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Abstract

The con�guration of the photovoltaic panels is important to maximize the energy
output of a photovoltaic power plant. In this thesis, I have developed an algorithm
calculating the optimal solution for the design of a solar farm with �xed panels. The
design of the photovoltaic power plant is decided by the con�guration of the following
parameters: tilt and azimuth of the panels, height and length of the rows, distance
between the rows and number of rows. The parameters are constructed to maximize
the net present value of the solar farm in a given �eld. The calculations will be based
on local measurements and estimations. We will analyse and optimize the design of
the solar farms for three di�erent locations.
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Chapter 1

Introduction

In 2015, United Nations spearheaded a set of goals: The Sustainable Development
Goals. The goals are set to end poverty, protect the planet and ensure prosperity for
all, as part of a new sustainable development agenda. One goal is to ensure access to
a�ordable, reliable, sustainable and modern energy for all [35]. Solar energy is not
dependent on a good infrastructure and is therefore easy and a�ordable to install
in both central and rural areas. Solar energy is sustainable. I hope this thesis can
contribute to the e�ort of making it a�ordable.

In the �rst chapter, I introduce some basic ideas and concepts needed to understand
the production of photovoltaic electricity. In particular, what determines the optimal
e�ect of a solar panel. We will also look at how the components of the solar farm
can be con�gured for optimal design.

Solar energy

Solar energy is energy converted from the radiant energy from the Sun. Solar energy
is renewable and once the construction is installed, it is emission free. The energy
can be generated by di�erent methods, such as solar thermal energy, concentrated
solar power and photovoltaic cells (PV). In this thesis, we will focus on PV.

The price of PV panels is decreasing at a high rate, which makes it compelling.

1



2 CHAPTER 1. INTRODUCTION

Prices are expected to drop further, meaning PV could become even more compelling
compared to other types of energy in the future. Some parts of the world are in need
of sustainable, a�ordable and reliable electricity. Parts of this need could be covered
by PV.

Solar irradiance

The radiant energy from the Sun is referred to as solar irradiance. It can be divided
into three parts: beam, di�use and re�ected irradiance. Beam irradiance is irradiance
coming directly from the Sun. Di�use irradiance is the irradiance that has changed
direction and been spread all over the sky. Re�ected irradiance is irradiance that
has hit another object before it hits the PV panels. The sum of the beam, di�use
and re�ected irradiance is the total irradiance.

PV

A PV panel consists of several cells. A cell transforms radiant energy from the
Sun into electricity. A photon from the Sun hits a cell of silicon in a panel. The
silicon then releases an electron, producing direct current electricity. To transfer the
electricity to the grid, the electricity needs to be converted to alternating current
electricity.

To obtain as much electricity as possible, the panels should be facing directly towards
the Sun. There are two ways of installing PV panels. The �rst is on a rotating mount-
ing system tracking the Sun. This would result in more electricity from each panel
but would require more space and a higher cost of both installing and maintenance.
The other solution is on a �xed mounting system.

Solar PV power plant

A solar power plant, also known as a solar farm, is a collection of PV panels. The
purpose of a PV farm is either to supply power into the electricity grid or produce
power for an o�-grid system. The amount of power produced depends on several
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parameters. Some of these parameters are decided when installing the PV farm and
some of the parameters are �xed. The parameters to be decided include tilt and
azimuth of the panels, height and length of the rows of panels, the distance between
the rows and the number of rows. The purpose of this thesis is to �nd the optimal
con�guration of these parameters, so the PV farm will generate as much value as
possible.
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Figure 1.1: Pictures of a solar farm in Ghana. Photo: Daniel Engelsen



Chapter 2

The optimization problem

In this chapter, I will construct a pro�t function deciding the value of a solar farm.
The solar farm will be designed to maximize the pro�t function. In this thesis, I
assume we are given a limited area, on which we shall install a solar farm. Various
techniques can be used to search for the optimal design, I will decide which algorithm
I will use.

2.1 Value of the solar farm

I assume a situation where the income for the PV farm comes from selling electricity
into the grid. This is a daily income, throughout the lifetime of the PV panels. In
this thesis, we assume the PV farm is built without subsidies. The main expense is
buying everything you need to the PV farm, and there will also be small running
expenses after the construction is complete.

Income

The annual income (Ci) equals the amount of energy produced multiplied by the
electricity price. The energy received by the panels per year (Q), is given in Watt-
hours (Wh). The e�ciency (η) tells the fraction of energy produced from the amount
of energy received. To be able to convert the amount of produced energy into how

5
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much money we have earned, we need to know the electricity price (ep), given in
NOK/KWh.

Ci = Q · η · 0.001 · ep (2.1)

Expenses

The expenses are divided into three categories: installation, materials and other.
The sum of all the categories is estimated and divided by the area of the panels.
This gives us a price per square meter of installed PV (pp). Multiplying the panel
price with the area of installed PV gives the investment price of the solar farm (I0).

I0 = H · L ·K · pp (2.2)

Where H and L are height and length of the rows of PV panels, and K is the number
of rows.

Total energy hitting the panels

The total energy hitting the panels is converted from three di�erent types of irradi-
ance: beam, di�use and re�ected irradiance. In addition, we distinguish between the
�rst and the succeeding rows, because the succeeding rows will produce less energy
due to shade from the preceding row.

Q = H · L · (qb + qd + qr + (K − 1) · (qshb + qshd + qshr )) (2.3)

Where qb, qd and qr are energy from beam, di�use and re�ected irradiance, on the
�rst row, and qshb , qshd and qshr are energy from beam, di�use and re�ected irradiance,
on the succeeding rows.

2.1.1 Energy from irradiance

To calculate the amount of energy the solar farm produces, we need to know the
amount of irradiance reaching the panels. The Energy received by a panel is found
by integrating the amount of irradiance hitting the panel. We use the trapezoidal
rule to integrate the discrete values.
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q• =
365∑
n=1

∫ 24

0

I•,Tdt ≈
365∑
n=1

24
∆t∑
k=1

I•,T∆t

qsh• =
365∑
n=1

∫ 24

0

Ish•,Tdt ≈
365∑
n=1

24
∆t∑
k=1

Ish•,T∆t

(2.4)

In these equations q• represents qb, qd and qr, the energy received by the �rst row
of panels. qsh• represents qshb , q

sh
d and qshr , the energy received by the shaded rows of

panels. I•,T represents Ib,T , Id,T and Ir,T , the irradiance received by the �rst row of
panels. Ish•,T represents Ishb,T , I

sh
d,T and Ishr,T , the irradiance received by the shaded rows

of panels. n represents day of the year, k is index of the irradiance measurements
and ∆t is the time between each irradiance measurement.

Sunrise and sunset

The solar panels are turned o� during times with low irradiance, i.e. when the Sun is
down. The sunrise and sunset can be calculated. In our case, we are given irradiance
data from the speci�c locations. Therefore, we do not need to know when the Sun
is up. This data are more site-speci�c. It will account for speci�c factors of the site,
such as tall buildings or mountains surrounding the location. Therefore, we do not
need to pay attention to whether the Sun is up or down, we can integrate over the
whole day and night.

The pro�t function we want to optimize is simply:

f = T · Ci − I0

Where T is the number of years before we replace the panels. In the next section we
will explain how I•,T and Ish•,T from Eq. (2.4) are calculated, and describe the other
parameters needed to calculate the pro�t function.
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2.2 Irradiance on tilted panels

I want to �nd the irradiance on tilted panels. However, the standard way of mea-
suring irradiance is to measure it on a horizontal surface. The irradiance is divided
into the beam, di�use and re�ected irradiance.

I = Ib + Id + Ir

The solar panels are often tilted, to increase the amount of beam irradiance.

IT = Ib,T + Id,T + Ir,T

The irradiance can be calculated using known formulas. We will look at some angles
needed to construct these formulas.

2.2.1 Solar geometry

To derive the relation between the Sun and the panels, we need to specify the position
of these objects in a reference frame. The reference frame is the framework for our
coordinate system. We have four di�erent reference frames.

Ecliptic reference frame
The ecliptic reference frame is constructed such that the Sun moves around the Earth
in the xy-plane. This plane is tilted at an angle of 23.45◦ compared to the equator.

Fixed/Rotating equatorial reference frame
In the Fixed equatorial reference frame, the equator lies in the xy-plane, and the
Earth is spinning around the z-axis. In the Rotating equatorial reference frame, the
xy-axis is rotating along with the Earth's rotation.

Horizon reference frame
This reference frame is �xed on the surface of the Earth. The xy-plane is tangential
to the surface of the Earth, from the observer's position. Where the x-axis is east-
west, the y-axis is north-south and the z-axis is normal to the surface of the Earth.
The horizon reference frame is the one we will use.
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Angles in solar geometry

The angles needed to decide the Sun's position, are the Sun's elevation angle (α)
and the Sun's azimuth (γs). Alternatively, the zenith angle (θz), which is the com-
plementary angle of α, can be used. (See Figure 2.1)

θz = 90◦ − α

These angles are continuously changing, due to the Earth's rotation around its own
axis and the Earth's position in its orbit around the Sun. The azimuth of the Sun
is measured from the south, with negative values towards east and positive towards
west.

Figure 2.1: Angles involved in solar calculations. Figure from [2].

The angles we need to optimize, to obtain the optimal design of the solar farm, are
the tilt of the panels (β) and the azimuth of the panels (γc).

