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Abstract 
 

Deconvolution is the process of decomposing a mixed signal into its originating elements. For 

my thesis I created a clustering application, named DeCloud, with the intent to replace the 

unsupervised clustering step in the deconvolution tool, Deblender. Utilizing clustering packages 

in R such as optCluster, the application was built to allow for a range of new clustering 

algorithms. In this thesis the scope has been set to test Hierarchical clustering and two 

variations of PAM.  A novel filtering function was created, providing a different approach to 

handling clusters. The novel approach has been implemented for use with the PAM clustering 

method, but could be applied to other algorithms as well. We have tested the resulting pipeline 

on the data sets used to benchmark Deblender and other tools. Comparing the results obtained 

by Deblender and by DeCloud, shows that DeCloud obtains marked better results on two of the 

three datasets used for testing. The last dataset is a complicated case, none of the applications 

are able to effectively cluster and deconvolve. The novel filter function applied to the PAM 

algorithm has been shown to be the best performer in each of the two successful deconvolution 

datasets. 

Acknowledgement 
 

I would first like to thank my thesis advisor Inge Jonassen of the Bioinformatics department at 

University of Bergen and Konstantina Dimitrakopoulou, the creator of Deblender. Konstantina 

has been a terrific resource at breaking down the deconvolution process in Deblender, helping 

me logically navigate through the difficulties I have had when creating my application DeCloud. 

Inge has been very helpful and patient with my thesis draft, it has been a long process. I also 

want thank my grandparents for the long hours they spent helping me proofread the thesis, their 

attention to details is remarkable and has been invaluable to me at the end of this process.  



 
 

5 
 

INTRODUCTION 

Aims of study 
 

The goal of this study was to explore alternative algorithms for the unsupervised clustering step 

in the deconvolution tool Deblender and to see if this could improve the result of the whole 

analysis. The unsupervised step in Deblender is currently limited to two different clustering 

algorithms, K-means and K-mediods. By expanding on the clustering algorithm library we were 

hoping to see improved results and increase the usability of the application. A secondary goal 

was to explore possible ways for post-processing of clustering results and to use this to further 

improve deconvolution results. 

 

Gene Expression 
 

Gene expression is vital in biology to understand life and how organisms differ. The human 

genome encodes approximately 25 000 genes. The biological differences we observe in the 

population around us are based on how these genes are expressed. It is estimated that ~83% 

of human genes are expressed differentially amongst individuals and ~17% amongst 

populations [42].  Understanding how genes are expressed both in individuals and in larger 

populations can be vital in how science approaches disease in the future [1, 40]. 

 

All humans are fundamentally created from 4 unique essential bases, “A, T, G, C”, these bases 

are repeated in different patterns over and over again. We know these repeating patterns as 

DNA. Short strings of DNA make up our genes, what these genes do is determined by what 

combination of “A, T, G, C” the string is made up by. One of the functions of genes is to tell the 

body how to build specific proteins, the building blocks of our bodies. Every cell in the human 

body contains proteins. Another important gene function is the creation of noncoding RNA’s, 
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which assist the body in many essential functions. We can obtain clues to how a gene functions 

based on where a gene is expressed in the cell or in the entire organism. Understanding and 

monitoring gene expression can give us much understanding of what the body is doing and why 

[2, 30-32, 43]. 

  

Gene regulation, as part of gene expression, is how each cell expresses a subset of its genes. 

Each cell expresses a specific set of genes. These sets depend on the type of cell, the condition 

of the cell and the surrounding signal. Each cell has different regulatory mechanisms which 

decide what genes are expressed. These patterns within genes allows for major differences and 

functions, such as if the cell would become a brain cell or muscle cell [3]. 

 

The first level of gene regulation happens during the initiation of transcription, the start of the 

protein production process. For cells to be adaptable however, they also have downstream 

processes where genes are regulated again during translation which are often subject to 

environmental factors. In eukaryotes transcription factors may be very complex and need 

multiple proteins in the process, compared to the usual single protein in prokaryotes [1, 4]. 

 

Microarray 
 

Microarray is a tool to measure gene expression, one type has a glass slide where DNA 

molecules are attached in certain spots which each is tied to a known gene or DNA sequence. 

One method for performing a microarray analysis is to use two samples of mRNA, one 

experimental sample and one reference sample. The samples could for example be from a 

healthy individual as a baseline (reference) and one sample from an individual with a disease 

(experimental). The two different mRNA samples are then turned into complementary DNA, also 
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known as cDNA. These cDNA samples are then labelled with separate fluorescent dyes, often a 

red dye for one and green dye for the other. This is necessary for the comparison process after 

hybridization. Hybridization is the process of mixing the samples together and letting the cDNA 

bind itself to the microarray glass slide where the molecules will bind itself to the spots with 

complimentary probes. After this, the glass slide is washed and the molecules which are 

strongly bound to the probes will remain. After the hybridization process, cDNA now has a glass 

slide with two samples, each sample with its own dye color. To measure which genes are more 

expressed in each sample, or equally expressed, one just needs to evaluate the prevalent color 

in each spot. To measure this, a laser is used to target the spots on the hybridized microarray 

and return a color on each spot. Conceptually, if a spot is red then the red sample is more 

expressed than the green one. The green dye come through if the opposite true. If the spot is 

yellow then that gene is equally expressed in both samples. If nothing is bound on a location, 

then the location on the microarray will appear as black. This allows for easy analysis of 

difference in gene expression between two different samples [5-6]. 
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Figure.1) The upper panel, A, representing the two-channel microarray process. Lower panel, B, 

representing the single-channel microarray [49]. 

A newer option to measuring gene expression is single-channel microarray. This method has 

the same initial steps as two-channel microarray, but does not give separate labels to the 

samples or combine the samples for hybridization. For the singe-channel microarray method, 

the samples are handled individually (not hybridized together), using the same dye color.  

In order to extract data from the single-channel microarray experiment we can analyze its 

output. The output given from the experiment is an image. Using this image; we can visualize 

the results and intensity per spot. Each spot may give us the gene expression quantity through 

the measurement of the intensity of the data per probe. The images get segmented after 

identifying which pixels belong to a spot, statistics may be applied to summarize values such as 

averages, medians and intensity on the pixels in the spot [49]. 
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The data we have gathered from this process can now be turned into a gene expression matrix. 

This matrix holds the values given for each spot on the microarray. The two most common ways 

of studying gene expression matrices is to either compare the expression profiles of the genes 

based on the columns or on the rows in the matrix. Using Euclidean or Correlation-based 

measuring we can find the similarity between the genes in the matrix. When handling massive 

amounts of expression data it can be difficult to find patterns which may yield any beneficial 

results. One of the common ways to make more sense of the data is to create subgroups based 

on the similarity it displays. This process is called clustering and has many different algorithms 

for grouping similar data together. Some of the issues facing such tasks are determining how 

many groups should be created and which clustering algorithm provides the best result. One of 

the large benefits of classification algorithms is the ability to identify clusters corresponding 

information of medical significance i.e. of clusters of cancer types or subtypes. The ability to 

discover information about the human body based on tissue/cell samples have become a 

reality. Much of this is due to clustering algorithms able to logically identify important patterns in 

gene expression data which can be linked to medical conditions or other biological functions [6, 

32]. 

RNA Sequencing 
 

RNA sequencing has a similar function to microarray where one can analyze cDNA to 

determine how which genes are expressed and at what level in a sample. Where microarray 

however is bound to a known library of genes, RNA sequencing is not restricted to previously 

detected expression of already known genes. In RNA sequencing the cDNA will be read into the 

system allowing for many new possibilities for how to handle the data. A known gene database 

will allow mapping of cDNA sequences a known reference genome. This will give similar results 

return to the traditional microarray, although often with more accurate estimates. Some of the 

larger benefits of RNA sequencing is its ability to run de novo analysis of new species for which 
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there are no reference genome. Novel genes may also be discovered in species where the 

reference genome is already known. This allows for much more versatility in uses where one is 

not limited to only analyze cDNA that already has been mapped. Genome analysis can also be 

rerun at a later time with updated genome mapping, providing the possibility of new important 

discoveries at virtually no additional cost [7-8,33]. 

 

Gene Expression in samples consist of different cell/tissue types 

 

Gene expression varies from cell-type to cell-type (and from tissue to tissue). Some genes are 

more or less specific for a cell-type, or showing lower or higher expression in other cell-types or 

tissues. Other genes may be expressed in all cell-types and in all tissues. There are also 

variations in gene expression in the same cell-types/tissues.  

When we see difference in expression between two samples it may indicate that the samples 

have different composition of cell/tissue-types and/or that the gene expression in one or more of 

the cell/tissue-types have changed [44,45]. 

 

Deconvolution 
 

Deconvolution is a mathematical way to reverse the effect of mixed data. In gene expression 

this refers to handling global expression data that often come from mixed tissues or genes data 

that need to be separated in order to be useful for analytical purposes. To process these global 

expression data biologically, it is often very important to disentangle the cell types due to their 

different gene expression profiles. This allows the data to be analyzed on a cell-type level. 

Properly separated gene expression values may give important insight into the biological 
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environment in which genes are present and also in what proportions. This allows us to analyze 

what effect these genes may have in the sample area.  

Two different approaches to separate the data are to either provide a marker gene list or to 

cluster the data on the subgroups which are found to be similar in the data.  

