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Abstract

The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic

Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and

a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive mag-

matism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the

Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from

mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by

raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting.

For the first time a distinct lower-crustal body typical for volcanic margins has been identified at

this outer margin segment, up to 3.5 km thick and ∼50 km wide. On the other hand, expected

extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as

the top of extensive lavas may at least partly represent high-velocity sediments derived from the

shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8 km),

but is reduced to 6 km after 1 m.y. The adjacent continental crystalline crust is extended down

to a minimum of 4.5 km thickness. Early plate spreading rates derived from the Norway Basin

and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and

compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1

Ma, ∼1 m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The
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low interaction between extension and magmatism indicates that mantle plume material was not

present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was

created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone

at breakup time.

Key words: Ocean bottom seismometers, Large igneous provinces, Marine magnetics,

Continental breakup

1. Introduction1

Early Cenozoic continental breakup between East Greenland and Europe was in most parts2

very magma-rich, forming part of the Northeast Atlantic Igneous Province (NAIP) (e.g., White3

et al., 1987; Eldholm and Grue, 1994; Eldholm and Coffin, 2000). Pre-breakup magmatism af-4

fected areas from Easternmost Canada and West Greenland to the Northeastern Europe in the Pa-5

leogene (e.g., Saunders et al., 1997). The breakup-related magmatism varies considerably along6

the margins, to some extent as a function of the expected distance from the Iceland hotspot (e.g.,7

Berndt et al., 2001; Holbrook et al., 2001; Voss et al., 2009; Breivik et al., 2012). Magmatic pro-8

ductivity falls considerably from the Faeroes Margin (White et al., 2008) to the northern part of9

the Møre Margin (Berndt et al., 2001; Breivik et al., 2006), before it again becomes very volumi-10

nous at the Vøring Plateau (Mjelde et al., 2005b; Breivik et al., 2009). The position of the Iceland11

Plume center in the past is much debated (e.g., Mihalffy et al., 2008), but most publications lo-12

cate it somewhere under Greenland around breakup time. Despite this uncertainty, it appears that13

the distance relationship does not follow the margin in a linear fashion due to margin offsets; the14

Vøring Plateau may actually be slightly closer to the plume center than the northern Møre Margin15

(Vink, 1984; Skogseid et al., 2000; Howell et al., 2014). In Figure 1 plume positions from Lawver16

and Müller (1994) are plotted with a 1000 km radius. While the exact position with time as well17

as the areal influence both are uncertain, it illustrates that the Lofoten/Vesterålen Margin appears18

to be at the outer limit of the plume influence around breakup time.19
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A number of publications have studied the relationship between igneous crustal thickness20

and average igneous lower-crustal seismic velocity for the NAIP margins (Holbrook et al., 2001;21

Breivik et al., 2006, 2009, 2012, 2014; White et al., 2008). Most of these show a simple, positive22

correlation as would be expected from magmatism driven by a finite, hot mantle reservoir, consis-23

tent with emplacement of Iceland plume material under the continental breakup zone. Only two24

regions show a significant departure from this; the part of the East Greenland margin close to Ice-25

land (Holbrook et al., 2001), and the Vøring Plateau (Breivik et al., 2009, 2014). While showing26

the effect of elevated temperature close to Iceland, the velocity is lower than expected when com-27

pared to the amount magma produced, which Holbrook et al. (2001) interpreted to be the result28

of active convection driven by the Iceland plume, fluxing an excess of mantle material through29

the melt zone compared to passive spreading. However, this conclusion has been challenged by30

White and Smith (2009), who pointed out that the low velocity could result from the continent-31

ocean boundary to be located farther out. A significant fraction of continental crust would then be32

included in the velocity calculation and bias the results towards lower values.33

Breivik et al. (2014) concluded that the first two million years of seafloor spreading at the34

Vøring Plateau produced thick igneous crust with lower than expected velocity. The northern35

Vøring Plateau has identifiable magnetic seafloor spreading anomalies within this part (Breivik36

et al., 2009), showing it to be oceanic. Therefore, it was suggested that a secondary process may37

have contributed to the earliest and most voluminous magmatic phase. One possible explanation38

could be that plume material ponded under the thinned lithosphere in the developing rift zone39

(Sleep, 1997) flowed laterally into the plate boundary region to produce excessive decompression40

melting during the early seafloor spreading. The observed lower-crustal velocity temporal devel-41

opment is similar to that predicted by models of the interaction between pre-existing lithospheric42

structure, plume material, and continental breakup by Armitage et al. (2010), producing two lower-43

crustal velocity peaks after breakup. Clearly, there are still issues around the early magmatic phase44

of the NAIP that needs further investigation.45

Post-breakup magmatism died down rapidly north of the Vøring Plateau, as seen from older46

Ocean Bottom Seismometer (OBS) studies (Mjelde et al., 1992; Kodaira et al., 1995). Off the47

southern Lofoten islands the early post-breakup magmatism is about 60% that of the northern48
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Vøring Plateau (Breivik et al., 2009). On the other hand, extensive lava flows have been reported49

on the outer Lofoten/Vesterålen Margin (Talwani et al., 1983; Mjelde et al., 1992, 1993; Mokhtari50

and Pegrum, 1992; Tsikalas et al., 2001), an interpretation that can be questioned in the light of51

newer data, as we will discuss below. Unlike other volcanic margin segments, little or no lower-52

crustal intrusions were so far identified.53

In addition to the reduced magmatism, the Lofoten/Vesterålen Margin is much more extended54

and thinned than the outer Vøring Plateau and the Møre Margin to the south (Mjelde et al., 1992,55

2001, 2005b, 2009; Kodaira et al., 1995; Breivik et al., 2006). Clearly, there is a major change56

in both tectonic as well as magmatic development from the Møre Margin and the Vøring Plateau57

to the Lofoten/Vesterålen Margin, even if there is no transform offset between them. There are58

a wide range of margin structures observed world-wide: The hyper-extended margin is typified59

by the Iberia Margin, which is characterized by large crustal extension with low strain rate, crust-60

penetrating detachment faults, upper-mantle serpentinization, and sparse magmatism even after61

continental separation (e.g., Whitmarsh et al., 2001). The typical volcanic margin, e.g., the Faeroes62

Margin (White et al., 2008), is characterized by less breakup-related crustal extension, extensive63

magmatic intrusions, lava flows, and a high magma production during the earliest seafloor spread-64

ing. Magma-compensated crustal extension may also occur during the breakup phase, creating65

sizable magmatic intrusive complexes in the lowermost crust (Thybo and Nielsen, 2009; Stab66

et al., 2016). Three main factors are believed to control the style of crustal breakup. These are67

lower-crustal composition, upper mantle temperature, and strain rate (Pérez-Gussinyé and Reston,68

2001). We will take a closer look at how these determining factors may differ from the Vøring69

Plateau to the Lofoten/Vesterålen Margin, and how this can explain the rapid shift in the tectono-70

magmatic development from one margin segment to the next.71

The profile presented here is part of a large OBS survey conducted in 2003 as part of the72

Euromargins program. The profile crosses the northern Lofoten islands, the shelf and outer margin,73

to terminate in the deep ocean (Fig. 2). Seismic land stations were also deployed in order to better74

constrain the continental crustal structure underneath the archipelago. Main structural elements75

covered comprise the Jennegga High (northern part of the Utrøst Ridge) in the west, the Ribban76

Basin, and the Vestfjorden Basin located between Lofoten and the Norwegian mainland in the77
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east. Based on the results of this study, a new tectono-magmatic development model for the78

Lofoten/Vesterålen Margin is proposed, where not only the amount of plume material present is79

important, but also the timing of its arrival. Alternative, non-magmatic interpretations for the80

observations that lead some authors to propose extensive landward lava flows are also explored.81

2. Data Acquisition and Processing82

The survey was conducted during the summer of 2003 by the R/V Håkon Mosby, in coopera-83

tion between the Department of Geosciences, University of Oslo, the Department of Earth Science,84