The di�erence in azimuth between the panels and the Sun (γ) is given by:

γ = γc − γs
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The angle of incidence (θ), is the angle between the normal of the panels and the Sun.
If the panels would be tracking the Sun, then θ would be zero, and the panels would
face directly towards the Sun. The latitude of the solar farm (φ), south negative,
north positive. −90◦ ≤ φ ≤ 90◦. The solar declination angle (δ), vary throughout
the year. An approximation of the declination angle is given by [3]:

δ = 23.45 sin

(
360

284 + n

365

)
Where n is day of the year, such that n = 1 on 1st January. Sun's azimuth, γs, is
given by the following equation [7].

γs = sign(ω)

∣∣∣∣cos−1

(
cos(θz) sin(φ)− sin(δ)

sin(θz) cos(φ)

)∣∣∣∣
To calculate γs, we also need the hour angle (ω). Hour angle is negative in the
morning, reaching zero at noon and positive values in the afternoon. The hour angle
increases 15◦ per hour.

2.2.2 Beam irradiance

The irradiance reaching the surface of the Earth, is measured on a horizontal plane.
Therefore, to obtain irradiance hitting the panels, we must calculate the relation
(Rb) between irradiance on a horizontal plane and irradiance on a tilted plane.

Ib,T = Ib ·Rb

The factor Rb is given by [7]:

Rb =
cos(θ)

cos(θz)

Where cos(θ) and cos(θz) could be calculated in two di�erent ways. The most general
way to calculate cos(θ) and cos(θz) is with the following equations [7]:

cos(θ) = sin(δ) sin(φ) cos(β)− sin(δ) cos(φ) sin(β) cos(γ)

+ cos(δ) cos(φ) cos(β) cos(ω) + cos(δ) sin(φ) sin(β) cos(γ) cos(ω)

+ cos(δ) sin(β) sin(γ) sin(ω)

cos(θz) = cos(φ) cos(δ) cos(ω) + sin(φ) sin(δ)

(2.5)
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However, the optimal azimuth angle is usually 0◦ in the northern hemisphere and
180◦ in the southern hemisphere. Thus, it is a common situation that γc = 0 or
γc = 180. In case γc = 0◦ we could use the following equations [7]:

cos(θ) = cos(φ− β) cos(δ) cos(ω) + sin(φ− β) sin(δ)

cos(θz) = cos(φ) cos(δ) cos(ω) + sin(φ) sin(δ)

(2.6)

For γc = 180◦ the minuses become pluses.

I will use Eq. (2.5) in my calculations, to not exclude the possibility for the azimuth
to have any value between −180◦ and 180◦.

Shading calculations

In a solar farm, we usually have multiple rows of panels. We have a limited available
area, containing as many producing PV panels as possible. This requires the �eld
to be compact, with a short distance between the rows. When two rows of panels
are placed, one in front of the other, facing towards the equator, the row in front
will cast a shadow covering parts of the row behind if the row is placed too tight
behind. The part of a solar panel covered in shadow, will not receive beam irradiance.
Therefore, it will produce less energy than the part receiving beam irradiance directly
from the Sun. The size of the shaded area is dependent on interspacing between the
rows, height of the rows, tilt of the rows and the Sun's elevation angle. The short
interspacing will also result in less di�use and re�ected irradiance on the panels.
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Figure 2.2: Shade from one panel to the next. Figure from [2].

From Figure 2.2 you can see the �rst row casting a shadow onto the next row. The
relative area of the row covered by the shadow is given by the following equations.
The normalised distance between panels and length of row are given by:

d =
D

H sin(β)

l =
L

H sin(β)

The relative shadow length is given by [2].

Ls = 1− d · sin(β) + cos(β)

l
· |sin(γ)|

cos(β) sin(α) + sin(β) cos(β)

The relative shadow height covering the panel is given by [2].

Hs = 1− d · sin(β) + cos(β)

cos(β) + [sin(β) cos(γ)/ tan(α)]

Where Ls, Hs ∈ [0, 1]. The relative shaded area, the area that does not receive beam
irradiance, becomes:

As = Ls ·Hs
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Then the beam irradiance on the front row is:
Ib,T = Ib ·Rb

Beam irradiance on the shaded rows are:
Ishb,T = Ib ·Rb · (1− As)

2.2.3 Di�use irradiance

To calculate the di�use irradiance on a tilted surface Id,T , we start with di�use irra-
diance on a horizontal surface Id. The di�use irradiance hitting the �rst row is:

Id,T = Rd · Id

Where Rd is the factor to be multiplied with. Representing the ratio between di�use
radiation on tilted and horizontal panels [2].

Rd = cos2
(
β

2

)

Shading calculations

On the shaded rows of panels, di�use radiation is also limited by the row in front.
The di�use irradiance on these rows is given by the following formula.

Ishd = F sh
d · Id

Where F sh
d represents the ratio between di�use radiation on tilted and shaded panels

and horizontal panels [2].
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F sh
d = cos2

(
β

2

)
− 1

2
(
√
d2 + 1− d) sin(β)

2.2.4 Re�ected irradiance

Re�ected irradiance can be measured by a downward-facing measure-instrument. If
you are not given the re�ected irradiance, it can be calculated provided you have the
surface's albedo (ρ).

Ir = ρ · I

The albedo is the measure of re�ection from a surface, given by:

ρ =
The irradiance re�ected by the surface
The irradiance received by the surface

Re�ected irradiance on a tilted surface is given by the equation [7]:

Ir,T = Ir · sin2

(
β

2

)

Ir,T = Re�ected irradiance on a tilted panel
I = Irradiance on a horizontal surface

Re�ected irradiance on the shaded rows is calculated using the ratio between re�ected
irradiance on tilted and shaded panels and horizontal panels, given by [12].

F sh
r =

1

2

D
H

+ 1−

√(
D

H

)2

+
2D

H
cos(β) + 1


Re�ected irradiance on a tilted and shaded row (Ishr,T ):

Ishr,T = ρ · I · F sh
r
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We have found the income and the expenses for a given solar farm, we are now ready
to compare the two.

2.3 Net present value

As described above, the income is a more or less continuous stream, while most of
the expenses are an upfront cost. To compare the two, we use net present value
(NPV). NPV shows the present value of something you will receive in the future.
The reason is that money available at the present time is worth more than the same
amount in the future, due to its capability to increase. This gives us the opportunity
to compare the value of di�erent investments that gain its value at di�erent times.
I.e., invest in a solar farm or put the money in a bank account.

C ·
(

1 +
p

100

)i
= Ci ⇒ C =

Ci(
1 + p

100

)i
C = The net present value
Ci = The value after i years
p = Percent discount rate
i = Number of years

The NPV of the solar farm equals the sum of NPV of the annual income, minus the
investment of buying the solar farm.

NPV = −I0 +
T−1∑
i=0

Ci(
1 + p

100

)i
Where I0 is the initial investment and T is total number of years. This is a geometric
series, and can therefore be written:

NPV = −I0 + Ci
1− rT

1− r
,

(
r =

1

1 + p
100

)

Inserting for I0 using Eq. (2.2) and Ci using Eq. (2.1)
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NPV = −H · L ·K · pp+Q · η · 0.001 · ep · 1− rT

1− r
(2.7)

A solar farm would need some maintenance e.g. changing panels when they stop
working and cleaning the panels. We update the panel price per square meter (pp),
to panel price per square meter included maintenance (ppm):

ppm = pp ·
(

1 +mc · 1− rT

1− r

)

mc = Annual maintenance cost
I insert this updated investment price into the objective function, Eq. (2.7).

NPV = −H · L ·K · ppm+ (Q · η · 0.001 · ep) · 1− rT

1− r
(2.8)

This is the function deciding the NPV of the solar farm. If the NPV is greater
than zero, we should invest in building the solar farm. We notice that most of the
details are hidden within Q, given by Eq. (2.3). Among them, the dependence of
the variables: tilt (β), interspacing between the rows (D), azimuth (γc), height of
the rows (H), length of the rows (L) and number of rows (K).

2.4 Constraints

The design of the solar farm has some practical and theoretical constraints, e.g. in
the process of installing and maintaining the solar farm. All the variables have a
lower and upper bound on their possible values. The tilt of the panels is between
0◦ and 90◦, and the azimuth is between −180◦ and 180◦. In this thesis, we assume
the piece of land, which the solar farm should be installed on, to be horizontal and
rectangular. In our computational example, the size of the land is set to 20×40 m2.
Thus, the length of the rows has an upper bound at 40 m, and I set the lower bound
to be 5 m.
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I set the distance between each row to be no less than 0.2 m, in order to move in
between the rows, i.e. when performing maintenance on the panels. I set the upper
bound to be 2 m. The height of each row is set to be between 0.2 and 2 m.

The panels are installed 0.5 m above the ground, to avoid dust and other objects
blocking the panels. For maintenance reasons and for the design to be a solid con-
struction, an upper bound for the combined height is set to be 2 m above ground:

0.5 +H · sin(β) ≤ 2 (2.9)

The piece of land has a width of 20 m. For K rows to �t into the area, we need the
following constraint:

K ·H · cos(β) + (K − 1) ·D ≤ 20 (2.10)

2.5 Solving the optimization problem

Optimization is to �nd the best possible solution, under given constraints. The gen-
eral mathematical model for an optimization problem is:

Max f(x)

s.t. g(x) ≤ 0

∀x ∈ Rm × Zn

Where m and n are numbers of continuous and integer variables. If we have both
continuous and integer variables, it is called a mixed integer problem. f(x) is an
objective function, g(x) ≤ 0 is a vector of constraints and x is the variables. These
variables are what needs to be optimized. In our case, the variables are the compo-
nent con�guration of the PV farm.

