5a241
0 94b3de7f
0 bbbbffff
0 94b3de7f
0 0000ffff
0 ffff0000
0 aaaaaaaa
0 ffff0000
0 55555555
0 94b3de7f
0 94b3de7f
0 0000ffff
0 55555555
0 0000ffff
0 dbc5a241
0 174ca832
0 55555555
0 bbbbffff
0 dbc5a241
0 dbc5a241
0 aaaaaaaa
0 ffff0000
0 0000ffff
0 ffff0000
0 dbc5a241
0 174ca832
0 ffff0000
0 174ca832
0 dbc5a241
0 174ca832
0 ffff0000
0 aaaaaaaa
0 174ca832
0 55555555
0 aaaaaaaa
0 174ca832
0 bbbbffff
0 dbc5a241
0 aaaaaaaa
0 174ca832
0 55555555
0 174ca832
0 0000ffff
0 aaaaaaaa
0 94b3de7f
0 dbc5a241
0 aaaaaaaa

Figure C.8: Raw data for the 32 bit systems.
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c0b899e3
bb2de69f
e14b4036
2f575a5b
41a8b401
5288201a
cdb366ad
059116ab
14allb4a
b6fdfc03
6cab84e5
f2758a96
fedddfo7
3908a47b
5e544d3a
2febde89
998¢9107
cb8577f4
08955b3c
6e700638
cb45dafa
68d1ab91
3f572c8b
e2e4f50d
ca591192
0451aef8
d719ca23
2d8224f4
fe6876be
e9b25821
af0fla64
a65cf53f
08a3f1d5
0a92bc12
05afb888
40a031c3
b305e23c
0c87a393
b2bfofde
c7ebele9
58fd143d
292d2cda
5251eb5c
d3071594
Scab4be8
cda6d581
394902e9
c95e6bdd
85e30bcl
20f99460
aelbfabl
78894e83
d7cf7blc
761dafdf
0130bd3a
933494d2
9003444c
6750711a
8152efel
fb47d9e0
68dabe96
8f593266
7b2bd961
c8f6da74
4dc60437
c743854f
6b3cla51
fofoddbs
d4cdbe56
8843b094
ldelef8f
Oeaadfc3
c82f75ff

0000ffff
fff0000
dbc5a241
0000ffff
174ca832
aaaaaaaa
aaaaaaaa
dbc5a241
bbbbffff
fff0000
174ca832
bbbbffff
174ca832
ffff0000
174ca832
0000ffff
aaaaaaaa
174ca832
aaaaaaaa
bbbbffff
bbbbffff
dbc5a241
94b3de7f
55555555
ffff0000
174ca832
94b3de7f
94b3de7f
bbbbffff
0000ffff
55555555
aaaaaaaa
0000ffff
dbc5a241
55555555
dbc5a241
bbbbffff
dbc5a241
174ca832
94b3de7f
0000ffff
94b3de7f
0000ffff
94b3de7f
174ca832
bbbbffff
bbbbffff
bbbbffff
aaaaaaaa
94b3de7f
94b3de7f
0000ffff
ffff0000
ffff0000
dbc5a241
55555555
0000ffff
dbc5a241
aaaaaaaa
94b3de7f
aaaaaaaa
174ca832
dbc5a241
ffff0000
ffff0000
dbc5a241
dbc5a241
bbbbffff
174ca832
174ca832
55555555
55555555
55555555
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32bits
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32bits
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32bits
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,2,4,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)

-2102112224.bdd
-897517689.bdd
-2001252215.bdd
1444173511.bdd
-1075485366.bdd
-138505158.bdd
-800547769.bdd
-1962234728.bdd
-1091890517.bdd
1452086979.bdd
-380204550.bdd
-863203280.bdd
-792106967.bdd
2014507751.bdd
-154587169.bdd
-1258861742.bdd
721789344.bdd
-66154760.bdd
25831898.bdd
-1972188431.bdd
2084961481.bdd
-1505925749.bdd
1891644033.bdd
829401083.bdd
-529863168.bdd
-812387088.bdd
2045732254.bdd
-1429658701.bdd
1332238851.bdd
219571760.bdd
-329390060.bdd
-1750814338.bdd
1577293490.bdd
-1168959069.bdd
382152092.bdd
654406926.bdd
1885481659.bdd
-2117783417.bdd
258408116.bdd
-364592482.bdd
-898880983.bdd
1507137860.bdd
-1441965982.bdd
1237794807.bdd
-1345849789.bdd
-1958051187.bdd
384721544.bdd
221624726.bdd
1640908091.bdd
-1131430779.bdd
292888054.bdd
-1658069027.bdd
-1820827265.bdd
-355948047.bdd
1057638185.bdd
993981860.bdd
687121507.bdd
782420330.bdd
180074381.bdd
639063321.bdd
1144336149.bdd
1580785534.bdd
1055063091.bdd
283762375.bdd
700178080.bdd
2002476650.bdd
-1113502050.bdd
-1681142821.bdd
903147696.bdd
-875856152.bdd
-1671890382.bdd
-1285372789.bdd
-1872796640.bdd

