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Introduction

An important invariant in algebraic geometry for projective spaces is the

Castelnuovo�Mumford regularity index (CM�regularity). For a coherent sheaf F on

Pn, this is de�ned as the smallest integer m, such that

H i(F(m− i)) = 0, for any i > 0.

The index was �rst introduced by Guido Castelnuovo, and David Mumford was later

a key contributor to the study of its properties. The main theorem of this theory

says, amongst other things, that if F is m�regular, then F(m) is globally generated.

Therefore the question of whether certain sheaves are generated by their global sections

can be checked by the vanishing of cohomologies, which may be easier to compute.

If one changes the focus from Pn to principally polarized abelian varieties, Giuseppe

Pareschi and Mihnea Popa introduced the Θ�regularity index in an article from 2003

[PP03]. This is de�ned using the language of derived categories, through the Fourier�

Mukai Transform, Ŝ(−). More precisely, a coherent sheaf F is said to be Mukai�regular

if

codim(Supp(Ri(Ŝ(F))) > i, for all i > 0.

If Θ is a �xed polarization, then the Θ�regularity of F is de�ned to be the smallest

integer m such that F((m− 1)Θ) is Mukai�regular. Pareschi and Popa go on to show

that F ⊗Θ is globally generated if F is Mukai�regular. This leads to a main theorem

that mirrors the theorem of Mumford and Castelnuovo with (almost) identical numeric

analogy.

The log-canonical threshold (lct) is a third invariant, whose de�nition holds for

both projective spaces and abelian varieties, and is widely used in modern birational

geometry. For a sheaf of ideals I, this is de�ned as the lowest rational number c

such that the multiplier ideal J (c · I) is non�trivial. In [KP13], Alex Küronya and

Norbert Pintye proved for Pn the following inequality relating the CM�regularity and
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the log�canonical threshold of an ideal sheaf I:

1 ≤ lct(I)reg(I).

Given the similarities between Castelnuovo�Mumford�regularity and Θ�regularity, the

goal of this thesis is to investigate the relation between the log�canonical threshold

and the Θ�regularity of coherent sheaves on principally polarized abelian varieties.

To this end, Chapter 1 will include the necessary background theory, including an

introduction of multiplier ideals and log�canonical thresholds. In Chapter 2 we give

a brief presentation of abelian varieties and then follow Shigeru Mukai's paper on the

Fourier�Mukai Transform, and Pareschi and Popa's article on Θ�regularity. Chapter

3 will then conclude with the main result of this work, Theorem 3.1.6, which is an

inequality that relates Θ�regularity and the log�canonical threshold in the following

way:

Theorem. Let (A,Θ) be a principally polarized abelian variety. For any coherent sheaf

of ideals I 6= OA, the following inequality holds:

1 < lct(I)(Θ�reg(I)).

ii



Acknowledgements

I am �rst and foremost indebted to my thesis advisor, professor So�a Tirabassi, for

suggesting and introducing me to the topic. Her love for mathematics is truly inspiring,

and she has exceeded all expectations in her advice and guidance during this project.

Special thanks are also due to Eugenia Ferrari, Tommy Lundemo and Magnus Vodrup

for feedback on a preliminary version of this thesis, and for the countless discussions.

Lastly, I wish to thank Mona for all the love and support throughout these years.

iii



Notation and Conventions

This thesis will assume knowledge of terminology and basic results in algebraic

geometry. We will for the most part follow the generally accepted notation used

in [Har77]. For triangulated and abelian categories we have used the de�nitions of

[Huy06]. Unless otherwise speci�ed we also adopt the following conventions:

• All functors between abelian categories will be additive.

• We work throughout over the �eld of complex numbers, k = C.

• A scheme X is in our context de�ned to be a smooth, separated algebraic scheme

that is integral, projective and of �nite type over C. Thus it is in particular also

an algebraic variety as de�ned in [Har77].

• A sheaf will be understood to be a sheaf of modules. Mod(X) is then the category of

sheaves on X, while QCoh(X) and Coh(X) are the categories of quasi�coherent

and coherent sheaves, respectively. By a point of a scheme, we will more speci�-

cally mean a closed point.

• For sheaves F and G we will write Hom(F ,G) for the sheaf�hom, while Hom(F ,G)

will denote the C�vector space.

• For clarity the i�th cohomology group of a complex A• will be denoted as Hi(A•),

while for a sheaf F on X the sheaf cohomology is written H i(X,F). When no

confusion about the scheme in question can arise, we will also write the latter as

H i(F). Lastly, we will denote the dimension dimk(H
i(X,F)) as hi(X,F).
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Chapter 1

Preliminary Ideas and Properties

The aim of this chapter is to review and state the theoretical background that will

be needed for our context. It is not meant as a thorough introduction to any of the

subjects presented, and we will mostly be content with referring to the appropriate

literature for proofs.

Sections 1.1 and 1.2 will consist of basic theory in algebraic geometry, mostly focus-

ing on results regarding cohomology and line bundles. Section 1.3 will introduce the

bounded derived category of coherent sheaves and some associated functors. In sec-

tion 1.4 we will present multiplier ideals, along with the associated vanishing theorem,

Nadel Vanishing, and the rational invariant log�canonical threshold with its important

geometrical interpretations. A short note on the Castelnuovo�Mumford regularity, in-

cluding its relation to the log�canonical threshold is presented in section 1.5. This is

mainly to motivate the work done in the second and third chapter.

1.1 General Theory in Algebraic Geometry

As previously noted, knowledge of terminology and basic results in algebraic ge-

ometry is assumed to be familiar to the reader. This section nevertheless is included

to establish notation and serve as a quick reference to technical results that will be

needed later. [Har77] is the main reference throughout this section and [Huy06] is the

reference for the last part, regarding spectral sequences.

Recall that an object A in an abelian category A is said to be injective if the left exact

contravariant functor Hom(−, A) is exact. An injective resolution of A is an exact
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sequence

0 −→ A −→ I0 −→ I1 −→ · · · , I i ∈ A injective for all i ≥ 0.

A is said to contain enough injectives if any object A admits an injective resolution.

If F : A −→ B is a left exact functor and A has enough injectives, we can de�ne

the right derived functors RiF , i ≥ 0 as follows. For an object A ∈ A we �x an

injective resolution I• of A. Then RiF (A) = Hi(F (I•)) (which is independent of the

chosen resolution). Now let X be a scheme and consider the category of sheaves of

OX-modules, Mod(X). In [Har77] III.Proposition 2.2. it is proved that this category

has enough injectives. This allows for the following de�nition.

De�nition 1.1.1. For F ∈Mod(X), the functors Exti(F ,−) are de�ned as the right

derived functors of Hom(F ,−).

It is immediate from the de�nition of injective resolutions, and the fact that

Hom(F ,−) is left exact, that Ext0(F ,−) = Hom(F ,−). Some more properties of the

Ext�functor are listed here, including the Serre Duality Theorem, which under certain

conditions gives an isomorphism between the C-vector space of the sheaf cohomology

group H i and the dual vector space of Hn−i.

Proposition 1.1.2. Let F and G be any sheaves on X.

a) Exti(OX ,G) ' H i(X,G) for any i ≥ 0.

b) Assume furthermore that L is a locally free sheaf on X. Then there is the following

isomorphism:

Exti(F ⊗ L,G) ' Exti(F,L∨ ⊗ G)

where L∨ := Hom(L,OX) is the dual of L.

Proof. a) is [Har77] III.Proposition 6.3.c). Part b) is III.Proposition 6.7 in the same

book.

Theorem 1.1.3 (Serre Duality). Let X be a scheme of dimension n, and F a coherent

sheaf on X. Then for any i ≥ 0 the following isomorphism holds

Exti(F , ωX) ' Hn−i(X,F)∨

where ωX is the canonical sheaf and Hn−i(X,F)∨ is the dual cohomology group of

Hn−i(X,F).
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Proof. [Har77] III Theorem 7.6 and III Corollary 7.12.

Using Serre Duality we are able to show the following quick fact which will be of

use to us in Chapter 2.

Corollary 1.1.4. Let n = dim X, F a coherent sheaf on X and Y = SuppF . Then

Exti(F, ωX) = 0 if n− i > dim Y .

Proof. From the Serre Duality Theorem we have Exti(F , ωX) ' Hn−i(X,F)∨. Now

there is a canonical isomporhism F → j∗(F|Y ) where j denotes the inclusion j :

Y → X. So we have Hn−i(X,F) ' Hn−i(X, j∗(F|Y )) ' Hn−i(Y,F|Y ) (by [Har77]

III.Exercise 4.1) and the latter is trivial if n− i > dim Y by Grothendieck's Vanishing

Theorem (ibid, III. Theorem 2.7).

The Vanishing Theorem of Kodaira is also included here, which gives a useful

condition for when the higher cohomology groups of line bundles are zero.

Theorem 1.1.5 (Kodaira Vanishing Theorem). If X is a projective nonsingular variety

of dimension n and L an ample line bundle on X, then

H i(X,ωX ⊗ L) = 0 for i > 0

By Serre Duality, an equivalent statement is

H i(X,L−1) = 0 for i < n

Proof. [Laz04a] Theorem 2.4.1.

We �x some notation that will be useful to us. Recall that for schemes X, Y, a

morphism f : X → Y and a point y ∈ Y , one writes Xy to mean the �bre of f over y.

This is de�ned as X ×Y Spec k(y), considered as a scheme over Spec k(y) and given

by the �bre diagram

Xy = X ×Y Spec k(y)

Spec k(y)X

g

Y

f
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If F is a sheaf on X, one denotes the pullback g∗F on Xy as Fy.
For a coherent sheaf F the Euler characteristic is de�ned as

χ(F) :=
∞∑
i≥0

(−1)idimkH
i(X,F)

It is a fact that the Euler characteristic is additive, i.e. if

0 −→ F ′ −→ F −→ F ′′ −→ 0

is a short exact sequence of coherent sheaves then χ(F) = χ(F ′) + χ(F ′′).
The regularity condition we will be interested in the last part of this text will be

related to sheaves of the form Rif∗(F). A very interesting question in this regard is

how Rif∗(F) relates to the cohomology along the �bre H i(Xy,Fy), and how this varies

as a function of y ∈ Y . The following three results address exactly this question.

Theorem 1.1.6 (The Semicontinuity Theorem). Let f : X → Y be a proper morphism

of noetherian schemes, and F a coherent sheaf on X that is �at over Y . Then the

following holds

a) For every i ≥ 0, the function ψ : Y −→ Z given by

y 7−→ dimk(y)H
i(Xy,Fy)

is upper semicontinous, i.e. ψ−1(−∞, a) is open for any a ∈ Z.
b) The function Y −→ Z, de�ned by

y 7−→ χ(Fy)

is locally constant on Y .

Proof. [Mum70] II.5. Corollary 1.

Theorem 1.1.7 (Grauert's Theorem). Consider f : X −→ Y and F with the same

assumptions as in the Semicontinuity Theorem above. If for some integer i the function

y 7→ hi(Xy,Fy) is constant on Y , then Rif∗(F) is locally free on Y and for every y the

natural map

Rif∗(F)⊗ k(y) −→ H i(Xy,Fy)

is an isomorphism.

Proof. [Har77] III. Corollary 12.9.
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Theorem 1.1.8 (Cohomology and Base Change). Let f : X → Y , be a projective

morphism of noetherian schemes, and F a coherent sheaf on X, �at over Y . Then for

any point y ∈ Y the following properties hold:

a) if the natural map

φi(y) : Rif∗(F)⊗ k(y)→ H i(Xy,Fy)

is surjective then it is an isomorphism.

b) If φi(y) is surjective, the following are equivalent:

(i) φi−1(y) is also surjective.

(ii) Rif∗(F) is locally free in a neighborhood of y.

Proof. [Har77] III. Theorem 12.11.

De�nition 1.1.9. A coherent sheaf F on an integral scheme X is torsion�free if for

each x ∈ X the multiplication map s : Fx → Fx is injective for all s ∈ OX,x \ {0}.

A useful property of torsion�free sheaves is that the natural restriction maps from

the global sections to the stalks, F(X) −→ Fx, is injective.

Example 1.1.10. Let F be a coherent sheaf and G locally free of rank m. Then the

sheafHom(F ,G) is torsion�free. Locally, this is the set of morphisms Fx → Gx ' O⊕mX,x.
Since X is integral, the ring OX,x is an integral domain. So multiplying the direct sum

with a non�zero element of OX,x is non�zero, and hence the multiplication is injective.

The last concept to review in this section is that of spectral sequences. They are

important tools for computing cohomology. As before we will not go into the technical

details, but rather provide the necessary information needed for applications later on.

De�nition 1.1.11. A spectral sequence over an abelian category A consists of a col-

lection of objects

(Ep,q
r , En), for n, p, q, r ∈ Z and r ≥ 1

and morphisms

dp,qr : Ep,q
r −→ Ep+r,q−r+1

r

such that the following conditions are satis�ed

i) dp+r,q−r+1
r ◦ dp,qr = 0 for all p, q, r. In particular, this means that there are

complexes E
p+•r,q+•(1−r)
r .

ii) There are isomorphisms Ep,q
r+1 ' H0(E

p+•r,q+•(1−r)
r ).
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iii) For any pair (p, q) there exists an integer r0 such that dp,qr = dp−r,q+r−1
r = 0

for all r ≥ r0. Condition ii) then gives isomorphisms Ep,q
r ' Ep,q

r0
for all r ≥ r0. This

object is denoted Ep,q
∞ .

iv) There is a decreasing �ltration

· · · ⊂ F p+1En ⊂ F pEn ⊂ · · · ⊂ En

satisfying
⋂
F pEn = 0 and

⋃
F pEn = En. Lastly, there are isomorphisms

Ep,q
∞ ' F pEp+q/F p+1Ep+q.

In applications it is often useful to view Ep,q
r as objects converging, for increasing

r, towards a certain quotient of the �ltration on En, n = p + q. It is customary only

to give the data associated to a �xed r-value, along with En, typically written

Ep,q
r ⇒ En.

As it is the converging that will be interesting to us, the �xed r�value need not be

1, but could also be a higher integer. An important class of examples for spectral

sequences will be that of double complexes. We give the de�nition for them here.

De�nition 1.1.12. A double complex K•,• consists of objects Ki,j for i, j ∈ Z, and
morphisms

di,jI : Ki,j −→ Ki+1,j

di,jII : Ki,j −→ Ki,j+1

satisfying d2
I = d2

II = dIdII + dIIdI = 0. This in particular makes Ki,• and K•,j into

complexes for any �xed i and j. The total complex K• of the double complex K•,• is

the complex Kn =
⊕

i+j=nK
i,j with morphism d = dI + dII .

Proposition 1.1.13. Let K•,• be a double complex such that for any integer n one has

Kn−l,l = 0 for |l| >> 0. Then there is a spectral sequence

Ep,q
2 = Hp

IIH
q
I (K•,•)⇒ Hp+q(K•)

with the �ltration F lKn =
⊕

j≥lK
n−j,j.

Proof. [Huy06] Proposition 2.64.
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1.2 Properties of Line Bundles and Divisors

The aim of this section is to introduce brie�y the terminology and properties of

divisors and line bundles that will be used throughout the rest of this text. We start

by recalling some de�nitions and basic results regarding divisors. Then we introduce

intersection numbers and further properties such as big and nef. We end by generalizing

these de�nitions to Q�divisors. The main references of the section will be [Har77],

[Laz04a] and [Deb01]. Recall our usual convention that X is a smooth, projective

algebraic variety.

Let MX be the sheaf of rational functions on X. The structure sheaf OX is a

subsheaf of this, and hence there is an inclusion O∗X ⊆M∗
X of sheaves of multiplicative

abelian groups. A (integral) Cartier divisor onX is then a global section of the quotient

sheafM∗
X/O∗X . We denote the group of all such divisors as

CDiv(X) = Γ(X,M∗
X/O∗X)

From the properties of quotient sheaves, a Cartier divisor can equally well be described

as a collection {Ui, fi} where {Ui} is an open cover of X and elements fi ∈ Γ(Ui,M∗
X)

so that if Ui ∩ Uj 6= ∅ then fi/fj ∈ Γ(Ui ∩ Uj,O∗X).

Due to our assumptions on X, we may also de�ne a (integral) Weil divisor to be

a �nite sum
∑
niYi, where the coe�cients are integers and Yi is a prime divisor, i.e.

a closed integral subscheme of X of codimension 1. If we denote the group of Weil

divisors as Div(X), there is a group homomorphism

CDiv(X) −→ Div(X)

D 7→
∑

ordY (D)Y

Where ordY (D) denotes the order of D along the prime divisor Y , and the sum is

taken over all the prime divisors of X. In our setting the map will be an isomorphism

by [Har77] Proposition III.6.11. Note that we will conventionally write the group

operation for CDiv(X) additively (even though the group operation on M∗
X/O∗X is

multiplicative), to preserve this relation with Weil divisors. We will also at times

simply write "divisor" if there is no need to specify whether we are working with Weil

or Cartier divisors.

