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Introduction

The topics of atmospheric and marine optics are of great interest for marine
biology and oceanography. The primary production, which is the source of the
food chain and all life in the ocean, depends on the amount of light at different
depths. Light reflected back from the ocean provides the signal for the remote
sensing of the ocean by satellites. Through remote sensing of coastal water it
may be possible to predict invasions of toxic algae, which can cause disease and
death among Norwegian fish farms. Absorption of light heat the water in the top
layer, and the attenuation of light with depth gives an estimate of the planktonic
activity.

In this thesis we model the transport of light in the atmosphere and ocean by
using Monte Carlo simulations. The purpose of the thesis is to develop a model
that gives a good description of the behavior of light in a three-dimensional
coupled atmosphere-ocean system. It should work for situations in which other
models fail to give a proper result. For instance the discrete ordinate method
(DISORT) program [1] developed by K. Stamnes and co-workers and Hydrolight
[2, 3] by C.D. Mobley are one-dimensional models that are based on the assump-
tion of vertical stratification, both in the atmosphere and in the ocean. These
models may not work well close to the shore in coastal water and fjords, where
fish farms are located.



Chapter 1

Radiometry

When dealing with marine optics, we need a coordinate system in order to define
the quantities of radiometry. In this thesis we have chosen to let the Cartesian z
axis be normal to the sea surface, while the x axis and the y axis are orthogonal
horizontal axes that are parallel to the sea level as shown in fig. 1.1.

In treatments of scattering and energy flow it is better to use a spherical
coordinate system 7,6, ¢, with the unit vector €, along the direction of propa-
gation, and with €, and €4 being perpendicular to the direction of propagation

A Z-axis

X-axis y-axis

Figure 1.1: Orientation of a Cartesian coordinate system. The altitude is along
the z axis, while the zy plane spans the sea surface.
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Z-axis

Figure 1.2: Spherical unit vectors &,, &y, and &, in the Cartesian coordinate
system.

and to each other. In this system 6 will be the angle between the direction of
propagation and the z axis. Thus, when 0 < § < 7/2 and 7/2 < § < 7 light is
propagating upwards and downwards, respectively. The angle ¢ is the azimuth
angle, see fig. 1.2.

1.1 Radiometric quantities

The fundamental quantity in radiometry is the spectral radiant fluz ®()), also
referred to as the spectral radiant power P()\) by Spinrad et al. [4]. In the following
we will stick to the term fluz. Flux is energy per unit of time crossing a given
surface and is expressed in Watts [ W]. For simplicity we consider each wavelength
separately so that we can treat light as if it were monochromatic (®(\) = @). In
radiometry, which is based on incoherent geometrical optics, it suffices to consider
the particle nature of light. Thus we view light of wavelength )\ as a stream of
photons each possessing an energy hc/\, where h is Planck’s constant and c is the
speed of light. When a surface is exposed to N photons per second, the radiant
fluz is
__he

=N, (1.1)
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Figure 1.3: The radiance is defined by the ratio of the incoming flux d*® in
direction €2 to the product of the area dA and cosine of the angle of incidence 6.

The radiant intensity is the radiant flux per unit solid angle. In a given direction
2 with a surrounding solid angle element dw the radiant intensity is

I(Q) = dq;gz)' (1.2)

The intensity is measured in [Wsr~!]. The radiance L is the incident radiant flux
per unit solid angle per unit area normal to the direction of propagation. Thus,
if a plane surface with area dA and normal vector n is exposed to a flux in the
direction 2, and cosf = n - 2, then (fig. 1.3)
A d*(Q
L) = L2 (1.3)
dA cosf dw

The unit for radiance is [Wm™2sr~']. Most measurements involve angular inte-
grals of the radiance distribution, such as the irradiance defined by

E= /L(Q) cos § dw. (1.4)

Here the integration domain 47 indicates that the radiance L times cos @ is inte-
grated over all solid angles. The irradiance is the flux per unit area. Thus it can

also be expressed as
dd
E =" 1.5
7A (1.5)
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where dA is the area. For the special case in which the flux is constant over the

surface, we get

o
E=—. (1.6)

If the surface dA emits radiation, instead of being exposed to it, this quantity is
usually called the ezitance.

In some parts of scientific literature the flux and the irradiance are both
defined in the same way, by Eq. (1.4). Similarly, both the intensity and the
radiance are defined by Eq. (1.3). In this thesis, however, we will stick to the
definitions given in Eq. (1.1) - (1.4) and mostly use the terms irradiance and
radiance.

In marine optics it is conventional to divide the irradiance into downwelling
irradiance

27 ™
Edz/L(fZ) cos@dw:/d¢ /L(fl) cos fsin 0 df
Qq 0 w/2

and upwelling irradiance

27 71'/2
E, = /L(fl) cosf dw = / do / L(£2) cos O'sin 0 df
Q, 0 0
where (24 and €2, refer to integration over the downward and upward hemisphere,

respectively. It may also be useful to consider the scalar irradiances Fy; and Fy,
defined by

2w ™
Eo= [ L@)do= [ do [ L()sin6ds
Qu 0 /2
and
27 /2
Eou= [ L) dw= [ do [ L(S)sinoao.
Qu 0 0

Note that the irradiance is the integral of the product of the radiance and the
cosine of the angle of incidence 6, while the scalar irradiance is just the integrated
radiance. All irradiances are expressed in [Wm™2].

1.1.1 Inherent optical properties

Inherent optical properties (IOPs) are properties of a medium that do not depend
on the incident light field. In descriptions of light propagation, the coefficients of
absorption, scattering, and attenuation are examples of important IOPs. Con-
sider a parallel beam that illuminates a small volume dV of length ds with inci-
dent flux ®'. In the volume element dV, some photons are absorbed, and some
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ds

Figure 1.4: Left: Definition of the attenuation coefficient c. The optical thickness
is defined as 7; = cs. Right: The figure shows the difference between the optical
thickness ds and the optical depth dz. The relation between the quantities are
dz = dscosf.

are scattered away from the incident direction €' into another direction €2, so
that the transmitted flux leaving the volume is ® = ®* — d®. The attenuation

coefficient c¢ is defined by
1 do

C= = (1.7)
Thus, the attenuation is the ratio between the lost flux and the product of the
incident flux and the thickness of the slab, see fig. 1.4. The minus sign in Eq. (1.7)
indicates that we have attenuation and not amplification of the field. Solving
Eq. (1.7) for @, we get

d = dle . (1.8)
This result is known as the extinction law, where the term extinction means the
same as attenuation. The dimensionless quantity 7, = cs is called the optical
thickness. It should not be confused with an other dimensionless quantity called
the optical depth, which is defined as 7 = cz = cscosf, where z is the vertical
depth of the medium and 6 is the angle of incidence on the slab. The term optical
depth is often used in marine optics. As indicated above, attenuation is the result
of both absorption and scattering. Hence, the attenuated flux d® may be written
d® = d®* + d®°, where d®° is attenuation due to absorption only and d®*
is attenuation due to scattering only. Then the absorption coefficient a and the
scattering coefficient b can be defined in analogy with Eq. (1.7) as

1 dde
= —— 1.9
ds o (1.9)

and 1 4
b= } (1.10)

Cds @i
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The unit for each of these coefficients is [m™']. The ratio

b

Wy = —

c
is known as the single scattering albedo. When a photon interacts with a collection
of particles, and an extinction or attenuation event occurs, the single scattering
albedo is the probability for the photon to be scattered. The probability for the

photon to be absorbed is then (1 — wy).

Scattering phase functions

When a collection of photons of flux d?®? is scattered from the incident direction
Y into the solid angle dw centered around the direction €2, we can define the
volume scattering function as

s 1 d2o
ﬁ(Q’Q)_dsdw P -

Here 3(€2', Q) is the probability for the described scattering to occur within a vol-
ume element with thickness ds. The scattering angle © is given by cos©® = €' -
and the plane spanned by Q' and Q is referred to as the scattering plane. The
unit of the volume scattering function is [m'sr~!]. If we integrate the volume
scattering function over the entire sphere surrounding the volume element, we

get
1 do*
Q) dw = 1.11
/ﬁ YT ds @ (1.11)

The right hand side of Eq. (1.11) is identical to the absolute value of the right
hand side of Eq. (1.10). Thus Eq. (1.11) is another expression for the scattering
coefficient b. For the case in which the scattered photons are uniformly distributed
over the azimuth angle ¢' we get

b= /5(0’,¢', 8, ) sin 6 df do
4
= or / 5(6) sin 6 d (1.12)
0

which gives
™
6)
=27 / % sin 6 d6.
0
Thus, we may define the normalized volume scattering function

o0)

==
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The quantity 3 describes the angular distribution of the scattering while b de-
scribes the magnitude of it.

There exist different phase functions describing the volume scattering func-
tion B. In our model for scattering on algae and particles in the medium we
have chosen to use the one-parameter phase function proposed by L. Henyey and
J. Greenstein [5] ,

- l1—g

pe) = (1+ g% —2gcos©)3/2
This function has no physical basis, but is found to give a reasonable approxima-
tion. Since the function only contains one parameter (g), it is very suitable for
simulations. This parameter is known as the asymmetry factor, and its properties
are discussed later.

Whereas the Henyey-Greenstein (HG) scattering function gives a good de-
scription of scattering by particles, it is not suitable for describing molecular
scattering. When a molecule interacts with an electromagnetic wave, the molecule
starts oscillating due to the force excerted by its electric field. The scattered field
will then be the field radiated by the corresponding induced electric dipole. The
radiation pattern in the far field is then proportional to IIsin? 6§, where 6 is the
polar angle measured from the dipole axis and II is the induced dipole moment
along that axis. It is sufficient to consider two linearly polarized incident waves,
one with the electric field parallel to the scattering plane and the other with the
electric field perpendicular to the scattering plane, as shown in fig. 1.5. These
waves induce dipoles with axes along the respective incident fields. From fig. 1.5
we see that if the incident electric field vector is parallel to the scattering plane,
the angle between the induced dipole II; and the direction of scattering Q is
/2 + ©. Thus, the scattered intensity is

(1.13)

I|| X H|| sin? <g + @> = H|| cos’ O.

If the incident electric field vector is normal to the scattering plane, we see that
the angle between the induced dipole IT; and the direction of scattering is always
7/2, thus, the scattered intensity is

ILO(HL.