348
146
164
507
220
289
514
215
528
492
334
224
242
363
253
494
381
374
267
309
348
238
392
328
374
201
387
186
386
384
366
389
240
211
467
562
210
502
111
208
412
409
402
406
478
190
181
392
404
342
301
270
393
224
381
240
380
365
156
486
387
542
248
113
270
388
152
136
175
254
373
372
387

24,879
24,509
24,509
24,926
24,935
24,833
24,935
24,578

24,89
24,822
24,926
24,908
24,919
24,679
24,976
24,618

24,68
24,682
25,134
24,884
24,687
24,212
24,784
24,978
24,681
24,858
24,682
24,801
24,686
24,681
24,795
24,412
25,133
24,895
24,651
24,579

24,52
24,481
24,553
24,858
24,683
24,679
24,682

24,68

24,87
24,154
24,908
24,681
24,418
24,205
25,132
24,921
24,678
24,244
24,679
24,828
24,683
24,475
24,659

24,33
24,683
24,579

24,52
24,549
25,132
24,693
24,659
24,554

24,52
24,976
24,679
24,777
24,681

0 94b3de7f
0 ffff0000
0 ffff0000
0 0000ffff
0 55555555
0 aaaaaaaa
0 0000ffff
0 55555555
0 0000ffff
0 bbbbffff
0 94b3de7f
0 55555555
0 dbc5a241
0 174ca832
0 55555555
0 0000ffff
0 55555555
0 ffff0000
0 55555555
0 dbc5a241
0 94b3de7f
0 174ca832
0 aaaaaaaa
0 aaaaaaaa
0 bbbbffff
0 ffff0000
0 55555555
0 bbbbffff
0 94b3de7f
0 174ca832
0 94b3de7f
0 55555555
0 aaaaaaaa
0 174ca832
0 0000ffff
0 0000ffff
0 94b3de7f
0 0000ffff
0 174ca832
0 aaaaaaaa
0 55555555
0 dbc5a241
0 aaaaaaaa
0 174ca832
0 0000ffff
0 174ca832
0 bbbbffff
0 ffff0000
0 94b3de7f
0 dbc5a241
0 174ca832
0 94b3de7f
0 ffff0000
0 bbbbffff
0 ffff0000
0 aaaaaaaa
0 bbbbffff
0 55555555
0 ffff0000
0 0000ffff
0 bbbbffff
0 0000ffff
0 94b3de7f
0 dbc5a241
0 dbc5a241
0 dbc5a241
0 ffff0000
0 bbbbffff
0 bbbbffff
0 ffff0000
0 aaaaaaaa
0 aaaaaaaa
0 dbc5a241

Figure C.9: Raw data for the 32 bit systems.
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c4be5a73
4fe68ebb
18f73a3d
a0fa610d
2bd7034d
cd439209
fd9eb2dc
ebe86ada
5733872f
Sch4sffs
4ael3d91
b18f2dab
be55595¢
edabae7c
dbcbeda2
4731249d
b2eb531f
477da306
ab4cde89
31f8c02b
fb04af7c
560396ed
15091756
a2d85907
424f2e92
37dcOebe
d9e2cedb
44a35b4b
37b91582
96effdda
e3d7c84f
afe0b9b9
22e76ee2
dfa639e0
238badcd
0069cdb0
c2e7d58c
b7e40abd
c5bc905b
f4682daa
07aa97fc
ca334f8b
60ff1243
1b55d86e
adabf3d0
b3e12351
7cfdObfb
50ef0839
9f6bb7b5
4e69ba5f
0b8584c8
afa7c4c6
c273d428
8901c8a9
deld6ec7
Oe2c364e
68b98a61
3d593b6f
ebedddo1
9210467d
8054520e
6af31fc8
6cf29d16
09dcb353
871393be
fe31d700
a2237c46
f62deda0d
28d100da
8461242
a267dd73
b3c3053b
6283fbod