A Cartier divisor is called principal if it lies in the image of the natural map

Γ(X,M∗
X) −→ Γ(X,M∗

X/O∗X)
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Two divisors D1, D2 are linearly equivalent, written D1 ≡lin D2, if D1−D2 is principal.

Recall that Pic(X) denotes the group of isomorphism classes of line bundles on X.

It can also be expressed as the cohomology group H1(X,O∗X). Now consider the short

exact sequence

0 −→ O∗X −→M∗
X −→M∗

X/O∗X −→ 0

It induces a long exact sequence of cohomology groups

... −→ H0(X,M∗
X) −→ H0(X,M∗

X/O∗X) −→ H1(X,O∗X) −→ ...

so in particular there is a homomorphism

CDiv(X) −→ Pic(X)

D 7→ OX(D)

with kernel H0(X,M∗
X). In other words

OX(D1) ' OX(D2) if and only if D1 ≡lin D2

As we assume X is integral, the homomorphism from CDiv(X) modulo linear equiv-

alence is an isomorphism ([Har77] Proposition III.6.15). In light of this isomorphism,

we will in the future say that a divisor D has a property de�ned for line bundles to

mean that OX(D) has said property, and vice versa.

A Cartier divisor D is e�ective if it can be represented by {(Ui, fi)} where fi ∈
Γ(Ui,OUi). Equivalently, if the associated Weil divisor is written

∑
niYi with all ni ≥ 0.

In this case D induces a sheaf of ideals I which is locally generated by the fi's. There

is furthermore an isomorphism I ' OX(−D) ([Har77] III Proposition 6.18).

De�nition 1.2.1. The (complete) linear series of a divisor D, written |D| or |L| for
L ' OX(D), is de�ned as the set of all e�ective divisors linearly equivalent to D.

By [Har77] II.Proposition 7.7, |D| is in a one�to�one correspondence with the set

(Γ(X,OX(D)) − {0})/k∗. Hence |D| has the structure of the set of closed points of

some projective space over C. One also de�nes the base locus, Bs(|D|) ⊆ X to be the

set of points where all the sections of Γ(X,OX(D)) vanish. If there are no base points

(i.e. Bs(|D|) is empty) then |D| is called a free linear series.

We now want to introduce the intersection number for a collection of divisors. It

will be de�ned through the Euler characteristic, following [Deb01]. If D is a divisor and

F a sheaf then F(D) will denote the sheaf F ⊗ OX(D). We start with the following

result.
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Theorem 1.2.2. Let D1, ..., Dr be divisors and F a coherent sheaf on X. Then the

function

Zr −→ Z

(m1, ...,mr) 7→ χ(X,F(m1D1 + ...+mrDr))

takes the same values on Zr as a polynomial with rational coe�cients having degree at

most the dimension of SuppF .

Proof. [Deb01] Theorem 1.5.

In particular, if F = OX , then χ(X,OX(m1D1 + ...+mrDr)) is a polynomial with

rational coe�cients with Zr as domain. The degree is at most the dimension of X.

Furthermore, it is shown in [Deb01] Proposition 1.8 that the coe�cient of the term

m1 · ... ·mr is an integer. This leads to the following de�nition.

De�nition 1.2.3. Let D1, ..., Dr be divisors on X, with r ≥dim(X). The intersection

number

(D1 · ... ·Dr)

is de�ned to be the coe�cient of m1 · ... ·mr in the polynomial χ(X,m1D1 + ...+mrDr).

If Y is a subscheme of X of dimension at most t, then we de�ne the intersection

number with respect to Y to be

(D1 · ... ·Dt · Y ) := (D1|Y · ... ·Dt|Y )

where Di|Y is the restriction of the divisor Di to Y .

Recall the following de�nitions of ample and very ample line bundles.

De�nition 1.2.4. Let L be a line bundle on X.

i) L is very ample if there exists a closed embedding i : X −→ PN , for some

integer N , where

L ' i∗OPN (1)

ii) L is called ample if there is an integer m > 0 such that Lm is very ample.

As we are assuming all schemes are projective, there will always exist a very ample

(and hence also ample) line bundle. Equivalence conditions for L to be ample is found

in the following theorem.
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Theorem 1.2.5 (Cartan�Serre�Grothendieck). Let L be a line bundle on X Then

following conditions are then equivalent:

i) L is ample.

ii) For any coherent sheaf F on X, there exists a positive integer m0 (depending on F)
such that

H i(X,F ⊗ Lm) = 0 for all i > 0, m ≥ m0.

iii) Given any coherent sheaf F on X there is a positive integer m1 (also depending on

F) such that F ⊗ Lm is globally generated for all m ≥ m1.

iv) There is a positive integer mL such that Lm is very ample for all m ≥ mL.

Proof. [Laz04a] Theorem 1.2.6

There is also a numerical way to view ample line bundles as seen by the following

result.

Theorem 1.2.6 (The Nakai�Moishezon Criterion). A divisor D on the scheme X is

ample if and only if for any integral subscheme Y of X one has

(D · ... ·D · Y ) > 0

where the intersection number is taken over dim(Y ) copies of D.

Proof. [Deb01] Theorem 1.21.

Based on this, there is the following weaker condition.

De�nition 1.2.7. A divisor D on X is said to be nef (numerically e�ective) if for

every integral subscheme Y of X one has

(D · ... ·D · Y ) ≥ 0

where the intersection number is taken over dim(Y ) copies of D.

In other words, the de�nition is expanding the Nakai-Moishezon Criterion by allow-

ing the intersection numbers to be equal to zero as well. Nefness can also be checked

only on curves, i.e. D is nef if and only if it has a non�negative intersection number

with every curve of X ([Deb01] Theorem 1.26). This shows that being nef is preserved

by numerical equivalence, which we de�ne as follows.
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De�nition 1.2.8. Two divisors D1 and D2 are said to be numerically equivalent,

written D1 ≡num D2, if

(D1 · C) = (D2 · C)

for every curve C ⊆ X.

Now consider the following set associated to a line bundle L on X:

N(L) = {m ≥ 0 |H0(X,Lm) 6= 0}

Suppose m ∈ N(L) and let s0, ...sr be elements forming a basis for H0(X,Lm). Denote

B = Bs(|Lm|), then there is a map

φm = φ|Lm| : X \B −→ Pr

x 7→ (s0(x), ..., sr(x))

Since B is closed, φm is a rational map X 99K Pr.

De�nition 1.2.9. If N(L) 6= 0 then the Iitaka dimension of a line bundle L on X is

de�ned to be

κ(L) = maxm∈N(L){dim φm(X)}

where φm(X) is the closure of the image of φm in Pr. If N(L) = 0, i.e. H0(X,Lm) = 0

for all m > 0, then one conventionally sets κ(L) = −∞.

Hence the Iitaka dimension of a line bundle is either −∞ or 0 ≤ κ(L) ≤ dim X.

De�nition 1.2.10. L is said to be big if it has maximal Iitaka dimension, i.e. if κ(L) =

dim X.

Example 1.2.11. An ample line bundle has a multiple which is very ample, and very

ample bundles admit a set of global sections such that the associated map X 99K Pn

is an immersion. It follows that ample line bundles are big.

The rest of this section is devoted to Q�divisors. As we will see shortly, this is a

generalization of (Weil) divisors by allowing rational coe�cients. We also remark on

how to generalize all the properties seen so far to this setting.

De�nition 1.2.12. A (Weil) Q�divisor D on X is de�ned as an element of the Q�
vector space

DivQ(X) := Div(X)⊗Z Q

11



Such an element can be represented as a �nite sum

D =
∑

aiDi

where ai ∈ Q and Di is a prime divisor.

The divisor is furthermore said to be e�ective if ai ≥ 0 for all i, and integral if ai ∈ Z
for all i. One can always go from a Q�divisor to an integral divisor by considering its

round�down. More speci�cally, this is the divisor

bDc =
∑
baicDi

where baic is the greatest integer ≤ ai.

The properties, operations and equivalences introduced previously for integral

divisors extend easily to Q�divisors in the natural way: one considers them for

integral divisors and then extends by linearity. This is more concretely summed up in

the following de�nition.

De�nition 1.2.13. Let all divisors Di denote Q�divisors on X. Then we de�ne the

following:

i) If Y ⊆ X is a subscheme of dimension k, then the Q�valued intersection

product

DivQ(X)× ...×DivQ(X) −→ Q

(D1, ..., Dk) 7→ (D1 · ... ·Dk · Y )

is de�ned via extension of scalars from the analogous map on Div(X). In particular,

if r is an integer so that rDi is an integral divisor for all i, then (D1 · ... · Dk · Y ) =
1
r
(rD1 · ... · rDk · Y ).

ii) D1 and D2 are numerically equivalent, D1 ≡num,Q D2 (or D1 ≡num D2 if no

confusion can arise) if

(D1 · C) = (D2 · C)

for every curve C ⊆ X, using the de�nition from i) on the intersection numbers.

iii) D1 and D2 are linearly equivalent, D1 ≡lin,Q D2 if there is an integer r such

that rD1 and rD2 are integral divisors that are linearly equivalent (as integral divisors).

iv) For a morphism f : X ′ −→ X the pull�back f ∗D is de�ned by performing

the pullback on the prime divisors, f ∗Yi, and extending linearly. More speci�cally, f ∗Yi

is de�ned by pulling back the local equations for Yi. This is possible when f does not

12



map X ′ into the support of Yi ([Laz04a] pages 9�10).

v) D is ample if there is a positive integer r > 0 so that r ·D is an ample integral

divisor. Equivalently, if D satis�es the Nakai-Moishezon Criterion

(DdimY · Y ) > 0

for every integral subscheme Y ⊆ X, with intersection numbers taken as in i).

Remark 1.2.14. It may happen that two di�erent integral divisors become linearly

equivalent in the sense of iii) if considered as Q�divisors. For this reason we will rather

be working with numerical equivalence for Q�divisors, where this does not occur.

Since the de�nition of being nef (for integral divisors) only depends on numerical

equivalence classes, the de�nition immediately generalizes to Q�divisors, using the

de�nition of intersection numbers as in i) in the de�nition above. We also de�ne

bigness for a Q�divisor D if there is a positive integer m > 0 so that mD is integral

and big. Clearly, an ample Q�divisor D is nef and big. Indeed, by condition v) in the

last de�nition, it satis�es the Nakai�Moishezon Criterion which is a stronger statement

than nefness. Also, since there is a positive integer r so that rD is integral and ample,

it is also big by Example 1.2.11.

Remark 1.2.15 (Convention). For the rest of this text we adapt the convention that

divisor will always mean an integral divisor. The instances where Q�divisors are used
will be speci�ed.

.
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1.3 Derived Categories

So far we have only considered "usual" sheaves, forming the abelian categories of

sheaves, Mod(X), quasi�coherent sheaves, Qcoh(X), and coherent sheaves Coh(X).

This section will be devoted to categories consisting of resolutions of sheaves. More

precisely the goal will be to introduce the bounded derived category of coherent sheaves.

We will also present the derived functors that are fundamental to the framework of the

later sections. The main source of the section will be [Huy06].

To start o� we �x some notation. A will, as before, be an abelian category. Kom(A)

denotes the category of complexes in A. If A• and B• are objects in Kom(A), we say

that a morphism f : A• −→ B• is a quasi-isomorphism (qis for short) if the map

Hi(f) : Hi(A•) −→ Hi(B•) is an isomorphism for all i ∈ Z. The idea behind the

derived category is then to turn all the quasi-isomorphisms into isomorphisms. More

formally, there is the following universal property.

Theorem 1.3.1. For any abelian category A there exists a category D(A) called the

derived category of A, along with a functor

Q : Kom(A) −→ D(A)

satisfying the properties

i) If f : A• −→ B• is a quasi�isomorphism, then Q(f) is an isomorphism in

D(A).

ii) If F : Kom(A) −→ D is another functor satisfying property i), then there

exists a unique functor (up to isomorphisms) G : D(A) −→ D such that the following

diagram commutes:

Kom(A) D(A)

D

Q

F

G

A proof of the theorem can be found in [Huy06] Theorem 2.10. In the context of

this thesis we will be content with describing what the derived category looks like.

A useful intermediate step when passing from Kom(A) to D(A) is the homotopy

category of complexes. Recall that two complex morphisms f, g : A• −→ B• are said

to be homotopically equivalent, written f ∼ g, if there is a collection of morphisms
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hi : Ai −→ Bi−1, i ∈ Z, such that

f i − gi = hi+1 ◦ diA + di−1
B ◦ hi

De�nition 1.3.2. The homotopy category of complexes, K(A), is the category having

the same objects as Kom(A), Ob(Kom(A)) = Ob(K(A), and morphisms

HomK(A)(A
•, B•) = HomKom(A)(A

•, B•)/ ∼, where ∼ denotes homotopy equivalence.

The following fact relates homotopy equivalence and quasi�isomorphisms, and sug-

gests the usefulness of K(A) in de�ning D(A).

Lemma 1.3.3. If f, g : A• −→ B• and f ∼ g then H i(f) = H i(g) for all i. In

particular, if there also exists a morphism h : B• −→ A• so that h ◦ f ∼ idA and

f ◦ h ∼ idB then A• and B• are quasi-isomorphic.

Everything is now properly set to de�ne D(A). For objects there is a particularly

easy description, namely Ob(D(A)) = Ob(K(A) = Ob(Kom(A)). For A•, B• ∈ D(A)

the group of morphisms HomD(A)(A
•, B•) are the equivalence classes of roofs

C•

A• B•
qis

where C• −→ A• is, as denoted, a quasi�isomorphism. Two such roofs, with C•1 and

C•2 on top, are equivalent if one can write a third diagram of the following form that

commutes in K(A):

C•

C•1 C•2

A• B•

qis

This in particular means that C• −→ C•1 −→ A• is homotopy equivalent to C• −→
C•2 −→ A•. Composing the two morphisms

D• E•

A• B• B• C•
qis qis

is done by giving a third commutative diagram (again commuting in K(A)) of the form
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F •

D• E•

A• B• C•

qis

qis qis

One of the reasons why we require commutativity of the diagrams in K(A), as opposed

to in Kom(A), is that the constructed middle square in the latter diagram for com-

position of morphisms will only commute up to homotopy equivalence. See [Huy06]

Proposition 2.16 for more details regarding this construction.

From the de�nition of D(A), it is easy to see that one can identify objects of A
with complexes in D(A) that are concentrated in degree 0 (i.e. complexes A• where

H0(A•) = A and H i(A•) = 0, i 6= 0). This identi�cation makes A into a full subcate-

gory of D(A). One de�nes the bounded derived category, Db(A), to consist of only the

bounded complexes in D(A), which are complexes A• where the cohomology groups

H i(A•) are non�zero for only �nitely many indices i. One de�nes Komb(A) and Kb(A)

similarly. We will write D+(A) for the derived category where the cohomology of the

complexes vanishes for i << 0 (similarly for Kom+(A) and K+(A)).

De�nition 1.3.4. Let Coh(X) be the abelian category of coherent sheaves

over the scheme X. Then the bounded derived category of coherent sheaves is

Db(X) := Db(Coh(X)).

Interesting questions now arise concerning what functors one has in the derived

category. An easy start is the shift functor that naturally appears in any category

having complexes as objects. For any n ∈ Z this is the functor [n] : D(A) −→ D(A)

that takes terms Ai[n] = Ai+n and di�erentials diA•[n] = (−1)ndi+nA• . The shift functor is

clearly an equivalence of categories, its inverse given by [−n]. Now consider a functor

of abelian categories F : A −→ B. It will naturally induce a functor K(F ) : K(A) −→
K(B) by applying F to each term in a given complex. The goal is to determine a

functor D(A) −→ D(B) that is as close as possible to F , and this will depend on

the "degree" of exactness that F exhibits. If F is exact it will extend to a functor

D(A) −→ D(B), again by applying F to each term in a complex. This is well de�ned

as the exactness of F assures that the image of an acyclic complex (i.e. a complex

quasi�isomorphic to 0) is still acyclic. If F is not exact the same approach cannot be

applied, since the image of an acyclic complex would in general fail to be acyclic. This

observation inspires the following de�nition left exact functors.
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De�nition 1.3.5. Let F : A −→ B be a left exact functor. A class of objects IF ⊂
A, stable under �nite sums, is said to be F�adapted if it satis�es the two following

conditions:

i) If A• ∈ K+(A) is acyclic with Ai ∈ IF for all i, then F (A•) is acyclic.

ii) Any object in A can be embedded into an object of IF .

