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Abstract 

Regarding environmental, economic and political issues, the utilization of CO2 as C1 

chemical feedstock has received a worldwide interest in the last decade. Indeed CO2 

is considered as a greenhouse gas (submitted to strict regulations), alongside being an 

optimal raw material (renewable, nontoxic, nonflammable, safe, cheap and naturally 

abundant). A promising large-scale application is its use as a co-reagent in 

polymerizations. The copolymerization of CO2 with epoxides is an attractive 

alternative for the production of polycarbonates for instance, that are not oil-based 

and avoiding the use of toxic reagents such as bisphenol A and phosgene.  

Since the early ’70s, a range of catalysts based on different metal centers (essentially 

Zn, Al, Mn, Cr and Co) and bearing a variety of ligands (mostly phenoxide, E-

diiminate and salen type) has been reported, showing high activity and selectivity 

toward the coupling of CO2 with various epoxides. However, the range of active 

metal centers and ancillary ligands reported remains surprisingly narrow. Moreover, 

the development of new greener and competitive catalytic systems for the 

copolymerization of epoxide with CO2 is necessary to support a viable sustainable 

process at reasonable cost. Our focus was to develop complexes based on non-

endangered, abundant, inexpensive and nontoxic metal centers, which are active and 

selective for the production of polymers under mild reaction conditions. The potential 

of a new family of precursors based on the oxygen-functionalized N-heterocyclic 

carbene (NHC) ligand combined with titanium as catalyst component for the 

copolymerization of cyclohexene oxide (CHO) with CO2 was investigated.  

Tridentate and bidentate NHC titanium complexes were synthesized and fully 

characterized. Upon cocatalyst addition, all the tridentate NHC titanium complexes 

were found to be active and highly selective toward the formation of 

poly(cyclohexene carbonate), while bidentate NHC titanium showed no activity. 
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Further, the reactivity of those catalytic systems and the reaction conditions (nature 

and ratio of cocatalyst and coligand, catalyst loading, use of additional solvent, CO2 

pressure and temperature) were investigated. These studies allowed to improve the 

understanding of the active species, optimize the reaction conditions and design new 

and/or modified systems, tridentate NHC titanium azide being the pre-catalyst 

leading to the highest activity toward the coupling of CHO with CO2 under low CO2 

pressure.  

These systems were the first tetravalent NHC titanium catalysts reported for the 

copolymerization of CHO with CO2. 
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1. Introduction 

1.1. Carbon Dioxide as a Chemical Feedstock 

 

1.1.1. Carbon Dioxide as C1 Source 

The use of intensive oil-based carbon resources leads to the release of carbon dioxide 

as a by-product, which is known to enhance greenhouse gases (GHGs) emissions. 

GHGs are considered a major cause of global warming and climate changes. Indeed 

due to anthropogenic sources, the accumulation of CO2 gas in the atmosphere rose 

from 278 ppm in the preindustrial period to a current level of 387 ppm [1]. Motivated 

by more restrictive environmental regulations and economic constraints, the interest 

to reduce fossil carbon consumption and CO2 emission is constantly growing. To 

reach these goals, different strategies have been developed: 1) reduce the use of 

energy derived from fossil fuels, 2) recover and store CO2 from processes and 3) 

reuse CO2 as a renewable carbon source. Together with the other technologies, CO2 

utilization is a promising alternative that is able to convert a “waste” into valuable 

products [2].  

Carbon dioxide is an optimal raw material since it is renewable, nontoxic, non-

flammable, safe, relatively cheap and naturally abundant [3]. The CO2 utilization 

technology presents other advantages by: its contribution to prevent CO2 emissions 

(several million tons each year), recycling carbon, preserving resources (reducing 

extraction of fossil-C), increasing the independence from fossil fuels and potentially 

substitute toxic chemicals used in current processes [1, 4, 5]. One of the big 

challenges facing the use of CO2 as a reagent for chemical synthesis is its 

thermodynamic stability (ΔGf  = -393.5 kJ mol-1), limiting its application [6]. To 

overwhelm this drawback, reactions employing CO2 with highly reactive reagents 

have been explored and their reactions with metal complexes have been extensively 

studied [6, 7]. Indeed, the development started in the early 1970s by the investigation 

of reactions of CO2 with organometallic compounds based on transition metals (Rh, 

Ru, Pt, Co) [8]. In 1975, the synthesis and solid state structure of the first side-on 
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complex (([N2-C,O]-CO2)-bis(tricyclohexylphosphine)nickel) 1 was reported 

(Scheme 1.1) [9]. Following this discovery, other CO2 complexes based on Rh 2 
(Scheme 1.1), Fe, Nb, Mo and Co were structurally characterized, showing that 

transition metal complexes are able to coordinate CO2 or act as catalysts in CO2 

fixation. Different coordination modes metal center to CO2 are possible: the bonding 

of the metal center via the carbon atom (N1-C), an oxygen atom (N1-O), the C=O bond 

(N2-C,O) and the oxygens (N2-O,O) which can be described as a carboxylate [10-15]. 

 

Scheme 1.1. Common coordination modes of CO2 with a metal center ([N2-C,O]-

CO2)Ni(PCy3)2 1 [9] and ([N1-C]-CO2)Rh(Cl)(diars)2 2 [16]. 

For the last two decades, the interaction of CO2 with transition metal complexes has 

been the subject of extensive studies, both experimental and theoretical, revealing 

potential pathways for catalytic reactions [17]. 

 

1.1.2. Carbon Dioxide Utilization 

Carbon dioxide utilization is divided in four categories: 1) technological utilization 

(e.g. supercritical CO2), 2) enhanced biological utilization (e.g. production of 

biomass), 3) production of fuels and 4) production of chemicals. On those domains, 

CO2 as a C1 feedstock has received a worldwide interest which results in applied 

examples as carbon source (fine chemistry), solvent in a variety of synthetic 

processes (supercritical CO2) or co-reagent (for polymerization) [18-20]. 

Figure 1.1 illustrates the wide range of available molecules that can be produced from 

CO2 as a co-reagent. 
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Figure 1.1. Possible applications of CO2 in fuels and chemical synthesis. 

Carbon dioxide can be used as a chemical feedstock for the production of fuels like 

formic acid, carbon monoxide, formaldehyde, methanol or hydrocarbons for example 

methane. CO2 can also be used in the production of chemicals that involves the entire 

CO2 molecule incorporation, providing compounds like urea, salicylic acid, 

carbamates, carboxylate, polyurethane, inorganic carbonate, hydrogen carbonate, 

cyclic/linear carbonate or polycarbonate [1, 7, 21-23]. 

Figure 1.2 summarizes the industrial production of CO2 based chemicals. The total 

amount of CO2 consumed is approximately 116 million tons per year, of which 94% 

is made up by the production of urea. However it is important to note that this 

particular process releases more gas than it consumes, reducing the current use of 

CO2 as a feedstock for chemicals to only 0.36% of the global CO2 emissions [24, 25]. 
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Figure 1.2. Industrial production volume of products made of CO2, adapted from 

reference [25]. 

Today, there is a great interest in increasing the amount of CO2 incorporated in other 

applications. Among them, the use of CO2 as comonomer for its incorporation into 

polymers seems to be a promising approach for large-scale industrial applications of 

CO2 utilization [26-30].  

 

1.2. Copolymerization of Epoxide and Carbon Dioxide 
 

1.2.1. Reaction and Applications 

Carbone dioxide can be coupled with different high-energy profile molecules such as 

strained heterocyclic molecules, e.g. epoxides or oxetanes, aziridines and episulfides, 

generating polycarbonates, polyurethanes and polythiocarbonates, respectively [31]. 

Here we will focus on the use of epoxides as a comonomer, which is the most widely 

studied reaction, showing the highest potential for industrial applications. The 

coupling of CO2 to an epoxide affords the formation of polycarbonates and/or cyclic 

carbonates [32, 33]. If there is no CO2 insertion into the polymer chain, the formation 

of the homopolymer product is observed as a side product of the reaction. Among the 

different epoxides available, cyclohexene oxide (CHO) and propylene oxide (PO) are 

the most investigated ones (Scheme 1.2).  

Production volume  
(milion tons per annum) 

Urea

Methanol

Bisphenol-A
polycarbonate

Salicyclic acid

Organic carbonate

Polypropylene carbonate
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This alternative way for polycarbonates synthesis is of great interest since it can 

contribute to reduce the carbon footprint, replace most of the oil-based polymers [34, 

35] and avoid the use of very toxic reagents such as bisphenol A and phosgene that 

are commonly used [36].  

 

Scheme 1.2. CO2/epoxides coupling into poly(carbonates), cyclic products and 

formation of polyethers. 

Nowadays, aliphatic polycarbonates find applications as packaging materials and also 

in the synthesis of engineering thermoplastics and resins, pyrotechnics and interliners 

for safety glass [26, 27, 32, 37]. Poly(propylene-alt-carbonate) (PPC) has a glass 

transition temperature (Tg) of 35-40 ºC which hinders its application as a bulk 

material. However, PPC has the great property of decomposing uniformly and 

controllably to cyclic propylene carbonate below 250 ºC, making it an ideal candidate 

as a binder for ceramics, adhesives and propellants [32, 38]. One of the most 

promising applications of these aliphatic carbonates is as a mid-segment of 

polyurethanes [26, 39]. Poly(cyclohexene-alt-carbonate) (PCHC) shows similar 

decomposition temperature and properties as PPC making it also suitable in melt 

processing. In addition PCHC has a high Tg (150 ºC), similar to poly(styrene), giving 

it potential in lithographic processes for the construction of microfluidic devices [32, 

37].  
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Cyclic carbonate products find industrial applications as polar aprotic solvents, 

substrates for small molecules synthesis, additives, antifoam agents for antifreeze and 

plasticizers [32, 40, 41]. Despite the feasibility of the examples described above, only 

a limited number of applications are exploited. The moderate thermal stability and 

low temperature needed for thermal deformation of these products, in addition to the 

high cost of the CO2/epoxide copolymers have been slowing down the development 

of their industrial applications. Much higher levels of stereocontrol as well as 

regiocontrol of catalysts are required in order to improve the physical properties of 

aliphatic polycarbonates. Furthermore, the activity of the catalyst needs to be 

improved in order to reduce the cost of the material. Indeed, the low activity of the 

current industrial catalysts, the zinc/dicarboxylic acid, salen cobalt, zinc glutarate, 

double metal cyanide, nickel hydroxybenzenediamines or zinc bearing reduced 

Robson´s type ligand, is one of the reasons leading to their high price. To be suitable 

for such applications, polymers also encounter issues with the color of the end-

polymer and the removal of (toxic) metal residues, particularly when the activity is 

low. In order to increase the use of CO2/epoxides copolymers in different 

applications, the development of new catalytic systems is necessary.  

 

1.2.2. Reaction Mechanism and Selectivity 

The current and following sections will focus more specifically on the use and 

reactivity of CHO. To undergo the CO2/epoxide copolymerization, various Lewis 

acidic metal halide, carboxylate, alkoxide and aryloxide complexes are typically used 

as catalysts. Although the complete understanding of the mechanism of the CO2-

epoxide coupling reaction is still under investigation, a general trend for a 

coordination-insertion mechanism has been proposed (Scheme 1.3).  
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Scheme 1.3. Coordination-insertion mechanism for the copolymerization of CHO 

and CO2. 

The reaction is initiated by the epoxide coordination to the metal center and is 

followed by the attack of a nucleophilic cocatalyst or an anionic leaving group to one 

of the carbon atoms of the epoxide. Cocatalysts are divided in two categories 

according to their nature: anionic, the most common being onium salts such as 

[PPN]X (PPN = bis(triphenylphosphine)iminium with X = Cl, N3, etc.) or [nBu4N]X 

and neutral with 4-(dimethylamino)pyridine (DMAP), N-methylimidazole (N-MeIm) 

and PPh3 for instance. This first step, which showed to be the rate determining step, 

causes the epoxide ring-opening and the formation of a metal bound alkoxide. The 

nucleophilic group is called the initiation group and ends up at the chain end-group of 

the growing polymer. Several initiation pathways (e.g. epoxide coordination) have 

been proposed based on salen and salan metal complexes: the inter- and 

intramolecular monometallic and the intermolecular bimetallic mechanisms (Scheme 

1.4) [42, 43].  
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Scheme 1.4. Initiation mechanisms for the copolymerization of CHO and CO2 

proposed using salen and salan type ligand systems bearing a nucleophilic cocatalyst 

(Nu) and an anionic leaving group (X). 

In the monometallic initiation pathway, the nucleophilic attack at the epoxide can be 

done by an intermolecular interaction of a nucleophilic cocatalyst (Nu) or an 

intramolecular interaction with an anionic leaving group (X) of the catalyst. In a 

bimetallic intermolecular initiation pathway, an activated nucleophile (either X or 

Nu) on one metal complex may ring open an epoxide that is coordinated to another 

metal complex [32-34, 42, 44-47]. The formed metal alkoxide undergoes CO2 

insertion into the metal oxygen leading to a metal carbonate. The rate of CO2 

insertion depends on the electronic and steric availability of the lone pairs on the 

oxygen atom of the alkoxide. More nucleophilic and less sterically encumbered metal 

alkoxides present a better interaction with the poorly electrophilic carbon center of 

CO2 making it more active toward the insertion of CO2 [34]. Then the propagation 

undergoes by nucleophilic attack of the metal carbonate to another coordinated 

epoxide molecule subsequently followed by another CO2 insertion [32]. An example 

of mechanistic studies based on the (salen)CrCl complexes developed by Jacobsen 

[48] is described in Scheme 1.5 [33, 34].  
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Scheme 1.5. Mechanism for CO2/CHO copolymerization using (salen)CrCl in 

presence of an anionic cocatalyst (Nu), adapted from reference [34].  

Upon the addition of an anionic cocatalyst trans to X, the formation of anionic six-

coordinate active intermediate is observed [49] allowing the epoxide ring-opening by 

a monometallic inter- or intramolecular mechanism. Both nucleophilic cocatalyst 

(Nu) and anionic leaving group (X) have been identified in the copolymer end group 

making difficult to identify the favored initiation pathway(s).  
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In comparison, upon the addition of neutral cocatalyst to (salen)CrCl complex, 

neutral six-coordinate intermediate are formed and the initiation mechanism follows 

the bimetallic intermolecular pathway. Compared to its anionic analogue, the neutral 

six-coordinate intermediate proved to be less effective toward the CHO ring-opening 

and CO2 insertion. In both cases, an addition of an excess of cocatalyst to the 

complex leads to the decrease of the catalytic activity, as there is a competition 

between the cocatalyst and the epoxide coordination [34]. 

In case of bimetallic complexes such as bimetallic E-diiminate (bdi) zinc catalyst, the 

mechanism follows an intramolecular bimetallic pathway, which does not necessitate 

the use of cocatalyst. The zinc alkoxide dimer inserts CO2 to form carbonate 

complexes, the metal carbonate bound of one metal center then reacts with the 

coordinated epoxide on the second metal center [50]. 

The initiation-propagation steps are subsequently repeated to form copolymers until 

one or both of the monomers are consumed or the reaction is quenched and/or the 

catalyst is deactivated. If the catalyst used, possesses the ability to either catalyze the 

homopolymerization of the epoxide or undergo decarboxylation, then there are 

consecutive epoxide ring-opening and the formation of ether linkages instead of 

carbonates takes place. In addition, two possible chain transfers can occur during the 

coupling reaction, yielding by-products. The intramolecular back-biting described in 

Scheme 1.6 is responsible for the formation of cyclic compounds. The metal alkoxide 

or carbonate attacks the growing polymer chain leading to the formation of the 

thermodynamic product, the five-membered ring cyclic carbonate. 
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Scheme 1.6. Back-biting mechanism leading to cyclic carbonate compounds. 

The back-biting reaction is often observed for aliphatic epoxides and/or in case of 

non-coordinative pathways and is favored at higher temperature. During a 

cooperative catalytic mechanism, the growing polymers are attached to the metal 

complex and therefore the back-biting side reactions are suppressed. But in the 

absence of multiple metal sites and/or the use of large cocatalysts favoring the 

dissociation of the growing polymer from the metal center (e.g. formation of “free” 

anionic polymer chain), cyclic compounds are the predominant products of the 

CO2/epoxide copolymerization [32].   

The other possible chain transfer is due to the interaction with external contaminants, 

typically protic compounds such as alcohol or water that react with the growing chain 

and afford a hydroxyl terminated copolymer and a new initiation site. The result of 

chain transfers causes a reduction in the number of repeat units and therefore of the 

molecular weight of the resulting polymers. Copolymerization is facing the recurrent 

challenge to avoid the formation of aforementioned undesired by-products.  
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1.2.3. Catalysts Development  

The performance of a catalyst is evaluated by its productivity, its activity and by the 

quality of the produced polymer. The productivity and the activity are defined 

respectively by the turnover number (TON), which corresponds to the moles of 

epoxide consumed per mole of catalyst, and the turnover frequency (TOF), which is 

the TON per hour. The catalyst activity is considered as: TOF < 1 h-1: very low, 1 < 

TOF < 10 h-1: low, 10 < TOF < 100 h-1: moderate, 100 < TOF < 1000 h-1: high and 

TOF > 1000: very high. The quality of the material is characterized by the percentage 

of carbonate linkages, the percentage of selectivity (PCHC vs CHC), the number 

average (Mn) and weight average (Mw) molecular weights and the polydispersity 

index (PDI) of the polymer chains. In case of mono-substituted epoxide (e.g. PO), the 

polymer chain can present different regioselectivities: the substituents are on alternate 

carbon atoms (Head to Tail, HT linkages) or on consecutive carbon atoms (Head to 

Head, HH or Tail to Tail, TT linkages). In addition, the polymer chain can present 

different stereoselectivities also called tacticities: all the substituents have the same 

(isotactic), an alternating (syndiotactic) or a random (atactic) stereochemistry. The 

regio- and stereoselectivity of the polymer chain can have an important effect on its 

physical properties. Other important parameters to take into consideration are the 

reaction conditions: the temperature, the pressure of CO2, and the use of additives 

(cocatalyst or solvent) necessary to activate the pre-catalyst [33].  

 

1.2.3.1. Heterogeneous Catalysts 

The reaction was reported for the first time in 1969 by Inoue and co-workers. The 

synthesis allows the production of PPC with high carbonate linkages (88%) by the 

copolymerization of PO and CO2 catalyzed by ZnEt2/H2O mixtures, which was a 

remarkable achievement in the field of CO2 utilization [51]. Following this discovery, 

the groups of Inoue and Kuran investigated the use of ZnEt2/di-or triprotic sources 

including primary amines, dihydric phenols, trihydric phenols, aminophenols, 

aromatic dicarboxylic acids, aromatic hydroxycarboxylic acids, diaminobenzene, and 
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thioresorcinol as active heterogeneous catalyst mixtures for PO/CO2 

copolymerization [32, 33]. These original catalysts exhibited extremely low activities 

(TOFs < 0.5 h-1) associated often with a low regio- and/or stereoselectivity, affording 

polymers containing carbonate and ether linkages alongside the formation of side-

products (cyclic carbonates). Moreover, these heterogeneous catalysts require high 

pressure, high temperature and long reaction times (several days) to produce 

appreciable amounts of polymers. Among heterogeneous catalysts, zing glutarate 

(Zn[O2C(CH2)3CO2]) is the most widely applied example showing high productivity 

and affording high molecular weight copolymers (conversion > 90%, TON = 70) 

[52]. Another class of promising heterogeneous catalysts is the double metal cyanides 

(DMCs), based on zinc and Fe or Co (for example: Zn3[CoCN)6]2), which is also 

known to catalyze the homopolymerization, leading to low percentages of carbonate 

linkages (20-90% according to the polymer formed PPC/PCHC) [53, 54]. Other 

ZnO/fluorinated carboxylic acid precursors have also been investigated showing 

decent activity [55]. Despite their good productivity and stability, heterogeneous 

catalysts have been significantly less studied than their homogeneous homologues. 