ffff0000
174ca832
55555555
bbbbffff
bbbbffff
94b3de7f
0000ffff
aaaaaaaa
ffff0000
55555555
aaaaaaaa
fff0000
aaaaaaaa
ffff0000
aaaaaaaa
0000ffff
ffff0000
fff0000
bbbbffff
bbbbffff
dbc5a241
55555555
fff0000
174ca832
94b3de7f
174ca832
55555555
fff0000
bbbbffff
dbc5a241
fff0000
94b3de7f
55555555
aaaaaaaa
174ca832
fff0000
94b3de7f
dbc5a241
0000ffff
aaaaaaaa
174ca832
aaaaaaaa
94b3de7f
bbbbffff
bbbbffff
94b3de7f
55555555
aaaaaaaa
0000ffff
174ca832
174ca832
55555555
bbbbffff
aaaaaaaa
55555555
dbc5a241
bbbbffff
dbc5a241
0000ffff
55555555
dbc5a241
aaaaaaaa
aaaaaaaa
55555555
0000ffff
94b3de7f
dbc5a241
174ca832
0000ffff
94b3de7f
0000ffff
bbbbffff
ffff0000
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
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32bits
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(7,4,2,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,2,4,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)

2142960180.bdd
-1690757279.bdd
-1118564095.bdd
1821850242.bdd
-1906201711.bdd
747853635.bdd
1745091543.bdd
-140817492.bdd
-869783632.bdd
905324712.bdd
-944675824.bdd
-1226333930.bdd
-1562273047.bdd
-1579531539.bdd
1707259804.bdd
1117302221.bdd
272171490.bdd
-1183014807.bdd
988270532.bdd
677811583.bdd
-580265558.bdd
1082225281.bdd
887014861.bdd
955732137.bdd
1835892178.bdd
-392156674.bdd
-760912380.bdd
-1167330783.bdd
1659419775.bdd
-942361761.bdd
-707387319.bdd
-1729856192.bdd
836502902.bdd
-1095019763.bdd
618396840.bdd
358486790.bdd
-1934408981.bdd
1082163650.bdd
374879176.bdd
616910676.bdd
2021984717 .bdd
-237075364.bdd
-137591360.bdd
916532373.bdd
-1507845935.bdd
-1697395288.bdd
98638365.bdd
1387556494.bdd
653350093.bdd
-1417155681.bdd
1832853168.bdd
-2127784278.bdd
-1496301443.bdd
-231633935.bdd
-832101668.bdd
-1324811837.bdd
2047989767.bdd
-1270059674.bdd
1104235217.bdd
-1830158099.bdd
-498592328.bdd
-1927913885.bdd
-1855377295.bdd
-1435672254.bdd
-1073921533.bdd
1046435991.bdd
-152893202.bdd
-2076937265.bdd
-1662128825.bdd
1804378602.bdd
354950051.bdd
308178416.bdd
76356391.bdd

302
111
386
483
261
294
465
329
457
483
322
548
271
292
253
262
535
315
219
448
268
260
148
B85
285
308
245
456
327
187
506
215
283
617
227
498
465
275
240
457
534
466
326
474
498
429
226
346
499
248
268
298
236
438
269
445
234
693
676
340
342
346
324
272
340
318
354
362
344
230
295
352
339

24,206
24,52
24,682
24,287
24,235
24,57
24,284
24,292
24,333
24,859
24,691
24,682
24,129
24,607
24,363
24,339
24,406
24,643
24,516
24,859
24,6
24,511
24,15
24,425
24,726
24,292
24,513
24,284
24,706
24,053
24,406
24,53
24,439
24,558
24,446
24,695
24,284
24,574
24,526
24,591
24,809
24,406
24,415
24,859
24,529
24,284
24,285
24,775
24,668
24,487
24,756
24,479
24,443
24,284
24,511
24,406
24,285
24,087
24,087
24,788
24,784
24,787
24,909
24,617
24,788
24,787
24,786
24,788
24,787
24,788
24,495
24,787
24,787