In our problem, the net present value of the PV farm Eq. (2.8) is the objective
function. The constraints on the solar farm are the practical restrictions of the
installation and the maintenance of the farm, discussed in sec 2.3. The con�gurations
ful�lling all the inequalities are feasible solutions. The feasible solution with the
highest objective function value is the optimal solution.
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The objective function and the constraints are non-linear functions, and there are
both continuous and integer variables. An algorithm that solves general mixed inte-
ger non-linear optimization problems in polynomial time, does not exist. However,
there exist some iterative search methods, to search for an optimal solution to these
problems.

The non-linear optimization problems may have local maximum points. Iterative
methods may converge into one of these points, and not the global optimal solution.
The iterative method needs to avoid these local maxima as often as possible. To be
a good iterative method for solving a non-linear optimization problem, it needs to
balance two abilities. A fast running time and the ability to avoid converging into
the local maximum points.

For continuous variables, we may obtain gradient information which might be of
great help when deciding on the search direction. However, no such information is
available for integer variables. In the PV farm optimization problem, at least one
of the variables is an integer, the number of rows in the PV farm. Hence all such
gradient algorithms can't be selected.

Objective function

The optimization program contains a function to be maximized, called the objective
function. In this thesis, the net present value of the solar farm over a 25 year period,
will be the objective function. Most manufacturers o�er a 25 years warranty on the
solar panels.

The objective function is dependent on 6 variables. The variables are: tilt (β),
interspacing between rows (D), azimuth (γc), height of row (H), length of row (L)
and number of rows (K). At the end of the day, we are convinced that PV-generated
electricity will never succeed unless it becomes pro�table. Thus, it is crucial to
con�gure your PV farm to maximize pro�t.

Constraints

There are some constraints on the objective function, e.g. we have a limited area.
These constraints are given as inequalities using the variables in the optimization
problem. These equations make up a set, called the feasible set of solutions. In
other words, it will give us all the possible designs for a PV plant. In our case, the
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constraints are non-linear, which complicates solving the optimization problem.

2.5.1 Genetic algorithm

The genetic algorithm (GA) is a search algorithm inspired by natural selection and
evolution. It is an iterative method, that can be used to solve complex problems. The
genetic algorithm sample at random a set of size N, from the feasible set of solutions.
Each sample, called an individual, represents a con�guration of the solar farm. This
sample of solutions is called the population. Then the whole population is put into
the objective function, to get a �tness value corresponding to each individual. The
individuals with the highest value are called the elite population.

There are two ways to create new individuals. The elite population is crossed, to make
a new individual, a combination of individuals. Depending on the algorithm, some
of the population not in the elite population can also be crossed to ensure genetic
diversity. Another way to create a new individual is by mutation. By mutating the
individuals, you change a small part of the genotype. When mutating an individual,
you ensure genetic diversity.

The reason you want to keep the diversity is to ensure you converge to global max-
imum, and not end up in a local maximum point. Each iteration in the algorithm,
construct a new generation. The algorithm runs until it reaches a stopping criterion.

Algorithm 1 Basic Genetic Algorithm
1: Initialisation:
2: Population← Randomly created population
3: Iterations :
4: repeat
5: Parental Generation← Population
6: Calculate �tness of each individual
7: repeat
8: Select individuals from parental generation
9: Reproduce into new population

10: until Population is full
11: until Stopping criteria met
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A good algorithm is converging fast and converging towards the optimal solution. We
could easily ensure either a fast running time or an algorithm with a high possibility
of ending up in an optimal solution. The challenge is to balance the two abilities.



Chapter 3

Case Studies

In this chapter, we test our model for three speci�c locations. We will see charac-
teristics of the di�erent variables, and their in�uence on the NPV. The altitude of
the Sun is an important parameter in the calculation of the design of the solar farm.
The altitude is dependent on the latitude of the given location. We have been able to
obtain data from Kumasi in Ghana, Bari in Italy and Bergen in Norway. The three
chosen locations have latitudes 6◦ N, 41◦ N and 60◦ N respectively, spread evenly for
a good coverage of di�erent possible cases.

To calculate the optimal design of a PV farm, we need to know the amount of
irradiance for the given location. The amount of irradiance can be measured with
some measuring equipment. These measurements will be used to calculate the daily
average of irradiance. The irradiance will be used in the algorithm to calculate
power produced by the given con�guration. We can then, by some estimated price
parameters, �nd the NPV of the PV farm. In all cases, we compute the result for a
�ctive solar plant of size 40× 20 m2.

3.1 Case Ghana

In this section, we will use Kumasi in Ghana as our location for the calculations. To
calculate the optimal design of a PV farm, we need to know the amount of irradiance

21
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in Kumasi.

3.1.1 Irradiance measurements

We have obtained data from measurements of the irradiance in Kumasi [?]. The
shortwave irradiance is measured by two pyranometers. One of them is facing up-
wards, for measuring the sum of the beam and the di�use irradiance. The other
pyranometer is facing downwards, for measuring re�ected irradiance from the ground.
The pyranometers measure the irradiance with a wavelength between 305 and 2800
nm.

Far infrared radiation is measured by two pyrgeometers. One for measuring the
radiation from the sky, the other for measuring the radiation re�ected from the
ground. The range of the pyrgeometer is 5 000 to 50 000 nm. The data were
sampled every 10 minutes over a period of two years.

The data �le contained the following parameters, measured on a horizontal surface.
Shortwave irradiance measured upwards (CM3_up), shortwave irradiance measured
downwards (CM3_down), longwave irradiance measured upwards (CG3_up), long-
wave irradiance measured downwards (CG3_down) and temperature. Irradiance is
given in (W/m2). A quick look at the data �le revealed some obvious errors, below
we will explain them and discuss how to circumvent the problem.

Longwave irradiance

The intensity of longwave irradiance is measured in Kumasi. We have measurements
from every 10th minute over two years.
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Figure 3.1: Longwave irradiance from the sky and from the ground.

The longwave irradiance coming from the sky is about zero W/m2 during the night
and reported to reach −100 W/m2 during the day. While the re�ected longwave
irradiance, is measured to reach about −20 W/m2 during the day and 10 W/m2

during the night. This does not make sense, as the measurements should at least be
positive, it is probably due to some data errors or mistakes in the installation.

The longwave irradiance has a wavelength between 5 000 and 50 000 nm. However,
the amount of energy the irradiance contains w.r.t. the wavelength, and which
wavelength that can be converted to electricity by silicon is shown below.
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Figure 3.2: Energy in the solar spectrum [8].

The "Energy in the solar spectrum" chart, Figure 3.2, shows the amount of energy
reaching the surface of the Earth from the di�erent wavelengths of solar irradiance.
This particular result is from a laboratory, using standard test conditions of 1 000
W/m2 of irradiance and an air mass ratio of 1.5 [19]. Figure 3.2 also shows which
wavelengths that theoretically can be converted into electricity by a crystalline silicon
cell.

The longwave irradiance has wavelengths of 5 000 nm and longer, but a crystalline
silicon cell can only convert irradiance with wavelengths shorter than about 1 100
nm into electricity. We can then conclude that the longwave irradiance doesn't have
enough energy to produce electricity in a PV panel. We are only interested in the
irradiance with the potential to produce energy. Therefore, we will focus only on the
shortwave irradiance.
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Shortwave irradiance

Shortwave irradiance will be referred to as irradiance. Irradiance measured upwards
(CM3_up) is the sum of the beam and the di�use irradiance (Ib + Id), and irradi-
ance measured downwards (CM3_down) is re�ected irradiance(Ir). The dataset of
measured irradiance from Kumasi had some shortage, some of the data were missing.
The plot of all the available irradiance would look like this:

Figure 3.3: Plot of all irradiance data

As negative values are obviously non-physical, something wrong is happening around
measurement number 6 ·104. This must be data errors. To avoid the corrupted data,
we limit ourselves to the �rst year of measurements, in other words, the �rst 52 560
measurements.

Next, I remove all the days that are incomplete from the �le. Then the plot of
irradiance and re�ected irradiance looks like this:
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Figure 3.4: Shortwave irradiance and re�ected irradiance.

Still, as we can see from Figure 3.4, there is something wrong with the measurements.
The re�ected irradiance can never exceed the irradiance. We must �lter the values
of re�ected irradiance exceeding the irradiance.

We have processed the raw data the following ways, in order to �nd the irradiance
through the day:
• Average of all the remaining days from the �rst year.
• Average for each month, the �rst year, and then the average of each month.
• Replace the removed or missing days, with days in the same month from the
following year, then calculate the average.

Create a representative day

We will focus on the shortwave irradiance measured upwards. If we plot all the days
in one plot and the average of all the days, it would look like this:
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Figure 3.5: Plot of all days in left frame, and plot of the mean value in right frame.

The average of all the remaining measurements from the �rst year is 173.28 W/m2

of shortwave irradiance. The graph in the right frame in Figure 3.5 looks plausible.
No negative values and no values are higher than we would expect. However, due
to lack of consistency in the data, there is only one complete day of measurements
from November. Thus, the days sampled in the left frame of Figure 3.5, is not a
random sample. If November has some deviation from the other months our result
might contain a minor inaccuracy.

For the re�ected irradiance, we �lter out the data with values above 30% of the
irradiance and values below zero. The reason for this is because some of the values
are too high. The re�ection cannot be higher than the irradiance. Hence, we replace
it with irradiance multiplied by the albedo. The irradiance measurements are already
�ltrated and look like they are correct.
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(a) The mean value of albedo (b) Irradiance and Re�ected irradiance

Figure 3.6: Results from the mean values of the �rst year of measurements

Figure 3.6b shows the result of average irradiance, found by removing incomplete
days. And the result of average re�ected irradiance, found by replacing measurements
containing errors with approximations.