 

A marker gene list is a collection of cell-specific signals. These signals can be used to estimate 

cell-specific signatures, cell proportions or cell-type related differential expression. Many of the 

marker genes have been collected through previous studies and are mostly well known and 

defined, yet there are still many cell type markers missing. Using this information will give a sort 

of roadmap for the deconvolver which indicates which genes belong where. Categorizing gene 

expression based on its similarity to these marker genes gives the clustering algorithm reason 

for comparisons. It will not, however, discover new cell groupings which are not a part of the 

marker gene list. We call this partial deconvolution. With only one unknown factor, this becomes 

a regression problem. Which is solved by the deconvolution algorithm by calculating the genes 

based on these estimated cell proportions from the marker genes [46]. 

 

Unsupervised clustering does not use a marker gene list and relies on the similarity within the 

data, as mentioned in the microarray section, in order to categorize the expression data. We call 

this complete deconvolution. It does not use known gene expression profiles but calculates 

these values based on the global expression data, to indicate which genes should be 

categorized where. The process relies on the assumption that the genetic expression will follow 

a certain pattern which we can identify and categorize from. The benefit of unsupervised 

deconvolution is its ability to find new gene expression profiles. The flexibility allows for gene 
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discovery and has a potential to return more valuable information assuming it can achieve a 

high enough accuracy in its clustering [11,12]. 
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Figure 2. Visual example for each stage of the deconvolution process from a mixed group of 

cells through the separation process. The cell type expression pattern can be seen to the right 

of the sample, and we can see that sample 1,2 and 3 are pure as they fit perfectly with the 

estimated expression profiles, giving 100% correlation. This example has very “pure” data, in 

real biological data we do not expect 100% correlation [10]. 

In a linear model deconvolution, the mixing process can be shown with this matrix notation: 

X = SA 

S = n X k 

The matrix in S contains the genes in the sample (n), and the cell/tissue types (k). 

A = k X p 
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 A contains the matrix k X p, same as in S, k contains the cell/tissue types and p contains the 

samples.  

X = n X k = (n X p) X (k X p) 

X then contains the measured gene expression levels of the mixed samples.  

As discussed previously, if this is a partial deconvolution then either S or A will be known 

whereas if it is a complete deconvolution then neither will be known. Complete deconvolution is 

often referred to as unsupervised deconvolution.   

In supervised deconvolution, A will be calculated using a marker gene list which is provided. 

This list is comprised of genes which are highly expressed in specific cell/tissue types and less 

expressed in others allowing the program to focus on data the user specified as more valuable 

for the deconvolution. Sometimes the marker gene list is not available or the user does not want 

to be limited to a prewritten marker gene list which does not incorporate all the data in the 

sample, in this case unsupervised deconvolution is used. This approach uses clustering 

algorithms on the gene expression dataset and uses this to create profiles which represents the 

different genes in the dataset. These profiles functions as the marker genes in the semi-

supervised deconvolution instance. The benefits are that one is able to create an expression 

profile on the data in the dataset. This may be beneficial in finding new marker genes and to not 

be limited to previous gene discoveries. Negatively, it can cause weaker gene profiles which 

does not fit the proper pattern compared to focusing on the tried and tested marker genes [13]. 

 

Gene Expression and Health 

 

Gene expression profiling through deconvolution is vital when investigating the genetic link to 

complex disorders and tumors. It has long been known that an individual’s genetic profile is a 
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key contributor to many complex diseases. Up until recently there has been little opportunity to 

investigate the genetic links due to technical limitations. With the emerging technology, we can 

now break down the active roles that underlying genes are playing in these disorders. We are at 

a rapid pace finding new disease-causing mutations due to changes in the epigenome. By 

mapping and analyzing this information, we can both predict the likelihood of disease and 

potentially cure diseases by interfering with these processes [34]. 

Genetic traits that are caused by heritable genetic predisposition to different diseases have also 

been discovered. Using this information we have an opportunity to look for these traits and 

potentially detect such diseases early, giving a better chance of successfully treating the 

disease.  We have long known that hereditary abnormal genes passed from parent to child 

gives a higher chance of getting different diseases later in life, but it’s often been difficult to 

know which genes are causing it. By analyzing tumor tissue or other tissue associated with the 

disease we have the opportunity to find patterns of which genes expression patterns are present 

and in which proportions at different stages of the disease. The genes which are most linked to 

breast cancer is BRCA1 and BRAC2 which are present in our body to repair cell damage and to 

keep cells growing normally. When these genes mutates, they are known to cause problems, 

they are estimated to be the cause of 1 in 10 of all breast cancer cases [35]. 

The mutations in these genes are known to be inheritable, although if an individual has this 

mutation it doesn’t automatically mean she gets breast cancer, but it does raise the odds of you 

getting it. This means that a test for the expression of these abnormal genes can be a very good 

starting point in determining individual risk factors in regards to these types of breast cancers. 

As our technology is improving and we are able to analyze larger and more varied amounts of 

genes from a more diverse population groups, we are finding complex correlations between 

multiple genes and different stages of a disease. There are discoveries indicating that certain 

cell variations are responsible for the predisposition of a disease while other cell variations are 
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responsible for the progression of the disease. Seeing the complexity of these issues, being 

able to sample, deconvolve and analyze massive amounts of genetic expression data effectively 

and accurately is paramount. We are facing a new medical frontier and understanding our 

genes are the cornerstone of this new endeavor [36]. 

 

Precision Medicine and Deconvolution 
 

As our knowledge increases about genetics and medicine, and we have found that utilizing 

gene expression to understand biological functions for medical purposes is bearing fruit. We 

have for instance found that tumor heterogeneity is increasingly becoming a challenge in the 

field of cancer therapy. Both inter-tumor heterogeneity, the genetic difference in tumors between 

patients, and intra-tumor heterogeneity, the genetic difference within a single tumor. Tumor 

microenvironments are proven to be highly complex, with both cancer cells and non-malignant 

cells inhabiting the tumor space.  These gene expression differences have been proven to affect 

how tumors react to different cancer treatments, which explains how individual patients with the 

same cancer diagnosis may have widely different outcome with the same treatment. As part of a 

new line of targeted disease prevention, a new treatment style is emerging called precision 

medicine. The use of gene expression profiles in medicine is not limited to cancer tumors, but 

has found many important medical uses. It is all a new approach to medicine which assumes 

individual patients may have varied needs based on which biomarkers are present. Biomarkers 

are according to the World Health Organization (WHO) “Any substance, structure or process 

that can be measured in the body or its products and influence or predict the incident of 

outcome or disease” [37]. 

In order to make precision medicine viable there is a need to increase the library of known 

genetic biomarkers and how their presence affect the individual. A way to do this is to map gene 

expression profiles in cancer tumors in order to find medically valuable patterns in the patient 
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groups. To accurately map these biomarkers there is a need for large databases with different 

tumor variations allow one to a molecular fingerprint, indicating the unique reproducible genetic 

properties. Utilizing this information one can design drugs specifically for the individual patient 

which are designed to work optimally when targeting tumors with certain gene expression 

profiles. In order to build up this library of biomarkers we need to get the gene expression profile 

for these tumors in an effective manner. One of the big issues currently, is the lack of 

generalizable biomarkers which can be applied to most patients. Utilizing big data the hope is to 

effectively find patterns which may allow effective categorization of disease. When generalized 

disease profiles are achieved, one can subcategorize it into different variations allowing for 

further information indicating expression differences and its effects on the general disease [38]. 
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BACKGROUND 
 

Deblender/Digital Sorting Algorithm (DSA) 

 

Deblender, the deconvolution tool my program is created to be an add-on to, but as it is not yet 

published, I have to limit discussion of the product in my thesis and will focus on the parts I do 

use. The parts of Deblender I use for my program are mostly identical to the published DSA 

tool, I will reference Deblender but everything stated is also true for DSA.  

Deblender is a complete deconvolution tool with the ability to both analyze gene expression 

data in a semi-supervised or an unsupervised form, clustering is only used in the unsupervised 

process. Deblender has the ability to analyze microarray data and RNA sequencing data, using 

K-means or K-mediods to cluster the data. One of the base assumptions made in Deblender is 

that a subset of genes is highly expressed in specific cell/tissue types and lowly in others. Using 

this assumption, the tool can estimate the mixture proportions of the cell/tissue samples. 

Deblender will assume that Sm, a m × k matrix has a set of highly expressed marker genes or 

clusters in their respective cell/tissue types and are not or lowly expressed in the remaining 

cell/tissue types.  
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In the  Sm matrix we can see that each cell/tissue type has their sets of highly expressed marker 

genes/clusters cluster which are not expressed in the other cell/tissue types. In our 

Deblender/DSA application, instead of averaging the marker genes expression profiles and use 

these average profile, they are substitutes by cluster representatives.  

 

Deblender calculates S̃m, from  Sm by taking the average of the mixed gene expression profiles 

for each of the marker genes/clusters. Using this we then get this equation: 
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The  S̃m matrix is a diagonal matrix, this allows us to multiply both sides with 𝑆̃𝑚
−1, which gives 

this equation:  

 

In our model we have a constraint that says that the sum of proportions for each sample sums 

to 1 and each proportion is larger or equal to 0,  which allows us to create a new equation with k 

unknown variables (diagonal elements of 𝑆̃𝑚
−1) [13,41]. 