We are considering natural unpolarized light, which can be treated as a sum of
two orthogonal linearly polarized waves that are independent of one another and
have equal intensity I} = I, = I/2. The Rayleigh scattering phase function for
unpolarized light is proportional to the scattered intensity, hence

B(0) = C(1 + cos? ©) (1.14)

where the constant C' is the magnitude of the scattering normal to the inci-
dent direction. The theory of scattering by a dipole was original developed by
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Figure 1.5: Ilustration of the two components of Rayleigh scattering. Y and Q
are units vectors along the incident and scattered propagations vectors, respec-
tively. I, and II are the induced dipole moments of the electrical field polarized
perpendicular to and parallel with the scattering plane. I, and I are the scat-
tered intensities in the direction . The scattered intensities are proportional to
their corresponding dipole moments (After Thomas and Stamnes [1]).

Rayleigh [6]. The treatment given here is based on that presented by Thomas and
Stamnes [1]. Experiments have shown that the light scattered at 90° is not totally
polarized as expected from the analysis. Rayleigh explained the depolarization
by anisotropy of molecules [7] and introduced the polarization ratio § = I;/1,.
Therefore, Eq. (1.14) has been modified by introdousing the polarization factor
p=(1-0)/(1+) <1by Morel and Gentili [8] to obtain

B(©) = C(1 +pcos®O). (1.15)
The proportionality constant C' follows from

dr = /C(1+pcos2®)dw
4m

- 270/(1 + pcos? 0) sin 0 d
0

which gives

3
C=-—"—
3+p
Thus 3
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Figure 1.6: Angular distribution of Henyey-Greenstein scattering (upper left)

and Rayleigh scattering with p = 0.84 (upper right). In the polar representation
(lower panels) the incident light propagates in direction 0°.

Fig. 1.6 shows the distributions of Henyey-Greenstein scattering with asymmetry
factor ¢ = 0.7 and of Rayleigh scattering with polarization factor p = 0.84.

The phase functions may be expanded in a finite series of 2N Legendre poly-
nomials as follows [1]

. 2N-1

B(O) ~ > (20—1)x; P(cosB),

=0

where Pj(cos ©) is the lth Legendre polynomial and x; the [th phase function
moment. The first five Legendre polynomials are

Po(p) = 1,
Pi(p) K,

Py(p) %(3112 - 1),
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1
Py(p) = (50" =3p),

1
Py(p) = 5(35p" — 304" +3)

where ;1 = cos . Normalization of the phase function gives xo = 1. The next
phase moment is the asymmetry factor, as mentioned before, and it is often
denoted by the symbol g = x;. When g = 0 we have symmetric scattering about
cos ©® = 0, when g = —1 we have complete backscattering, and when g = 1 we
have complete forward scattering. The HG scattering function has the feature
that all phase moments can be expressed in powers of the asymmetry factor

Xt = (g)la Vi.

This property makes the HG-function very suitable for calculations in which the
Legendre polynomials are used because only one phase moment must be specified.
From Eq. (1.16) we see that the Rayleigh scattering function can be expressed in
terms of only the first three polynomials. As above, normalization gives xo = 1,
and since the function is symmetric about cos©® = 0, we get x; = 0. It is also
easy to show that ) 5
P X2
53+p) P72y

We have now seen how analytical formulas or series can be used to describe
scattering functions. Alternatively they could be described by given tables. The
advantage of using tables is that scattering functions of any shape can be included
into the model. It is also convenient to use tables for cases in which we want to
define a scattering function based on measurements.

X2 =

I0Ps of atmosphere

Light is absorbed and scattered by molecules and aerosols in the atmosphere.
The total absorption and scattering coefficients ¢ and b for the atmosphere are
then the sum of the absorption coefficients and the scattering coefficients for the
aerosols and the atmospheric molecules, i. €. @ = @0 + Ager and b = by + baer-
Atmospheric molecular scattering is assumed to be perfect Rayleigh scattering,
i. e. the polarization factor p = 1 in Eq. (1.15). Scattering by aerosols can be
treated as HG scattering.

IOPs of sea ice

In sea ice light is attenuated due to brine pockets, air bubbles, the ice itself, and
sometimes also due to algae distributed throughout the bottom few centimeters
of the ice. The total absorption and scattering coefficients a and b for the ice are
then the sum of the absorption and scattering coefficients of each spiecies, i. e.
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a = Qpr + Qpyp + Gice + Qq1g and b = by + bpyp + bice + barg. We assume scattering
from pure ice and algae to be negligible compared to scattering from brine pockets
and air bubbles. Mie calculations [9, 10] give the scattering functions for brine
pockets and air bubbles. The asymmetry factor for brine pockets is g, =~ 0.99.
The asymmetry factor is so large because the brine pockets are much larger than
the wave length of the light and their index of refraction is very close to that of
the surrounding ice [11]. The asymmetry factor for the bubbles is gy, ~ 0.85.
Even though air bubbles are larger than brine pockets, their asymmetry factor is
smaller due to the larger index of refraction difference between air and ice. We
assume that the scattering phase function of the sea ice can be described by a
HG scattering function. The effective asymmetry factor is given by

_ 9orbor + Gousboub
ber + boup

The salinity distribution through the ice has a typical c-shaped profile, ranging
from ~0.8% near the surface via ~0.4% in the bulk of the interior to 1% near
the bottom. Note that the salinity is smaller than the brine volume (5-12%) in
the sea ice. The air volume is about 4% in the upper 10 ¢m of the ice, but is less
than 1% in the remainder of the ice [11, 12]. Due to the air content in the upper
layer of the ice the asymmetry factor g is lower there than in the rest of the ice.
Hence, the asymmetry factor increases from ~ 0.90 at the surface to ~ 0.99 in
the core and and near the bottom. Because of air bubbles and brine pockets of
the ice the magnitude of the scattering coefficient b is much larger for the sea ice
than for the ocean. For sea ice the magnitude of b can be greater than 200 m !
while in the ocean it is less than 0.1 m . The absorption coefficient a, however,
is approximately two times greater in the ice than in the ocean. Hence, the single
scattering albedo is close to one in sea ice.

IOPs of sea water

Light is absorbed and scattered by molecules and algae in the ocean. The total
absorption and scattering coefficients a and b for the ocean are then the sum
of the absorption and scattering coefficients of the algae and the molecules, i. e.
a4 = Qgig + Amor a0d b = byg + by For pure sea water Morel [13] found p ~ 0.84
in Eq. (1.15) to give a good agreement between the theoretical formula and the
experimental measurements. Further, we make the assumption that scattering
by algae may be treated as HG scattering.

1.1.2 Apparent optical properties

In contrast to an inherent optical property, which only depends on the medium,
an apparent optical property (AOP) also depends on the incident light field.
Thus, in marine optics AOPs also depend on factors such as the sun angle, the
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ratio of the direct sun light to the scattered light from the sky and the roughness
of the sea surface. Some of the AOPs are associated with the irradiance. Thus,
the reflectance is defined as the ratio between the upwelling and the downwelling

plane irradiances, i. e.
E,

R = — 1.17
= (117
while the remote-sensing reflectance R, is defined by
L(Q
R.s = ( )
Eq

The reflectance is dimensionless and is usually measured just below the sea sur-
face, while the remote-sensing reflectance has dimension [sr~!] and is evaluated
in the air just above the sea surface. R, is a measure of how much light that is
returned into the direction fl, in the atmosphere. Both R and R,; are important
for calculations in marine optics. The average downwelling cosine is defined by

o, L(Q)cosOdw  Ey
fa = T L@ do Eou

In the same way we can define the average upwelling cosine by
_ Ja, L(2) cos 0 dw E,

P = T L@ dw  Fo

and the average cosine by
_ Ji L(Q)cosfdw  Eq— E,
P T L@ de By

Some authors refer to distribution functions Dy and D, rather than average
cosines. The distribution functions are defined by

D, = _iandDu: _i
Hq Mo,
Since the irradiance decays approximately exponentially with depth, it is useful to
define the diffuse attenuation coefficients, K,,, K4, Kg and K for the upwelling,
downwelling, net downwelling and scalar irradiance, respectively. In the same
way as we defined the attenuation coefficient ¢ in Eq. (1.7), we have

(1.18)

1 dE,
Ky = ———2 1.19
d dz Ed ( )
1 dE,
K, = —— 1.20
dz E, ( )
1 d(Ey— E,)
Ky = ————¢ " 1.21
K dz (Eq4— E,) (121)
K, = _i@ (1.22)

dz EO'
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Solving Eq. (1.19), we get

E; = Ele %o (1.23)
There are several reasons why the diffuse attenuation coefficients are useful. For
instance there is a correlation between them and the concentration of phytoplank-
ton and chlorophyll in the ocean. Hence the K-functions provide a connection
between biology and optics. About 90% of the light that is returned to the at-
mosphere from the ocean comes from a top layer with a depth of 1/K,. Thus,
K, is important in remote sensing. Note that in contrast to the IOPs, the AOPs
cannot be obtained by performing measurements on water samples since they
depend on the incident light field, and while the IOPs are additive, the AOPs are
not.

1.1.3 The Gershun relationship

Consider a slab in a medium with thickness dz (fig. 1.7). The total irradiance
entering the slab is then E; + E, + dF, while the total outgoing irradiance is
E,+ dE; 4+ E,. Thus, the difference is dE, — dE,;. The energy loss of the light
within volume element is then

d®° = (dE, — dE;)dA

where dA is the area of the slab. The energy loss per unit of volume becomes

Ade d
- _2(E,—E

dA dz dz( 1= Eu)
= KEEtOt (124)

where Fyy = (Eq— E,) is the total irradiance. The last result (Eq. (1.24)) follows
from Eq. (1.21).

The absorbed energy in the volume element can be calculated by using Eq. (1.4)
in differential form, i. e.

dE = L() cos f dw
which on using Eq. (1.5), gives
d*® = dEdA = L(£2) cos 0 dw dA.
The fraction of d>® that is absorbed follows from Eq. (1.9), i. e.

P23 = ado-“
cos 6
= adAdzL(Q)dw.
By integrating over all solid angles we find
do° = adAdz/L(Q) dw
4m

= adAdz E,
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Eq Ey

dz

Figure 1.7: A slab of thickness dz and area dA. The input irradiance is E; +
E, + dE,, and the output irradiance is Fy + dE; + E,,.

or

dee

dAdz
where Ey = Eyq + Ey, is the total scalar irradiance. The left hand sides of
Eq. (1.24) and Eq. (1.25) are identical, which means that the energy loss of the
light in the slab is equal to the absorbed energy. This is known as Gershun’s law
[14, 2, 4], and it implies conservation of energy in the volume element dV' = dz dA,
i. e.