Create an average day from each month

If we calculate the average irradiance of each month, it doesn't matter how many
days of data each month contains. Every month will count equally on the average,
unlike if we calculate the average of all days, then the months with many days will
make a greater in�uence on the average. However, if a month has few days, we will
get low precision in the given months average.
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(a) Plot of mean for all individual months (b) Plot of the mean of the di�erent months

Figure 3.7: Plot of data divided in di�erent months

Average irradiance is 169.89W/m2. The Data from November is an average of only
one day. This gives a signi�cant impact on the result. Thus, this result is not
representative for the given year.

Replace with data from the year after

We have measurements from two years. It is possible to combine data from both
years. If we put data from the second year into the data from the �rst year, to �ll
some of the sparse months in the dataset. Then we will get a more thorough dataset
for each month.

We sort the data by months, �lter out the incomplete days, and �lter out the days
containing measurements under −10W/m2. We then take the average of the days in
each month, resulting in a representative day for each month. We can also take the
average of the months. Resulting in the following plots:
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(a) Plot of mean for all individual months (b) Plot of the mean of the di�erent months

Figure 3.8: Plots with data from two years

This gives an average of 167.47W/m2, that is lower than the two other calculations.
The reason for this decrease in irradiance could be due to dust on the measuring
equipment, which would cause an error in the measurements, or simply just less
sunny weather the second year.

Satellite data

Due to the incomplete dataset from Kumasi, the calculations would give a result
that is not accurate for the given area. However, there exists another method for
measuring the irradiance. Based on satellite data, it is possible to calculate irradiance
on the ground. The Photovoltaic Geographical Information System (PVGIS) [33] is
an interactive map, showing estimates of solar irradiance for any location in Europe
and Africa. The irradiance data is calculated by The Satellite Application Facility
on Climate Monitoring (CM-SAF) [13]. The calculations are based on data from 12
years of measurements. After a validation of the data using 20 di�erent locations,
has shown that the overall mean bias error is about 2% [13]. The data is given in
daily average per month. The chosen location is on the KNUST campus in Kumasi,
Ghana with latitude 6.67 North and longitude 1.56 West. The dataset includes both
beam and di�use irradiance. The measurements are given every 15 minutes. The
dataset does not include re�ected irradiance. It will be calculated using the albedo.
The albedo depends on the ground surface. In this case, I assume the albedo to be
0.2, i.e. 20% of the irradiance gets re�ected from the ground.
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Figure 3.9: The daily average per month and the average of the months

These calculations give an average irradiance of 213.3 W/m2, which equals 5.11
KWh/m2/day. If we compare the average from the di�erent months to the average
of the ground measured data, we can see if there are any that stand out.

Figure 3.10: Comparison of the di�erent monthly averages.

Average #1 is average of available data from 4.Feb.2012 to 3.Feb.2013. Average #2



32 CHAPTER 3. CASE STUDIES

is where we �lled in the blanks with data from the following year.

There are no months that stand out and make a huge impact on the result. The satel-
lite data is generally higher than the ground measurements. We will also compare
our result by the time of the day.

Figure 3.11: Comparison of the di�erent daily averages.

This plot reveals that the measured irradiance is much lower than PVGIS before
noon, while it is only slightly lower in the afternoon. This is most likely due to local
conditions, such as shadow from a nearby object.

Conclusion on irradiance

The lesson learned from this exercise is that when theory meets reality things get
muddled up. Instead of a simple readout of the data, substantial modi�cations were
needed to �lter out measurement errors. Various alternatives were tried to omit
imperfect data and its in�uence on the �nal results. In short, the theory needs to be
supplemented by common sense.

Average of the �rst year gives a nice and smooth graph, but it is only data from one
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year, and the data is incomplete. Average of each month gives an uneven graph, where
one day gives too much impact on the average. Average of each month with data from
both years is a�ected by the fact that data from the second year is signi�cantly lower,
possibly due to measurement errors. The satellite dataset is complete and covers 12
years of measurements, therefore it provides a representative representation of the
irradiance in the given area. However, it does not include local conditions such as
shadow from nearby objects. Thus, we assume in this thesis, that the location for
our solar farm, does not receive any shadow from nearby objects.

3.1.2 Parameters for Kumasi

In addition to the variables, NPV is also dependent on some parameters. In this
section, we will �nd estimations to the parameters needed to calculate the NPV.

Electricity price

In this case, we use Ghana as our location. We assume the electricity price is 0.2
USD per KWh, which is the feed-in tari� that has been publicly set for the Nzema
solar power plant [28], a solar farm that was planned in Ghana. 0.2 USD ≈ 1.6 NOK.

Cost of initial investment

The initial investment for a solar farm includes:

Materials:
Modules and Inverters
Mechanical mounting equipment
Electrical mounting equipment
Operational monitoring equipment
Installation
Mechanical installation work
Electrical Installation, PV System (DC side)
Electrical installation work, network connection (AC side)
Other
Machine / Equipment / Tools
Piece of land
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Multiconsult calculated these costs in the Enova report in 2013 [9]. The installed
power of a solar farm is given in watt peak (Wp). Watt peak is the power output
of the PV panels under standard test conditions. The standard test conditions are
given by: 1 000 W/m2 of irradiance, a temperature of 25◦ C and 1.5 air mass. For a
1 million Wp solar farm, Multiconsult estimated the total cost to be 12 million NOK,
that equals 12 NOK/Wp. They used 250 Wp panels. Size 1.665m ·0.991m = 1.65m2.
Hence on this large scale, the total price per square meter was 1 818 NOK/m2 in
2013.

The International Renewable Energy Agency (IRENA) has recorded the prices of
some solar farms already built in Africa. They found the prices to vary between 1
and 2 USD/Wp [16]. In other words, the Enova estimate is acceptable (12 NOK ≈
1.5 USD).

Cost of maintenance

Multiconsult estimates that the annual maintenance cost equals 2% of the initial
investment [9]. We will use this estimate in our calculations.

E�ciency

The e�ciency of the panel (ηpv) used in the Enova report is 15.15% [18]. We also
have to account for energy loss in the inverter (ηinv), estimated to 98.2% [29], and
other decreasing factors such as mismatch connections wiring, etc. (ηother) estimated
to be 93% [26].

The e�ciency is dependent of temperature, the panels are more e�cient in cold
temperatures. The standard test condition is 25◦C. The loss in e�ciency, given by
[6], is 0.45% per degree. In this case, the total e�ciency (η) becomes.

η = ηpv · ηinv · ηother · (1− 0.0045(T − 25))

Where T is temperature in degree Celsius. The temperature in Ghana is given by
[34].

Table 3.1: Monthly average temperatures (◦C) in Ghana

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

27.03 29.46 29.97 29.55 28.58 27.13 26.09 25.69 26.22 27.09 27.57 26.89
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Discount rate

The discount rate is set to 5%, like in the Enova report [9]. This is an expression of
required return and risk of the project, where 5% shows a low risk of the investment.

Lifetime of PV panels

The e�ciency of a solar panel decreases over the years. To obtain the maximum
value from the solar farm, you should replace the panels after some years. Most
manufacturers o�er a 25 years warranty on the panels, that guarantees a minimum
of 80% of the original e�ciency after 25 years. Therefore, when we talk about the
cost of a solar farm, we consider a 25 years period. After the 25 years, we expect to
replace the panels. In this thesis, we assume the panels have 100% e�ciency for 25
years.

Summary of cost estimates

Which variables should be optimized and which are predetermined? The variables:
height (H), length (L), number of rows (K) and distance between the rows (D),
decides the size of the farm. Tilt (β) and azimuth (γc) decides the direction of the
panels. All these variables need to be optimized.

The parameters given are: price per square meter of PV farm (ppm), irradiance on a
horizontal surface (I), e�ciency (η), electricity price (ep), discount rate (p), lifetime
of the panels (T ) and latitude of the given location (φ).

We have now found an estimate of all the parameters we need and are ready to run
the algorithm to �nd the optimal design of the PV farm.

The objective function Eq. (2.8), after inserting the estimated parameters:

NPV = −H · L ·K · 1818 · (1 + 2% · 1− r25

1− r
) + (Q · η · 0.001 · 1.62) · 1− r25

1− r

where Q is:

Q = H · L · (qb + qd + qr + (K − 1) · (qshb + qshd + qshr ))
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3.1.3 Result in case Ghana

In this section, using estimated parameters in the algorithm, we �nd solutions and
discuss the results. The piece of land used in this thesis is speci�ed to 20×40 m2.

Each variable has a lower and upper bound. These are set to be: β = [0, 90],
γc = [−180, 180], D = [0.2, 2], H = [0.2, 2], L = [5, 40], K = [2, 20].

Running the genetic algorithm gives the solution 3 027 781 NOK. That is the net
present value of the solar farm. In other words, since the value is positive, the
investment would give a pro�t. This solution is obtained with the following variable
values.

Tilt of the panels β = 28.7◦ limited on the interval [0, 90]. It may look strange,
that the optimal tilt is 28.7◦. We are close to the equator, the latitude is 6.6◦, which
means the Sun's elevation angle is high. If we only had one row of panels, the optimal
tilt would be a bit lower. When we have a small limited area, we also have a small
number of rows of PV. When the tilt increases, each row occupies less space. That
means you could eventually �t another row into the area, and that would increase
the amount of power produced. It becomes clearer by plotting the NPV with the tilt
as a variable, with values between 0 and 60, and the other variable values are �xed
to the solution from the algorithm.
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Figure 3.12: Plot of NPV as a function of tilt, where the other variables are �xed to
the result from the algorithm and K is maximized under the constraints.