0 55555555
0 dbc5a241
0 94b3de7f
0 bbbbffff
0 94b3de7f
0 174ca832
0 bbbbffff
0 174ca832
0 bbbbffff
0 94b3de7f
0 dbc5a241
0 bbbbffff
0 aaaaaaaa
0 174ca832
0 94b3de7f
0 aaaaaaaa
0 ffff0000
0 aaaaaaaa
0 55555555
0 94b3de7f
0 94b3de7f
0 94b3de7f
0 bbbbffff
0 dbc5a241
0 aaaaaaaa
0 174ca832
0 55555555
0 bbbbffff
0 aaaaaaaa
0 55555555
0 ffff0000
0 55555555
0 174ca832
0 0000ffff
0 174ca832
0 0000ffff
0 0000ffff
0 174ca832
0 55555555
0 0000ffff
0 bbbbffff
0 ffff0000
0 94b3de7f
0 ffff0000
0 ffff0000
0 0000ffff
0 dbc5a241
0 aaaaaaaa
0 ffff0000
0 55555555
0 dbc5a241
0 dbc5a241
0 174ca832
0 0000ffff
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 0000ffff
0 0000ffff
0 dbc5a241
0 aaaaaaaa
0 ffff0000
0 ffff0000
0 55555555
0 dbc5a241
0 bbbbffff
0 55555555
0 ffff0000
0 dbc5a241
0 94b3de7f
0 ffff0000
0 dbc5a241
0 aaaaaaaa

Figure C.10: Raw data for the 32 bit systems.
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d1fb2962
3ae7f46¢c
7bc298d1
cOflcal9
cc7042c5
ce04bf51
2fd6c8d2
df8524ca
361f4dae
fc4a818e
094a7d7b
8725fae2
c038d2b9
cd6a5feb
d32279¢c2
e3cee93b
d9bfa63c
d2800381
8d9a0e3f
e8d537c8
b5702217
0f3fa28d
24ede744
bbfc47d9
be8d3475
al53e6d2
b4d42e2d
5f8b5d44
e8d3b926
ae51f6d3
d91bc5fe
c73dff83
166¢7b0d
9f1f4d4s
827d8499
bf1a806d
35b0df65
17d961d7
ed60c817
a3f8717e
5b7b28f9
bebdef64
83136ec3
979456a2
72f65702
21912861
92ad58cc
fofo7df7
8777ccl10
b7cc8f31
cl17e517
81004648
9da207e0
49a4906a
08db7399
10306df7
915d552b
639756ec
4d9e58b0
3f50f50b
aObal7c3
94d6058a
ff566c12
068330ee
0dffdoe1
1356782
6c094d8d
d3ac1001
e64360d1
0bb1302f
44697bc2
a5e9ede7
9d234a88

0000ffff
dbc5a241
174ca832
bbbbffff
dbc5a241
dbc5a241
aaaaaaaa
aaaaaaaa
94b3de7f
94b3de7f
0000ffff
0000ffff
55555555
174ca832
fff0000
bbbbffff
0000ffff
174ca832
0000ffff
aaaaaaaa
bbbbffff
174ca832
fff0000
aaaaaaaa
aaaaaaaa
fff0000
174ca832
174ca832
94b3de7f
dbc5a241
55555555
aaaaaaaa
94b3de7f
fff0000
55555555
55555555
94b3de7f
0000ffff
94b3de7f
aaaaaaaa
dbc5a241
fff0000
0000ffff
bbbbffff
aaaaaaaa
0000ffff
dbc5a241
0000ffff
174ca832
fff0000
94b3de7f
174ca832
bbbbffff
174ca832
dbc5a241
dbc5a241
55555555
0000ffff
dbc5a241
dbc5a241
94b3de7f
dbc5a241
0000ffff
55555555
55555555
fff0000
0000ffff
55555555
ffff0000
aaaaaaaa
aaaaaaaa
174ca832
aaaaaaaa
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(8,4,2,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)