Heterogeneous catalysts are the panacea of many industrial processes and in general 

preferred for polymerization in comparison with their homogeneous analogues 

(control of polymer morphology, granular size and avoidance of reactor fouling). 

Heterogenized catalysts also present important industrial advantages in term of 

stability and process development (handling ease, product separation and catalyst 

regeneration). However, the establishment of a relationship between structure and 

activity remains difficult owing to the weak homogeneity of their structure and weak 

concentration in active sites and therefore hampering a rational development of such 

systems [32].  

 

1.2.3.2.  Homogeneous Catalysts 

In the last decade, homogeneous catalysts for the coupling of epoxides with CO2 have 

been improved significantly. A wide range of catalysts has been successfully 

reported, leading to the production of polycarbonates. Homogeneous catalysts are 
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classified in two broad types, bimetallic (Scheme 1.7) and monometallic (Scheme 

1.8) catalysts [56]. 

Different systems have been reported among bimetallic catalysts in which the use of a 

cocatalyst can be often avoided. An important investigated catalytic system is the 

highly active sterically encumbered E-diiminate (bdi) complexes type. [Zn(µ-

OMe)(bdi)]2 3 exhibits unprecedented rates for the CHO/CO2 copolymerization under 

mild reaction conditions (50 ºC, 7 bar, TOF = 2290 h-1) but is inactive for the 

coupling of PO [32]. In these systems, the active catalysts are in equilibrium 

monomer vs dimer, and the non-active complexes are either the monomeric or 

dimeric forms, in this case substituents are relevant toward the activity. Other dimeric 

Zn complexes that proved to be active for the coupling of CHO and CO2 are based on 

phenoxide ligands. Bis-2,6-difluorophenoxide dimeric Zn 4 showed to be an effective 

catalyst for the preparation of high molecular weight PCHCs (80 ºC, 55 bar, TOF = 

16.5 h-1, Mn = 42000 g mol-1) [57]. Lee et al. reported in 2005 the use of bis(anilido-

aldimine)-Zn catalyst. In this system, N-aryl ortho substituents show to be an 

important parameter for the activity of the complex toward the copolymerization of 

CHO and CO2. Dinuclear P-methyl sulfinato Zn complex bearing methyl and 

isopropyl groups 5 is active at low catalyst loading ([Zn]:[monomer] = 1:5600, 80 ºC, 

12 bar, TOF = 200 h-1) leading to high molecular weight and carbonate content 

polymers (Mn = 284000 g mol-1, carbonate linkages = 91%) [58]. Tethered bdi-Zn 

catalysts type has been reported notably by Rieger et al.. For example complex 6, 
bearing flexible methylene bridges between both bdi-Zn moieties and electron-

withdrawing groups, leads to unprecedented activities ([Zn]:[monomer] = 1:8000, 

100 ºC, 30 bar, TOF = 155000 h-1) toward the formation of high molecular weight 

and carbonate content polymers (Mn = 280000 g mol-1, carbonate linkages = 88%) 

[59].  

 

 

 



 28 

 

Scheme 1.7. Selected homogeneous bimetallic catalyst systems for CO2/epoxide 

copolymerization: β-diiminate Zn 3 [60, 61], dimeric Zn phenoxide 4 [57], 

bis(anilido-aldimine) Zn 5 [58], tethered β-diiminate Zn 6 [59], tethered salphen Cr 7 

[62] or dinuclear macrocyclic reduced “Robson” type 8 [56] systems. 

More recently, Nozaki and Rieger groups respectively reported tethered (salen)M 

type (where M = Co, Cr) complexes for the copolymerization of PO and CO2 [45, 62, 

63]. When no cocatalyst is added, a bimetallic propagation mechanism is followed 

leading to a great improvement of the performance (differs by one to two orders of 

magnitude) compared to the monometallic counterparts. For example, the dimeric Cr-

salphen with a four methylene linker 7 is active at low catalyst loading 

([Cr]:[monomer] = 1:2000, 60 ºC, 40 bar, TOF = 82 h-1), supporting the fact that two 
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metal sites are involved in the mechanism [62]. Dinuclear metal coordinated by a 

macrocyclic, reduced “Robson” type ancillary ligand was first developed on Zn and 

later on Mg or Co metal center leading to unprecedented activity for the coupling of 

CO2 with CHO under low CO2 pressure. Cobalt proved to be the most active and 

selective metal center investigated, especially compared to the zinc analogues. The 

mixed valence Co(II)/Co(III) complex 8 is active under mild conditions (80 ºC, 1 bar, 

TOF = 159 h-1) but the activity increases significantly at higher temperature and 

pressure (100 ºC, 10 bar, TOF = 3700 h-1) [56]. 

Monometallic catalysts are divided in two sub-categories: binary components 

including a cocatalyst in addition to the complex and single components also called 

bifunctional catalysts where the complex bears the cocatalyst (Scheme 1.8).  

In 1978, Inoue reported the first single-site catalyst for the epoxide and CO2 

copolymerization. The system is based on a tetraphenylporphyrin (tpp) framework 

initially developed on aluminum, leading for example to complex 9, and then 

extended to other metal centers like Co, Mn and Cr. These catalysts combined with 

an appropriate cocatalyst are moderately active, producing the first monodisperse 

polycarbonates with narrow PDIs but with low molecular weight and in long reaction 

times [64-67]. Among these metals, (tpp)MnOAc was reported in 2003 as the first 

successful example of catalyst enhancing the coupling of CHO with CO2 under 1 bar 

of CO2 (80 ºC, 24 h, conversion = 14%) [68]. However the catalytic activity is greatly 

improved by increasing the reaction time (90 h) or the CO2 pressure (50 bar). 

Discrete Zn but also Al and Cd based catalysts mainly supported by phenoxide 

ligands were developed and showed to be active for the production of polymers [69-

71]. Also, rare-earth alkyl/hydride precursors have been investigated showing decent 

activity [72, 73]. 
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Scheme 1.8. Selected homogeneous monometallic catalyst systems for CO2/epoxide 

copolymerization, binary component: porphyrin (tpp) Al 9 [64] or salen Cr 10 [48] 

systems and single component (salen)CoIII bearing: piperidinium 11 [74], quaternary 

ammonium salt 12 and 13 [75, 76] and TBD 14 [77] appended group. 

Another class of intensively studied homogeneous catalytic systems is based on 

salicylaldimine (salen) framework. Jacobsen et al. and Darensbourg et al. were the 

first to report chromium salen complexes as active, stereoselective and stable 

catalysts for the production of polycarbonates. To date (salen)MIIIX (M = Cr 10 or 

Co) complexes combined with a cocatalyst (typically the onium salt [PPN]Cl) are 
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considered as the most successful systems for CO2-epoxide coupling and have been 

developed extensively [34, 39, 78]. Detailed studies have shown that the use of one or 

two equivalents of an ionic cocatalyst is necessary to activate the pre-catalyst and 

form the active six-coordinate intermediate enhancing the formation of 

polycarbonates. In the past decades many examples of (salen)CoIIIX have been 

reported with various X nucleophiles as well as ligands bearing a wide range of 

substituents. Typically these catalysts are active at moderate temperature, highly 

selective (> 99%) and showing moderate yields (< 50%). This last property is mainly 

due to the increase in viscosity while the polymer is growing. The change of the 

reaction medium viscosity limits increasingly the epoxide diffusion to the metal 

center. In addition to Co and Cr, other metal centers as Al or Mn salen or salan 

complexes have been investigated [34, 79-90].  

Following this development, we recently assisted to a breakthrough with the synthesis 

of an advanced class of single component salen complexes bearing appended 

functionalized cocatalyst groups. These systems are highly stereoselective (formation 

of polycarbonate over cyclic carbonate) and active, mainly for the production of PPC. 

In 2006, Nozaki et al. reported the first example of a cobalt salen complex with a 

piperidinium end-capping arm 11 [74]. The functionalized arm has the ability to 

shuffle protons between the amines and the growing polymer chain, avoiding the 

back-biting reaction even at high temperature. This bifunctional catalyst allows 

keeping a good selectivity (99%) toward the polymer synthesis and increases grandly 

the conversion until 80% ([Co]:[monomer] = 1:2000, 60 ºC, 20 bar, TOF = 610 h-1). 

Following this new ligand design approach, Lee et al. published in 2007 a cobalt 

salen complex bearing one or two quaternary ammonium salts bound at the 5-position 

of each phenyl ring of the ligand, combining the catalyst and the cocatalyst in a single 

component 12-13 [75, 76, 91]. Complex 13 presents the highest activity for the 

copolymerization of CO2 and PO reported, even at diluted catalyst concentration 

([Co]:[monomer] = 1:25000, 80 ºC, 20 bar, TOF = 26000 h-1) affording high 

molecular weight copolymers (Mn = 114000 g mol-1). Another example of these 

highly productive bifunctional complexes are the asymmetric (salen)CoX complexes 

developed by Lu et al. where the 3-position of one of the ligand’s phenyl ring bears a 
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sterically hindered organic defined as TBD (1,5,7-triabicyclo[4,4,0]dec-5-ene) 14 

[77, 92].  Complex 14 leads to the formation of high molecular weights PPC (Mn = 

112300 g mol-1) with a TOF = 7139 h-1 in similar conditions as Lee’s catalysts 

(([Co]:[monomer] = 1:25000, 90 ºC, 20 bar). 

Single-component catalysts are considered to be among the most active catalyst to 

date. Such class of catalytic systems are stable, active at high temperature (up to 90 

ºC), selective (> 90%), allow to decrease greatly the catalyst loading without 

impacting the initiation rate and achieve TOF between 1300 and 20000 h-1. The 

success of these catalysts lies in the proximity of the cocatalyst to the metal center 

circle, thereby avoiding the growing chain to detach from it. Indeed, the charged 

polymer chain is electrostatically attracted to ammonium salts preventing any back-

biting, making them resistant to possible contaminants (water, alcohols), and 

therefore stabilize the active metal center. 

Compounds based on Cr, Co, and Zn metals have shown significant activity for the 

copolymerization of CO2 and epoxides. However, harmless metals must be 

furthermore considered and explored [32, 33].  

 

1.2.3.3.  Recent Advances on “Sustainable” Catalysts  

Despite the success of tetravalent group 4 metals in the ring-opening polymerization 

(ROP) of cyclic ethers [93], the use of catalytic systems based on group 4 elements 

for the reaction of CO2 with epoxides has only recently emerged [94]. Indeed, in 

addition to their reactivity, the use of element as Ti or Zr are attractive metals for the 

synthesis of sustainable polymers as they are abundant in the earth’s crust, listed as 

non-endangered elements and present a low toxicity [95].  

Nozaki et al. opened the way with their investigation on active tetravalent metal (Ti, 

Zr, Ge and Sn) complexes, supported by a tetradentate trisanionic boxdipy ligand 

(boxdipy = 1,9-bis(2-oxidophenyl)dipyrrinate) mimicking salen-type ligands 15 

(Scheme 1.9) [96]. Boxdipy-TiIV, after activation by [PPN]Cl salt, showed decent 



 33 

activity and high selectivity toward CHO/CO2 copolymerization ([Ti]:[monomer] = 

1:2000, 60 ºC, 20 bar, TOF = 76 h-1) producing high molecular weight PCHCs rich in 

carbonate linkages (Mn = 13000 g mol-1, carbonate linkages = 99%). 

 

Scheme 1.9. Sustainable precursors active in copolymerization of CO2 with epoxides: 

boxdipy titanium(IV) 15 [96], bimetallic iron(III) macrocyclic reduced “Robson” 

type ligand 16 [97], pyridylamino-bis(phenolate) 17 [98], iron-corrole 18 and 19 [99] 

and iron amino triphenolate 20 [100] catalysts. 

In parallel, a first catalyst based on Fe was reported by Williams´s group [97]. Iron is 

another potential element as it is the most abundant transition metal. This novel di-

iron(III) macrocyclic reduced “Robson” type ligand 16 (Scheme 1.9), without the 

addition of cocatalyst, yields PCHCs with high carbonate linkages and moderate 

molecular weight (carbonate linkages = 93%, Mn = 2000 g mol-1) under mild 

conditions ([Fe]:[monomer] = 1:1000, 80 ºC, 1 bar, TOF = 6 h-1). Other iron based 

catalysts were developed for the coupling of epoxide with CO2 as pyridylamino-
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bis(phenolate) 17 [98], corrole 18 and 19 [99] and amino triphenolate 20 [100] 

complexes. 

 

1.3. Aims 

The overall objective of this thesis was to develop novel catalysts for the 

copolymerization of epoxide/CO2 in line with elements that are abundant, non-

endangered and presenting a low toxicity.  

More specifically, the thesis focuses on the research of new multidentate ligands and 

complexes of titanium based on the recent discovery of Nozaki´s group, showing for 

the first time that group 4 metal complexes (particularly Ti) have a great propensity 

toward the copolymerization of CO2 and epoxides. Iron is discarded here, as its 

catalytic results did not show, so far, high selectivity and activity. Different 

mer/planar-ligands to mimic Nozaki’s titanium-based system (Scheme 1.9) were 

considered such as tetradentate (salen, salan), tridentate NHC and bidentate NHC 

ligands (Scheme 1.10). 
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Scheme 1.10. Multidentate ligands of titanium-based considered as precursor 

for the polymerization of epoxides for CO2. 

After a short and unsuccessful period of investigations on salen-Ti complexes for the 

CO2 and epoxide copolymerization, we turned our focus on the use of analogues 

oxygen–functionalized NHC group 4 compounds. 

To date, few examples of mono, di and tridentate complexes based on early transition 

metals have been reported [101-103] (Scheme 1.11). Among the tridentate examples, 

NHC incorporating an imidazolium linked bis(phenol) group 4 complexes 21 - 23 

were developed first by Aihara et al. [104], followed by Zhang’s group [105-107]. 

The mer-tridentate bis(aryloxide)/phenolate NHC group 4 complexes 24 - 29 were 

developed by Bellemin-Laponnaz et al. [108, 109]. These catalytic systems based on 

Ti and Zr metals exhibit high activities and high control over the ring-opening 

polymerization (ROP) of rac-lactide. 
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Scheme 1.11. NHC group 4 compounds, tridentate: NHC incorporating an 

imidazolium linked bis(phenol) complexes of Ti and Zr 21-23 [104-107], bis-chloride 

Ti 24 and Zr 25, bis-isopropoxide Ti 26 and Zr 27, chloride isopropoxide Ti 28 and 

Zr 29 [108] and bidentate: alkoxy Ti(IV) 30 [110], cyclopentenyl-2-alkoxy Zr(IV) 31 

[111] and bis-ligated phenolate Ti(IV) (with Dipp = 2,6-diisopropylphenyl and Ad = 

adamantyl) 32 [112]. 

Few examples of bidentate NHC group 4 complexes have been reported. In 2005, 

Arnold et al. developed the remarkably air stable alkoxy functionalized NHC with 

oxygen-coordinated arms 30 [110, 113]. Other complexes have been developed as the 

bis(imidazolidene-N-methyl-N’-cyclopentenyl-2-alkoxy)zirconium diamide 31 [111] 

and the bis-ligated phenolate NHC group 4 compounds 32 [112, 114, 115]. These 

bidentate complexes showed to be active catalysts for the polymerization of rac-

lactide [110] and the polymerization of ethylene, styrene and propylene [111, 112, 

115]. 
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Our initial success (Paper I) [116] combined with boxdipy-Ti/Zr systems initiated 

other investigations from our research group and others in developing new group 4 

catalysts (Scheme 1.12).  

 

In 2014, Wang et al. reported salen titanium as catalyst for the coupling of CHO and 

CO2 [117]. Whereas (salen)TiIVCl2 33 upon [PPN]Cl addition, proved to be only 

active for the production of cis-cyclic carbonate, (salalen)TiIVCl 34 allows the 

formation of completely alternating PCHCs ([Ti]:[monomer] = 1:1000, 60 ºC, 40 bar, 

TOF = 12 h-1, carbonate linkages = 99%, PCHC/CHC = 98/2). Following this work, 

Wang´s group developed trivalent salalen titanium complexes 35 which, with the use 

of [PPN]Cl, proved to be highly active and selective for the production of PCHCs 

([Ti]:[monomer] = 1:1000, 120 ºC, 40 bar, TOF = 577 h-1, carbonate linkages = 99%, 

PCHC/CHC = 99/1) [118]. Other salen type, salen Zr(IV) 36 and bis(salphen) 

(salphen = N,N’-phenylenebis(salicylideneimine) ligands with group 4 systems for 

the coupling of CHO and CO2 have been reported by Mandal et al. [119, 120]. 

Bis(salphen) with titanium(IV) 37 is active for the reaction with the use of a 

cocatalyst ([Ti]:[monomer] = 1:1000, 50 ºC, 35 bar, TOF = 123 h-1, carbonate 

linkages = 74%) [120]. Following the work on complexes 24, 26 and 28 (Scheme 

1.11), our group investigated sterically (un)encumbered mer-tridentate NHC titanium 

38 and 39 as catalysts for the CHO/CO2 coupling [121]. However these catalysts are 

active at low CO2 pressure (60 °C, PCO2 ≤ 1 bar, TOF = 6 h-1), they are less stable and 

efficient than their structural bulky analogues. The last examples reported are group 4 

metals ligated with BTP (benzotriazole phenolate) type ligands developed by Chuang 

et al.. These catalysts showed to have a moderate activity and selectivity to afford 

completely alternating PCHCs: bimetallic (BTP)2Zr alkoxide complex 40 

([Zr]:[monomer] = 1:200, 100 ºC, 20 bar, TOF = 6.8 h-1, carbonate linkages = 79%) 

[122] and BTP complex, where Zr proved to be the most active metal center leading 

to complex 41 ([Zr]:[monomer] = 1:500, 100 ºC, 20 bar, TOF = 9.5 h-1, carbonate 

linkages = 70%) [123].  
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Scheme 1.12. Published group 4 catalysts for the CO2/epoxide copolymerization 

during the course of this project: (salen)TiIVCl2 33, (salalen)TiIVCl 34 [117], 

(salalen)TiIVCl 35 [118], salan-type diamine bis(phenolato) Zr(IV) 36, Bis(salphen) 

with titanium(IV) 37 [120], (un)encumbered mer-tridentate TiIV 38 and 39 [121], 

Bimetallic (BTP)2Zr alkoxide 40 [122] and BTP Zr(IV) alkoxide 41 [123]. 
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2. Summary of main results 

2.1. Synthesis and Characterization of Multidentate N-Heterocyclic 
Carbene Titanium Complexes 

NHCs display strong V-donor and weak to moderate S-acceptor electronic properties 

and constitute an important class of chelating ligands for transition metals, taking 

over the earlier use of phosphines as ancillary ligands. In addition to the unique 

electronic properties of NHCs, the ease of substituent´s variability at the nitrogen 

atom makes them suitable ligands to bind with a wide range of metals, giving them a 

huge potential as catalysts in organic transformations and polymerizations [101, 124]. 

Most of the current applied systems are based on late transition metal complexes, 

despite the great potential of early transition NHC complexes for catalytic 

applications.  

The first group 4 NHC adducts reported, were the monodentate (IMe)2MCl4, 

synthetized from metal halide (where M = Ti, Zr and Hf) in 1994. However, the 

development of these complexes has been under investigated due to the ease of 

dissociation of the M-Ccarbene bond. Indeed, the carbene with its soft character 

dissociates easily from the electron deficient metal center, especially for group 4 

transition metals in high oxidation states. To overcome this limitation, a plethora of 

multidentate NHC donor systems bearing anionic ligands have been developed in the 

past decade, i.e. containing armed chelating functional groups based on carbon, 

nitrogen and oxygen [103, 125-127]. The coordination of these NHC derivative 

ligands to early transition metals enable to ensure an efficient chelation and lead to 

robust and stable complexes [102, 103]. The stability of NHC complexes from 

undesired dissociation is also controlled by anchoring substituents, the use of 

ancillary ligands restricting the bite angle steric size avoids the degradation of the 

complex [128].  
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An overview of the classical synthetic approaches developed to obtain group 4 NHC 

containing functional groups complexes have been reported by Zhang et al. [102]. 