From Figure 3.12 you see the NPV of the solar farm, where the tilt has values between
0◦ and 60◦ and the other variables are �xed to the values we got from the genetic
algorithm, except K, the number of rows, which are maximized w.r.t. the constraint
in Equation (2.4). Figure 3.12 shows a typical plot of a mixed integer/real function.
It makes a jump every time the integer variable changes its value, making it piecewise
continuous.

When the tilt is between 0◦ and 12◦, you could �t 9 rows of PV panels. If you increase
the tilt to 13◦, you could �t another row of panels into the area, which would produce
more electricity and increase the NPV. If you increase the tilt even higher, to 28.7◦,
you could �t 13 rows of panels. The tilt 28.7◦ gives a slightly higher NPV than when
the tilt is 13◦.

The distance between the rows of panels is 0.205 m. This variable is limited to the
interval [0.2, 2]. In Ghana the Sun's elevation is high, that means the panels won't
throw a big shadow onto the next row, so you don't need much space between the
rows.
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Figure 3.13: NPV as a function of D, where the other variables are �xed to the result
from the algorithm and K is maximized under the constraints.

It is clear from the plot that the lower values of D give the best solution, as expected.
It also shows that the other variables are combined so that a new row of panels are
introduced when the distance is just over 0.2 m.

The azimuth of the panels is 0.45◦ limited on the interval [−180, 180]. In this solution
the azimuth is almost zero, that means the panels are facing south. The reason the
panels face south is that Ghana is located north of the equator, such that the panels
receive more irradiance from the south than from the north.

The height of the panels is 1.86 m limited on the interval [0.2, 2]. A higher value of
H leads to a higher area of panels, but also more space occupied by each row. Each
solar panel has a �xed size, but there is some variation from brand to brand, and
some brands o�er panels of di�erent sizes. Therefore, the height is assumed to be a
continuous variable.
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Figure 3.14: NPV as a function of H, where the other variables are �xed to the result
from the algorithm and K is maximized under the constraints.

Just like the tilt and distance between the rows, the value of H decides the number
of rows that could �t into the area. If you increase the value of H, you will eventually
run out of space and need to remove a row of panels, to ful�l the constraint. We can
see from the plot that a new row is introduced when H = 1.86 m. If the last row
was introduced closer to H = 2 m, we would �nd a better solution.

The number of rows is 11, limited on the interval [2, 20]. By increasing the number of
rows, the other variables had to be changed to ful�l the constraints. By decreasing the
number of rows, you would ful�l the constraints, but the solar farm would generate
less electricity.

The length of the rows is 39.98 m limited on the interval [5, 40]. The variable should
be maximized to the upper bound. This solution gave the value 39.98 m, 40 m would
be a better solution. This shows that the genetic algorithm did not �nd the optimal
solution. If we replace 39.98 with 40 into the objective function, the NPV is slightly
increased.

By plotting the NPV with both β and H as variables, you can see some of the
characteristics of the function.
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Figure 3.15: 3D plot of NPV, where H is between 1.5 and 2 and β is between 0 and
60, where the other variables are �xed to the result from the algorithm and K is
maximized under the constraints.

For an optimal NPV, each tweaking of H will change the optimal β.

Figure 3.16: 2D plot of NPV, where H is between 1.5 and 2 and β is between 0 and
60, where the other variables are �xed to the result from the algorithm and K is
maximized under the constraints.
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Tweaking H or β will also change the optimal D. Thus, H, β and D will have some
relationship in the optimization of NPV, as one would expect.

Figure 3.17: D between 0.2 and 2 and β between 0 and 60, where the other variables
are �xed to the result from the algorithm and K is maximized under the constraints.

Figure 3.18: D between 0.2 and 2 and H between 1 and 2, where the other variables
are �xed to the result from the algorithm and K is maximized under the constraints.

It is clear from these plots that in this case, the highest NPV occurs when the
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distance between the rows are close to the lower bound. It is also clear that there
are numerous local optima with NPV close to that of the global optimum, and it
may be that small changes in our estimates of the parameters will make the global
optimum jump to one of the nearby local optimum.

3.2 Case Italy

We will consider Bari in Italy as a possible location for a solar farm. The altitude of
the Sun is dependent on the latitude of the location. Therefore, the Sun will most of
the year have a lower altitude in Italy than Ghana. In Italy, some other parameters
would also be di�erent from what was used in Ghana. In this section, we will look
at how this a�ects the design and NPV.

3.2.1 Irradiance

We could not get ahold of a complete dataset of irradiance measurements, measured
from the ground in Italy. Just like in the case of Ghana, the dataset of irradiance
obtained from PVGIS [33], will be used. This is not based on measurements from
the ground, it is estimated measurements. The Measurements is obtained from
calculations by CMSAF, on satellite images [13]. The location with latitude 41 and
longitude 17, is chosen for this case. This location is located right outside Bari,
in the southern part of Italy. The dataset is an average of 12 years of data, and
it is a reliable and complete dataset. The dataset includes both beam and di�use
irradiance. The measurements are given every 15 minutes. The dataset does not
include re�ected irradiance. It will be calculated using the albedo. The albedo
depends on the ground surface. In this case, I assume albedo to be 0.2, i.e. 20% of
the irradiance gets re�ected from the ground.
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Figure 3.19: The daily average per month and the average of the months

Compared to the irradiance in Ghana, Italy experience a greater seasonal variation
in both day length and intensity of the irradiance. On average Italy receives a weaker
irradiance.
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Figure 3.20: Average irradiance for the di�erent months.

Italy receives the most irradiance during the summer months June and July and
least irradiance in January and December.

3.2.2 Cost estimates

The installation investment cost in Italy is approximated to 1 818 NOK/m2 [9], this
is within ±10% of an estimation by IRENA in 2017 [17] and by World Energy Council
in 2016 [36]. The annual maintenance cost is assumed to be 2% of the investment
cost. The electricity price parameter is 0.148 EUR/KWh ≈ 1.4 NOK/KWh [10].
The discount rate is set to 5%, like in the case of Ghana.

The e�ciency of the solar farm, is not the same in Italy as in Ghana, due to di�erent
temperatures. The PV panels have an e�ciency of 15.15%, the e�ciency of the
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inverter is 98.2% and the e�ciency of other decreasing factors such as mismatch
connections wiring, etc. is estimated to be 93%.

η = ηpv · ηinv · ηother · (1− 0.0045(T − 25))

The average temperature for the di�erent months in Italy is given by [34].

Table 3.2: Monthly average temperatures (◦C) in Italy

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4.25 4.62 7.55 10.67 15.11 19.18 21.69 21.80 17.85 13.73 9.15 5.21

3.2.3 Result in case Italy

Running the algorithm in case Italy, the solution from GA is 2 842 736 NOK. A
positive NPV, this means we should invest in the solar farm. The variable values
found to get this result are discussed below.

The optimal tilt of the panels β = 58.02, limited on the interval [0, 90].

Figure 3.21: NPV with values of β between 0 and 80, where the other variables are
�xed to the result from the algorithm and K is maximized under the constraints.
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From Figure 3.21 you can see the NPV from di�erent values of tilt, with K set as
the maximum value satisfying the constraints and the other variables �xed to the
values given by the algorithm. On the interval where highest values occur, the NPV
has a lot of local maximum points located close to each other.

The distance between the rows is 0.423 m. Limited on the interval [0.2, 2].

Figure 3.22: NPV with values of D between 0.2 and 2, where the other variables are
�xed to the result from the algorithm and K is maximized under the constraints.

In Ghana we wanted the interspacing to be as small as possible, but in Italy we want
a bit more space between the rows. The reason for the increased space is because
the elevation angle of the Sun is lower. Leading to a larger optimal tilt of the panels,
which creates a larger shaded area. You can see from Figure 3.22 that the NPV is
lower when D ≈ 0.2m than when D ≈ 0.4 m.

The azimuth of the panels is 0.32◦, limited on the interval [−180, 180]. The panels
are tilted towards the south, as expected. Hight of the panel 1.611 m limited on the
interval [0.2, 2].
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Figure 3.23: NPV with values of H between 0.2 and 2, where the other variables are
�xed to the result from the algorithm and K is maximized under the constraints.

We can see from Figure 3.23 that the highest NPV occurs when H is 1.955 m, not
1.611 as the algorithm found. From this observation, we can conclude that the genetic
algorithm did not �nd the optimal solution to the problem, but a local maximum
value close to the optimal solution.

The number of rows is 16 limited on the interval [2, 20]. This is the maximum value
satisfying the maximum width constraint. Length of solar panel 39.999 limited on
the interval [5, 40].
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Figure 3.24: H from 1 to 2 and β between 10 and 80, where the other variables are
�xed to the result from the algorithm and K is maximized under the constraints.

3.3 Case Bergen

In this section, we will use Bergen as the location for the solar farm. Bergen is
located at 66.3◦ north of the equator. The Sun has most of the year a lower altitude
in Bergen than in Ghana and Italy. We will look at how this a�ects the results.