-1805481375.bdd
54929066.bdd
959489004.bdd
-1937470393.bdd
-1921447042.bdd
-313332384.bdd
281979822.bdd
-1351536844.bdd
-251177.bdd
-1143150769.bdd
-1764981071.bdd
1881135302.bdd
-398356564.bdd
-576087139.bdd
701844330.bdd
1856126155.bdd
133603328.bdd
-1436046827.bdd
-1321926622.bdd
1247303965.bdd
-1799125134.bdd
-512023388.bdd
158223658.bdd
650312986.bdd
1188208548.bdd
1627695746.bdd
-1772000405.bdd
-472767237.bdd
-1140787213.bdd
-893829262.bdd
609064251.bdd
1835987414.bdd
-2040565849.bdd
2131067667.bdd
-416917448.bdd
275985348.bdd
413015969.bdd
333701419.bdd
1445924622.bdd
2128829668.bdd
389105443.bdd
-648636855.bdd
1225374739.bdd
-796588807.bdd
-261866829.bdd
850274087.bdd
1915846105.bdd
1679826009.bdd
825510786.bdd
-1940321493.bdd
-1545577278.bdd
1843928701.bdd
304784830.bdd
1895333330.bdd
769832127.bdd
-305649674.bdd
-20189672.bdd
-671653966.bdd
-1723762928.bdd
1123583150.bdd
-967128562.bdd
1028416806.bdd
47403550.bdd
1269302248.bdd
646307705.bdd
951867644.bdd
-851021731.bdd
910259526.bdd
-482549620.bdd
-1395823806.bdd
-1794449643.bdd
1285551990.bdd
-979445336.bdd

337
388
370
309
191
371
355
320
351
409
686
333
317
347
345
348
367
349
303
708
347
167
275
329
672
379
707
340
328
355
707
352
341
244
B50
315
388
355
330
344
349
343
360
348
366
350
363
306
260
250
253
242
240
255
193
247
236
269
252
251
258
278
238
333
234
208
269
205
246
239
202
280
243

24,787
24,789
24,788
24,787
24,128
24,788
24,788
24,786
24,783
24,788
24,065
24,785
24,788
24,788
24,787
24,787
24,786
24,787
24,788
24,027
24,778
24,639
24,625
24,788
24,087
24,825
24,028
24,788
24,788
24,825
24,088
24,784
24,785
24,469
24,788
24,787
24,819
24,788
24,787
24,773
24,788
24,788
24,785
24,773
24,784
24,784
24,783
24,787
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902

0 aaaaaaaa
0 aaaaaaaa
0 ffff0000
0 174ca832
0 dbc5a241
0 94b3de7f
0 aaaaaaaa
0 174ca832
0 dbc5a241
0 bbbbffff
0 0000ffff
0 174ca832
0 bbbbffff
0 dbc5a241
0 174ca832
0 174ca832
0 ffff0000
0 94b3de7f
0 bbbbffff
0 0000ffff
0 aaaaaaaa
0 0000ffff
0 55555555
0 ffff0000
0 0000ffff
0 174ca832
0 0000ffff
0 55555555
0 94b3de7f
0 174ca832
0 0000ffff
0 bbbbffff
0 94b3de7f
0 ffff0000
0 94b3de7f
0 55555555
0 55555555
0 bbbbffff
0 55555555
0 dbc5a241
0 94b3de7f
0 174ca832
0 55555555
0 bbbbffff
0 94b3de7f
0 bbbbffff
0 aaaaaaaa
0 aaaaaaaa
0 174ca832
0 0000ffff
0 dbc5a241
0 bbbbffff
0 dbc5a241
0 bbbbffff
0 174ca832
0 ffff0000
0 ffff0000
0 aaaaaaaa
0 0000ffff
0 aaaaaaaa
0 ffff0000
0 aaaaaaaa
0 174ca832
0 ffff0000
0 94b3de7f
0 94b3de7f
0 dbc5a241
0 94b3de7f
0 dbc5a241
0 ffff0000
0 94b3de7f
0 174ca832
0 94b3de7f