There is also the more general version, where the functor F needs only be given on

the homotopy category.

De�nition 1.3.6. Let A and B be abelian categories and suppose F : K+(A) −→
K(B) is exact (as a functor of triangulated categories). Then a triangulated subcate-

gory RF ⊂ K+(A) is said to be F�adapted if it satis�es the two conditions

i) If A• ∈ RF is acyclic then F (A•) is acyclic.

ii) Any object in K+(A) is quasi-isomorphic to an object in RF .

Intuitively speaking, condition ii) assures that we can replace any complex A• with

a complex in RF . Condition i) guarantees that F acts like an exact functor on this

class of complexes. [Har66] I Theorem 5.1 formalizes and justi�es this intuition. The

class of injective sheaves in Mod(X), discussed in the �rst section, is an example of a

class adapted to all left exact functors.

Example 1.3.7. i) The idea in this example is to construct the tensor product as a left

derived functor from the total complex of a double complex (as described in De�nition

1.1.12). For F•,G• ∈ Komb(X) we de�ne the double complex consisting of objects

Kp,q = Fp ⊗ Gq and morphisms dI = dF ⊗ 1 and dII = (−1)p+q1⊗ dG. The functor of
interest is then de�ned as the associated total complex

F• ⊗ (−) : Kb(X) −→ Kb(X)

Where (F• ⊗ G•)i :=
⊕

p+q=i(Fp ⊗ Gq) and the resulting complex has morphisms

d = dF ⊗ 1 + (−1)i ⊗ dG. To make it into a derived functor, we will show that the

subcategory of bounded complexes of locally free sheaves is adapted to it (in the sense

of De�nition 1.3.6). Recall that any coherent sheaf on X admits a resolution of locally

free sheaves, which is of �nite lenght as we are assuming X to be smooth. One can

therefore �nd a complex of locally free sheaves, ε•, for any object in Kb(X). Fix such

a complex ε• that is also acyclic. The spectral sequence from Proposition 1.1.13 now

reads

Ep,q
2 = Hp

IH
q
II(K

•,•)⇒ Hp+q(F• ⊗ ε•)

17



If we �x any i, giving the complex Ki,• = F i ⊗ G•, then Hq
II(F i ⊗ ε•) = 0, due to ε•

being acyclic, and tensoring with locally free sheaves is an exact functor, so it commutes

with cohomology. Since cohomology also commutes with direct sums, this implies that

all Ep,q
2 are trivial and hence equal to the in�nity�object Ep,q

∞ . Recall from De�nition

1.1.11 of spectral sequences that we now have 0 = Ep,q
∞ ' F pEp+q/F p+1Ep+q. From

∪F pEn = En = Hn(F• ⊗ ε•), and the fact that ∩FpEn = 0, we then deduce that

Hn(F•⊗ ε•) must be trivial, hence the complex F•⊗ ε• is acyclic. The subcategory of

bounded complexes of locally free sheaves is thus indeed adapted for F• ⊗ (−) which

means that it induces a well de�ned left derived functor F•⊗L (−) : Db(X) −→ Db(X).

ii) The pullback of a morphism f : X −→ Y is, on coherent sheaves, a functor

f ∗ : Coh(Y ) −→ Coh(X) that is the composition of the functors f−1 : Coh(Y ) →
Coh(X) and (OX ⊗f−1OY (−)) : Coh(X) → Coh(X). By the construction in i) it

therefore induces a left derived functor Db(Y ) −→ Db(X).

In the previous section we used that Mod(X) has enough injectives. This fails

to be the case for Coh(X), but it can, however, be shown that Qcoh(X) has enough

injectives (see [Har66] I Theorem 7.18). One furthermore has the following important

result.

Proposition 1.3.8. For a noetherian scheme X the natural functor

Db(X) −→ Db(Qcoh(X))

de�nes an equivalence of categories

Db(X) ' Db
coh(Qcoh(X)).

Here Db
coh(Qcoh(X)) denotes the category of bounded complexes of quasi�coherent sheaves

with coherent cohomology.

Proof. [Huy06] Proposition 3.5.

The idea for left exact functors on coherent sheaves is then to pass to the larger

category of complexes of quasi�coherent sheaves. To go on about this more rigorously,

let F : Qcoh(X) −→ A be a left exact functor where X is a scheme and A an abelian

category. We have the following diagram.
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K+(I) K+(Qcoh(X)) K+(A)

D+(Qcoh(X)) D+(A)

D+(X)

i

K(F )

QX QA

i−1

j

Here j denote the natural inclusion and QX , QA denotes the functors from Theorem

1.3.1 (after passing to the homotopy category). I is the class of injective objects of

Qcoh(X) and there is the natural functor i obtained from passing through QX . This is

an equivalence of categories (c.f. [Huy06] Proposition 2.40) where i−1 takes a complex

in D+(Qcoh(X)) to a quasi�isomorphic complex consisting of injective objects. So for

a left exact functor F : Qcoh(X) −→ Qcoh(Y ) one de�nes the associated right derived

functor of coherent sheaves

RF := QA ◦K(F ) ◦ i−1 ◦ j : D+(X) −→ D+(A). (1.1)

For an object A• ∈ D+(A) one writes RiF (A•) := Hi(RF (A•)).

This will be the case for f∗, the direct image of a morphism f : X −→ Y .

Since f∗ is left exact, (1.1) guarantees the existence of a right derived functor Rf∗ :

D+(Qcoh(X)) −→ D+(Qcoh(Y )). For i > dimX and F any coherent sheaf, Rif∗F is

trivial ([Har77] III Proposition 8.1 and Grothendiecks Vanishing Theorem). Corollary

2.68 in [Huy06] then assures that

Rf∗ : D+(Qcoh(X)) −→ D+(Qcoh(Y ))

induces a functor

Rf∗ : Db(Qcoh(X)) −→ Db(Qcoh(Y )).

In our setting Rif∗F is coherent for all integers i when F is coherent (c.f. [Har77] III

Theorem 8.8), so we can apply Proposition 1.3.8 to obtain a functor:

Rf∗ : Db(X) −→ Db
coh(Qcoh(Y )) ' Db(Y ).

By combining the derived functors seen so far, we can state a general version of the

Projection Formula and Flat Base Change.

Proposition 1.3.9 (Projection Formula). Let f : X −→ Y be a proper morphism of

projective schemes. Then for objects F• ∈ Db(X) and G• ∈ Db(Y ) there is a natural

isomorphism

Rf∗(F•)⊗L G• ' Rf∗(F• ⊗L Lf ∗G•)
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Proof. [Har66] II Proposition 5.6.

Proposition 1.3.10 (Flat Base Change). Consider the following �bre product diagram

X ×Z Y Y

X Z

v

g f

u

where u : X −→ Z is a �at morphism and f : Y −→ Z is a morphism of �nite type.

Then there is a functorial isomorphism

u∗Rf∗F• ' Rg∗v
∗F•

for any F• ∈ D(QCoh(Y )).

Proof. [Har66] II Proposition 5.12.

A "derived" version of the Ext�functor is given by the following example.

Example 1.3.11. The functor

Hom•(F•, (−)) : Kb(Qcoh(X)) −→ K+(Ab)

whereAb denotes the category of abelian groups, is de�ned by the complex Hom•(A•, B•)

having terms

Homi(A•, B•) =
⊕
k∈Z

Hom(Ak, Bk+i)

and morphisms

d(f) = dB ◦ f − (−1)if ◦ dA

It is noted in [Huy06] Remark 2.57 that the full triangulated subcategory of complexes

of injectives is adapted to this functor. Thus one obtains a right functor

Hom•(F•, (−)) : Db(X) −→ D+(Ab)

by (1.1). For any F• ∈ Db(X) the i�th Ext�functor is then de�ned as Exti(F•, (−)) :=

RiHom•(F•, (−)).

A particularly useful relation for the Ext�functors is the following

Proposition 1.3.12. For F•,G• ∈ Db(X) there is a natural isomorphism

Exti(F•,G•) ' HomDb(X)(F•,G•[i])

20



Proof. This is found in [Huy06] Remark 2.57 along with Proposition 1.3.8 (from this

text).

We will end this section with the following spectral sequences, which in many cases

can greatly simplify calculations of the Ext�functors.

Proposition 1.3.13. For F•, G• ∈ Db(X), there are spectral spectral sequences:

i) Ep,q
2 = Extp(H−q(F•),G•)⇒ Extp+q(F•,G•)

ii) Ep,q
2 = Extp(F•, Hq(G•))⇒ Extp+q(F•,G•)

Proof. See [Huy06] Examples 2.70.

.
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1.4 Multiplier Ideals

Compared to the abstract language of derived categories, this section will be of a

more geometric nature. Multiplier ideals can be de�ned for three objects; Q�divisors,
ideal sheaves and linear series. The theories for these di�erent settings will essentially

be equivalent, but there are slight variations. As all three settings will be useful to us,

we intend to introduce the needed theory for them all. We will however be content

with giving references to proofs for only one of the settings. The �rst step will be to

look at simple normal crossing, a condition on the type of singularities a divisor can

exhibit. We shall see that any of the three objects can be brought to a state of simple

normal crossing through birational maps called log�resolutions. One then uses these

log�resolutions to associate multiplier ideal sheaves. These multiplier ideals contain

subtle information regarding the singularities of the underlying object, and we shall

primarily study this through an associated numerical invariant named log�canonical

threshold. The main reference will be [Laz04b].

We once more recall the convention that X will always be a smooth, projective

algebraic variety.

De�nition 1.4.1. An integral e�ective divisor D =
∑
Di is said to be a simple nor-

mal crossing (SNC) divisor if Di is smooth for all i, and D can be written in the

neighbourhood of any point as an equation in local analytic coordinates of the form

z1z2...zm = 0

for an integer m ≤ dim X. If D =
∑
aiDi is a Q�divisor, with rational coe�cients ai,

then it is said to have simple normal crossing support if
∑
Di is a SNC divisor.

Example 1.4.2. Consider the following divisors in A2
C = Spec C[x1, x2].

(a) (b) (c)

a) shows a SNC divisor whereas b) is not; the singularity needs three local analytic

coordinates to be described. The cusp in c) is also not a SNC divisor, failing two

22



conditions. The irreducible component is itself singular, and the singularity has a local

description as a double point.

The intuition behind a SNC-divisor, as anecdotally seen in the example, is that

intersections amongst the components of the divisor occur in a "transverse" manner.

Thus it encompasses a class of divisor whose singularities are easy to understand. If

we are concerned with a divisor that is not SNC, one can pull it back using a �nite

succession of blow�up maps until the divisor has this property. This will be the idea

behind log�resolutions. We brie�y describe the blow�up morphism, along with some

of its properties through the following theorem.

Theorem 1.4.3. If X is a variety and Y ⊂ X a smooth, closed subvariety, the blow�

up of X along Y , φ : BlY (X) −→ X, exists and has the following properties:

i) BlY (X) is a variety. If X is furthermore projective, then so is BlY (X) and φ

is hence a projective morphism.

ii) The inverse image φ−1(Y ) is a locally principal closed subvariety (i.e. it cor-

responds to an e�ecitve Cartier divisor) in BlY (X). This will be called the exceptional

divisor, Except(φ).

iii) φ is universal with respect to property ii). I.e. if there is another morphism

f : W −→ X where f−1(Y ) is a locally principal closed subvariety, then there exists a

unique morphism g : W −→ BlY (X) so that f = φ ◦ g.
iv) The restricted morphism φ : BlY (X) \ φ−1(Y ) −→ X is an isomorphism. In

particular, this makes φ a birational map.

Proof. Property i) is shown in [Har77] II Proposition 7.16. The rest can be found in

[EH01] Theorem IV-23.

The usefulness of blow�ups can be illustrated by inspecting how the troublesome

divisors from Example 1.4.2 behave under the blow�up of the singular point. To this

end, recall from [Har77] I.4 that if we denote the a�ne coordinates in An
C as x1, ..., xn,

and the homogeneous coordinates of Pn−1
C as y1, ..., yn, then the blow�up of An

C at the

origin is given by

BlO(An
C) = {xiyj = xjyi|i, j = 1, ..., n} ⊂ An

C × Pn−1
C (1.2)

where φ is simply the projection onto An
C.

Example 1.4.4. We may treat Example 1.4.2 (b) as three lines passing through the

origin. Any such line can be parametrized as L = (a1t, a2t) for some a1, a2 ∈ k, at
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Figure 1.2: Blowing up lines of an a�ne space along the origin.

least one non�zero, and t ∈ A1
C. If φ is the projection from (1.2), we consider its

pre�image of L outside the origin. If, say, a1 6= 0 then we have a1ty2 = a2ty1, or

y2 = y1(a2/a1). Fixing the homogeneous coordinate y1 = a1, we get y2 = a2. Thus we

have a description of φ−1(L \ O) that also gives the closure φ−1(L \O) in BlO(An
C).

Namely, φ−1(L) = φ−1(L \O) = (a1t, a2t) × (a1, a2). The result is that BlO(An
C)

separates all the lines at the origin of An
C along the exceptional divisor, Except(φ)= P1

C,

and we obtain a SNC�divisor of our original three lines. This is all shown in Figure

1.2.

Example 1.4.5. Example 1.4.2 (c) shows the cubic cuspidal curve V (x2
2 − x3

1) ⊂ A2
C.

Again we inspect this under the blow�up at the origin. More speci�cally, we consider

the pre�image of the curve in the two standard a�ne open sets of BlO(A2
C).

For y1 = 1 we obtain y2
2x

2
1 = x2

2 = x3
1. This has solutions x2

1 = 0 and y2
2 = x1.

Note that the point x1 = y2 = 0 contains a singularity for the solution where the double

line and parabola meet. The solution fails to be a SNC�divisor at this singularity.

For y2 = 1 one obtains the equalities x2
2 = x3

1 = y3
1x

3
2, with the solutions x2

2 = 0

or y3
1x2 = 1. There are no singularities to worry about here.

So after one blow�up we see that we are left with one singularity of a di�erent type

than the initial singularity. One aspires to blow up one more time in the neighbourhood

y1 = 1. In the interest of readability, we perform the change of variables z1 = x1,

z2 = y2 and treat z1, z2 as a�ne coordinates in an a�ne plane A2
C. We once more

apply Equation (1.2) to this a�ne plane, and let w1, w2 denote the new homogeneous

coordinates for this blow�up. Again we inspect the standard a�ne neighbourhoods.

One easily checks that the pre�image of V (z2
1 , z1 − z2

2) behaves like a SNC�divisor in

the open set w1 = 1. For w2 = 1, one obtains z2
2w

2
1 = z2

1 = 0, which has both the z2�

and w1�axis as solutions, and z2w1 = z1 = z2
2 , which further gives as solution the line
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Figure 1.3: Blowing up a cubic cuspidal curve along the origin.

w1 = z2. In total we are left with three lines passing through the origin. But this is

the case of Example 1.4.4, and we saw there that blowing up one more time will yield

a SNC�divisor. This is illustrated in Figure 1.3.

Recall that if f : X̃ −→ X is a morpism of varieties, and I ⊂ OX a sheaf of ideals,

then f−1I is a sheaf of ideals in f−1OX . Furthermore the associated sheaf morphism

f# extends to a natural map f−1OX −→ OX̃ . The inverse image ideal sheaf, f−1I ·OX̃ ,
is then de�ned to be the ideal sheaf generated by the image of f−1I under this natural
map. We are now in a position to state the following important Theorem on the

resolution of singularities. It is due to Heisuke Hironaka.

Theorem 1.4.6. Consider an irreducible complex algebraic variety X, and a non�zero

coherent sheaf of ideals I ⊆ OX . Then there is a projective birational morphism

µ : X̃ −→ X

such that X̃ is smooth and Except(µ) (i.e. the set of points where µ fails to be biregular)

is a divisor. The inverse image ideal sheaf can be written µ−1I · OX̃ = OX̃(−F ) where

F is an e�ective divisor such that F + Except(µ) has simple normal crossing support.

Furthermore this µ can be obtained as the composition of a �nite amount of blow�up

maps.

Proof. This is Main Theorem II of [Hir64].

The map µ from the theorem will be called a log�resolution of I. Similarly, there

exist log�resolutions for Q�divisors and linear series, we will provide the de�nitions of

them here.