3.3.1 Irradiance

The dataset of irradiance is obtained from Geophysical Institute (UoB) [11]. The
given data is measurements from 1.1.2004 to 1.1.2017, by observation site Florida
in Bergen. The dataset is obtained from ground measurements, which are sampled
every 10th minute. The dataset had some shortage, some measurements were missing
and some were wrong. All the days lacking some measurements will be removed. The
days containing measurements over 3 000W/m2 and the days where no measurements
were under 200 W/m2, will also be removed.
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The given dataset includes the sum of the beam and the di�use irradiance. The
result from given dataset is represented in Figure 3.25.

Figure 3.25: The irradiance in Bergen, from the di�erent months.

From Figure 3.25 we can see the seasonal change of both the irradiance and the
length of the day. In June the Sun is up for about 20 hours, while in December the
Sun is barely over the horizon. The seasonal change in the irradiance becomes more
clear when I plot the average irradiance from the di�erent months.
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Figure 3.26: Average irradiance of the whole day, for the di�erent months.

As expected, Bergen receives the most irradiance during May, June and July. In
January, November and December, Bergen does not receive much irradiance due to
the Sun's low elevation angle.

The irradiance data from Bergen does not include di�use irradiance. It is only a
measure of the beam and di�use irradiance combined. We assume that 60% of the
annual irradiance on a horizontal plane in Bergen is di�use irradiance [31]. The
dataset also does not include re�ected irradiance. It will be calculated using the
albedo. I assume albedo to be 0.2, i.e. 20% of the irradiance gets re�ected from the
ground.
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3.3.2 Cost estimates

The investment price we found in case Ghana was based on calculations from Norway.
In this case, the same estimate will be used, given by Enova to be 1 818 NOK/m2

[9]. The annual maintenance cost is assumed to be 2% of the investment cost. The
electricity price in Norway is 0.07 EUR/KWh ≈ 0.665 NOK/KWh, given by [10].
The discount rate is set to 5%, like in the other cases.

The e�ciency of the solar farm, is not the same in all the locations, due to di�erent
temperatures. The PV panels have an e�ciency of 15.15%, the e�ciency of the
inverter is 98.2% and the e�ciency of the other decreasing factors such as mismatch
connections wiring, etc. is estimated to be 93%.

η = ηpv · ηinv · ηother · (1− 0.0045(T − 25))

The temperature in Bergen is given by [37].

Table 3.3: Monthly average temperatures (◦C) in Norway.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−2.7 −3.1 −2.1 0.2 4.6 7.7 9.2 9.8 6.3 3.6 −0.3 −1.9

3.3.3 Result in case Bergen

The optimal value from GA is −1 301 NOK. The value is negative, that means we
should not invest in a solar farm in Bergen. At least not for the pro�t of selling the
electricity. We could build the solar farm if we got subsidies or the solar farm is built
for other purposes than to make a pro�t of it.

If we change the electricity price to 0.952 NOK/KWh, which is what households
would have paid for the electricity [32]. Including grid rent and taxes. The solution
from the genetic algorithm, with the updated electricity price, is 5 057 NOK, a
positive NPV. That means we might consider investing in a solar farm for private
use. Given that you use all the energy you produce yourself, not to be dependent on
getting the energy sold onto the grid.
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We notice that it is not only less irradiance which gives us the negative NPV, the
low price we get for selling the electricity is just as important.

In this case, the optimal tilt of the panels is 54.65◦.

Figure 3.27: NPV for β between 0 and 90, where the other variables are �xed to the
result from the algorithm and K is maximized under the constraints.

When the tilt increases, each row will occupy less space. If the total space is reduced,
such that it is possible to �t a new row, the NPV is changed and you can see a
discontinuity in the graph. In case Ghana and Italy, the optimal solution and most
of the local maximum points are found on the top of these discontinuous points. In
Figure 3.27, this occurs only once, and it is not at the optimal solution.

In this case, the optimal distance between the rows D = 2 m. That is equal to the
upper bound of this variable. Due to the low altitude of the Sun, every row will
throw a longer shadow, resulting in longer optimal interspacing between the rows.
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Figure 3.28: NPV for D between 0.2 and 2, where the other variables are �xed to
the result from the algorithm and K is maximized under the constraints.

This shows that the upper limit of D limits the value of the optimal solution. There-
fore, in this case, the upper limit onD should be a higher value. By plotting the NPV
where the upper bound on D is 4 m, we can see that the NPV could be increased.

Figure 3.29: NPV for D between 1.5 and 4, where the other variables are �xed to
the result from the algorithm and K is maximized under the constraints.
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The highest values occur when D is between 2 and 2.5 m. Thus, the interval of D
should be changed for this case.

The height of the rows is 0.2221 m. This low value of H is, like the high value of D,
due to the Sun's low elevation. A higher row would throw a longer shadow. With
a height this low, the rows are able to have a high tilt which leads to high beam
irradiance.

Figure 3.30: NPV for H between 0.2 and 2, where the other variables are �xed to
the result from the algorithm and K is maximized under the constraints.

The optimal value of H is close to the lower bound. A closer look at the values close
to the lower bound, reveals that the NPV increases as H increases, under the lower
bound.
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Figure 3.31: NPV for H between 0.1 and 0.3, where the other variables are �xed to
the result from the algorithm and K is maximized under the constraints.

Unlike D, which had its optimal value outside of the given bound, H has its optimal
value between the bounds.

The optimal solution still gives the length of the rows equal 40 and azimuth almost
at zero, in this case, azimuth is 1. With the low height of the rows, the number of
rows still equals 10. That is the maximum value under the limited width constraint,
given by Eq. (2.10).
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Figure 3.32: NPV for H from 0.2 to 2 and β between 20 and 80, where the other
variables are �xed to the result from the algorithm and K is maximized under the
constraints.

Figure 3.33: NPV for H from 0.2 to 2 and D between 0.2 and 2, where the other
variables are �xed to the result from the algorithm and K is maximized under the
constraints.

In this chapter, we have seen the di�culty of optimizing the design of a solar farm.
You can not �nd the best value for only a single variable, because when you alter
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a di�erent variable, the value you �nd may no longer be optimal. Another solution
could have appeared, that is better.

Table 3.4: The solutions found in this chapter:

Kumasi, Ghana Bari, Italy Bergen, Norway
NPV 3 027 781 NOK 2 842 736 NOK 5 057 NOK
β 28.7◦ 58◦ 54.65◦

D 0.205 m 0.432 m 2 m
γc 0.45◦ 0.32◦ 1◦

H 1.86 m 1.611 m 0.222 m
K 11 16 10
L 39.98 m 39.99 m 40 m





Chapter 4

Analysis and discussion

In this chapter, we will analyse the algorithm, and try to improve its running time and
accuracy. I use the built-in genetic algorithm function, in the Global Optimization
Toolbox in MATLAB. We will also look at the �xed parameters we use, by analysing
how a small change in the parameters will a�ect the solution.

4.1 Analysis of GA

In this section, we take a closer look at the genetic algorithm. We will look at how
the algorithm handles crossover and mutation, how the selection process works and
how to handle constraints and integer restrictions.

Parameters in genetic algorithm

The genetic algorithm is dependent on some parameters. These parameters decide
the properties of the algorithm. MATLAB automatically chooses the values for these
parameters. The default values from MATLAB are not necessarily the best for our
problem. I will run some tests on these parameter values, to improve the running
time of the algorithm and the ability to avoid converging to local maximum points.
All the tests will be performed using the parameters from case Ghana.
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One of the �rst things GA does is to create an initial population. To do that, it needs
a creation function and it needs to know the population size. The creation function
creates a random initial population with a uniform distribution. The default value
of the population size is 60.

Testing di�erent population sizes could lead to a better and more e�cient algorithm.
I will test 6 di�erent population sizes, which are 50, 100, 200, 300, 400 and 500. The
running time of the algorithm and maximum NPV will be measured. I will run the
algorithm three times for each value, and then compare the results to �nd the best
population size for this problem.

Figure 4.1: The solution (left) and running time (right) for the di�erent population
sizes.

The solution from the di�erent population sizes shows some instability when the
population size is 50 and 100, the algorithm terminates in some cases at suboptimal
solutions approximately 3−4% below the global optimum. When the population
size is 200 and higher, the given optimal value is stable and the di�erent population
sizes give equally good solutions. The running time of the di�erent population sizes
increases, as expected. The running time is almost linearly dependent on the popu-
lation size. The preferred population size in the algorithm from now on will be 200,
because it gives the best results.

After the population is created, it is sorted by �tness value. The best individuals,
called the elite population, survive to the next generation. The algorithm then selects
individuals to become parents for the next generation, based on their �tness value.
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Each individual can be picked several times. There are di�erent types of selection
functions. The default selection function is the stochastic uniform selection function.
The other possibility, when dealing with mixed integer problem, is the tournament
selection function. I will run the algorithm three times for each selection function.

In the following tests, the di�erent parameters will be given the same three initial
populations. The blue, green and yellow bars will share the same initial population.
By starting with the same initial populations, the result will be more dependent on
the parameter value, and less dependent on the randomly selected initial population.

Figure 4.2: The solution (left) and running time (right) for the di�erent selection
functions.

Both functions score about equally good in both optimal values and running time.
I will keep the tournament selection function, due to its best solution being better
than the best solution from the stochastic uniform selection.

Next, we will look at some reproduction options, these options decide how the al-
gorithm is searching for better solutions. The options are elite count and crossover
fraction. Elite count decides how many individuals to be part of the elite population,
which survives to the next generation without being changed. The default value of
elite count is 5% of the population. In this case, with population size 200, the elite
count is 10. I will test 5 di�erent values of the elite count, which is 1, 5, 10, 20 and
50.
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Figure 4.3: The solution (left) and running time (right) for di�erent sizes of the elite
population.