University of Bergen, both Norway, GEOMAR, Kiel, Germany, and the Institute for Seismology85

and Volcanology (ISV), Hokkaido University, Sapporo, Japan. The seismic signal was generated86

by four equal-sized air guns with a total volume of 78.66 L (4800 in3), towed at 12 m depth87

and fired at 200 m intervals. Shooting was terminated near shore west of Lofoten and resumed88

again in Vestfjorden. The seismic data were recorded by ocean bottom seismometers (OBS) con-89

sisting of ISV three component analog or digital seismometers, or by GEOMAR digital three90

component seismometers combined with a hydrophone, or by hydrophone alone (OBH). Digital91

three-component land seismometers were deployed to extend the profile. Navigation was by the92

Differential Global Positioning System. The marine shot line is 281.4 km long, and extended by93

the land stations the seismic model is 342 km long. Of the 15 OBSs deployed, 11 recorded useful94

data. None of the 5 stations deployed in Lofoten gave data sets, and of the 6 land stations on the95

mainland 5 returned usable data, making a total of 16 data sets available for the modeling.96

A 60 s record length was extracted after each shot, adjusted for instrumental clock drift, and97

tied to navigation. The OBS/H position was then corrected for physical instrument drift along pro-98

file estimated from the timing of the water arrival. Initial processing included de-biasing to ensure99

a symmetric pulse around 0V, bandpass filtering (6-12 Hz) to remove noise, and offset dependent100

scaling. This was then compared to a processing flow including spiking predictive deconvolution.101

The advantage of the first is that weak but coherent arrivals can be easier to recognize by the ring-102

ing nature of the signal, and the signal onset time is less affected by the processing. The advantage103

of the second is that later arrivals are less obscured by pulse-ringing from earlier arrivals, and104

appear cleaner. All seismic examples shown here are based on the latter sequence. The record105
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sections are velocity reduced by 8 km s−1. All processing is done with Seismic Unix. Vertical106

reflections from the shots were also recorded by a single channel streamer, though the profile is107

of moderate quality and is not shown here. It was used to constrain seafloor depth and uppermost108

sedimentary layers for the start model.109

The GeoMetrics G 801 proton precession magnetometer was only deployed during seismic110

shooting west of Lofoten, towed 180 m behind the ship. Readings were logged every 10 s, and111

positioning was extrapolated from the GPS log using the average heading of the ship along profile.112

Base station noise measurements used to correct the data were from Sørøya, northern Norway.113

Positional and secular variations of the Earth’s magnetic field were corrected by the International114

Geomagnetic Reference Field (IGRF, v.11). Final smoothing was performed with a 10 km wide115

Gaussian spatial filter from the GMT software (Wessel and Smith, 1991; Wessel et al., 2013).116

Gravity was recorded continuously at 10 s intervals by a LaCoste & Romberg S-99 gravimeter117

mounted on a stabilized platform. Instrument drift was corrected by port measurements in Bergen,118

and absolute gravity established by a reference point at the University of Bergen. Smoothing was119

done with a 5 km wide Gaussian spatial filter.120

3. P-Wave Modeling121

Rayinvr is used for the modeling, which is a forward raytracing program with inversion func-122

tionality (Zelt and Smith, 1992). The inversion is node-specific and useful for finding solutions123

in complex settings, and to derive resolution statistics. The model is developed from top and124

downwards by fitting arrivals with increasing travel times.125

By giving an uncertainty to the picked arrivals, the program will use χ2 statistical analysis to126

estimate the goodness of fit between model predictions and observations. A value of 1 or lower127

shows that the fit is within interpretation uncertainty. The uncertainty is set to approximately ±128

the width of one cycle of the phase, since it is often difficult to pick the first onset of an arrival129

due to noise. Other sources for uncertainty are the shot timing, the instrument location (especially130

off-line), and the bathymetry (Hooft et al., 2000). Short offset arrivals from the sedimentary layers131

are estimated to ±50 ms, while Moho arrivals are assigned an uncertainty of ±100 ms where clear.132
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Greater uncertainty is assigned to indistinct arrivals. Most arrivals from the main layer boundaries133

have been modeled to a fit χ2 ≤ 1 (Tab. 1).134

OBSs 59, 60, 62, and 64 did not record useful data. Most of the retrieved data sets are135

of high quality. All data sets, interpretations, and model reproductions can be found in the136

supplementary material . Data and models included here are shown in Figs. 3-9, and the re-137

sulting velocity model is shown in Fig. 10. The different parts of the model are described within a138

rough tectonic domain division below, referring to km position along the transect.139

3.1. Oceanic domain (0 – ∼90 km)140

The oceanic basin has a ∼3 km thick sedimentary section derived mostly from glacial erosion141

of the Barents Sea (Hjelstuen et al., 2007). The velocities are constrained by long refracted arrivals142

(Px) on OBSs 57 and 58, and range from 1.85 km s−1 at the top to 2.85 km s−1 at the bottom. The143

oceanic crust is constrained by OBSs 57, 58, and 61 (Fig. 3). Crustal arrivals show three distinct144

slopes, and three layers were therefore used to model the arrivals here. The northwestern 60 km145

of the profile has a crustal thickness of 5.5-6 km. Approaching the continent, oceanic crustal146

thickness increases up to ∼8 km.147

3.2. Continent ocean transition (∼90–105 km)148

The continent-ocean transition (COT) shows in the mid-crustal velocities, which falls from149

approx. 6.8 to 6.4 km s−1 over a distance of 10-15 km. Magnetic seafloor spreading anomalies150

also start to appear at outer part of this zone (Fig. 10). Both OBS 61 and OBS 63 (Figs. 3 and151

4) show seismic arrivals traveling through the uppermost mantle (Pn), constraining the oceanic152

crustal thickness next to the continent. Diving waves through the upper (Pg1), middle (Pg2), and153

lower crust (Pg3) constrain the velocity there (Figs. 3-6). In particular OBS 67 and OBS 68 (Fig. 6)154

have long-offset diving waves through the lower continental crust.155

3.3. Lower crustal body (∼75–150 km)156

Two reflections coming in after the crustal diving waves on OBS 61 and OBS 63 (Figs. 3157

and 4) identify a distinct lower-crustal body (LCB) at the outer continental margin. The deepest158

has a high amplitude and fits with the Pn phase, and is therefore unambiguously identified as a159
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Moho reflection (PMP). Above it is another strong reflection (PCP) originating at the top of the160

LCB. These OBSs illuminate partly overlapping areas in the lower crust from opposite directions.161

The high amplitude and good separation between the two reflectors show considerable seismic162

impedance contrasts both at the top and at the bottom. Farther landward, OBS 65 recorded a good163

reflection from the top of this layer, but also a diving wave traveling through major parts of the164

layer (Pg4). This constrains the velocity of the upper parts of this body to be about 6.9-7.1 km s−1.165

Similar arrivals are seen on OBS 66, albeit a noisier and poorer data set which proved harder to166

fit. Further constraints on Moho depth at this layer are given by Pn phases traveling through it at167

increasing offsets from OBS/Hs 67 to 71, and from land station 7 (Figs. 6-8). In order to trace rays168

to all observed arrivals, the layer was allowed to continue past the COT, where it essentially forms169

part of the lowermost oceanic crust.170

3.4. Outer continental margin (∼105–170 km)171

This part of the model is densely sampled by diving waves on OBSs 61 to 69 (Figs. 3-6). The172

top of the crystalline continental crust here is at approx. 7 km depth, and the crust overlays the173

LCB. It has a fairly low P-wave velocity of 6.0-6.4 km s−1, and has a minimum thickness of about174

4.5 km around 125-130 km in the model. It thickens by ∼1 km towards the COT, leading into an175

even thicker oceanic crust at 90 km in the model, similar to what was observed farther south on176

the Lofoten Margin (Mjelde et al., 1992). Resting on top of the crystalline crust, there is a layer of177