KEEtot = CLE(). (126)
By using Eq. (1.18), we can rewrite Eq. (1.26) as

a a
ﬁ = Cose. (127)

1.1.4 The radiative transfer equation and the DISORT
algorithm

The radiated field in the atmosphere and the ocean may be separated into two
different components. The first one is the direct or solar component Ly, which
is the part of incident radiation that has survived the extinction (see Eq. (1.8)),
i. e.

Lot (7, 11, ¢) = Fod(p — NO)eiT/NO
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Here p = cos 8, ug = cos by, and 6, is the zenith angle. Fjy is the solar irradiance,
normal to the solar beam, at the top of the atmosphere in direction (g, ¢o)
and 7 = 7(%z) is the vertical optical depth of the medium. The dimensionless
differential optical depth is defined as

dr ==Y (a; +b;)dz = —(a + b) dz,

1

where a; and b; are the absorption and scattering coefficients of the ¢th radiatively
active species, and a and b are the total absorption and scattering coefficients.

We now consider a medium in which the IOPs only vary in the vertical direc-
tion. The radiance distribution can then be described by the radiative transfer
equation (RTE)

dL
po = = L+ (1 —w)B(T)

“o 200/ O oY !
+ EiB(Q,Q)L(Q)dw. (1.28)

The first term on the right hand side of Eq. (1.28) follows from the extinction
law, as mentioned before (Eq. (1.8)). The second term is the contribution to
the radiance due to thermal emission in the medium. The factor B(T) is the
isotropic radiance emitted by a blackbody. B(T) is known, and it varies only
with the temperature 7. But the temperature itself may vary along the path
thus, B(T) = B(T'(7) ). The third term in Eq. (1.28) is the gain of radiance due
to photons scattered from any direction ¥ into the direction €2. In the following
we ignore the thermal emission since its contribution in the short wave part of
the spectrum is not significant compared to the extinguished solar beam and the
scattered light. It is also convenient to separate the third term in Eq. (1.28)
into a single-scattering term S*, which is the source due to scattering of solar
radiation, and a multiple scattering term. Hence we rewrite Eq. (1.28) as

dL
Nw = - L(Tau'aqs)
B, QL) dw' + S*(r, i, ¢). (1.29)
+ 47r£/8( 7 7 7 - *

Note that the single-scattering term is different in the atmosphere and in the
ocean. In the atmosphere we have

* wolT F - .

Sotm (T, 11, ¢) = %ﬁ(ﬂ — o, Po; 1y e /1o
wo (7)1 . o

%ps(_u(); nT‘el)B(T, /,I,O, ¢0; /j/’ ¢)e (2 a )/NO

where nge; = Noen/Natm 18 the index of refraction in the ocean relative to the
index of refraction in the atmosphere, 7, is the vertical optical depth of the
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atmosphere, and ps(—po; nrer) is the specular reflection by the atmosphere-ocean
interface. The first term is due to first order scattering of the solar beam while
the second term is due to first order scattering of the reflected beam from the
ocean surface. The source term in the ocean consist of the attenuated solar beam
refracted through the surface, i. e.

wo(T)Fo Mo
4m Hon
X ﬁ(/ra —Hon, d)Oa H, ¢)67Ta/“0 e*(’T*Ta)/MOn

where T (—pig; nrer) is the transmittance through the interface, and pg,, is the co-
sine of the zenith angle in the ocean, related to uo by Snell’s law (see section 3.2.2).
In the DISORT routine we assume a calm surface between the atmosphere and
the ocean. Thus, the angle of incidence is identical to the zenith angle, i. e.
0; = 6y, and the angle of refraction into the ocean is the same regardless of wind
speed.

The algorithm of the DISORT program, is based on solving Eq. (1.29). To
that end, one first isolat the azimuth dependence by expanding the phase function
B in Legendre polynomials. For the atmosphere-ocean case this was first done by
Jin and Stamnes [15], see also Thomas and Stamnes [1] and Frette et al. [16]

S:cn(Ta I°2 ¢) (_,U'O; nrel)

2N—-1

B, Q) = 3 (2~ dom)B™ (W, 1) cosm(¢' — ¢)

m=0

where d; ,,, is the Kronecker delta function, dy,, = 1 for m = 0 and d,,, = 0 for
m # 0, and

B = X 0+ DA (N 1) (130
Here ;
m — (l — m)' m
A () = mpz (1),

P™(u) is the associated Legendre polynomial, and y; is the expansion coefficient.
Expanding the radiance in the same way we get

2N—-1

L(p, ¢) = Z_ L™ (1) cosm(¢p — ).

where ¢, is the incident azimuth angle. We find that each Fourier component
satisfies the RTE, i. e.

dL™ (T, 1)

dr = —L (Ta ,U’) +S (Ta :U’)

1

[ 87 bl ) L7, ) (131)

-1

wo(T)
2




18 Radiometry

atmosphere ?

ocean " _ .
~/  Region of total refraction

~

Figure 1.8: The region of total refraction.

where m = 0,1,2,...,2N — 1 and f™(i/, 1) is given by Eq. (1.30). To solve
this equation we need to take into account the boundary conditions at the top
of the atmosphere and at the bottom of the ocean and also the reflection and
transmission at the atmosphere-ocean interface. In addition there are continuity
conditions that must be satisfied at each interface between horizontal layers with
different optical properties in the atmosphere and the ocean. Further we approx-
imate the integral in Eq. (1.31) by a quadrature sum consisting of 2/V; terms in
the atmosphere and 2N, terms in the ocean, where N; terms are used to repre-
sent the radiance in the downward hemisphere in the atmosphere that refracts
through the interface into the ocean. It is necessary that Ny, > N; because we
need additional terms in the ocean to represent the region of total reflection, see
fig. 1.8. The relation between N; and N, is given by Ny = 2n,.,N;. There are
also N1 and N, streams in the upward direction in the atmosphere and ocean,
respectively. Using the discrete ordinate approximation to Eq. (1.31) we can solve
it to obtain the radiance at different vertical positions both in the atmosphere
and in the ocean. The solution in the pth layer in the atmosphere becomes

N1
Ly(r,£p) = 3 Cjpgjp(Fp)e™™ + Crpgip(£ps)e e + Uy(r, £pf)
7j=1

where 7 = 1,...,N; and p is less than or equal to the numbers of layers in the
atmosphere. The solution in the ¢th layer in the ocean becomes

N2
Lo(1,£110) = 3" Cjqg-jo(£10)€5e™ + Ciogiq(£p)e ™ a7 + Uy(r, £412)
j=1

where ¢ = 1,..., Ny and ¢ is greater than the numbers of layers in the atmosphere
and less than or equal to the total numbers of layers in the atmosphere and ocean.
The subscripts a and o is used to denote atmospheric and oceanic parameters, re-
spectively, the plus (minus) sign is for radiance streaming upwards (downwards)
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and k7, gjp, k7,, and g;, are eigenvalues and eigenvectors determined by solution
of an algebraic eigenvalue problem that results when we seek a solution to the ho-
mogeneous version (S*"(u) = 0) of Eq. (1.31). The terms U, (+xf) and U, ()
are the specific solutions. The coefficients C;, and Cj, are determined by the
boundary conditions, the continuity of the radiance at each interface between the
layers, and Fresnel’s equations. As mentioned previously, this method is only

suitable for layers with no horizontal variations.



Chapter 2

Monte Carlo

The principle of Monte Carlo simulations is that in a given situation in which
more than one possible event may occur, a random number is generated that
decides the outcome. The random numbers are uniformly distributed in the
interval [0,1]. Monte Carlo methods have been used for centuries, but only in
the past several decades has the technique gained the status of a full-fledged
numerical method capable of addressing the most complex applications. It may
seem wrong to use a computer to produce random numbers, since computers
are the most deterministic machines created by man. In fact any program will
produce an output that is entirely predictable, and hence not truly random.

But the algorithm described by Press et al. [17] generates numbers that
are not correlated and thus adequate for all practical Monte Carlo simulations.
Hence, the result obtained by using this algorithm is statistically acceptable for
our purpose.

2.1 Monte Carlo in marine optics

When dealing with atmospheric and marine optics, we are interested in the ir-
radiance and the scalar irradiance crossing finite horizontal or tilted surfaces at
different depths and different horizontal positions. However, when using a Monte
Carlo model, we do not deal with irradiances. Instead we are dealing with pho-
tons. Therefore, it is necessary to calculate the irradiances from the detected
photons in the Monte Carlo routine. The irradiance is the flux crossing a given
finite horizontal or tilted surface divided by the area of the surface. By assuming
that the area A is of fixed size and that the photons are uniformly distributed
over it, we find the irradiance E by using Eq. (1.1) and Eq. (1.6), i. e.

dd & hc
E,=—=—-—=—N.
PrdA A Al
Here the subscript p = u, d, and N is the number of photons per second. Thus,
the irradiance is proportional to the number of photons crossing the finite surface.



2.2 Advantages and drawbacks of Monte Carlo simulations 21

The scalar irradiance is proportional to the energy density associated with
the light field at a given location. By using Eq. (1.1) and Eq. (1.6) and making
the same assumptions as above, we get

By = /L(Q)dw

e
dA cos 0 dw
iv: i)
— A cosb);
h_ 1
AA S

Q

N
> (2.1
=1 ¢

where p = u, d, and 6; is the angle of incidence for photon number i relative to
the normal of the detecting surface. Hence, the scalar irradiance is proportional
to the weighted sum of photons crossing the finite surface, where each photon has
been weighted by the factor (cos#;)™!. Note that these equations are valid both
when the detecting surface is horizontal and when it is tilted. For the special
case in which 6; is equal to /2, the direction of the photon is parallel to the
detecting surface, so the photon will not be detected. Therefore Eq. (2.1) never
becomes an expression with zero in the denominator.

2.2 Advantages and drawbacks of Monte Carlo
simulations

Monte Carlo simulation is a powerful tool to solve physical problems in many dif-
ferent fields. Because the fundamentals of a Monte Carlo routine are very simple,
it is easy to create a model that is able to describe complex problems. In order to
have full flexibility when simulating photons that pass through the atmosphere
and the ocean, we have chosen to make the model three-dimensional (3D). This
gives us the opportunity to include many vital physical details like clouds, al-
gae blooms, edges of ice or a three-dimensional topography like coast lines and
mountains in fjords and coastal water. The flexibility of the Monte Carlo method
offers a great advantage compared to other methods, such as e.g. the DISORT
which is limited to the treatment of one-dimensional (1D) geometries. Hence, the
advantage of the Monte Carlo method is that fewer restrictions are required to
run the program and therefore its ability to adapt to specific geometries is much
better than with any other method.