An elite population of 20 gives the best solutions and short running time. A higher
value of elite population would dominate the total population, and make the search
less e�cient. A lower value of elite population would be unstable and often converge
to a local maximum solution far from the optimal solution.

The rest of the next generation is created by crossover or mutation. Crossover
fraction decides the fraction of the population, excluding elite population, to be
created by crossover. The default value is 80%. I will try with 20%, 40%, 60%, 80%
and 100% as crossover fraction.
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Figure 4.4: The solution (left) and running time (right) for the di�erent crossover
fractions.

With a crossover fraction of 100%, the new populations are created only by the elite
population and crossover. When we exclude mutation, which is creating diversity in
the population, we have a high probability of converging to a local maximum and
being unable to escape. However, we should not let mutation be the dominating
part of the population, that would lead to a more random search. The 40% crossover
fraction �nds good solutions at a short running time.

Because of the integer constraint on one of the variables, we have a limited selection
of mutation and crossover functions. The only crossover function that can handle this
problem is the Scattered function, and the only mutation function is the Gaussian
mutation function.

After creating a new population, we need to make sure the individuals satisfy the
constraints. The possible choices are Augmented Lagrangian and Penalty algorithm,
both score equally in both optimal solution value and running time. I will keep
Augmented Lagrangian, the default option.

Stopping criteria

Another way to improve the algorithm is by altering the stopping criteria. The stop-
ping criteria decide when the algorithm is done, and the solution is found. However,
the solution may not be optimal. We want the algorithm to not reach a stopping
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criterion before it reaches the optimal solution.

The algorithm stops if the average relative change in best solution value doesn't
increase by more than a function tolerance over a given number of generations, called
stall generations. The function tolerance is by default 10−6. The default value of
maximum stall generations is 50. I will try the following values of Function tolerance:
0, 10−9, 10−6, 10−3 and 1.

Figure 4.5: The solution (left) and running time (right) for the di�erent values of
function tolerance.

Notice in particular the poor performance when tolerance is 10−3 and 1, This needs
to be avoided. The case where function tolerance is zero has the best ability to �nd
good solutions. It will be preferred despite having a long running time.

With the function tolerance equalling zero, the algorithm will run until it reaches
maximum generations or maximum stall generations. I will try di�erent values of
maximum generations. The values to be tested are 400, 600, 800, 1 000 and 1 200.
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Figure 4.6: The solution (left) and running time (right) for the di�erent values of
maximum generations.

With function tolerance set to zero, the algorithm runs until it reaches the limit
of maximum generations. Unless you reach maximum stall generations, which is
rare. That leads to a nearly linear increase in run time when you increase maximum
generations. Since we always keep the �ttest individual, the solution will not decrease
over the generations. Thus, we want a high limit on maximum generations. I choose
800 as the upper bound on the number of generations because it �nds the best
solutions.

The value of maximum stall generations determines how many generations before the
best value must increase. If we choose the maximum stall generations to be a small
number, the algorithm may stop even if the algorithm could have found a better
solution later. I will try the following di�erent values: 10, 20, 30, 40, 50 and 60.
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Figure 4.7: The solution (left) and running time (right) for the di�erent values of
maximum stall generations.

With a low value of maximum stall generations, the algorithm has a higher probabil-
ity of converging to a local maximum. When maximum stall generations is set to 10
and 30, all three runs stops because it reaches maximum stall generations, and the
solutions are a bit lower than the best solutions. When maximum stall generations
is set to 20, two of the runs stops when it reaches maximum stall generations, and
one run reaches maximum generations.

When maximum stall generations is set to 50, one of the runs stops when it reaches
maximum stall generations, and two runs reach maximum generations. Generally,
the algorithm �nds the best solution when the algorithm reaches maximum genera-
tions. When maximum stall generations is 40 and 60, all three runs reach maximum
generations. It �nds the best solution when stall generations is 60. We will limit
maximum stall generations to 60 in the further calculations.

With the new parameters, we will again test the algorithm with some di�erent values
of the population size. Some alterations in the other parameters may have changed
what the best value of the population size is.
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Figure 4.8: The solution (left) and running time (right) for the di�erent population
sizes.

The population size of 200 still gives the best solutions. Both of the other population
sizes in this test converges to a local maximum in one of the runs. A population size
of 200 is still the preferred value.

Through this testing, we have improved the algorithm. The parameters in the genetic
algorithms are altered to increase that the probability of the algorithm converging
to an optimal solution.

After running this algorithm a few times, with these new parameters, the best solu-
tion it found was 3 043 000 NOK in case Ghana. That is a minor increase from
3 027 781 NOK, which was the solution from GA before the tuning of the parameters.
The improved solution was found with the following variable values, rounded to two
decimal places. β = 24.49, D = 0.2, γc = −0.05, H = 2, K = 10 and L = 40.

4.2 Sensitivity analysis of the parameters

The optimization program contains a function to be maximized, called the objec-
tive function. The objective function is, in this case, the net present value of the
solar farm. The objective function is dependent on some parameters. Some of the
parameters are estimated and some are measured. In this analysis, we will use the
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estimated parameters from Case Ghana. The purpose of this analysis is to see how
much a small adjustment in each parameter will change the end result, and if the
adjustment will result in a di�erent optimal design.

Irradiance

The irradiance measurements are not exact, as demonstrated in the discussion of the
Ghana-case. What would the result be if we changed the irradiance with ±10%? If
the irradiance values were 10 % higher, we would get a higher NPV, that case will
be referred to as the favourable case. The case where we put the irradiance to be 10
% lower, will be referred to as the unfavourable case. We will use the variables from
the best result in the previous section, referred to as the base case, to see how much
the NPV changes when the irradiance is changed. We will also run the algorithm
three times for each case, to see if the change in the parameter will lead to di�erent
variable values.

Increase irradiance by 10% gives an NPV of 3 535 720 NOK. That is an increase
of 16.19%. Decrease irradiance by 10%, the NPV becomes 2 550 160 NOK. That is
a decrease by 16.19%. The increase and decrease in the NPV is the same amount
when the irradiance is increased and decreased. The optimal variable values are still
the same as in the base case, an alteration in the irradiance values will not change
the optimal design of the solar farm.

E�ciency

Di�erent modules exist, with di�erent e�ciency and price. The total e�ciency de-
pends on the panels, inverter and other, it also depends on the temperature. What
would the result be if we changed the total e�ciency with ±10%?

We get the same result as when changing irradiance. The reason for them making
the same impact on the result is that both parameters are factors in the equation
that describes the income. Adjusting them by the same factor will give the same
result. The optimal variable values are also still the same as in the base case, an
alteration in the e�ciency will not change the optimal design of the solar farm.

Investment price

The NPV is also dependent on the total investment price which is the sum of the
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initial investment and maintenance on the solar farm. What would the result be if
we changed the total investment price with ±10%?

When we increase the investment price by 10% the NPV becomes 2 854 454 NOK,
a decrease of 6.19%. The optimal variable values are still the same. When the
investment is decreased by 10% the NPV becomes 3 231 695 NOK, a 6.20% increase.
When the investment price is decreased, we get di�erent optimal variable values.
The decreased investment price leads to a di�erent optimal design of the solar farm.

(a) Increased investment price. (b) Decreased investment price.

Figure 4.9: NPV as a function of β, where the other variables are �xed to the result
from the algorithm and K is maximized under the constraints.

From the two plots above, you can see NPV of the solar farm for di�erent values of
tilt. The plot on the left side shows the result of increased investment price. The
maximum value on that plot is when tilt ≈ 25◦. The plot on the right side shows
the result of decreased investment price. The maximum value on that plot is when
tilt ≈ 35◦. And consequently, instead of 10 rows, the optimal number of rows is 11.

When we consider PV panels, we look at price and e�ciency. You can get cheap
panels with low e�ciency, and you can get more e�cient panels which are more
expensive. Would the result be the same with di�erent types of panels? We will look
at the result of changing both price and e�ciency by ±10%.

By increasing both price and e�ciency, the NPV becomes 3 347 234 NOK. That is a
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better solution than the base case. By decreasing both price and e�ciency the NPV
becomes 2 738 646 NOK. Both cases have optimum for the same variable values as
the base case.

Electricity price

In addition to the amount of irradiance and the e�ciency, the revenue also depends on
the electricity price. If we Increase the electricity price with 10% the NPV becomes
3 535 720 NOK, an increase of 16.19%. When the electricity price is decreased the
NPV becomes 2 550 160 NOK a decrease of 16.19%. Both cases have the same
variable values as the base case.

Discount rate

The discount rate is assumed to be 5%. If we increased the discount rate with 10%
the NPV becomes 2 846 333 NOK, a decrease of 6.46 %. By decreasing the discount
rate the NPV becomes 3 254 710 NOK an increase of 6.95 %. Both cases have the
same optimal variable values as the base case.

Lifetime of panels

PV panels often come with a guaranteed lifetime of 25 years. More precisely, when
the panels have produced electricity for 25 years, their e�ciency should be at least
80%. In this thesis, we assume the panels to have a constant e�ciency for 25 years.
In real life, the e�ciency will decrease over time. With this simpli�cation, a longer
lifetime would increase the NPV.