5.0-5.5 km s−1 velocities, with thickness varying from 2 km to almost 5 km due to the high relief178

on top. Above this layer, the sedimentary velocities of the continental slope are high, 2.9 km s−1
179

to 4.3 km s−1 from top to bottom. Distal parts of the margin have significantly lower sedimentary180

velocities (1.85 km s−1 to 2.85 km s−1 from top to bottom).181

3.5. The continental shelf and land areas (∼170–342 km)182

Just east of the shelf edge the profile crosses the northern part of the Utrøst Ridge (Jennegga183

High) (Fig. 10). The top basement is only covered by a thin layer of sedimentary rocks, and it184

stands out in the travel times of waves traveling both deep and shallow. OBS/Hs 61 to 71 give185

good velocity control down to mid-crustal levels at 150-200 model km (Figs. 3-6). Most land186
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stations record deep reflections that travel through the high (Fig. 8). The velocity is significantly187

higher throughout the crust here compared to that of the outer margin. It increases from 6.3188

km s−1 at the top to about 6.7 km s−1 at 16-18 km depth. There is strong intra-crustal reflectivity189

(PGP) originating from mid-lower crustal levels here, seen on OBH 70 and OBS 71, and on land190

stations 7 and 9 (Figs. 7-8). An extra layer was introduced to model these arrivals. In order191

to best fit the strong reflection on station 7 seen between 160 and 240 model km, it was made192

deeper eastwards, but the termination at the Moho is not constrained. There is some lower-crustal193

reflectivity observed also farther to the east, but it is not consistent between instruments, and was194

modeled by floating reflectors. There are no velocity constraints of this lower-crustal region on195

Profile 6-03, but the crossing Profile 8-03 (Breivik et al., in prep.) shows a Moho depth of 30 km196

consistent with Profile 6-03, and a lower crustal velocity of 6.8-6.9 km s−1 at the tie.197

The crustal thickness increases rapidly underneath the Jennegga High, but does not reach the198

maximum of 36 km thickness before close to Lofoten. This increase is mainly constrained by199

Pn phases from OBS/Hs 68 to 71 and from land station 7 (Figs. 6-8). The Moho is significantly200

deeper than the updoming 20 km depth reported underneath southwestern parts of Lofoten (Mjelde201

et al., 1996), and the 26 km depth reported offshore Lofoten/Vesterålen (Sellevoll, 1983). The202

upper-crustal velocities under Lofoten are between 5.8 km s−1 and 6.1 km s−1, which are low203

for crystalline rocks. This is well constrained by shallow refracted waves from OBS/Hs 66 to 71204

(Figs. 6-7), 6 stations in all.205

Sedimentary rock layers in the northern Ribban Basin (Fig. 10, 180-230 model km) are best206

constrained by OBS 67 and OBS 68 (Fig. 6), showing a maximum thickness of about 3 km. Two207

layers with a marked velocity contrast were modeled. The lower appears well consolidated with208

velocities of 4.5-5.0 km s−1, actually highest in the shallowest part next to Lofoten. The velocity209

of the upper layer is about 3.5 km s−1, similar to that of the upper layer of the outer margin. The210

profile crosses the inner part of the Vestfjorden basin (250-290 model km), which is a half-graben211

here, downfaulted to the east to a depth of 2 km. Constraints are given by OBS 69 west of Lofoten,212

by OBH 70 (Fig. 7) and OBS 71 within Vestfjorden, and by land stations 6 to 9 (Fig. 8) to the east.213

The velocities of the upper sedimentary layer here are similar to that of the Ribban Basin, but214

slightly lower (4.2-4.3 km s−1) in the deepest layer. Top basement velocities are at 6.0-6.2 km s−1
215
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slightly higher here than under Lofoten. Both land stations 6 and 7 (Fig. 8) require increased (6.2216

km s−1) uppermost basement velocities for the first 10 km on the eastern side of Vestfjorden, while217

the stations farther from the coast indicate slightly lower velocities around 6.0 km s−1.218

Upper and middle crust underneath Lofoten (∼200-260 km) easily transmit diving waves, but219

for land stations farther eastwards only the top of the lower crust at 15 km depth underneath220

Lofoten would support diving waves (Fig. 9). This interface is also a strong reflector. For land221

station 11, all arrivals east of 210 km in the model had to be reflected at this level or deeper. The222

only way to explain this, would be that there is little (or negative) velocity gradient throughout the223

upper part of the crust here, extending from the mainland to under the Vestfjorden Basin. For the224

part west of 210 km, reflected and refracted waves can both reproduce the observed arrival times.225

3.6. Model coverage and resolution226

The fit statistics for the most important phases are shown in Table 1. The fit is poorer where227

arrivals could only be traced to observed locations as head waves due to model complexity. The228

average χ2 value for all phases is just below 1. The ray coverage density is highest in the upper229

middle crust, and the continental margin down to the uppermost mantle (Fig. 11A). Lower crust230

is thinly covered underneath the continental shelf. The quality of constraints for individual veloc-231

ity nodes can be estimated by gridding the diagonal values of the resolution matrix for boundary232

nodes obtained from the inversion tool in Rayinvr (Fig. 11B). Only velocity was inverted while233

the geometry was held fixed. Values range from 1 (best) to 0, and values above 0.5 indicate a234

reasonably well resolved parameter (Zelt and Smith, 1992). The analysis is based only on re-235

fracted phases, since reflections do not put strong constraints on velocity in the model. Also PMP236

phases were excluded, since these lacked sufficient moveout to be useful. Including short-offset237

reflections in the velocity inversion within a fixed geometry model gives an unrealistically high238

parameter resolution estimate.239

Sedimentary velocities are well constrained in the oceanic basin, as well as at the outer margin240

down to basement. Basement velocities are well resolved under the Vestfjorden Basin, and at241

upper-mid-crustal levels underneath Lofoten. Also mantle velocities at the outer margin are well242

controlled at 8.0 km s−1, and somewhat less under the oceanic crust, where the modeling indicates243
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8.1 km s−1. Also velocities of the oceanic crust and the lower crustal body at the margin are less244

well constrained, in part due to the loss of data from four OBSs deployed here. Lower crustal245

velocities are poorly resolved in general.246

The depth node resolution can be estimated in a similar fashion. The velocity was held fixed,247

while depth nodes were inverted with both refractions and reflections. Four levels were tested;248

the boundary between upper and middle crust, middle and lower crust, the top of lower crustal249

layers, and the Moho. Depth node resolution is shown by the size of the circles enclosing them,250

where larger is better (Fig. 11B). The depth to the boundary between the crystalline crust and251

the sedimentary rocks at the outer margin is well resolved. While mid-crustal velocities are well252

constrained under Lofoten, the depth between upper and middle crust is not precisely located.253

The top of the lower crust is not well resolved in general, though it is better in areas giving many254

reflections. The depth to the top of the lower crustal body at the outer margin is well constrained,255

and so is the Moho depth underneath it, as well as the oceanic Moho to the west. The 36 km256

continental Moho depth is reasonably constrained at the outermost part underneath Vestfjorden257

and Lofoten.258

Resolution tests show how independent adjacent nodes are from each other, where a low res-259

olution indicate a spatial smearing of node values. However, the resolution plot does not quantify260

parameter error bounds, and low values does not mean that the data cannot constrain a solution.261

A direct approach was therefore used in order to estimate model sensitivity to changes (e.g., Zelt,262

1999). Due to the large number of models that needs to be generated, only outer margin fea-263

tures important for the discussion were investigated. This includes the lower-crustal body, and the264

continental crust directly above it.265

Using Pg4, PMP, and Pn phases for Moho depth and LCB velocity nodes located between 80266

and 140 km in the model, a total of 1701 models were run using an automated procedure. Depth267

nodes are adjusted the same direction incrementally by 0.1 km steps, while velocity nodes (top268

and bottom layer) are similarly adjusted incrementally by 0.01 km s−1 steps through a range of269

values for each depth increment. Fit statistics for these models were extracted and presented in270