However, even though the Monte Carlo method is very flexible, it has some
drawbacks that make it less suitable for regular use. The main drawback is
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that a Monte Carlo routine puts very heavy demands on the CPU time. As
more geometrical details are included in the program, more photons must be
employed to get an acceptable accuracy and the number of calculations required
for each photon increases as well, and therefore the CPU time grows rapidly. For
this reason, the use of a Monte Carlo (MC) model requires that the user has
access to a supercomputer. Otherwise the MC code might run for days or weeks,
depending on how complex the system is. The MC algorithm is well suited for
parallel processing, since all photons are totally independent.



Chapter 3

Algorithm of the Monte Carlo
program

In this chapter we will discuss the algorithm we have developed for doing Monte
Carlo (MC) simulations. As mentioned earlier, our aim was to create a flexible
three-dimensional model that is able to handle variations of the physical proper-
ties, both vertically and horizontally. Here we will take a closer look at how this
is done.

3.1 Structure of program

To allow for three-dimensional variations it is necessary to split up both the atmo-
sphere and the ocean into cells rather than using a one-dimensional stratification.
Each cell has its own individual Inherent Optical Properties (IOPs), i. e. it has
its own individual index of refraction n, absorption coefficient a, scattering coef-
ficient b, asymmetry parameter g for the Henyey-Greenstein scattering function,
polarization factor p for the Rayleigh scattering function, and probability n for a
given scattering event to be Rayleigh scattering. Here n is given by

— bRay — bRay
bhg + DRay b

n

where the the scattering coefficient b = by + bgqy consists of both HG scattering
and Rayleigh scattering.

When calculating the path of a photon through the system, the routine does
one cell at the time, see fig. 3.1. An initial path length is first calculated, see
section 3.2.1, and the path from the entrance point to the exit point of each cell
is calculated. Before the remaining path length in the next cell is evaluated, new
values for n, a, b, n, p, and ¢ are given. This process continues until the path
length is totally ”consumed”. Then there are two possible outcomes, either the
photon is scattered into a new direction with a new initial path length or it is
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Figure 3.1: One photon travels from the point 'start’ to the point ’absorption’.
The intersection points between the cells are marked with circles, and so are the
points of refraction, scattering, and absorption. This figure shows the structure
of a 2D routine. The Monte Carlo program, however, is a 3D routine but it

follows the same principles.

absorbed. When the photon hits a cell interface at which the index of refraction
changes, a probability routine is called to decide whether the photon is reflected
or refracted, the routine also decides the new direction of the photon.

Solar light is unpolarized. This implies that when a photon hits a cell interface
at which the index of refraction changes, the reflectance R is given by R =
L(RTE + R™), where RT is the reflectance for light polarized with the electric

field perpendicular to the plane of incidence and

R™ is the reflectance for light
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polarized with the electric field parallel to the plane of incidence [18, 19]. Thus,

we get
R 1 sin?(6; — 6;)  tan%(0; — 6,)
~ 2 \sin?(0; +6,)  tan?(6; + 6;)

2

where 6; is the angle of the incidence and 6; is the refracted angle found by
using Snell’s law. A random number decides whether the photon is reflected
back to the current cell or is transmitted into the next cell with another index of
refraction. Then the routine continues to calculate the path of the photon. To
compute irradiances we need a routine to detect the photons. In this program the
detectors are horizontal and located at the bottom of each cell. The detectors
distinguish between photons traveling upwards and downwards and determine
both the irradiance and the scalar irradiance. The logical structure, shown in
fig. 3.2, describes the life of a photon from it enters the atmosphere until it is
absorbed or returned to space. A more detailed explanation of the boxes in fig. 3.2
is given in appendix A.1.

3.2 Probability density functions

In many situations there are different possible outcomes in the MC routine. The
outcome of a certain situation might be expressed with a probability density func-
tion p(x) where z lies in any given interval [a,b] and might be arbitrary distributed
within this interval. The function p(x) denotes the probability for the outcome
to be z in exactly this situation. As explained earlier, the MC routine generates
random numbers that are uniformly distributed in the interval [0,1]. To obtain
a random number in the correct interval [a,b] and with correct distribution p(z)
we need to transform a random number p € [0,1] generated by the computer,
to a random number z € [a,b]. One way to achieve this transformation is to
use the inverse method [20, 21]. This method relies on the fact that a random
variable of any distribution can be expressed as a function of another random
variable that is uniformly distributed between zero and one. To use this method
the probability function p(x) must be normalized and nonzero everywhere within
its domain of definition. Then its corresponding cumulative function P(z) will
be monotonically increasing from zero to one and therefore invertible. P(z) is
given by

T

P(z) = /p(x')dac'. (3.1)

—00

P(z) is itself a random variable, distributed uniformly between zero and one.
Therefore a random number z with distribution p(z) might be found by selecting
a uniform random number p and solving the following equation

p=P)=z=P()
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Figure 3.2: Flow chart of the Monte Carlo program. Every photon follows this
path from it is launched at the top of the atmosphere until it is absorbed some-
where in the atmosphere or in the ocean or it escapes back to space.
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The required condition to use this method is that the probability function p(z')
in Eq. (3.1) is invertible; otherwise this method is not suitable.

3.2.1 Path length

Light traveling in a medium that contains absorbers or scatterers will be at-
tenuated according to the extinction law in Eq. (1.8). When we normalize this
function, we find that ® = ¢, which gives

_ —cs
(bnormalized = ce -

The corresponding cumulative function becomes

P(s) = /ce_cs' ds'=1—¢e*
0

which leads to

s = _In(1-p) (3.2)

where P(s) has been replaced by p. If pis a random number uniformly distributed
between zero and one, so is (1 — p). Therefore it follows from Eq. (3.2) that

s = — (3.3)

where s is the path length of a photon in a medium with attenuation coefficient
c as a function of a random number p € [0,1]. Note that s is the path length in
any direction, so that the the optical depth is ¢s/ cosf = cz.

3.2.2 Roughness of the sea surface

When a plane electromagnetic wave is refracted and reflected at a plane interface,
the direction of the reflected and refracted waves are given by the reflection law
and Snell’s law, i. e.

0; = 0, and ¢; = ¢,

and
nysinf; = ngsinf; and ¢; = ¢y

where 6;, 6., and 6, are the angles of the incident, reflected, and transmitted
wave vectors relative to the interface normal, respectively, ¢;, ¢., and ¢; are
the azimuth angles for the incident, reflected, and transmitted wave vectors,
respectively, and n; and ns are the indices of refraction of the two media, see
fig. 3.3. Since the surface of the ocean is not plane, but rough, it is necessary,



28 Algorithm of the Monte Carlo program
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Figure 3.3: Normal vector n of a rough sea surface.

when running a Monte Carlo routine, to find a probability function for the normal
vector n of the surface. The components of the normal vector i may be written

ngy = cosasin B, n, =sinasinf, n, = cos 3 (3.4)

where « is the azimuth angle. It is uniformly distributed in the interval from 0
to 2w, so that
a = 2mp; (3.5)

where p; is a random number in the interval [0,1]. 8 is the angle between n and
the vertical direction which is along the z axis in the global coordinate system
in fig. 3.3. The tilt angle 8 is determined from the probability density function
given by Cox and Munk [22], i. e.

—tan2
p(B) = e o2 ) tan 3sec’ 3 (3.6)
where
o = +/0.003 + 0.00512V (3.7)

is the rms slope of the ocean surface with V' being the wind speed in any direction.
When we normalize Eq. (3.6), the cumulative function P(3) becomes

— ta

B 2 o/
P(B) = %/e " tan §'sec? B dp'. (3.8)
0
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Figure 3.4: Distribution of photons over one water wave period.

By the substitution u = —(tan? 8')/o?, we obtain from Eq. (3.8)

_ tan? B

o
o 1;8.n2 B

P(B) = — edu = 1—e o7

which gives

B = tan"! (\/—02 In(1 — pg)) = tan"* (\/—02 In p3) . (3.9)

In Eq. (3.9) the cumulative function P(f) is replaced with the random number
p2. The last equation follows from the fact that when p, is a random number
uniformly distributed in the range from 0 to 1, so is p3 = 1 — p,. Thus, the
direction of the normal vector n of a rough sea surface is given by Egs. (3.4),
(3.5), and (3.9). Note that if the wind speed V = 0, there will still be surface
facets. To obtain a plane surface with Cox and Munk’s formula ¢ must be zero,
or eqiuvalently V &~ —0.59 (see Egs. (3.7) and (3.9)).

When a collection of photons hits the water surface from an oblique angle the
distribution of photons over a wave period is not uniform. As shown in fig. 3.4,
the photon density is higher on the side of the wave where the normal vector
n is tilted towards the direction of the incoming photons. The development of
a function for the photon distribution over a wave period, with the amplitude
of the wave and the angle of incidence as arguments, will require complicated
mathematics. An adequate approximation is to let all photons hit that quadrant
in which both the x component and the y component of the normal vector have
opposite signs compared to the signs of the x component and the y component
of the incident solar beam, see fig. 3.5. In this approximation we simply assume
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Incident direction of
zone

X-axis

Figure 3.5: If the wave surface were circular, the photons would hit the wave
surface within the gray target zone.

that the three other quadrants lie completely in the shade. This assumption
also prevents any multiple reflections between facets which could occur when the
zenith angle and the facet slope are large. However, the probability for this event
to happen is very small and the tests results of Jin and Simpson [23] indicate
that the error caused by ignoring this effect is less than 1% for a zenith angle of
70°.