De�nition 1.4.7 (Log�resolutions for Q�divisors and linear series). a) Let D be a

Q�divisor on X. A log�resolution of D is a projective birational map µ : X̃ −→ X,
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where X̃ is a smooth variety, such that the divisor µ∗D+Except(µ) has SNC support.

b) Consider an integral divisor L on X, and suppose W ⊆ H0(X,OX(L)) is a non�

zero �nite�dimensional space of sections. A log�resolution of the linear series |W | is
then de�ned to be a projective birational map µ : X̃ −→ X, again with X̃ smooth,

such that

µ∗|W | = |K|+ E

where E + Except(µ) is a divisor with SNC support. Furthermore we require

K ⊆ H0(X̃,OX̃(µ∗L− F ))

to de�ne a free linear series.

If KX denotes the canonical divisor of X, the following relation holds for the canon-

ical bundles of a log�resolution.

Proposition 1.4.8. Consider a log�resolution µ : X̃ −→ X for some sheaf of ideals I
on a smooth variety X. Then the following equality holds

µ∗OX̃(KX̃) = OX(KX)

Proof. [Laz04a] Corollary 4.1.4.

The relative canonical divisor of X̃ over X is de�ned as

KX̃/X := KX̃ − µ
∗KX

From the de�nition of canonical divisors this will naturally be an e�ective divisor, and

it is supported on the exceptional locus of µ, as the blow�up map µ is an isomor-

phism outside of this. From the Projection Formula, Proposition 1.3.9, and the last

Proposition we immediately check that

µ∗OX̃(KX̃/X) = µ∗OX̃(KX̃)⊗OX(−KX) = OX (1.3)

De�nition 1.4.9 (Multiplier ideal sheaves). For this de�nition we consider a �xed

log�resolution µ : X̃ −→ X for either a non�zero ideal sheaf I ⊆ OX , an e�ective

Q�divisor D, or a non�empty linear series |W | ⊆ |L|, respectively. c > 0 will denote

any positive, rational number.

a) Let F be an e�ective integral divisor such that I · OX̃ = OX̃(−F ). The multiplier

ideal sheaf associated to I and c is de�ned as

J (c · I) = µ∗OX̃(KX̃/X − bc · F c)
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b) The multiplier ideal sheaf of the e�ective Q�divisor D is

J (D) = µ∗OX̃(KX̃/X − bµ
∗Dc)

c) Let µ|W | = |K| + E be the equation considered in De�nition 1.4.7 for the log�

resolution of |W |. Then the multiplier ideal of |W | and c is

J (c · |W |) = µ∗OX̃(KX̃/X − bc · Ec)

The de�nition just given would not make much sense unless the multiplier ideals

are independent of the chosen log�resolution. This is exactly the case, as shown in

[Laz04b] Theorem 9.2.18. A multiplier ideal is indeed, as its name suggests, a sheaf of

ideals. One way to see this is to consider the short exact sequence obtained from an

e�ective integral divisor, D, on X̃:

0→ OX̃(−D)→ OX̃ → OD → 0

and tensor with the line bundle OX̃(KX̃/X)

0→ OX̃(KX̃/X −D)→ OX̃(KX̃/X)→ OD ⊗OX̃(KX̃/X)→ 0

lastly, applying the push-forward of µ yields the left�exact sequence

0→ J (D)→ OX

Through the latter injection, we may for any open set U ⊆ X realize J (D)(U) as a

sub�OX(U)�module and hence an ideal of the ring OX(U).

Example 1.4.10. Suppose D is a Q�divisor having normal crossing support. Then

we may choose µ = idX which renders

J (D) = OX(−bDc)

by the Projection Formula and Equation (1.3).

The next example is based on [Laz04b] Proposition 9.2.31.

Example 1.4.11. Consider a Q�divisor of the form D + A where D is a Q�divisor
and A an integral divisor. For any log�resolution µ : X̃ −→ X of D note that

bµ∗(D + A)c = bµ∗(D)c + µ∗(A). From this, and the Projection Formula, we get

the following isomorphisms

µ∗OX̃(KX̃/X − bµ
∗(D + A)c) = µ∗(OX̃(KX̃/X − bµ

∗Dc)⊗OX̃(µ∗(−A)))
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' µ∗(OX̃(KX̃/X − bµ
∗Dc))⊗OX(−A)

= J (D)⊗OX(−A)

And so J (D + A) = J (D)⊗OX(−A).

A particular case of this is when we are only considering an integral divisor A. In

this case J (A) = OX(−A).

An important observation regarding multiplier ideals is that choosing a small enough

rational number c will make the bc · F c�part of J (c · I) vanish. Equation (1.3) then

assures us that J (c · I) is trivial. Similar observations hold for Q�divisors and linear

series, which motivates the following de�nition.

De�nition 1.4.12. For a non�zero sheaf of ideals I ⊆ OX the log�canonical threshold

of I is de�ned as

lct(I) = inf{c ∈ Q | J (c · I) 6= OX}

The log�canonical threshold of a Q�divisor D is similarly de�ned, i.e.

lct(D) = inf{c ∈ Q | J (c ·D) 6= OX}

And for a linear series |W |:

lct(|W |) = inf{c ∈ Q | J (c · |W |) 6= OX}

The log�canonical threshold is indeed a rational number, and the in�ma in the

de�nition are actually a minima, which is shown in Example 9.3.16 of [Laz04b]. A

Q�divisor D furthermore said to be log-canonical if lct(D) ≥ 1. An equivalent way of

phrasing this is that J (X, (1−ε)D) = OX for any rational number 0 < ε < 1. Equality

of the log�canonical threshold then holds in particular if D is a non�trivial, integral

divisor as J (X,D) = OX(−D) 6= OX in this case by Example 1.4.11. For an e�ective

Q�divisor D on X, and an integer k ≥ 0, one de�nes the multiplicity locus as:

Σk(D) = {x ∈ X | multx(D) ≥ k}.

The following result gives a condition on the multiplicity locus whenD is log�canonical.

Proposition 1.4.13. Let D be an e�ective Q�divisor on X, and k ≥ 0. If D is

log�canonical, then every component of Σk(D) has codimension ≥ k in X.

Proof. [Laz04b] Example 9.3.10.
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Lastly, we state the following vanishing theorem for multiplier ideals, which will

be crucial for our work in the very last chapter. We give the result adapted to ideal

sheaves and linear series, as these will be the needed cases for us.

Theorem 1.4.14 (Nadel Vanishing). Consider a smooth projective variety X. Let

c > 0 be a rational number, while L and E are integral divisors on X such that L−c ·E
is big and nef.

i) Let I ⊆ OX be a sheaf of ideals such that I ⊗ OX(E) is globally generated.

Then there is the following vanishing of higher cohomologies

H i(X,OX(KX + L)⊗ J (c · I)) = 0 for i > 0.

ii) If |W | ⊆ |E| is any linear series, then

H i(X,OX(KX + L)⊗ J (c · |W |)) = 0 for i > 0.

Proof. [Laz04b] Corollary 9.4.15.

.
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1.5 Casteluovo�Mumford Regularity and Log�Canonical

Threshold

In this section we brie�y present the Castelnuovo�Mumford regularity, and the

main theorem of the associated theory. We then state a result due to Alex Küronya

and Norbert Pintye that relates this regularity and the log�canonical threshold of an

ideal sheaf. Although we will not be concerned with Castelnuovo�Mumford regular-

ity in the later parts of this thesis, the section is meant to motivate and give some

background for the later work. The Theta�regularity for abelian varieties that will

be developed in section 2.4 is strikingly similar to that of the Castelnuovo�Mumford

regularity. The similarity of these two theories will be crucial when we, motivated by

Pintye and Küronya's ideas, will prove an inequality relating the Theta�regularity and

log�canonical thresholds of ideal sheaves in Chapter 3. The main reference for this

section is [Laz04a] and we will work with the projective space over C, P = PnC for some

dimension n.

De�nition 1.5.1. A coherent sheaf F on a projective space P is called Castelnuovo�

Mumford m�regular if

H i(P,F(m− i)) = 0 for all i > 0

Recall th Cartan�Serre�Grothendieck Theorem 1.2.5, which states that if L is ample

then for any coherent sheaf F there is an integer n0 such that for any n ≥ n0, F ⊗Ln

is globally generated and the higher cohomology groups vanish. The following theorem

suggests that Castelnuovo�Mumford regularity gives a quantitative measure for when

these e�ects take place.

Theorem 1.5.2 (Mumford's Theorem). Let F be a (Castelnuovo�Mumford) m�regular

sheaf on P. Then the following properties hold for any k ≥ 0:

1) F(m+ k) is globally generated.

2) F is (m+ k)�regular.

3) The multiplication maps

H0(P,F(m))⊗H0(P,OP(k)) −→ H0(P,F(m+ k))

are surjective.

Proof. [Laz04a] Theorem 1.8.3.
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From 2) in the Theorem one sees that further twisting anm�regular sheaf will result

in a sheaf still satisfying the regularity condition. Hence for a coherent sheaf F on P
we de�ne the Casteluovo�Mumford regularity, reg(F), to be the lowest integer m for

which F is m�regular. This may take the value of −∞ if F is m�regular for all m < 0,

as is the case if F is only supported on a �nite set.

Theorem 1.5.3 (Castelnuovo�Mumford Regularity and Log�Canonical Threshold). If

I ⊂ OP is a non�zero coherent sheaf of ideals on P, then the following inequality holds.

1 ≤ lct(I)reg(I)

Proof. [KP13] Theorem 5.

.
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Chapter 2

Regularity on Abelian Varieties

We now turn our attention to abelian varieties. Motivated by the Castelnuovo�

Mumford regularity for projective spaces, as presented in section 1.5, the goal will be

to develop a similar regularity type here. We start in section 2.1 by introducing abelian

varieties, along with presenting some fundamental properties such as the dual abelian

variety. Section 2.2 is devoted to the Fourier�Mukai transform, and we shall see that

it constitutes an equivalence of derived categories. This equivalence forms the basis

for Mukai�regularity, and in section 2.3 we present the geometric consequences of this

regularity condition. The table is then set for presenting the theta�regularity in section

2.4.

2.1 Abelian Varieties

This section is devoted to the de�nition and properties of abelian varieties that

will be useful to us for the rest of the text. Intuitively speaking, these are varieties

satisfying certain nice properties, including exhibiting a group structure. We shall

present important isomorphisms of line bundles, such as the See�Saw Principle and

the Theorem of the Square, as well as the dual abelian variety. The section ends with

de�ning principal polarizations and theta divisors, which are the needed building blocks

for the theta�regularity that will be presented in section 2.3. The main references will

be David Mumford's treatment of the subject, [Mum70], as well as James S. Milne's

notes [Mil08].

De�nition 2.1.1. An abelian variety A over C is a complete algebraic variety over C
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along with a group structure. More speci�cally, there is a regular map:

m : A×k A −→ A

which is associative, i.e. m(−,m(−,−)) = m(m(−,−),−). There is also an identity

element, 0A ∈ A, which is a point.

0A : Speck −→ A

satisfying m(−, 0A) = m(0A,−) = idA Lastly, there will also be an inverse map

(−1)A : A −→ A

having the property thatm(a, (−1)A(a)) = 0A. We will in the future writem additively,

and omit the A�subscript when no confusion can arise, i.e. for points a, b ∈ A we write

m(a, b) = a+ b and (−1)A(a) = −a.

The group operation makes it possible to de�ne, for any closed point a ∈ A, the
translation by a to be the isomorphism

ta :A→ A

x 7→ x+ a

where the inverse morphism is t−a. The map consisting of multiplication by a �xed

integer n will be given as

nA :A→ A

a 7→ a+ a+ ...+ a︸ ︷︷ ︸
n times

The following proposition summarizes some fundamental properties of abelian va-

rieties.

Proposition 2.1.2. For any abelian variety A the following holds:

i) The group operation on A is commutative.

ii) A is projective.

iii) The canonical sheaf of A is trivial, i.e. ωA ' OA.
iv) The map nA is surjective for any non�zero integer n.

Proof. i) and ii) can be found in Corollary I 1.4 and Theorem I 6.4, respectively, of

[Mil08].

iii) At [Mum70] page 4 it is noted that ΩP
A is a globally free sheaf of OA�modules.

From this it follows that ωA = Ωg
A ' OA.

iv) is given in [Mum70] II.4.Question 4 (iv).
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Perhaps the most famous class of examples of abelian varieties are those of dimen-

sion 1, namely the elliptic curves. These are by de�nition the non�singular projective

curves of genus 1. The group operation for elliptic curves has a particularly nice geo-

metric description, that will be presented in the following example.

Example 2.1.3 (Group law of an elliptic curve). Let E be an elliptic curve and

consider a distinguished point P0 ∈ E. We let [P ] denote the divisor associated to the

point P . The �rst step to analyze the group structure will be to embed E in P2 by the

linear system |3P0|. We have inclusions of vector spaces:

k ' H0(OE) ⊆ H0(OE([P0])) ⊆ H0(OE([2P0])) ⊆ · · ·

and the Riemann-Roch Theorem ([Har77] IV Theorem 1.3) for genus 1 curves says that

h0(OE([mP0])) = deg([mP0]) = m

Therefore we may choose an element x so that 1 and x form a basis for the 2-dimensional

vector space H0(OE([2P0])). Extend this to a basis 1, x, y of H0(OE([3P0])). Thus

the seven elements 1, x, y, xy, x2, x3 and y2 are in the 6�dimensional vector space

H0(OE([6P0])), so there is a linear relation among them. As x and y have poles at P0

of order 2 and 3 respectively, then x3 and y2 are the functions with pole at P0 of order

6, and will have non�zero coe�cients. Replacing x and y by suitable scalar multiples

so that these coe�cients are 1, we obtain the following relation

y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5

for suitable ai ∈ k.
To aesthetically enhance this equation somewhat, we start by completing the square

on the left hand side with the new variable Y = y + 1
2
(a1x+ a2). We obtain

Y 2 = x3 + x2(a3 +
a2

1

4
) + x(a4 +

a1a2

2
) + c

for some constant c ∈ k. Introducing yet another variable X = x+ 1
3
(a3 + 1

4
a2

1) we end

up with an equation

Y 2 = X3 + aX + b (2.1)

for suitable a, b ∈ k.
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Figure 2.1: Group operation on an elliptic curve.

The functions X and Y are used to de�ne a rational map

E −→ P2

e 7→ [X(e) : Y (e) : 1], e 6= P0

P0 7→ [0 : 1 : 0]

This gives an embedding of E into the projective plane whose image in the a�ne

neighbourhood Z = 1 is the curve given by Equation (2.1), along with the point at

in�nity [0 : 1 : 0]. With the embedding done, we turn our attention towards de�ning

the group structure on E. In the interest of keeping confusion at a minimum, we let

+,− denote the addition of divisors, while ⊕ denotes the group operation for the rest

of this example. Consider the map

E −→ Pic0(E)

P 7→ [P − P0]

where Pic0(E) is the subgroup of Pic(E) consisting of (integral) divisors of degree 0.

Example IV.1.3.7 in [Har77] shows that this is a bijection, so we de�ne the group

operation of E by the operation of the group Pic0(E). In particular this makes P0 the

0 element, and P ⊕Q = T if and only if [P ] + [Q] ≡lin [T ] + [P0]. The elliptic curve has

been embedded in P2, so by Bézout's Theorem ([Har77] Corollary I.7.8) all lines will

intersect E in three (not necessarily distinct) points. This means that the line Z = 0
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intersects E in [3P0]. Any two lines in the projective plane are linearly equivalent, so if

P , Q and R are collinear points, we have [P ] + [Q] + [R] ≡lin [3P0] and so trivial under

the group law. If there is another line intersecting E in P0, R and T , we would have

[P ] + [Q] + [R] ≡lin [R] + [T ] + [P0], so in particular P ⊕Q = T in the group operation

(as exempli�ed in Figure 2.1).

In the above example we de�ned Pic0(E), for elliptic curves E, as the group of

divisors of degree 0. In order to generalize the notion of Pic0(A) for higher dimensional

abelian varieties, it is �rst useful to introduce the Theorem of the Square. We shall

later see (in Example 2.1.12) why the two de�nitions are equal for curves.

Theorem 2.1.4 (Theorem of the Square). Let A be an abelian variety. For a line

bundle L and closed points a, b ∈ A there is an isomorphism

t∗a+bL ⊗ L ' t∗aL ⊗ t∗bL.

Proof. [Mum70] II.6.Corollary 4.

For any line bundle L we de�ne the map

λL : A −→ Pic(A)

a 7→ t∗aL ⊗ L−1

The isomorphism in the Theorem of the Square (twisted by L−2) shows that λL is a

group homomorphism, if we view A as a group. We also denote its kernel K(L) =

kerλL.