There are two main approaches. The first is via the deprotonation of the azolium salts 

to obtain the free (or M-NHC where M = Li, Na, K) NHC intermediate, followed by 

its coordination to halide metal precursors. Free carbene species are usually difficult 

to isolate due to their poor stability, but can be formed in situ before their 

coordination with group 4 metal sources, at low temperature. The second route is via 

amine, toluene, alcohol or HCl elimination by the direct addition of the metal 

precursor to the imidazolium salt to afford group 4 metal NHC complexes. 

 

2.1.1. Synthesis of Tridentate N-Heterocyclic Carbene Titanium Complexes 

by Direct Addition 

The synthesis and characterization of the symmetrical 1,3-bis(3,5-di-tert-butyl-2-

hydroxyphenyl) imidazolinium chloride salt, [N3-tBuO,C,O]-NHC ligand 42 and 

complexes ([N3-tBuO,C,O]-NHC)Ti(THF)(OiPr)Cl 28, ([N3-tBuO,C,O]-NHC)Ti(Cl)2 24 

and ([N3-tBuO,C,O]-NHC)Ti(OiPr)2 26 was described by Dagorne et al. [108, 129]. 

Complex 28 was obtained by direct addition of Ti(OiPr)4 to the imidazolidinium salt 

42 via isopropanol elimination (Scheme 2.1). Complex 24 was synthesized via a 

different synthetic route developed in our group. To the imidazolium salt 42 was 

added directly the titanium precursor TiCl4 in toluene and the reaction was allowed to 

stir at reflux overnight, thus avoiding the need of a base to neutralize HCl (Scheme 

2.1). This new approach for the synthesis of titanium NHC complex by the direct 

addition of titanium halide to 42 leads to higher yield (92%) compared to (OiPr)3TiCl 

precursor (84%). 
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Scheme 2.1. Syntheses of tridentate bis-aryloxy NHC titanium chloride 

isopropoxide 28 and bis-chloride 24 complexes.  

 

2.1.2. Reactivity of Tridentate N-Heterocyclic Carbene Titanium Complexes 

The modification of the coligand X of ([N3-tBuO,C,O]-NHC)Ti(X)2 complexes was 

shown to be accessible via a typical salt metathesis procedure from the halide or 

alkoxide metal precursor. Complex 26 was synthesized by reaction of precursor 28 

with one equiv. of lithium isopropoxide [108]. Compound 26 showed to be an 

adequate precursor that could be modified for example by its treatment with one 

equiv. of tert-butoxysilanol or a large excess of trimethylsilylazide to afford ([N3-
tBuO,C,O]-NHC)Ti(OiPr)(OSi(OtBu)3) 43 and ([N3-tBuO,C,O]-NHC)Ti(N3)2 44 

complexes respectively, in high yield (Scheme 2.2). 
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Scheme 2.2. Syntheses of tridentate bis-aryloxide NHC titanium bis-isopropoxide 

26, silyloxide/isopropoxide 43 and azide 44 complexes. 

Bis-chloride NHC complex 24 was also applied as a complex precursor (Scheme 2.3). 

The reaction of 24 with a base followed by (tBuO)3SiOH, with lithium benzyloxide 

salt or with sodium acetate under appropriate conditions generates the corresponding 

([N3-tBuO,C,O]-NHC)Ti(Cl)(OSi(OtBu)3)(THF)) 45, ([N3-tBuO,C,O]-NHC)Ti(OBn)2 

46 and ([N3-tBuO,C,O]-NHC)Ti(K2-Ac)2 47 compounds, in good yield. 
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Scheme 2.3. Syntheses of tridentate bis-aryloxy NHC titanium silyloxide chloro 45 

benzyloxide 46 and acetate 47 complexes. 

All the new compounds were fully characterized by 1H/13C NMR and DRIFT 

spectroscopy and elemental analysis. In addition, complexes 43, 44-THF (Figure 

2.1), 45-THF, 46 and 47 (Figure 2.2) were structurally characterized by single crystal 

X-ray analysis.  
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Figure 2.1. Crystal structure of 44-THF adapted from Paper II [130]. Hydrogen 

atoms, toluene molecule and tBu groups were removed for clarity. 

  

The formation of complex 44 was also put in evidence by its reaction with an alkyne 

[131]. The [3+2] cycloaddition reaction of the dipolarophile dimethyl 

acetylenedicarboxylate (DMAD) (aka “i-click”) with the azido ligands leads to the 

formation of the triazolato (Tz) complex ([
3
-

tBu
O,C,O]-NHC)Ti(C2(CO2Me)2) 48 

(Scheme 2.4).  

 

Scheme 2.4. Reactivity of tridentate NHC titanium azide with alkyne. 

 

Tridentate NHC titanium complexes are usually five or six-coordinate adopting 

octahedral (28) or trigonal bipyramidal (24, 26, 43-46, 48) geometries. Interestingly 

complex 47 having two oxygen moieties belonging to the NHC ligand and four others 

from the carboxylate ligands is a rare example of seven-coordinate titanium metal 

complex as illustrated in Figure 2.2.  
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Figure 2.2. Crystal structure of 47 adapted from Paper II [130]. Hydrogen atoms were 

omitted for clarity.  

 

This uncommon coordination is represented by a pentagonal bipyramid geometry 

where Ti-Ccarbene bond appears to have the shortest distance reported for multidentate 

oxygen-functionalized NHC titanium(IV) complexes (Ti-Ccarbene length = 2.148 Å).  

Attempts were performed to synthesize NHC-titanium(III) complex from either 

Ti(III) precursor or ([O,C,O]-NHC)Ti
IV

 derivatives with a reducing reagent. The 

addition of imidazolidinium chloride salt direct or after its deprotonation with KH to 

TiCl3(THF)3 precursor affords intractable reaction mixtures in contrast to other 

reported procedures for NHC-Ti
III

 [132-137]. The well-established approach to 

reduce complexes using  one equiv. of LiBEt3H as reducing agent [113, 136-139] at -

78 ºC in toluene proves to not be selective for the reduction of complex 24, but 

affords after work up, a mixture of products. A green compound was extracted from 

toluene, which did not show any signals in NMR spectra, presumably being a 

paramagnetic Ti(III) compound and an insoluble brown compound was identified as 

the tetravalent complex ([
5
-
tBu

O,N,C,N,O]-imidazolidine)Ti(Cl)(THF) 49 (Scheme 

2.5). 
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Scheme 2.5. Tetravalent imidazolidine titanium complex 49. 

This compound was fully characterized by 1H/13C NMR and DRIFT spectroscopy and 

elemental analysis and its molecular structure was determined by single X-ray 

analysis. The hydride transfer to the Ccarbene atom was observed through the 1H and 
13C NMR data with respectively chemical resonances of δ 3.95 and 103.7 ppm for the 

CH formed and the disappearance of the characteristic 13C signal of Ccarbene. Although 

the obtained crystals of 49 have a limited quality, the connectivity around the 

titanium center can be determined upon doubts, confirming the formation of the 

imidazolidine titanium 49. The solid-state structure of complex 49 shows a seven-

coordinate metal center adopting a distorted square face monocapped trigonal prism 

geometry. However this reactivity has not been reported for NHC titanium 

complexes, similar alkyl transfers have been reported, notably Lewis base assisted 

benzyl migration on isolated or putative bidentate NHC-group 4 complexes [140-

142], where the formation of the seven-coordinate complexes is engendered by the 

electrophilic nature of the Ccarbene. 

 

2.1.3. Synthesis of Bidentate N-Heterocyclic Carbene Titanium Complexes 

via Double Deprotonation 

The route for the synthesis of versatile aryl substituted NHC ligands to give [N2-O,C] 

chelate ligand developed by Grubbs et al. was used to develop a new set of o-

hydroxyaryl unsymmetrically N-substituted NHC ligands (Scheme 2.6) [114].  
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Scheme 2.6. Synthetic route for unsymmetrical o-hydroxyaryl substituted 

imidazolidinium salts 50-53 (with Dipp = 2,6-diisopropylphenyl, Dep = 2,6-

diethylphenyl and Mes = 1,3,5-trimethylphenyl). 

Ethyl chlorooxoacetate was treated with an aryl amine in presence of trimethylamine 

to afford the corresponding oxanilic acid ester. This compound was then reacted with 

the desired aminophenol leading to the oxalamide. At this point carbonyl functions 

were reduced using a borane-THF solution followed by the protonation of the amide 

functions by concentrated HCl. Finally, the cyclization of the heterocycle was 

achieved by treatment with triethylorthoformate to afford the carbene precursors 50-

53. The new intermediate compounds and ligands were characterized by 1H/13C NMR 

and DRIFT spectroscopy and elemental analysis.  

 

 



 48 

The route followed for the coordination of bidentate o-hydroxyaryl unsymmetrically 

substituted NHC to titanium was reported by Grubbs et al. [112]. Ligands 50-53 were 

doubly deprotonated using two equivalents of potassium bis(trimethylsilyl)amide 

(Kbtsa) for 10 min prior to the reaction with a solution of TiCl4 for 2 h. Free NHC 

ligands or alkali metal-NHC complexes are known to be difficult to isolate due to 

their poor stability, however, they can be formed in situ before their coordination 

with the metal source. The double deprotonation of 50 and 51 followed by their 

coordination to TiCl4 precursor leads to the formation of ([N2-DippC,O]NHC)2TiCl2 54 

and ([N2-Dipp,(4-Me)C,O]NHC)2TiCl2 55 complexes as dark red solids, in quantitative 

yield (Scheme 2.7). 

 

Scheme 2.7. Bidentate o-hydroxyaryl NHC titanium chloride complexes 54 and 55. 

Attempts using Ti(OiPr)4 as titanium precursor by direct addition under different 

temperature conditions (room temperature to reflux) and solvents (toluene, THF) did 

not lead to the coordination of the carbene to the metal center.  It is also interesting to 

note that despite our efforts to synthesize the mono-ligated complex, the treatment of 

the “free” NHC ligands 50 and 51 with one equiv. of TiCl4, only afford a unique 

stereoisomer of bis-ligated NHC titanium. The new synthesized complexes 54 and 55 

were characterized by 1H/13C NMR and DRIFT spectroscopy. The molecular 

structure of 54 was also determined by single X-ray analysis displaying a slightly 

distorted octahedral geometry, similar to the reported 1-(2,6-diisopropylphenyl)-3-(2-

hydroxy-3-(adamant-1-yl)-5-methylphenyl)-4,5-dihydro-imidazolyl titanium(IV) 

dichloride complex ([N2-Dipp,(3-Ad,5-Me)C,O]NHC)2TiCl2 32 [112] (Figure 2.3).  
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Figure 2.3. Crystal structure of 32 adapted from [112] and of 54 adapted from Paper 

III. Hydrogen atoms and a co-crystallized solvent dichloromethane molecule are 

omitted for clarity. 

In both complexes, the neutral NHC moieties situated in trans to each other occupy 

the axial positions and the anionic aryloxide the equatorial positions. However, unlike 

([
2
-

Dipp,(3-Ad,5-Me)
C,O]NHC)2TiCl2 32 having the two oxygen and the two chloride 

atoms located cis to one another, complex 54 possesses the two oxygen and the two 

chloride atoms trans to each other. In the case of ([
2
-

Dipp,(3-Ad,5-Me)
C,O]NHC)2TiCl2 

32, the cis configuration observed is favored to avoid the steric interaction between 

the Dipp and Ad bulky substituents. Although the coordination mode of 54 is similar 

to reported bis-ligated salicylaldimine titanium complexes [143], the lack of bulky 

substituents on the aryloxy ring leads to the thermodynamically stable trans 

configuration. Crystal structures of 32 and 54 were used to calculate the percent 

buried volume (%Vbur, via SamVca 2.0 calculations) and visualize steric maps of the 

complexes [144, 145]. This additional study showed that the trans configuration is 

greatly favored by the coordination of the second NHC ligand bearing a H as ortho 

substituent on the aromatic ring thus avoiding the collision of the two Dipp groups. 

On the contrary, the cis configuration is preferred with an ortho bulky substituent. 

Following the same procedure as 50 and 51, the double deprotonation of o-

hydroxyaryl imidazolidinium chloride salts 52 and 53 followed by their treatment 

with TiCl4 precursor gives only intractable mixture of compounds, suggesting the 
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formation of different isomers. A similar steric study, as for 32 and 54, was 

conducted on 52 and 53. Unlike in the case of ortho bulky iPr groups on the N-

Dipp substituent (leading to the single stereoisomer trans configuration in 

complex 54), the presence of less hindered N-aryl substituent in imidazolidinium 

chloride salts 52 and 53 could not suppress the formation of other isomers. 

 

2.2. Applications in Catalysis: Copolymerization of  Cyclohexene Oxide 

and Carbon Dioxide 

All the reported complexes (24, 26, 28, 43-47, 49, 54 and 55) were evaluated as pre-

catalyst for the coupling of CHO and CO2. Typically, the reaction is run with a 

CHO:Ti ratio equal to 2500 (8 Pmol of precursor, 8 Pmol of [PPN]X cocatalyst, 20 

mmol of CHO), with a CO2 pressure of 0.5 bar and a temperature of 60 ºC.  

All the tridentate bis-aryloxy NHC titanium(IV) complexes activated by [PPN]X are 

able to catalyze the copolymerization of CHO with CO2 along with excellent 

selectivity in atactic PCHCs (≥ 99%) without the formation of side-products. 

Interestingly, ([N5-tBuO,N,C,N,O]-imidazolidine]Ti(Cl)(THF) complex 49 shows no 

catalytic activity under these reaction conditions, demonstrating the importance of the 

NHCcarbene-type ligand in the reactivity of the titanium metal center. 

Bidentate o-hydroxyaryl unsymmetrically substituted NHC titanium(VI) complexes 

54 and 55 show no polycarbonates formation or other side-products such as 

cyclohexene carbonate or homopolymer. The unreactivity of these complexes toward 

the copolymerization is possibly due to the steric congestion around the metal center 

hindering the coordination either of the nucleophile (from the cocatalyst) to form the 

putative anionic active specie or the CHO to the titanium center. 
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2.2.1. Polymers Properties 

Polymers were characterized by 1H and 13C NMR spectroscopy allowing the 

determination of the conversion and the selectivity. All the PCHCs formed showed to 

have a high degree of carbonate linkages (≥ 99%) and a moderate TOF included 

between 20 and 39 h-1. The stereostructure was deduced by the model developed by 

Nozaki [146] from the 13C spectra of the PCHCs, showing an atactic configuration for 

all the polymers produced [84, 146]. A general trend of the obtained PCHCs gives a 

narrow but bimodal polydiversity attesting that polymerization occurs in a control 

manner. Also, the molecular weights measured for these PCHCs are lower than the 

expected theoretical values due to the presence of a moisture contaminant and/or the 

possible monomer enchainment on both trans and cis side of the Ti-Ccarbene bond [67, 

85, 147-150]. 

2.2.2. Study of the Reaction Conditions 
 

2.2.2.1. Pressure and Temperature 

Different pressures and temperatures were investigated for the optimization of the 

reaction conditions. Carbon dioxide pressure was studied from 2 to 25 bar. No 

significant changes in activity and/or selectivity were observed for our systems 

similarly to boxdipy titanium catalyst [96]. It is important to note that it was the first 

example of tetravalent titanium catalytic system working at pressure close to 

atmospheric pressure providing completely alternating polycarbonates (selectivity ≥ 

99 %) with TOF included from 20 to 39 h-1. The temperature of the copolymerization 

reaction was varied between 30 to 80 °C. An increase of the temperature allows an 

increase of the overall yield of the reaction (homogeneity of the reaction mixture is 

improved by higher temperature). However, above a certain temperature (i.e. 60 °C) 

an increase of the yield is still observed but accompanied by a decrease of the 

molecular weight of the produced polymer chains. In addition, the tridentate NHC 

titanium complexes proved to be robust toward high temperature and pressure 

conditions.  
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2.2.2.2. Catalyst Loading 

An increase of the catalyst concentration from 2 mM to 8 mM (4 mM in typical 

reaction) leads to an increase of the overall yield of the reaction. Stagnation is 

observed at higher catalyst loading due to mass transfer problem as a consequence of 

the solidification of the reaction mixture. This phenomenon was also observed for 

other catalytic systems [33, 43, 147]. To overcome this problem, a co-solvent was 

used improving the copolymer yield until a concentration of 6.6 mM. At higher 

catalyst dilution the production of PCHCs significantly drops. Similar to salen type 

Cr(III) [PPN]X activated system, the mechanism is dependent on the concentration of 

catalyst and epoxide indicating that the reaction proceeds presumably via a 

cooperative intermolecular mechanism of the epoxide ring-opening [43, 81, 150, 

151]. The incoming nucleophile binds to the titanium metal center to form the active 

species. The formed active compound is either behaving as a whole nucleophile or 

releasing a nucleophile allowing the intermolecular ring-opening to a coordinated 

CHO.  

 

2.2.2.3. Nature of the Cocatalyst 

Without the addition of a cocatalyst to the tridentate NHC titanium complexes, only 

the formation of PCHO was observed, pre-catalysts do not permit the insertion of 

CO2 molecule into the polymeric chain. These polyethers produced in low yield are 

composed of long chains (Mn = 56 - 83 kg mol-1) rich in ether linkages (≥ 99%).  

Different cocatalysts were tested in combination with tridentate NHC titanium 

complexes. The anionic [PPN]Cl salt, a bulky cation associated to an anion with a 

poor leaving group ability, was proved to be the most efficient cocatalyst, achieving 

high activities and good selectivity [42]. The coordination of [PPN]Cl to Lewis acid 

metal center is described as a reversible exchange process which creates an increase 

of the electron density on the metal center [152, 153]. Previous studies on salen 

catalytic systems have shown that this process enhances the formation of anionic six-

coordinate trans-(salen)MX2 and labilizes the ligand on the trans position to the 
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coordination site [152, 153]. These observations were also made for titanium(IV) 

tridentate NHC catalytic systems. The activation of the five- and six-coordinate 

neutral complexes by onium salts [PPN]X (where X = Cl, N3, NO2) allowed the 

production of PCHCs, without the formation of side products. Recrystallization of the 

active species proved to be impossible, due to the dissociation of the onium salt from 

the complex. Preliminary investigation by NMR spectroscopy of complexes 24, 26 
and 28 upon the addition of [PPN]Cl were performed (Figure 2.4).  

 

Figure 2.4. 1H NMR spectra of complexes 24, 26, 28, and [PPN]Cl and complexes 

24, 26 and 28 after activation with 1 equiv. of [PPN]Cl in CDCl3. Adapted from 

Paper I [116]. 
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The observed chemical shifts show an increase of the electron density on titanium 

metal center indicating most probably the formation of the six-coordinate 

intermediates 56, 58, 59 and 60 (Scheme 2.8).  

 

Scheme 2.8. Proposed initiation mechanism after activation with [PPN]Cl on 24, 26 

and 28 complexes adapted from Paper I [116]. 