If the lifetime of the panels is increased by 10%, the NPV becomes 3 259 349 NOK,
an increase of 7.11%. If the lifetime of the panels is decreased by 10%, the NPV
becomes 2 798 457 NOK, a decrease of 8.03%. Both cases have the same optimal
variable values as the base case.
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4.3 Results from analysing GA and sensitivity of the

parameters

We have observed that the two conditions for an algorithm to be improved, the
running time and the ability to avoid converging in a local maximum, are con�icting.
If we alter a parameter to improve one of the conditions, it's at the expense of the
other. The optimization problem in this thesis has a lot of local maximum points,
which makes the problem hard to solve. Therefore I modify the genetic algorithm
focusing on being able to escape local maximum points.

Figure 4.10: Change in NPV, when the parameters have been altered by ±10%.

Irradiance, e�ciency and electricity price are the parameters which give the greatest
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change in the NPV when adjusted. By adjusting the investment price, the NPV does
not change as much as some of the other parameters. Despite the fact that it does
not make the biggest di�erence in the result, it is the only parameter that causes a
di�erent optimal design of the solar farm, when the parameters are altered by ±10%.



Chapter 5

Optimal design of the solar farms

In this chapter, I will present the optimal design of the solar farms for the di�erent
locations. The solar farms are assumed to be installed on a horizontal 20 ·40m2 area.
I also assume the area receives no shade from any nearby objects.

The design of a solar farm in Ghana

The optimal design of a solar farm in Ghana was found with the following variables,
rounded to four signi�cant numbers.

The optimal tilt in case Ghana is 24.49◦. If the farm only consisted of one row, the
optimal tilt would be lower. But the fact that a higher tilted row requires less space,
allows more rows into the area. Therefore, the optimal tilt is higher than expected.

The optimal distance between the rows of PV panels is 0.2 m. That is the lower
bound we set on this variable. The optimal distance is equal to the lower bound,
because of the high elevation of the Sun. That means the shade from the preceding
row is short, and it is optimal to have the distance equal to the lower bound.

The optimal height is 2 m. That is the upper bound set on the height. This is
because you want as much area of PV as possible. You don't want the shade from
the panels to cover the next row, but with the given tilt, it won't shade the next row
even when H takes the maximum value.
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The optimal number of rows is 10. With the given values of height, distance and
tilt, this is the maximum number of rows that �t into the area.

The optimal azimuth is −0.05◦, the panels are facing south, as expected. The optimal
length of the rows is 40 m. This is, like with H, to get as much area of PV as possible.
γc and L do not have a relation with the other variables.

This results in an NPV of 3 043 000 NOK in case Ghana. That is a minor increase
from 3 028 781 NOK, which was the solution from GA before the adjustment.

The design of a solar farm in Italy

The optimal design of a solar farm in Italy is given by the following variable values,
rounded to four signi�cant numbers.

The tilt of the panels is 50.79◦, the distance between the rows is 0.4837 m and the
height of the rows is 1.935 m. Unlike in Ghana, where the optimal D and H equal
the lower and upper bound. With the given variables, the maximum number of rows
possible to �t into the area is 12.

The azimuth of the panels is −0.1313◦ and the length of the rows is 40 m. With the
given variables, the NPV is estimated to be 2 874 000 NOK.

The design of a solar farm in Bergen

The optimal design of a solar farm in Bergen, built to cover personal use, is given
by the following variable values, rounded to four signi�cant numbers.

β = 54.89◦, D = 1.873 m and H = 0.2007 m. In the other cases, D were close to the
lower bound and H were close to the upper bound, due to the high elevation angle of
the Sun. In this case, D is close to the upper bound and H is close to lower bound,
this will result in less shade on the panels. K = 11, γc = 1.081◦ and L = 40 m. This
design gives an NPV of 5 141 NOK.
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Table 5.1: The optimal solutions

Kumasi, Ghana Bari, Italy Bergen, Norway
NPV 3 043 000 NOK 2 874 000 NOK 5 141 NOK
β 24.49◦ 50.79◦ 54.89◦

D 0.2 m 0.4837 m 1.873 m
γc −0.05◦ −0.13◦ 1.081◦

H 2 m 1.935 m 0.2007 m
K 10 12 11
L 40 m 40 m 40 m

For all sites, γc ≈ 0◦ as expected for a solar farm in the northern hemisphere. The
reason it is not exactly 0◦ is probably due to local e�ects making the graph of
the irradiance not symmetric about noon, as seen in Figure 3.25. Likewise, it is no
surprise that the optimal solutions in all cases are found when L is equal to the upper
bound. We expect a dependency between β, H andD, but this is not straightforward,
the interplay between these variables are quite subtle and unpredictable.





Chapter 6

Conclusion

I have constructed a mathematical model for computing the optimal design of a solar
farm. This has been tested in three di�erent locations. In addition to the design, we
found the NPV of the solar farms. We also did a sensitivity analysis on the estimated
parameters, to see if some error in the estimates could lead to a signi�cant change
in the result.

The solar farms in the di�erent locations have di�erent optimal designs and NPV.
The cases with low latitude resulted in the best results. Investing in a solar farm in
Ghana, would by our estimates, give a pro�t of 3 043 000 NOK.

The latitude in Bari is higher than in Kumasi. However, a solar farm in Bari would
also give a signi�cant pro�t. Investing in a solar farm in Italy, would by our estimates
give a pro�t of 2 874 000 NOK.

The estimated parameters are important for the NPV. In Bari and Kumasi, the
solar farm would be pro�table even with an alteration on ±10% on the estimated
parameters.

Investing in a solar farm in Bergen, would not give a pro�t. At least not with the
design constraints from this thesis. However, if the solar farm is built for covering
personal use, you should invest in a solar farm. Given the fact that all the power
produced by the solar farm, replaces power bought from the electricity grid. Investing
in a solar farm for personal use in Bergen, would by our estimates, result in an NPV
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of 5 141 NOK.

My model gives a good description of costs and income from a solar farm. It should
be modi�ed if the conditions are changed. With a good estimate of the parameters,
it can tell if the investment is pro�table. But what's likely most important, is that
it provides guidance on how the farm should be con�gured.

6.1 Further work

6.1.1 Possible improvements

My results are based on various estimations. I have not had at my disposal any
dataset containing the combination of production results from solar farms as well
as irradiance measurements from the same location. This could help improve the
calculations by making more accurate predictions of the NPV.

The genetic algorithm used in my thesis is chosen for convenience because it is the
only algorithm that solves this type of problem in MATLAB, other algorithms should
be tested. The genetic algorithm is not made speci�cally for this type of problem.
It is also possible to try di�erent options in the genetic algorithm, such as other
crossover options. MATLAB does not o�er a great variety of options in their built-in
functions, on this speci�c problem.

6.1.2 Alternative models

There exist numerous types of ways to build a PV farm. Some design includes track-
ing, either one or two axes. Panels tracking the Sun would produce more electricity
but at a higher cost of the installation and maintenance work.

Another design possibility is east-west, where the rows alternate between being tilted
towards east and west. This design results in a more even production throughout the
day. This design would be more compelling if the grid set a limit on the production,
e.g. you were given a �xed electricity price until a given limit or that the el. price is
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decreasing with increased production, such that you want to spread the production
more throughout the day.

There are numerous di�erent solvers, design and parameter possibilities. All the
possible cases could be considered for the individual location and customized to the
speci�c use. The di�erent cases could be modelled into an optimization problem and
could be interesting continuations of this thesis.
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Appendix A

Nomenclature

A = maximum height above ground
As = Area of the row covered by shade
Ci = Annual income
D = Space between the rows
E = Clearance between the panels and the ground
ep = Electricity price
F sh
d = Ratio between di�use irradiance on an un-shaded plane and a shaded plane
F sh
r = Ratio between re�ected irradiance on an un-shaded plane and a shaded plane

GA = Genetic algorithm
H = Height of row
Hs = Height of shadow on the shaded rows
I = Irradiance
Ib = Beam irradiance
Ib,T = Beam irradiance on tilted panel
Ishb,T = Beam irradiance on tilted and shaded panel
Id = Di�use irradiance
Id,T = Di�use irradiance on tilted panel
Ishd,T = Di�use irradiance on tilted and shaded panel
Ir = Re�ected irradiance
Ir,T = Re�ected irradiance on tilted panel
Ishr,T = Re�ected irradiance on tilted and shaded panel
I0 = Initial investment
K = Number of rows
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L = Length of row
Ls = Length of shadow on the shaded rows
mc = Annual maintenance cost
n = Day of the year
NOK = Norwegian kroner
p = Percent discount rate
pp = Price of installed PV
ppm = Price of installed PV included maintenance
Q = Total irradiance on the panels (Wh)
qb = Beam irradiance (Wh/m2)
qd = Di�use irradiance (Wh/m2)
qr = Re�ected irradiance (Wh/m2)
qshb = Beam irradiance on a shaded panel (Wh/m2)
qshd = Di�use irradiance on a shaded panel (Wh/m2)
qshr = Re�ected irradiance on a shaded panel (Wh/m2)
Rb = Relation between beam irradiance on a horizontal plane and on a tilted plane
Rd = Relation between di�use irradiance on a horizontal plane and on a tilted plane
T = Temperature
W = Width of �eld
Wp = Watt peak

R = Set of real numbers
Z= Set of integers

α = Sun's altitude
β = Tilt of panels
γ = azimuth angle between the Sun and the panels
γc = Panels azimuth
γs = Sun's azimuth
δ = Declination
η = E�ciency
ηpv = E�ciency of panels
ηinv = E�ciency of inverter
ηother = Other decreasing factors
θ = Angle between the normal to the panels and the beam irradiance
θz = Angle between the horizontal plane and the beam irradiance
ρ= Albedo
φ = Latitude of location
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ω = Hour angle
∆t = time interval
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