De�nition 2.1.5. One de�nes Pic0(A) to be the set of isomorphism classes of line

bundles [α] on A where for a representative α of the isomorphism class, we have λα(a) '
OA for every point a ∈ A. We will in the future adopt the convention that writing

α ∈ Pic0(A) means that the isomorphism class of α lies in Pic0(A).

It is immediate that K(α) = A, or t∗aα ' α for all a ∈ A, are equivalent conditions
for α to be in Pic0(A). From the basic identities t∗a(L1 ⊗ L2) ' t∗aL1 ⊗ t∗aL2 and

t∗aOA ' OA, it is also easy to deduce that Pic0(A) is a subgroup of Pic(A). The next

proposition concerns the vanishing of cohomology for elements in Pic0(A).

Proposition 2.1.6. If α is a non�trivial element of Pic0(A), then H i(A,α) = 0 for

all integers i.
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Proof. [Mum70] II.8.vii).

A line bundle L is said to be non�degenerate if K(L) is �nite. The next proposition

tells how this relates to ample line bundles under certain conditions. The following

theorem, sometimes known as Mumford's Vanishing Theorem, says that most of the

cohomologies of non�degenerate line bundles vanish.

Proposition 2.1.7. Let L be an e�ective line bundle on A, i.e. L ' OA(D) for an

e�ective divisor D. Then L is ample if and only if L is non�degenerate.

Proof. [Mum70] II.6.Application 1.

Theorem 2.1.8. Let L be a non�degenerate line bundle on an abelian variety A of

dimension g. Then there exists a unique integer 0 ≤ i(L) ≤ g so that Hk(A,L) = 0

for any k 6= i(L), and H i(L)(A,L) 6= 0. Furthermore, for any positive integer m,

i(L) = i(Lm).

Proof. This is "The Vanishing Theorem" in [Mum70] III.16, along with the corollary

in the same section.

Example 2.1.9. If L is ample, then H i(A,L) is non�zero only for i = 0. This is a

direct consequence of the Kodaira Vanishing Theorem 1.1.5, along with the fact that

abelian varieties have trivial canonical bundle.

Lemma 2.1.10. If L is a line bundle, then t∗aL ⊗ L−1 ∈ Pic0(A) for any a ∈ A. In

particular, Im(λL) ⊂ Pic0(A).

Proof. If a and b are any points of A, we apply the Theorem of the Square to get the

isomorphism:

t∗b(t
∗
aL ⊗ L−1) ' t∗b+aL ⊗ t∗bL−1

' t∗bL ⊗ t∗aL ⊗ L−1 ⊗ t∗bL−1

' t∗aL ⊗ L−1

Due to the lemma we will from now on treat λL as a homomorphism A −→ Pic0(A).

The next goal will be to give the group Pic0(A) the structure of an abelian variety, and

the following theorem is key to achieve this.
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Theorem 2.1.11. For an ample line bundle L and any element α ∈ Pic0(A), there

exists a point a ∈ A such that

α ' t∗aL ⊗ L−1

hence the map λL : A −→ Pic0(A) is surjective.

Proof. [Mum70] II.8.Theorem 1.

Example 2.1.12. Back in Example 2.1.3 we adopted the ad hoc de�nition of Pic0(E),

for an elliptic curve E, to be all divisors of degree 0. We now give a justi�cation of this.

Recall the setting of the aforementioned example, E an elliptic curve with distinguished

point P0. If P is any other point on E, then [P ] will be a divisor of degree 1, and hence

ample ([Har77] IV Corollary 3.3). Now for any e ∈ E, since t∗e is pulling back by the

translation of e, and t−1
e = t−e, we have

t∗eOE([P ]) ' OE(t−e([P ])) = OE([P − e])

On the other hand note that P , −P and P0 is collinear, and so are P − e, −P and e,

hence they are linear equivalent as noted in Example 2.1.3. Upon rearrangement one

has

[P0]− [e] ≡lin [P − e]− [P ].

Added together, this gives

λOE([P ])(e) = t∗eOE([P ])⊗OE([P ])−1

' OE([P − e])⊗OE([−P ])

' OE([P0]− [e])

As P is ample, the surjectivity from Theorem 2.1.11 asserts that Pic0(E) is fully de-

scribed by degree 0 divisors. To see that it includes all of them, assume D =
∑
ni[Di]

is any divisor of deg 0, with Di ∈ E. Then
∑
ni = 0 and so

OE(
∑

ni[Di]) = OE(
∑

ni[Di]−
∑

ni[P0])

' OE(n1[D1]− n1[P0])⊗OE(n2[D2]− n2[P0])⊗ · · · ⊗ OE(nk[Dk]− nk[P0])

Here OE(ni[Di] − ni[P0]) is the ni�fold tensor product of OE([Di] − [P0]) ∈ Pic0(E).

Since the group Pic0(E) is closed under tensor products, we have shown that consists

exactly of the divisors of degree 0.
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This might be a good place to include the See�Saw Principle. It states that iso-

morphisms of line bundles on a product of two abelian varieties can be inspected by

checking if the isomorphism holds when restricting to points on one of the varieties,

and doing the same for a single point on the other variety. The result is an extremely

useful practical tool that we will employ several times later in this text. We �rst �x

some notation; let F be a sheaf on the product X × Y and i : {x}× Y −→ X × Y the

natural inclusion for a point x ∈ X. Then F|{x}×Y = i∗F , a sheaf on {x} × Y ' Y .

When no confusion can arise, we will also denote this Fx.

Theorem 2.1.13 (See�Saw Principle). Let A×B be a product of abelian varieties and

L, M line bundles on this product. If La ' Ma for all points a ∈ A and furthermore

Lb 'Mb for one b ∈ B then L 'M.

Proof. [Mil08] Corollary 5.18.

We follow up with some useful observations concerning elements in Pic0(A) that is

easily checked by the See�Saw Principle.

Corollary 2.1.14. Consider the product A×A with the usual projections p1, p2. Then

the following condition holds:

α ∈ Pic0(A) if and only if m∗α ' p∗1α⊗ p∗2α.

Proof. When restricted to {0} × A, both m and p2 are the identity morphism, while

p1 will be the constant map to 0. Hence (m∗α ⊗ p∗1α−1 ⊗ p∗2α−1)|{0}×A will be trivial.

On the other hand, restricting to A×{a} will make p2 a constant map, p1 the identity

map, and m = ta, the translation by a. Thus the isomorphism

(m∗α⊗ p∗1α−1 ⊗ p∗2α−1)|A×{a} ' t∗aα⊗ α−1

where t∗aα⊗α−1 is trivial if and only if α ∈ Pic0(A). In this case the See�Saw Principle

guarantees the asserted isomorphism m∗α ' p∗1α⊗ p∗2α.

Corollary 2.1.15. Let α ∈ Pic0(A) and consider a scheme X with morphisms

f, g : X −→ A. Then

(f + g)∗α ' f ∗α⊗ g∗α.

Proof. Consider the isomorphism in the previous corollary, and pull back both sides

using (f, g) : X −→ A× A. On one side we get (f, g)∗m∗α = (f + g)∗α. On the other

side we have (f, g)∗(p∗1α⊗ p∗2α) = f ∗α⊗ g∗α, as claimed.
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Corollary 2.1.16. For α ∈ Pic0(A) and any integer n, n∗Aα ' αn.

Proof. We start by showing (−1)∗Aα ' α−1. Consider the diagram for points a, x ∈ A:

A

a

A

−a

A

a− x
A

−a+ x

−1

t−x tx

−1

which shows tx ◦ (−1) = (−1) ◦ t−x. Let L be an ample line bundle on A, and de�ne

M := L ⊗ (−1)∗L. Then M is ample and symmetric, i.e. (−1)∗M ' M. This in

particular also means that (−1)∗M−1 'M−1 since:

(−1)∗M−1 ⊗M ' (−1)∗(M−1 ⊗M) ' OA.

By Theorem 2.1.11 there is a point x ∈ A such that α ' t∗xM ⊗M−1 = λM(x).

Combining all this we get the isomorphisms;

(−1)∗α ' (−1)∗(t∗xM⊗M−1)

' (−1)∗t∗xM⊗ (−1)∗M−1

' t∗−x(−1)∗M⊗M−1

' λM(−x).

Then, since λM is a group homomorphsim, we get

α−1 ' λM(x)−1 ' λM(−x) ' (−1)∗α.

The case for general n now follows by induction using the relation in Corollary 2.1.15

for the maps (1)A and (−1)A.

An immediate consequence of Theorem 2.1.11 is that if L is ample then it induces

the isomorphism of groups A/K(L) ' Pic0(A). The quotient A/K(L) can be given

the structure of an abelian variety (see [Mum70] II.7.Theorem 4), which we will call

the dual abelian variety, A∨. The dual abelian variety satis�es the following universal

property.
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Theorem 2.1.17. An abelian variety A determines a pair (A∨,P) where A∨ is the

dual abelian variety of A and P is a line bundle on A×A∨ named the Poincaré sheaf,

such that

a) P|A×{b} ∈ Pic0(A) for all b ∈ A∨.
b) P|{0}×A∨ is trivial.

Furthermore, if (T,L), where T is a variety over C and L a line bundle on A × T ,

is another pair satisfying conditions a) and b), then there exists a unique regular map

γ : T −→ A∨ such that (1× γ)∗P ' L.

Proof. [Mil08] I.8.

Remark 2.1.18. Consider any variety T and a morphism γ : T −→ A∨. The commuta-

tivity of the square

A× {t} A× T

A× {γ(t)} A× A∨

it

1 1×γ

iγ(t)

and the fact that A× {t} ' A ' A× {γ(t)}, implies the isomorphism

((1× γ)∗P)|A×{t} = i∗t (1× γ)∗P ' i∗γ(t)P = P|A×{γ(t)}

which is in Pic0(A) by property a) of the Poincaré bundle. Similarly, the square

{0} × T A× T

{0} × A∨ A× A∨

jT

γ 1×γ

jA∨

gives the isomorphisms

((1× γ)∗P)|{0}×T = (jT )∗(1× γ)∗P ' γ∗(jA∨)∗P = γ∗(P|{0}×A∨)

which is trivial by property b). To conclude, we have shown that there is a map

Hom(T,A∨) −→

{
Isomorphism classes of line bundles on

A× T satisfying a) and b)

}
γ 7−→ (1× γ)∗P
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which is moreover a one�to�one correspondence due to the universal property in

Theorem 2.1.17. In particular, setting T to be a one�point scheme, {∗}, we get

Hom({∗}, A∨) ' A∨ ' Pic0(A).

It follows that every element of Pic0(A) is uniquely represented in the family

{Pa′ | a′ ∈ A∨}.

De�nition 2.1.19. A map λ : A −→ A∨ is called a polarization if there is an ample

line bundle L such that λ = λL. λ is furthermore said to be principally polarized

if h0(A,L) = 1. An abelian variety admitting such a polarization is called a princi-

pally polarized abelian variety, and is usually given as (A, λ) for λ a �xed principal

polarization.

Example 2.1.20. Let P be any point on an elliptic curve E. In Example 2.1.12 we

saw that

λOE([P ])(e) ' OE([P0]− [e])

This map is clearly both injective and independent of the choice of point P . One

concludes that any divisor of degree 1 determines the same principal polarization on

an elliptic curve.

Note that while every abelian variety has a polarization (indeed, by virtue of being

projective, we know that A has a very ample line bundle), not every abelian variety is

principally polarized. In Example 2.1.20 we saw that the ample line bundle representing

that principal polarization was not unique; in fact any translate of it would result in

another representative for the polarization. This is true also in general, as shown in

the following results.

Proposition 2.1.21. Let L and L′ be ample line bundles on A. Then the following

are equivalent:

i) λL = λL′

ii) L−1 ⊗ L′ ∈ Pic0(A)

If this holds then L and L′ di�er by a translation, i.e. L′ ' t∗a0
L for some a0 ∈ A.

Proof. The equality

λL′⊗L(a) = t∗aL′ ⊗ t∗aL−1 ⊗ (L′)−1 ⊗ L
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= λL′(a)⊗ (λL(a))−1 = OA

holds true for any a ∈ A if and only if L′ ⊗ L−1 ∈ Pic0(A), by de�nition. For the

second statement, Theorem 2.1.11 implies that there is an element a0 ∈ Pic0(A) so that

L′⊗L−1 ' t∗a0
L⊗L−1, which immediately gives the desired isomorphism L′ ' t∗a0

L.

Lemma 2.1.22. Consider a line bundle L on A, along with any element α ∈ Pic0(A).

The following statements are true.

i) If L is ample then L ⊗ α is ample as well.

ii) χ(L) = χ(L⊗α). If L is furthermore ample, then h0(A,L) = h0(A,L⊗α) 6= 0.

Proof. i) Since L is ample there is, by Theorem 2.1.11, a point a ∈ A such that

L ⊗ α ' L⊗ t∗aL ⊗ L−1 ' t∗aL

This is the pull�back of an ample line bundle by an isomorphism, which is ample.

We want to prove the �rst statement of ii) by using the Semicontinuity Theorem

1.1.6 on the natural projection

X := A× A∨ A∨
p2

and line bundle F := p∗1L ⊗ P on X. For any point b ∈ A∨, we have

Fb = (p∗1L ⊗ P)|A×{b} = L ⊗ Pb on Xb ' A. As A∨ is connected, and the family

{Pb | b ∈ A∨} associates to the whole of Pic0(A) as noted in Remark 2.1.18, χ(L ⊗ α)

is constant for any α ∈ Pic0(A). As this includes OA, we get χ(L) = χ(L ⊗ α). The

second part of ii) now immediately follows as

h0(A,L) = χ(L) = χ(L ⊗ α) = h0(A,L ⊗ α)

by Example 2.1.9.

Although a principal polarization has many associated line bundles, there is one that

is of particular interest to us. This line bundle is symmetric, meaning that (−1)∗AL ' L.
The existence of such a line bundle is handled in the following proposition.

Proposition 2.1.23. Consider a principally polarized abelian variety (A, λ) where λ

is a �xed principal polarization. Then there exists a symmetric line bundle L such that

λL = λ.

Proof. LetM be any ample line bundle representing λ, and assume it is not symmetric.

First note that the following square commutes for any point a ∈ A
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A

x

A

x+ a

A

−x
A

−x− a

ta

−1 −1

t−a

so (ta)
∗(−1)∗ ' (−1)∗(t−a)

∗. This gives

λ(−1)∗M(a) = t∗a(−1)∗M⊗ (−1)∗M

' (−1)∗(t∗−aM⊗M)

' (−1)∗λM(−a) ' (−1)∗λM(a)−1

' λM(a) (Corollary 2.1.16)

where we have used λM(−a) ' λM(a)−1 due to the fact that λM is a group homomor-

phism. Hence λ(−1)∗M ' λM and so we may write (−1)∗M⊗M−1 := α0 for some α0 in

Pic0(A) by Proposition 2.1.21. Now de�ne L :=M⊗ β, where β ∈ Pic0(A) is chosen

such that β2 = α0 (which is possible due to Proposition 2.1.2). From construction,

L⊗M−1 is in Pic0(A), so L andM determine the same polarization. Furthermore, L
is ample and h0(A,L) = h0(A,M) = 1 by Lemma 2.1.22. Lastly, we check that

(−1)∗L ⊗ L−1 = (−1)∗M⊗ (−1)∗β ⊗M−1 ⊗ β−1

' (−1)∗M⊗M−1 ⊗ β−2

= (−1)∗M⊗M−1 ⊗ α−1
0

' OA

Which shows that L is indeed symmetric as claimed.

De�nition 2.1.24. Let λ be a principal polarization on A. Any divisor corresponding

to a line bundle M, where λM = λ, is called a theta divisor. If L is the symmetric

line bundle of λ then a divisor Θ such that L ' OA(Θ) is called the symmetric theta

divisor. In the future we will refer to this simply as the theta divisor.
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2.2 Fourier�Mukai Transforms

Last section introduced the basic theory of abelian varieties and section 1.3

introduced derived categories. In this section we will follow the �rst part of a

paper by Shigeru Mukai, [Muk81], that combines both these topics. To be more

speci�c, we aim to introduce the Fourier�Mukai transform, a functor between the

bounded derived categories of two schemes. The main result, Theorem 2.2.5, states

that if we focus on the product consisting of an abelian variety and its dual, A× A∨,
this functor becomes an equivalence. This fact will be fundamental when developing

the theory of Mukai�regularity in the next chapter.

De�nition 2.2.1. Let X × Y be a product of schemes with the usual projections p1

and p2.