 

 

Deblender Unsupervised 
 

Deblender’s unsupervised mode as it has been implemented in my tests, requires these three 

steps: Preprocessing the data, clustering and identification of the tissue/cell type. 

Preprocessing the data: The data need to be raw-normalized values without log 

transformations. Deblender recommended for filtering un-annotated probes. If there are multiple 

probes per gene identifier, choose the one with the highest variance. Users can also apply a 

percentage cutoff in order to filter genes with high or low expression vector norms.  

 

Clustering: The two clustering algorithms available in Deblender, K-means and K-mediods, 

using correlation as the distance function, both linear and log scale clustering, are available. 

Both of these clustering algorithms are well suited for the large datasets they are used for.  
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Identify the cell/tissue type: After the deconvolution process is finished, the last step is to 

connect the clusters to the cell/tissue type. For the unsupervised mode there is no additional 

information available to indicate to which cell/tissue type each cluster should be connected to. 

Checking all possible combinations recording the correlation compared to known proportions of 

the different cell/tissue types. The combinations getting the highest correlation becomes the 

retained values [13]. 

 

Clusters 
 

Clustering is grouping data based on observed patterns, using one or more clustering 

algorithms. Gene expression profiles are determined based on the genes expressed to give a 

picture of the cellular function. For our purpose, we approach the data with the expectation that 

we have an unknown number of profiles, which our data will fit into. The assumption is that each 

individual gene will have a unique gene expression profile which is consistent enough so that 

the data can be grouped according to which gene profile it belongs to. Not knowing the number 

of expected clusters creates a few potential problems as the data may not pick up each 

expression profile as unique. If the expression profiles are too similar it could merge two profiles 

or split a cluster into multiple profiles because of the cluster not finding the profile consistent 

enough. In DeCloud the tool attempts to find the gene expressions patterns in the data and to 

use these patterns to separate the data into the gene expression profiles which makes up the 

individual clusters. For this purpose we do not preset the specific number of clusters we are 

expecting but rather set a range of possible clusters. This allows the clustering algorithm to 

separate the data into the number of clusters it estimates to be most accurate based on 

similarity. We then calculate the relevance of these clusters using the RankAggreg package to 

estimate which clusters are created by the best profiles. RankAggreg does this by ranking the 

clustering algorithms and clusters created in our range of clusters by three different clustering 
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criteria, Connectivity, Dunn and Silhouette width. By using this unsupervised approach we are 

attempting to discover patterns in the data which are not limited to a known list of expression 

profiles and which may be more accurate as excess clusters not meeting the threshold may be 

discarded [14-16]. 

For our clustering, we are using the two different clustering algorithms to handle the microarray 

data in our results, Agglomerative Hierarchical Clustering(Hierarchical) and Partitioning Around 

Medoid Clustering(PAM). When choosing which clustering algorithm to use its important to 

know which type of data is being used. The microarray data and RNA sequencing data are 

dissimilar due to RNA sequencing being count-based while microarray is not. This potentially 

reduces the accuracy of the microarray clustering algorithms, while the RNA sequencing 

algorithms for clustering are only designed to work with whole number and as such will not work 

with microarray data unless they have been transformed into whole numbers. The RNA 

sequencing count-based data is created by recording the number of sequence fragments 

assigned to each gene per sample. They are reported to produce low noise data, which may 

help detecting transcripts when there are low expression levels. We have the ability to calculate 

RNA count data in the optCluster package, but due to lack of proper count data in the test sets 

available, they are not presented [47]. 

In the optCluster package we have access to ten different clustering algorithms intended for 

handling microarray data. The list is as follows: “Hierarchical”, “Agnes”, “Diana”, “K-means”, 

“Pam”, “Clara”, “Fanny”, “Model”, “Som” and “Sota”.  

There are also six different clustering algorithm variations intended to cluster count data from 

RNA sequences. These clustering algorithms are: “Non-Binomial EM (Expectation 

Maximization)”, “Non-Binomial DA (Deterministic Annealing)”, “Non-Binomial SA (Simulated 

Annealing)”, “Poisson EM”, “Poisson DA” and “Poisson SA” [18]. 
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METHODS 
 

DeCloud has many clustering algorithms, which offers diversity and increases the usability and 

potential for the application. The results however narrows the focus down to only two of the 

clustering algorithms, Hierarchical clustering and PAM clustering. Hierarchical clustering was a 

natural choice as, it gives a different approach to clustering compared to K-means and K-

mediods clustering which is implemented in Deblender. PAM was the second clustering 

algorithm chosen as it had an already implemented silhouette width calculation in the 

application, which is used to create a novel approach to handling clustering data, referred to as 

a data filter function. The PAM clustering algorithm is similar to K-means and K-mediods which 

allows for a more direct comparison when a data filtering method is implemented which I have 

created. More on the data filtering implementation in the “Filtering data through clustering” 

paragraph.  

 

Agglomerative Hierarchical Clustering  

 

Hierarchical clustering can be illustrated by dendrograms which will give a visual view of the 

clustering structure. The clustering algorithm starts with each of the observations in the dataset 

as its own individual cluster and merge them together until all the data are merged into one big 

cluster. This means that for each step the two clusters are merged. In order to extract the 

number of clusters one needs the cluster is “cut” at the correct height in the dedrogram where 

the cluster width is the given number needed. There are four options available to decide how to 

handle the distance used. The four methods are: Average linkage, complete linkage method, 

single linkage method and Ward’s method.  
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Average method: Uses the average pairwise distance between cluster objects to determine how 

close the clusters are together. The two clusters with the smallest average distance between 

objects per cluster is combined per iteration. 

Complete linkage method: This method looks at the maximum distance for each cluster 

combination, it then mergers the clusters with the lowest maximum pairwise distance together 

for each iteration.  

Single linkage method: This method finds the two clusters with the lowest minimum pairwise 

distance and combines them for each iteration.  

Ward’s method: Calculates the within-cluster variance per cluster combination and merges the 

two clusters to give the smallest increase in the total within-cluster variance per iteration [18]. 

 

PAM (Partitioning Around Medoids) clustering algorithm 

 

PAM is one of the medoid-based clustering algorithms. For mediod-based clustering algorithms 

data points are used as centers for clusters, compared to centroid-based clustering algorithms 

not bound to a data point but a cluster location. To initiate this clustering algorithm, it is 

necessary to set a given number of clusters and assign a data point to be a mediod, also known 

as a cluster center, to be the center for each assigned cluster. 

Once the initial medoids have been set, the clustering algorithm will assign all the data points to 

its closest medoid. Once all the data points are set to a mediod, a new mediod will be assigned 

for each cluster, and the closest data points will be assigned to this new mediod.  

The goal is to reduce the dissimilarities of the data points to their given mediod. When the 

clustering algorithm can no longer find a new mediod which can reduce the sum dissimilarity, 

the clustering algorithm ends and the lowest dissimilarity clusters are selected [17,18]. 
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K-Means clustering algorithm 
 

K-Means is another iterative clustering algorithm which starts with a given set of clusters and 

cluster centers. K-means have cluster centroids, a centroid is a cluster center, which does not 

need to be a data point, but is tied to a location. The data points will then be assigned to their 

closest centroid. The average of the observations for each centroid computes new centroid 

locations. The process of averaging observations to each centroid continues iteratively until the 

maximum number of iterations is reached and the iteration with the lowest sum distance will be 

chosen [18,19]. 

Cluster Assessment 

 

To ensure good clustering results it is important to be able to evaluate the clusters that have 

been created. A good clustering algorithm should allow a function to evaluate how statistically 

relevant the clusters are based internal or external data.  

In our program we use the intrinsic validation measures which give us an insight into the 

statistical properties of the clusters. The three validation measures used are connectivity, 

silhouette width and Dunn Index. Connectivity is an intrinsic validation measure that analyses 

how neighboring data points are grouped or connected. The neighboring data points are 

calculated based on the distance function provided; in our case, correlation distance is used 

[18]. 

Calculating the connectivity of the clusters it is done by determining the n closest data points per 

data point. 1/n is added to the total connectivity value if the nth closest data point belongs to a 

different cluster than the first data point. The value range is between zero and infinity, where the 

lower the score is the better the result [28]. 

Silhouette Width differs from the connectivity validation measure in that it looks at cluster 

separation and the compactness of the clusters [18]. 
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Silhouette values are calculated by this formula: 

 

ai is the average distance between a data point and all the other data points in the cluster.  

Bi is the average distance between a data point and all the data points in the closest 

neighboring cluster. This calculation as a value range between -1 and +1, where higher values 

are better results [28]. 

 

Dunn Index is similar to the Silhouette Width validation measure in that it also analyses cluster 

separation and cluster compactness. 

The Dunn Index takes the minimum cluster distance between two clusters and divides it by the 

maximum cluster within the same cluster. In the event of more than two clusters, the two 

clusters with the smallest distance between each other will be picked and will be divided by the 

cluster with the largest diameter. The diameter for a cluster is determined by the distance 

function used. In our calculations, it is used with correlation distance for cluster evaluation and 

with euclidean distance for tbe data filtering function. The value range is from zero to infinity, 

higher scores indicates better results, although in my filtering function Dunn Index is 

implemented such that the lowest Dunn Index score was the best result. This is an unorthodox 

implementation of the Dunn Index and does not follow the general application of the method 

[18,28]. 
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Calculating best cluster set and clustering algorithm 
 

RankAggreg is a package built into optCluster and offers an effective method for utilizing 

multiple assessment measures in unison. When validating clusters we are often stuck trusting 

one validation measure instead of a combined performance estimate of all the given measures. 