3.2.3 Henyey-Greenstein scattering function

As mentioned in section 1.1.1, we use the Henyey-Greenstein phase function given
in Eq. (1.13) in Monte Carlo simulations of scattering on algae and other parti-
cles. Inserting this equation into Eq. (1.12), we get

™

sin 6 dé. (3.10)

It is necessary to set the left hand side of Eq. (3.10) equal to 47, since the photons
are scattered over all solid angles. Substituting cos# = 2z’ and sinf df = —dx’,
and transforming the integration boundaries cos0 = 1 and cosm™ = —1, we obtain

-1

1 1— g2
1 = ——/ dz'. 311
2 (1+ g% — 2ga')3/? v (3:11)
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After switching the integration limits and the sign, we replace the upper limit
of integration by z, so that the left hand side of Eq. (3.11) becomes equal to
P(z) € [0,1]. Hence we obtain the normalized cumulative function

!

dz
2/ +g —2gac)3/2

which we need for the simulations. Performing the integration, we get

1— g? 1 1
P(z) = > — .
2¢g V1+ 9% —29x 1+g

The inverted function is

1 2 1— 2\2
.- +t9° ( 9°) ; (3.12)
2g 29(2gp +1—g)

where P(z) has been replaced by the random number p. This result is also given
by Groenhuis et al. [24] and Lotsberg [25].

3.2.4 Rayleigh scattering function

For scattering on molecules in the atmosphere and in the water we use the
Rayleigh scattering phase function given in Eq. (1.16). Again we combine this
equation with Eq. (1.12) and get

™

5 /(1 + pcos? 6) sin 0 df.
P

4T = 27
3

Using the same substitution as for the Henyey-Greenstein scattering function
(cos@ = z' and sin 6 df = —dz'), we get

1

1= L/(l + pz'?) dx’

2(3+p) /,

Again we replace the upper integration limit by z and the left hand side by P(x)
and get

P(z) = %/(1 + pz'?) da’
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Figure 3.6: Definition of the solar declination J.

Finally, we replace P(x) by the random number p to obtain
pz® 4+ 3z + (3+p)(1—2p) = 0. (3.13)

Eq. (3.13) is a polynomial of the third degree in z, and we choose to solve it
numerical by using the secant method [26]. This method has an order of conver-
gence of approximately 1.6 and usually finds the root to an accuracy of 1076
within 5 iterations. For each random number p € [0, 1] there is a corresponding
polar scattering angle § = arccos z.

3.3 The solar zenith angle

One important input to atmospheric and marine optics is the zenith angle 6,
of the direct solar beam. The zenith angle varies from 7/2 (or its maximum
value in the polar regions in the summer) to its minimum value and increases
symmetrically to 7/2 (or its maximum value). The variation of the zenith angle
during a day depends on the latitude and the solar declination §. The declination
is the angle the axis of the Earth is tilted towards the sun. It is negative for the
case in which the axis of the Earth is tilted away from the sun, see fig. 3.6. The

LA iterative method has the order of convergence p if lim;_, o (b;f—“p = C, where C is a
constant and F; is the error after the ith iteration. So a good iterative method has a large
order of convergence.
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Figure 3.7: Relation between zenith angle 6, and solar elevation £3.

extreme values of the declination is +23°27'. The declination for a given day of
the year is given by Kirk [27],

d = (0.39637 — 22.9133 cos ¢ + 4.02543 sin 1)
—0.3872 cos 24 + 0.052 sin 2¢5)27 /360. (3.14)

Here ¢ = 27 d /365 is the date expressed as an angle with d being the day number
ranging from 0 to 364. Both § and v in Eq. (3.14) are expressed in radians. The
zenith angle 6y at a given latitude v and date v is a function of the local time ¢
expressed as an angle 7 given by 7 = 27 ¢/24. Thus

cosfy = sin~ysind — cosycosdcosT

= ¢ — CCOST. (3.15)

The solar elevation f is complementary to the zenith angle 6y, i. e. 6y + 8 = 7/2.
Hence sin 8 = cosfy, see fig 3.7. Eq. (3.15) shows that the cosine of the zenith
angle has a sinusoidal variation with time. In fig. 3.8 the cosine of the zenith
angle and the solar elevation are plotted for the longest summer day and the
shortest winter day at the latitude of 60°.
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Figure 3.8: Left: Cosine of the zenith angle cosf, (or sinus of the solar eleva-
tion sin 3) plotted against a 24 hour period at a latitude of 60°. The solid line
corresponds to the longest summer day while the dashed line corresponds to the
shortest winter day. The values of cosf, are also plotted during the hours of
darkness. The negative values correspond to angles at which the sun is below
the horizon. Right: The corresponding solar elevations /3 plotted only for hours
of day light.



Chapter 4

Results

To be able to draw conclusions based on results from the MC routine it is neces-
sary to test it. In this chapter we test it against known results from the literature
and against results from the DISORT routine.

4.1 Single finite slab

As a simple test of the routine we may consider a single slab with uniform isotropic
scattering. This case was calculated analytically by van de Hulst [28]. Given the
optical depth 7 and the single scattering albedo wy of the slab and assuming an
energy flow of 10,000 units falling normally on the surface of the slab it is easy to
test results from MC and DISORT code against corresponding tabulated values
given by van de Hulst [28]. The results are shown in Table. 4.1 for different values
of 7 and wy. As we can see, the error of the DISORT routine is always less than
0.1% and the error of the MC routine is within the range of 0.5% relative to the
results achieved by van de Hulst. Note that the local error grows as the single
scattering albedo wy gets larger.

4.2 Simple atmosphere ocean system

Next we apply the MC routine to a one-dimensional geometry in order to get
results that may be compared directly with results from the one-dimensional
DISORT routine. Since the DISORT routine does not include any roughness of
the sea surface, we must use the same conditions in the Monte Carlo model. In
the first test case we use a chlorophyll concentration in the ocean of 0.02 mg/m?>.
The chlorophyll is uniformly distributed from the surface to the bottom. We
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Optical depth 7 = 1.6, single scattering albedo wy = 0.2

v. d. Hulst | DISORT Error MC Error

(%) (%)

Reflected 344 344 0.0 344 0.0
Absorbed 7,447 - - 7,447 0.0
Transmitted 2,209 2,209 0.0 2,209 0.0

Optical depth 7 = 1.6, single scattering albedo wy = 1.0

v. d. Hulst | DISORT Error MC Error

(%) (%)

Reflected 4,587 4,590  0.07 4,579  0.09
Absorbed 0 - - 0 0.0
Transmitted 5,413 5,417  0.07 5,421  0.15

Optical depth 7 = 2, single scattering albedo wy = 0.9

v. d. Hulst | DISORT Error MC Error

(%) (%)

Reflected 3,616 3,616 0.0 3,620  0.11
Absorbed 2,819 - - 2,806 -0.46
Transmitted(dir) 1,353 1,353 0.0 1,354  0.07
Transmitted (dif) 2,212 2,212 0.0 2,220  0.36
Transmitted (sum) 3,565 3,565 0.0 3,574  0.25

Optical thickness 7 = 2.5, single scattering albedo wy = 1.0
v. d. Hulst | DISORT Error | Monte Carlo Error

(%) (%)
Reflected 5,760 5,761  0.02 5,751  0.16
Absorbed 0 - - 0 0.0
Transmitted 4,240 4,240 0.0 4,249  0.21

Table 4.1: Energy flow through a slab. The MC code was run with 10® photons
and the DISORT code was run with 16 streams. The error for MC or DISORT
is the relative error compared to the results found by van de Hulst.
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Figure 4.1: Irradiance in the atmosphere (upper panels) and in the ocean (lower
panels) computed by the DISORT routine (solid and dashed lines) and the MC
routine (circles and stars). The graphs show both the direct and the diffuse
irradiance.

assume that there is only Henyey-Greenstein scattering in the ocean and isotropic
scattering in the atmosphere. This is not realistic, but makes nevertheless a good
case for comparing results from the MC routine with results from the DISORT
routine. Based on the chlorophyll concentration, one can compute the absorption
and scattering coefficients @ and b and the asymmetry factor g for the Henyey-
Greenstein scattering function. Exactly the same input is used for the MC and
DISORT routines. Thus, we expect identical results from the two routines. The
atmosphere is set to a height of 100 £m and the ocean to a depth of 61 m, with
a black bottom. The zenith angle is set to be 45°, and the indices of refraction
Nam = 1 and nye, = 1.33. Results for the irradiance are plotted in fig. 4.1, and
results for the scalar irradiance are plotted in fig. 4.2. The relative deviation

(MC — DISORT)

1
00 X —FisorT
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Figure 4.2: Scalar irradiance in the atmosphere (left) and in the ocean (right)
computed by the DISORT routine (solid and dashed lines) and the MC routine

(circles and stars).

is plotted in figs. 4.3 and 4.4. The MC code was run with 10% photons, while
the DISORT code was run with 32 streams. For the downward irradiances the
disagreement is less than 1% almost everywhere, while it is less than 2% for the
upward irradiances. It make sense that the relative disagreement is larger in the
upward direction because there are less photons traveling upwards, and hence
any absolute disagreement will have a larger relative value in this case. Even
though we try to make all conditions identical for the two models there are some
differences that we cannot avoid. We have shown that the MC code uses two dif-
ferent scattering phase functions (Henyey-Greenstein and Rayleigh) and that the
scattering angle is found by the inverse method (Egs. (3.12 and 3.13)). The DIS-
ORT code, however, expresses the scattering phase function in terms of Legendre
polynomials. We have seen that the phase function for Rayleigh scattering can
be perfectly expressed with three polynomials, but for Henyey-Greenstein scat-
tering we need an infinite number of polynomials to obtain a perfect description
of the phase function. The HG phase function in the DISORT code is therefore
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Figure 4.3: Disagreement between the MC and DISORT routines for irradiances.
Upper row: Irradiance in the downward direction in the atmosphere, direct beam
(left) and diffuse light (right). Second row from above: Irradiance in the down-
ward direction in the ocean, direct beam (left) and diffuse light (right). Third row
from above: Irradiance in the upward direction in the atmosphere, direct beam
(left) and diffuse light (right). Bottom row: Irradiance in the upward direction
in the ocean, diffuse light only.
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Figure 4.4: Disagreement between the MC and DISORT routines for the scalar
irradiance. Upper left: Scalar irradiance downward in the atmosphere. Up-
per right: Scalar irradiance upward in the atmosphere. Lower left: Scalar ir-
radiance downward in the ocean. Lower right: Scalar irradiance upward in the
ocean.

approximated by a finite number of polynomials. If the asymmetry factor is close
to one, we need a large number of Legendre polynomials to express the HG phase
function with acceptable accuracy, see fig. 6.1 in Thomas and Stamnes [1]. The
number of phase moments that are used in the DISORT code is limited by the
number of streams that is used. Fig. 4.5 shows the significance of the number of
streams in the DISORT code. In the figure the disagreement in the diffuse up-
ward irradiance in the atmosphere between the two codes is plotted against the
altitude. This diffuse irradiance is chosen as an example since the disagreement
here is bigger than for the other irradiances. As the number of streams increases
from 2 to 32 the disagreement between the MC code and the DISORT code de-
creases considerably. At the sea level the 2 stream solution of DISORT gives a
disagreement of 52.4% while the 32 stream solution only gives a disagreement of
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Figure 4.5: The absolute value of the disagreement between the MC and DIS-
ORT routine for upward diffuse irradiance in the atmosphere. We see how the
disagreement is reduced as the DISORT code is run with a larger number of
streams.