X
X × Y
F

Y
p2

p1

For any F ∈ Db(X × Y ), the Fourier�Mukai transform of F is the functor:

RSX→Y,F : Db(X) −→ Db(Y )

G 7→ Rp2∗(p
∗
1(G)⊗L F)

A functor in the opposite direction is similarly de�ned by swapping the projection

maps:

RSY→X,F : Db(Y ) −→ Db(X)

H 7→ Rp1∗(p
∗
2(H)⊗L F)

Remark 2.2.2. i) By a slight abuse of notation, we will write RSX→Y,F (−) =

p2∗(p
∗
1(−) ⊗ F), instead of the derived versions of the functors. Note that since

projections are �at, p∗1 really does denote the usual pull�back.

ii) The Fourier�Mukai transform is exact as a functor of triangulated categories,

and hence commutes with the shift functor.

For the rest of this section we will frequently apply the Projection Formula and

Flat Base Change. They were stated in Propositions 1.3.9 and 1.3.10, respectively.

Example 2.2.3. Let f : X → Y be a morphism of schemes. We de�ne its graph, Γf , to

be the morphism (idX × f) : X → X × Y , in particular having the
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property p1 ◦ Γf = idX and p2 ◦ Γf = f . Γf is a closed immersion with structure sheaf

OΓf = Γf∗OX .
Using these properties, we calculate

RSX→Y,OΓf
(−) = p2∗(Γf∗OX ⊗ p1

∗(−))

' p2∗(Γf∗(OX ⊗ (Γf )
∗p1
∗(−))) (Projection Formula)

' (p2 ◦ Γf )∗(p1 ◦ Γf )
∗(−)

' f∗(−)

Similarly, we can calculate the functor in the other direction

RSY→X,OΓf
(−) = p1∗(Γf∗OX ⊗ p2

∗(−))

' p1∗(Γf∗(OX ⊗ (Γf )
∗p2
∗(−))) (Projection Formula)

' (p1 ◦ Γf )∗(p2 ◦ Γf )
∗(−)

' f ∗(−)

The composition of two Fourier�Mukai transforms is again a Fourier�Mukai trans-

form. The following proposition gives an explicit description of this process. Start

by considering schemes X, Y and Z, along with elements T ∈ Db(X × Y ) and

Q ∈ Db(Y × Z), in the following set-up:

X × Y × Z

X × Y
T

Y × Z
Q

Y

X × Z
R

X Z

p23

p12

p13

a

c

f

d

b

e

where all maps are the natural projections and

R = p13,∗(p
∗
12T ⊗ p∗23Q) ∈ Db(X × Z).
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Proposition 2.2.4 ([Muk81] Proposition 1.3). The composition RSY→Z,Q◦RSX→Y,T (−)

is isomorphic to RSX→Z,R(−), where all the objects are given as in the diagram above.

Proof. For any element E• ∈ Db(X × Y ) we have the isomorphisms

RSY→Z,Q(RSX→Y,T (E•) = f∗(d
∗c∗(a

∗E• ⊗ T )⊗Q)

' f∗(p23,∗p
∗
12(a∗E• ⊗ T )⊗Q) (Flat Base Change)

' f∗p23,∗(p
∗
12(a∗E• ⊗ T )⊗ p∗23Q) (Projection Formula)

' e∗p13,∗(p
∗
12a
∗E• ⊗ p∗12T ⊗ p∗23Q) (f ◦ p23 = e ◦ p13)

' e∗p13,∗(p
∗
13b
∗E• ⊗ p∗12T ⊗ p∗23Q) (a ◦ p12 = b ◦ p13)

' e∗(b
∗E• ⊗ p13,∗(p

∗
12T ⊗ p∗23Q)) (Projection Formula)

= e∗(b
∗E• ⊗R) = RSX→Z,R

We now focus on the product A × A∨, with A an abelian variety and A∨ its dual,

and P the associated Poincaré bundle. g will denote the dimension of A. To shorten

notation we will write RS = RSA∨→A,P and RŜ = RSA→A∨,P . pij will denote the

projection from the i�th and j�th component of A × A × A∨. Projections with only

one index, pi, will as usual denote a projection from A× A∨.

Theorem 2.2.5 ([Muk81] Theorem 2.2). Let A be an abelian variety of dimension g.

Then the following compositions are isomorphisms of functors:

(1)RS ◦RŜ ' (−1A)∗[−g]

(2)RŜ ◦RS ' (−1A∨)∗[−g]

In particular, this means that RS is an equivalence of the categories D(A) and D(A∨),

its quasi�inverse is given by (−1A∨)∗ ◦RŜ[g].

Before giving the proof we need the two following lemmas.

Lemma 2.2.6. With pij as described above, there is an isomorphism

p∗13P ⊗ p∗23P ' (m× 1)∗P
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Proof. We want to show the isomorphism by the See�Saw Principle, where both sides

are line bundles on A × A × A∨. At the point (0, 0) ∈ A × A the maps m, p1 and p2

are all trivial, so there are isomorphisms

(p∗13P)|(0,0)×A∨ ' (p∗23P)|(0,0)×A∨ ' ((m× 1)∗P)|(0,0)×A∨ ' P|0×A∨

and the latter is trivial by the universal property of the Poincaré bundle.

On the other hand, �x any point b ∈ Pic0(A). For n = 1, 2, and ib, jb the natural

inclusion maps, the commutativity of the squares

A× A× {b} A× A× A∨ A× A× {b} A× A× A∨

A× {b} A× A∨ A× {b} A× A∨

ib

pn pn3

ib

m m×1

jb jb

ensures that showing an isomorphism

(p∗13P ⊗ p∗23P)|A×A×{b} ' ((m× 1)∗P)|A×A×{b}

is equivalent to showing an isomorphism

p∗1Pb ⊗ p∗2Pb ' m∗Pb

and the latter isomorphism was shown to be true in Corollary 2.1.14. Hence the

isomorphism in the statement is shown by the See�Saw Principle.

Lemma 2.2.7.

Rip1,∗P '

{
0 if i 6= g

k(0) if i = g

We may therefore treat Rp1,∗P as the one term complex consisting of the skyscraper

sheaf at 0, shifted g places to the right, i.e. Rp1,∗P ' k(0)[−g].

Proof. This is shown in the course of the proof of the theorem in [Mum70] III.13.

Proof of Theorem 2.2.5. We start by showing the last statement from the assumption

that the isomorphisms (1) and (2) are true. By shifting and applying the functor

(−1A∨)∗ to both sides of equation (2), one immediately sees (−1A∨)∗◦RŜ[g]◦RS ' idA∨ .

To check the other way, notice that (2) also implies (−1A∨)∗ ' RŜ ◦RS[g]. From this,

and equation (1), we get

RS ◦ (−1A∨)∗ ◦RŜ[g] ' RS ◦RŜ ◦RS[g] ◦RŜ[g]
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' (−1A)∗[−g] ◦ (−1A)∗[−g][2g]

' idA

This shows that RS is indeed an equivalence as claimed.

Now to show isomorphism (1); start by noting that from Proposition 2.2.4

RS ◦RŜ ' RSA→A,H where H = Rp12,∗(p
∗
13P ⊗ p∗23P) (note also the change of indices

compared to what used in the proposition, as we are now working with A× A× A∨).
By Lemma 2.2.6 H ' Rp12,∗(m × 1)∗P . Furthermore, applying Flat Base Change to

the diagram

A× A× A∨ A× A

A× A∨ A

p12

m×1 m

p1

gives Rp12,∗(m×1)∗P ' m∗Rp1,∗P ' m∗k(0)[−g], where the latter isomorphism comes

from the conclusion of Lemma 2.2.7. Now consider the "mirrored diagonal" subscheme

of A × A, which as a set is de�ned as ∆− := {(a,−a)|a ∈ A}. This consists of the

set of points where m = 0, and it follows that m∗k(0) = (m|∆−)∗(k(0)). But ∆− gives

the same closed subscheme as the graph Γ(−1A), so m
∗k(0) ' OΓ(−1A)

. In summary,

H ' OΓ(−1)A
[−g] and so, as was seen in Example 2.2.3, RSA→A,H ' (−1A)∗[−g] '

(−1A)∗[−g]. Here the last isomorphism holds as (−1A) is an isomorphism, being its

own inverse.

By the symmetry of the problem, a similar line of arguments will show (2).

.
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2.3 Mukai�Regularity

In this section we aim to introduce the notion of Mukai�regularity, which is a

condition on the Fourier�Mukai transform of coherent sheaves on abelian varieties. In

addition to being a precursor to Θ�regularity, we will see that Mukai�regularity in itself

has serious geometric consequences, most notably seen in 2.3.19. The main reference

of this section is [PP03], and several of the proofs given will follow the arguments of

Pareschi and Popa. These instances will be su�ciently marked.

We begin by �xing some notation. A and A∨ will as before denote an abelian variety

over C, and its dual. P is the Poincaré bundle of A. If F is a coherent sheaf we will

write RŜ(F) := RSA→A∨,P(F) for its Fourier�Mukai transform. RiŜ(F) will denote

the i�th cohomology.

De�nition 2.3.1. Let F be a coherent sheaf and i ≥ 0. Then the set

V i(F) = {ξ ∈ Pic0(A) | hi(F ⊗ Pξ) 6= 0}

is called the i�th cohomological support locus of F .

Lemma 2.3.2. For any i the cohomological support loci of F is Zariski�closed in

Pic0(A).

Proof. Consider the Semicontinuity Theorem 1.1.6 for the projection

p2 : A × A∨ −→ A∨ and sheaf p∗1(F) ⊗ P . For any ξ ∈ A∨, we have Aξ ' A

and (p∗1(F) ⊗ P)ξ ' F ⊗ Pξ, so the theorem states that for any i ≥ 0, the set

ψ−1(−∞, 1) = {ξ ∈ A∨ | hi(A,F ⊗ Pξ) < 1} is open, and this is exactly the com-

plement of V i(F).

We are now in a position to give the de�nition of Mukai�regularity, stated as

two equivalent conditions. It was initially de�ned as condition i), using the Fourier�

Mukai regularity, with the condition on the cohomological support loci assumed to be

a stronger condition. It was later realized that they are, in fact, equivalent.

Proposition-De�nition 2.3.3. For a coherent sheaf F , the following are equivalent:
i) codim(Supp(RiŜ(F))) > i, for all 0 < i ≤ g.

ii) codim(V i(F)) > i, for all 0 < i ≤ g.

A sheaf satisfying this is called Mukai�regular, or simply M�regular.

Recall that the dimension of the empty set is de�ned to be −1. So in particular if

F is M�regular, then Supp(RgŜ(F)) = V g(F) = ∅.
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Proof. We start with ii)⇒ i). The idea is to utilize the Cohomology and Base Change

Theorem 1.1.8, again for the projection p2 : A×A∨ −→ A∨ and sheaf p∗1F ⊗P . Then
the domain of the map φi(ξ) in the theorem is RiŜ(F) ⊗ k(ξ) for any ξ ∈ A∨. Note

that α /∈ V i(A,F) if and only if hi(A,F ⊗ Pα) = 0. So pick such an α, then the map

φi(α) : RiŜ(F)⊗ k(α) −→ H i(A,F ⊗ Pα) = 0

is trivial, hence surjective and an isomorphism by Theorem 1.1.8. This implies

α /∈ Supp(RiŜ)(F) and means, by complement, that we have the inclusion of sets

Supp(RiŜ)(F) ⊆ V i(A,F).

For the other inclusion, suppose i) is satis�ed whilst codim(V i(F)) ≤ i, for some

0 < i ≤ g. Let j = max{ i | codim(V i(A,F)) ≤ i}, and choose W ⊆ V j(A,F), an

irreducible component having codimW ≤ j. Note that this implies W 6⊆ V j+1(A,F),

by our de�nition of j. This in turn means that W \ (W ∩ V j+1(A,F)) is an open,

non�empty set in W , so if ξ0 denotes the generic point of W , it is not an element of

V j+1(A,F). Then Hj+1(F ⊗ ξ0) = 0 which means that φj+1(ξ0) is surjective, hence an

isomorphism, by the same line of reasoning as above. Now, part b) of Theorem 1.1.8

guarantees that:

φj(ξ0) : RjŜ(F)⊗ k(ξ0)→ Hj(F ⊗ ξ0) 6= 0

is surjective, so we have ξ0 ∈ Supp(RjŜ(F)). Since ξ0 is the generic point of W , and

the support is closed, we get the inclusion:

ξW0 = W ⊆ Supp(RjŜ(F))

Where ξW0 denotes the closure of ξ0 in W . But then we must have

codim(Supp(RjŜ(F))) ≤ j, which contradicts our initial assumptions.

Recall from Theorem 2.1.8 that if a line bundle L on A is non�degenerate then its

cohomologies vanish for all degrees, save for an integer 0 ≤ i ≤ g, depending on L.
This inspires the following de�nition.

De�nition 2.3.4. i) A coherent sheaf F on A is said to satisfy the index theorem

(I.T.) of index i if

Hj(F ⊗ α) = 0 for any α ∈ Pic0(A) and i 6= j.

ii) F is said to satisfy the weak index theorem (W.I.T.) of index i if

RjS(F) = 0 for all j 6= i.
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As the names suggests, a sheaf F satisfying I.T. of index i will also satisfy W.I.T.

of the same index, as we will show in the next proposition. We then go on to show a

partial converse for index 0.

Proposition 2.3.5. If F is a sheaf satisfying I.T. of index i, then it also satis�es

W.I.T. of index i. Furthermore, RiŜ(F) is locally free.

Proof. The idea is to argue using the Cohomology and Base Change Theorem 1.1.8

in a similar way as was done in Proposition�De�nition 2.3.3. Indeed, using the same

setting, with p2 : A×A∨ −→ A∨, sheaf p∗1F ⊗P and j 6= i, we have Hj(A,F ⊗Pα) = 0

for every α ∈ A∨. The isomorphism from the theorem then implies that RjŜ(F) is

trivial. For the second statement, we know that Ri+1Ŝ(F) is locally free, so φi is

surjective by statement b) in Theorem 1.1.8. φi−1 is also sujective, so another use of

statement b) implies exactly that RiŜ(F) is locally free.

Proposition 2.3.6. If F is W.I.T. of index 0, then it is also I.T. of index 0.

Proof. We intend to prove this using induction on part b) of the Cohomology and Base

Change Theorem. Fix any point α ∈ A∨ and use the same setting as done in the proof

of Proposition 2.3.5, rendering the map

φj(α) : RjŜ(F)⊗ k(α) −→ H i(A,F ⊗ Pα).

If we choose j = g+1 then Hg+1(A,F⊗Pα) = 0 by Grothendiecks Vanishing Theorem,

so φg+1(α) is trivially surjective. Since RgŜ(F) is 0 (and hence trivially locally free),

φg(α) is surjective, implying Hg(A,F ⊗ Pα) = 0. We continue this argument all the

way down to and including j = 1.

Example 2.3.7. i) A coherent sheaf F satisfying W.I.T. of index i = 0 is M�regular.

Clearly, as RjŜ(F) vanishes for all j > 0, the supports are empty here.

ii) From Example 2.1.9 and Lemma 2.1.22 we see that ample line bundles are I.T. of

index 0. They will therefore provide important examples of M�regular sheaves.

We now give the main technical result for the theory of Mukai�regularity. It will

be essential for us in order to derive statements relating M�regularity and global gen-

eration.

Theorem 2.3.8 ([PP03], Theorem 2.5). Let F be an M�regular sheaf on A, and H a

locally free sheaf on A satisfying I.T. with index 0. Then, for any non�empty open set
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U ⊆ A∨, the sum of multiplication maps on global sections

MU :
⊕
ξ∈U

H0(A,F ⊗ Pξ)⊗H0(A,H ⊗ P∨ξ )
⊕mξ−→ H0(A,F ⊗H)

is surjective.

The theorem will be proved using the next three lemmas. For these results we let

assumptions and notation be as in the previously stated Theorem.

Lemma 2.3.9. The map

MU :
⊕
ξ∈U

H0(A,F ⊗ Pξ)⊗H0(A,H ⊗ P∨ξ )
⊕mξ−→ H0(A,F ⊗H)

is surjective if and only if the co�multiplication map

Extg(F , H∨)→
∏
ξ∈U

Hom(H0(F ⊗ Pξ), Hg(H∨ ⊗ Pξ)) (2.2)

is injective.

Proof. Recall that for a sheaf G, we may view H0(A,G) as a C-vector space, and

consider its dual H0(A,G)∨ = Hom(H0(A,G), k). This induces a dual map

H0(A,F ⊗H)∨ →
∏
ξ∈U

H0(A,F ⊗ Pξ)∨ ⊗H0(A,H ⊗ P∨ξ )∨ (2.3)

where a morphism H0(A,F ⊗ H) → k is sent to a morphism

H0(A,F ⊗ Pξ)⊗H0(A,H ⊗ P∨ξ )→ k by pre�composing with the multiplication map

mξ.