Figure C.11: Raw data for the 32 bit systems.
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ca5b5b07
59b596bd
6242b65f
ad67bbbb
diefd3cf
3e8c7ceb
eac48926
fe07a233
dlac6f08
d7b0389d
34451718
aSbf8deb
18dfd230
df14eb72
d960752f
0619d138
5a8b7cfd
e8df2dee
4ae75110
b344b5ch
cbOfc49a
3ee90d79
76d72ff4
8ba4936a
a8d81e63
21004191
0a890d7b
00af1815
a8bdc421
aa5fdae0
3b7ec853
497bfbec
d84efle5
220a7db1
c19e8b11
d80dcfd5
d44c3476
aa9569bc
97ed492b
e515e72f
50ab6bd1
c9cff393
fe55705f
7d397a08
cb9c7876
5d4eb715
4b0ffdbe
554e34aa
053a155¢
dcbdcabe
96318cc9
6a119ef2
113dccd3
370c172c
11cd8d43
75251604
9b08594c
e3blalca
8e38a24a
23bc7d69
d39e177f
9816acc7
3da36dfb
726a77e7
94a6a0df
2abc851d
3b6bf799
416460bc
dda25499
1fee7918
d4f87569
ala9b252
52e0f4db

ffff0000
55555555
174ca832
55555555
bbbbffff
dbc5a241
bbbbffff
ffff0000
aaaaaaaa
aaaaaaaa
ffff0000
94b3de7f
0000ffff
94b3de7f
aaaaaaaa
bbbbffff
bbbbffff
55555555
94b3de7f
aaaaaaaa
0000ffff
bbbbffff
dbc5a241
94b3de7f
55555555
174ca832
94b3de7f
174ca832
bbbbffff
0000ffff
174ca832
bbbbffff
174ca832
fff0000
ffff0000
bbbbffff
ffff0000
174ca832
aaaaaaaa
0000ffff
94b3de7f
dbc5a241
94b3de7f
dbc5a241
0000ffff
55555555
dbc5a241
174ca832
94b3de7f
0000ffff
0000ffff
fff0000
ffff0000
bbbbffff
bbbbffff
bbbbffff
94b3de7f
94b3de7f
bbbbffff
55555555
dbc5a241
0000ffff
55555555
ffff0000
dbc5a241
bbbbffff
174ca832
0000ffff
dbc5a241
55555555
94b3de7f
aaaaaaaa
aaaaaaaa
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
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32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits
32bits

SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,2,4,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)
SRstar(9,4,2,4)

1513773878.bdd
-2135651762.bdd
-1055223280.bdd
-646225362.bdd
-629077673.bdd
922013425.bdd
1256152527.bdd
2080706327.bdd
-908469147.bdd
1671291855.bdd
156172800.bdd
-979822164.bdd
-1614937213.bdd
1046931065.bdd
-1894924141.bdd
851441560.bdd
1603439472.bdd
1496602286.bdd
-915377699.bdd
1393679835.bdd
1691906919.bdd
595485540.bdd
-994087749.bdd
670929749.bdd
842582892.bdd
-1266068672.bdd
-349936679.bdd
-818476290.bdd
1676866962.bdd
816891288.bdd
1689388240.bdd
334423831.bdd
-1186882066.bdd
-592542581.bdd
63507155.bdd
1244674048.bdd
-2016095035.bdd
1443932465.bdd
348351223.bdd
138710993.bdd
-1394910365.bdd
9244328.bdd
-797694971.bdd
360984452.bdd
-2028596508.bdd
-514912476.bdd
-1311110028.bdd
-583921562.bdd
-18936451.bdd
255472652.bdd
-277338961.bdd
263624275.bdd
-1633352441.bdd
-2144976975.bdd
-998471127.bdd
-610321795.bdd
-184267299.bdd
1653175836.bdd
-1109402089.bdd
-1683569531.bdd
794962674.bdd
-1169724452.bdd
211354408.bdd
-1213242331.bdd
-206783242.bdd
1662847671.bdd
2035125931.bdd
-1664500771.bdd
-566805912.bdd
-640006913.bdd
-1752858083.bdd
499145039.bdd
391630247.bdd

195
208
237
243
243
247
250
230
251
239
231
231
235
215
245
259
285
588
450
548
294
535
529
433
411
414
457
514
489
621
513
534
383
444
582
493
501
309
422
542
575
561
320
593
498
383
385
542
534
499
525
573
388
522
449
298
573
319
465
420
563
505
409
522
481
442
448
706
490
282
423
521
549

24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,902
24,529
24,649
24,613

24,11

24,67
24,374
24,119
24,053
24,053
24,087
24,324
24,211
24,571
24,359
24,336
24,571
24,031
24,615
24,215
24,297
24,318
24,134
24,676
24,302
24,317
24,143