Fig. 12A and B, while the phases used are shown in Fig. 12C. As can be seen from the χ2 values,271

the preferred velocities (6.9-7.1 km s−1) were chosen at the higher range of possible solutions272
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within a χ2 ≤1. This was justified by emphasizing the slope of the observed Pg4 phases more273

than minimizing χ2. The model will not support much higher velocities within the interpretation274

uncertainty for the LCB, but velocities reduced by up to -0.25 km s−1 can be accommodated by275

making the Moho 0.6 km shallower. Within the possible higher velocities, the Moho could be up276

to 0.3 km deeper.277

This procedure was also applied to the crustal layer above it, where continental crustal ve-278

locities are significantly lower (6.3-6.45 km s−1). Velocities were allowed to vary together with279

the depth to the top of the LCB. A total of 1275 different models were run, giving the fit statis-280

tics shown in Fig. 12D and E. The phases used are shown in Fig. 12F, and include Pg3, PCP, and281

Pg4. Acceptable velocity variations lie between +0.12 km s−1 to -0.15 km s−1. The model search282

stopped at 1.2 km deeper top-LCB, as it was limited by the Moho depth below within the range.283

Top-LCB shallower than 0.5 km resulted in increasing difficulties tracing rays through the model.284

4. Magnetic modeling285

The continental breakup is constrained by using ship track magnetic data from the survey,286

which are compared to previous studies of the early plate spreading rates in the NE Atlantic287

(Breivik et al., 2006, 2009, 2012). Old magnetic data did not have the necessary navigation ac-288

curacy for high-precision work, so new GPS-navigated ship track data were used exclusively.289

Magnetic anomalies at the most magma-productive parts, created by subaerial eruptions and long290

lava flows, do not record reliable time lines, therefore only margin segments with lesser magma-291

tism were targeted. One of the best margin segments to study early seafloor spreading rates is the292

northern Møre Margin where breakup magmatism was moderate. It shows a high half-spreading293

rate of 29-32 mm y−1 for the first ∼2 m.y. (Breivik et al., 2006). This result was later largely294

reproduced at the conjugate volcanic margin off the Jan Mayen micro-continent (Breivik et al.,295

2012). Similar rates were also found at the northern edge of the Vøring Plateau, 250 km southwest296

of our study area (Breivik et al., 2009). These results show both higher early spreading rates and297

more consistency than the study of Mosar et al. (2002), based on vintage data.298

The half-spreading rates of Breivik et al. (2006) were used to make a start model of the seafloor299

spreading with blocks of normal and reversely magnetized sections (Fig. 13). Older studies were300
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based on the Cande and Kent (1995) geomagnetic polarity time scale, which we also use here301

in order to ensure that rates are comparable. The magnetic response of synthetic models was302

calculated by an FFT routine, using a depth of 5.5 km to the top of a 2 km thick magnetized layer,303

and a magnetization of 4.2 A m−1 (Rabinowitz and LaBreque, 1979). Amplitudes are reproduced304

reasonably well, and spreading rates were adjusted for the best visual fit to the ship track. The305

rates are projected by 20◦ onto the estimated spreading direction. These are comparable to that306

of the Møre Margin within an uncertainty of ±2 mm y−1, except for the earliest stage, between307

anomalies 24a (C24n.1n) and 24b (C24n.3n). A fit could only be obtained by using a low rate of 20308

mm y−1, which is not reasonable from a plate tectonic perspective. However, by assuming a crustal309

breakup time during the normal 24b anomaly at 53.1 Ma, a reasonable fit could be obtained using310

a rate of 29 mm y−1 compatible with the older studies (Fig. 13). The fit became much poorer with311

0.1 m.y. younger or older breakup times. Also, the spreading rate could not be increased above 29312

mm y−1, since anomaly 24a then became too dominant.313

5. Discussion314

5.1. Continental crustal structure315

The lack of turning rays prevented direct velocity measurements in the deeper crust east of316

Vestfjorden, but that also constrains the velocity increase with depth to be low. The modeled depth317

to the middle-crustal reflective level is 15-15.5 km. Upper-crustal velocity is ∼6.0 km s−1, which318

was increased to 6.3 km s−1 at 15 km depth. With uniform composition, the pressure increase will319

give a velocity increase, but this is dampened by the rising temperature (Christensen and Mooney,320

1995). Tests show that by using a zero velocity gradient the depth to this reflector is decreased by321

∼1 km, giving a minimum depth estimate of 14 km. The area has a prominent Bouguer gravity low322

(Fig. 14A), related to a huge granitoid body within the Trans-Scandinavian Igneous Belt (TIB),323

which dates back to the Proterozoic (1.86-1.65 Ga) (Olesen et al., 2002; Gradmann and Ebbing,324

2015). This is the largest gravity anomaly within the TIB, extending∼50 km into Sweden. Gravity325

models indicate a bottom depth of this body of up to 20 km in central parts (Olesen et al., 2002;326

Gradmann and Ebbing, 2015). However, with the heat production expected for granitic rocks,327
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more than 12 km thickness would produce a higher heat flow than observed (Pascal et al., 2007).328

The strong reflector at 14-15 km depth most likely comes from the bottom of this body under329

Vestfjorden and the coastal mainland, and is the first seismic candidate for the bottom of a TIB330

intrusion. However, this is at the outer edge of the batholith (Fig. 14A), and central parts may be331

significantly thicker. That would require the radioactive heat production to be lower than expected.332

Direct velocity measurements could be obtained in the uppermost crust adjacent to Vestfjorden.333

Land stations 6 and 7 (Fig. 8) required a local increase from 6.0 km s−1 to at least 6.2 km s−1.334

Station 6 still has a poor fit, and would require higher velocities than could be handled within335

the model geometry. It seems to be related to a local outcrop of intermediate mangerite syenite336

on the adjacent land, bordered by more granitic retrograded rocks to the east (e.g., Schlinger,337

1985), [geo.ngu.no/kart/berggrunn]. The area has a corresponding positive magnetic anomaly,338

surrounded by low positive or negative amplitudes (Fig. 14B).339

Precambrian rocks are exposed in Lofoten, consisting mainly of high grade charnokites, man-340

gerites, and supra-crustals (Griffin et al., 1978). The upper-crustal velocities of 5.8-5.9 km s−1
341

found under inner Lofoten are similar to velocities measured (pressure corrected) on granitic and342

monzodioritic gneiss outcrops on Austvågøya (Chroston and Brooks, 1989). Rocks outcropping343

on the southern end of Austvågøya are quite acidic (Ormaasen, 1977), and the more granitic rocks344

probably form the bulk crustal composition for the upper ∼5 km underneath larger parts of the345

island. Velocities are somewhat higher at mid-crustal levels, but at 6.1-6.2 km s−1 they are still346

quite low.347

Upper-crustal velocity increases to 6.3 km s−1 in the northern Utrøst Ridge (Jennegga High),348

where the strongest positive gravity anomaly is observed along profile (Fig. 10). The velocity349

increases to about 6.7 km s−1 down to mid-crustal levels, so this appears to be a deeply rooted350

crustal terrain. It is uncertain if it is continuous with the lowermost continental crustal layer351

underneath the outer part of the shelf, where the crossing Profile 8-03 shows a 6.8-6.9 km s−1
352

velocity. The top/inner side of this zone is highly reflective underneath the inner Utrøst Ridge and353

the Ribban Basin. This is also an area with rapid crustal thinning towards the outer margin.354

The regional magnetic signatures of the Lofoten islands and the Utrøst Ridge are very similar.355

The strong, positive anomalies follow the NE-SW orientation of the basement highs (Fig. 14B).356
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The gravity map shows the same pattern, but there is a relative gravity low in the inner part of357

Lofoten where Profile 6-03 crosses (Fig. 14A), associated with upper-crustal felsic rocks. High358

gravity anomalies are found farther to the southwest in Lofoten, and in Vesterålen. The posi-359

tive magnetic anomalies merge in Vesterålen, while the positive gravity anomalies are narrower,360

and the northern part is not continuous with, and located between the ridges farther south. Thus,361

the magnetic signature seems to follow the basement structure of the ridges more than the den-362

sity distribution. Metamorphic facies apparently determines this, since granulite facies rocks ex-363

posed throughout Lofoten have stronger magnetization than amphibolite and eclogite facies rocks364