RankAggreg is able to not only provide an average score of all measures for each clustering 

algorithm used but also for all numeration of clusters. This allows us to analyze a range of 

clusters with different clustering algorithms and to find which number of clusters combined with 

the clustering algorithms performed the best total. In DeCloud the RankAggreg portion of 

optCluster calculates which cluster set is the best after all the cluster sets are created. It also 

calculates which clustering algorithm performs the best on the sets as well. A cluster set, for the 

purposes of this paper, is the groups of clusters created each combination. When optCluster 

has the input to calculate 2:8 clusters, each set incrementing by one cluster starting at 2 

clusters, last cluster set holds 8 clusters. Due to the difficulty of data sets chosen for testing only 

data set A relies fully on the RankAggreg implementation to calculate optimal cluster set, but 

this is due to the complexity of the data sets chosen in data set B and C.   

 

RankAggreg can use either the cross-entropy Monte Carlo algorithm or the Genetic algorithm. It 

also gives the option between two different distance functions, weighted Spearman’s footrule or 

the weighted Kendall’s tau distance in order to stabilize the aggregation algorithms. Both 

distance functions being modifications of the distance functions Spearman and Kendall [18]. 

The weighted Spearman’s footrule takes the absolute differences between the ranks of all the 

unique elements from two ordered lists. The smaller the value of the difference, the more similar 

the lists are. The weighted portion of the calculation is a penalty system which takes the sum of 

movements within the lists being calculated. 
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The weighted Kendall Tau’s distance also measures the distance between two ordered lists. If 

the ordering of two values, t and u, are the same in both lists, then no penalty is given. If t is 

ahead of u in one list, but opposite in the other, a penalty of 1 is incurred. The weighted part of 

the function is set as the absolute difference in the scores of t and u. The lists used are 

normalized between 0 and 1 [48]. 

In RankAggreg Cross-Entropy and Genetic Algorithm are the algorithms available to go through 

all the scores for each cluster and cluster set per algorithm. Using this information, it ranks each 

combination of cluster algorithm and cluster set from best to worst.  

Genetic Algorithms (GA) was used for all the tests referred to in the results section, yet 

extensive testing was done using cross-entropy (CE) and no substantial difference was found in 

the final product. My choice of using Genetic Algorithm was simply due to the runtime 

comparisons as Cross-Entropy showed itself to be slightly slower for these particular tests. 

 

Cross-Entropy Monte Carlo Algorithm 

 

Originally developed in order to calculate the probability of rare events, it later was proposed as 

a valid method for calculating weighted rank aggregation based on lists made up of different 

cluster validation measures.  

 

The Cross-Entropy Monte Carlo Algorithm creates an n x k matrix where all entries are 0 or 1. 

Total number of unique clustering algorithms is n and the constraint of the matrix is that both 

column sum and row sum must equal at most 1. Due to this all the variables follows a 

multinomial distribution, and reading from left to right the position of the value 1 in each column 

determines the order of the ranked list. 



 
 

28 
 

The algorithm is broken into four steps: 

1. Initialization: This step is setup with an initial matrix of parameters making sure all the 

clustering algorithms have an equal chance at being picked in each k position of the 

ranked list. 

2. Sampling: Here a random sample is selected from the most recent parameter matrix. 

Using this an optimal list and objective functions values are calculated. 

3. Update: Using the last sample and objective functions values, the parameter matrix is 

updated. A new sample is then created from the new matrix and the process begins 

again with the goal to minimize the objective function values.  

4. Convergence: The update function continues until the optimal list stays unchanged for a 

set number of iterations This optimal list is then returned as the chosen optimal list of 

scores to use [18]. 

 

Genetic Algorithm 
 

Genetic algorithm uses an evolutionary concept to achieve the optimal solution, Charles 

Darwin’s survival of the fittest evolutionary theory. The algorithms assume that the “fittest” 

solution will “survive” through all the iterations, effectively making the chosen solution the 

evolutionary winner. It may even develop the “fittest” solution during the run.  

The algorithm has five steps: 

1. Initialization: First a predetermined population size must be chosen. Multiple randomly 

generated, equal length, ordered lists of possible solutions are then created based on 

the population size input. The larger the population size, the higher the chance of finding 

the optimal solution. 
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2. Selection: A fitness function is used to evaluate each individual lists of possible 

solutions. Based on the scores received by the fitness function, a weighted random 

sample is used to create a new group of solutions, removing the lower scoring list. 

3. Crossover: A crossover probability is set and each list in the new group of solutions will 

be subjected to a one-point crossover. A point is calculated based on the crossover 

probability, then all the elements of each list ranked lower than the specified point will be 

swapped with another list, this is done to all the lists with elements under a specified 

point.  

4. Mutation: A mutation probability is set, this probability will determine how often an 

element will be randomly altered in the lists. One or more elements from any of the lists 

in the group of solutions may be altered based on how high the probability is set.  

5. Convergence: In the convergence step, the algorithm will iterate through the selection, 

crossover and mutation until a list remains the optimal for a set number of iterations. 

This optimal list will then be presented as the chosen list for the algorithm [18]. 

 

The optCluster package 
 

The optCluster package is a tool which covers a lot of ground when handling clustering data. 

Most R packages used to calculate clusters are mostly limited to few clustering algorithms and 

are designed for certain datatypes. The optCluster package is built around the idea that there 

are many packages available with the ability to fulfil the tasks asked of them, such as calculating 

cluster, validation measures or determining the optimal cluster number and clustering algorithm. 

optCluster is a combination of packages, creating one streamlined package which can handle 

variations of data and needs. The three main packages used are clValid, RankAggreg and 
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nbclust. The original optCluster package was released with only clValid and RankAggreg used 

but later nbclust was added for its ability to handle RNA data [18,29]. 

 

Implementation 
 

DeCloud as a tool is implemented in R, taking advantage of the libraries available in order to 

handle complex data.  Running clustering algorithms on big datasets is very resource 

demanding and I had to move DeCloud over to the university server cluster named 

“Kjempetuja”. Even with the help of such a powerful platform, I found that certain clustering 

algorithms available in optCluster were not optimized to a great enough extent to functionally 

cluster the large datasets. Therefore I had to choose the clustering algorithms most useful for 

my purposes.  

 

When starting my project I was informed of the intent for Deblender to be ported from Matlab to 

R, which is why DeCloud was written in R instead of Matlab. Due to unforeseen circumstances, 

the team building Deblender was not able to port the application in time before my research was 

done. DeCloud is intended to become an add-on to Deblender as to hopefully improve the tool’s 

flexibility and to increase its potential. This unfortunately forces me to run my program on 

multiple platforms. The Matlab datasets used in the results are from Deblender and are read 

into my code. The data then gets transformed into data useful to R, and then transformed back 

into Matlab datasets fully clustered by DeCloud. This should not be a necessary step when 

Deblender gets ported to R, assuming they choose to implement it.  

The tool itself utilizes the optCluster as the basis for the calculations and will mostly lean on the 

built-in evaluation measures for internal validation, such as Connectivity (to a lesser degree for 

my analysis), Dunn index and Silhouette width. RankAgg will give a consensus estimate based 
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on the three different measurements and decide which clustering algorithm performs the best 

and estimate how many clusters are optimal. There is a built-in function indicating if the data 

analyzed are count data or not, which allows for the use of the variations of Non-binomial and 

Poisson algorithms. If the count data function is set to true, the program will not run if the data is 

not in count data format. All clustering algorithms, except for Deblender’s K-means and K-

mediods, run from 2 to 8 clusters, 2 clusters being the smallest possible set and 8 being an 

arbitrary number high enough for our purpose.  

 

Filtering data through clustering 
 

For very noisy data, RankAggreg may need to change how it weighs the internal validation 

measures for calculating the optimal clusters number. 

The idea behind the implementation was to use clustering as noise filters to catch data that 

were less useful for our purpose in order to find better patterns in data left over.  

Using the optimal cluster number (k) calculation, provided by the optCluster package, I looked at 

the sets of clusters created which had more clusters than what was estimated to be optimal (k). 

The system keeps the top (k) clusters within each cluster set according to silhouette width, 

discarding unused clusters. This assumes that high scoring silhouette-width clusters hold more 

valuable information than the other clusters in each set. This gives a top (k) set of clusters for 

each set of clusters larger than the calculated optimal cluster number. In order to determine 

which top (k) set of clusters contained the better clusters, a penalty system was implemented. 

For this it assumes that due to high silhouette-width scores, the clusters hold valuable 

information and that overlapping data based on Euclidean distance may be an indicator of good 

data. Another assumption was that large diameter clusters in Euclidean distance were beneficial 

as they held the unique parts of the clustering profiles where they do not overlap with other 
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clusters. To achieve this, a penalty method were implemented to encourage the maintenance of 

partial cluster overlap structure and maintain non-overlap data in the clusters while still allowing 

the removal of noisy data. This was done by reversing the approach to the Dunn Index, where 

very compact and separated clusters are preferred. The implementation favored the top (k) 

clusters which gave the lowest Dunn index, opposite of its traditional use which wants to 

maximize the Dunn Index score. Using this system it was possible to remove noisy data from 

the clusters and find which of the cluster sets contained the best cluster results. 