24,48
24,198
24,051
24,071
24,364
24,613
24,191
24,324
24,318
24,053
24,672
25,106

24,11
24,571

24,03
24,668
24,128
24,704
24,199
24,571
24,248
24,872
24,053
24,571
24,526
24,157

24,06
24,054
24,162
24,375

0 94b3de7f
0 94b3de7f
0 bbbbffff
0 dbc5a241
0 0000ffff
0 bbbbffff
0 bbbbffff
0 dbc5a241
0 0000ffff
0 aaaaaaaa
0 174ca832
0 dbc5a241
0 dbc5a241
0 94b3de7f
0 bbbbffff
0 0000ffff
0 aaaaaaaa
0 bbbbffff
0 ffff0000
0 aaaaaaaa
0 ffff0000
0 55555555
0 dbc5a241
0 bbbbffff
0 bbbbffff
0 bbbbffff
0 aaaaaaaa
0 174ca832
0 dbc5a241
0 174ca832
0 55555555
0 aaaaaaaa
0 0000ffff
0 94b3de7f
0 55555555
0 dbc5a241
0 94b3de7f
0 0000ffff
0 174ca832
0 94b3de7f
0 94b3de7f
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 94b3de7f
0 bbbbffff
0 aaaaaaaa
0 174ca832
0 55555555
0 174ca832
0 55555555
0 94b3de7f
0 94b3de7f
0 55555555
0 ffff0000
0 ffff0000
0 0000ffff
0 ffff0000
0 55555555
0 dbc5a241
0 bbbbffff
0 174ca832
0 0000ffff
0 aaaaaaaa
0 ffff0000
0 dbc5a241
0 0000ffff
0 aaaaaaaa
0 bbbbffff
0 dbc5a241
0 aaaaaaaa
0 174ca832
0 bbbbffff

Figure C.12: Raw data for the 32 bit systems.
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€22575bc
e01dc003
76b33122
02ceb284
2b26c56d
a6c78a30
bacfaf02
714774e2
9e88e5dc
5a099a2f
3f0abef5
61c84963
257ad592
a54bbe20
cea9563e
33c0b1d0
6f592900
3df762e5
d176bfc4
9cda9ef6
7fb51af8
047ab187
786009ed
20902159
51979586
642c0c31
235e20a5
b63507d4
6dce956a
doo74114
8ed41d99
e325580e
eOclda84
c0819131
7a2056¢2
¢2855090
leOlcadf
8la5a55¢c
e7226e0a
990508ca
7d98ebal
79a%ec11
8be9ecch
1637698d
b9302732
4a692cfa
32924ead
5d752d28
ae300ce0
19aa48c2
4d2352cf
77bb2ca9
ab5bccbe
4chcffd3
92ed6665
ab96c0a5
elafla79
70bc7b87
c30868e2
2818635d
c5a471b1
eaad76b3
1276ec49
7b7d8539
a5dfoofc
506cbadd
d71f8b32
c8b35596
3853ee66
93e5496b
63c2cd89
19528978
3bc3060d

174ca832
55555555
dbc5a241
bbbbffff
174ca832
aaaaaaaa
174ca832
55555555
ffff0000
bbbbffff
174ca832
aaaaaaaa
94b3de7f
ffff0000
55555555
aaaaaaaa
174ca832
94b3de7f
dbc5a241
dbc5a241
174ca832
aaaaaaaa
aaaaaaaa
dbc5a241
55555555
bbbbffff
94b3de7f
0000ffff
174ca832
ffff0000
fff0000
bbbbffff
aaaaaaaa
174ca832
174ca832
0000ffff
dbc5a241
ffff0000
dbc5a241
55555555
0000ffff
55555555
55555555
dbc5a241
bbbbffff
ffff0000
fff0000
aaaaaaaa
94b3de7f
94b3de7f
bbbbffff
fff0000
94b3de7f
0000ffff
aaaaaaaa
94b3de7f
bbbbffff
bbbbffff
dbc5a241
bbbbffff
0000ffff
55555555
174ca832
0000ffff
ffff0000
fff0000
94b3de7f
aaaaaaaa
174ca832
94b3de7f
174ca832
174ca832
aaaaaaaa ,
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