(Schlinger, 1985).365

The Lofoten/Vesterålen area was not much affected by the Caledonian orogeny, despite being366

located in the middle of the collision zone. Griffin et al. (1978) proposed that the area remained a367

high-level crustal block during the orogeny due to its massive dry granulite-facies rocks, resisting368

deformation. Similarity of the gravity field (Fig. 14) combined with our velocity data, suggest that369

the crust underneath both the Utrøst Ridge and Vesterålen-SW Lofoten ridge may be relatively370

mafic in composition. That will give a strong crust for the entire shelf area (e.g., Kusznir and Park,371

1987), in agreement with this.372

The sedimentary basins on the shelf comprise the Vestfjorden and Ribban basins, which are373

only 2 and 3 km deep at the profile, respectively. The small peak within the Ribban Basin cor-374

responds to a rotated fault block with east-dipping faults seen in reflection seismic data (Tsikalas375

et al., 2001). Top sedimentary layer velocities are quite high (3-3.6 km s−1), suggesting deeper376

burial earlier, and truncation of reflectors shows substantial erosion of the area (Løseth and Tveten,377

1996). Our results are consistent with the proposal that mid-Jurassic-Cretaceous strata often rest378

directly on crystalline bedrock (Løseth and Tveten, 1996; Færseth, 2012), though a thin sequence379

of older sedimentary strata cannot be ruled out. Pre-Cretaceous sediments are thicker farther south-380

west on the Lofoten shelf and in the Vestfjorden Basin (Mjelde et al., 1996; Bergh et al., 2007;381

Hansen et al., 2012).382
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5.2. Continental breakup383

The Lofoten/Vesterålen Margin has been described as an atypical volcanic margin (e.g., Tal-384

wani et al., 1983; Mjelde et al., 1993; Kodaira et al., 1995; Berndt et al., 2001; Tsikalas et al.,385

2001), first of all having large quantities of extrusive magmatism on the continental side, but also386

seaward dipping reflector sequences, and an oceanic crust somewhat thicker than normal produced387

immediately after breakup. Older OBS profiles north of the Vøring Plateau are located midway388

between the Plateau and this profile (Mjelde et al., 1992; Kodaira et al., 1995). The profiles of389

Mjelde et al. (1992) both resemble and differ from our profile. A common feature is the thin con-390

tinental crust of the outer 50-60 km of the margin. At our profile, the crystalline crust is ∼4.5 km391

thick at minimum (Fig. 10), comparable to the 5-7 km observed on the older profiles. Mjelde et al.392

(1992) reported massive lava flows farther south, but that was not observed here. Note that none393

of these older profiles show any high-velocity lower crustal bodies usually interpreted as igneous394

intrusive complexes in the lower continental crust, as seen at the Vøring Plateau (Mjelde et al.,395

2005b) to the southwest and at other volcanic margins. Our profile is therefore the first to identify396

such a layer at the Lofoten/Vesterålen margin.397

5.2.1. Extrusive magmatism398

Extrusive volcanic layers at the Lofoten/Vesterålen Margin have previously been interpreted399

from a number of features, including strong reflectors, chaotic sequences, and mounds (Talwani400

et al., 1983; Mjelde et al., 1992, 1993; Mokhtari and Pegrum, 1992; Berndt et al., 2001; Tsikalas401

et al., 2001; Tasrianto and Escalona, 2015). On some seismic profiles, a strong reflector can be402

followed from oceanic crust in the west and up to the shelf edge (Fig. 2). Figure 9 of Tasrianto and403

Escalona (2015) shows a seismic line just to the north of our profile showing this. They interpret404

the reflection as top basalt only for the lower part, merging with a base Cenozoic unconformity in405

the higher part. The interpretation of the base Cenozoic unconformity seems reasonable, but most406

likely it should be extended to the foot of the slope without basalts on top.407

Farther to the south, the OBS models of Mjelde et al. (1992) indicate that a basaltic layer could408

be 2-3 km thick, with a velocity inversion underneath. However, basaltic lava is rich in magnetite409

and layers this massive are expected to have a strong magnetic signature as seen for the landward410
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flows on the Vøring Plateau (Ebbing et al., 2009). The Lofoten/Vesterålen Margin has a remark-411

ably subdued magnetic anomaly field (Fig. 14B), showing no indications of the proposed extent,412

nor of the ∼4 km variation in depth to the top of the layer. Some basaltic flows are expected, but413

they are most probably of a much lesser volume. On the other hand, there is a good correlation414

between the outer margin seaward dipping reflectors from Berndt et al. (2001) and the seafloor415

spreading magnetic anomalies in the south (Fig. 14B). However, there is an increasing discrep-416

ancy between proposed seaward dipping reflector sequences and the magnetic field towards the417

north, where also the mounds previously interpreted as volcanic outer highs (Berndt et al., 2001;418

Tsikalas et al., 2001) lack a magnetic signature. Data coverage has increased greatly since then,419

and newer sidescan bathymetry shows that mass wasting from the shelf created the mounds and420

chaotic deposits (Thorsnes et al., 2009; Rise et al., 2013) (Fig. 2).421

Older OBS surveys (Mjelde et al., 1992; Kodaira et al., 1995) as well as Profile 6-03 agree422

that the early post-breakup magmatism is moderately elevated, but of lesser magnitude than at the423

Vøring Plateau (Breivik et al., 2009). Both the continental crust and the adjacent oceanic crust at424

the Lofoten/Vesterålen Margin are much thinner and lie 3-4 km deeper than at the Vøring Plateau,425

and sub-aerial eruptions at breakup are not expected here. It therefore seems unlikely that lava426

flows could reach areas near the shelf edge as proposed (Fig. 2). On the Vøring Plateau there427

are also a number of sill complexes within the sedimentary strata, extending far landward of the428

Vøring Escarpment (Planke et al., 2005). This is not observed at the Lofoten/Vesterålen Margin.429

Some of the sills have high velocities (7.0-7.4 km s−1) similar to that observed for the lower-crustal430

bodies of the outer margin (Berndt et al., 2000).431

Observations that led to the interpretation of extensive lava flows at the margin may have432

several origins in addition to mass wasting, and can differ from area to area. Higher up on the433

continental slope, the most likely explanation for a strong reflection is a base- or early-Cenozoic434

unconformity, exposing well-consolidated Cretaceous sedimentary rocks. On the outer margin the435

distal turbidites from the Barents Sea (Hjelstuen et al., 2007) are poorly consolidated and overlap436

slope sediments and deeper sedimentary rock layers. At Profile 6-03, these deposits reach a bottom437

velocity of 2.25 km s−1, where they onlap a layer most likely consisting of sedimentary rocks with438

a velocity of 4.3 km s−1. There is also a velocity contrast between the distal turbidites and the439
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margin-derived sediments in the fan deposits, the latter having velocities of 2.9-3.2 km s−1 at440

Profile 6-03. Both interfaces could create strong reflections.441

5.2.2. Intrusive magmatism442

High-velocity lower-crustal bodies (LCB) are ubiquitous at volcanic passive margins around443

the world (e.g., Eldholm and Coffin, 2000; White et al., 2008). The velocity of the LCB observed444

at the outer margin on our profile is consistent with intruded magmatic material at the bottom445

of or within the lower continental crust, although alternative interpretations of the lower crustal446

bodies observed at volcanic margins have been proposed (e.g., Gernigon et al., 2004). Since the447

crystalline crust is severely stretched, serpentinization of the uppermost mantle could lower the448

velocity to observed values if seawater percolated to these depths (e.g., Whitmarsh et al., 2001).449

However, this mechanism will result in a gradual decrease of serpentinization with depth, resulting450

in a strong velocity gradient and a weak or non-existent seismic Moho (Chian et al., 1999). There451

is apparently little velocity gradient within the body on Profile 6-03, and Moho reflections have452

high amplitudes, thus the observations are clearly inconsistent with serpentinization.453

Another possible explanation for the high lower crustal velocities could be the presence of454

mafic granulites dating back to the formation of the continental crust. This is unlikely since both455

the Moho depth and the velocity are continuous with the lower oceanic crust to the west, indicating456

that these were created together through the same process. The velocity within the LCB is lower457