1.63%. The corresponding disagreements at the top of the atmosphere (100 km)
are 1.84% and 0.16%, respectively. It turns out that the DISORT routine for
a coupled atmosphere-ocean system converges when 16 streams are used in the
program.

4.2.1 Effect of surface facets

In the example above we used a plane water surface in the MC routine to run the
code with exactly the same interface conditions as the DISORT code. However,
one of the advantages of the MC code is that it is possible to study also effects
of surface waves. We will now examine how the disagreement between the two
codes grows as surface waves are included. The previous example was repeated
with the effects of surface waves included in accordance with the Cox and Munk
formula (Eq. (3.6)). The wind speed in the formula was set to V = 0,6,12 ms™!.

For comparison we choose three altitude levels in the coupled atmosphere-
ocean system, one at the top of the atmosphere (TOA), another right above the
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Figure 4.6: The disagreement between MC and DISORT grows as surface facets
are included in the MC model. The values to the left in each figure are for the case
with no surface waves, the next values are for a wind speed of 0 ms™!, 6 ms™!
and 12 ms™!, respectively.

3

water surface (AIR) and a third right beneath the water surface (OCN). The
difference between results from the MC and DISORT codes for each irradiance is
defined as follows.

AFE,dir Difference for the direct downward irradiances.
AE,dif Difference for the diffuse downward irradiances.
AFE,dir Difference for the direct upward irradiances.
AFE,dif Difference for the diffuse upward irradiances.
AFy; Difference for the scalar downward irradiances.
AFy, Difference for the scalar upward irradiances.

In fig. 4.6 we see how the differences AFE; increase as the wind speed increases.
Note that the left most values are set to the artificial wind speed V = —0.5859 ms~*
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n=Xn

Figure 4.7: By changing the index of refraction of the ocean in the DISORT
routine we achieve better agreement with the MC routine when the wind speed
is nonvanishing.

which gives 0% = 0 in Cox and Munk’s formula Eq. (3.7) and hence a plane sur-
face. All units are in [Wm™2].

Even though the DISORT code cannot handle surface waves, it is possible
to modify the index of refraction so that the results get closer to those of the
MC code with surface waves included. The roughness of the surface makes the
average angle of incidence smaller than it would be in the case of a plane surface
(fig. 3.3). Hence, the angle between the z-axis and the average direction of the
photons after refraction is larger in the case of a rough surface. One way to
account for this difference is to change the index of refraction in the DISORT
code so that the refracted beam has the same direction as the average direction
of the photons in the MC code, see fig. 4.7. By using Snell’s law, we find

n, = Xng
_ ny sin (4.1)
ng sin(arccos ') '

where 77’ is the average cosine of the polar angle just beneath the surface. In the
example where the wind speed was set to 12 ms ! the MC code gives 7 = 0.819
and y = 0.93 forn, = 1.33 and 6, = 45°. Fig. 4.8 and fig. 4.9 show the relative
difference for two cases with surface roughness corresponding to a wind speed of
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Figure 4.8: Disagreement between the MC and DISORT codes for the irradi-
ances. The MC code is run with a wind speed of 12 ms . The DISORT code
is unchanged for the solid line and modified with index of refraction for the line
with dots. Upper row: Irradiance in the downward direction in the atmosphere,
direct beam (left) and diffuse light (right). Second row from above: Irradiance in
the downward direction in the ocean, direct beam (left) and diffuse light (right).
Third row form above: Irradiance in the upward direction in the atmosphere, di-
rect beam (left) and diffuse light (right). Bottom row: Irradiance in the upward
direction in the ocean, diffuse light.
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Figure 4.9: Disagreement between the MC and the DISORT codes for the scalar
irradiances. the MC code was run with a wind speed of 12ms~!. The DISORT
code is unchanged for the solid line, whereas the index of refraction is modified for
the line with dots. Upper left: Scalar irradiance downward in the atmosphere.
Upper right: Scalar irradiance upward in the atmosphere. Lower left: Scalar
irradiance downward in the ocean. Lower right: Scalar irradiance upward in the
ocean.

V =12 ms™!. In the first case (solid line) the refractive index in the DISORT
code is unchanged, while in the second case (solid line with dots) the refractive
index in the DISORT code is given by n, = x ny in accordance with Eq. (4.1).
As we see, this refractive index change improves all results except those for the
direct upward irradiance in the atmosphere. Especially in the deeper layer of the
ocean this modification gives a significantly better result. Fig. 4.10 shows how x
depends on the wind speed V and the zenith angle . Considering the discrete
values from the MC code (squares), we assume that x can be approximately
expressed

x(V,0o) = aV? + bl + cV + db + e.
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Figure 4.10: The modification factor x as a function of the wind speed V' and
the zenith angle 6. Left: The zenith angle is fixed at §, = 45°. Right: The wind
speed is fixed at V = 6 ms™1.

To find the coefficients we may use a least-squares approximation. Then we find

x(V,0y) =~ 2.3192-107*V? —2.48694 - 10763

—7.60397 - 107°V +2.80213 - 1070, + 0.905982  (4.2)

for values of V and 6, in the intervals V € [0,15] and 6y € [35°,80°]. In this
approximation the index of refraction was modified so as to obtain a correct
average direction for the refracted photons in the ocean. No attempt were made
to correct the average direction of the reflected light or to correct the ratio between
the transmitted and the reflected energy. We would get a better approximation if
we correct the average directions of both the transmitted and the reflected light.
These directions are found from the results from the MC code with different
input for the zenith angle and wind speed. We may approximate these directions
as a polynomial function of the wind speed and the zenith angle. By using a
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Figure 4.11: Approximation for the average transmitted and reflected direction
in the case of a rough surface. The average directions have been approximated
in the Vfy-plane. Left: True and approximate values for a fixed wind speed
V = 6 ms~!. Right: True and approximate values for a fixed zenith angle
By = 45°.

least-squares approximation, we then find

0, ~ —1.10985-10">V? —4.02809- 107> 6;

+0.387023 V' + 1.02599 6, — 5.5891 (4.3)
0, ~ 3.98771-1072V? +2.09377-107%6;
—0.930259 V + 0.713428 6, + 5.53015 (4.4)

for values of V' and 6, in the intervals V' € [0, 15] and 6, € [35°,80°], see fig. 4.11.
It turned out to be difficult to find good polynomial approximations when the
zenith angle is less than 35°. To include these approximations in the DISORT
routine is not so simple as the modification of the index of refraction considered
earlier. It requires a number of changes in the code and related book keeping.
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4.2.2 Calculating AOPs

In this section an example of the AOPs is calculated from the results obtained
with the MC code. The input IOPs are calculated based on a chlorophyll content
of 0.35 mg/m? in all layers. The zenith angle is 0° or 80° in the atmosphere and
the surface was either without waves at all or had a roughness caused by a wind
speed of 7.5 ms~!. The case was tested for the four combinations of the zenith
angle and the surface waves. Remember that the cases in which there are no
surface waves is not the same as using a wind speed of 0 ms~! in the formula
developed by Cox and Munk, see Eq. (3.6). The diffuse attenuation coefficient
K, is evaluated by solving Eq. (1.23) for K,. Thus, from

E, = Ele X

we obtain ] >

where F; is the total downward irradiance. If we replace the irradiances in
Eq. (4.5) by the irradiances at two different depths, we get

1 Ed(zi—|—1)
d(z) Zi+1 — %4 " Ed(zi)

The reflectance is R = E,/E, according to Eq. (1.17). The results for K; and R
are shown in fig. 4.12 for zenith angles of 8, = 0° and 6, = 80°. We see that when
6y = 0° there is only a slight difference between the case with a plane sea surface
(the solid line) and the case with a rough sea surface (the triangles). On the
other hand the difference caused by the roughness of the sea surface is significant
for the cases in which the zenith angle is 80° (the dashed curve and the squares).

Once we have calculated the diffuse attenuation coefficients K; and Kg, it
is easy to check if the results from the MC code satisfies Gershun’s relationship
KgE,, = aFEy, derived in section 1.1.3. This is plotted in fig. 4.13, where the solid
line represents the left-hand side of the equation and the triangles represents the
right-hand side. When light travels through a homogeneous medium, the diffuse
attenuation coefficient depends on the single scattering albedo. This dependence
is shown in fig. 4.14. As the single scattering albedo increases from 0 to 1, K;/a
increases from (cos ;) !, where 6, is the angle of refraction into the ocean. How
much K,/a increases depends on the scattering function used in the medium.
This is the rewritten Gershun’s law (Eq. (1.27)).