Different equivalents of cocatalyst/catalyst were evaluated determining the optimized 

ratio of one equivalent. The use of a substoichiometric amount most probably 

provokes a decrease of concentration of anionic six-coordinate intermediates thus 

causing a decrease of the overall activity of the systems [67, 82, 151]. An addition of 

an excess of [PPN]Cl has a detrimental effect on the formation of polymer, which 

was already observed for salen type systems [150]. Interestingly the use of [nBu4N]Cl 

salt did not lead to the formation of polymer, showing the importance of using a more 

sterically encumbered and less interacting [PPN]+ cation for the formation of active 

anionic species [154]. The use of the more nucleophilic anionic cocatalyst [PPN]N3 

showed to have a small beneficial effect on the productivity and the TOF of the 



 55 

complexes bearing encumbered coligands (isopropoxide 26 and 28, silyloxide 43 and 

45, benzyloxide 46 and acetate 47). On the contrary, its application to complexes with 

less-hindered coligands (chloride 24 and azide 44) leads to a small decrease of CHO 

conversion due to, a slightly favored degradation of the active species for Cl and a 

lower concentration and stabilization of the active intermediate for N3. A reduced 

activity and yield were observed when using [PPN]NO2. In the class of neutral bases, 

the use of the known DMAP or PPh3 to the tridentate NHC complexes did not allow 

the formation of polycarbonate or cyclic carbonate.  

  

2.2.2.4. Nature of the Coligand  

The effect of the initiating coligand was evaluated based on tridentate bis-aryloxy 

NHC complexes ([N3-tBuO,C,O]-NHC)Ti(X)2L. A summary of the result of the 

copolymerization of CO2 with CHO catalyzed by complexes 24, 26, 28, 43-47 is 

presented in Table 2.1. 
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Table 2.1. Summary of the main results for the copolymerization of CHO with CO2 

catalyzed by tridentate bis-aryloxy NHC titanium(IV) complexes 

Runa Complex/Cocat.b Yieldc  

(%) 

Selectivity d  

(PCHC %) 

TOFe 

 (h-1) 

Mn
f      

(kg mol-1) 

Mw/Mn
f 

1 24/[PPN]Cl 27 ≥99 29 5.7  1.30  

2 26/[PPN]Cl 27 ≥99 28 8.0 1.37 

3 28/[PPN]Cl  32 ≥99 20 6.2 1.46  

4 43/[PPN]Cl 23 ≥99 24 8.0 1.75 

5 44/[PPN]Cl 37 ≥99 39 3.7 1.49 

6 45/[PPN]Cl 27 ≥99 29 8.2 1.77 

7 46/[PPN]Cl 23 ≥99 23 4.1 1.48 

8 47/[PPN]Cl 32 ≥99 33 4.0 1.92 

a Polymerization procedure: 8 Pmol of precursor, 8 Pmol of cocatalyst, 20 mmol of CHO (CHO:Ti = 
2500:1), PCO2 < 0.5 bar at 60 °C. b Catalyst pre-formation 15 min at 30 °C and dried for 2 h under 
vacuum. c Yield determined gravimetrically. d Measured by 1H NMR spectroscopy in chloroform-d 
on the crude product. e Turnover frequency of CHO to PCHC. f Determined by GPC-SEC in THF at 
30 °C against polystyrene standard.  

 

A slightly enhanced activity for catalytic systems based on complexes bearing azide, 

isopropoxide and acetate ligands were observed compared to other coligand types, 

with a maximum TOF reached of 39 h-1 for the azide complex 44 (Table 2.1 Run 5). 

Comparable to previous systems [80, 84, 85, 154, 155], the presence of more 

nucleophilic initiator decreases the initiation time of the ring-opening allowing the 

complex to achieve higher activities. In the case of the poor nucleophile Cl, a 

significant decrease of the concentration of the active anionic center was observed by 

dissociation of the NHC aryloxy upon activation, dropping the catalyst activity. In the 

contrary with strong nucleophile, the moderate hindered isopropoxide, and acetate or 
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the azide coligands are more effective for the ring-opening of the coordinated CHO. 

The presence of very bulky coligands limits the accessibility of the incoming Cl atom 

needed to form the active six-coordinate intermediate. Variations lie in the 

differences on steric and electronic level of the incoming nucleophile and coligand. 
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3. Conclusion 

Tridentate NHC-titanium silyloxide, azide, benzyloxide and acetate complexes were 

obtained via salt metathesis from the chloride or isopropoxide precursors. The new 

compounds were fully characterized and their molecular structures were identified. A 

unique seven-coordinate Ti(IV) metal center is observed in the acetate complex 

which adopts a pentagonal bipyramid geometry and presents the shortest Ti-Ccarbene 

distance reported for multidentate oxygen-functionalized NHC-titanium(IV) 

complexes. The formation of the azide complex was confirmed by its cycloaddition 

with a functionalized alkyne to afford the triazolato complex. Attempts to synthetize 

NHC-titanium(III), via the coordination of TiCl3(THF)3 precursor or by the reduction 

of titanium(IV), were unsuccessful. Instead, via a hydride transfer, the unexpected 

seven-coordinate imidazolidine-titanium(IV) was formed.  

A set of new o-hydroxyaryl unsymmetrically N-substituted NHC ligand was 

synthetized, coordinated after double deprotonation to titanium(IV) precursor to 

afford bis-ligated NHC titanium complexes and fully characterized. N-aryl 

substituents showed to have a determinant effect for the obtaining of a single 

stereoisomer. In addition the ortho-substituent on the N-aryloxy has a determinant 

effect on the preferred cis versus trans configuration. The lack of bulky substituents 

on the aryloxy ring leads to the thermodynamically stable trans configuration 

complex.  

All the developed complexes were evaluated for the copolymerization of CHO and 

CO2. Tridentate NHC-titanium(IV) complexes are highly active towards the 

completely alternating copolymerization of cyclohexene oxide with CO2, while the 

imidazolidine-titanium(IV) and the bidentate NHC-titanium(IV) complexes showed 

no activity.  
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The use of stoichiometric amount of bulky anionic [PPN]X salt as a cocatalyst is 

determinant for the formation of active anionic six-coordinate intermediates. The 

overall yield of the reaction is positively affected by an increasing of temperature and 

catalyst loading while it is independent toward the CO2 pressure variation, indicating 

a cooperative intermolecular mechanism of the reaction.  

In this work, we reported a new class of catalysts based on titanium NHC ligands, 

active under low CO2 pressure (≤ 0.5 bar), for the copolymerization of CHO and CO2.  
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4. Further work 

Following the finding of a new class of catalysts for the copolymerization of CO2 

with epoxide, group 4 NHC complexes should be further developed, based on 

different metal centers and bearing a wide range of NHC ligands (e.g. with different 

backbone and bearing substituents with different steric properties) to improve their 

catalytic performance and tune the properties of the polymers formed. 

In parallel, further studies of the reactivity of such complexes as well as mechanistic 

studies of the catalytic systems should be solved as it is essential to get a deeper 

understanding of the mechanism reaction. 

Titanium NHC complexes were investigated for the copolymerization of CO2 and 

CHO and other comonomers could be studied as the common PO or promising 

alternatives with the use of bio-epoxides, such as (+)-limonene oxide, isoprene oxide 

or D-pinene oxide. 

As titanium NHC complexes showed to be active in the copolymerization of epoxide 

and CO2 and ethylene polymerization, it would be interesting to extend the use of 

these systems to other catalytic applications. 
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Abstract 

Bis-ligated titanium(IV) metal complexes supported by bidentate unsymmetrical 
o-hydroxyaryl-substituted N-heterocyclic carbene ligands were synthesized and 
structurally identified. While the direct addition of the doubly deprotonated bulky 
imidazolidinium chloride salts [Dipp,4-RNHC-H]Cl (with Dipp = 2,6-diisopropylphenyl, R 
= H (2-hydroxyphenyl), and R = Me (2-hydroxy-4-methyl-phenyl)) with chloro-titanium 
precursor favors the formation of single stereoisomer corresponding to the bis-ligated 
titanium complexes trans-([κ2-C,O]-Dipp,4-RNHC)2TiCl2 (R = H (2-hydroxyphenyl) for 4aH, 
and R = Me (2-hydroxy-4-methyl-phenyl) for 4aMe), the reactivity with sterically less 
hindered imidazolidinium chloride salts [Mes,HNHC-H]Cl and [Dep,HNHC-H]Cl as protio-
ligands (with Mes = 2,4,6-trimethylphenyl and Dep = 2,6-diethylphenyl) did not afford 
to single stereoisomer of bis-ligated titanium complexes. These results combined with 
topographic steric maps as well as the buried volume descriptor (%Vbur) indicate that 
bidentate bulky N-Dipp-substituted NHC ligands offer some level of steric protection 
preventing the formation of other possible bis-ligated (C,O)-NHC-titanium 
stereoisomers.  
 
 
 
Keywords 

Titanium; Bidentate ligand; Unsymmetrical N-heterocyclic carbene; Bis-ligated titanium 
complex; Ethylene polymerization.
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1. Introduction 
Since the first isolation and characterization of the N-heterocyclic carbene (NHC) by 

Bertrand [1] and Arduengo [2], NHCs have gained outstanding importance as ancillary 
ligands throughout most of the late transition metals and provided an useful hand of 
robust and versatile organometallic compounds for homogeneous catalysis [3]. 
Although late transition metal complexes show strong metal carbene bonds and slow 
dissociation with most of the NHC ligands, many of the early transition and f-block 
metals show the opposite trend [4]. Thus, to reduce the tendency of the NHC to 
dissociate from transition metal, considerable research effort have been devoted toward 
the studies of multidentate anionic carbon, nitrogen, oxygen and sulfur functionalized-
NHC ligands [3h, 5]. A series of anionic carbon (i.e. phenyl, cyclopentadienyl, indenyl, 
fluorenyl), nitrogen (i.e. amido), oxygen (i.e. alkoxide, aryloxide, enolate) and sulfur 
(thiolate) groups have been developed to act as tethers for holding the NHC moiety in a 
close proximity to oxophilic metal centers [3f, h, 4b, d, 4f-h]. For example, the use of 
multidentate oxygen-functionalized NHC ligands of group 4 has proven to be an 
effective synthetic method for developing robust catalysts for the oligomerization and 
(co-)polymerization of olefins [6], hydroamination/cyclization of primary aminoalkenes 
[7], ring-opening polymerization (ROP) of rac-lactide [8], and selective coupling of 
epoxides and CO2 to either polycarbonates [9] or cyclic carbonates [9b]. Of particular 
interest, the bidentate o-hydroxyaryl substituted NHCs are structurally analogous to 
bidentate salicylaldimine ligands [10], and are amongst the most commonly studied 
ligand classes in coordination chemistry due to their ease of preparation, ability to 
stabilize various metals in different oxidation states, and particularly valuable for the 
fine-tuning of electronic and steric parameters in a large variety of catalytic organic and 
polymerization reactions [11]. Recent investigations on bis-ligated bidentate 
alkoxy/aryloxy-functionalized NHCs of group 4, when activated by MAO 
(methylaluminoxane), showed to be active in ethylene [6d, f, g, l], ethylene/1-octene and 
ethylene/norbordene [6d] (co-)polymerization, and stereoselective in propylene [6f, g] 
and styrene polymerization [6l] similarly to the class of salicylaldimine group 4 
catalysts (aka phenoxy-imine, FI, Chart 1) [11e]. Following these leads, we sought to use 
bidentate o-hydroxyaryl substituted NHC-based ligands framework that are analogous 
to FI ligands in efforts to conceive a new class of catalysts not only for olefins 
polymerization, but also for the copolymerization of CO2 and cyclohexene oxide (CHO) 
in order to extend our studies on active and highly selective catalysts based on 
tridentate bis(aryloxy) NHC ligand sets of group 4 [9]. In addition to complex 
developed by Grubbs, i.e. cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 (with 3-Ad, 5-Me = (2-
hydroxy-3-(adamant-1-yl)-5-methylphenyl), and a Dipp moiety as N-aryl substituent, 
Chart 1) [6d][6l], a similar set of unsymmetrical o-hydroxyaryl NHC ligands was 
synthesized bearing sterically less-hindered substituents on the N-aryloxy moieties and 
with various N-aryl substituents such as Dipp, Mes and Dep groups, as well as their 
coordination behavior to titanium. Preliminary data concerning the ability of the 
isolated bis-ligated (C,O)-NHC-titanium complexes to initiate the ethylene 
polymerization are also presented. 



 3

 

 

Chart 1 

 
2. Results and Discussion 

2.1. Synthesis of o-hydroxyaryl substituted imidazolidinium protio-ligands 3a-c 

The o-hydroxyaryl substituted imidazolidinium chloride salts [Ar,4-HNHC-H]Cl 3aH (with 
Ar = Dipp) and 3c (with Ar = Mes) were prepared according to the established procedure 
[12], and [Dipp,4-MeNHC-H]Cl 3aMe and [Dep,4-HNHC-H]Cl 3b by adapting this literature 
procedure: ethyl chlorooxoacetate was reacted in THF with the appropriate arylamine a-
c in presence of triethylamine at 0 °C to give the corresponding oxanilic acid esters 1a-c, 
which were treated with the suitable aminoalcohols to afford quantitatively to 
oxalamides 2a-c (Scheme 1). Subsequent reduction of 2a-c with borane THF-adduct and 
acidification of ethylenediamine moieties followed by their cyclization with an excess of 
triethyl orthoformate affords to imidazolidinium protio-ligands 3a-c in high overall 
yields (Scheme 1). Protio-ligand 3c was further characterized by X-ray crystallography 
and crystallizes as a well-separated ion pair as found in other analogous 
imidazolidinium salt (Fig. S1, Table S1-3) [13]. The 1H NMR spectra of imidazolidinium 
salt  [Dipp,4-MeNHC-H]Cl 3aMe and [Dep,4-HNHC-H]Cl 3b display the characteristic chemical 
resonances of the CHimidazolidinium proton (singlet at δ 9.05 and 8.96 ppm, respectively) and 
two broad triplets for the NCH2 protons (apparent A2B2 system) of the o-hydroxyaryl 
unsymmetrically substituted imidazolidinium ring (centered at δ 4.59 ppm with  υAB = 
192 Hz and 4.64 ppm with υAB = 216 Hz, respectively), which are well-in-line with the 
reported data for 3aH and 3c (Fig. S2-3) [12]. The 13C NMR spectra of 3aMe and 3b show 
typical chemical resonances at δ 156.6 and 157.2 ppm in chloroform-d, respectively, 
corresponding to the CHimidazolidinium carbons (Fig. S4-5). The IR spectra of both protio-
ligands also exhibit stretches at 1624 (νC=N) cm-1 characteristic of the imidazolidinium 
ring. 
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Scheme 1. Synthetic route for unsymmetrical o-hydroxyaryl substituted 
imidazolidinium salts 3a-c [12]. 

 

2.2. Synthesis of bis-ligated o-hydroxyaryl substituted NHC titanium complexes 4aH 
and 4aMe 

Following the synthetic route reported previously by Grubbs [6d], the o-
hydroxyaryl substituted imidazolidinium salts 3aH and 3aMe were doubly deprotonated 
by two equivalent of potassium bis(trimethylsilyl)amide (Kbtsa) for 10 min before to be 
treated with a 1M solution of TiCl4 in toluene for 1 h affording to complexes 4aH and 
4aMe as dark-red solids in quantitative yield (Scheme 2). Attempts using other synthetic 
methods for the syntheses of NHC-group 4 complexes [8b, 9a-c], such as the direct 
addition of imidazolidinium salts to Ti(OiPr)4 (alcohol elimination route) under 
different temperature conditions (room temperature to reflux) and solvents (toluene, 
THF), which should give in principle similar compounds, did not lead to the bis-ligated 
titanium complexes. It is interesting to note that the addition of one equivalent of 
deprotonated imidazolidinium salts 3aH or 3aMe to TiCl4 mainly leads to the formation of 
bis-ligated NHC complexes of titanium as major products. The 1H NMR spectra of 4aH 
and 4aMe show similar pattern, i.e. the disappearance of CHimidazolidinium proton and the 
appearance of a centrosymmetric multiplet assigned to the magnetically nonequivalent 
NCH2 protons (geminal AA'BB' system) on the NHC ring, which is consistent with either 
a C2h or C2v-symmetry molecule in solution (Fig. S6-7). The 13C NMR spectra of both 
complexes 4aH or 4aMe confirm the NHCcarbene ligation to the titanium central atom with 
typical chemical resonances of the carbene at δ 206.7 and 206.6 ppm in benzene-d6, 
respectively, (Fig. S8-9) [4g]. 
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Scheme 2. Syntheses of bis-ligated o-hydroxyaryl NHC titanium complexes. 
 

Single crystals of 4aH were obtained after few days from a saturated solution of the 
complex in dichloromethane at -30 °C. The molecular structure of 4aH was determined 
by single-crystal X-ray diffraction that confirms the chelation of two aryloxide-NHC 
ligands to titanium (Fig. 1). Compound 4aH crystallizes in the space group P21/n, 
corresponding to a C2h-symmetry molecule which is consistent with the observed 1H 
NMR spectroscopy in solution. As depicted in figure 1, the structure determined for 4aH 
shows that the titanium center adopts a nearly perfect octahedral geometry (Table 1). As 
previously reported for similar bis-ligated NHC titanium complex, i.e. cis-([κ2-C,O]-
Dipp,(3-Ad,5-Me)NHC)2TiCl2 [6d], the two neutral NHC moieties are in trans position to each 
other (∠Ccarbene-Ti-Ccarbene = 180.00(8)°) for complex 4aH and for the complex cis-([κ2-C,O]-
Dipp,(3-Ad,5-Me)NHC)2TiCl2) at 178.0(9)° occupying the axial positions (Table 1 and Table S4-
5). However unlike complex cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 having both two 
oxygen and two chloride atoms located in cis position (∠OAr-Ti-OAr = 88.35(7)° and ∠Cl-
Ti-Cl = 96.04(3)°, respectively), complex 4aH has the two oxygen and two chloride atoms 
in trans to each other (∠OAr-Ti-OAr = 180.0° and ∠Cl-Ti-Cl = 180.0°). Contrary to complex 
cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 (which crystallizes as a C2-symmetry molecule, 
enantiomer Λ), where the cis-configuration is favored to avoid the steric repulsion 
between Dipp and bulky Ad substituents [6d], complex 4aH is lacking of such bulky 
substituents, and thus leading to the most thermodynamically stable trans configuration 
as recently demonstrated by density functional theory calculation on bis-ligated alkoxy-
functionalized NHC-Zr systems [6f, g]. Due to the more effective way that both NHC 
ligands wrap around titanium in 4aH in this trans-configuration, the overall bond 
lengths (i.e. Ti-Ccarbene, and at least one of -Cl and –O bonds) are shorter, and one of the 
bite angles (∠OAr-Ti-Ccarbene) is larger with a less pronounced deviation from planarity 
(∠OAr–CAr–N–Ccarbene) for one of the NHC ligands compared to the complex cis-([κ2-
C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 (Table 1). 
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Fig. 1 Crystal structure of compound 4aH with anisotropic displacement parameter’s set 
at the 50% probability level. Hydrogen atoms and a co-crystallized solvent 
dichloromethane molecule are omitted for clarity. Selected bond distances, bond angles 
and torsions angles are listed in table 1. Symmetry code #: 1-x+1, -y+1, -z+1. 
 