 

Pearson Correlation Coefficient 
 

 To evaluate the quality of our results we use Pearson correlation coefficient to measure the 

strength of the linear association between our estimated cell-type proportions and the real 

proportions. The Pearson correlation coefficient calculation produces a value between -1 and 1 

where 0 means no correlation. A negative value indicates negative correlation and a positive 

value is positive correlation, a score of 1 means perfect correlation [50]. 

The datasets  
 

For our purposes of comparison the original implementation of Deblender, we use three of the 

same datasets which were used to test its efficiency compared to other established 

deconvolution tools.  

GSE19830: Microarray dataset which includes samples of pure rat brain, liver and lung tissue 

including 11 other different proportions. There are 3 technical replicates with 42 total samples, 

33 of which are mixed tissue samples. For my results the 33 unknown mixed tissue samples 

was used to calculate the clusters and the 9 known samples were used to check the accuracy of 

the clustering. 
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GSE11058: Microarray dataset containing pure samples of immune cell lines Rajo, THP-1, IM-9, 

Jurkan and 4 mixtures of the aforementioned cells in different proportions. There are 3 technical 

replicates making up a total of 24 samples, even split between cell type-specific and mixed 

samples. For my purposes the unknown 12 samples were used for clustering. The accuracy of 

the clustering was measured against the known samples.  

 

GSE65135: Microarray dataset containing 14 disaggregated lymph node biopsies from patients 

with follicular lymphoma. The dataset was analyzed to have B cells, CD4 T cells and CD8 T 

cells by flow cytometry.  
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RESULTS 
 

In the results we analyze the three aforementioned datasets GSE19830, GSE11058 and 

GSE65135. For simplicity and readability, I will rename these Dataset A (GSE19830), B 

(GSE11058) and C (GSE65135). 

On each of these datasets four different analysis were run, Deblender, Hierarchical, PAM and 

PAM with filter. For each dataset Deblender will be displayed first, followed by Hierarchical, 

PAM and lastly PAM with filter. At the bottom of each dataset analysis, a summation comparing 

all four tests will be shown.   

Although not published yet, Deblender is a good deconvolution tool which can perform at the 

same level or better than other deconvolution tools published. For the datasets represented 

here it is proven and those results are pending publishing. As the purpose of this thesis is to 

create an addition to Deblender, it seems appropriate to use it as a baseline to compare my 

results.  

 

GSE19830 (A) 
 

For the A data set we see good results in Deblender which uses K-means to calculate the 

results. The data set has three tissue types, liver, brain and lung. The mixed data set has 33 

unknown tissue samples (columns) and 20638 rows of unknown gene data (rows), the data 

have been filtered in Deblender prior to clustering though a high/low expression filter. My 

package acquires the data from Deblender before the clustering step to ensure identical data for 

all tests.  
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Dataset A Deblender 
 

Deblender utilizes K-means for its clustering with correlation distance. The results indicate 

strong correlation between the estimated clusters and the true values.  

Tool/Algorithm Liver Tissue Brain Tissue Lung Tissue 

Deblender/K-means r : 0.962 r: 0.983 0.983 

Table 1. Represents Pearson correlation score for Deblender for each tissue type in Dataset A. 

 

Figure 3. Scatterplot showing correlation for the estimates proportions compared to the real 

values in the A dataset. 
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Dataset A DeCloud Hierarchical 
 

 

Figure 4. Hierarchical Clustering Dendrogram for A. 

The Hierarchical test uses the same data as Deblender for the test. We can see in Figure 4 how 

the clusters combine from individual datapoints at the bottom in the figure to combining into two 

clusters at the top. If we look at the dedrogram we can also see three clusters at height 1.0, 

after this the clusters split apart rapidly. RankAggreg calculated that three clusters was optimal 

for this dataset, using the intrinsic validation functions connectivity, Dunn Index and Silhouette. 

As we cut the dedrogram to return 3 clusters we get the results shown in the table 2 below.  

Tool/Algorithm Liver Tissue Brain Tissue Lung Tissue 

DeCloud/Hierarchical r : 0.982 r: 0.980 0.987 

Table 2. Represents Pearson correlation score for DeCloud Hierarchical clustering algorithm for 

each tissue type in Dataset A. 
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Figure 5. Above are three scatterplots representing the correlation of the Hierarchical clusters to 

the different tissue types.  

The results indicates strong correlation in the tissue samples and are better than Deblender for 

2/3 of the sample types. Lung tissue is slightly higher with r: 0.987 compared to Deblender’s r: 

0.983. There is a larger increase in liver tissue correlation from r: 0.962 to r: 0.982 and a slight 

decrease in brain tissue correlation from r: 0.983 to r: 0.980.  
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Dataset A DeCloud PAM 
 

For the A dataset we see that cluster set with 3 clusters has the best Connectivity and 

Silhouette with and second best Dunn Index. The RankAggreg function in optCluster calculates 

that 3 clusters are the optimal number of clusters based on Connectivity, Dunn Index and 

Silhouette Width, same as hierarchical.  

Tool/Algorithm Liver Tissue Brain Tissue Lung Tissue 

DeCloud/PAM r : 0.956 r: 0.983 0.984 

Table 3. Represents Pearson correlation score for DeCloud PAM clustering algorithm for each 

tissue type in Dataset A. 

 

 

Figure 6. Above are three scatterplots representing the correlation of PAM clusters to the 

different tissue types. 
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The results are very reminiscent of the Deblender results, something, which makes sense since 

PAM is very similar to K-means. The differences are minimal, although the PAM clustering 

algorithm does underperform slightly compared to Deblender.  

 

Dataset A DeCloud PAM with cluster filter 
 

For the PAM clustering algorithm with filter, the 3 clusters with the highest silhouette width per 

cluster are kept, while the rest are discarded. The clusters sets with fewer clusters than what 

was calculated to be optimal do not get considered. 

Cluster Set 1 2 3 4 5 6 7 8 

3 0.406 0.575 0.591      

4 0.248 

 

0.441 

 

0.585 

 

0.280 

 

    

5 0.330 

 

0.487  

 

0.557 

 

0.259 

 

0.084 

 

   

6 0.343 

 

0.154 

 

0.431 

 

0.207 

 

0.498 

 

0.044 

 

  

7 0.164 

 

0.464 

 

0.417 

 

0.527 

 

0.199 

 

0.025 

 

0.005 

 

 

8 0.214 

 

0.084 

 

0.410 

 

0.524 

 

0.171 

 

0.294 

 

0.008 

 

0.006 

 

 Table 4. Above is a table showing the Silhouette-width per cluster in cluster sets, 3-8. The 3 

clusters with the highest silhouette width per cluster set are kept (in bold).   
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Using the average Silhouette-width per cluster, the three highest scoring clusters per set based 

on my observations in the data and testing are retained. It was found that this yielded the best 

result from each cluster set consistently, but did not necessarily indicate which cluster set was 

superior.  

To find the best cluster set, I use the Dunn Index score in Euclidean distance and pick the clus-

ter set with the lowest value. The Dunn Index is traditionally used as a measure to find highly 

compact and separated data where score should be maximized. Due to the data used and the 

implemented filtering system of choosing best silhouette width clusters, I found that overlapping 

data in clusters with larger cluster radius yielded better results. In this case, the lowest Dunn in-

dex is cluster set 4 with a Dunn Index score of 0.0123. This is slightly lower than cluster set 3 

with a Dunn Index score of 0.0127. Based on observed clustering behavior, the Dunn index 

serves to penalize the cluster set when the data get too filtered-out. It has also been observed 

that when important data are getting removed, the data structure is altered and the range of 

data in the clusters are lowered. This is represented in the implosion of the cluster radius.  

 

          Figure 7. Cluster plot showing the clusters generated by PAM cluster set 3.  
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In figure 7 we can see the three clusters originally implemented by PAM on the A dataset. Here 

we can observe a slight overlap of data on both sides of the blue cluster (red data points) with 

its neighbors.  

 

Figure 8. PAM 4 clusters, based on recommended optimal amount of clusters(calculated in the 

previous PAM test by RankAggreg) we know we have one too many clusters present in this 

cluster plot.  

In figure 8 the cluster plot above we have the 4 PAM cluster set, the blue cluster with red data 

points has the lowest silhouette width indicating that it is the lowest confidence cluster. A low sil-

houette score indicates a higher likelihood that it holds data points that should have been in an-

other of the clusters.  
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Figure 9. Cluster plot showing the GSE19830 clusters after the lowest silhouette cluster has 

been removed from the 4 PAM cluster set. 

In figure 9 we can observe the clusters after the filtering process has taken place and the lowest 

silhouette width cluster has been removed, leaving us with three clusters to represent the esti-

mated optimal 3 clusters.  

Tool/Algorithm Liver Tissue Brain Tissue Lung Tissue 

DeCloud/PAM(w/cluster filter) r : 0.989 r: 0.983 0.994 

Table 5. Represents Pearson correlation score for DeCloud PAM clustering algorithm, with filter 

through clustering, for each tissue type in Dataset A. 
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Figure 10. Above are three scatterplots representing the correlation of PAM filtered clusters to 

the different tissue types. 