Claim 1. The multiplication mapMU is surjective if and only if the dual map (2.3) is

injective.

Consider elements φ, ψ ∈ H0(A,F ⊗H)∨. It is clear that ifMU is surjective, then

φ◦MU = ψ◦MU implies φ = ψ. To see the other direction, assume that the dual map

is injective, whileMU is not surjective. Choose a basis < x1, x2, ...xk > for the image

ofMU , and complete this to a basis < x1, ...xk, yk+1, ...ym > for H0(A,F ⊗H). Let φ

be the projection of the element k+ 1 in this basis, i.e. φ(
∑

(αixi) +
∑

(βjyj)) = βk+1,

and ψ be the trivial map. Then φ ◦MU = ψ ◦MU = 0 which would contradict the

injectivity of the dual map. This proves the claim.

We are left with showing the relation between the comultiplication (2.2) and the

dual map (2.3). At the domain, we have H0(A,F ⊗ H)∨ ' Extg(F ⊗ H,OA) '
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Extg(F , H∨) by Serre Duality. For the codomain, we again use Serre Duality to note

that

H0(A,H ⊗ P∨ξ )∨ ' Extg(H ⊗ P∨ξ ,OA) ' Extg(OA, H∨ ⊗ Pξ) ' Hg(A,H∨ ⊗ Pξ).

This gives

H0(A,F ⊗ Pξ)∨ ⊗H0(A,H ⊗ P∨ξ )∨ ' Hom(H0(A,F ⊗ Pξ), k)⊗Hg(A,H∨ ⊗ Pξ)

' Hom(H0(F ⊗ Pξ), Hg(H∨ ⊗ Pξ))

where the latter relation is the tensor product isomorphism Hom(M,R) ⊗R N '
Hom(M,N) that holds for any R-modules M and N .

It is convenient to introduce some notation here. We de�ne Ĥ∨ = RgŜ(H∨). By

Serre Duality we have

H i(A,H∨ ⊗ α) ' Exti(H ⊗ α∨) ' Hg−i(A,H ⊗ α∨)∨

so the assumption that H satis�es I.T. of index 0, implies that H∨ satis�es I.T. of index

g. This makes Ĥ∨ a locally free sheaf by Proposition 2.3.5. Note also that the one�term

complex Ĥ∨ is quasi�isomorphic to RŜ(H∨)[g], and they are therefore isomorphic in

Db(A). We will use these facts throughout the proofs of the next lemmas.

Lemma 2.3.10. There is a natural inclusion

HomD(A∨)(RŜ(F), Ĥ∨) −→ Hom(R0Ŝ(F), Ĥ∨)

Proof. From Proposition 1.3.13 we have the spectral sequence

Ep,q
2 = Extp(R−qŜ(F), Ĥ∨)⇒ Ep+q = Extp+qD(A∨)(RŜ(F), Ĥ∨)

We want to inspect Ep,q
2 for the values p and q satisfying p+q = 0. Since Extp is trivial

for negative values of p, we restrict ourselves to the case when p ≥ 0 (and, consequently,

q ≤ 0). Consider Extp(R−qŜ(F), Ĥ∨) ' Extp(R−qŜ(F)⊗ (Ĥ∨)∨,OA∨) and note that

Supp(R−qŜ(F) ⊗ Ĥ∨)=Supp(R−qŜ(F)) since Ĥ∨ is locally free. By de�nition, the

M�regularity of F ensures that g − dim SuppR−qŜ(F) > −q or equivalently q >

dim SuppR−qŜ(F)− g. This in turn implies

g + q > g + (dim SuppR−qŜ(F)− g) = dim SuppR−qŜ(F)

whenever q < 0. In this case, Proposition 1.1.4 shows that the only non�trivial element

Ep,q
2 where p + q = 0 is E0,0

2 . This in particular means that the only non�trivial
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object Ep,q
∞ , keeping the same restrictions on p and q, is E0,0

∞ . Recall from part iv) of

De�nition 1.1.11 of spectral sequences that for any integers k, l there are isomorphisms

Ek,l
∞ ' F kEk+l/F k+1Ek+l, where F denotes the decreasing �ltration of En. Due to

E0,0
∞ being the only non�trivial in�nity object at 0, the �ltration only changes values

at the step F 1E0 to F 0E0. Since we furthermore have the relations ∩pF pEn = 0 and

∪pF pEn = En, we deduce that E0,0
∞ ' En. Then use the isomorphisms from condition

ii) of the same de�nition to obtain a chain of inclusions

· · · ↪→ E0,0
r+1 ' H0(E•r,•−•rr ) ↪→ E0,0

r ' H0(E
•(r−1),•−•(r−1)
r−1 ) ↪→ · · ·

Composing these gives us the natural inclusion

HomD(A∨)(RŜ(F), Ĥ∨) ' E0 ↪→ E0,0
2 ' Hom(R0Ŝ(F), Ĥ∨)

Lemma 2.3.11. There is a natural map of OA∨-modules

φ : Extg(F , H∨)⊗OA∨ −→ Hom(R0Ŝ(F), Ĥ∨)

where for general points ξ ∈ A∨, the induced map on the �ber

φ(ξ) : Extg(F , H∨) −→ Hom(R0Ŝ(F), Ĥ∨)(ξ)

is the co�multiplication map (2.2) at ξ.

Proof. Start by de�ning the open set U0 := A∨ \ (∪gi=1V
i(F)) ⊂ A∨ (which is non�

empty due to the M�regularity assumption on F) and �x an element ξ ∈ U0. We argue

using the following diagram:

Extg(F , H∨) H0(F ⊗H)∨

HomD(A)(F , H∨[g])

H0(F ⊗ Pξ)∨ ⊗H0(H ⊗ P∨ξ )∨

HomD(A∨)(RŜ(F), Ĥ∨)

Hom(R0Ŝ(F), Ĥ∨) Hom(H0(F ⊗ Pξ), Hg(H∨ ⊗ Pξ))

i)

'

iv)

'

ii)

v)

'

iii)

'

vi)

vii)

55



Going right then down on the diagram (i.e. composing maps i) − iii)) gives the co�

multiplication map on ξ, as in equation (2.2). This has been described in the proof of

Lemma 2.3.9. The other maps are as follows:

iv) Follows from Proposition 1.3.12.

v) Is the Fourier�Mukai transform. This was proven to be an equivalence of

categories in Theorem 2.2.5, so it is in particular fully faithful.

vi) Is the natural inclusion obtained in Lemma 2.3.10.

Composing the maps iv)− vi) yields a map

Φ : Extg(F , H∨) −→ Hom(R0Ŝ(F), Ĥ∨). (2.4)

Upon twisting with the trivial bundle this is easily extended to the map

φ : Extg(F , H∨)⊗OA∨ −→ Hom(R0Ŝ(F), Ĥ∨)

as asserted in the �rst part of the statement of this lemma. Map vii) will then account

for the second claim of the lemma, namely that the map φ on the �ber ξ is the co-

multiplication map at ξ. Indeed, note that by the choice of U0, and Lemma 2.1.22, we

have

h0(F ⊗ Pξ) = χ(F ⊗ Pξ) = χ(F) = h0(F)

This makes h0(F ⊗ Pξ) constant for ξ ∈ U0, and hence for the projection map

p2 : A × U0 −→ U0 and sheaf (p∗1F ⊗ P)|A×U0 we can apply Grauert's Theorem 1.1.7,

to guarantee that the natural map

R0Ŝ(F)⊗ k(ξ) −→ H0(F ⊗ Pξ)

is an isomorphism. One the other hand, Ĥ∨ = RgŜ(H∨) which we noted is I.T. of

index g. Therefore χ(Ĥ∨ ⊗ Pξ) = h0(Ĥ∨ ⊗ Pξ) for any ξ. Using Grauert's Theorem

again gives an isomorphism

RgŜ(H∨)⊗ k(ξ) −→ Hg(H∨ ⊗ Pξ).

Thus for any ξ ∈ U0 we obtain a diagram as above, which commutes since all involved

maps are natural.

Proof of Theorem 2.3.8. For an open set U ′ ⊆ A∨, we show that the multiplication

map is surjective for U := U ′ ∩ U0, where U0 is the open set from the proof of Lemma

2.3.11. In light of the two Lemmas 2.3.9 and 2.3.11, the global multiplication map,
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MU , is surjective if and only if φ from the latter lemma is injective. Ĥ∨ is locally free,

so by Example 1.1.10 the sheaf Hom(R0Ŝ(F), Ĥ∨) is torsion free. In the discussion

prior to the same example, we see that the restriction maps to the stalks are then

injective. This means that φ is injective if it is injective on the global sections (of the

subvariety U ⊂ A∨), which is the map (2.4) introduced as Φ in the proof of Lemma

2.3.11. But this map is indeed injective by Lemma 2.3.10, and the proof of the Theorem

is complete.

Corollary 2.3.12. If F is M�regular, then H0(F ⊗ α) 6= 0 for any non-trivial α ∈
Pic0(A).

Proof. Suppose that there exists an element α0 ∈ Pic0(A) such that H0(A,F⊗α0) = 0.

Then V 0(F) is not the whole of Pic0(A), so we have an open, non�empty set U =

Pic0(A) \ V 0(F). Now consider an ample line bundle L, so there is an integer n such

that F⊗Ln is globally generated. DenoteH = Ln. This means thatH0(A,F⊗H) 6= 0,

while H at the same time satis�es the condition of the theorem. The contradiction

arises as H0(A,F ⊗ Pξ) = 0, for any ξ ∈ U by construction, so the mapMU fails to

be surjective.

Proposition 2.3.13. Let F and H be as in Theorem 2.3.8. Then there is an integer

N and elements ξ1, ...ξN such that the �nite sum of the multiplication maps

⊕mξi :
N⊕
i=1

H0(A,F ⊗ Pξi)⊗H0(A,H ⊗ P∨ξi )→ H0(A,F ⊗H)

is surjective.

Proof. [PP03] Corollary 2.8.

In the same setting as Theorem 2.3.8, and indeed using similar arguments, we can

show that an M�regular sheaf in a sense preserves the vanishing of higher cohomologies.

This is made precise in the following result.

Proposition 2.3.14 ([PP03] Proposition 2.9). Let F and H be sheaves on A, where F
is M�regular and H is locally free and satisfying I.T. of index 0. Then F ⊗H satis�es

I.T. with index 0.

Proof. Consider an element α in A∨. Then H ⊗ α still satis�es I.T. of index 0, and is

also still locally free, so we have

H i(F ⊗H ⊗ α) ' Exti((H ⊗ α)∨,F) ' HomD(A)((H ⊗ α)∨,F [i])
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Recall the following notation from the proof of the previous Theorem, namely

̂(H ⊗ α)∨ = RgŜ((H ⊗ α)∨). As before this is locally free and can be identi�ed with

the one�term complex RŜ((H ⊗ α)∨)[g]. Using once more that the Fourier�Mukai

transform is fully faithful, we get the following isomorphisms:

HomD(A)((H ⊗ α)∨,F [i]) ' HomD(A∨)( ̂(H ⊗ α)∨, RŜ(F)[i+ g])

' Exti+g( ̂(H ⊗ α)∨, RŜ(F))

and we want to show that this latter Ext�group vanishes when i > 0. To this end we

employ the second spectral sequence from Proposition 1.3.13

Ek,l
2 = ExtkD(A∨)(

̂(H ⊗ α)∨, RlŜ(F))⇒ Extk+l
D(A∨)(

̂(H ⊗ α)∨, RŜ(F)).

Note that

Extk( ̂(H ⊗ α)∨, RlŜ(F)) ' Hk(A∨, ( ̂(H ⊗ α)∨)∨ ⊗RlŜ(F))

and the latter is trivial when k > dim Supp(RlŜ(F)), since ̂(H ⊗ α)∨ is locally free

and by arguing in the same way as was done in the proof of Lemma 2.3.10. We are

interested in the case where k + l > g, and here the M�regularity assumption on F
implies that k > g − l > dim Supp(RlŜ(F)) when l is positive (note that l = 0 is a

trivial case as the cohomology is 0 when the index exceeds the dimension). Hence the

spectral sequence vanishes at the E2-level for k+ l > g, so we have Ek,l
∞ = 0 here. This

in turn implies

Ei+g
D(A∨)(

̂(H ⊗ α)∨, RlŜ(F)) = 0, when i > 0

which is what we wanted to show.

To obtain statements of global generation from Mukai�regularity, it will be useful

to introduce a concept called continuous global generation. We will then show that

M�regular sheaves satisfy this condition. The twist of a a sheaf with a line bundle,

both satisfying this new notion, will furthermore be globally generated.

De�nition 2.3.15. A coherent sheaf F on A is called continuously globally generated

if the sum of evaluation maps:

⊕evα :
⊕
α∈U

H0(F ⊗ α)⊗ α∨ −→ F

is surjective for any non�empty open subset U ⊂ Pic0(A).
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The following result mirrors Proposition 2.3.13 in the sense that continuously glob-

ally generated is equivalent to the existence of a �nite number of general points in A∨

where the sum of evaluation maps is surjective.

Lemma 2.3.16. A coherent sheaf F on A is continuously globally generated if and

only if there is a �nite number N of general line bundles in Pic0(A) such that the sum

of evaluation maps

⊕evξi :
N⊕
i=1

H0(F ⊗ ξi)⊗ ξ∨i −→ F

is surjective.

Proof. Suppose the map
⊕

α∈U evα is surjective. Then for elements p ∈ A, the induced
map

⊕
evα,p at the stalk generates Fp as an OA,p�module. Since F is coherent, and

thus �nitely generated at the stalks, only a �nite amount of these maps are needed to

generate Fp. Since F is locally represented at the stalks, we may use the noetherian

hypothesis on A to restrict ourselves to a �nite number of these stalks, and hence only

a �nite number of evaluation maps are needed to obtain surjectivity.

Remark 2.3.17. Note that for a line bundle L to be continuously globally generated

means that the intersection of the divisors in |L⊗α| is empty when varied over an open

set in Pic0(A) (or over �nitely many general elements as noted in the lemma above).

Indeed, if ∩α∈UBs(|L⊗α|) was non�empty, then all the global sections of H0(A,L⊗α)

for every α ∈ Pic0(A) would vanish here, and the evaluation maps would fail to be

surjective.

Proposition 2.3.18 ([PP03] Proposition 2.13.). Any M�regular sheaf is continuously

globally generated. In other words, if F is M�regular, then there is a positive integer

N such that the sum of evaluation maps

N⊕
i=1

H0(F ⊗ Pξi)⊗ P∨ξi −→ F

is surjective for general elements ξ1, ..., ξN in A∨.

Proof. Let L be an ample line bundle on A and, as was done in Corollary 2.3.12, we

de�neH = Ln so that F⊗Ln is globally generated. Consider the following commutative

diagram obtained by alternating the evaluation and multiplication maps:
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⊕Ni=1H
0(F ⊗ Pξi)⊗H0(H ⊗ P∨ξi )⊗OA H0(F ⊗H)⊗OA

⊕Ni=1H
0(F ⊗ Pξi)⊗H ⊗ P∨ξi F ⊗H

evH⊗P∨
ξi

evF⊗H

If the elements ξ1, ...ξN are chosen as in Proposition 2.3.13, then the top horizontal

map is surjective and the right vertical map is surjective by choice of H. It now follows

that the bottom horizontal map is surjective.

Theorem 2.3.19 ([PP03] Proposition 2.12 and Theorem 2.4). Consider a coherent

sheaf F and a line bundle L on A. If both F and L are continuously globally generated,

then F ⊗ L is globally generated.

Along with Proposition 2.3.18 this particularly means that the tensor product of an

M�regular sheaf and an M�regular line bundle is globally generated.

Proof. We start by considering a diagram similar to what was used in Proposition

2.3.18, by alternating evaluation and multiplication maps:

⊕Ni=1H
0(F ⊗ Pξi)⊗H0(L ⊗ P∨ξi )⊗OA H0(F ⊗ L)⊗OA

⊕Ni=1H
0(F ⊗ Pξi)⊗ L⊗ P∨ξi F ⊗ L

evL⊗P∨
ξi

evF⊗L

Here N is chosen such that the sum of evaluation maps for both F and L is surjective.