(6.9-7.1 km s−1) than seen in similar bodies at the Vøring Plateau or at the East Greenland Margin458

conjugate to the Plateau (Mjelde et al., 2005a; Voss and Jokat, 2007), where it is 7.2-7.4 km s−1.459

On the other hand, farther north on the East Greenland Margin and conjugate to our study, both460

lesser magmatism and lower LCB velocities (7.1 km s−1) are observed (Voss et al., 2009).461

White et al. (2008) reported the results of combined OBS and deep penetration multi-channel462

seismic reflection data at the outer Faeroes Margin, and concluded that the lower-crustal body there463

consists of layered intrusions into the lower crust. According to this, they raised the question of464

to what degree the observed velocities will be representative of the intruded rocks. If the velocity465

results from a mix of original continental and intruded rocks, the measured velocity could differ466

significantly from that of the intruded rocks themselves, and could therefore bias the interpreta-467
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tion of the processes forming them (White and Smith, 2009). Our preferred model shows LCB468

velocities only slightly lower than the adjacent lower oceanic crust, and significantly lower than469

that of the Vøring Plateau to the south. That would indicate a lower mantle melting degree, re-470

sulting in increased FeO over MgO content giving lower velocities (White and McKenzie, 1989).471

Even if intruded rock velocities could be higher than that observed for the LCB as a whole, the472

moderate melt volume observed is consistent with this; the size of the LCB is lesser than that ob-473

served at e.g., the Vøring Plateau, and the excess post-breakup magmatism is short-lived and only474

moderately elevated.475

There is a 0.2 km s−1 fall of the LCB velocity from the oceanic to the continental side, which476

may suggest a decrease of igneous rocks within the LCB away from the COT, similar to what is477

observed at the Faeroes Margin (White et al., 2008). In order to estimate how large a fraction of the478

LCB could consist of intrusions, we apply a linear mixing model between two components as used479

by White and Smith (2009). If we assume an igneous rock velocity of 7.1 km s−1 and a crustal480

velocity of 6.4 km s−1, and an average LCB velocity of 7.0 km s−1, the LCB would consist of about481

85% intrusive rocks. These values are derived from the lower-continental/oceanic rock velocities482

here, and the LCB velocities of the preferred model. However, as shown in Fig. 12 the data will483

support lower velocities in the LCB, and using a lower average LCB velocity of 6.8 km s−1 will484

bring the intruded fraction down to below 60%. Thus it seems reasonable to conclude that the LCB485

is an intrusive complex in the lowermost continental crust with a reduction of intrusions landward,486

and that the intruded volume could be significantly less than the observed LCB thickness would487

suggest.488

5.2.3. Tectonic development489

The Early Cretaceous rift phase at the Møre and Vøring basins created crust-penetrating de-490

tachment faults and deep sedimentary basins (Brekke, 2000; Osmundsen and Ebbing, 2008). Early491

Eocene crustal breakup occurred marginal to these basins, with less extension of the crust (Mutter492

and Zehnder, 1988; Mjelde et al., 2005a; Breivik et al., 2006), similar to that of the Hatton Bank493

and Faeroes margins (White et al., 2008). The crustal extension at the outer Lofoten/Vesterålen494

Margin was clearly strong around breakup, and produced a thinner crust than at the outer Møre495
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and Vøring margins. Below the thin post-breakup sediments, the upper sedimentary rock layer has496

velocities comparable to the Cretaceous rocks on the shelf. Below this, the sedimentary rock layer497

has velocities of 5.0-5.5 km s−1, and rests on basement. These velocities are only slightly higher498

than the deeper Cretaceous layer in the Ribban and Vestfjorden basins, and may correspond to this.499

The deposits could be primarily of Early Cretaceous age since this extension phase is important in500

the area (Løseth and Tveten, 1996), though it could also encompass older deposits.501

The high relief of the top of the lower sedimentary rock layer is consistent with rotated fault502

blocks expected to develop in upper crustal rocks under extension. Figure 15 shows a tectonic503

model which can explain this geometry by low-angle detachment faults leading up to continental504

breakup. One of the faults then exposes Cretaceous rocks at the upper continental slope. The sedi-505

mentary rocks at the outer margin were presumably denuded by another detachment fault exposing506

deeper levels, though the hanging wall block must then be at the conjugate Northeast Greenland507

margin. Whether this connected with the adjacent landward detachment fault is uncertain, but508

it can explain the well-consolidated sedimentary rocks exposed underneath the margin-derived509

sediments.510

Most publications agree that continental breakup in the NE Atlantic took place during the511

magnetic polarity Chron C24r (e.g., Eldholm et al., 1995; Mosar et al., 2002; Mutter and Zehnder,512

1988; Skogseid et al., 2000; Torsvik et al., 2001). Voss et al. (2009) proposed a later breakup at the513

East Greenland Margin, progressing southwards conjugate to the Vøring Plateau. However, their514

COT is inconsistent with results on the Norwegian side (Mjelde et al., 2002, 2005a; Breivik et al.,515

2009, 2014), which indicate a C24r breakup. According to the widely used geomagnetic polarity516

time scale of Cande and Kent (1995), this extends from 53.35 Ma to 55.9 Ma, and most authors use517

55 Ma or 54 Ma for breakup. The younger age is preferred on the Møre and Vøring margins due518

to the high early seafloor spreading rates. The newer Ogg (2012) polarity time scale could place519

these estimates more than 1 m.y. further back in time. However, the relative differences between520

margin segments are important here, and the data show that breakup on the Lofoten/Vesterålen521

Margin occurred ∼1 m.y. later than farther south. With the established spreading rates, this delay522

would give ∼30 km of additional extension of the outer margin, which is not much more than 60523

km wide, consistent with the thin crust observed.524
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While brittle faulting is consistent with the blocky upper-crustal sedimentary rock configu-525

ration, the crystalline lower crust is smooth and appears to have undergone ductile deformation526

(Fig. 15). Between 100 and 160 km in the model, the upper-crustal sedimentary rock layers have527

an average thickness of ∼4.5 km, and the crystalline lower crust a thickness of ∼6.5 km. A β-528

factor of 3 would give a 33 km thick pre-breakup crust, including a sedimentary basin 13-14 km529

deep. This is a reasonable upper estimate, since comparable parts of the Late Jurassic-Cretaceous530

basins in the Barents Sea have a crustal thickness of 25-29 km (Breivik et al., 1998). The thin531

crust is therefore the result of several extensional phases, where the Mesozoic and Early Cenozoic532

phases most likely are the largest. From a crystalline crustal thickness of 36 km as seen in inner533

part of Lofoten, this gives a cumulative β-factor of ∼5.5.534

With a current margin ∼60 km wide and using a β-factor of 3, the area would have been ∼20535

km wide at the onset of breakup. Over the last 1 m.y. before breakup, an extension rate of 30536

mm y−1 would produce 30 km of extension. In order to calculate the strain rate for this phase, we537

use a 30 km wide block, assuming some extension before the last phase. This gives a strain rate538

of 3.2·10−14 s−1 leading up to breakup. The crystalline crustal velocity is consistent with a felsic539

composition, and combined with the high estimated strain rate, the models of Pérez-Gussinyé and540

Reston (2001) indicate that the lower crust should not become brittle, since it had little time to541

cool. Also, seawater will not effectively reach the mantle before the entire crust becomes brittle,542

consistent with the observed absence of upper mantle serpentinization. The fault heaves of the543

proposed two inner detachment faults are estimated to be ∼13-15 km each (Fig. 15), suggesting544

26-30 km of extension, in good agreement with the plate-spreading based calculations.545

Magma-poor rifted margins see strong crustal extension and upper mantle serpentinization546

leading up to continental breakup (e.g., Whitmarsh et al., 2001; Unternehr et al., 2010). The547

palinspastic reconstruction of the last extensional phase of an Iberian abyssal plain profile by548