Table 1  
Selected Bond Distances, Bond Angles and Torsion Angles for Bis-Ligated ([κ2-C,O]-
Dipp,RNHC)2TiCl2 complexes. 
 trans- 

([κ2-C,O]-Dipp,4-HNHC)2TiCl2 (4aH) 
cis- 

([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2
a 

Bond lengths (Å) 
Ti-Ccarbene 2.2597(18)/2.2597(18) 2.264(3)/2.275(3) 
Ti-OAr 1.8578(12)/1.8579(12) 1.870(1)/1.842(1) 
Ti-Cl 2.3269(5)/2.3269(5) 2.337(8)/2.297(6) 
Bond Angles (deg)   
Ccarbene-Ti-Ccarbene 180.00(8) 178.0(9) 
OAr-Ti-OAr 180.0 88.35(7) 
OAr-Ti-Ccarbene 82.40(6)/82.40(6) 82.45(8)/80.43(8) 
Cl-Ti-Cl 180.0 96.04(3) 
OAr-Ti-Cl 90.71(4)/89.29(4) 169.14(5)/88.32(5) 
Ccarbene-Ti-Cl 84.73(4)/95.27(4) 88.15(6)/83.54(6) 
Torsion Angles (deg)   
OAr–CAr–N–Ccarbeneb 10.65/-10.65 1.95/-19.21 
a Ref. [6d]. 
b OAr–CAr–N–Ccarbene: O1–C1–N1–C3/O1#–C1#–N1#–C3# for 4aH and O1–C21–N2–C1/O2–
C53–N4–C33. 
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Although the steric hindrance could be conceptualized for both trans and cis bis-
ligated complexes, the availability of solid-state molecular structures allows to calculate 
the percent buried volume (%Vbur, via SambVca 2.0 calculations) and visualize the steric 
maps for further comparisons of each substituents on NHC ligands [14]. To make a best 
comparison of both complexes, the analyses were made only by considering ([κ2-C,O]-
NHC)-Ti moiety and assuming a 3.5 Å radius of the sphere around the titanium for a 
Ti–Ccarbene length of 2.26 Å. Figure 2 shows minor differences between the two 
unsymmetrical NHC moieties with nearly identical steric map and %Vbur (37.0 vs. 36.5); 
thus, making it difficult to appreciate the steric profiles of these ligands using a value of 
3.5 Å, which best defines the steric hindrance in the first coordination sphere around 
the metal. The differences between those two ligands become more marked when 
increasing the spherical radius around the metal to 5.0 Å allowing taking in account the 
bulky groups not bound to the metal. The C2h-symmetry steric map of the NHC ligand 
in 4aH, with %Vbur of 33.4, shows a rather flat steric map with two small bulges located in 
the northern and western quadrants (corresponding to the iPr groups of N-Dipp 
substituent), and two large hollows which can easily accommodate two Cl atoms in 
trans to each other in the empty southern (SW, SE) and northern quadrants (NE). In 
contrast, the C2-symmetry steric map of cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 with %Vbur 
of 38.0 shows a non-flat steric map particularly in the south-eastern quadrant imposed 
by the upward-pointing Ad substituent and two narrow hollows (SW and NE 
quadrants). From these steric maps, it is clear that the trans-configuration observed in 
these bis-ligated titanium complexes (4aH and 4aMe) is largely favored by the 
embedment of the second NHC ligand bearing a H as ortho substituent on the aromatic 
ring, and when replaced by the more hindered Ad substituent, only the cis-
configuration with the second Ad substituent pointing downward (SW quadrant) is 
allowed among other configurations. 
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Fig. 2 Ball-and-stick representations and schemes (left) of bidentate ([κ2-C,O]-NHC)-Ti 
moiety: 1) from cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 [6d] and 2) from complex 4aH with 
their respective steric maps (right) calculated with a sphere radius of: a) 3.5 Å and b) 5.0 

Å [15]. The steric maps of these complexes are oriented in a Cartesian frame with a 
transverse xy-plane and a +z-axis pointing upward. 

 
Following the same synthetic route described for the aforementioned complexes 4aH 

and 4aMe, the doubly deprotonated o-hydroxyaryl imidazolidinium salts 3b and 3c 
protio-ligands bearing less sterically hindered N-substituents (Dep and Mes, 
respectively) were treated by a solution of TiCl4 consistently giving an intractable 
mixture of products. Although the disappearance of CHimidazolidinium and hydroxyl 
protons were observed for both mixtures in their respective 1H NMR spectra, there are 
numerous overlapping multiple sets of signals which cannot straightforwardly be 
assigned but indicates that there are possibly formation of several stereoisomers. In 
order to rationalize the unsuccessful products isolation, we envisage that the steric map 
and the calculated %Vbur based on our modified X-ray data obtained for 4aH could 
adequately mimic the N-Mes substituent, i.e. by replacing the iPr groups from the N-
Dipp substituent by Me groups and give an insight trend of reactivity (Fig. 3). 
Interestingly, the simulated steric map of this bidentate NHC bearing pseudo N-Mes’ 
substituent is substantially flat for both sphere radii of 3.5 and 5 Å in the NW and SE 
quadrants (with largely inferior %Vbur), with two large hollows in the adjacent 
quadrants. Through these steric maps and the previous ones, it can be deduced that the 
ortho bulky iPr groups on the N-Dipp are the steric driving force leading mostly to 
trans-configuration complexes (in absence of ortho bulky group on the aromatic ring). 
When those N-aryl substituents are exchanged by less bulky groups (here Me), there is 
a drastic lack of steric hindrance to inhibit the formation of several species, which is 
leading most likely in our case, to the formation of many stereoisomers. 
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Fig. 3 Ball-and-stick representation, scheme (left) and projection (right) of the simulated 
steric map for a bidentate ([κ2-C,O]-Mes’,4-HNHC)-Ti moiety with a sphere radius of a) 3.5 
Å and b) 5.0 Å [15]. The steric maps of these complexes are oriented in a Cartesian frame 
with a transverse xy-plane and a +z-axis pointing upward. 
 
2.3. Polymerization Studies 

Following previous studies on the copolymerization of epoxides and CO2 catalyzed 
by group 4 metal complexes bearing benzotriazole alkoxide [16], bis(salphen) [17] 
ligands, showing structural similarities with our current 6-coordinate bis-ligated 
bidentate aryloxy NHC titanium complexes, and the highly selective catalysts based on 
the  tridentate bis-aryloxy NHC complexes of group 4 [9a, c], we were interested in 
evaluating these complexes in the copolymerization of epoxides with CO2. 
Copolymerization experiments of CHO with CO2 were performed by using 4aH, 4aMe 
and cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 compounds in the presence of most common 
co-catalysts such as [PPN]Cl, [PPN]N3 and[Bu4N]Cl to form the putative anionic 
catalysts [9]. The copolymerization of neat CHO with CO2 shows no polycarbonate 
formation (conditions: 1 bar of CO2 at 60 °C, ratio CHO:Ti = 2500) or other side-products 
such as cyclohexene carbonate or poly(cyclohexene oxide) ring-opening polymerization 
of CHO. The absence of activity is probably due to the steric congestion around the 
metal center and/or high stability avoiding the association of the co-catalysts 
nucleophile to form the “activated” species [9a, c] and/or the epoxide. 

Due to the previous studies based on (non-)metallocene and phenoxy-imine 
catalysts development and their impact on the coordination polymerization of olefins 
for shaping tailored microstructure of polymers or synthetizing oligomers [11e, 18], 
systems based on functionalized NHC group 4 catalysts, especially the ones bearing 
multidentate and asymmetric auxiliary NHC ligands, have been recently explored for 
the α-olefins polymerization [6a-g, 6l, 19] and 1-hexene trimerization catalysis [6j]. 
More recently, a series of C2-symmetric bidentate o-hydroxyaryl unsymmetrically 
substituted NHC ligands of group 4 were found moderately active in ethylene [6d, f, g, 
l], ethylene/1-octene and ethylene/norbordene [6d] (co-)polymerization , and 
stereoselective in propylene (isotactic up to ca. 70%) [6f, g] and styrene (syndiotactic up 
to ca. 99% in rrrrrr heptads) polymerization [6l]. The preliminary reported performance 
on C2-symmetric and sterically hindered cisoid catalyst (cis-([κ2-C,O]-Dipp,(3-Ad,5-

Me)NHC)2TiCl2) in (co)polymerization show moderate and excellent stereoselectivity in 
α-olefins polymerization [6d, l], we were interested to evaluate the performance of the 
sterically less hindered 4aH and 4aMe catalysts with different spatial configuration 
(transoid). Thus, next to the cis-([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 catalyst, the newly 
synthesized compounds 4aH and 4aMe were examined for ethylene polymerization in the 
presence of 500 equiv. of MAO as co-catalyst. The preliminary polymerization results 
show that trans-4aH and 4aMe catalysts have a moderate overall activity: 1206 and 1453 
gPE mmolTi-1 h-1 (conditions: 40 bar of ethylene at room temperature and quenched after 5 
min.), respectively, which are comparable to other group 4 systems [11e, 18]. However, 
the activities of both catalysts remain slightly superior to the benchmark catalyst cis-
([κ2-C,O]-Dipp,(3-Ad,5-Me)NHC)2TiCl2 (1131 gPE mmolTi-1 h-1) under similar conditions [6d, l]. 
The difference in activity in this case is mostly assigned to the extremely bulky 
bidentate aryloxy NHC ligand wrapping the titanium center, notably with its Ad 
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substituent retarding the ethylene association to the metal rather than the cis/transoid 
configuration itself. 
 

3. Conclusions 

In summary, we have successfully synthesized a set of o-hydroxyaryl-substituted 
NHC ligands and the corresponding bis(aryloxide-NHC) titanium complexes. The 
bulky N-aryl substituent (such as Dipp vs. Mes and Dep) at the NHCs combined with 
the other ortho-substituent on the N-aryloxy moieties appear essential for leading to a 
single stereoisomer. Meaning that both steric factors have a significant effect on the 
configuration (trans or cis) of the final bis-ligated titanium complex, which can be fine-
tuned by varying the size of the N-functional groups on the NHCs. The cis-
bis(aryloxide-NHC) titanium complexes show moderate catalytic activities in ethylene 
polymerization, and the N-substituents at the NHCs and the configurations of the 
complexes have modest effect on the activity. 

 

4. Experimental 

4.1. General procedures 

All operations were performed with rigorous exclusion of air and water, using 
standard Schlenk, high-vacuum and glovebox techniques (MB Braun MB200B-G; <1 
ppm O2, <1 ppm H2O). Dichloromethane, hexane, THF and toluene were purified by 
using Grubbs columns (MB Braun Solvent Purification System 800). Benzene-d6 and 
chloroform-d (99.96%) were obtained from Aldrich, dried over sodium or CaH2, vacuum 
transferred, degassed and filtered prior to use. All other chemicals were purchased 
from Aldrich and used as received. The oxanilic acid ethyl esters (1a and 1c), 
oxalamides (2aH and 2c), unsymmetrical o-hydroxyaryl substituted imidazolidinium 
chloride salts (3aH and 3c) and (cis-[κ2-C,O]-Dipp,3-Ad/5-MeNHC)2TiCl2 were prepared 
according to the literature procedures [6d, 12]. The imidazolidinium chloride salt 3c was 
crystallized from acetonitrile/hexane (1/5) at -30 °C (CCDC reference code 1579164). The 
NMR spectra of air and moisture sensitive compounds were recorded using J. Young 
valve NMR tubes at 298 K on a Bruker-AVANCE-DMX400 spectrometer (5 mm BB, 1H: 
400.13 MHz; 13C: 100.62 MHz) and a Bruker-BIOSPIN-AV500 and AV600 (5 mm BBO, 1H: 
500.13 MHz; 13C: 125.77 MHz and 5 mm triple resonance inverse CryoProbe, 1H: 600.13 
MHz; 13C: 150.91 MHz). 1H and 13C shifts are referenced to internal solvent resonances 
and reported in parts per million (ppm) relative to TMS. IR spectra were recorded on a 
Nicolet FT-IR Protégé 460 spectrometer with a DRIFT collector. The spectra were 
averaged over 64 scans; the resolution was ±4 cm-1. Elemental analyses of C, H and N 
were performed on an Elementar Vario EL III instrument.  

 

4.2. Unsymmetrical o-hydroxyaryl-substituted imidazolidinium protio-ligand syntheses 
4.2.1. 1-(2,6-diisopropylphenyl)-3-(2-hydroxy-4-methylphenyl)-4,5-dihydro-imidazolyl 
chloride salt (3aMe)  
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Compound N-(2,6-diisopropylphenyl)-oxanilic acid ethyl ester 1a (1.71 g, 6.15 mmol) 
and 2-amino-5-methylphenol (1 equiv., 758 mg, 6.15 mmol) were dissolved in toluene 
(100 mL), and 0.86 mL of NEt3 (1 equiv., 6.15 mmol) was added under inert atmosphere. 
The suspension was stirred and heated to reflux overnight. After cooling down the 
solution, a precipitate was obtained which was dissolved in EtOAc. The solution was 
washed with 2 M HCl (2x100 mL). The aqueous phase was then washed with EtOAc 
and the combined organic phases were washed with brine, dried over MgSO4 and dried 
under vacuum. The solid was crystallized from warm toluene to afford N-(2,6-
diisopropylphenyl)-N’-(2-hydroxy-4-methylphenyl)-oxalamide 2aMe (1.47 g, 67% yield). 
1H NMR (400.13 MHz, chloroform-d): δ 9.56 (s, 1H, NH), 8.81 (s, 1H, NH), 8.25 (s, 1H, 
OH), 7.37 (t, J = 7.8 Hz, 1H, ArDipp-H), 7.24 (d, J = 8.2 Hz, 2H, Ar-H), 7.23 (d, J = 7.8 Hz, 
1H, ArDipp-H), 6.84 (s, 1H, Ar-H), 6.74 (d, J = 8.2 Hz, 1H, Ar-H), 3.02 (sept., J = 6.9 Hz, 2H, 
CH(CH3)2), 2.32 (s, 3H, Ar-CH3), 1.22 (d, J = 6.9 Hz, 12H, CH(CH3)2) ppm. 
Under inert atmosphere, to compound 2aMe (1.47 g, 4.15 mmol) was added 33.2 mL BH3-
THF (8 equiv., 1M in THF) and the mixture was heated to reflux overnight. After 
cooling down to room temperature, MeOH was added to the reaction mixture until gas 
evolution cease and then quenched by ≈ 1.5 mL of conc. HCl. The mixture was dried, 
dissolved in MeOH and these steps were repeated two more times. To this pale pink 
solid was added 15 mL of triethyl orthoformate and the solution was stirred at room 
temperature overnight. The solid was filtered off, washed with Et2O and dried under 
vacuum to afford 3aMe as a white solid (1.20 g, 78% yield).1H NMR (500.13 MHz, 
chloroform-d): δ 9.05 (s, 1H, NCHN), 7.47 (t, J = 7.8 Hz, 1H, ArDipp-H), 7.35 (s, 1H, Ar-H), 
7.24 (d, J = 7.8 Hz, 2H, ArDipp-H), 6.95 (d, J = 7.8, 1H, Ar-H), 6.62 (d, J = 7.8 Hz, 1H, Ar-H), 
4.84 (bm, 2H, NCH2), 4.36 (bm, 2H, NCH2), 3.00 (sept., J = 6.8 Hz, 2H, CH(CH3)2), 2.18 (s, 
3H, Ar-CH3), 1.28 (d, J = 6.8 Hz, 6H, CH(CH3)2), 1.17 (d, J = 6.8 Hz, 6H, CH(CH3)2) ppm. 
13C NMR (125.77 MHz, chloroform-d): δ 156.6 (NCHN), 149.6 (Cipso, O-Ar), 146.6 (Cq, Ar), 
139.3 (Cq, Ar), 131.5 (Cq, Ar), 130.0 (Cq, Ar), 125.1 (CH, Ar), 120.5 (CH, Ar), 120.1 (CH, 
Ar), 119.8 (CH, Ar), 119.1 (CH, Ar), 52.5 (NCH2), 51.0 (NCH2), 28.9 (CH(CH3)2), 25.0 
(CH(CH3)2), 24.3 (CH(CH3)2), 21.1 (Ar-CH3) ppm. DRIFT (ν/cm-1): 2970s, 2958s, 2868s, 
1624vs, 1588w, 1553w, 1526w, 1494w, 1476w, 1457m, 1420m, 1385w, 1368w, 1335w, 
1311m, 1292s, 1283m, 1263s, 1185w, 1166w, 945w, 879w, 812m, 764w, 593w, 487w, 456w. 
Anal. Calcd for C22H29ClN2O: C, 68.98; H, 7.01; N 8.47. Found: C, 69.16; H, 7.26; N, 8.40. 

 

4.2.2. 1-(2,6-diethylphenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-imidazolyl chloride (3b) 

2,6-diethylaniline (10 mL, 60.7 mmol) and triethylamine (1 equiv., 8.5 mL, 60.7 mmol) 
were dissolved in dry THF (80 mL). After cooling down the solution at 0 °C, 6.8 mL of 
ethyl chloroacetate (1 equiv., 60.7 mmol) was added dropwise leading to a formation of 
smoke and white solid. The solution was allowed to warm up at room temperature and 
stirred overnight. The solid was filtered off and the organic phase was washed with 
HCl 2M (2x100 mL). The aqueous phase was then washed with EtOAc and the 
combined organic phases were washed with brine, dry over MgSO4 and dry under 
vacuum to afford N-(2,6-diethylphenyl)-oxanilic acid ethyl ester 1b as white solid (11.23 
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g, 75% yield). 1H NMR (500.13 MHz, chloroform-d): δ 8.40 (s, 1H, NH), 7.27 (t, J = 7.6 Hz, 
1H, ArDep-H), 7.15 (d, J = 7.6 Hz, 2H, ArDep-H), 4.44 (q, J = 7.2 Hz, 2H, O-CH2-CH3), 2.59 
(q, J = 7.6 Hz, 4H, CH2-CH3), 1.45 (t, J = 7.2 Hz, 3H, O-CH2-CH3), 1.20 (t, J = 7.6 Hz, 6H, 
CH2-CH3) ppm. 13C NMR (125.77 MHz, chloroform-d): δ 161.0 (CO, carbimide), 155.4 
(CO, ester), 141.1 5 (Cq, Ar), 130.9 (Cq, Ar), 128.6 (CH, Ar), 126.5 (CH, Ar), 63.7 (CH2, O-
CH2-CH3), 24.8 (CH2, CH2-CH3), 14.3 (CH3, O-CH2-CH3), 14.0 (CH3, CH2-CH3) ppm.  
Compound 1b (10.96 g, 43.57 mmol) and 2-aminophenol (1 equiv., 4.80 mg, 43.97 mmol) 
were dissolved in toluene (100 mL), and 12.3 mL of NEt3 (1 equiv., 87.9 mmol) was 
added under inert atmosphere. The suspension was stirred and heated to reflux 
overnight. After cooling down the solution a precipitate was obtained, which was 
dissolved in dichloromethane. The solution was washed with 2 M HCl (2x100 mL). The 
aqueous phase was then washed with dichloromethane and the combined organic 
phases were washed with brine, dried over MgSO4 and dried under vacuum. The solid 
was crystallized from warm toluene to afford N-(2,6-diethylphenyl)-N’-(2-
hydroxyphenyl)-oxalamide 2b (10.06 g, 73% yield). 1H NMR (500.13 MHz, chloroform-
d): δ 9.68 (s, 1H, NH), 8.88 (s, 1H, NH), 8.06 (s, 1H, OH), 7.50 (dd, J = 8.1 Hz, J = 1.4 Hz, 
1H, ArDep-H), 7.30 (m, 1H, Ar-H), 7.18 (s, 1H, ArDep-H), 7.17 (s, 1H, ArDep-H), 7.15 (m, 1H, 
Ar-H), 6.97 (dd, J = 8.1 Hz, J = 1.4 Hz, 1H, ArDep-H), 6.92 (m, 1H, Ar-H), 2.61 (q, J = 7.6 
Hz, 4H, CH2-CH3), 1.21 (t, J = 7.6 Hz, 6H, CH2-CH3) ppm. 
Following the procedure described for 3aMe, the reaction of 2b (1.92 g, 6 mmol) and 49.2 
mL of BH3-THF (8 equiv., 1M in THF) yielded 3b (1.6 g, 81% yield) as a white solid. 1H 
NMR (500.13 MHz, chloroform-d): δ 8.96 (s, 1H, NCHN), 7.57 (d, J = 8.2 Hz, 1H, ArDep-
H), 7.41 (t, J = 7.8 Hz, 1H, Ar-H), 7.20 (d, J = 7.8 Hz, 2H, ArDep-H), 7.10 (d, J = 7.8 Hz, Ar-
H), 6.96 (t, J = 7.7 Hz, 1H, Ar-H), 6.77 (t, J = 7.7 Hz, 1H, Ar-H), 4.86 (bt, J = 10.4 Hz, 2H, 
NCH2), 4.42 (bt, J = 10.4 Hz, 2H, NCH2), 2.64 (q, J = 7.5 Hz, 4H, CH2-CH3), 1.22 (t, J = 7.5 
Hz, 6H, CH2-CH3) ppm. 13C NMR (125.77 MHz, chloroform-d): δ 157.2 (NCHN), 150.0 
(Cipso, O-Ar), 141.6 (Cq, Ar), 131.8 (Cq, Ar), 131.2 (Cq, Ar), 128.8 (CH, Ar), 127.6 (CH, Ar), 
122.7 (CH, Ar), 120.3 (CH, Ar), 119.9 (CH, Ar), 118.9 (CH, Ar), 51.5 (NCH2), 51.0 (NCH2), 
24.3 (CH2, CH2-CH3), 15.2 (CH3, CH2-CH3) ppm. DRIFT (ν/cm-1): 2971s, 2959s, 2869s, 
1624vs, 1588w, 1555w, 1525w, 1494w, 1476w, 1457m, 1421m, 1385w, 1368w, 1337w, 
1313m, 1292s, 1284m, 1263s, 1186w, 1166w, 945w, 880w, 812m, 763w, 593w, 487w, 455w. 
Anal. Calcd for C19H23ClN2O: C, 68.97; H, 7.01; N 8.47. Found: C, 68.79; H, 7.26; N, 8.36.  