Then the bottom horizontal map is surjective, so coker(evF⊗L) is contained in the

intersection of base loci Bs(|L ⊗ P∨ξi |). But this intersection is empty, as noted in

Remark 2.3.17. Hence evF⊗L is also surjective, making F ⊗ L globally generated.
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2.4 Theta�Regularity

The Mukai�regularity presented in the last section might at �rst not seem too

similar to the Castelnuovo�Mumford regularity for projective spaces that was presented

in section 1.5. However, by considering a principally polarized abelian variety one

obtains a regularity condition that can be seen as a true "abelian" version of the

regularity of projective spaces. In particular, Theorem 2.4.3 shows clear similarities to

the Castelnuovo�Mumford Theorem 1.5.2.

Recall from section 2.1 that a principally polarized abelian variety is a �xed pair

(A,Θ) where Θ is a symmetric ample divisor, such that h0(A,OA(Θ)) = 1.

De�nition 2.4.1. A coherent sheaf F on (A,Θ) is called m�Θ�regular if F((m−1)Θ)

is M�regular. If m = 0 the sheaf is simply called Θ�regular.

Recall from Theorem 1.2.5 than for an ample line bundle L and any coherent sheaf

F , the higher cohomology groups of F ⊗ Lm vanish for m su�ciently large. It follows

in particular that F is always m�Θ�regular for a su�ciently large integer m.

Example 2.4.2. i) Consider any α ∈ Pic0(A). As Θ is ample, so is OA(Θ) ⊗ α by

Lemma 2.1.22, and therefore M�regular. It follows that α is 2�Θ�regular.

ii) OA(nΘ) is (−n + 2)�Θ�regular. Indeed, OA(nΘ) ⊗ OA((−n + 1)Θ) = OA(Θ),

and hence ample and M�regular.

Theorem 2.4.3. ([PP03] Theorem 6.3) Suppose F is a Θ�regular sheaf on (A,Θ).

The following holds:

(1) F is globally generated.

(2) F is m�Θ�regular for any m ≥ 1.

(3) The multiplication map

H0(F(Θ))⊗H0(O(kΘ)) −→ H0(F((k + 1)Θ))

is surjective whenever k ≥ 2.

Proof. (1) We may write F ' F(−Θ) ⊗ O(Θ). F(−Θ) is M-regular by assumption

and O(Θ) is an M-regular line bundle, so we get the result from the last statement of

Theorem 2.3.19.

(2) When F is Θ�regular, checking for m�Θ�regularity involves twisting with m

copies of O(Θ) and these are I.T. of index 0, as they are ample. The result then

follows immediately from Proposition 2.3.14.
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(3) It is a consequence of Akira Ohbuchi's proof in ([Ohb88]) that there is an open

set U ∈ A∨ such that the multiplication map

H0(OA(2Θ)⊗ Pξ)⊗H0(OA(kΘ)) −→ H0(OA((2 + k)Θ)⊗ Pξ)

is surjective for any integer k ≥ 2 when ξ ∈ U . With this choice of U we consider

the following commutative diagram obtained by alternating the order of multiplication

maps:

⊕ξ∈UH0(F(−Θ)⊗ Pξ)⊗H0(OA(2Θ)⊗ P∨ξ )⊗H0(OA(kΘ)) H0(F(Θ))⊗H0(OA(kΘ))

⊕ξ∈UH0(F(−Θ)⊗ Pξ)⊗H0(OA((k + 2)Θ)⊗ P∨ξ ) H0(F((k + 1)Θ))

We now argue inductively, using Proposition 2.3.14, that OA((k+ 2)Θ) is I.T. of index

0. So the bottom horizontal map is surjective by Theorem 2.3.8. Since the left vertical

map is also surjective by choice of U , the right vertical map must be surjective.

Remark 2.4.4. The numerical analogy between this theorem and the Castelnuovo�

Mumford Theorem 1.5.2 is identical, with the exception that the original result includes

the case k = 1 for statement (3). To see that this fails for abelian varieties, consider an

elliptic curve E and F = O(Θ). The Riemann�Roch Theorem says that the dimension

of H0(O(dΘ)) is equal to d. So if k = 1 then the left hand side of the multiplication

map in (3) has dimension 2, whilst the right hand side has dimension 3. It follows that

the map cannot be surjective.

In light of part (2) of the Main Theorem for Θ�regularity, it makes sense to speak

of the lowest integer m for which F is m�Θ�regular. We therefore conclude this section

with the following de�nition.

De�nition 2.4.5. Let F be a coherent sheaf on a principally polarized abelian variety

(A,Θ). The Θ�regularity of F is then de�ned to be

Θ�reg(F) = inf{m ∈ Z|F is m�Θ�regular}
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Chapter 3

Theta-Regularity and Log-Canonical

Threshold

In the end of the �rst chapter we noted how Alex Küronya and Norbert

Pintye related the Castelnuovo�Mumford regularity to the log�canonical threshold

of ideal sheaves by an inequality. In chapter 2 we followed Giuseppe Pareschi and

Mihnea Popa's development of theta�regularity which turned out to be an

analogous regularity condition for abelian varieties. This immediately raises the

question of whether a similar relation holds between the log�canonical threshold and

the theta�regularity, and we will explore this in Theorem 3.1.6. Along the way we also

state a lower bound for the theta�regularity of ideal sheaves, as well as an upper bound

for the theta�regularity of multiplier ideals (Propositions 3.1.2 and 3.1.4, respectively).

We end the chapter with a discussion on how the relation between theta�regularity

and log�canonical thresholds can be used to obtain statements on singularities. This

will culminate in a new interpretation of a proof due to Lawrence Ein and Robert

Lazarsfeld, regarding a statement of singularities of pluri�theta divisors (Theorem

3.1.8).

We start with the following lemma for short exact sequences and M�regular sheaves.

Lemma 3.1.1. Consider a short exact sequence of coherent sheaves:

0 −→ F −→ L −→ G −→ 0

where L is ample and F is M�regular. Then G is also M�regular.

Proof. Fix an integer 0 < i ≤ g and and twist the sequence by any element α /∈
V i+1(F). Since α is locally free, this gives a new short exact sequence, which induces
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the long exact sequence of cohomology groups:

· · · −→ Hj(F ⊗ α) −→ Hj(L ⊗ α) −→ Hj(G ⊗ α) −→ Hj+1(F ⊗ α) −→ · · ·

Now L ⊗ α is still ample by Lemma 2.1.22 and hence I.T. of index 0. Therefore the

i�th cohomology group of L ⊗ α vanishes and we have an injection H i(G ⊗ α) ↪→
H i+1(F ⊗ α) = 0, where the latter is 0 by choice of α. We therefore have α /∈ V i(G)

and so codimV i(G) ≥ codimV i+1(F) > i+ 1.

The following result gives an important lower bound for the Θ�regularity of ideal

sheaves.

Proposition 3.1.2. Let I 6= OA be an ideal sheaf on A. Then I cannot be m�Θ�

regular for m < 3. In other words, Θ�reg(I) ≥ 3.

Proof. By Theorem 2.4.3 b), it su�ces to prove the statement for the case m = 2.

So assume for a contradiction that I is a 2�Θ�regular ideal sheaf, and consider the

associated short exact sequence:

0 −→ I −→ OA −→ G −→ 0

where G = OD for some e�ective divisor D such that −D is associated to I. Twisting
this sequence with Θ will preserve the exactness

0 −→ I ⊗Θ −→ Θ −→ G ⊗Θ −→ 0

and since I ⊗ Θ is M�regular by assumption, then so is G ⊗ Θ by the last lemma.

By de�nition of a principal polarization, we have h0(A,Θ) = 1, and the higher co-

homologies vanish as Θ is ample. From this, and the additive property of the Euler

characteristic on exact sequences, we have

1 = χ(Θ) = χ(I ⊗Θ) + χ(G ⊗Θ) (3.1)

Now let Ui = A∨ \ V i(I ⊗ Θ), and choose an element α0 ∈ ∩i>0Ui. Such an element

necessarily exists, as Ui is non�empty for i > 0 by the M�regularity assumption, and

the intersection of non�empty open sets in the Zariski topology is non�empty. Lemma

2.1.22 implies χ(I ⊗ Θ) = χ(I ⊗ Θ ⊗ α0) = h0(I ⊗ Θ ⊗ α0), which is positive by

Corollary 2.3.12. The same line of argumentation also shows χ(G ⊗ Θ) > 0. But this

contradicts Equation (3.1), as the right hand side must be greater than 1. Hence I
cannot be 2�Θ�regular.
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Example 3.1.3. Since Θ is an e�ective divisor, OA(−Θ) is an ideal sheaf. We have

already seen that OA(−Θ) is 3�Θ�regular, so the inequality in Proposition 3.1.2 is

sharp.

We note the following fact which will be used throughout the rest of the chapter.

Consider the linear system |OA(Θ) ⊗ α| for any α ∈ Pic0(A). This is non�empty as

h0(OA(Θ)⊗α) = h0(OA(Θ)) = 1, hence the linear system has dimension 0. If L denotes

the unique e�ective divisor here, we may write L = Θ+D where D is a (not necessarily

e�ective) divisor representing α. Now consider qΘ +D for a positive rational number

q. Then there is an integer p such that pqΘ is an ample, integral divisor. Since pD

will represent an element in Pic0(A), pqΘ + pD is an integral ample divisor by Lemma

2.1.22. In particular, this makes qΘ +D an ample Q�divisor.
For the convenience of the reader, we brie�y recall some notation from section 1.4.

For a rational number c > 0 and a sheaf of ideals I on A, the multiplier ideal sheaf

associated to c and I is denoted J (c · I). The log�canonical threshold of I, lct(I), is

the smallest c such that J (c · I) 6= OA. The following statement gives an upper bound

on the Θ�regularity for multiplier ideals.

Proposition 3.1.4. Let I be a non�trivial sheaf of ideals with m = Θ�reg(I). Let

furthermore c be a positive, rational number. Then:

i) Θ�reg(J (c · I)) ≤ min{m, dcme+ 1}, if 0 < c < 1.

ii) Θ�reg(J (c · I)) ≤ bcmc − bcc+ 2, if c ≥ 1.

Proof. Note that by Proposition 3.1.2 we have m ≥ 3. For the rest of the proof we �x

the divisor A = (m− 1)Θ, so that I ⊗ OA(A) is globally generated by Theorem 2.4.3

a).

In case i) we have 0 < c < 1. Let D be a divisor representing an element α in

Pic0(A), choose L = (m− 1)Θ +D and observe that

(m− 1)− c(m− 1) = m− cm− 1 + c = (m− 1)(1− c) > 0.

This makes the Q�divisor

L − cA = (m− 1)(1− c)Θ +D

ample, as noted prior to the statement of this proposition. In particular L− cA is also

big and nef. Keeping in mind that ωA is trivial, we can apply the Nadel Vanishing

Theorem 1.4.14:

H i(A,J (c · I)⊗OA((m− 1)Θ)⊗ α) = 0, for all i > 0
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This shows that J (c · I)⊗OA((m−1)Θ) is I.T. with index 0, which makes J (c · I) m�

Θ�regular. In a similar manner we will show that J (c ·I) is also (dcme+1)�Θ�regular,

making the lowest of the two an upper bound. Indeed, keeping A and D as above, we

now rede�ne L = dcmeΘ +D. Observe that dcme− c(m− 1) ≥ c > 0, so the same line

of argumentation as the one above shows that J (c · I) is indeed (dcme+ 1)�Θ�regular.

We will also show ii) by use of the Nadel Vanishing Theorem. A and D are kept

as before. L is now chosen to be (bcmc − bcc + 1)Θ + D, and consider the sum

bcmc − bcc+ 1− cm+ c. If c is an integer, then this is equal to 1. Otherwise we have

the inequality

bcmc − bcc+ 1− cm+ c > c− bcc > 0.

In both cases the sum is positive and L− cA is hence an ample Q�divisor. The result
now follows from the same application of the Nadel Vanishing Theorem as in i).

Remark 3.1.5. We can at this point make some deductions regarding the log�canonical

threshold of I. From Example 2.4.2 we know that OA is 2�Θ�regular. Proposition

3.1.2 guarantees that this is the only ideal sheaf with this property. This fact is

re�ected in Proposition 3.1.4, where we see that for a su�ciently small c we have

Θ�reg(J (c · I)) ≤ dcme + 1 = 2. In light of these observations, an equivalent

de�nition of the log�canonical threshold of an ideal sheaf I on an abelian variety

A is

lct(I) = min{c ∈ Q | J (c · I) is not 2-Θ�regular}.

The following theorem is the main result relating the log-canonical threshold and

the Θ�regularity of an ideal sheaf.

Theorem 3.1.6. Let (A,Θ) be a principally polarized abelian variety. For any coherent

sheaf of ideals I 6= OA, the following inequality holds:

1 < lct(I)(Θ�reg(I)).

Proof. Set c =lct(I) and note that if c ≥ 1 this is obvious, as Θ�reg(I) is at least 3.

Otherwise, if c < 1, then by de�nition J (c · I) 6= OA so by Proposition 3.1.2 and

Proposition 3.1.4 part i), we have

3 ≤ Θ�reg(J (c · I)) ≤ dc(Θ�reg(I))e+ 1 < c(Θ�reg(I)) + 2

Subtracting 2 from the left� and right�hand side of the above inequality leaves us with

the desired result.
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Remark 3.1.7. We once again emphasize the similarity between this result and that

of Küronya and Pintye for the Castelnuovo�Mumford regularity, as stated in Theorem

1.5.3. The only di�erence is that equality does not hold for Θ�regularity, while there

are examples of cases where equality holds for the Castelnuovo�Mumford case (see

[KP13] Example 6).

We now turn our attention to another application of the theories of log�canonical

thresholds and Θ�regularity. Historically, an interesting problem has been to under-

stand what sort of singularities Theta�divisors can have. In Theorem 17.13 of [Kol95],

János Kollár showed that Θ is log�canonical, which we recall from section 1.4 means

that J (A, (1 − ε)Θ) = OA for any rational number 0 < ε < 1. The result was later

generalized to pluri�theta divisors by Ein and Lazarsfeld ([EL97] Proposition 3.5). We

will show the latter result; the proof will start with an application of the Nadel Vanish-

ing Theorem, in the same manner as was done by Ein and Lazarsfeld. Then Remark

3.1.5 will simplify the rest of the argument, compared to the original proof.

Theorem 3.1.8. Let (A,Θ) be a principally polarized abelian variety and m ≥ 1. If

we �x any divisor D ∈ |mΘ|, then 1
m
D is log-canonical. By Proposition 1.4.13 this

implies that every component of Σmk(D) has codimension ≥ k in A.

Proof. The �rst step is to apply the linear series version of the Nadel Vanishing

Theorem 1.4.14, for the following setting; choose L = Θ + F , where F is a divisor

associated to an element α ∈ Pic0(A). E is chosen to be mΘ and c = 1−ε
m

for a rational

number 0 < ε < 1. Then

L − cE = Θ + F − (1− ε)
m

mΘ = εΘ + F

which is an ample Q�divisor and hence nef and big. For D ∈ |mΘ| there are the

vanishing of the higher cohomologies

H i

(
A,OA(Θ)⊗ α⊗ J

(
(1− ε)
m

D

))
= 0 for i > 0

which makesOA(Θ)⊗J
( (1−ε)

m
D
)
I.T. of index 0. But this in turn means that J

( (1−ε)
m

D
)

is 2-Θ-regular, and hence J
( (1−ε)

m
D
)

= OA by Remark 3.1.5. Since this holds for any

rational 0 < ε < 1, we conclude that 1
m
D is log�canonical.
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Further Developments

We conclude with a brief discussion regarding possible further work related to the

topics presented in this thesis. A natural question to ask would be whether the state-

ment on singularities in Theorem 3.1.8 can be generalized to polarizations of higher

degree. The obstructing element in applying similar arguments to the ones shown in

Chapter 3 is Proposition 3.1.2, where we actively used that Θ was a principal polariza-

tion. To be more precise, let (A, `) be a polarized abelian variety of degree d > 1, and

L an ample line bundle representing `. If one were to show the following statement:

{I ⊗ L is not Mukai�regular for any non�trivial sheaf of ideals I} (∗)

then one can prove statements analogous to Theorem 3.1.8. If we furthermore assume

that (A, `) is indecomposable, then (∗) can be proved for d = 2. This would not,

however, give a new result as the singularities for this case has already been studied

by Christopher D. Hacon ([Hac00] Theorem 4.1). It is not clear whether (∗) holds

(possibly with further assumptions on (A, `)) for degrees greater than 2.

Another option is to work over �elds of positive characteristic. The Nadel Vanishing

Theorem, which we have used extensively, requires the Kodaira Vanishing Theorem.

While Kodaira Vanishing is known to fail in general for positive characteristic, it holds

in certain cases, such as abelian surfaces. It could be interesting to examine to what

extent the results shown here would work in these settings.
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