Whitmarsh et al. (2001) can be used to estimate strain rate. Early extension is assumed to have oc-549

curred on crustal detachments soling out at mid-crustal level, eventually reducing crustal thickness550

down to ∼7 km. At this stage, the width of the crustal block was approximately 25 km, and the551

extension rate was 3.5 mm y−1 over the last ∼9 m.y. leading up to breakup. That gives a strain rate552

of 4.4·10−15 s−1, which is close to one order of magnitude lower than at the Lofoten/Vesterålen553
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Margin. The mantle would cool more since it rose slower, and thus produced little magmatism as554

observed. According to the model, detachments at this stage soled out in the upper mantle caus-555

ing serpentinization, and one detachment unroofed partly serpentinized sub-continental mantle to556

the seafloor. Once continental separation was complete, seafloor spreading occurred at a higher557

half-rate of 10 mm y−1, eventually producing igneous oceanic crust.558

Volcanic passive margins evolve very differently with a low degree of crustal stretching during559

the breakup phase, and are characterized by extensive intrusive and extrusive magmatism (e.g.,560

Mutter and Zehnder, 1988; White et al., 2008). The East African Rift System represent a volcanic561

margin under formation, in some places past crustal breakup (Bastow et al., 2011). Extension is562

accommodated by lower-crustal gabbroic intrusions, compensating for the crustal thinning (Bas-563

tow et al., 2011; Stab et al., 2016). This process is also observed under the Baikal rift zone (Thybo564

and Nielsen, 2009), and shows how the magmatic lower-crustal intrusions commonly observed on565

volcanic margins can be emplaced before final crustal breakup. Extension appears to be increas-566

ingly accommodated by axial magmatic emplacement without appreciable crustal thinning, which567

again modify the stress field to focus subsequent magmatic injections in the same area (Buck,568

2006; Beutel et al., 2010; Bastow et al., 2011). Initial faulting may have been on detachment569

faults, but later deformation of the lithosphere has become symmetric, and shear wave splitting570

shows rift-parallel magmatic diking into the lithosphere under the rift zone (Kendall et al., 2005).571

Upper mantle body-wave low-velocity anomalies are among the largest observed and indicate a572

very hot mantle, possibly with some partial melt (Bastow et al., 2008). Present extension rate573

within the main Ethiopian Rift is about 4-7 mm y−1, mostly located to a ∼30 km wide zone (Bas-574

tow et al., 2011). This indicates low strain rates of 4.2·10−15 s−1 to 7.4·10−15 s−1, which are close575

to that observed on the Iberian Margin. It thus appears that it is the elevated mantle temperature576

that produces magmatism here, despite the low strain rate. This development will eventually pro-577

duce the typical volcanic margin architecture, with low crustal stretching, lower-crustal magmatic578

intrusions, and both extensive pre- and post-breakup magmatism.579

The examples described above are end-members of passive rifted margin formation, from580

magma-starved to magma-rich. Ongoing rifting in the Woodlark Basin off Papua New Guinea581

is creating a rifted margin intermediate between these. Sedimentation is low, and the crustal struc-582

22



ture is easily observed on high-resolution bathymetry and reflection seismic data (Taylor et al.,583

1995). The margin is characterized by both steep and low-angle faults, both of which can facili-584

tate crustal breakup (Taylor et al., 1999). The Moresby seamount is a metamorphic core complex585

developing on a low-angle detachment. The continent-ocean transition zone is well defined and586

less than 5 km wide, and no dipping reflector sequences are observed that would indicate elevated587

magmatism. Minor continental magmatism is observed along some faults, where Na8.0 data show588

a low mantle melt degree (Taylor et al., 1995). As seafloor spreading and progressive rifting oc-589

curs contemporaneously, early seafloor spreading rates in the east can be used to determine strain590

rates in western parts of the margin still extending, similar to our approach. Central parts have the591

highest rates; 1.5-2.6·10−14 s−1 (Taylor et al., 1999), which are about half of that observed in our592

study area.593

The Lofoten/Vesterålen Margin resemble most the passive margins of the Woodlark Basin,594

with its high strain rate, low magmatism, and low-angle detachment faults. If the asthenosphere595

underneath had significantly elevated temperature, even a low strain rate should produce excess596

magmatism at an early stage as seen in the East African Rift System. However, the estimated597

strain rate is expected to produce normal oceanic crust from the time of crustal separation, and598

not sub-continental mantle unroofing and serpentinization. Clearly, the extension did not produce599

magmatism until very late, resulting in strongly thinned crust and delayed continental breakup.600

Nevertheless, the 8 km thick oceanic crust, as well as the lower-crustal igneous intrusions seen601

locally, show a slightly elevated magma production. Excess magmatism died down to a 6 km thick602

oceanic crust already 1 m.y. after breakup, demonstrating a limited plume reservoir. While plume603

material was present at the Vøring Plateau before breakup (Skogseid et al., 2000), it must have604

reached the Lofoten/Vesterålen Margin later and in lesser quantity. Buoyant plume material is605

expected to flow into the base lithospheric topography (Sleep, 1997), and early seafloor spreading606

at the Vøring Plateau shows signs of active flow of plume material into the spreading zone for the607

first 2 m.y. (Breivik et al., 2014). The abrupt bathymetric termination of the Vøring Plateau to the608

northeast suggests that magmatism was much reduced over a short distance (Fig. 2). Once seafloor609

spreading starts, lateral plume flow will be inhibited by melt/volatile extraction, leading to cooling610

and reduced buoyancy, as well as increased viscosity (Nielsen et al., 2002). Only the limited plume611
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material already present nearby will flow into the rift zone at the Lofoten/Vesterålen Margin after612

breakup at the Vøring Plateau. That could explain the observed character of this margin, located613

at the boundary of the Iceland Plume influence.614

6. Summary and Conclusions615

Here we present a seismic model across a NW-SE oriented profile over the inner Lofoten616

archipelago and the outer continental margin based on ocean bottom seismometers and land sta-617

tions. It shows a strongly reflective layer boundary at 14-15 km depth beneath Vestfjorden and the618

mainland coastal areas. The velocity is low down to this level (∼6.0-6.3 km s−1), and the reflector619

likely represents the bottom of a large Paleoproterozoic granitoid within the Trans-Scandinavian620

Igneous Belt (Olesen et al., 2002; Gradmann and Ebbing, 2015). Crustal thickness is up to 36 km621

underneath Lofoten here, which is significantly thicker than what earlier studies nearby suggested622

(Sellevoll, 1983; Mjelde et al., 1996). Low upper-crustal velocities (5.8-5.9 km s−1) at the inner623

Lofoten show a felsic lithology, consistent with low gravity anomalies. The northern Utrøst Ridge624

(Jennegga High) has higher velocities than the surrounding areas, with 6.3 km s−1 from top base-625

ment to 6.7 km s−1 at mid-crustal levels. It may be connected to a ∼6.8-6.9 km s−1 lower-crustal626

layer sloping eastwards with a highly reflective top and eastern side.627

There is little evidence of the proposed lava flows (Talwani et al., 1983; Tsikalas et al., 2001) at628

the outer margin this far north. Strong reflectivity and mounds previously interpreted as lavas may629

have both a sedimentary and tectonic origin. Post-breakup sediments from the shelf have quite630

high velocities at our profile, while distal, fine-grained turbidites from the Barents Sea (Hjelstuen631

et al., 2007) have significantly lower velocities, and could produce a good reflector where these632

overlap. Mounds are related to mass wasting off the shelf in the northern part of the margin (Rise633

et al., 2013). Higher up on the continental slope, post-breakup sediments appear to rest on a634

fault surface exposing well-consolidated pre-breakup sedimentary rocks, apparently also a good635

reflector in the area (Tasrianto and Escalona, 2015).636

The sedimentary rocks of the outer margin are divided into two layers, interpreted as Creta-637

ceous for the upper and Early Cretaceous and/or older for the lower. The top of the lower layer has638

high topography consistent with large rotated fault blocks. Low-angle detachment faults soling639
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out in a ductile lower crust can explain the geometry. The heave of the two inner detachments then640

indicate a minimum extension of 26-30 km. The basement of the outer margin has low velocities641