 

4.3. Preparation of bis-ligated o-hydroxyaryl substituted NHC titanium(IV) complexes 
4.3.1. 1-(2,6-diisopropylphenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-imidazolyl 
titanium(IV) dichloride (4aH)  

In a vial 1-(2,6-diisopropylphenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-imidazolyl 
chloride salt 3aH (588.0 mg, 1.64 mmol) and potassium bis(trimethylsilyl)amide (2 
equiv., 561.35 mg, 3.27 mmol) were dissolved in THF (3 mL), and the resulting yellow 
suspended mixture was stirred for 10 min at room temperature. To this mixture was 
added 0.82 mL of a solution of 1M titanium tetrachloride in toluene (0.5 equiv., 0.82 
mmol) in 2 mL THF. The solution rapidly turned dark red and was allowed to stir for 2 
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h at room temperature. Subsequent centrifugation, filtration and evaporation to dryness 
afforded complex 4aH as a dark red solid in quantitative yield. Crystals of 4aH were 
obtained from a saturated solution of dichloromethane at -30°C for several days. 1H 
NMR (500.13 MHz, benzene-d6): δ 7.42 (t, J = 7.7 Hz, 2H, ArDipp-H), 7.29 (d, J = 7.7 Hz, 
4H, ArDipp-H), 7.01 (m, 2H, Ar-H), 6.75 (m, 2H, Ar-H), 6.37 (dd, J = 8.1 Hz, J = 1.4 Hz, 2H, 
Ar-H), 5.26 (dd, J = 8.1 Hz, , J = 1.4 Hz, 2H, Ar-H), 3.47 (sept., J = 6.8 Hz, 4H, CH(CH3)2), 
3.07 (m, 4H, NCH2), 2.95 (m, 4H, NCH2), 1.56 (d, J = 6.8 Hz, 12H, CH(CH3)2), 1.10 (d, J = 
6.8 Hz, 12H, CH(CH3)2) ppm. 13C NMR (125.77 MHz, benzene-d6): δ 206.7 (NCN), 155.0 
(Cipso, O-Ar), 148.0 (Cq, Ar), 137.8 (Cq, Ar), 133.6 (Cq, Ar), 129.2 (CH, Ar), 125.3 (CH, Ar), 
124.0 (CH, Ar), 119.3 (CH, Ar), 118.1 (CH, Ar), 116.7 (CH, Ar), 53.9 (NCH2), 47.3 (NCH2), 
28.5 (CH(CH3)2), 26.2 (CH(CH3)2), 24.8 (CH(CH3)2) ppm. DRIFT (ν/cm-1): 3065w, 3031w, 
2961s, 2925m, 2867m, 1610m, 1587m, 1495vs, 1474vs, 1429s, 1408s, 1385w, 1363w, 1317s, 
1288vs, 1236m, 1123w, 1056w, 996w, 912m, 879m, 806w, 750m, 671m, 640w, 453w, 438w, 
418m. Anal. Calcd for C42H50Cl2N4O2Ti.2CH2Cl2: C, 56.73; H, 5.84; N 6.01. Found: C, 
57.04; H, 6.18; N 5.94. 

4.3.2. 1-(2,6-diisopropylphenyl)-3-(2-hydroxy-4-methylphenyl)-4,5-dihydro-imidazolyl 
titanium(IV) dichloride (4aMe)  

 Following the procedure described for 4aH, the reaction of 1-(2,6-diisopropylphenyl)-3-
(2-hydroxy-4-mehtylphenyl)-4,5-dihydro-imidazolyl chloride salt 3aMe (350.8 mg, 0.94 
mmol), potassium bis(trimethylsilyl)amide (2 equiv., 375.2 mg, 1.88 mmol) and titanium 
tetrachloride (0.5 equiv., 0.47 mL, 0.82 mmol) yielded 4aMe (323 mg, 87% yield) as a dark 
red solid. 1H NMR (500.13 MHz, chloroform-d): δ 7.53 (t, J = 7.7 Hz, 2H, ArDipp-H), 7.35 (d, J 
= 7.7 Hz, 4H, ArDipp-H), 6.68 (d, J = 8.2 Hz, 2H, Ar-H), 6.50 (dd, J = 8.2 Hz, J = 1.7 Hz, 2H, 
Ar-H), 4.60 (d, 2H, J = 1.7 Hz, Ar-H), 4.10 (m, 4H, NCH2), 3.79 (m, 4H, NCH2), 3.27 (sept., J = 
6.8 Hz, 4H, CH(CH3)2), 2.09 (s, 3H, Ar-CH3), 1.27 (d, J = 6.8 Hz, 12H, CH(CH3)2), 1.16 (d, J 
= 6.8 Hz, 12H, CH(CH3)2) ppm. 13C NMR (125.77 MHz, chloroform-d): δ 205.8 (NCN), 153.6 
(Cipso, O-Ar), 148.0 (Cq, Ar), 137.3 (Cq, Ar), 133.7 (Cq, Ar), 130.7 (Cq, Ar), 129.2 (CH, Ar), 
125.0 (CH, Ar), 120.3 (CH, Ar), 118.1 (CH, Ar), 115.5 (CH, Ar), 54.0 (NCH2), 48.0 (NCH2), 
28.3 (CH(CH3)2), 26.2 (CH(CH3)2), 24.5 (CH(CH3)2), 20.4 (Ar-CH3) ppm. 13C NMR (125.77 
MHz, benzene-d6): δ 206.6 (NCN), 154.9 (Cipso, O-Ar), 148.3 (Cq, Ar), 138.0 (Cq, Ar), 133.6 
(Cq, Ar), 131.3 (Cq, Ar), 129.2 (CH, Ar), 125.2 (CH, Ar), 119.8 (CH, Ar), 118.4 (CH, Ar), 116.1 
(CH, Ar), 53.8 (NCH2), 53.3 (NCH2), 28.4 (CH(CH3)2), 26.1 (CH(CH3)2), 24.7 (CH(CH3)2), 
20.7 (Ar-CH3) ppm. DRIFT (ν/cm-1): 3064w, 3032w, 2962s, 2925m, 2867m, 1615s, 1572m, 
1506s, 1474vs, 1458s, 1420s, 1402s, 1363w, 1319s, 1292vs, 1234m, 1169m, 1147m, 1056w, 
1009w, 960m, 909w, 864w, 804m, 760s, 734w, 663m, 590w, 428w, 415m.  

 

4.4. General procedure for ethylene polymerization 

In the glovebox, a vial was charged with a stirring bar, Ti catalyst (5 μmol) in 5 mL of 
toluene and 500 equiv. of MAO, and placed in an autoclave reactor. After addition of 40 
bar of ethylene, the reaction was stirred 5 min and the pressure was released before to 
quench the reaction by 1 mL of acidified MeOH. Volatiles were removed under reduced 
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pressure, and polymer was washed with isopropanol and dried under vacuum for 2 h at 
150 °C. The polymer yield was determined gravimetrically.  

 

4.5. X-ray crystallography and crystal structure determination 

Suitable crystals for diffraction experiments were selected in a glovebox and mounted 
in a minimum of Parabar 10312 oil (Hampton Research) in a nylon loop and then 
mounted under a nitrogen cold stream from an Oxford Cryosystems 700 series open-
flow cryostat. Data collection was done on a Bruker AXS TXS rotating anode system 
with an APEXII Pt135 CCD detector using graphite-monochromated Mo Kα radiation (λ = 
0.710 73 Å). Data collection and data processing were done using APEX2[20], 
SAINT[21], and SADABS[22] version 2012/1,whereas structure solution and final model 
refinement were done using SHELXS[23] version 2013/1 or SHELXT[24] version 2014/4 
and SHELXL[25] version 2014/7. Crystal data: for 4aH obtained from a saturated solution 
in CH2Cl2. C42H50Cl2N4O2Ti.2(CH2Cl2), M = 931.51, crystal size: 0.125 x 0.100 x 0.050 mm3, 
crystal habit/color: prism/dark red, monoclinic, space group P21/n (No.14), a = 
11.9657(7), b = 12.9163(8), c = 14.5572(9) Å, β = 99.1720(10)°, V = 2221.1(2) Å3, Z = 2, ρcalc = 
1.393 g.cm-3, F(000) = 972, µ(Mo-Kα ) = 0.595 mm-1, λ  = 0.71073 Å, T = 103(2)  K. The 
28755 reflections measured on a Bruker AXS APEXII Ultra CCD area detector system 
yielded 4739 unique data (2.050 < θ < 26.776°, Rint = 0.0485) [4739 observed reflections (I 
> 2σ(I)]. Goodness-of-fit on F2 = 1.037, R1 = 0.0350, wR2 = 0.0894, R indices (all data) R1 = 
0.0486, wR2 = 0.0980. CCDC reference code 1579165 contains the supplementary 
crystallographic data for 4aH. These data can be obtained free of charge from The 
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

4.6. %VBur and steric maps calculations 

The %VBur values and steric maps were evaluated with the SambVca 2.0 package 
[26]. The radius of the sphere around the center atom was set to: 3.5 Å or 5 Å, distance 
from the center of the sphere: 2.26 Å, mesh spacing: 0.1 Å, H atoms omitted and atom 
radii: Bondi radii scaled by 1.17, as recommended by Cavallo.  
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Figure S1. Crystal structure of 1-(2,4,6-trimethylphenyl)-3-(2-hydroxyphenyl)-4,5-dihydro-
imidazolyl chloride salt 3c. 
 

Table S1. Crystal structure and refinement data for 3c. 
Compound  3c 
Chemical formula  C18H21ClN2O 
Formula weight  316.82 
Crystal size  0.341 x 0.231 x 0.070 
Temperature/K  103(2)  
Wavelength/Å  0.71073  
Crystal system  Monoclinic 
Space group  P21/c (No.14) 
a/ Å  12.3644(11)  
b/ Å  8.8966(8)  
c/ Å  14.9065(13) 
α/ °  90 
β/ °  94.3230(10) 
γ / °  90 
V/ Å3  1635.1(3)  
Z  4 
ρcalcd/ g cm-3  1.287 
Absorption coeff./ mm-1  0.237  
F(000)  672 
Θ Range for data collection/ °  2.668 to 32.038 
Reflections collected  25989 
Independent reflections  5655 [R(int) = 0.0265] 
Completeness to Θ/ %  98.6 
Data/restraints/parameters  5655/0/206 
Goodness-of-fit on F2  1.080 
Final R1 indices [I>2σ(I)]  R1 = 0.0429, wR2 = 0.1135 
R indices  (all data)  R1 = 0.0459, wR2 = 0.1166 
Largest diff. peak; hole/e Å-3  0.676 and -0.201 

 



Table S2. Selected bond lengths [Å] and angles [°] for 3c. 
___________________________________________________________________________________  

O(1)-C(5)  1.3538(11) 

O(1)-H(1O)  0.84(2) 

N(1)-C(1)  1.3141(11) 

N(1)-C(10)  1.4341(12) 

N(1)-C(2)  1.4802(12) 

N(2)-C(1)  1.3204(11) 

N(2)-C(4)  1.4167(11) 

N(2)-C(3)  1.4752(12) 

C(1)-H(1)  0.9500 

C(2)-C(3)  1.5346(14) 

C(4)-C(9)  1.3931(13) 

C(4)-C(5)  1.4069(13) 

C(5)-C(6)  1.3980(12) 

C(6)-C(7)  1.3921(14) 

C(7)-C(8)  1.3888(16) 

C(8)-C(9)  1.3937(14) 

C(10)-C(11)  1.4028(13) 

C(10)-C(15)  1.4048(12) 

C(11)-C(12)  1.3946(13) 

C(11)-C(16)  1.5065(13) 

C(12)-C(13)  1.3974(14) 

C(13)-C(14)  1.3962(14) 

C(13)-C(17)  1.5067(14) 

C(14)-C(15)  1.3982(13) 

C(15)-C(18)  1.5065(14) 

 

C(5)-O(1)-H(1O) 104.9(14) 

C(1)-N(1)-C(10) 124.74(8) 

C(1)-N(1)-C(2) 109.69(7) 

C(10)-N(1)-C(2) 124.06(7) 

C(1)-N(2)-C(4) 125.99(8) 

C(1)-N(2)-C(3) 109.43(8) 

C(4)-N(2)-C(3) 123.93(8) 

N(1)-C(1)-N(2) 113.48(8) 

N(1)-C(1)-H(1) 123.3 

N(2)-C(1)-H(1) 123.3 

C(9)-C(4)-N(2) 120.11(8) 

C(5)-C(4)-N(2) 119.50(8) 

O(1)-C(5)-C(4) 117.94(8) 

C(11)-C(10)-C(15) 122.16(8) 

C(11)-C(10)-N(1) 118.79(8) 

C(15)-C(10)-N(1) 119.05(8) 

_________________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

 
Table S3.  Torsion angles [°] for 3c. 
__________________________________________________________________________________________  

C(10)-N(1)-C(1)-N(2) -169.84(8) 

C(2)-N(1)-C(1)-N(2) -3.42(11) 

C(4)-N(2)-C(1)-N(1) -178.62(8) 

C(3)-N(2)-C(1)-N(1) -7.58(11) 

C(1)-N(1)-C(2)-C(3) 12.14(10) 

C(10)-N(1)-C(2)-C(3) 178.67(8) 

C(1)-N(2)-C(3)-C(2) 14.50(11) 

C(4)-N(2)-C(3)-C(2) -174.24(8) 

N(1)-C(2)-C(3)-N(2) -15.27(10) 

C(1)-N(2)-C(4)-C(9) 140.25(9) 

C(3)-N(2)-C(4)-C(9) -29.55(13) 

C(1)-N(2)-C(4)-C(5) -42.42(13) 

C(3)-N(2)-C(4)-C(5) 147.78(9) 

C(9)-C(4)-C(5)-O(1) 179.52(8) 

N(2)-C(4)-C(5)-O(1) 2.20(12) 

N(2)-C(4)-C(5)-C(6) -176.79(8) 

C(1)-N(1)-C(10)-C(11) 59.35(12) 

C(1)-N(1)-C(10)-C(15) -120.65(10) 

_________________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1       



 
Figure S2. 1H NMR spectrum of 3aMe. 

 

 
Figure S3. 1H NMR spectrum of 3b. 



 
Figure S4. 13C NMR spectrum of 3aMe. 

 

 
Figure S5. 13C NMR spectrum of 3b. 



 
Figure S6. 1H NMR spectrum of 4aH. (Residual solvent: * = CH2Cl2). 

 

 
Figure S7. 1H NMR spectrum of 4aMe. (Residual solvents: * = THF and # = hexane). 



 
Figure S8. 13C NMR spectrum of 4aH. (Residual solvent: * = CH2Cl2). 
 

 
Figure S9. 13C NMR spectrum of 4aMe.(Residual solvents: * = THF and # = hexane). 



Table S4. Selected bond lengths [Å] and angles [°] for 4aH. 
____________________________________________________________________________________  

Ti(1)-O(1)#1  1.8578(12) 

Ti(1)-O(1)  1.8579(12) 

Ti(1)-C(3)  2.2597(18) 

Ti(1)-C(3)#1  2.2597(18) 

Ti(1)-Cl(1)#1  2.3269(5) 

Ti(1)-Cl(1)  2.3269(5) 

O(1)-C(1)  1.336(2) 

N(1)-C(3)  1.353(2) 

N(1)-C(2)  1.415(2) 

N(1)-C(17)  1.480(2) 

N(2)-C(3)  1.334(2) 

N(2)-C(4)  1.444(2) 

N(2)-C(16)  1.476(2) 

C(2)-C(1)  1.409(3) 

 

O(1)#1-Ti(1)-O(1) 180.0 

O(1)#1-Ti(1)-C(3) 97.60(6) 

O(1)-Ti(1)-C(3) 82.40(6) 

O(1)#1-Ti(1)-C(3)#1 82.40(6) 

O(1)-Ti(1)-C(3)#1 97.60(6) 

C(3)-Ti(1)-C(3)#1 180.00(8) 

O(1)#1-Ti(1)-Cl(1)#1 89.29(4) 

O(1)-Ti(1)-Cl(1)#1 90.71(4) 

C(3)-Ti(1)-Cl(1)#1 95.27(4) 

C(3)#1-Ti(1)-Cl(1)#1 84.73(4) 

O(1)#1-Ti(1)-Cl(1) 90.71(4) 

O(1)-Ti(1)-Cl(1) 89.29(4) 

C(3)-Ti(1)-Cl(1) 84.73(4) 

C(3)#1-Ti(1)-Cl(1) 95.27(4) 

Cl(1)#1-Ti(1)-Cl(1) 180.0 

C(1)-O(1)-Ti(1) 137.52(12) 

C(3)-N(1)-C(2) 128.42(15) 

C(1)-C(2)-N(1) 121.87(16) 

O(1)-C(1)-C(2) 119.94(16) 

N(2)-C(3)-N(1) 108.04(15) 

N(2)-C(3)-Ti(1) 130.81(13) 

N(1)-C(3)-Ti(1) 120.96(12)

_________________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1       
 
Table S5. Selected torsion angles [°] for 4aH. 
________________________________________________________________________________________  

C(3)-Ti(1)-O(1)-C(1) 36.52(18) 

C(3)#1-Ti(1)-O(1)-C(1) -143.48(18) 

Cl(1)#1-Ti(1)-O(1)-C(1) 131.74(17) 

Cl(1)-Ti(1)-O(1)-C(1) -48.26(17) 

C(3)-N(1)-C(2)-C(1) 9.9(3) 

C(17)-N(1)-C(2)-C(1) -177.69(17) 

Ti(1)-O(1)-C(1)-C(2) -36.0(3) 

N(1)-C(2)-C(1)-O(1) 3.3(3) 

N(1)-C(2)-C(1)-C(21) -177.94(17) 

C(4)-N(2)-C(3)-N(1) 179.82(16) 

C(4)-N(2)-C(3)-Ti(1) -5.3(3) 

C(16)-N(2)-C(3)-Ti(1) 174.76(13) 

C(2)-N(1)-C(3)-N(2) 176.37(16) 

C(2)-N(1)-C(3)-Ti(1) 0.9(2) 

_________________________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1       



 

APPENDIX D: Paper IV 

 

“Di-P-chlorido-bis{bis[N,N-bis(trimethylsilyl)amido]-titanium(III)}” 

 

Coralie C. Quadri, Karl. W. Törnroos and Erwan Le Roux 

IUCrData 2017, Vol 2, pp x171488-x171490 

 

 

 

 

 

 

 

 

 

 

 

“Reprints were made with permission from IUCrData”  



 



data reports

IUCrData (2017). 2, x171488 https://doi.org/10.1107/S2414314617014882 1 of 3

Di-l-chlorido-bis{bis[N,N-bis(trimethylsilyl)amido]-
titanium(III)}

Coralie C. Quadri, Karl W. Törnroos and Erwan Le Roux*

Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway. *Correspondence e-mail:

Erwan.LeRoux@uib.no

The molecular structure of the title compound, [Ti2Cl2(C6H18NSi2)4]. shows a
binuclear motif of TiIII atoms, formulated as [Ti(!-Cl)(N(SiMe3)2)2]2, with two
!-Cl atoms bridging two ((Me3Si)2N)2Ti moieties. The coordination environ-
ment of both central TiIII atoms is distorted tetrahedral, with a nearly planar
four-membered Ti2Cl2 core [Ti—Cl—Ti—Cl = 2.796 (15)!].