The next tests for the MC code involve a more complex system. Thus, the
next three examples contain both Rayleigh scattering and HG scattering, and
the irradiances both in the atmosphere and ocean are plotted against the optical
depth in the same figure. In all the three cases the height of the atmosphere is
50 km and the depth of the ocean is 2,000 m. In fig. 4.15 the irradiances are
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Figure 4.12: The apparent optical properties K,4(z) and R(z) for four cases. The
solar zenith angle is # = 0° for the the solid line and the triangles, and it is
6 = 80° for the dashed line and the squares. The ocean surface was plane for the
solid line and dashed line, but was rough for the triangles and the squares.

plotted from the TOA to a depth of 230 m, which corresponds to an optical depth
varying from 7 = 0 to 7 & -5.58. In the atmosphere both Rayleigh scattering on
molecules and HG scattering on aerosols are included. The ocean is assumed to
consist of pure water, hence, only Rayleigh scattering occurs. From fig. 4.16 we
see that the disagreement between the MC and DISORT codes is, with only one
exception, within 1% everywhere. The exception is at the TOA where there is
a considerable disagreement for the downward diffuse irradiance due to different
boundary conditions in the MC and DISORT codes. Thus, this error should be
neglected. Note that the value of the downward diffuse irradiance should be zero
at the TOA. In the next case, (fig. 4.17) fifteen layers of first-year ice are included
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and the single scattering albedo wy. The zenith angle in the atmosphere is
6y = 45°, the corresponding angle of refraction in the ocean is from Snell’s law
0; ~ 32.4°. Note that for the case in which wy = 0 we should expect to find
Kq/a = (cosf;)™' ~ 1.18 (Eq. (1.27)). The graph shows that this result is
obtained from the MC model.
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Figure 4.15: Irradiances in the atmosphere and in the ocean plotted against
optical depth for an atmosphere-ocean system. The model includes Rayleigh
scattering from molecules and HG scattering from aerosols in the atmosphere, as
well as Rayleigh scattering from water particles in the ocean.

in the model. The ice is located between 0 m and -1 m in the ocean. Except for
the ice layer this case is similar to the previous one. The vertical range of the
plots is again from a height of 50 £m to a depth of -230 m, but since the ice has
a very high scattering coefficient, varying in the range b ~ 60 m=! — 800 m~!,
the optical depth of the atmosphere-ice-ocean system becomes ~350. In the ice
there is only HG scattering from brine pockets and air bubbles. The disagreement
between the MC and DISORT codes is plotted in fig. 4.18 and is less than 15%
everywhere except for the direct beam. The large error for the direct beam is due
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Figure 4.16: Disagreement between the MC and DISORT simulations in fig. 4.15.

to the huge attenuation coefficient ¢ in the ice which causes total extinction of
the direct beam in the MC code when the number of generated photons is finite.
Thus, we should not worry about this error. Even though the scattering coefficient
b is very large in the sea ice, the absorption coefficient is of the same order of
magnitude as for sea water. Hence the single scattering albedo is extremely large
for sea ice, i. e. wy > 0.999. This makes the system more complex and explains
why the disagreement is larger for the case which includes sea ice. Similarly
Table. 4.1 confirms that the disagreement increases when the single scattering
albedo becomes close to one. The HG scattering in the sea ice is dominated by
forward scattering, which means that the asymmetry factor g is close to one.
That indicates that a limited number of phase moments could be responsible for
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Figure 4.17: Irradiances in the atmosphere and in the ocean plotted against
optical depth for an atmosphere-ice-ocean system. The model includes Rayleigh
scattering from molecules and HG scattering from aerosols in the atmosphere,
HG scattering in the ice layer, and Rayleigh scattering from water particles in
the ocean.

some of the disagreement in the this case.

In the third case the ice is removed, but the upper layers of the ocean is
assumed to contain a concentration of chlorophyll. Thus, there is both Rayleigh
scattering and HG scattering in the atmosphere and also both Rayleigh scattering
and HG scattering in the upper layers of the ocean down to an optical depth of
T =~ 3.6. Beneath this depth there is only Rayleigh scattering on molecules in the
ocean. In fig. 4.19 the irradiance is plotted form 50 £m above the ocean down to
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Figure 4.18: Disagreement between the MC and DISORT codes simulations in

fig. 4.17.

a depth of 46 m (7 &~ —4.5). From fig. 4.20 we can see that the local disagreement
between the DISORT and MC codes is still within 1%.

4.3 3D atmosphere ocean system

In the previous examples we obtained the results for cases in which there is a 1D
stratification of an atmosphere-sea ice-ocean system. As mentioned previously
the advantage of the MC code is that it also can handle cases in which there is a
3D variation of the optical properties. One problem we meet when we separate
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Figure 4.19: Irradiances in the atmosphere and in the ocean plotted against
optical depth for an atmosphere-ocean system. The model includes Rayleigh
scattering from molecules and HG scattering from aerosols in the atmosphere, as
well as Rayleigh scattering from the water particles in the ocean. In addition to
the Rayleigh scattering in the ocean there is also included HG scattering from
chlorophyll in the first three ocean layers only.

the atmosphere-ocean system into cells as shown in fig. 3.1, is that the optical
thickness of the ocean is much greater than the optical thickness of the atmo-
sphere. This problem have we solved by multiply the absorption and scattering
coefficients in the atmosphere by 1000 and also by dividing the altitude by the
same number. The optical thickness in the atmosphere is then not too far from
the optical thickness in the ocean.
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Figure 4.20: Disagreement between the MC and DISORT codes in simulations in
fig. 4.19.

4.3.1 Ocean partly covered with ice

In this section we will examine the situation in which the ocean is partly covered
by a layer of ice. In fig. 4.21 the geometry for this case is illustrated. On the
left hand side of the ice edge the model is similar to the one used in fig. 4.15
and on the right hand side of the ice edge the model is similar to the one used
in fig. 4.17. For the incident light we still use a zenith angle of 6, = 45°, and
we let the azimuth angle vary from 0° to 180° in steps of 45°. The irradiances
are plotted in figs. 4.22 - 4.27, where the ice layer is situated on the positive
horizontal axis (the z-axis) with a depth ranging from 0 m to -1 m. The azimuth
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Ice

Ocean

Figure 4.21: Geometry for the case in which the ocean is partly covered by ice.

angle is measured from the z-axis. Note that the unit in the atmosphere is km
while it is m in the ocean. In fig. 4.22 there is a plane sea surface, while there are
included surface waves from a wind speed of 6 ms~! in figs. 4.23 - 4.27. Hence, the
surface facets represent the only difference between fig. 4.22 and fig. 4.23. For the
direct irradiance we can see how the ice edge causes a shadow. There is a slight
difference between figs. 4.22 and 4.23 where the only difference is the presence of
surface facets, but the structure of the contour lines is not considerable changed.

For all azimuth angles we can see that the combination of the direct beam
and the diffuse light causes a focusing spot in the ocean. The center of this
spot is located at a depth between 0.5 m and 1.0 m and next to the ice edge in
the horizontal direction. The high scattering coefficient b in the ice causes the
light to be widely spread out of the ice, also in the horizontal direction into the
ocean. Therefore, the diffuse light creates a light field that is added to the direct
solar beam. Hence, the irradiance at this focus is higher than it would be in the
absence of the ice edge. Note that neither the direct beam nor the diffuse light
creates this spot alone. It is the sum of these two light fields that creates it. In
fig. 4.28 (which is identical to the lower left panel in fig. 4.23) we have zoomed
in on this phenomenon. The radiation from the sea ice is spread out and causes
a focusing spot. The effect can be observed down to a depth of approximately
5-6 m and also 3-4 m away from the ice in the horizontal direction (not shown in
fig. 4.28).

The scattered light from the sea ice gives the largest contribution to the
irradiance in the upward direction. Both the direct reflected beam and the diffuse
light from the ocean are considerably less than the diffuse light from the ice.
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Figure 4.22: MC simulation of irradiances for the case in which the ocean is
partly covered by ice. There are no surface facets on the ocean in this case. The
azimuth angle is 0° and the zenith angle is 45°.
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Figure 4.23: MC simulations of irradiances for the case in which the ocean is
partly covered by ice. A surface roughness of the ocean due to a wind speed of
6 ms~! is included. The azimuth angle is 0° and the zenith angle is 45°.
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Figure 4.24: MC simulations of irradiances for the case in which the ocean is
partly covered by ice. A surface roughness of the ocean due to a wind speed of

6 mst

is included. The azimuth angle is 45° and the zenith angle is 45°.
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Figure 4.25: MC simulations of irradiances for the case in which the ocean is
partly covered by ice. A surface roughness of the ocean due to a wind speed of
6 ms~! is included. The azimuth angle is 90° and the zenith angle is 45°.
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Figure 4.26: MC simulations of irradiances for the case in which the ocean is
partly covered by ice. A surface roughness of the ocean due to a wind speed of
6 ms~! is included. The azimuth angle is 135° and the zenith angle is 45°.
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Figure 4.27: MC simulations of irradiances for the case in which the ocean is
partly covered by ice. A surface roughness of the ocean due to a wind speed of
6 ms~! is included. The azimuth angle is 180° and the zenith angle is 45°.
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Figure 4.28: MC simulations of the total downward irradiance for the case in
which the ocean is partly covered by ice. A surface roughness of the ocean due
to a wind speed of 6 ms~! is included. The azimuth angle is 0° and the zenith
angle is 45°.

4.3.2 Shadow from a boat

Since our 3D MC code allows us to consider a complicated topography we now do
simulations for a situation in which an opaque object is put on the sea surface.
The object reaches 2 m both above and below the water surface. It is 2 m
wide (along the z-axis) and 8 m long (along the y-axis out of the plane of the
figure). The purpose of putting this object on the water is to create a shadowing
effect that is similar to the one we could expect if there was a boat lying on the
water. It is interesting to examine what influence a boat has on the distribution
of the irradiance in the ocean below. When the irradiance is measured in the
ocean, it is usually done from a boat and even if the measurements are done on
the side of the boat that faces the sun, the presence of the boat might have a
significant effect on the measured irradiance. In fig. 4.29 the irradiance is plotted
in the water around the boat. As expected the direct light is only changed in the
shadow zone of the boat. The diffuse light, however, also gives less irradiance in
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Figure 4.29: MC simulations of irradiances for the case in which a boat causes
a shadow in the water. Surface roughness on the ocean due to a wind speed of
6 ms ! is included. The zenith angle is 45° and the azimuth angle is 0°.

the area next to the geometrical shadow zone. This effect is significant also on
the sun facing side of the boat. In this example the direct light is approximately
five times larger than the diffuse contribution. Hence, the influence of the diffuse
light on the total scalar irradiance is small but measurable. One should keep in
mind that how much a boat will reduce the irradiance in an area surrounding it
depends both on the magnitude of the scattering coefficient b and the scattering
function . In this case the IOPs were taken to be the same as in fig. 4.15 where
there is only Rayleigh scattering in the ocean. In examples with other scattering
functions and scattering coefficients we should not expect the same results.

4.3.3 Error sources

As mentioned previously, the 3D MC model separate the the ocean and the atmo-
sphere into cells and the code calculates the irradiances on the bottom surface of
each cell. When we calculate the irradiance in one cell, we assume that the pho-
tons are uniformly distributed over the bottom so we can use the approximation
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Figure 4.30: Illustration of a 3D MC case with a boat lying on the water surface.
The irradiance on the detecting surfaces cell a and cell b is not uniform which we
assume it is.

(Eq. (1.6))
> @

P=a~a

For cases in which we have an ocean that is partly covered with ice or there is
a boat lying on the water, we should be careful when using this approximation.
As shown in fig. 4.30, the photon distribution may be far from uniform on a
detecting surface in a 3D case, and hence the final outcome may contain errors.
The source of this problem is that the size of the detector is too big compared to
the size of the included 3D topography. This problem could easily be solved by
making the size of each cell smaller. However, this improvement of the resolution
has the vital drawback that the code will require a considerably larger CPU time.
The user of the program should therefore consider necessary requirements both
with respect to precision and CPU time, and adapt the program accordingly.