(6.0-6.4 km s−1) and a minimum thickness of 4.5 km, with a smooth structure consistent with642

ductile deformation. There is an up to 3.5 km thick 6.9-7.1 km s−1 velocity layer at the bottom643

of the crust at the outermost margin, which extends ∼50 km landward. The velocity is consistent644

with breakup-related magmatic intrusion of the lower continental crust usually observed at vol-645

canic margins. This is the first identification of such a feature of the Lofoten/Vesterålen margin,646

but it is smaller than that typically seen on volcanic margins. The earliest oceanic crust shows647

only moderately elevated post-breakup magmatism; it is 8 km thick adjacent to the continent, and648

is reduced to 6 km already after 1 m.y. of seafloor spreading.649

The ship magnetic profile was used to determine early seafloor spreading rates. These agree650

with results from the Norway Basin (Breivik et al., 2006, 2012) and the northern Vøring Plateau651

(Breivik et al., 2009), but apparently deviates for the earliest phase. Plate spreading rate should652

be similar for nearby margin segments, and forward modeling using established rates could only653

reproduce the observed magnetic anomalies if breakup occurred at 53.1 Ma (Cande and Kent,654

1995). This is at least 1 m.y. later than at the Norwegian margin to the south. An extra 1 m.y. of655

stretching at a rate of 30 mm y−1 can explain 30 km of additional extension of the outer margin,656

indicating that the detachment faults developed during this phase. That would imply a strain rate657

of ∼3.2·10−14 s−1.658

With such a high strain-rate, magmatic diking of the lithosphere should rapidly become the659

dominant extension process if the asthenosphere was unusually hot (Buck, 2006), and cause an660

earlier breakup coeval with the rest of the margin. Plume material was probably not present at661

the margin until close to breakup time, and then in moderate quantity. Seafloor spreading on the662

Vøring Plateau to the south should inhibit northwards flow from the Iceland Plume (Nielsen et al.,663

2002). However, plume material already ponded underneath thin lithosphere nearby (e.g., Sleep,664

1997), could have flowed into the rift zone at the Lofoten/Vesterålen Margin. That could explain a665

late arrival of a small amount of plume material, resulting in both initial magma-starved extension,666

and a subsequent short-lived and only moderately elevated breakup magmatism which tapers off667

northwards.668
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Norw. J. Geol. 92, 19–40.725

Gaina, C., Gernigon, L., Ball, P., 2009. Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of726

the Jan Mayen microcontinent. J. Geol. Soc. 166, 601–616.727

Gernigon, L., Ringenbach, J.-C., Planke, S., Le Gall, B., 2004. Deep structures and breakup along volcanic rifted728

margins: insights from integrated studies along the outer Vøring Basin (Norway). Mar. Petrol. Geol. 21, 363–372.729

Gradmann, S., Ebbing, J., 2015. Large-scale gravity anomaly in northern Norway: tectonic implications of shallow or730

deep source depth and a possible conjugate in northeast Greenland. Geophys. J. Int. 203, 2070–2088.731

Griffin, W. L., Taylor, P. N., Hakkinen, J. W., Heier, K. S., Iden, I. K., Krogh, E. J., Malm, O., Olsen, K. I., Ormaasen,732

D. E., Tveten, E., 1978. Archaean and Proterozoic crustal evolution in Lofoten–Vesterålen, N Norway. J. Geol.733
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Vesterålen continental margin, North Norway: canyons and mass-movement activity. Mar. Petr. Geol. 45, 134–149.825

Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J., Kent, R. W., 1997. The North Atlantic Igneous Province. In:826

Mahoney, J. J., Coffin, M. F. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Basalt827

Volcanism. Vol. 100 of Geophys. Monogr. Am. Geophys. Un., Washington, DC, pp. 45–93.828

Schlinger, C. M., 1985. Magnetization of lower crust and interpretation of regional magnetic anomalies: example829
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Table 1: Seismic model fit statistics for the major refracted phases and the Moho reflection, and a summary for all

phases. Suffixes 1-3 indicate upper, middle, and lower crustal layers, while 4 indicates the lower crustal body at the

margin. Suffix (h) indicates that the phase is modeled as a head wave. ’All phases’ include reflections not tabulated.

Phase No. rays RMS Δt (ms) χ2

Water 103 74 1.148

Pg1 161 73 0.510

Pg1(h) 341 106 1.544

Pg2 541 113 1.081

Pg3 255 107 0.531

Pg4 34 143 0.941

Pn 388 92 0.434

Pn(h) 71 158 1.178

PMP 71 144 0.949

All phases 2879 116 0.950
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by Gaina et al. (2009). Green shading indicates early Cenozoic onshore flood basalts (Noble et al., 1988). The
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Figure 3: Data, interpretation, and ray tracing of OBS 61, Profile 6-03. A: OBS data, vertical component, offset-

dependent scaling. B: Interpretation (vertical bars) and model prediction (solid lines). C: Ray tracing of the velocity

model.
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model.
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Figure 5: Data, interpretation, and ray tracing of OBS 65, Profile 6-03. A: OBS data, vertical component, offset-
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Figure 6: Data, interpretation, and ray tracing of OBS 68, Profile 6-03. A: OBS data, vertical component, offset-

dependent scaling. B: Interpretation (vertical bars) and model prediction (solid lines). C: Ray tracing of the velocity

model.
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Figure 7: Data, interpretation, and ray tracing of OBH 70, Profile 6-03. A: Hydrophone data, offset-dependent scaling.

B: Interpretation (vertical bars) and model prediction (solid lines). C: Ray tracing of the velocity model.
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Figure 8: Data, interpretation, and ray tracing of land seismometer 7, Profile 6-03. A: Seismometer data, vertical

component, offset-dependent scaling. B: Interpretation (vertical bars) and model prediction (solid lines). C: Ray

tracing of the velocity model.
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Figure 9: Data, interpretation, and ray tracing of land seismometer 11, Profile 6-03. A: Seismometer data, vertical

component, offset-dependent scaling. B: Interpretation (vertical bars) and model prediction (solid lines). C: Ray

tracing of the velocity model.
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Figure 10: Gridded crustal velocity model of Profile 6-03, showing ray coverage. The OBS/H locations are numbered
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Figure 11: Ray coverage and velocity node resolution. A: Gridded ray coverage of the Profile 6-03 velocity model.

The binning is 2.5 km horizontally and 0.25 km with depth. B: Gridded resolution parameters of the P-wave velocity

nodes obtained from inversion shown by color scale. Node positions at the top of layers are shown by white-filled
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the middle crust to the Moho is shown by circles enclosing them, the larger are better constrained.
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Figure 12: Model sensitivity to layer bottom depth variations versus layer velocity for the outer margin. Deeper gray

shading indicates increasing loss of rays. A: χ2 fit for Moho depth variations versus LCB velocity for nodes between

80-140 km in the model, B: corresponding RMS Δt fit in milliseconds (ms), C: PMP, Pg4, and Pn phases used in the

analysis in A-B. D: χ2 fit for lower continental crust above the LCB versus depth to top of LCB for nodes between

90-140 km, E: corresponding RMS Δt fit, F: PCP, Pg3, and Pg4 phases used in the analysis in D-E.
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Figure 14: A: Free-air gravity (marine) and Bouguer gravity onshore (Olesen et al., 2010). Onshore contours show

gravity values of -80, -90, and -100 mGal. B: Regional magnetic anomalies (Olesen et al., 2007, 2010). The new

RAS-03 survey area is indicated by the dashed line. A and B: Bathymetric contours at 500 m intervals are shown on

top of both grids. Euromargins 2003 OBS lines are also shown, with OBS positions (yellow-filled circles) and land

stations (red-filled, inverted triangles) on Profile 6-03. White lines show magmatic interpretations from Berndt et al.

(2001); ELL?: Eastern limit lava?, OH?: Outer volcanic highs?, SDR?: Seaward dipping reflector sequence?, TIB:

Trans-Scandinavian Igneous Belt body. Swedish data c©Swedish Geological Survey.
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