In Figure 10 we can see improvement in the deconvolution accuracy after implementing the 

filtering system. Liver tissue increases from r: 0.962 to r: 0.989, Brain tissue stays the same, 

while Lung tissue estimates increase from r: 0.983 to r: 0.994. Based on these results, PAM with 

cluster filter shows improvement even compared to the very accurate Hierarchical clustering 

algorithm.  
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Tool/Algorithm Pearson total RMSE 

Deblender/K-means r: 0.895 0.1459 

DeCloud/Hierarchical r: 0.897 0.1624 

DeCloud/PAM r: 0.888 0.1450 

DeCloud/PAM (w/cluster filter) r: 0.986 0.1352 

Table 6. Total Pearson correlation for each result on dataset A, with RMSE. 

In our total Pearson correlation coefficient calculations we see that Hierarchical and PAM with 

cluster filter are better than Deblender, PAM clustering algorithm which uses the filter 

implementation shows the greatest improvement over the other clustering algorithms.  

 

GSE11058 (B) 

 

The GSE11058 data set in its mixed data form with 41948 unknown gene data (rows) and 12 

unknown tissue samples (columns). It is a very large dataset with a large amount of noise and 

overlapping clusters. This dataset has 4 cells, Jurkat, IM-9, Raji and THP-1. Due to the amount 

of noise in this dataset I am not able to reliably calculate the recommended number of clusters 

and have for the purpose of the analysis hardcoded in the recommended number of clusters. It 

is possible to get the correct number of clusters by changing how RankAggreg weights 

Connectivity, Dunn Index and Silhouette Width, but doing so without in-depth knowledge of the 

dataset would be very unreliable. Deblender also requires that the number of clusters is 

hardcoded in for this test due to the amount of noise in the data.  
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Dataset B Deblender 
 

The Deblender uses the K-means clustering algorithm to cluster the data with mixed results. I 

have observed that dataset B, in its fairly unfiltered form, is very difficult for the traditional 

clustering algorithms to classify correctly. This is most likely due to very poor separation 

between the clusters and overlapping data. 

Tool/Algorithm Jurkat IM-9 Raji THP-1 

Deblender/K-means r : - 0.458 r: 0.866 r: 0.497 r: 0.985 

Table 7. Represents Pearson correlation score for Deblender for each tissue type in Dataset B. 

 

Figure 11. Above are four scatterplots representing the correlation of Deblender clusters to the 

different tissue types in dataset B. 
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Deblender struggles with consistently finding good correlation in the B data, both IM-9 and THP-

1 do however get good correlation scores.  

 

Dataset B DeCloud Hierarchical clustering 
 

 

Figure 12. Hierarchical Clustering Dendrogram for test B. 

Hierarchical scores well on dataset A, but results seems to suffer when there are lower cluster 

separation and more noise. As there is no implemented noise filter with the Hierarchical cluster 

it is not able to perform well on this dataset.  

Tool/Algorithm Jurkat IM-9 Raji THP-1 

DeCloud/Hierarchical r : -0.142 r: 0.932 r: 0.630 r: 0.982 

Table 8. Represents Pearson correlation score for DeCloud Hierarchical clustering algorithm for 

each tissue type in dataset B. 
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Figure 13. Above are four scatterplots representing the correlation of Hierarchical clusters to the 

different tissue types in dataset B. 

The hierarchical clustering algorithm has similar problems to Deblender and scores poorly on 

Jurkat with a correlation score of r: -0.142, where 0 means no correlation to the real data. The 

IM-9 r: 0.932 and THP-1 r: 0.982 are good results, while the Jurkat and Raji does not perform as 

well. 
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Dataset B DeCloud PAM 
 

The PAM clustering algorithm without the filter function will suffer similarly to the other clusters 

as it is not equipped well to handle this type of data set.  

Tool/Algorithm Jurkat IM-9 Raji THP-1 

DeCloud/PAM r : - 0.141 r: 0.891 r: 0.556 r: 0.983 

Table 9. Represents Pearson correlation score for DeCloud PAM clustering algorithm for each 

tissue type in dataset B. 

 

Figure 14. Above are four scatterplots representing the correlation of PAM clusters to the 

different tissue types in dataset B. 

The PAM clustering algorithm without the filtering system implemented does not do as well on 

all the tissue samples, Jurkat especially did not return very promising result.  
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These results are not surprising, the data should have been better preprocessed before this 

step to help the cluster algorithms perform proper classification. The reason why I decided to 

make this analysis on such difficult data was to show the true benefits of the PAM clustering 

function with the filtering function implemented. 

 

Dataset B DeCloud PAM with cluster filter 

 

For the PAM clustering algorithm with the cluster filtering system we use the same clustering 

sets created with the other PAM tests. The filter function is implemented identically to the 

Dataset A PAM filter, where the top cluster were picked based on the calculated optimal cluster 

calculation. In this case the optimal cluster calculation equals 4, which means we will find the 

top four cluster for cluster set 4 to 8.  These are the same cluster sets used by the other PAM 

cluster which scored lowest of all the other clustering algorithms previously. 

 

Cluster Set 1 2 3 4 5 6 7 8 

4 0.159 0.164 

 

0.159 

 

0.188     

5 0.145 

 

0.164 

 

0.154 0.147 

 

0.190    

6 0.141 0.165 0.146 0.179 0.126 

 

0.167   

7 0.156 0.174 0.194 0.168 0.121 0.110 0.086  

8 0.156 0.140 0.117 0.126 0.193 0.187 0.175 0.071 

Table 10. Above is a table showing the silhouette width per cluster in cluster sets 4-8. The 4 

clusters with the highest silhouette width per cluster set are kept (in bold).   
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Figure 15. Visual representation of the clusters in cluster set 4 for dataset 

B. 

 Figure 15 shows the cluster plot of the PAM cluster set 4 where we can 

see why the data are so difficult to classify. These are the data the non-

filtered PAM clustering algorithm was trying to classify. There much 

overlapping data and very little separation. The goal of the filtering system 

is to remove enough unnecessary data from the clusters. This must be 

done without removing the outlier data with high silhouette confidence 

which makes each genes unique. Running the Euclidean distance Dunn 

index we get the score per set (table 11)     

         

Looking at the Dunn Index scores in table 11 we can see that there is a large drop for cluster set 

7, giving a clear minimum. From this it is clear that we should use the top 4 clusters of cluster 

set 7 for our result. 

Cluster set Dunn 

Score 

Top 4, 4 clusters 0.00818 

Top 4, 5 clusters 0.00854 

Top 4, 6 clusters 0.00887 

Top 4, 7 clusters 0.00731 

Top 4, 8 clusters 0.00836 

Table 11. Cluster plot of the 

set of 4 clusters.  
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Figure 16. Cluster plot of top 4 clusters in cluster set 7.  

In figure 16 we can see the top 4 clusters with much more separation in the data giving the 

cluster algorithm better opportunity to find the patterns.  

 

Tool/Algorithm Jurkat IM-9 Raji THP-1 

DeCloud/PAM with filter r : 0.981 r: 0.985 r: 0.993 r: 0.989 

Table 12. Represents Pearson correlation score for DeCloud PAM clustering algorithm, with 

cluster filter, for each tissue type in dataset B. 
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Figure 17. These scatter plots shows the correlation between the estimated proportions and the 

real values for dataset B. 

The filtering system added to the PAM clustering algorithm gives the total Pearson correlation 

score an increase from r: 0.797 to r: 0.914.This increase is very encouraging and is 

accomplished without any changes to the data beyond the automated filtering function.   

Tool/Algorithm Pearson total RMSE 

Deblender/K-means r: 0.786 0.0994 

DeCloud/Hierarchical r: 0.620 0.1158 

DeCloud/PAM r: 0.797 0.0960 

DeCloud/PAM (w/cluster filter) r: 0.914 0.0974 

Table 13. Total Pearson correlation for each result on dataset B, with RMSE. 
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The Pearson total score is created by combining all the individual scores per cell into one total 

score in order to make the comparison easier per tool/algorithm.  

Looking at the total scores for dataset B we can see a big increase in correlation when the 

filtering process was applied. My observations regarding this data set are that it has a lot of 

noise which inhibits the standard clustering algorithms without more extensive data 

preprocessing prior to clustering. By applying the filter function, the system is able to 

automatically cut through the noise which is limiting the other clustering algorithms from finding 

the true hidden patterns.  

 

GSE65135 (C) 

 

The GSE65135 data set contains 43668 unknown gene data (rows) and 14 unknown tissue 

samples (columns). This data set is also very large with a lot of noise in the data. The dataset 

has 3 cells, B cells, CD4 T cells and CD8 T cells. This dataset does also require us to 

implement a set number of clusters as the internal validation measures failed to reliably identify 

how many cells were present in the data. The recommended cluster number is implemented 

manually for both Deblender and DeCloud. Since the results dataset B saw such an 

improvement when using the filter system, I chose to include dataset C as Deblender has 

difficulty clustering it. 
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Dataset C Deblender 
 

Dataset C is clustered similarly to dataset A and B. The results in Deblender indicate little 

correlation and do not come close to the same quality of results we saw in the other tests.   

Tool/Algorithm B Cells CD4 T Cells CD8 T Cells 

Deblender/K-means r: 0.457 r: - 0.141 r: 0.261 

Table 14. Represents Pearson correlation score for Deblender for each tissue type in dataset C. 

 

Figure 18. These scatter plots shows the correlation between the estimated proportions and the 

real values for dataset C. 
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Dataset C DeCloud Hierarchical 
 

 

Figure 19. Dendrogram for the hierarchical clustering algorithm on dataset C. 