When we take a closer look at the boat case in fig. 4.29, we discover the
assumption in Eq. (1.6) is not satisfied valid. In the printed figures from MatLab
we can see an "island” with reduced irradiance compared to the surrounding area.
This ”island” is located approximately at a depth of 20 m in the geometrical
shadow zone. Especially for the direct irradiance it is obvious that it should not
first decrease and then increase afterwards. The reason why this ”island” appears
is that the cells are too wide along the x axis, and in this case the size grows as
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we get far from the boat along the z axis.

As mentioned previously, fig. 4.28 is the same case as the lower left panel in
fig. 4.23. The only difference is that in the latter figure the cell grids have a finer
resolution centered around the ice edge. This provides us with more detailed
contour lines in the actual area. In this case the areas of the cells are even
smaller around 0 m on the z-axis. When the areas are smaller fewer photons
get detected on these areas. Hence the calculated irradiance is more sensitive to
the distribution of photons among the areas. This causes the contour lines to be
less smooth on the small areas than they are elsewhere. To achieve smooth lines
everywhere we could employ more photons in the model. Then there would be
enough photons to get an even distribution among all areas. However, this case
took approximately 48 hours to estimate on a supercomputer, so to this point we
accept the result as they are.



Chapter 5

Conclusions

5.1 1D code

The MC code and the DISORT code are two different ways of approaching the
problem of radiative transfer in a vertically stratified coupled atmosphere-sea ice-
ocean system with no variations of the optical properties in the horizontal direc-
tion. For this one-dimensional case we have obtained an almost perfect agreement
between these two methods when the boundary conditions are the same. Hence,
we can conclude that both methods provide a correct solution to the problem.

For cases only include a coupled atmosphere-ocean system, these two models
show a local deviation of less than 2% almost everywhere in the system for all
irradiances. If an ice layer with extremely high single scattering albedo and
optical thickness is included the local deviation between the models grows to
approximately 10%. Hence, the large scattering coefficient in the ice makes the
case more complex for these simulations and the results become less precise.

One advantage of the DISORT method is that it is very efficient and that
it does not require a super computer to solve a multilayer problem. The MC
code on the other hand puts very heavy demands on the CPU time. The MC
code should nevertheless not be considered to be superfluous. Even for a 1D case
the MC code has unique features that give useful contributions to the issue of
radiative transfer in the atmosphere and in the ocean. The MC code may handle
surface facets on the ocean due to wind, which is more realistic than a plane
ocean surface. We have also seen how this information can contribute to improve
the DISORT code. The simplest improvement was obtained by modifying the
index of refraction in the ocean (Eq. (4.2)). This method improves the results
from the DISORT code. But we should note the exception the direct upward
irradiance in the atmosphere where the absolute difference between the DISORT
code and the MC code becomes even larger when this modification is used. This is
a very simple method to compensate for the lack of surface waves in the DISORT
routine. Only one input value needs to be changed, the rest of the code is not
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affected by this modification.

Another interesting way of accounting for surface waves is to calculate the
average direction of the refraction angle #, and the reflection angle 6, for the
solar beam on refraction and reflection by a rough sea surface. By using MC
simulations, we can calculate these directions as functions of the wind speed
and the zenith angle. In Eq. (4.3) and Eq. (4.4) we have predicted approximate
functions describing 6, and #,. To put these modifications into the DISORT
code requires a number of changes in the source code. In this thesis we have not
performed these changes. It is left as future work in the topic of radiative transfer
in the atmosphere and the ocean.

The surface facets on the ocean due to wind have a significant influence on the
apparent optical properties AOPs. The results from the MC code have shown
how the diffuse attenuation coefficient K; and the reflectance R change when
surface waves are included. Also, we have seen that the surface waves have a
more significant effect on the AOPs when the zenith angle 6, is large.

Since the MC code and the DISORT code have different advantages and
drawbacks they should be considered to be complementary models rather than
competing models in the issue of 1D radiative transport in the atmosphere and
in the ocean.

5.2 3D code

The one-dimensional 1D MC code can easily be expand to handle three-dimensional
3D topography. The only changes required are that the system is separated into
boxes rather than layers and that the routines for detecting the photons applies
to each of these boxes. The path of a traveling photon are calculated in exactly
the same way as before. Hence, the 3D model gives the same result as the 1D
model as long as the IOPs do not have any horizontal variations. The 3D model,
however, requires considerable more CPU time than the 1D model. There are
two reasons why the CPU time grows for the 3D model. One is that more calcu-
lations are required for every single photon when it travels through the system.
The other is that a higher number of photons need to be used in the 3D model
to obtain acceptable accuracy.

We have also seen how the size of the cells might cause errors in the plotted
contour diagrams. When the cells are too big compared to the topography, the
approximation in Eq. (1.6) is no longer valid and there might appear errors in
the results. Keeping this weakness of the 3D model in mind, we should be very
careful when we choose the dimensions of the cells. However, the 3D model will
provide very accurate results as long as the cells are small compared to distances
over which the local topography does not vary significantly.

When cells of very different sizes are present in the model, one should note that
calculations of the irradiance in the smallest cells will require a higher number of
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photons employed to converge compared to the larger cells.

In the study of the ocean partly covered by ice we can see how the diffuse
irradiance from the ice layer and the direct irradiance in the ocean creates a
focusing spot in the ocean right next to the ice.

5.3 Future work

Our MC model for radiative transport in the coupled atmosphere-snow-sea ice-
ocean system (CASSIO) has been found to give reasonably good results compared
to the DISORT routine. Still we have only touched the surface of the topic of
radiative transfer in the atmosphere and ocean and our model could be improved
in many different ways. Here we shall mention some of them.

e (Calculation of radiance both for 1D and 3D cases.

e Improve the DISORT routine with the results from the CASSIO-MC rou-
tine.

e Make the cells of different shapes to simulate topography and let the de-
tectors be tilted.

e Investigate effects of reflection from bottom or shore.
e Let a Gaussian beam enter the atmosphere.

e Investigate polarization effects.

e Compare model with experimental results.

The first point of this list should not be too difficult to include. To detect the
radiance we need both the direction and the position of the photons. In the 1D
model as well as in the 3D model both position and direction of every photon is
given in three dimensions. Hence, all one needs to do is to expand the code with
some new subroutines for detecting the photons.

In this thesis we have suggested a way of improving the DISORT code to
include the effect from surface facets (Eq. (4.3) and Eq. (4.4)). To be able to
draw any final conclusions of how this will improve the results from the DISORT
code, we have to perform the changes in the DISORT code and compare the new
results with the results from the MC code where surface facets are included.

The separation of the media into cells allows the IOPs to vary in all directions.
However, so far the walls of the cells are all lying in the horizontal zy-plane, in the
vertical zz-plane, or in the vertical yz-plane. The model would be more flexible if
we managed to improve it to handle oblique cell walls as well. This improvment
will also make it possible to let the detectors for the irradiances be tilted. The
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Monte Carlo approach developed by Miesch et al. [29] handles an Earth surface
that is not horizontal.

In the simulations performed in this thesis, we have assumed a black bottom.
The model should also be tested for cases with some reflection from the bottom
and cases with combination of sea surface and shore ground, e. g. the irradiance
in a fjord area.

In the 3D case it would also be interesting to see how a Gaussian beam would
travel and be spread in a coupled atmosphere ocean system.

When light interacts with the sea surface or undergoes by Rayleigh scattering,
the polarization of the light is of great importance. The MC code does not handle
any polarization effects. It could be useful to investigate how polarization effect
influence the results.

Finally, but may be most important, we mention that the model should be
tested against experimental results. The results so far only confirm that there is
good agreement between two theoretical models. Our goal is to develop a model
that predicts the results we expect to measure in the nature.



Appendix A

The Monte Carlo program

A.1 Explanation of the Monte Carlo
structure

Here follows a detailed explanation of the structure of the Monte Carlo program
(fig. A.1) discussed in section 3.1

Set initial boundary: Set the initial position and direction of the photon be-
fore it starts its journey through the coupled atmosphere-sea ice-ocean sys-
tem.

Set I0OPs and path length: The program sets the IOPs for the cell in which
the photon is traveling. The properties to be set are the absorption co-
efficient a, the scattering coefficient b, the Henyey-Greenstein asymmetry
factor g, the Rayleigh polarization factor p, the ratio of Rayleigh scattering
events to all scattering events 7, and medium n.

New position: An incident photon has a given position (z,y,z) and a given
direction of propagation (€, €,,€2,). Next we must decide how far the
photon will travel before an extinction event occurs. The path length pl in
the given direction is found from Eq. (3.3), i. e.

Inp
Cn

pl =

where ¢, = a, + b, is the extinction coefficient for the nth cell, and p is a
random number. Now the new position and cell for the photon is evaluated
from its start position, propagation direction, and path length.

New cell? The position of the photon may now be within the same cell as
previously or it may be within a new cell.
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Figure A.1: Flow chart of the Monte Carlo program. FEvery photon follows
this path from it is launched at the top of the atmosphere until it is absorbed
somewhere in the atmosphere or in the ocean or it escapes back to space.
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Reverse Raytracing

New position

Figure A.2: A photon travels to a new position and is traced back to the point
where it left the previous cell.

Reverse raytracing: When the photon has entered a new cell it is necessary to
trace it back to the point where it left the previous cell. Now we must find
out of how much of the initial path length pl/ that is ”consumed”. We call
the remaining part plrest. Since the photon now enters a new medium, we
have to change the remaining path length according to

Cn

pl = plrest
Cn+1

when we continue through next cell (fig. A.2).
Detectors: If the photon leaves one cell through the bottom surface or the

top surface, a detector routine will count the photon for calculation of the
irradiance.

New medium? Check if the new cell has the same index of refraction as the
previous one.

Indices and surface normal If not, a routine evaluates the indices of refrac-
tion for the two media and the normal vector of the intersection surface.
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Set reflectance: Find the probability for the photon to be reflected and trans-
mitted.

Refraction: The photon is refracted into the new medium.
Reflection: The photon is reflected back to the old medium.

Abs/Scatt The single scattering albedo wy decides whether the photon is ab-
sorbed or scattered.

Scattering: The photon is scattered.

New direction: After the photon has been refracted, reflected or scattered it
will continue to propagate in a new direction.
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