Structure description

Group 4 metal silylamide chlorides are versatile starting materials for many inorganic
and organometallic compounds, and have been widely used as catalysts (Lappert et al.,
1980,2009) and as precursors in chemical vapor deposition (CVD) (Just & Rees, 2000;
Carmalt et al., 2005) and atomic layer deposition (ALD) of microelectronic films (Fix et
al., 1990,1991; Winter et al., 1994). The use of halide ligands has been established to
enhance the volatility of the group 4 silylamide precursors for CVD/ALD processes
(Vaartstra et al., 2006). Although analogous compounds such as [Ti(Cl)4–x(N(SiMe3)2)x]
(with x = 4, 3, 2 and 1) of titanium(IV) (Alcock et al., 1976; Planalp et al., 1983; Airoldi &
Bradley, 1975; Airoldi et al., 1980), [Ti(N(SiMe3)2)3] (Bradley & Copperthwaite, 1971;
Alyea et al., 1972; Bradley et al., 1978; Minhas et al., 1992) and [Ti(Cl)2(N(SiMe3)2)-
(THF)2] (Putzer et al., 1996) of titanium(III) have been synthesized, there is so far no
other report of titanium(III) silylamide chloride compounds.

The title compound crystallizes as a chloride-bridged dimer [Ti(!-Cl)(N(SiMe3)2)2]2
with two four-coordinate titanium(III) atoms. It is isostructural with the molecular
compounds [M(!-Cl)(N(SiMe3)2)2]2 withM = Yb (Niemeyer, 2002) and In (Yamashita et
al., 2014). The titanium(III) atoms occupy a pseudo-tetrahedral environment with
two bonded {(Me3Si)2N} moieties and two bridging chloride atoms bonded to each
titanium(III) atom resulting in the formation of a characteristic edge-sharing ditetra-
hedral configuration (Fig. 1). The four-membered Ti2Cl2 core is nearly planar [torsion
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angle Ti1—Cl1—Ti2—Cl2 = 2.796 (15)"] with the four nitro-
gen atoms in a trigonal–planar coordination geometry
[deviation from the N(silylamide)-centroid (Si—Ti—Si) ring
ranges from 0.077 to 0.116 Å], suggesting a possible !-overlap
between the N lone pair and the vacant Ti orbitals. The Ti—Cl
bond lengths (Table 1) are shorter than those observed in the
TiIII,TiIII-chloride bridged dimers [Ti("-Cl)(#-C5H5)2]2
(Jungst et al., 1977), [Ti("-Cl)(#-C5H4Me)2]2 (Bradley &
Copperthwaite, 1971; Alyea et al., 1972; Bradley et al., 1978;
Minhas et al., 1992), [Ti("-Cl){(#5-C5H4NSiMe3)2Fe}]2

2+

(Shafir & Arnold, 2001), [Ti("-Cl){(Me3SiNCH2CH2)2-
NSiMe3}]2 (Love et al., 1999) ranging from 2.566 (2)–
2.4414 (10) Å. This is most probably the result of a better
rearrangement between the less-bulky silylamide ligands
bonded to each titanium(III) atom with torsion angles, N3—
Ti1—Ti2—N1 and N2—Ti1—Ti2—N4, of #24.05 (7) and
#26.50 (8)", respectively, which deviates from perfect align-
ment following the non-crystallographic plane perpendicular
to the four-membered Ti2Cl2 plane and through the pseudo-C2

axis Ti1—Ti2. The Ti—N bond lengths (Table 1) are similar to
those found in other TiIII silylamide complexes (davg’ 1.94 Å)
(Alcock et al., 1976; Planalp et al., 1983; Airoldi & Bradley,
1975; Airoldi et al., 1980).

The packing of the molecules in the title compound is
displayed in Fig. 2.

Synthesis and crystallization

In an argon-filled glove-box, to a solution of 1M titanium
tetrachloride in toluene (1 mmol) in 5 ml of toluene at 243 K

Table 1
Selected geometric parameters (Å, ").

Ti1—N1 1.9371 (13) Ti2—N3 1.9459 (13)
Ti1—N4 1.9379 (14) Ti2—N2 1.9534 (13)
Ti1—Cl1 2.4226 (5) Ti2—Cl2 2.4094 (5)
Ti1—Cl2 2.4227 (5) Ti2—Cl1 2.4190 (5)

N1—Ti1—N4 118.42 (6) N3—Ti2—Cl2 114.38 (4)
N1—Ti1—Cl1 121.02 (4) N2—Ti2—Cl2 102.71 (4)
N4—Ti1—Cl1 102.91 (4) N3—Ti2—Cl1 103.24 (4)
N1—Ti1—Cl2 100.57 (4) N2—Ti2—Cl1 115.13 (4)
N4—Ti1—Cl2 123.75 (4) Cl2—Ti2—Cl1 87.938 (16)
Cl1—Ti1—Cl2 87.550 (16) Ti2—Cl1—Ti1 92.070 (16)
N3—Ti2—N2 126.91 (6) Ti2—Cl2—Ti1 92.306 (16)

Figure 2
The crystal packing of the title compound seen down the b axis, showing
four molecules, three of which are related to the unique one via inversion
centres at (12,

1
2,

1
2) and (0, 12,

1
2). The packing is essentially based on van der

Waals interactions only.

Figure 1
The molecular structure of the title compound with anisotropic
displacement parameters set at the 50% probability level. Hydrogen
atoms are omitted for clarity.

Table 2
Experimental details.

Crystal data
Chemical formula [Ti2Cl2(C6H18NSi2)4]
Mr 808.27
Crystal system, space group Triclinic, P1
Temperature (K) 103
a, b, c (Å) 8.8550 (5), 11.7359 (7), 24.0066 (14)
$, %, & (") 93.199 (1), 97.370 (1), 111.684 (1)
V (Å3) 2284.6 (2)
Z 2
Radiation type Mo K$
" (mm#1) 0.70
Crystal size (mm) 0.45 $ 0.20 $ 0.02

Data collection
Diffractometer Bruker TXS Rotating anode,

Pt135 CCD
Absorption correction Numerical (SADABS; Bruker, 2013)
Tmin, Tmax 0.820, 0.986
No. of measured, independent and

observed [I > 2'(I)] reflections
39360, 13897, 11154

Rint 0.051
(sin (/))max (Å

#1) 0.714

Refinement
R[F2 > 2'(F2)], wR(F2), S 0.040, 0.112, 1.04
No. of reflections 13897
No. of parameters 385
H-atom treatment H-atom parameters constrained
!*max, !*min (e Å#3) 0.87, #0.36

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), SHELXT
(Sheldrick, 2015a), SHELXL2017 (Sheldrick, 2015b) and Mercury (Macrae et al.,
2006).
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was added a pre-cooled solution at 243 K of lithium bis(tri-
methylsilyl)amide (334.6 mg, 2 mmol) in pentane (5 ml). The
mixture was warmed to room temperature and stirred at that
temperature overnight. The green solution was then centri-
fuged, filtered and dried under vacuum. Single crystals were
obtained by preparing a concentrated solution of the reaction
mixture in dichloromethane and cooling it for two days at
243 K.

Refinement

Crystal data, data collection and structure refinement details
are summarized in Table 2.
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full crystallographic data

IUCrData (2017). 2, x171488    [https://doi.org/10.1107/S2414314617014882]

Di-µ-chlorido-bis{bis[N,N-bis(trimethylsilyl)amido]titanium(III)}

Coralie C. Quadri, Karl W. Törnroos and Erwan Le Roux

Di-µ-chlorido-bis{bis[N,N-bis(trimethylsilyl)amido]titanium(III)} 

Crystal data 

[Ti2Cl2(C6H18NSi2)4]
Mr = 808.27
Triclinic, P1
a = 8.8550 (5) Å
b = 11.7359 (7) Å
c = 24.0066 (14) Å
α = 93.199 (1)°
β = 97.370 (1)°
γ = 111.684 (1)°
V = 2284.6 (2) Å3

Z = 2
F(000) = 868
Dx = 1.175 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 9927 reflections
θ = 2.4–30.4°
µ = 0.70 mm−1

T = 103 K
Thin plate, blue
0.45 × 0.20 × 0.02 mm

Data collection 

Bruker TXS Rotating anode, Pt135 CCD 
diffractometer

Radiation source: Bruker TXS Rotating anode
ω scans
Absorption correction: numerical 

(SADABS; Bruker, 2013)
Tmin = 0.820, Tmax = 0.986
39360 measured reflections

13897 independent reflections
11154 reflections with I > 2σ(I)
Rint = 0.051
θmax = 30.5°, θmin = 1.9°
h = −12→12
k = −16→16
l = −34→34

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.040
wR(F2) = 0.112
S = 1.04
13897 reflections
385 parameters
0 restraints

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0605P)2 + 0.0514P] 
where P = (Fo

2 + 2Fc
2)/3

(∆/σ)max = 0.001
∆ρmax = 0.87 e Å−3

∆ρmin = −0.36 e Å−3

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

Ti1 0.39441 (3) 0.30081 (2) 0.18633 (2) 0.01492 (7)
Ti2 0.61439 (3) 0.34925 (2) 0.32250 (2) 0.01526 (7)
Cl1 0.35239 (5) 0.35207 (4) 0.28076 (2) 0.01844 (8)
Cl2 0.66257 (5) 0.30888 (4) 0.22823 (2) 0.01891 (8)
Si1 0.13473 (5) 0.01105 (4) 0.17059 (2) 0.01756 (9)
Si2 0.39903 (6) 0.10306 (4) 0.09651 (2) 0.01876 (10)
Si3 0.98553 (5) 0.51034 (4) 0.35013 (2) 0.01995 (10)
Si4 0.76984 (6) 0.65233 (4) 0.36573 (2) 0.01897 (10)
Si5 0.44682 (6) 0.22235 (4) 0.41948 (2) 0.01771 (9)
Si6 0.57789 (5) 0.06572 (4) 0.35238 (2) 0.01837 (10)
Si7 0.15997 (6) 0.39762 (4) 0.11156 (2) 0.02084 (10)
Si8 0.51671 (6) 0.57332 (4) 0.14338 (2) 0.01976 (10)
N1 0.29662 (16) 0.13254 (12) 0.15026 (6) 0.0158 (2)
N2 0.78674 (16) 0.51130 (12) 0.34860 (6) 0.0160 (3)
N3 0.55174 (16) 0.20568 (12) 0.36416 (6) 0.0156 (2)
N4 0.36078 (16) 0.42951 (12) 0.14546 (6) 0.0176 (3)
C1 −0.0578 (2) −0.03685 (18) 0.11736 (8) 0.0283 (4)
H1A −0.072271 0.036697 0.104347 0.042*
H1B −0.152591 −0.084398 0.134768 0.042*
H1C −0.049311 −0.087897 0.085113 0.042*
C2 0.0888 (2) 0.05425 (16) 0.24066 (8) 0.0258 (4)
H2A 0.187690 0.077064 0.269187 0.039*
H2B 0.000081 −0.016058 0.251365 0.039*
H2C 0.054419 0.124437 0.238195 0.039*
C3 0.1844 (2) −0.12943 (16) 0.17834 (9) 0.0268 (4)
H3A 0.199665 −0.160639 0.141633 0.040*
H3B 0.093680 −0.193105 0.191919 0.040*
H3C 0.285746 −0.108184 0.205533 0.040*
C4 0.2520 (3) 0.00131 (19) 0.03467 (8) 0.0324 (4)
H4A 0.192094 −0.079915 0.046220 0.049*
H4B 0.312970 −0.007854 0.004563 0.049*
H4C 0.173595 0.038278 0.020768 0.049*
C5 0.5248 (2) 0.25066 (17) 0.07026 (8) 0.0258 (4)
H5A 0.452511 0.291751 0.055247 0.039*
H5B 0.580772 0.232561 0.040296 0.039*
H5C 0.606841 0.304826 0.101507 0.039*
C6 0.5450 (2) 0.02861 (17) 0.12106 (8) 0.0252 (4)
H6A 0.626317 0.081499 0.152805 0.038*
H6B 0.601530 0.016854 0.090005 0.038*
H6C 0.483962 −0.051629 0.133274 0.038*
C7 1.1301 (2) 0.6014 (2) 0.41457 (9) 0.0341 (4)
H7A 1.147275 0.688685 0.414021 0.051*
H7B 1.235718 0.591854 0.415281 0.051*
H7C 1.083416 0.571434 0.448297 0.051*
C8 1.0782 (2) 0.56924 (17) 0.28657 (8) 0.0266 (4)
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H8A 0.997837 0.529646 0.252337 0.040*
H8B 1.176512 0.550135 0.285205 0.040*
H8C 1.108706 0.658789 0.288864 0.040*
C9 0.9760 (2) 0.34943 (17) 0.35218 (10) 0.0315 (4)
H9A 0.926157 0.315209 0.384758 0.047*
H9B 1.087588 0.349647 0.355531 0.047*
H9C 0.909278 0.298778 0.317337 0.047*
C10 0.9034 (2) 0.77735 (16) 0.32842 (9) 0.0294 (4)
H10A 1.019229 0.791738 0.341220 0.044*
H10B 0.884908 0.853369 0.336899 0.044*
H10C 0.876107 0.752524 0.287566 0.044*
C11 0.8290 (3) 0.70627 (18) 0.44330 (8) 0.0328 (4)
H11A 0.772775 0.638676 0.464706 0.049*
H11B 0.796714 0.775988 0.451647 0.049*
H11C 0.948386 0.732344 0.454096 0.049*
C12 0.5572 (2) 0.64757 (17) 0.34511 (10) 0.0314 (4)
H12A 0.520119 0.618943 0.304744 0.047*
H12B 0.556877 0.730410 0.352646 0.047*
H12C 0.482788 0.590862 0.367111 0.047*
C13 0.6293 (2) 0.04081 (17) 0.28093 (8) 0.0278 (4)
H13A 0.546336 0.049009 0.252003 0.042*
H13B 0.630805 −0.042073 0.275139 0.042*
H13C 0.737924 0.102421 0.278092 0.042*
C14 0.3826 (2) −0.06827 (15) 0.35585 (9) 0.0257 (4)
H14A 0.357593 −0.067546 0.394443 0.038*
H14B 0.395844 −0.145440 0.345160 0.038*
H14C 0.292099 −0.061890 0.329758 0.038*
C15 0.7441 (2) 0.05277 (18) 0.40522 (9) 0.0287 (4)
H15A 0.851801 0.107772 0.397738 0.043*
H15B 0.737788 −0.032546 0.402178 0.043*
H15C 0.729713 0.076308 0.443402 0.043*
C16 0.5171 (3) 0.16823 (19) 0.48585 (8) 0.0312 (4)
H16A 0.480331 0.078108 0.480814 0.047*
H16B 0.470349 0.193116 0.516997 0.047*
H16C 0.637568 0.205033 0.494593 0.047*
C17 0.4886 (3) 0.38942 (17) 0.43672 (9) 0.0327 (4)
H17A 0.607722 0.435963 0.445805 0.049*
H17B 0.436739 0.399920 0.469278 0.049*
H17C 0.443294 0.420061 0.404112 0.049*
C18 0.2185 (2) 0.14155 (17) 0.40172 (8) 0.0250 (4)
H18A 0.179303 0.165442 0.365918 0.037*
H18B 0.166814 0.164665 0.431820 0.037*
H18C 0.189658 0.052111 0.398103 0.037*
C19 0.0103 (2) 0.30239 (18) 0.15467 (9) 0.0289 (4)
H19A 0.027150 0.225319 0.159410 0.043*
H19B −0.102140 0.283538 0.135463 0.043*
H19C 0.026947 0.348153 0.191834 0.043*
C20 0.1197 (2) 0.3118 (2) 0.03996 (8) 0.0342 (4)
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H20A 0.199961 0.360063 0.017228 0.051*
H20B 0.008229 0.298365 0.021457 0.051*
H20C 0.129617 0.232056 0.043589 0.051*
C21 0.1100 (3) 0.53780 (19) 0.10321 (11) 0.0381 (5)
H21A 0.122658 0.581663 0.140532 0.057*
H21B −0.003813 0.512985 0.084098 0.057*
H21C 0.184923 0.592248 0.080617 0.057*
C22 0.7226 (2) 0.57858 (17) 0.17584 (10) 0.0329 (4)
H22A 0.721610 0.564799 0.215698 0.049*
H22B 0.806864 0.659555 0.173027 0.049*
H22C 0.747460 0.514162 0.155825 0.049*
C23 0.4826 (3) 0.70071 (17) 0.18345 (9) 0.0341 (4)
H23A 0.404100 0.725609 0.159716 0.051*
H23B 0.587397 0.771397 0.193897 0.051*
H23C 0.438453 0.671851 0.217725 0.051*
C24 0.5339 (3) 0.60785 (19) 0.06891 (8) 0.0363 (5)
H24A 0.563521 0.545918 0.048974 0.054*
H24B 0.619079 0.689924 0.068835 0.054*
H24C 0.428075 0.605825 0.049832 0.054*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Ti1 0.01427 (13) 0.01257 (13) 0.01745 (13) 0.00477 (10) 0.00199 (10) 0.00148 (10)
Ti2 0.01249 (13) 0.01240 (12) 0.01828 (14) 0.00156 (10) 0.00260 (10) 0.00260 (10)
Cl1 0.01564 (17) 0.02084 (18) 0.01963 (18) 0.00765 (14) 0.00376 (13) 0.00135 (14)
Cl2 0.01367 (16) 0.02160 (18) 0.02062 (18) 0.00591 (14) 0.00325 (13) 0.00018 (14)
Si1 0.0133 (2) 0.01390 (19) 0.0234 (2) 0.00310 (16) 0.00236 (16) 0.00136 (17)
Si2 0.0189 (2) 0.0202 (2) 0.0177 (2) 0.00803 (18) 0.00401 (17) −0.00034 (17)
Si3 0.01163 (19) 0.0191 (2) 0.0268 (2) 0.00370 (17) 0.00232 (17) 0.00030 (18)
Si4 0.0164 (2) 0.0135 (2) 0.0258 (2) 0.00352 (16) 0.00683 (18) 0.00027 (17)
Si5 0.0183 (2) 0.0160 (2) 0.0182 (2) 0.00470 (17) 0.00558 (16) 0.00310 (16)
Si6 0.0145 (2) 0.0140 (2) 0.0268 (2) 0.00547 (16) 0.00364 (17) 0.00304 (17)
Si7 0.0166 (2) 0.0204 (2) 0.0267 (2) 0.00833 (18) 0.00247 (18) 0.00567 (18)
Si8 0.0204 (2) 0.0152 (2) 0.0218 (2) 0.00422 (17) 0.00358 (18) 0.00435 (17)
N1 0.0142 (6) 0.0142 (6) 0.0187 (6) 0.0052 (5) 0.0025 (5) 0.0012 (5)
N2 0.0118 (6) 0.0143 (6) 0.0210 (6) 0.0036 (5) 0.0038 (5) 0.0007 (5)
N3 0.0130 (6) 0.0135 (6) 0.0197 (6) 0.0042 (5) 0.0032 (5) 0.0023 (5)
N4 0.0150 (6) 0.0163 (6) 0.0214 (7) 0.0051 (5) 0.0043 (5) 0.0041 (5)
C1 0.0157 (8) 0.0279 (9) 0.0363 (10) 0.0048 (7) −0.0013 (7) −0.0009 (8)
C2 0.0265 (9) 0.0202 (8) 0.0293 (9) 0.0046 (7) 0.0110 (7) 0.0051 (7)
C3 0.0226 (8) 0.0164 (8) 0.0402 (10) 0.0062 (7) 0.0037 (8) 0.0036 (7)
C4 0.0326 (10) 0.0362 (11) 0.0239 (9) 0.0112 (9) −0.0005 (8) −0.0086 (8)
C5 0.0279 (9) 0.0300 (9) 0.0240 (8) 0.0130 (8) 0.0119 (7) 0.0078 (7)
C6 0.0253 (9) 0.0266 (9) 0.0290 (9) 0.0146 (7) 0.0095 (7) 0.0024 (7)
C7 0.0209 (9) 0.0390 (11) 0.0354 (11) 0.0069 (8) −0.0024 (8) −0.0049 (9)
C8 0.0173 (8) 0.0269 (9) 0.0351 (10) 0.0061 (7) 0.0100 (7) 0.0031 (7)
C9 0.0182 (8) 0.0250 (9) 0.0532 (13) 0.0098 (7) 0.0061 (8) 0.0067 (8)
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C10 0.0298 (10) 0.0175 (8) 0.0394 (11) 0.0043 (7) 0.0143 (8) 0.0049 (7)
C11 0.0400 (11) 0.0269 (9) 0.0297 (10) 0.0101 (8) 0.0105 (8) −0.0053 (8)
C12 0.0227 (9) 0.0180 (8) 0.0555 (13) 0.0095 (7) 0.0074 (9) 0.0057 (8)
C13 0.0304 (9) 0.0197 (8) 0.0352 (10) 0.0104 (7) 0.0106 (8) −0.0007 (7)
C14 0.0186 (8) 0.0152 (7) 0.0409 (10) 0.0040 (6) 0.0044 (7) 0.0040 (7)
C15 0.0202 (8) 0.0271 (9) 0.0411 (11) 0.0114 (7) 0.0036 (8) 0.0097 (8)
C16 0.0342 (10) 0.0356 (10) 0.0218 (9) 0.0110 (8) 0.0024 (8) 0.0071 (8)
C17 0.0447 (12) 0.0203 (8) 0.0332 (10) 0.0078 (8) 0.0220 (9) 0.0007 (7)
C18 0.0200 (8) 0.0272 (9) 0.0279 (9) 0.0079 (7) 0.0081 (7) 0.0020 (7)
C19 0.0190 (8) 0.0291 (9) 0.0415 (11) 0.0105 (7) 0.0094 (8) 0.0086 (8)
C20 0.0266 (10) 0.0432 (12) 0.0284 (10) 0.0112 (9) −0.0030 (8) −0.0007 (8)
C21 0.0296 (10) 0.0298 (10) 0.0588 (14) 0.0162 (8) 0.0022 (10) 0.0139 (10)
C22 0.0208 (9) 0.0218 (9) 0.0494 (12) 0.0024 (7) −0.0011 (8) 0.0051 (8)
C23 0.0440 (12) 0.0191 (8) 0.0398 (11) 0.0126 (8) 0.0078 (9) 0.0025 (8)
C24 0.0405 (12) 0.0307 (10) 0.0279 (10) 0.0003 (9) 0.0093 (8) 0.0096 (8)