The Hierarchical clustering algorithm was implemented the same as Deblender. 

Hierarchical does not perform noticeably better than Deblender does on this dataset does and 

shows how much difficulty these clustering algorithms have in identifying the gene profiles.  

Tool/Algorithm B Cells CD4 T Cells CD8 T Cells 

DeCloud/Hierarchical r: -0.111 r:  0.495 r:  0.311 

Table 15.Represents Pearson correlation score for DeCloud PAM clustering algorithm for each 

tissue type in dataset C. 
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Figure 20. These scatter plots shows the correlation between the estimated proportions and the 

real values for the C data. 

Since a score of 0 means no correlation in the data, B Cells get close to finding no structure in 

these data on B Cells. Even CD4 T Cells, which have the best result, does not do particularly 

well compared to our results on the A and B datasets.  
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Dataset C DeCloud PAM 
 

The PAM clustering algorithm, for this test, had the worst results of all of the clustering 

algorithms. The clustering algorithm found very little correlation in the data and in the PAM. The 

average silhouette-width in PAM for the clusters has a very low score in general which indicates 

low confidence in that the data are in the correct cluster. More on this in the PAM filtered test.  

Tool/Algorithm B Cells CD4 T Cells CD8 T Cells 

DeCloud/PAM r: - 0.160 r:  - 0.264 r:  - 0.419 

Table 16. Represents Pearson correlation score for DeCloud PAM clustering algorithm for each 

tissue type in dataset C. 

 

Figure 21. These scatter plots shows the correlation between the estimated proportions and the 

real values for dataset C. 
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Dataset C DeCloud PAM with cluster filter 
 

As PAM filter was able to give a big boost to the scores in test B, there were hopes that it could 

do something similar in this test. Unfortunately, this test has the same results as normal PAM as 

the clustering algorithm decides that the original cluster set 3 was the best option.  

Cluster Set 1 2 3 4 5 6 7 8 

3 0.153 

 

0.146 

 

0.123      

4 0.138 

 

0.119 

 

0.156 

 

 

0.120 

 

    

5 0.159 0.163 0.135 0.099 

 

0.123    

6 0.155 0.109 0.157 0.149 0.098 0.121 

 

  

7 0.175 0.113 0.106 0.149 0.147 0.092 0.122 

 

 

8 0.154 0.103 0.075 0.162 0.157 0.092 0.094 0.121 

Table 17. Above is a table showing the silhouette width per cluster in cluster set 3-8. The 3 

clusters with the highest silhouette width per cluster set are kept (in bold).   
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 In table 17 we see the average Silhouette-width per cluster in PAM. The 

scores presented are much lower than for dataset A and a little lower 

than for dataset B. For filtering, we are looking for the clusters which 

gives us the most information per set. The most noticeable difference 

between datasets B and C is the lack of silhouette width improvement 

between the top cluster set (cluster set 3) and the lower cluster sets 

(cluster sets 6-8).  

Running the Dunn Index(table 18) as we have done in the other tests, 

we find that the lowest scoring cluster set is cluster set 3, which is the set 

without filtering. We already know that the result in PAM without the filter 

is very poor, but as we can see in fig, the confidence in the data is not 

very high. In this case, the filtering system was unable to improve the 

score of the normal PAM implementation.  

 

Tool/Algorithm B Cells CD4 T Cells CD8 T Cells 

DeCloud/PAM(w/ cluster filter) r: - 0.160 r:  - 0.264 r:  - 0.419 

Table 19. Represents Pearson correlation score for DeCloud PAM clustering algorithm, with 

cluster filter, for each tissue type in dataset C. 

 

Cluster set Dunn 

Score 

Top 3, 3 clusters 0.01219 

 

Top 3, 4 clusters 0.01364 

 

Top 3, 5 clusters 0.01355 

 

Top 3, 6 clusters 0.01355 

 

Top 3, 7 clusters 0.01233 

 

Top 3, 8 clusters 0.01356  

Table 18. Dunn Index 
Scores per cluster set. 
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Figure 22. These scatter plots show the correlation between the estimated proportions and the 

real values for dataset C. 

As the filtering system was unable to find any indication that there were better clusters in other 

cluster sets, it used the normal PAM implementation. 

For dataset C we see a case were none of the clustering algorithms were able to properly 

classify the gene expression profiles. For these data to be properly clustered by any of these 

clustering  algorithms in the future there needs to be better preliminary handling of the data, for 

our test it provided an opportunity to show how the filtering system functions in a case where it 

was unable to properly deconvolve the data.  
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Tool/Algorithm Pearson total RMSE 

Deblender/K-means r: 0.394 0.3180 

DeCloud/Hierarchical r: 0.281 0.3282 

DeCloud/PAM r: 0.369 0.3210 

DeCloud/PAM (w/cluster filter) r: 0.369 0.3210 

Table 20. Total Pearson correlation for each result on dataset B, with RMSE. 

 

Runtime for results 
 

When analyzing the runtime of Hierarchical clustering and PAM clustering we see a big 

difference in runtime. The Hierarchical clustering algorithms runs between 5 and 8 times faster 

than the PAM clustering algorithm on the same datasets.  

Clustering Algorithm Dataset A Dataset B Dataset C 

Hierarchical clustering 33 min 2 h 8 min 2 h 41 min 

PAM clustering 2 h 36 min 16 h 20 min 13 h 6 min 

Table 21. The table presents the runtime for each dataset used in the results. PAM clustering 

represents both PAM with and without the cluster filter function. 

The PAM clustering algorithm with filter has a much better score than Hierarchical clustering on 

both Dataset A and Dataset B in the results but it comes at the cost of time (table 21). This is 

something that should be considered when choosing between the two clustering algorithms. 

Another consideration should be that the data sets used (especially dataset B and C) are very 

large, the smaller the dataset analyzed, the smaller the difference between the clustering 

algorithms will become. Another way to decrease runtime would be to lower the number of 

cluster sets calculated.  
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Discussion 
 

The DeCloud offers a range of new options to continue further exploration into how Deblender 

can become an even more effective deconvolution tool. The ability to handle count data for RNA 

sequencing alone is a whole new direction to study, not to mention all the other clustering 

algorithms not fully explored in this paper. For my purposes, I limited my scope to tests already 

conducted by Deblender, which were provided to me with the tool and to the clustering 

algorithms that were able to handle the large datasets. I did do some tests with the RNA 

sequencing data with reasonable results, but decided against publishing these results due to 

having to coerce the data from a RPKM format back into a count data format. Although the 

results from these tests were promising, the lack of proper count data made me choose to go a 

different direction and focus on Hierarchical and PAM clustering with the filtering function. I do 

believe that there is a lot of potential in the RNA sequencing clustering algorithms which should 

be explored given opportunity.  

Based on my observations, Hierarchical clustering is the superior algorithm for simple data, 

which are easily separable due to efficiency. Based on my observations it has a slight edge in 

accuracy over the K-means clustering algorithm, which is implemented in Deblender. PAM on 

the other hand offers much more flexibility in regard to how the data are handled, which is why I 

chose it as the clustering algorithm used for the filtering function.  

The part of my paper which I am truly pleased with and which is novel, is the filtering function. 

Although it does need further testing in order to prove its robustness, it does provide the best 

clusters and best cluster set for each of the tests I applied it to. When I originally implemented 

the filtering function I had not expanded my clustering to more than 6 clusters and had not found 

any good results when analyzing dataset B, but chose to expand my search using my new 

filtering function. I immediately got the result I am presenting in the results from cluster set 7 and 
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found that my unorthodox use of the Dunn Index modeled the scoring quality I got from each set 

quite well. I do not advocate for the filtering process to be implemented blindly however as 

highly separated clusters with no overlap, especially if dense, will score quite high on the Dunn 

Index. In such a case, the Dunn Index should be used in the traditional sense, looking for the 

maximal score. Although this hypothetical situation did not occur in my tests, it would be very 

important to be aware of this fact in order to get accurate data. To combat this I would suggest 

implementing a threshold for what the minimum distance there can be between clusters. If the 

minimum distance is above the given threshold, then the function should look for the maximum 

Dunn Index score instead of the minimum. Although this theory is untested, it stands to reason 

that a well-known internal validation function should be able to provide a quality measure as is 

intended when circumstances are appropriate for it.  

Another observation I have made in the data is that clusters with a maximal dissimilarity above 1 

will give poor results. The filtering function should be applied in such cases as to either remove 

such a cluster or to have it ‘split’ in a larger cluster set. In dataset A I found that the removed 

cluster in cluster set 4 had a maximal dissimilarity above 1. In the case of dataset B, all the 

initial clusters in the recommended 4 cluster set had maximal dissimilarity over 1. I believe this 

may also be a way to measure how big the cluster set should be expected to be in order to 

separate out the data properly. This theory would need much further research in order to be 

conclusive, but my observation does support it.  

 

When analyzing dataset C there was very little success in terms of deconvolution results; it did 

however give valuable information regarding the filtering function. For dataset C we saw how 

the filtering system handled data where it had little confidence in the clusters and low indications 

of better data in higher cluster sets. Seeing that the function favored not filtering away data in 



 
 

64 
 

such a case is very encouraging. I did out of curiosity check the results for the other cluster sets 

and found that none of them had any improvements over the other clustering algorithms.  

 

The tool as it stands, with the tests I have conducted, does suggest it has major possibilities in 

terms of increased accuracy in unsupervised deconvolution. The tests are done in comparison 

to Deblender, a deconvolution tool which is currently pending publication. The results achieved 

in Deblender compared to other deconvolution tools indicate that it is at the very least 

comparable to the other deconvolution tools that have been published in the past, this is 

especially true for the datasets tested in this thesis. Based on my results with the datasets 

presented in this thesis, there are good arguments for DeCloud being superior for these types of 

datasets compared to Deblender. Considering the range of new options available in this 

program, not all of which have been tested, I believe that adding this as an option in Deblender 

in order to better handle large variations in problems would be very beneficial.  

The largest weakness of this implementation is in the runtime of the program and the need for 

large amount of internal memory. I would highly recommend running this program on a server 

cluster if the datasets are larger than a few thousand rows, as I have done.  

As a closing statement, I feel that DeCloud has proven to be a successful deconvolution tool 

with good enough results to warrant consideration for future use and further testing.  
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Appended A. DeCloud code: 
library(MBCluster.Seq) 

library(optCluster) 

library(combinat) 

library(readr) 

library(BiocGenerics) 

library(RankAggreg) 

library(readr) 

library(cluster) 

library(clValid) 

library(caret) 

library(doParallel) 

library(matlabr) 

library(R.matlab) 

library(dplyr) 

library(ggplot2) 

library(data.table) 

library(Biobase) 

library(pacman) 

library(annotate) 

library(mclust) 

library(fpc) 

library(affy) 

library(EBSeq) 

 

 

#To import the data, run the code below. Uncomment the GSE11058(B) or GSE65135(C) to import those 
datasets instead. 

#GSE19830(A)------------------------------------------------------- 

CData = as.data.frame(readMat('clust_high_variable_data.mat')) 

Gene = as.data.frame(readMat('clust_high_variable_gene.mat')) 
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HVData = as.data.frame(readMat('high_variable_data.mat')) 

Gene = t(data.frame(Gene)) 

row.names(CData) = c(Gene) 

row.names(HVData) = c(Gene) 

#--------------------------------------------------------------- 

 

#GSE11058(B)------------------------------------------------------- 

#CData = as.data.frame(readMat('GSE11058_Clust_HVD.mat')) 

#Gene = as.data.frame(readMat('GSE11058_HVG.mat')) 

#HVData = as.data.frame(readMat('GSE11058_HVD.mat')) 

#Gene = t(data.frame(Gene)) 

#row.names(CData) = c(Gene) 

#row.names(HVData) = c(Gene) 

#--------------------------------------------------------------- 

 

#GSE65135(C)------------------------------------------------------- 

#CData = as.data.frame(readMat('GSE65135_cluster_data.mat')) 

#Gene = as.data.frame(readMat('GSE65135_gene.mat')) 

#HVData = as.data.frame(readMat('GSE65135_data.mat')) 

#Gene = t(data.frame(GSE65135_gene)) 

#row.names(CData) = c(Gene) 

#row.names(HVData) = c(Gene) 

#--------------------------------------------------------------- 

 

#Creates a list of cluster algorithms, in this case only PAM and Hierarchical is being called. 

algo = list() 

algo = c("Pam", "Hierarchical") 

 

#Number of clusters created, this will create the clustersets 2-8.  

l = 2 
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u = 8 

 

#Calling the clustering algorithm, algo[1] calls the first word in the list(Pam), algo[2] calls Hierarchcical. 

#RankMethod can be changed to CE for cross-entropy and distance can be changed from Spearman to 
Kendall. 

deClusters=  optCluster(CData,l:u,clMethods=c(algo[1],algo[2]),countData = FALSE,validation = 
"internal",hierMethod = "average",annotation = "null",clVerbose = TRUE, rankMethod = "GA", distance 
= "Spearman",metric = "correlation", importance = c(1,1,1)) 

 

 

#To call Pam function after clustering is finished. This will create the csv file that can be transported into 
Deblender. This function also holds the filtering system.  

if("Pam" %in% algo){ 

  do.call(Pam, c(deClusters,l,u)) 

} 

#To call Hierarchical function after clustering is finished. Same as Pam function, just without the 
clustering function. 

if("Hierarchical" %in% algo){ 

  do.call(Hierarchical(deClusters)) 

} 

 

 

 

Pam = function(deClusters, l, u){ 

  DunnCluster = list() 

  ColSumTable =list() 

  #oc will use the calculated optimal cluster set in rankAggreg for test A. 

  oc = deClusters@rankAgg$top.list 

  oc = sapply(strsplit(oc, "-"), "[", 2) 

  oc = as.numeric(oc[1]) 

  #if running test B or C, please comment out the three lines of code above(oc lines) and uncomment the 
oc = 3 below.  
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  #oc = 3 

  toc=(u-l)+1 

  loc = (oc-l)+1 

  for(j in loc:toc){ 

    silAvg = as.data.table(deClusters@clVal@clusterObjs$pam[[j]]$silinfo$clus.avg.widths) 

    silAvg$cluster =  rownames(silAvg) 

    topSilC=head(order(-silAvg$V1),oc) 

    #Cluster holds the designated cluster number per row. 

    cluster = deClusters@clVal@clusterObjs$pam[[j]]$cluster 

    # CData.clv holds the data clustered on. 

    CData.clv =as.data.frame(cbind(cluster, CData)) 

    # HVData.clv holds output data values. 

    HVData.clv =as.data.frame(cbind(cluster, HVData)) 

     

    #Creating a table with data the expression data, adding cluster number on first row. 

    for(k in 1:oc){ 

       

      CData.clvO = subset(CData.clv, CData.clv$cluster == topSilC[[k]]) 

      if(k == 1){ 

        CData.clvc = CData.clvO 

      } 

      else{ 

      CData.clvc = rbind(CData.clvc, CData.clvO) 

      } 

    } 

    for(k in 1:oc){ 

       

      HVData.clvO = subset(HVData.clv, HVData.clv$cluster == topSilC[[k]]) 

      if(k == 1){ 

        HVData.clvc = HVData.clvO 
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      } 

      else{ 

      HVData.clvc = rbind(HVData.clvc, HVData.clvO) 

      } 

    } 

    #calculating Dunn Index per cluster set. 

    DunnCluster[[j]] = dunn(Data = CData.clvc[,-1], clusters = CData.clvc$cluster, method = "euclidean") 

     

    clvcD = HVData.clvc[,-1] 

    clvcD =  split(clvcD, f= CData.clvc[,1]) 

    sCd = as.data.frame(colMeans(clvcD[[1]])) 

    #Creating a column summerized table 

    for(i in 2:oc){ 

      sClust[[i]] = as.data.frame(colMeans(clvcD[[i]])) 

      sCd = as.data.frame(cbind(sCd, sClust[[i]])) 

    } 

 

  ColSumTable[[j]] = t(sCd) 

 

 

  } 

 

  DunnCluster = unlist(DunnCluster) 

  #finding the minimum dunn value cluster set 

  dunnClust = which.min(DunnCluster) 

  dunnPos = ((dunnClust-1)+loc) 

 

  #print out cluster results from PAM. 

  write.table(ColSumTable[[loc]],file="PAM.csv",sep="\t", col.names = F, row.names = F) 

  #print out cluster results from PAM with filter. 
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  write.table(ColSumTable[[dunnPos]],file="PAMwFilter.csv",sep="\t", col.names = F, row.names = F) 

} 

 

 

 

Hierarchical = function(deClusters){ 

  #comment out oc and uncomment oc = 3 if data set C is being run, change oc to 4 if dataset B is run. 

  oc = deClusters@rankAgg$top.list 

  oc = sapply(strsplit(oc, "-"), "[", 2) 

  oc = as.numeric(oc[1]) 

  #oc = 3 

  #Cut dendrogram to get clusters. 

  cluster  = cutree(deClusters@clVal@clusterObjs$hierarchical, k = oc) 

  clv =cbind(cluster, HVData) 

   

  for(k in 1:oc){ 

     

    clvO = subset(clv, clv$cluster == k) 

    if(k == 1){ 

      clvc = clvO 

    } 

    else{ 

    clvc = rbind(clvc, clvO) 

    } 

  } 

  clvcD = clvc[,-1] 

  clvcD =  split(clvcD, f= clvc[,1]) 

  sCd = colMeans(clvcD[[1]]) 

   

  for(i in 2:oc){ 
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    sClust[[i]] = as.data.frame(colMeans(clvcD[[i]])) 

    sCd = as.data.frame(cbind(sCd, sClust[[i]])) 

  } 

   

  ColSumTable = t(sCd) 

  write.table(ColSumTable,file="Hierarchical.csv",sep="\t", col.names = F, row.names = F) 

 

} 
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Appended B. Using Deblender 
 

Deblender is available here: https://github.com/kondim1983/Deblender. 

A zipfile is added with the thesis submission, it holds the test results for the clustering. It also has the 

deblender files which are changed inorder to implement results. There are comments in the matlab 

code to guide the process. Only file that needs to change is calc_A_unsupervised, the code is already 

built in and just needs to be uncommented depending on which test needs to run. Deblender’s 

clustering algorithm is also commented out, it will need uncommented for deblender’s test to run. 

 

Inge will recieve the datasets and clusters needed if there is a need to rerun my decloud application. The 

file size for this data is too large to be added next to the thesis for the submission. 

 