Geometric parameters (Å, º) 

Ti1—N1 1.9371 (13) C6—H6A 0.9800
Ti1—N4 1.9379 (14) C6—H6B 0.9800
Ti1—Cl1 2.4226 (5) C6—H6C 0.9800
Ti1—Cl2 2.4227 (5) C7—H7A 0.9800
Ti1—Si2 3.0937 (5) C7—H7B 0.9800
Ti2—N3 1.9459 (13) C7—H7C 0.9800
Ti2—N2 1.9534 (13) C8—H8A 0.9800
Ti2—Cl2 2.4094 (5) C8—H8B 0.9800
Ti2—Cl1 2.4190 (5) C8—H8C 0.9800
Ti2—Si5 3.0790 (5) C9—H9A 0.9800
Ti2—Si3 3.0861 (5) C9—H9B 0.9800
Si1—N1 1.7530 (14) C9—H9C 0.9800
Si1—C2 1.8668 (19) C10—H10A 0.9800
Si1—C3 1.8693 (18) C10—H10B 0.9800
Si1—C1 1.8731 (18) C10—H10C 0.9800
Si2—N1 1.7576 (14) C11—H11A 0.9800
Si2—C6 1.8652 (18) C11—H11B 0.9800
Si2—C4 1.8661 (19) C11—H11C 0.9800
Si2—C5 1.8746 (19) C12—H12A 0.9800
Si3—N2 1.7601 (14) C12—H12B 0.9800
Si3—C9 1.8627 (19) C12—H12C 0.9800
Si3—C7 1.863 (2) C13—H13A 0.9800
Si3—C8 1.8705 (19) C13—H13B 0.9800
Si4—N2 1.7474 (14) C13—H13C 0.9800
Si4—C12 1.8638 (19) C14—H14A 0.9800
Si4—C10 1.8681 (19) C14—H14B 0.9800
Si4—C11 1.875 (2) C14—H14C 0.9800
Si5—N3 1.7570 (14) C15—H15A 0.9800
Si5—C16 1.8656 (19) C15—H15B 0.9800
Si5—C18 1.8666 (18) C15—H15C 0.9800
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Si5—C17 1.8672 (19) C16—H16A 0.9800
Si6—N3 1.7544 (14) C16—H16B 0.9800
Si6—C13 1.8651 (19) C16—H16C 0.9800
Si6—C15 1.8725 (19) C17—H17A 0.9800
Si6—C14 1.8743 (18) C17—H17B 0.9800
Si7—N4 1.7513 (14) C17—H17C 0.9800
Si7—C19 1.8610 (19) C18—H18A 0.9800
Si7—C20 1.865 (2) C18—H18B 0.9800
Si7—C21 1.869 (2) C18—H18C 0.9800
Si8—N4 1.7499 (14) C19—H19A 0.9800
Si8—C22 1.866 (2) C19—H19B 0.9800
Si8—C24 1.868 (2) C19—H19C 0.9800
Si8—C23 1.871 (2) C20—H20A 0.9800
C1—H1A 0.9800 C20—H20B 0.9800
C1—H1B 0.9800 C20—H20C 0.9800
C1—H1C 0.9800 C21—H21A 0.9800
C2—H2A 0.9800 C21—H21B 0.9800
C2—H2B 0.9800 C21—H21C 0.9800
C2—H2C 0.9800 C22—H22A 0.9800
C3—H3A 0.9800 C22—H22B 0.9800
C3—H3B 0.9800 C22—H22C 0.9800
C3—H3C 0.9800 C23—H23A 0.9800
C4—H4A 0.9800 C23—H23B 0.9800
C4—H4B 0.9800 C23—H23C 0.9800
C4—H4C 0.9800 C24—H24A 0.9800
C5—H5A 0.9800 C24—H24B 0.9800
C5—H5B 0.9800 C24—H24C 0.9800
C5—H5C 0.9800

N1—Ti1—N4 118.42 (6) Si2—C5—H5A 109.5
N1—Ti1—Cl1 121.02 (4) Si2—C5—H5B 109.5
N4—Ti1—Cl1 102.91 (4) H5A—C5—H5B 109.5
N1—Ti1—Cl2 100.57 (4) Si2—C5—H5C 109.5
N4—Ti1—Cl2 123.75 (4) H5A—C5—H5C 109.5
Cl1—Ti1—Cl2 87.550 (16) H5B—C5—H5C 109.5
N1—Ti1—Si2 31.37 (4) Si2—C6—H6A 109.5
N4—Ti1—Si2 106.50 (4) Si2—C6—H6B 109.5
Cl1—Ti1—Si2 148.298 (17) H6A—C6—H6B 109.5
Cl2—Ti1—Si2 85.901 (15) Si2—C6—H6C 109.5
N3—Ti2—N2 126.91 (6) H6A—C6—H6C 109.5
N3—Ti2—Cl2 114.38 (4) H6B—C6—H6C 109.5
N2—Ti2—Cl2 102.71 (4) Si3—C7—H7A 109.5
N3—Ti2—Cl1 103.24 (4) Si3—C7—H7B 109.5
N2—Ti2—Cl1 115.13 (4) H7A—C7—H7B 109.5
Cl2—Ti2—Cl1 87.938 (16) Si3—C7—H7C 109.5
N3—Ti2—Si5 31.84 (4) H7A—C7—H7C 109.5
N2—Ti2—Si5 112.35 (4) H7B—C7—H7C 109.5
Cl2—Ti2—Si5 142.757 (17) Si3—C8—H8A 109.5
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Cl1—Ti2—Si5 88.334 (15) Si3—C8—H8B 109.5
N3—Ti2—Si3 112.82 (4) H8A—C8—H8B 109.5
N2—Ti2—Si3 31.85 (4) Si3—C8—H8C 109.5
Cl2—Ti2—Si3 86.479 (15) H8A—C8—H8C 109.5
Cl1—Ti2—Si3 142.490 (17) H8B—C8—H8C 109.5
Si5—Ti2—Si3 117.236 (16) Si3—C9—H9A 109.5
Ti2—Cl1—Ti1 92.070 (16) Si3—C9—H9B 109.5
Ti2—Cl2—Ti1 92.306 (16) H9A—C9—H9B 109.5
N1—Si1—C2 111.33 (7) Si3—C9—H9C 109.5
N1—Si1—C3 112.16 (7) H9A—C9—H9C 109.5
C2—Si1—C3 106.10 (9) H9B—C9—H9C 109.5
N1—Si1—C1 111.65 (8) Si4—C10—H10A 109.5
C2—Si1—C1 108.60 (9) Si4—C10—H10B 109.5
C3—Si1—C1 106.71 (9) H10A—C10—H10B 109.5
N1—Si2—C6 112.71 (7) Si4—C10—H10C 109.5
N1—Si2—C4 111.91 (8) H10A—C10—H10C 109.5
C6—Si2—C4 107.62 (9) H10B—C10—H10C 109.5
N1—Si2—C5 110.54 (7) Si4—C11—H11A 109.5
C6—Si2—C5 106.29 (8) Si4—C11—H11B 109.5
C4—Si2—C5 107.47 (9) H11A—C11—H11B 109.5
C6—Si2—Ti1 113.02 (6) Si4—C11—H11C 109.5
C4—Si2—Ti1 135.70 (7) H11A—C11—H11C 109.5
C5—Si2—Ti1 77.57 (6) H11B—C11—H11C 109.5
N2—Si3—C9 109.52 (8) Si4—C12—H12A 109.5
N2—Si3—C7 112.45 (8) Si4—C12—H12B 109.5
C9—Si3—C7 105.95 (10) H12A—C12—H12B 109.5
N2—Si3—C8 112.74 (8) Si4—C12—H12C 109.5
C9—Si3—C8 107.37 (9) H12A—C12—H12C 109.5
C7—Si3—C8 108.46 (9) H12B—C12—H12C 109.5
C9—Si3—Ti2 75.79 (6) Si6—C13—H13A 109.5
C7—Si3—Ti2 135.46 (7) Si6—C13—H13B 109.5
C8—Si3—Ti2 113.34 (6) H13A—C13—H13B 109.5
N2—Si4—C12 112.97 (7) Si6—C13—H13C 109.5
N2—Si4—C10 111.77 (8) H13A—C13—H13C 109.5
C12—Si4—C10 105.39 (9) H13B—C13—H13C 109.5
N2—Si4—C11 112.83 (8) Si6—C14—H14A 109.5
C12—Si4—C11 106.38 (10) Si6—C14—H14B 109.5
C10—Si4—C11 106.99 (9) H14A—C14—H14B 109.5
N3—Si5—C16 112.68 (8) Si6—C14—H14C 109.5
N3—Si5—C18 113.65 (7) H14A—C14—H14C 109.5
C16—Si5—C18 107.98 (9) H14B—C14—H14C 109.5
N3—Si5—C17 109.08 (8) Si6—C15—H15A 109.5
C16—Si5—C17 106.48 (10) Si6—C15—H15B 109.5
C18—Si5—C17 106.56 (9) H15A—C15—H15B 109.5
C16—Si5—Ti2 134.95 (7) Si6—C15—H15C 109.5
C18—Si5—Ti2 114.66 (6) H15A—C15—H15C 109.5
C17—Si5—Ti2 75.09 (6) H15B—C15—H15C 109.5
N3—Si6—C13 112.98 (8) Si5—C16—H16A 109.5
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N3—Si6—C15 112.70 (8) Si5—C16—H16B 109.5
C13—Si6—C15 106.99 (9) H16A—C16—H16B 109.5
N3—Si6—C14 110.68 (7) Si5—C16—H16C 109.5
C13—Si6—C14 105.39 (9) H16A—C16—H16C 109.5
C15—Si6—C14 107.67 (9) H16B—C16—H16C 109.5
N4—Si7—C19 109.43 (8) Si5—C17—H17A 109.5
N4—Si7—C20 111.34 (8) Si5—C17—H17B 109.5
C19—Si7—C20 108.73 (10) H17A—C17—H17B 109.5
N4—Si7—C21 114.02 (8) Si5—C17—H17C 109.5
C19—Si7—C21 105.32 (10) H17A—C17—H17C 109.5
C20—Si7—C21 107.72 (10) H17B—C17—H17C 109.5
N4—Si8—C22 111.84 (8) Si5—C18—H18A 109.5
N4—Si8—C24 110.95 (8) Si5—C18—H18B 109.5
C22—Si8—C24 106.25 (10) H18A—C18—H18B 109.5
N4—Si8—C23 111.98 (9) Si5—C18—H18C 109.5
C22—Si8—C23 106.17 (10) H18A—C18—H18C 109.5
C24—Si8—C23 109.37 (10) H18B—C18—H18C 109.5
Si1—N1—Si2 119.76 (8) Si7—C19—H19A 109.5
Si1—N1—Ti1 126.34 (8) Si7—C19—H19B 109.5
Si2—N1—Ti1 113.63 (7) H19A—C19—H19B 109.5
Si4—N2—Si3 117.90 (7) Si7—C19—H19C 109.5
Si4—N2—Ti2 129.66 (7) H19A—C19—H19C 109.5
Si3—N2—Ti2 112.31 (7) H19B—C19—H19C 109.5
Si6—N3—Si5 117.87 (8) Si7—C20—H20A 109.5
Si6—N3—Ti2 129.67 (8) Si7—C20—H20B 109.5
Si5—N3—Ti2 112.41 (7) H20A—C20—H20B 109.5
Si8—N4—Si7 120.13 (8) Si7—C20—H20C 109.5
Si8—N4—Ti1 123.47 (8) H20A—C20—H20C 109.5
Si7—N4—Ti1 116.36 (7) H20B—C20—H20C 109.5
Si1—C1—H1A 109.5 Si7—C21—H21A 109.5
Si1—C1—H1B 109.5 Si7—C21—H21B 109.5
H1A—C1—H1B 109.5 H21A—C21—H21B 109.5
Si1—C1—H1C 109.5 Si7—C21—H21C 109.5
H1A—C1—H1C 109.5 H21A—C21—H21C 109.5
H1B—C1—H1C 109.5 H21B—C21—H21C 109.5
Si1—C2—H2A 109.5 Si8—C22—H22A 109.5
Si1—C2—H2B 109.5 Si8—C22—H22B 109.5
H2A—C2—H2B 109.5 H22A—C22—H22B 109.5
Si1—C2—H2C 109.5 Si8—C22—H22C 109.5
H2A—C2—H2C 109.5 H22A—C22—H22C 109.5
H2B—C2—H2C 109.5 H22B—C22—H22C 109.5
Si1—C3—H3A 109.5 Si8—C23—H23A 109.5
Si1—C3—H3B 109.5 Si8—C23—H23B 109.5
H3A—C3—H3B 109.5 H23A—C23—H23B 109.5
Si1—C3—H3C 109.5 Si8—C23—H23C 109.5
H3A—C3—H3C 109.5 H23A—C23—H23C 109.5
H3B—C3—H3C 109.5 H23B—C23—H23C 109.5
Si2—C4—H4A 109.5 Si8—C24—H24A 109.5
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Si2—C4—H4B 109.5 Si8—C24—H24B 109.5
H4A—C4—H4B 109.5 H24A—C24—H24B 109.5
Si2—C4—H4C 109.5 Si8—C24—H24C 109.5
H4A—C4—H4C 109.5 H24A—C24—H24C 109.5
H4B—C4—H4C 109.5 H24B—C24—H24C 109.5

C2—Si1—N1—Si2 163.08 (9) C13—Si6—N3—Si5 161.93 (9)
C3—Si1—N1—Si2 44.37 (12) C15—Si6—N3—Si5 −76.63 (11)
C1—Si1—N1—Si2 −75.35 (11) C14—Si6—N3—Si5 44.01 (11)
C2—Si1—N1—Ti1 −10.50 (12) C13—Si6—N3—Ti2 −15.17 (13)
C3—Si1—N1—Ti1 −129.22 (10) C15—Si6—N3—Ti2 106.27 (11)
C1—Si1—N1—Ti1 111.07 (10) C14—Si6—N3—Ti2 −133.09 (10)
C6—Si2—N1—Si1 −76.23 (11) C16—Si5—N3—Si6 45.52 (11)
C4—Si2—N1—Si1 45.24 (12) C18—Si5—N3—Si6 −77.73 (10)
C5—Si2—N1—Si1 164.99 (9) C17—Si5—N3—Si6 163.54 (10)
Ti1—Si2—N1—Si1 −174.36 (14) Ti2—Si5—N3—Si6 −177.58 (13)
C6—Si2—N1—Ti1 98.13 (9) C16—Si5—N3—Ti2 −136.90 (9)
C4—Si2—N1—Ti1 −140.40 (9) C18—Si5—N3—Ti2 99.86 (9)
C5—Si2—N1—Ti1 −20.65 (10) C17—Si5—N3—Ti2 −18.88 (11)
C12—Si4—N2—Si3 165.48 (10) C22—Si8—N4—Si7 −173.96 (10)
C10—Si4—N2—Si3 46.82 (12) C24—Si8—N4—Si7 −55.51 (12)
C11—Si4—N2—Si3 −73.81 (11) C23—Si8—N4—Si7 67.00 (12)
C12—Si4—N2—Ti2 −10.18 (14) C22—Si8—N4—Ti1 8.39 (13)
C10—Si4—N2—Ti2 −128.84 (11) C24—Si8—N4—Ti1 126.83 (11)
C11—Si4—N2—Ti2 110.54 (11) C23—Si8—N4—Ti1 −110.65 (11)
C9—Si3—N2—Si4 162.97 (10) C19—Si7—N4—Si8 −142.94 (10)
C7—Si3—N2—Si4 45.45 (12) C20—Si7—N4—Si8 96.82 (11)
C8—Si3—N2—Si4 −77.55 (11) C21—Si7—N4—Si8 −25.30 (13)
Ti2—Si3—N2—Si4 −176.38 (14) C19—Si7—N4—Ti1 34.87 (11)
C9—Si3—N2—Ti2 −20.65 (11) C20—Si7—N4—Ti1 −85.36 (11)
C7—Si3—N2—Ti2 −138.16 (9) C21—Si7—N4—Ti1 152.52 (10)
C8—Si3—N2—Ti2 98.83 (9)
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